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Preface

This volume contains papers presented at the 20th Annual Conference on Learn-
ing Theory (previously known as the Conference on Computational Learning
Theory) held in San Diego, USA, June 13-15, 2007, as part of the 2007 Feder-
ated Computing Research Conference (FCRC).

The Technical Program contained 41 papers selected from 92 submissions, 5
open problems selected from among 7 contributed, and 2 invited lectures. The
invited lectures were given by Dana Ron on “Property Testing: A Learning The-
ory Perspective,” and by Santosh Vempala on “Spectral Algorithms for Learning
and Clustering.” The abstracts of these lectures are included in this volume.

The Mark Fulk Award is presented annually for the best paper co-authored
by a student. The student selected this year was Samuel E. Moelius III for the
paper “U-Shaped, Iterative, and Iterative-with-Counter Learning” co-authored
with John Case. This year, student awards were also granted by the Machine
Learning Journal. We have therefore been able to select two more student papers
for prizes. The students selected were Lev Reyzin for the paper “Learning Large-
Alphabet and Analog Circuits with Value Injection Queries” (co-authored with
Dana Angluin, James Aspnes, and Jiang Chen), and Jennifer Wortman for the
paper “Regret to the Best vs. Regret to the Average” (co-authored with Eyal
Even-Dar, Michael Kearns, and Yishay Mansour).

The selected papers cover a wide range of topics, including unsupervised,
semisupervised and active learning, statistical learning theory, regularized learn-
ing, kernel methods and SVM, inductive inference, learning algorithms and lim-
itations on learning, on-line and reinforcement learning. The last topic is partic-
ularly well represented, covering alone more than one-fourth of the total.

The large number of quality submissions placed a heavy burden on the Pro-
gram Committee of the conference: Jose Balcazar (UPC Barcelona), Shai Ben
David (University of Waterloo), Avrim Blum (Carnegie Mellon University), John
Case (University of Delaware), Michael Collins (MIT), Ran El-Yaniv (Technion),
Paul Goldberg (Liverpool University), Peter Grunwald (CWI, The Netherlands),
Mark Herbster (University College London), Marcus Hutter (ANU/NICTA, Aus-
tralia), Adam Kalai (Georgia Tech), Roni Khardon (Tufts University), Adam
Klivans (University of Texas), John Lafferty (Carnegie Mellon University), Phil
Long (Google), Gabor Lugosi (ICREA and Pompeu Fabra University), Yishay
Mansour (Tel Aviv University), Partha Niyogi (University of Chicago), Rocco
Servedio (Columbia University), John Shawe-Taylor (University College Lon-
don), Hans Ulrich Simon (University of Bochum), Frank Stephan (National Uni-
versity of Singapore), Gilles Stoltz (CNRS and ENS, France), Csaba Szepesvari
(University of Alberta), Alexandre Tsybakov (Univ. Paris VI).

We are extremely grateful for their careful and thorough reviewing, and for
the detailed and active discussions that ensured the very high quality of the final



VI Preface

program. We would like to have mentioned the sub-reviewers who assisted the
Programme Committee in reaching their assessments, but unfortunately space
constraints do not permit us to include this long list of names and we must
simply ask them to accept our thanks anonymously.

We are particularly grateful to Sanjoy Dasgupta, the conference Local Chair,
for handling all the local arrangements to ensure a successful event, and for
maintaining the learningtheory.org Web site. Many thanks to Marco Tarini for
assisting us in designing the conference Web site, to Cissy Liu for the photo of
San Diego therein, and to Samory Kpotufe for designing the conference T-shirt.

Special thanks to Nicolò Cesa-Bianchi and Yishay Mansour for selecting ex-
citing and thought-provoking open problems for the open problems session.

The COLT Steering Committee members assisted us throughout the organi-
zation of the conference, and we would like to thank them all. We would also like
to thank Microsoft for providing the software used in the Program Committee
deliberations. Finally, we would like to thank the Machine Learning Journal,
Google Inc., and IBM for their sponsorship of the conference.

April 2007 Nader Bshouty
Claudio Gentile
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Property Testing:

A Learning Theory Perspective

Dana Ron

Department of EE – Systems, Tel-Aviv University Ramat Aviv, Israel
danar@eng.tau.ac.il

Property testing [15,9] is the study of the following class of problems.

Given the ability to perform local queries concerning a particular object
(e.g., a function, or a graph), the problem is to determine whether the
object has a predetermined global property (e.g., linearity or bipartite-
ness), or differs significantly from any object that has the property. In
the latter case we say it is far from (having) the property. The algorithm
is allowed a probability of failure, and typically it inspects only a small
part of the whole object.

Property testing problems are usually viewed as relaxations of decision problems.
Namely, instead of requiring that the algorithm decide whether the object has
the property or does not have the property, the algorithm is required to decide
whether the object has the property or is far from having the property. As such,
we are interested in testing algorithms that are much more efficient than the
corresponding decision algorithms, and in particular have complexity that is
sublinear in the size of the object.

Another view of property testing is as a relaxation of learning (with queries
and under the uniform distribution)1. Namely, instead of asking that the algo-
rithm output a good approximation of the function (object) from within a par-
ticular family of functions F , we only require that it decide whether the function
belongs to F or is far from any function in F . Given this view, a natural motiva-
tion for property testing is to serve as a preliminary step before learning (and in
particular, agnostic learning (e.g., [12]): We can first run the testing algorithm
to decide whether to use a particular family of functions as our hypothesis class.
Here too we are interested in testing algorithms that are more efficient than
the corresponding learning algorithms. As observed in [9], property testing is no
harder than proper learning. Namely, if we have a proper learning algorithm for
a family of functions F then we can use it as a subroutine to test the property:
“does the function belong to F”.

The choice of which of the aforementioned views to take is typically deter-
mined by the type of objects and properties in question. Much of property testing

1 Testing under non-uniform distributions (e.g., [10,1]) and testing with random ex-
amples (e.g., [11]) have been considered, but most of the work in property testing
deals with testing under the uniform distributions and with queries.

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 D. Ron

deals with combinatorial objects and in particular graphs (e.g., [9,3]). For such
objects it is usually more natural to view property testing as a relaxation of ex-
act decision. Indeed, there are many combinatorial properties for which there are
testing algorithms that are much more efficient than the corresponding decision
problems. On the other hand, when the objects are functions, then it is usually
more natural to look at property testing from a learning theory perspective. In
some cases, both viewpoints are appropriate.

This talk will focus on several results that hopefully will be of interest from
a learning theory perspective. These include: linearity testing [4] and low-degree
testing (e.g., [15]), testing basic Boolean formula [13,7], testing monotonicity
(e.g., [8,5]), testing of clustering (e.g., [2]), and distribution-free testing
(e.g., [10,1]).

For surveys on property testing see [6,14], and for an online bibliography see:
www.cs.princeton.edu/courses/archive/spring04/cos5987/bib.html.
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Spectral Algorithms for Learning and Clustering

Santosh S. Vempala

Georgia Tech, Atlanta GA 30332, USA
vempala@cc.gatech.edu

http://www.cc.gatech.edu/~vempala

1 Summary

Roughly speaking, spectral algorithms are methods that rely on the principal
components (typically singular values and singular vectors) of an input matrix
(or graph). The spectrum of a matrix captures many interesting properties in
surprising ways. Spectral methods are already used for unsupervised learning,
image segmentation, to improve precision and recall in databases and broadly for
information retrieval. The common component of these methods is the subspace
of a small number of singular vectors of the data, by means of the Singular Value
Decomposition (SVD). We describe SVD from a geometric perspective and then
focus on its central role in efficient algorithms for (a) the classical problem of
“learning” a mixture of Gaussians in Rn and (b) clustering a set of objects from
pairwise similarities.

2 Mixture Models

A finite mixture model for an unknown distribution is a weighted combination
of a finite number of distributions of a known type. The problem of learning
or estimating a mixture model is formulated as follows. We assume that we
get samples from a distribution F on �n which is a mixture (convex combina-
tion) of unknown distributions F1, F2, . . . , Fk, with (unknown) mixing weights
w1, w2, . . . , wk > 0, i.e., F =

∑k
i=1 wiFi and

∑k
i=1 wi = 1. The goal is to (a)

classify the sample points according to the underlying distributions and (b) esti-
mate essential parameters of the components, such as the mean and covariance
matrix of each component. This problem has been widely studied, particularly
for the special case when each Fi is a Gaussian.

There has been substantial progress on this problem over the past decade
(initiated by Dasgupta, FOCS 1999) leading to rigorous algorithms under the
assumption that the means of the components are sufficiently separated. While
the known separation bound is near-optimal for mixtures of spherical Gaussians
(and more generally, mixtures of weakly isotropic components), it is far from
the best possible for general Gaussians and the following fundamental problem
remains wide open: classify a sample from a mixture of Gaussians with arbitrary
covariance matrices, under the assumptions that for any pair of Gaussians, their
projections to the line joining their means are well-separated (i.e., the overlap
in measure is negligible).

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 3–4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



4 S.S. Vempala

The method to prove the current best bounds is the SVD (Vempala and Wang,
JCSS 2004). We illustrate the power of the SVD in this context via the following
observation for any mixture model (Kannan et al COLT 2005).

Theorem 1. Let F be a mixture with k components F1, . . . , Fk and mixing
weights w1, . . . , wk. Let W be the k-dimensional SVD subspace of F . For each
i, let μi be the mean of Fi, d(μi, W ) denote the orthogonal distance of μi to the
subspace W and σ2

i,W be the maximum variance of Fi along any direction in W .
Then,

k∑

i=1

wid(μi, W )2 ≤ k

k∑

i=1

wiσ
2
i,W .

3 Clustering from Similarities

Clustering a set of objects given a pairwise similarity function is a problem
with many applications. There are many approaches to the problem. A popular
approach is to formulate an explicit objective function and then give an algorithm
to find a clustering that (approximately) optimizes the objective function. There
are two difficulties with this approach (a) the right objective function seems to
differ widely based on the context of the application (b) the optimization problem
is typically NP-hard and proposed solutions, even if polytime, are not efficient
in practice.

We describe the following approach (Kannan et al JACM 2004, Cheng et al
ACM Trans. Database Sys. 2006): first form a tree by recursively partitioning
the given set (the root is the set of all objects, the leaves are singletons), then
find the best tree-respecting clustering, where each cluster is a subtree, for the
objective function of choice. The recursive partitioning is done by a spectral
algorithm while the tree clustering is via dynamic programming and is efficient
for a large class of functions. We discuss the performance of the method both
theoretically and empirically on multiple data sets.



Minimax Bounds for Active Learning

Rui M. Castro1,2 and Robert D. Nowak1

1 University of Wisconsin, Madison WI 53706, USA
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2 Rice University, Houston TX 77005, USA

Abstract. This paper aims to shed light on achievable limits in active
learning. Using minimax analysis techniques, we study the achievable
rates of classification error convergence for broad classes of distributions
characterized by decision boundary regularity and noise conditions. The
results clearly indicate the conditions under which one can expect sig-
nificant gains through active learning. Furthermore we show that the
learning rates derived are tight for “boundary fragment” classes in d-
dimensional feature spaces when the feature marginal density is bounded
from above and below.

1 Introduction

The interest in active learning in the machine learning community has increased
greatly in the last few of years, in part due to the dramatic growth of data sets
and the high cost of labeling all the examples in such sets. There are several em-
pirical and theoretical results suggesting that in certain situations active learning
can be significantly more effective than passive learning [1,2,3,4,5]. Many of these
results pertain to the “noiseless” setting, in which the labels are deterministic
functions of the features. In certain noiseless scenarios it has been shown that
the number of labeled examples needed to achieve a desired classification error
rate is much smaller than what would be need using passive learning. In fact for
some of those scenarios, active learning requires only O(log n) labeled examples
to achieve the same performance that can be achieved through passive learning
with n labeled examples [3,6,7,8]. This exponential speed-up in learning rates is
a tantalizing example of the power of active learning.

Although the noiseless setting is interesting from a theoretical perspective, it
is very restrictive, and seldom relevant for practical applications. Some active
learning results have been extended to the “bounded noise rate” setting. In
this setting labels are no longer a deterministic function of the features, but
for a given feature the probability of observing a particular label is significantly
higher than the probability of observing any other label. In the case of binary
classification this means that if (X , Y ) is a feature-label pair, where Y ∈ {0, 1},
then | Pr(Y = 1|X = x) − 1/2| > c for every x in the feature space, with c > 0.
In other words, Pr(Y = 1|X = x) “jumps” at the decision boundary, providing
a very strong cue to active learning procedures. Under this assumption it can be

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 5–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



6 R.M. Castro and R.D. Nowak

shown that results similar to the ones for the noiseless scenario can be achieved
[4,9,10,11]. These results are intimately related to adaptive sampling techniques
in regression problems [12,13,14,10,15], where similar performance gains have
been reported. Furthermore the active learning algorithm proposed in [9] in
addition to provide improvements in certain bounded noise conditions is shown
to perform no worse than passive learning in general settings.

In this paper, we expand the theoretical investigation of active learning to
include cases in which the noise is unbounded. In the case of binary classification
this means that Pr(Y = 1|X = x) is not bounded away from 1/2. Notice that
in this case there is no strong cue that active learning procedures can follow,
since as sampling approaches the decision boundary the conditional probability
Pr(Y = 1|X = x) approaches 1/2. Since situations like this seem very likely to
arise in practice (e.g., simply due to feature measurement errors if nothing else),
it is important to identify the potential of active learning in such cases.

Our main result can be summarized as follows. Following Tsybakov’s formu-
lation of distributional classes [16], the complexity of the Bayes decision bound-
ary can in many cases be characterized by a parameter ρ = (d − 1)/α, where
d is the dimension of the feature space and α is the Hölder regularity of the
boundary. Furthermore, the behavior of Pr(Y = 1|X = x) in the vicinity of
the boundary can be characterized by a parameter κ ≥ 1. The value κ = 1
corresponds to the noiseless or bounded noise situation and κ > 1 corresponds
to unbounded noise conditions. We derive lower bounds on active learning per-
formance. In particular, it is shown that the fastest rate of classification error
decay using active learning is n− κ

2κ+ρ−2 , where n is the number of collect exam-
ples, whereas the fastest decay rate possible using passive learning is n− κ

2κ+ρ−1 .
Note that the active learning rate is always superior to that of passive learning.
Tsybakov has shown that in certain cases (κ → 1 and ρ → 0) passive learning
can achieve “fast” rates approaching n−1 (faster than the usual n−1/2 rate). In
contrast, our results show that in similar situations active learning can achieve
much faster rates (in the limit decaying as fast as any negative power of n).
Also note that the passive and active rates are essentially the same as κ → ∞,
which is the case in which Pr(Y = 1|X = x) is very flat near the boundary
and consequently there is no cue that can efficiently drive an active learning
procedure. Furthermore we show that the learning rates derived are tight for
“boundary fragment” classes in d-dimensional feature spaces when the density
of the marginal distribution PX (over features) is bounded from above and below
on [0, 1]d.

The paper is organized as follows. In Section 2 we formally state the active
learning problem and define the probability classes under consideration. Sec-
tion 3 presents the basic results on lower bounds for active learning rates and
in Section 4 we provide corresponding upper bounds, which match the lower
bounds up to a logarithmic factor. Together, this demonstrates the bounds are
tight and hence near minimax optimal. Final remarks are made in Section 5 and
the main proofs are given in the Appendix.
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2 Problem Formulation

Let (X, Y ) ∈ [0, 1]d × {0, 1} be a random vector, with unknown distribution
PXY . Our goal is to construct a “good” classification rule, that is, given X we
want to predict Y as accurately as possible, where our classification rule is a
measurable function f : [0, 1]d → {0, 1}. The performance of the classifier is
evaluated in terms of the expected 0/1-loss. With this choice the risk is simply
the probability of classification error,

R(f) Δ= E[1{f(X) �= Y }] = Pr(f(X) �= Y ) ,

where 1{·} denotes the indicator function. Since we are considering only binary
classification (two classes) there is a one-to-one correspondence between classi-
fiers and sets: Any reasonable classifier is of the form f(x) = 1{x ∈ G}, where
G is a measurable subset of [0, 1]d. We use the term classifier interchangeably
for both f and G. Define the optimal risk as

R∗ Δ= inf
G measurable

R(G) .

R∗ is attained by the Bayes Classifier G∗ Δ= {x ∈ [0, 1]d : η(x) ≥ 1/2}, where

η(x) = E[Y |X = x] = Pr(Y = 1|X = x) ,

is called the conditional probability (we use this term only if it is clear from the
context). In general R(G∗) > 0 unless the labels are a deterministic function of
the features, and therefore even the optimal classifier misclassifies sometimes. For
that reason the quantity of interest for the performance evaluation of a classifier
G is the excess risk

R(G) − R(G∗) = d(G, G∗) Δ=
∫

GΔG∗
|2η(x) − 1|dPX(x) , (1)

where Δ denotes the symmetric difference between two sets1, and PX is the
marginal distribution of X.

Suppose that PXY is unknown, but that we have a large (infinite) pool of
feature examples we can select from, large enough so that we can choose any
feature point Xi ∈ [0, 1]d and observe its label Yi. The data collection operation
has a temporal aspect to it, namely we collect the labeled examples one at the
time, starting with (X1, Y1) and proceeding until (Xn, Yn) is observed. One can
view this process as a query learning procedure, where one queries the label of
a feature vector. Formally we have:

A1 - Yi, i ∈ {1, . . . , n} are distributed as

Yi =
{

1 , with probability η(X i)
0 , with probability 1 − η(X i)

.

1 AΔB
Δ
= (A ∩ Bc) ∪ (Ac ∩ B), where Ac and Bc are the complement of A and B

respectively.
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The random variables {Yi}n
i=1 are conditionally independent given {Xi}n

i=1.

A2.1 - Passive Sampling: Xi is independent of {Yj}j �=i.

A2.2 - Active Sampling: Xi depends only on {Xj , Yj}j<i. In other words

Xi|X1 . . . Xi−1, Xi+1, . . . , Xn, Y1 . . . Yi−1, Yi+1, . . . , Yn

a.s.= Xi|X1 . . . Xi−1, Y1 . . . Yi−1 .

The conditional distribution on the right hand side (r.h.s) of the above expression
is called the sampling strategy and is denoted by Sn. It completely defines our
sampling procedure. After collecting the n examples, that is after collecting
{Xi, Yi}n

i=1, we construct a classifier Ĝn that is desired to be close to G∗. The
subscript n denotes dependence on the data set, instead of writing it explicitly.

Under the passive sampling scenario (A2.1) the sample locations do not de-
pend on the labels (except for the trivial dependence between Xj and Yi), and
therefore the collection of sample points {Xi}n

i=1 may be chosen before any ob-
servations are collected. On the other hand, the active sampling scenario (A2.2)
allows for the ith sample location to be chosen using all the information collected
up to that point (the previous i − 1 samples).

In this paper we are interested in a particular class of distributions, namely
scenarios where the Bayes decision set is a boundary fragment. That is, the
Bayes decision boundary is the graph of function. We consider Hölder smooth
boundary functions. Throughout the paper assume that d ≥ 2, the dimension of
the feature space.

Definition 1. A function f : [0, 1]d−1 → R is Hölder smooth if it has continu-
ous partial derivatives up to order k = �α� (k is the maximal integer such that
k < α) and

∀ z, x ∈ [0, 1]d−1 : |f(z) − TPx(z)| ≤ L‖z − x‖α ,

where L, α > 0, and TPx(·) denotes the degree k Taylor polynomial approxima-
tion of f expanded around x. Denote this class of functions by Σ(L, α).

For any g ∈ Σ(L, α) let epi(g) =
{
(x, y) ∈ [0, 1]d−1 × [0, 1] : y ≥ g(x)

}
, that is,

epi(g) is epigraph of g. Define

GBF
Δ= {epi(g) : g ∈ Σ(L, α)} .

In other words GBF is a collection of sets indexed by Hölder smooth functions
of the first d − 1 coordinates of the feature domain [0, 1]d. Therefore G∗ and the
corresponding boundary function g∗ are equivalent representations of the Bayes
classifier.

In order to get a better understanding of the potential of active learning
we impose further conditions on the distribution PXY . We assume that PX is
uniform on [0, 1]d. The results in this paper can easily be generalized to the
case where the marginal density of X with respect to the Lebesgue measure
is not uniform, but bounded above and below, yielding the same rates of error
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convergence. We require also η(·) to have a certain behavior around the decision
boundary. Let x = (x̃, xd) where x̃ = (x1, . . . , xd−1). Let κ ≥ 1 and c > 0 then

|η(x) − 1/2| ≥ c|xd − g∗(x̃)|κ−1, if |xd − g∗(x̃)| ≤ ε0 , (2)
|η(x) − 1/2| ≥ cε0

κ−1, if |xd − g∗(x̃)| > ε0 , (3)

for some ε0 > 0. The condition above is very similar to the so-called margin
condition (or noise-condition) introduced by Tsybakov [16]. If κ = 1 then the
η(·) function “jumps” across the Bayes decision boundary, that is η(·) is bounded
away from the value 1/2. If κ > 1 then η(·) crosses the value 1/2 at the Bayes
decision boundary. Condition (2) indicates that η(·) cannot be arbitrarily “flat”
around the decision boundary (e.g., for κ = 2 the function η(·) behaves linearly
around 1/2). This means that the noise affecting observations that are made
close to the decision boundary is roughly proportional to the distance to the
boundary. We also assume a reverse-sided condition on η(·), namely

|η(x) − 1/2| ≤ C|xd − g∗(x̃)|κ−1 , (4)

for all x ∈ [0, 1]d, where C > c. This condition, together with (2) and (3)
provides a two-sided characterization of the “noise” around the decision bound-
ary. Similar two-sided conditions have been proposed for other problems [17,18].
Let BF(α, κ, L, C, c) be the class of distributions satisfying the noise conditions
above with parameter κ and whose Bayes classifiers are boundary fragments
with smoothness α.

3 Lower Bounds

In this section we present lower bounds on the performance of active and passive
sampling methods. We start by characterizing active learning for the boundary
fragment classes.

Theorem 1. Let ρ = (d − 1)/α. Then

lim inf
n→∞ inf

Ĝn,Sn

sup
P∈BF(α,κ,L,C,c)

E[R(Ĝn)] − R(G∗) ≥ cminn
− κ

2κ+ρ−2 ,

where infĜn,Sn
denotes the infimum over all possible classifiers and sampling

strategies Sn, and cmin > 0 is a constant.

The proof of Theorem 1 is presented in Appendix A. An important remark is
that condition (4) does not play a role in the rate of the lower bound, therefore
dropping that assumption (equivalently taking C = ∞) does not alter the result
of the theorem.

Contrast this result with the one attained for passive sampling: under the
passive sampling scenario it is clear that the sample locations {Xi}n

i=1 must be
scattered around the interval [0, 1]d in a somewhat uniform manner. These can
be deterministically placed, for example over a uniform grid, or simply taken
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uniformly distributed over [0, 1]d. The results in [16] imply that, under (A1),
(A2.1), and κ ≥ 1,

inf
Ĝn,Sn

sup
P∈BF(α,κ,L,C,c)

E[R(Ĝn)] − R(G∗) ≥ cminn
− κ

2κ+ρ−1 (5)

where the samples {Xi}n
i=1 are independent and identically distributed (i.i.d.)

uniformly over [0, 1]d. Furthermore this bound is tight, in the sense that it is
possible to devise classification strategies attaining the same asymptotic behav-
ior. We notice that under the passive sampling scenario the excess risk decays at
a strictly slower rate than the lower bound for the active sampling scenario, and
the rate difference can be dramatic, specially for large smoothness α (equiva-
lently low complexity ρ). The active learning lower bound is also tight (as shown
in the next section), which demonstrates that active learning has the potential
to improve significantly over passive learning. Finally the result of Theorem 1
is a lower bound, and it therefore applies to the broader classes of distributions
introduced in [16], characterized in terms of the metric entropy of the class of
Bayes classifiers.

The proof of Theorem 1 employs relatively standard techniques, and follows
the approach in [19]. The key idea is to reduce the original problem to the
problem of deciding among a finite collection of representative distributions.
The determination of an appropriate collection of such distributions and careful
managing assumption (A2.2) are the key aspects of the proof. Notice also that
the result in (5) can be obtained by modifying the proof of Theorem 1 slightly.

4 Upper Bounds

In this section we construct an active learning procedure and upper bound its
error performance. The upper bound achieves the rates of Theorem 1 to within
a logarithmic factor. This procedure yields a classifier Ĝn that has boundary
fragment structure, although the boundary is no longer a smooth function. It
is instead a piecewise polynomial function. This methodology proceeds along
the lines of [20,21], extending one-dimensional active sampling methods to this
higher dimensional setting. For this methodology we use some results reported in
[22] addressing the problem of one-dimensional change-point detection under the
noise conditions imposed in this paper. The ideas in that work were motivated by
the work of Burnashev and Zigangirov [12], pertaining a change-point detection
problem under the bounded noise rate condition (equivalent to κ = 1).

We begin by constructing a grid over the first d − 1 dimensions of the feature
domain, namely let M be an integer and l̃ ∈ {0, . . . , M}d−1. Define the line
segments Ll̃

Δ= {(M−1l̃, xd) : xd ∈ [0, 1]}. We collect N samples along each line,
yielding a total of NMd−1 samples (where n ≥ NMd−1). Our goal is to estimate
g(M−1l̃), for all l̃, using these samples. We will then interpolate the estimates
of g at these points to construct a final estimate of the decision boundary. The
correct choices for M and N will arise from the performance analysis; for now
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we point out only that both M and N are growing with the total number of
samples n.

When restricting ourselves to the line segment Ll̃ the estimation problem boils
down to a one-dimensional change-point detection problem. Consider first the
case κ = 1. In [12] an active sampling methodology was developed and analyzed,
with the following property: using N sample points actively chosen yields an
estimator ĝ(M−1l̃) of g(M−1l̃) such that

Pr
(
|ĝ(M−1l̃) − g∗(M−1l̃)| > t

)
≤ 1

t
exp(−c2N) ,

therefore it is possible to estimate g∗(M−1l̃) accurately with a very small number
of samples. It was shown in [22] (and further detailed in [23]) that, when κ > 1,
using N sample points in Ll̃ chosen actively based on knowledge of κ, yields an
estimate ĝ(M−1l̃) of g(M−1l̃) such that

Pr(|ĝ(M−1l̃) − g∗(M−1l̃)| > t) ≤ 2
t

exp

(

−N

3
c2

(
t

6

)2κ−2
)

. (6)

Taking
t = tN

Δ= c1 (log N/N)
1

2κ−2 (7)

guarantees that Pr(|ĝ(M−1l̃) − g∗(M−1l̃)| > tN ) = O (N−γ) , where γ > 0 can
be arbitrarily large provided c1 is sufficiently large.

Let {ĝ(M−1l̃)} be the estimates obtained using this method at each of the
points indexed by l̃. We use these estimates to construct a piecewise polynomial
fit to approximate g∗. In what follows assume α > 1. The case α = 1 can be
handled in a very similar way. Begin by dividing [0, 1]d−1 (that is, the domain
of g∗) into cells. Let M0 be the largest integer such that M0 ≤ M/�α�. Let
q̃ ∈ {0, . . . , M0}d−1 index the cells

Iq̃
Δ=

[
q̃1�α�M−1, (q̃1 + 1)�α�M−1

]
×· · ·×

[
q̃d−1�α�M−1, (q̃d−1 + 1)�α�M−1

]
.

Note that these cells almost partition the domain [0, 1]d−1 entirely. If M/�α�
is not an integer there is a small region on the edge of the domain that is not
covered by these cells, with volume O(M−1). In each of these cells we perform a
polynomial interpolation using the estimates of g∗ at points within the cell. We
consider a tensor product polynomial fit L̂q̃, that can be written as

L̂q̃(x̃) =
∑

l̃:M−1 l̃∈Iq̃

ĝ(M−1l̃)Qq̃,l̃(x̃) ,

where x̃ ∈ [0, 1]d. The functions Qq̃,l̃ are the tensor-product Lagrange polyno-
mials [24]. The final estimate of g∗ is therefore given by

ĝ(x̃) =
∑

q̃∈{0,...,M0}d−1

L̂q̃(x̃)1{x̃ ∈ Iq̃}

which defines a classification rule Ĝn.



12 R.M. Castro and R.D. Nowak

Theorem 2. Consider the classification methodology described above, using
M =

⌊
n

1
α(2κ−2)+d−1

⌋
and N =

⌊
n/(M − 1)d−1

⌋
. Let ρ = (d − 1)/α, then

lim sup
n→∞

sup
P∈BF(α,κ,L,C,c)

E[R(Ĝn)] − R(G∗) ≤ cmax (log n/n)
κ

2κ+ρ−2 .

The proof of Theorem 2 is given in Appendix B. One sees that this estimator
achieves the rate of Theorem 1 to within a logarithmic factor. It is not clear if
the logarithmic factor is an artifact of our construction, or if it is unavoidable.
One knows [20] that if κ, α = 1 the logarithmic factor can be eliminated by using
a slightly more sophisticated interpolation scheme.

5 Final Remarks

Since the upper and lower bounds agree up to a logarithmic factor, we may con-
clude that lower bound is near minimax optimal. That is, for the distributional
classes under consideration, no active or passive learning procedure can perform
significantly better in terms of error decay rates. Our upper bounds were de-
rived constructively, based on an active learning procedure originally developed
for one-dimensional change-point detection [12]. In principle, the methodology
employed in the upper bound calculation could be applied in practice in the case
of boundary fragments and with knowledge of the key regularity parameters κ
and ρ. Unfortunately this is not a scenario one expects to have in practice, and
thus a key open problem is the design of active learning algorithms that are
adaptive to unknown regularity parameters and capable of handling arbitrary
boundaries (not only fragments). A potential approach is a multiscale technique
as used in [10]. The results of this paper do indicate what we should be aiming
for in terms of performance. Moreover, the bounds clarify the situations in which
active learning may or may not offer a significant gain over passive learning, and
it may be possible to assess the conditions that might hold in a given application
in order to gauge the merit of pursuing an active learning approach.

Acknowledgements. Supported by NSF grants CCR-0350213 and CNS-
0519824.
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A Proof of Theorem 1

The proof strategy follows the basic idea behind standard minimax analysis
methods, and consists in reducing the problem of classification in the large class
BF(α, κ, L, C, c) to a test of a finite set of hypothesis. These are distributions
PXY ∈ BF(α, κ, L, C, c) chosen carefully. The main tool is the following theorem,
adapted from [19] (page 85, theorem 2.5).

Theorem 3 (Tsybakov, 2004). Let F be a class of models. Associated with
each model f ∈ F we have a probability measure Pf defined on a common proba-
bility space. Let M ≥ 2 be an integer and let df (·, ·) : F × F → R be a collection
of semi-distances (indexed by f ∈ F). Suppose we have {f0, . . . , fM} ∈ F such
that

i) dfk
(fj , fk) ≥ 2 a > 0, ∀0≤j,k≤M ,

ii) Pf0 � Pfj , ∀j=1,...,M , (see footnote2)
iii) 1

M

∑M
j=1 KL(Pfj ‖Pf0) ≤ γ log M ,

where 0 < γ < 1/8. The following bound holds.

inf
f̂

sup
f∈F

Pf

(
df (f̂ , f) ≥ a

)
≥

√
M

1 +
√

M

(

1 − 2γ − 2
√

γ

log M

)

> 0 ,

where the infimum is taken with respect to the collection of all possible estima-
tors of f (based on a sample from Pf ), and KL denotes the Kullback-Leibler
divergence3 .

Note that in final statement of Theorem 3 the semi-distance between the estimate
f̂n and f might depend on f . This is a critical feature in our setup, since the
excess risk depends on the underlying unknown distribution (1).

To apply the theorem we need to construct a subset of BF(α, κ, L, C, c) with
the desired characteristics. These elements are distributions PXY and therefore
uniquely characterized by the conditional probability η(x) = Pr(Y = 1|X = x)
(since we are assuming that PX is uniform over [0, 1]d). Let x = (x̃, xd) with
x̃ ∈ [0, 1]d−1. As a notational convention we use a tilde to denote a vector of
dimension d − 1. Define

m =
⌈
c0n

1
α(2κ−2)+d−1

⌉
, x̃l̃ =

l̃ − 1/2
m

,

2 Let P and Q be two probability measures defined on a common probability space
(Ω, B). Then P � Q if and only if for all B ∈ B, Q(B) = 0 ⇒ P (B) = 0.

3 Let P and Q be two probability measures defined on a common probability space.
The Kullback-Leibler divergence is defined as

KL(P‖Q) =

{∫
log dP

dQ
dP , if P � Q,

+∞ , otherwise.
,

where dP/dQ is the Radon-Nikodym derivative of measure P with respect to mea-
sure Q.
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where l̃ ∈ {1, . . . , m}d−1. Define also ϕl̃(x̃) = Lm−αh(m(x̃ − x̃l̃)) , with h ∈
Σ(1, α), supp(h) = (−1/2, 1/2)d−1 and h ≥ 0. It is easily shown that such a
function exists, for example

h(x̃) = a

d−1∏

i=1

exp
(

− 1
1 − 4x2

i

)

1{|xi| < 1/2} ,

with a > 0 sufficiently small. The functions ϕl̃ are little “bumps” centered at
the points x̃l̃. The collection {x̃l̃} forms a regular grid over [0, 1]d−1.

Let Ω = {ω = (ω1, . . . , ωmd−1), ωi ∈ {0, 1}} = {0, 1}md−1
, and define

G =

⎧
⎨

⎩
gω(·) : gω(·) =

∑

l̃∈{1,...,m}d−1

ωl̃ϕl̃(·), ω ∈ Ω

⎫
⎬

⎭
.

The set G is a collection of boundary functions. The binary vector ω is an
indicator vector: if ωl̃ = 1 then “bump” l̃ is present, otherwise that “bump”
is absent. Note that ϕl̃ ∈ Σ(L, α) and these functions have disjoint support,
therefore G ⊆ Σ(L, α). Let g ∈ G and construct the conditional distribution

ηω(x) =
{

min
(

1
2 + c · sign(xd − g(x̃))|xd − g(x̃)|κ−1, 1

)
, if xd ≤ A

min
(

1
2 + c · xκ−1

d , 1
)
, if xd > A

,

A = max
x̃

ϕ(x̃)
(

1 +
1

(C/c)1/(κ−1) − 1

)

= Lm−αhmax

(

1 +
1

(C/c)1/(κ−1) − 1

)

,

with hmax = maxx̃∈Rd−1 h(x̃). The choice of A is done carefully, in order to
ensure that the functions ηω are similar, but at the same time satisfy the margin
conditions. It is easily checked that conditions (2), (3) and (4) are satisfied
for the distributions above. By construction the Bayes decision boundary for
each of these distributions is given by xd = g(x̃) and so these distributions
belong to the class BF(α, κ, L, C, c). Note also that these distributions are all
identical if xd > A. As n increases m also increases and therefore A decreases,
so the conditional distributions described above are becoming more and more
similar. This is key to bound the Kullback-Leibler divergence between these
distributions.

The above collection of distributions, indexed by ω ∈ Ω, is still too large for
the application of Theorem 3. Recall the following lemma.

Lemma 1 (Varshamov-Gilbert bound, 1962). Let md−1 ≥ 8. There exists
a subset {ω(0), ω(1), . . . , ω(M)} of Ω such that M ≥ 2md−1/8, ω(0) = (0, . . . , 0)
and

ρ(ω(j), ω(k)) ≥ md−1/8, ∀ 0 ≤ j < k ≤ M ,

where ρ denotes the Hamming distance.
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For a proof of the Lemma 1 see [19](page 89, lemma 2.7). To apply Theorem 3 we
use the M distributions (ηω(0) , . . . , ηω(M)} given by the lemma. For each distribu-
tion ηω(i) we have the corresponding Bayes classifier G∗

i . Define the semidistances

di(G, G′) =
∫

GΔG′
|2ηω(i)(x) − 1|dx .

The next step of the proof is to lower-bound di(G∗
j , G

∗
i ) = Ri(G∗

j ) − Ri(G∗
i ) for

all j �= i. Note that

di(G∗
j , G

∗
i ) =

∫

[0,1]d−1

∫ |g∗
i (x̃)−g∗

j (x̃)|

0

|2ηω(i)(x) − 1|dxddx̃

=
∑

l̃∈{1,...,m}d−1

|ω(i)

l̃
− ω

(j)

l̃
|
∫

[0,1]d−1

∫ Lm−αh(m(x̃−x̃l̃))

0

|2ηω(i)(x) − 1|dxddx̃ .

To bound the double-integral we just need to consider the two possible values of
ω

(i)

l̃
. We display here case ω

(i)

l̃
= 1, but exactly the same result can be shown

for ω
(i)

l̃
= 0.

∫

[0,1]d−1

∫ Lm−αh(m(x̃−x̃l̃))

0

|2ηω(i)(x) − 1|dxddx̃

=
∫

[0,1]d−1

∫ Lm−αh(m(x̃−x̃l̃))

0

2c(xd − Lm−αh(m(x̃ − x̃l̃)))
κ−1dxddx̃

= 2cm−(d−1)

∫

[−1/2,1/2]d−1

∫ Lm−αh(z̃)

0

(xd − Lm−αh(z̃)κ−1dxddz̃

=
2cm−(d−1)

κ

∫

[−1/2,1/2]d−1
Lκm−ακhκ(z̃)dz̃

=
2c

κ
Lκm−ακ−(d−1)‖h‖κ

κ ∼ m−ακ−(d−1) ,

where ‖h‖κ denotes the κ norm of h. Taking into account Lemma 1 we have
that, for n large enough

di(G∗
j , G

∗
i ) ≥ ρ(ω(i)

l̃
, ω

(j)

l̃
)
2c

κ
Lκm−ακ−(d−1)‖h‖κ

κ

≥ 2c

8κ
Lκ‖h‖κ

κ m−ακ Δ= an ∼ m−ακ .

We are ready for the final step of the proof. We need the following straight-
forward result.

Lemma 2. Let P and Q be Bernoulli random variables with parameters respec-
tively p and q, such that p, q → 1/2. Then KL(P‖Q) = 2(p − q)2 + o((p − q)2).



Minimax Bounds for Active Learning 17

Now let Pi be the distribution of (X1, Y1, . . . , Xn, Yn) assuming the underlying
conditional distribution is ηω(i) . Use the notation ZX

j
Δ= (X1, . . . , Xj) and ZY

j
Δ=

(Y1, . . . , Yj). Then

KL(Pi‖P0) = Ei

[

log
PZX

n ,ZY
n ;i(Z

X
n , ZY

n )

PZX
n ,ZY

n ;0(Z
X
n , ZY

n )

]

= Ei

[

log

∏n
j=1 PYj |Xj ;i(Yj |Xj) PXj |ZX

j−1,ZY
j−1;i(Xj |ZX

j−1, Z
Y
j−1)

∏n
j=1 PYj |Xj ;0(Yj |Xj) PXj |ZX

j−1,ZY
j−1;0(Xj |ZX

j−1, Z
Y
j−1)

]

(8)

= Ej

[

log

∏n
j=1 PYj |Xj ;i(Yj |Xj)

∏n
j=1 PYj |Xj ;0(Yj |Xj)

]

= Ej

[

Ej

[

log

∏n
j=1 PYj |Xj ;i(Yj |Xj)

∏n
j=1 PYj |Xj ;0(Yj |Xj)

∣
∣
∣
∣
∣
X1, . . . , Xn

]]

≤ 2n(cAκ−1)2 + o(n(cAκ−1)2) ≤ const · nm−α(2κ−2) ,

where the last inequality holds provided n is large enough and const is chosen
appropriately. In (8) note that the distribution of Xj conditional on ZX

j−1, Z
Y
j−1

depends only on the sampling strategy Sn, and therefore does not change with
the underlying distribution, hence those terms in the numerator and denominator
cancel out. Finally

1
M

M∑

i=1

KL(Pi‖P0) ≤ const · nm−α(2κ−2) ≤ const · c−(α(2κ−2)+d−1)
0 md−1 .

From Lemma 1 we also have γ
8md−1 log 2 ≤ γ log M therefore choosing c0 large

enough in the definition of m guarantees the conditions of Theorem 3 and so

inf
Ĝn,Sn

sup
P∈BF(α,κ,L,C,c)

P (R(Ĝn) − R(G∗) ≥ an) ≥ cmin ,

where cmin > 0, for n large enough. An application of Markov’s inequality yields
the original statement of the theorem, concluding the proof.

B Proof of Theorem 2

The proof methodology aims at controlling the excess risk for an event that
happens with high probability. To avoid carrying around cumbersome constants
we use the ‘big-O’ 4 notation for simplicity. We show the proof only for the case
κ > 1, since the proof when κ = 1 is almost analogous.

Define the event Ωn =
{
∀l̃ ∈ {0, . . . , M}d−1 |ĝ(M−1l̃) − g∗(M−1l̃)| ≤ tN

}
.

In words, Ωn is the event that the Md−1 point estimates of g do not deviate
very much from the true values. Using a union bound, taking into account (6)
4 Let un and vn be two real sequences. We say un = O(vn) if and only if there exists

C > 0 and n0 > 0 such that |un| ≤ Cvn for all n ≥ n0.
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and the choice tN in (7) one sees that 1−Pr(Ωn) = O(N−γMd−1), where γ can
be chosen arbitrarily large. With the choice of M in the theorem and choosing
c1 wisely in the definition of tN (7) we have 1 − Pr(Ωn) = O

(
n− ακ

α(2κ−2)+d−1

)
.

The excess risk of our classifier is given by

R(Ĝn) − R(G∗) =
∫

ĜnΔG∗
|2η(x) − 1|dx

=
∫

[0,1]d−1

∫ max(ĝ(x̃),g∗(x̃))

min(ĝ(x̃),g∗(x̃))

|2η ((x̃, xd)) − 1|dxddx̃

≤
∫

[0,1]d−1

∫ max(ĝ(x̃),g∗(x̃))

min(ĝ(x̃),g∗(x̃))

C|xd − g(x̃)|κ−1dxddx̃

=
∫

[0,1]d−1

∫ |ĝ(x̃)−g∗(x̃)|

0

Czκ−1dzdx̃

=
C

κ

∫

[0,1]d−1
|ĝ(x̃) − g∗(x̃)|κdx̃ = O (‖ĝ − g∗‖κ

κ) ,

where the inequality follows from condition (4).
Let Lq̃, q̃ ∈ {0, . . . , M0}d−1 be the clairvoyant version of L̂q̃, that is,

Lq̃(x̃) =
∑

l̃:M−1 l̃∈Iq̃

g∗(M−1l̃)Qq̃,l̃(x̃) .

It is well known that these interpolating polynomials have good local approxi-
mation properties for Hölder smooth functions, namely we have that

sup
g∈Σ(L,α)

max
x̃∈Iq̃

|Lq̃(x̃) − g∗(x̃)| = O(M−α) . (9)

This result is proved in [23]. We have almost all the pieces we need to conclude
the proof. The last fact we need is a bound on the variation of the tensor-product
Lagrange polynomials, namely it is easily shown that

max
x̃∈Iq̃

∣
∣
∣Qq̃,l̃(x̃)

∣
∣
∣ ≤ �α�(d−1)
α� . (10)

We are now ready to show the final result. Assume for now that Ωn holds,
therefore |ĝ(M−1l̃) − g∗(M−1l̃)| ≤ tN for all l̃. Note that tN is decreasing as n
(and consequently N) increase.

R(Ĝn) − R(G∗) = O (‖ĝ − g∗‖κ
κ)

= O

⎛

⎝
∑

q̃∈{0,...,M0}d−1

∥
∥
∥(L̂q̃ − g∗)1{x̃ ∈ Iq̃}

∥
∥
∥

κ

κ

⎞

⎠ + O(M−1)

= O

⎛

⎝
∑

q̃

∥
∥
∥(Lq̃ − g∗)1{x̃ ∈ Iq̃} + (L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}

∥
∥
∥

κ

κ

⎞

⎠ + O(M−1)

= O

⎛

⎝
∑

q̃

(
‖(Lq̃ − g∗)1{x̃ ∈ Iq̃}‖κ +

∥
∥
∥(L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}

∥
∥
∥

κ

)κ

⎞

⎠ + O(M−1) ,
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where the term O(M−1) corresponds to the error in the area around the edge of
[0, 1]d−1, not covered by any cells in {Iq̃}. The volume of this region is O(M−1).
Note now that

‖(Lq̃ − g∗)1{x̃ ∈ Iq̃}‖κ =

(∫

Iq̃

(Lq̃(x̃) − g∗(x̃))κ dx̃

)1/κ

= O

⎛

⎝

(∫

Iq̃

M−ακdx̃

)1/κ
⎞

⎠ = O
(
M−αM−d−1

κ

)
.

Where we used (9). We have also
∥
∥
∥(L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}

∥
∥
∥

κ
=

∑

l̃:M−1 l̃∈Iq̃

∣
∣
∣ĝ(M−1l̃) − g∗(M−1l̃)

∣
∣
∣
∥
∥
∥Qq̃,l̃

∥
∥
∥

κ

≤
∑

l̃:M−1 l̃∈Iq̃

tN

(∫

Iq̃

∣
∣
∣Qq̃,l̃(x̃)

∣
∣
∣
κ

dx̃

)1/κ

≤
∑

l̃:M−1 l̃∈Iq̃

tN

(∫

Iq̃

�α�(d−1)
α�κdx̃

)1/κ

= O
(
tNM−(d−1)/κ

)
.

Using these two facts we conclude that

R(Ĝn) − R(G∗) =

O

⎛

⎝
∑

q̃

(
‖(Lq̃ − g∗)1{x̃ ∈ Iq̃}‖κ +

∥
∥
∥(L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}

∥
∥
∥

κ

)κ

⎞

⎠ + O(M−1)

= O

⎛

⎝
∑

q̃∈{0,...,M0}d−1

(
M−αM− d−1

κ + tNM−(d−1)/κ
)κ

⎞

⎠ + O(M−1)

= O
(
Md−1

(
M−αM−d−1

κ + tNM−(d−1)/κ
)κ)

+ O(M−1)

= O
((

M−α + tN
)κ + M−1

)
.

Plugging in the choices of M and N given in the theorem statement we obtain

R(Ĝn) − R(G∗) = O
(
(log n/n)

ακ
α(2κ−2)+d−1

)
.

Finally, noticing that 1 − Pr(Ωn) = O
(
n− ακ

α(2κ−2)+d−1

)
we have

E[R(Ĝn)] − R(G∗) ≤ O
(
(log n/n)

ακ
α(2κ−2)+d−1

)
Pr(Ωn) + 1 · (1 − Pr(Ωn))

= O
(
(log n/n)

ακ
α(2κ−2)+d−1

)
,

concluding the proof.
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Shai Ben-David1, Dávid Pál1, and Hans Ulrich Simon2,�

1 David R. Cheriton School of Computer Science,
University of Waterloo,

Waterloo, Ontario, Canada
{shai,dpal}@cs.uwaterloo.ca

2 Ruhr-Universität Bochum, Germany
simon@lmi.rub.de

Abstract. We consider the stability of k-means clustering problems.
Clustering stability is a common heuristics used to determine the num-
ber of clusters in a wide variety of clustering applications. We continue
the theoretical analysis of clustering stability by establishing a complete
characterization of clustering stability in terms of the number of optimal
solutions to the clustering optimization problem. Our results complement
earlier work of Ben-David, von Luxburg and Pál, by settling the main
problem left open there. Our analysis shows that, for probability distri-
butions with finite support, the stability of k-means clusterings depends
solely on the number of optimal solutions to the underlying optimization
problem for the data distribution. These results challenge the common
belief and practice that view stability as an indicator of the validity, or
meaningfulness, of the choice of a clustering algorithm and number of
clusters.

1 Introduction

Clustering is one of the most widely used techniques for exploratory data analy-
sis. Across all disciplines, from social sciences over biology to computer science,
people try to get a first intuition about their data by identifying meaningful
groups among the data points. Despite this popularity of clustering, distress-
ingly little is known about theoretical properties of clustering [11]. In particular,
two central issues, the problem of assessing the meaningfulness of a certain clus-
ter structure found in the data and the problem of choosing k—the number of
clusters—which best fits a given data set are basically unsolved.

A common approach to provide answers to these questions has been the no-
tion of clustering stability. The intuitive idea behind that method is that if we
repeatedly sample data points and apply the clustering algorithm, then a “good”
algorithm should produce clusterings that do not vary much from one sample
to another. In other words, the algorithm is stable with respect to input ran-
domization. In particular, stability is viewed as an indication whether the model
� This work was supported in part by the IST Programme of the European Commu-
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only reflects the authors’ views.
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proposed by some algorithm fits the data or not. For example, if our data con-
tains three “true” clusters, but we use a clustering algorithm which looks for
four clusters, the algorithm wrongly needs to split one of the clusters into two
clusters. Which of the three true clusters are split might change from sample to
sample, and thus the result will not be very stable. Based on such intuitive con-
siderations, stability is being widely used in practical applications as a heuristics
for tuning parameters of clustering algorithms, like the number of clusters, or
various stopping criteria, see for example [7], [4], [5], [6].

Aiming to provide theoretical foundations to such applications of stability,
Ben-David et al. [3] have set forward formal definitions for stability and some
related clustering notions and used this framework to embark on mathemati-
cal analysis of stability. Their results challenge these heuristics by showing that
stability is determined by the structure of the set of optimal solutions to the
risk minimization objective. They postulate that stability is fully determined
by the number of distinct clusterings that minimize the risk objective function.
They show that the existence of a unique minimizer implies stability. As for
the reverse implication, they show that if the probability distribution generat-
ing the data has multiple minimizing clusterings, and is symmetric with respect
to these clusterings then it is unstable. They conjecture that their symmetry
condition is not necessary, and that the mere existence of multiple minimizers
already implies instability. The main result in this paper is proving this con-
jecture for k-means clustering over finite-support probability distributions. We
believe that our proofs, and therefore our main result, can be generalized to
other risk minimization clustering problems.

These results indicate that, contrary to common belief and practice, stability
may not reflect the validity or meaningfulness of the choice of the number of
clusters. Instead, the parameters it measures are rather independent of clustering
parameters. Our results reduce the problem of stability estimation to concrete
geometric properties of the data distribution.

Using our characterization of stability, one can readily construct many ex-
ample data distributions in which bad choices of the number of clusters result
in stability while, on the other hand, domain partitions reflecting the true basic
structure of a data set result in instability. As an illustration of these phenomena,
consider the following simple data probability distribution P over the unit inter-
val: For some large enough N , the support of P consists of 2N equally weighted
points, N of which are equally spaced over the sub-interval A = [0, 2a] and N
points are equally spaced over the sub-interval B = [1 − a, 1], where a < 1/3.
First, let us consider k, the number of target centers, to be 2. It is not hard to
see that for some value of a < 1/3 two partitions, one having the points in A as
one cluster and the points in B as its second cluster, and the other having as one
cluster only the points in some sub-interval [0, 2a − ε] and the remaining points
as its second cluster, must have the same 2-means cost. It follows from our result
that although 2 is the ’right’ number of clusters for this distribution, the choice
of k = 2 induces instability (note that the value of ε and a remain practically
unchanged for all large enough N). On the other hand, if one considers, for the
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same value of a, k = 3, 3-means will have a unique minimizing solution (having
the points in the intervals [0, a], [a, 2a] and [1 − a, 1] as its clusters) and there-
fore be stable, leading the common heuristics to the conclusion that 3 is a good
choice as the number of clusters for our data distributions (and, in particular,
a better choice than 2). Note that, in this example, the data distribution is not
symmetric, therefore, its instability for 2-means could not be detected by the
previously known stability analysis.

The question of the practical value of stability as a clustering evaluation
paradigm is intriguing and complex, we shall discuss it some more (without
claiming to resolve it) in the Conclusion (Section 6 below).

The term “stability” is used for a variety of meanings in the clustering lit-
erature, not all of which are equivalent to our use of the term. In particular,
note that the recent work of Rakhlin et al [10], considers a different notion of
stability (examining the effect of replacing a small fraction of a clustering sam-
ple, as opposed to considering a pair of independent samples, as we do here).
They investigate the relative size of a sub-sample that may be replaced without
resulting in a big change of the sample clustering and show a bound to that size.
Smaller sub-samples are proven to have small effect on the resulting clustering,
and for larger fractions, they show an example of “instability”.

Here, we analyze the expected distance between clusterings resulting form
two independent samples. We define stability as having this expected distance
converge to zero as the sample sizes grow to infinity.

Our main result is Theorem 4, in which we state that the existence of multiple
optimal-cost clusterings implies instability. We formally state it in Section 3.
Since its proof is lengthy, we first outline it, in Section 4. The technical lemmas
are stated formally, and some of them are proved in Section 5. Proofs of the rest
of the lemmas can be found in the extended version [1] available online. Section
2 is devoted to setting the ground in terms of definitions notation and basic
observations.

2 Definitions

In the rest of the paper we use the following standard notation. We consider
a data space X endowed with probability measure P . A finite multi-set S =
{x1, x2, . . . , xm} of X is called a sample. When relevant, we shall assume that
samples are drawn i.i.d from (X, P ). We denote by Ŝ the uniform probability
distribution over the sample S.

A clustering C of a set X is a finite partition C, of X (namely, an equivalence
relation over X with a finite number of equivalence classes). The equivalence
classes of a clustering are called clusters. We introduce the notation x ∼C y
whenever x and y lie in the same cluster of C, and x �C y otherwise. If the
clustering is clear from the context we drop the subscript and simply write
x ∼ y or x � y.

A function A, that for any given finite sample S ⊂ X computes a clustering
of X , is called a clustering algorithm (in spite of the word ’algorithm’, we ignore
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any computability considerations). Note that this definition differs slightly from
some common usage of “clustering algorithms” in which it is assumed that the
algorithm outputs only a partition of the input sample.

In order to define the stability of a clustering algorithm we wish to measure
by how much two clusterings differ. Given a probability distribution P over X ,
we define the P -Hamming clustering distance between two clusterings C and D

as
dP (C, D) = Pr

x∼P
y∼P

[(x ∼C y) ⊕ (x ∼D y)] ,

where ⊕ denotes the logical XOR operation. In other words, dP (C, D) is the P -
probability of drawing a pair of points on which the equivalence relation defined
by C differs from the one defined by D. Other definitions of clustering distance
may also be used, see [3] and [8]. However, the Hamming clustering distance is
conceptually the simplest, universal, and easy to work with. For a probability
distribution P with a finite support, the Hamming distance has the additional
property that two clusterings have zero distance if and only if they induce the
same partitions of the support of P . We shall thus treat clusterings with zero
Hamming clustering distance as equal.

The central notion of this paper is instability:

Definition 1 (Instability). The instability of a clustering algorithm A with
respect to a sample size m and a probability distribution P is

Instability(A, P, m) = E
S1∼P m

S2∼P m

dP (A(S1), A(S2)).

The instability of A with respect to P is

Instability(A, P ) = lim
m→∞ Instability(A, P, m).

We say that an algorithm A is stable on P , if Instability(A, P ) = 0, otherwise
we say that A is unstable.

A large class of clustering problems aim to choose the clustering by minimizing
some risk function. We call these clustering optimization problems.

Definition 2 (Risk Minimization Clustering Problems)

– A clustering risk minimization problem is a quadruple (X, L, P, R), where
X is some domain set, L is a set of legal clusterings of X, P is a set of
probability distributions over X, and R : P × L → R+

1 is an objective
function (or risk) that the clustering algorithm aims to minimize.

– An instance of the risk minimizing problem is a concrete probability distri-
bution P from P. The optimal cost opt(P ) for an instance P , is defined as
opt(P ) = infC∈L R(P, C).

1 We denote by R+ the set of non-negative real numbers, and by R++ the set of
positive real numbers.
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– For a sample S ⊆ X, we call R(Ŝ, C) the empirical risk of C with respect to
the sample S.

– A risk-minimizing (or R-minimizing) clustering algorithm is an algorithm
that for any sample S, has R(Ŝ, A(S)) = opt(Ŝ). For all practical purposes
this requirement defines A uniquely. We shall therefore refer to the risk-
minimizing algorithm.

Given a probability distribution P over some Euclidean space X ⊆ R
d and a

clustering C of X with clusters C1, C2, . . . , Ck, let c1, c2, . . . , ck be the P -centers
of mass of the clusters Ci. Namely, ci = Ex∼P [x|x ∈ Ci], and, for every x ∈ X ,
let cx denote the center of mass of the class to which x belongs. The k-means
risk R is defined as

R(P, C) = E
x∼P

‖x − cx‖2
2 . (1)

In many cases, risk minimizing algorithms converge to the true risk as sample
sizes grow to infinity. For the case of k-mean and k-medians on bounded subset
of R

d with the Euclidean metric, such convergence was proved by Pollard [9],
and uniform, finite-sample rates of convergence were shown in [2].

Definition 3 (Uniform Convergence). Let P be a probability distribution.
The risk function R converges uniformly if for any positive ε and δ, there exists
sample size m0 such that for all m > m0

Pr
S∼P m

[
∀C ∈ S |R(Ŝ, C) − R(P, C)| < ε

]
> 1 − δ .2

3 Stability of Risk Optimizing Clustering Algorithms

Informally speaking, our main claim is that the stability of the risk minimizing
algorithm with a uniformly converging risk function is fully determined by the
number of risk optimal clusterings. More concretely, a risk-minimizing algorithm
is stable on an input data distribution P , if and only if P has a unique risk
minimizing clustering. We prove such a result for the k-means clustering problem

The first step towards such a characterization follows from Pollard [9]. He
proves that the existence of a unique k-means minimizing clustering (for a P ’s
with bounded support over Euclidean spaces) implies stability. Ben-David et al,
[3] extended this result to a wider class of clustering problems.

As for the reverse implication, [3] shows that if P has multiple risk-minimizing
clusterings, and is symmetric with respect to these clusterings, then it is unsta-
ble. Where symmetry is defined as an isometry g : X → X of the underly-
ing metric space (X, �) which preserves P (that is, for any measurable set A,
Prx∼P [x ∈ A] = Prx∼P [g(x) ∈ A]), and the clustering distance and the risk
function are invariant under g. Note that the k-means risk function and the

2 Here m0 can also depend on P , and not only on ε and δ. The uniform convergence
bound proved in [2] is a stronger in this sense, since it expresses m0 as a function of
ε and δ only and holds for any P .
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Hamming clustering distance are invariant under any such symmetry. See [3] for
details.

Ben-David et al [3] conjecture that symmetry is not a necessary condition.
Namely, that the mere existence of multiple risk-minimizing clusterings suffices
for instability. In this paper we prove that this conjecture holds for k-means
clustering over finite-support probability distributions.

Theorem 4. Let P be a probability distribution over the Euclidean space R
d with

a finite support. Then, the k-means risk-minimizing algorithm is stable on P if
and only if there exist unique clustering minimizing the k-means risk function
R(P, ·).

The next section outlines the proof. In Section 5 we follow that outline with
precise statements of the needed technical lemmas and some proofs. Some of the
proofs are omitted and can be found in the extended version [1] available online.

4 Proof Outline

A finite-support probability distribution may be viewed as a vector of weights.
Similarly, any finite sample over such a domain can be also described by a similar
relative frequency vector. We view the clustering problem as a function from
such vectors to partitions of the domain set. Loosely speaking, having multiple
optimal clusterings for some input distribution, P , say, C1, C2, . . .Ch, we consider
the decision function that assigns each sample-representing vector to the index
i ∈ {1, . . . h} of its optimal solution. (Note that due to the uniform convergence
property, for large enough samples, with high probability, these sample based
partitions are among the actual input optimal clusterings.) We analyze this
decision function and show that, for large enough sample sizes, none of its values
is obtained with probability 1. This implies instability, since having two different
partitions, each with non-zero probability, implies a non-zero expectation of the
distance between sample-generated clustering solutions.

To allow a more detailed discussion we need some further notation.
Let F = {x1, x2, . . . , xn} be the support of P with P ({xi}) = μi > 0 for all

i = 1, 2, . . . , n and μ1 + μ2 + · · · + μn = 1. Let

μ = (μ1, μ2, . . . , μn).

If n ≤ k or k ≤ 1 there is a trivial unique minimizer. Hence we assume that
n > k ≥ 2.

For a sample S of size m, we denote the number of occurrences of the point
xi in S by mi, and use wi = mi/m to denote the empirical frequency (weight) of
the point xi in the sample. The sample is completely determined by the vector
of weights

w = (w1, w2, . . . , wn) .

Since the support of P is finite, there are only finitely many partitions of F .
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A partition, C, is called optimal if its risk, R(P, C) equals opt(P ). A partition
is called empirically optimal for a sample S, if its empirical risk, R(Ŝ, C) equals
opt(Ŝ). We shall freely replace Ŝ with its weight vector w, in particular, we
overload the notation and write R(w, C) = R(Ŝ, C).

Consider a pair of distinct optimal partitions C and D. For weights w con-
sider the empirical risk, R(w, C), of the partition C on a sample with weights
w. Likewise, consider the empirical risk R(w, D). The k-means risk minimizing
algorithm “prefers” C over D when R(w, C) < R(w, D). We consider the set of
weights

Q = {w ∈ R
n
++ | R(w, C) < R(w, D)} ,

where, R++ denotes the set of (strictly) positive real numbers. We allow Q to
contain weight vectors w having arbitrary positive sum of weights, w1 + w2 +
· · · + wn, not necessarily equal to one. Due to the homogeneity of the k-means
risk as a function of the weights, weight vectors of arbitrary total weight can be
rescaled to probability weights without effecting the risk preference between two
clusterings (for details see the proof Lemma 13). This relaxation simplifies the
analysis.

Step 1: We analyze the set Q in a small neighborhood of μ. In Lemma 12, we
show that Q contains an open cone T with peak at μ. The proof of the
Lemma consists of several smaller steps.
(a) We first define the function f : R

n → R, f(w) = R(w, D)−R(w, C).
In this notation Q = {w | f(w) > 0}. Note the important fact that
f(μ) = 0. We analyze the behavior of f near μ.

(b) From Observation 5 it follows that R(w, C) is a rational function of
w. Then, in Lemma 6, we compute the Taylor expansion of R(w, C)
at the point μ.

(c) In Lemma 10 we show that the first non-zero term in the Taylor ex-
pansion of f attains both positive and negative values, and thus f
itself attains both positive and negative values arbitrarily close to μ.

(d) We show that, since f is rational and hence analytic in the neighbor-
hood of μ, it follows that Q contains a cone T whose peak is at μ.

Step 2: Consider the hyperplane

H = {w ∈ R
n | w1 + w2 + · · · + wn = 1}

in which the weights actually lie. In Lemma 13 we show that Q ∩ H
contains an (n − 1)-dimensional open cone Y .

Step 3: The distribution of the random vector w describing the sample is a
multinomial distribution with m trials. From central limit theorem it
follows that as the sample size m approaches infinity the probability
distribution of w can be approximated by a multivariate Gaussian dis-
tribution lying in H . The Gaussian distribution concentrates near its
mean value μ as the sample size increases. The shape of Q near μ de-
termines the probability that the algorithm prefers partition C over D.
Formally, in Lemma 14 we show that limm→∞ Pr[w ∈ Y ] > 0; hence
limm→∞ Pr[w ∈ Q] > 0.
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Step 4: For sufficiently large sample sizes the partition of F output by the algo-
rithm is, with high probability, one of the optimal partitions. From the
previous step it follows that with non-zero probability any optimal par-
tition has lower empirical risk than any other optimal partition. Hence,
there exist at least two optimal partitions of F , such that each of them
is empirically optimal for a sample with non-zero probability. These
two partitions cause instability of the algorithm. A precise argument is
presented in Lemma 15.

5 The Technical Lemmas

Observation 5 (Explicit Risk Formula). For a partition C and a weight
vector w,

R(w, C) =
k∑

i=1

∑

xt∈Ci

wt

∥
∥
∥
∥
∥
∥
∥
∥

xt −

∑

xs∈Ci

wsxs

∑

xs∈Ci

ws

∥
∥
∥
∥
∥
∥
∥
∥

2

2

, (2)

where C1, C2, . . . , Ck are the clusters of C. Therefore R(w, C) is a rational func-
tion of w.

Proof. This is just a rewriting of the definition of the k-means cost function for
the case of a finite domain. We use weighted sums expressions for the expecta-
tions and

ci =

∑
xs∈Ci

wsxs
∑

xs∈Ci
ws

to calculate the centers of mass of the clusters. �
Lemma 6 (Derivatives of f). Let C be a partition of the support of P . The
first two derivatives of the risk function R(w, C) with respect to w at μ are as
follows.

1. The gradient is

(∇R(μ, C))p =
∂R(w, C)

∂wp

∣
∣
∣
∣
w=μ

= ‖c� − xp‖2
2 ,

assuming that xp lies in the cluster C�.
2. The (p, q)-th entry of the Hessian matrix

(
∇2R(μ)

)
p,q

=
∂2R(w, C)
∂wp∂wq

∣
∣
∣
∣
w=μ

equals to

−2
(c� − xp)T (c� − xq)

∑

xs∈C�

μs

if xp, xq lie in a common cluster C�, and is zero otherwise.
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Here, c1, c2, . . . , ck are the optimal centers ci =
(∑

xs∈Ci
μsxs

)
/

(∑
xs∈Ci

μs

)
,

and C1, C2, . . . , Ck ⊆ F are the clusters of C.

Proof. Straightforward but long calculation, starting with formula (2). See the
extended version paper [1] available online. �

Lemma 7 (Weights of Clusters). Let C and D be two partitions of F . Con-
sider the weights μ assigned to points in F . Then, either for every point in F
the weight of its cluster in C is the same as the weight of its cluster in D. Or,
there are two points in F , such that the weight of the cluster of the first point in
C is strictly larger than in D, and the weight of the cluster of the second point
in C is strictly smaller than in D.

Proof. For any point xt ∈ F let at =
∑

xs∈Ci
μs be the weight of the clus-

ter Ci in which xt lies in the partition C. Likewise, let bt =
∑

xs∈Dj
μs be

the weight of the cluster Dj in which xt lies in the clustering D. Consider
the two sums

∑n
t=1

μt

at
and

∑n
t=1

μt

bt
. It easy to see that the sums are equal,

∑n
t=1

μt

at
=

∑k
i=1

∑
xt∈Ci

μt

at
= k =

∑k
i=1

∑
xt∈Di

μt

bt
=

∑n
t=1

μt

bt
. Either all the

corresponding summands μt/at and μt/bt in the two sums are equal and hence
at = bt for all t. Or, there exist points xt and xs such that μt/at < μt/bt and
μs/as > μs/bs, and hence at > bt and as < bs. �

Lemma 8 (No Ties). Let C be an optimal partition and let c1, c2, . . . , ck be the
centers of mass of the clusters of C computed with respect to the weight vector μ.
Then, for a point x of the support lying in a cluster Ci of C, the center of mass
ci is strictly closer to x than any other center.

Proof. Suppose that the distance ‖cj − x‖2, j �= i, is smaller or equal to the
distance ‖ci − x‖. Then, we claim that moving the point x to the cluster Cj

decreases the risk. After the move of x, recompute the center of Ci. As a result
the risk strictly decreases. Then recompute the center of mass of Cj , the risk
decreases even more. �

Lemma 9 (Hessian determines Clustering). For partitions C, D of the sup-
port of P , the following holds. If the Hesse matrices of the risk functions R(w, C)
and R(w, D), respectively, coincide at μ, then C = D.

Proof. For sake of brevity, let

Ap,q :=
∂2R(w, C)
∂wp∂wq

∣
∣
∣
∣
w=μ

.

It suffices to show that centers c1, c2, . . . , ck of partition C are uniquely deter-
mined by matrix A. To this end, we view A as the adjacency matrix of a graph
G with nodes x1, x2, . . . , xn, where nodes xp, xq are connected by an edge if and
only if Ap,q �= 0. Let K1, K2, . . . , K� be the connected components of G. Note
that there is an edge between xp and xq only if p and q belong to the same cluster
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in C. Thus, the connected components of G represent a refinement of partition
C. Consider a fixed cluster Cj in C with center cj . Recall that

cj =
∑

xi∈Cj

μixi . (3)

Let K ⊆ Cj be any connected component of G that is contained in Cj and
define, for sake of brevity, μ(K) :=

∑
xi∈C μi and K ′ = Cj \ K. We claim that

cj =
1

μ(K)

∑

xi∈K

μixi , (4)

that is, cj is determined by any component K ⊆ Cj . Since this is obvious for
K = Cj , we assume that K � Cj . We can rewrite (3) as

0 =

(
∑

xi∈K

μi(xi − cj)

)

+

⎛

⎝
∑

xi′∈K′

μi′(xi′ − cj)

⎞

⎠ . (5)

Pick any pair i, i′ such that xi ∈ K and xi′ ∈ K ′. Since xi and xi′ are not
neighbors in G, Ai,i′ = 0, which means that xi − cj is orthogonal to xi′ − cj .
Thus the vector represented by the first sum in (5) is orthogonal on the vector
represented by the second sum. It follows that both sums yield zero, respectively.
Rewriting this for the first sum, we obtain (4). �
Lemma 10 (Indefinitness). Let C and D be any two optimal partitions. Let
f(w) = R(w, D)−R(w, C). Consider the Taylor expansion of f around μ. Then,
∇f(μ) �= 0 or the Hessian, ∇2f(μ), is indefinite.3

Proof. We denote by C1, C2, . . . , Ck ⊆ F the clusters of C and by D1, D2, . . . ,
Dk ⊆ F the clusters of D. We denote by c1, c2, . . . , ck the optimal centers for
C, and by d1, d2, . . . , dk the optimal centers for D. That is, the center ci is the
center of mass of Ci, and dj is the center of mass of Dj .

Consider the Taylor expansion of f at μ. Lemma 9 implies that the Hessian,
∇2f(μ), is not zero. Assuming ∇f(μ) = 0 i.e. ∇R(μ, C) = ∇R(μ, D), we need to
show that ∇2f(μ) is indefinite.

For any point xp ∈ F we define three numbers ep, ap and bp as follows. Suppose
xp ∈ C� and xp ∈ D�′ . The first part of the Lemma 6 and ∇R(μ, C) = ∇R(μ, D)
imply that the distance between xp and c� equals to the distance between xp

and d�′ ; denote this distance by ep. Denote by ap the weight of the cluster C�,
that is, ap =

∑
xt∈C�

μt. Likewise, let bp be the weight of the cluster D�′ , that
is, bp =

∑
xt∈D�′ μt.

Consider the diagonal entries of Hessian matrix of f . Using the notation we
had just introduced, by the second part of the Lemma 6 the (p, p)-th entry is

(∇2f(μ))p,p =
(

∂2R(w, D)
∂w2

p

− ∂2R(w, C)
∂w2

p

) ∣
∣
∣
∣
w=μ

= 2e2
p

(
1
ap

− 1
bp

)

.

3 A matrix is indefinite if it is neither positively semi-definite, nor negatively semi-
definite.
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We claim that if ep = 0, then ap = bp. Let xp ∈ C� ∩D�′ , and suppose without
loss of generality that ap > bp. Since ep = 0 it is xp = c� = d�′ . Since ap > bp

there is another point xq that causes the decrease of the weight the cluster C�.
Formally, xq ∈ C�, xq �∈ D�′ , but xq ∈ D�′′ . This means that in D the point xq

is closest to both d�′ and d�′′ . By Lemma 8, a tie can not happen in an optimal
partition, which is a contradiction.

By Lemma 7, either (a) for all indices p, ap = bp, or (b) there are indices i, j
such that ai > bi and aj < bj. In the subcase (a), all the diagonal entries of
Hessian matrix are zero. Since the Hessian matrix is non-zero, there must exist
a non-zero entry off the diagonal making the matrix is indefinite. In the subcase
(b), the above claim implies that the indices i, j for which ai > bi and aj < bj

are such that ei, ej > 0. Hence, the (i, i)-th diagonal entry of the Hessian matrix
is negative, and the (j, j)-the diagonal entry of the Hessian matrix is positive.
Therefore the Hessian matrix is indefinite. �

Corollary 11. There exists arbitrarily small δ ∈ R
n, f(μ + δ) > 0 (and simi-

larly, there exists arbitrarily small δ′, f(μ + δ′) < 0).

Proof. Consider the Taylor expansion of f at μ and its lowest order term T (x−μ).
that does not vanish (according to Lemma 10, either the gradient or the Hessian).
Since T can take values of positive and of negative sign (obvious for the gradient,
and obvious from Lemma 10 for the Hessian), we can pick a vector x = μ + δ
such that T (x − μ) = T (δ) > 0. Since T is homogeneous in δ, T (λδ) > 0 for
every λ > 0. If λ is chosen sufficiently small, then f(μ + λδ) has the same sign
as T (λδ). The considerations for negative sign are symmetric. �

Lemma 12 (Existence of a Positive Open Cone). There exist positive real
numbers ε and δ, and a unit vector u ∈ R

n such that the open cone

T =
{

w ∈ R
n
++

∣
∣
∣
∣ 0 < ‖w − μ‖2 < ε,

uT (w − μ)
‖w − μ‖2

> 1 − δ

}

is contained in Q, the set of weights for which R(w, C) < R(w, D).

Proof. Let h be the order of the first non-zero term in the Taylor expansion
of f(μ + u) around μ (as a multi-variate polynomial in u). Using Corollary 11,
pick a vector u so that f(μ + u) > 0 and, for some η > 0, for every v in the
η-ball around u, that term of the Taylor expansion of f(μ + u) dominates the
higher order terms. The existence of such a ball follows from the smoothness
properties of f . Note that this domination holds as well for any f(μ + λv) such
that 0 < λ ≤ 1.

Let δ be the supremum, over the vectors v in the η-ball, of the expression
1 − (uT v)/‖v‖2. (That is, 1 − δ is the infimum of the cosines of the angles
between u and v’s varying over the η-ball.) And let ε = η.

For the vectors v, by the Taylor expansion formula, λv, sign(f(μ + λv)) =
sign(f(μ+v)) = sign(f(μ+u)) > 0. Hence, all the points of the form w = μ+λv
contain the cone sought. �
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Lemma 13 (Existence of a Positive Open Cone II). There exists positive
real numbers ε, δ and a unit vector u ∈ R

n with sum of coordinates, u1 + u2 +
· · · + un, equal to zero, such that the (n − 1)-dimensional open cone

Y =
{

w ∈ H ∩ R
n
++

∣
∣
∣
∣ 0 < ‖w − μ‖2 < ε,

uT (w − μ)
‖w − μ‖2

> 1 − δ

}

is contained in Q ∩ H.

Proof. We use the projection φ : R
n
++ → H , φ(w) = w/(w1 + w2 + · · · + wn).

Note that for the k-means cost function, for every clustering C and every positive
constant λ, R(λw, C) = λR(w, C). It follows that the projection φ does not affect
the sign of f . That is, sign(f(w)) = sign(f(φ(w))). Therefore Q∩H = φ(Q) ⊂ Q.
The projection φ(T ) clearly contains an (n − 1)-dimensional open cone Y of the
form as stated in the Lemma. More precisely, there exists positive numbers ε, δ
and unit vector u (the direction of the axis of the cone), such that the cone

Y := Yε,δ,u =
{

w ∈ H ∩ R
n
++

∣
∣
∣
∣ 0 < ‖w − μ‖2 < ε,

uT (w − μ)
‖w − μ‖2

> 1 − δ

}

is contained in φ(T ). Since the cone Y lies in H , the direction of the axis, u, can
be picked in such way that the sum of its coordinates u1 + u2 + · · · + un is zero.
Since T ⊆ Q, we get Y ⊂ φ(T ) ⊂ φ(Q) = Q ∩ H . �

Lemma 14 (Instability). Let C and D be distinct optimal partitions. Let Q
be the set of weights where the k-means clustering algorithm prefers C over D.
Then, limm→∞ Pr [w ∈ Q] > 0.

Proof. Let Y ⊂ (Q ∩ H) be an (n − 1)-dimensional open cone (as implied by
lemma 13) lying in the hyperplane H defined by the equation w1+w2+· · ·+wn =
1. We show that,

lim
m→∞Pr [w ∈ Y ] > 0 ,

which implies the claim.
We have

Pr[w ∈ Y ] = Pr
[
uT (w − μ)
‖w − μ‖2

> 1 − δ, 0 < ‖w − μ‖2 < ε

]

= Pr
[
uT (

√
m(w − μ))√

m‖w − μ‖2
> 1 − δ, 0 <

√
m‖w − μ‖2 < ε

√
m

]

.

By the central limit theorem
√

m(w − μ) weakly converges to a normally dis-
tributed random variable Z ∼ N(0, Σ), where Σ is the covariance matrix.4 In
particular this means that there is a sequence {ζm}∞m=1, ζm → 0, such that

4 Σ = diag(μ1, μ2, . . . , μn) − μμT , the rank of Σ is n − 1, and its rows (or columns)
span the (n − 1)-dimensional vector space {u ∈ R

n | u1 + u2 + · · · + un = 0}.
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∣
∣
∣
∣
∣
Pr

[
uT (

√
m(w − μ))√

m‖w − μ‖2
> 1 − δ, 0 <

√
m‖w − μ‖2 < ε

√
m

]

− Pr
[

uT Z

‖Z‖2
> 1 − δ, 0 < ‖Z‖2 < ε

√
m

] ∣
∣
∣
∣
∣
< ζm

Consequently, we can bound the probability Pr[w ∈ Y ] as

Pr[w ∈ Y ] ≥ Pr
[

uT Z

‖Z‖2
> 1 − δ, 0 < ‖Z‖2 < ε

√
m

]

− ζm

≥ 1 − Pr
[

uT Z

‖Z‖2
< 1 − δ

]

− Pr
[
‖Z‖2 ≥ ε

√
m

]
− Pr [‖Z‖2 = 0] − ζm .

Take the limit m → ∞. The last three terms in the last expression vanish. Since
u has sum of its coordinates zero and Z ∼ N(0, Σ) is normally distributed, the
term limm→∞ Pr

[
uT Z
‖Z‖2

< 1 − δ
]

lies in (0, 1). �

Lemma 15 (Multiple Optimal Partitions). If there are at least two optimal
partitions of the support F , then the k-means algorithm is unstable.

Proof. Let C1, C2, . . . , Ch, h ≥ 2, be the optimal partitions. Suppose that

lim
m→∞Pr[A(S) = Ci] = πi ,

where by the event A(S) = Ci we mean that the k-means algorithm on the
sample S outputs the partition Ci of the support.

Claim: Each number πi is strictly less than one.
Proof of the Claim:

Pr
S∼P m

[A(S) = Ci] ≤ Pr

⎡

⎣R(w, Ci) ≤ min
�=1,2,...,h

� 	=i

R(w, C�)

⎤

⎦

≤ Pr[R(w, Ci) ≤ R(w, Cj)]
= 1 − Pr[R(w, Ci) > R(w, Cj)]

Taking limit m → ∞ on both sides of the inequality and applying Lemma 14,
limm→∞ Pr[R(w, Ci) > R(w, Cj)] > 0 the claim follows.

Since k-means is risk converging, as sample size increases with probability
approaching one, A(S) outputs an optimal partition, and hence π1 + π2 + · · · +
πh = 1 . Necessarily at least two numbers πi, πj are strictly positive. That is, the
algorithm outputs two different partitions Ci, Cj with non-zero probability for
arbitrarily large sample size. The algorithm will be switching between these two
partitions. Formally, Instability(A, P ) ≥ dP (Ci, Cj)πiπj is strictly positive. �
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6 Conclusions and Discussion

Stability reflects a relation between clustering algorithms and the data sets (or
data generating probability distributions) they are applied to. Stability is com-
monly viewed as a necessary condition for the suitability of the clustering algo-
rithm, and its parameter setting, to the input data, as well as to the meaning-
fulness of the clustering the algorithm outputs. As such, stability is often used
for model selection purposes, in particular for choosing the number of clusters
for a given data. While a lot of published work demonstrates the success of this
approach, the stability paradigm is mainly a heuristic and is not supported by
clear theoretical guarantees. We embarked on the task of providing theoretical
analysis of clustering stability. The results of Ben-David el al [3] and this paper
challenge the common interpretation of stability described above. We show that
the stability of risk-minimizing clustering algorithms over data generating distri-
butions is just an indicator of weather the objective function (the risk) that the
algorithm is set to minimize has one or more optimal solutions over the given in-
put. This characterization is orthogonal to the issues of model selection to which
stability is commonly applied. Based on our characterization, it is fairly simple to
come up with examples of data sets (or data generating distributions) for which
a ’wrong’ choice of the number of clusters results in stability, whereas a ’correct’
number of clusters results in instability (as well as examples for any of the other
combinations of ’wrong/correct number of clusters’ and ’stable/unstable’). The
results of this paper apply to k-means over finite domains, but we believe that
they are extendable to wider classes of clustering tasks.

How can that be? How can a paradigm that works in many practical appli-
cations be doomed to failure when analyzed theoretically? The answers should
probably reside in the differences between what is actually done in practice and
what our theory analyzes. The first suspect in that domain is the fact that, while
in practice every stability procedure is based on some finite sample, our defini-
tion of stability refers to the limit behavior, as sample sizes grow to infinity. In
fact, it should be pretty clear that, for any reasonable clustering risk function,
an overwhelming majority of realistic data sets should have a unique optimal
clustering solution. It is unlikely that for a real data set two different partitions
will result in exactly the same k-means cost. It therefore follows that for large
enough samples, these differences in the costs of solutions will be detected by the
samples and the k means clustering will stabilize. On the other hand, sufficiently
small samples may fail to detect small cost differences, and therefore look stable.
It may very well be the case that the practical success will breakdown if stability
tests would take into account larger and larger samples. If that is the case, it is a
rather unusual occasion where working with larger samples obscures the ’truth’
rather than crystalizes it.

At this point, this is just a speculation. The most obvious open questions that
we see ahead is determining whether this is indeed the case by coming up with
a useful non-asymptotic characterization of stability. Can our work be extended
to predicting the behavior of stability over finite sample sizes?
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Other natural questions to answered include extending the results of this
paper to arbitrary probability distributions (doing away with our finite support
assumption), as well as extending our analysis to other risk-minimizing clustering
tasks.
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Abstract. We present a framework for margin based active learning of linear
separators. We instantiate it for a few important cases, some of which have been
previously considered in the literature. We analyze the effectiveness of our frame-
work both in the realizable case and in a specific noisy setting related to the Tsy-
bakov small noise condition.

1 Introduction

There has recently been substantial interest in using unlabeled data together with la-
beled data for machine learning. The motivation is that unlabeled data can often be
much cheaper and more plentiful than labeled data, and so if useful information can be
extracted from it that reduces dependence on labeled examples, this can be a significant
benefit.

There are currently two settings that have been considered to incorporate unlabeled
data in the learning process. The first one is the so-called Semi-supervised Learn-
ing [3,5], where, in addition to a set of labeled examples drawn at random from the
underlying data distribution, the learning algorithm can also use a (usually larger) set of
unlabeled examples from the same distribution. In this setting, unlabeled data becomes
informative under additional assumptions and beliefs about the learning problem. Ex-
amples of such assumptions are the one used by Transductive SVM (namely, that the
target function should cut through low density regions of the space), or by Co-training
(namely, that the target should be self-consistent in some way). Unlabeled data is then
potentially useful in this setting because it allows one to reduce search space from the
whole set of hypotheses, down to the set of a-priori reasonable with respect to the un-
derlying distribution.

The second setting, an increasingly popular one for the past few years, is Active
Learning [2,6,8]. Here, the learning algorithm has both the capability of drawing ran-
dom unlabeled examples from the underlying distribution and that of asking for the
labels of any of these examples, and the hope is that a good classifier can be learned
with significantly fewer labels by actively directing the queries to informative examples.
As opposed to the Semi-supervised learning setting, and similarly to the classical super-
vised learning settings (PAC and Statistical Learning Theory settings) the only prior be-
lief about the learning problem in the Active Learning setting is that the target function
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(or a good approximation of it) belongs to a given concept class. Luckily, it turns out
that for simple concept classes such as linear separators on the line one can achieve an
exponential improvement (over the usual supervised learning setting) in the labeled data
sample complexity, under no additional assumptions about the learning problem [2,6].1

In general, however, for more complicated concept classes, the speed-ups achievable in
the active learning setting depend on the match between the distribution over example-
label pairs and the hypothesis class, and therefore on the target hypothesis in the class.
Furthermore, there are simple examples where active learning does not help at all, even
if there in the realizable case (see, for example, [8]). Recent interesting work of Das-
gupta [8] gives a nice generic characterization of the sample complexity aspect of active
learning in the realizable case.

A few variants and restrictions of the general active learning setting have also been
considered lately. For instance the Query by Committee analysis [10] assumes realiz-
ability (i.e., there exists a perfect classifier in a known set) and a correct Bayesian prior
on the set of hypotheses [10]. The analysis of the active Perceptron algorithm described
in [9] relies on an even stronger assumption, of known and fixed distribution.

In the general active learning setting, for the realizable case, Cohen, Atlas and Ladner
have introduced in [6] a generic active learning algorithm. This algorithm is a sequential
algorithm that keeps track of two spaces — the current version space Hi, defined as the
set of hypotheses in H consistent with all labels revealed so far, and the current region
of uncertainty Ri, defined as the set of all x in the instance space X , for which there
exists a pair of hypotheses in Hi that disagrees on x. In round i, the algorithm picks
a random unlabeled example from Ri and queries it, eliminating all hypotheses in Hi

inconsistent with the received label. The algorithm then eliminates those x ∈ Ri on
which all surviving hypotheses agree, and recurses.This algorithm was later analyzed
and generalized to the non-realizable case in [2], and it was shown that in certain cases
it does provide a significant improvement in the sample complexity.

In this paper we analyze a generic margin based active learning algorithm for learn-
ing linear separators and instantiate it for a few important cases, some of which have
been previously considered in the literature. Specifically, the generic procedure we an-
alyze is presented in Figure 1. To simplify calculation, we will present and analyze a
few modifications of the algorithm as well.

Our Contributions: We present and analyze a framework for margin based active
learning and also instantiate it for a few important cases. Specifically:

– We point out that in order to obtain a significant improvement in the labeled data
sample complexity we have to use a strategy which is more aggressive than the one
proposed by Cohen, Atlas and Ladner in [6] and later analyzed in [2]. We point
out that this is true even in the special case when the data instances are drawn uni-
formly from the the unit ball in Rd, and when the labels are consistent with a linear
separator going through the origin. Indeed, in order to obtain a truly exponential
improvement, and to be able to learn with only Õ

(
d log

(
1
ε

))
labeled examples, we

need, in each iteration, to sample our examples from a subregion carefully chosen,

1 For this simple concept class one can achieve a pure exponential improvement [6] in the real-
izable case, while in the agnostic case the improvement depends upon the noise rate [2].
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and not from the entire region of uncertainty, which would imply a labeled data

sample complexity of Õ
(
d

3
2 log

(
1
ε

))
.

– We show that our algorithm and argument extend to the non-realizable case. A spe-
cific case we analyze here is again the setting where the data instances are drawn
uniformly from the the unit ball in Rd, and a linear classifier w∗ is the Bayes clas-
sifier. We additionally assume that our data satisfies the popular Tsybakov small
noise condition along the decision boundary [14]. We consider both a simple ver-
sion which leads to exponential improvement similar to the item 1 above, and a
setting where we get only a polynomial improvement in the sample complexity,
and where this is provably the best we can do [4].

– We analyze a “large margin” setting and show how active learning can dramatically
improve (the supervised learning) sample complexity; the bounds we obtain here
do not depend on the dimensionality d.

– We provide a general and unified analysis of our main algorithm – Algorithm 1.

Structure of this paper: For clarity, we start by analyzing in Section 3 the special case
where the data instances are drawn uniformly from the the unit ball in Rd, and when
the labels are consistent with a linear separator w∗ going through the origin. We then
analyze the noisy setting in Section 4, and give dimension independent bounds in a large
margin setting in Section 5. We present our generic Margin Based learning algorithm
and analysis in Section 6 and finish with a discussion and in Section 7.

2 Definitions and Notation

Consider the problem of predicting a binary label y based on its corresponding input
vector x. As in the standard machine learning formulation, we assume that the data
points (x, y) are drawn from an unknown underlying distribution P over X × Y ; X
is called the instance space and Y is the label space. In this paper we assume that
Y = {±1}.

Our goal is to find a classifier f with the property that its expected true loss of err(f)
is as small as possible. Here we assume err(f) = E(x,y)∼P [�(f(x), y)], where we use
E(x,y)∼P to denote the expectation with respect to the true (but unknown) underlying
distribution P . Throughout the paper, without loss of generality, we assume that f(x) is
a real-valued function, which induces a classification rule 2I(f(x) ≥ 0)−1, where I(·)
is the set indicator function. The decision at f(x) = 0 is not important in our analysis.
We consider in the following the classification error loss, defined as �(f(x), y) = 1 if
f(x)y ≤ 0 and �(f(x), y) = 0 otherwise. We denote by d(f, g) the probability that the
two classifiers f and g predict differently on an example coming at random from P .
Furthermore, for α ∈ [0, 1] we denote by B (f, α) the set {g | d(f, g) ≤ α}.

In this paper, we are interested in linear classifiers of the form f(x) = w · x, where
w is the weight vector which we need to learn from training data. We are interested
in using active learning (selective sampling) algorithms to improve the performance of
linear classification methods under various assumptions. In particular, we are interested
in margin based selective sampling algorithms which have been widely used in practical
applications (see e.g. [13]). A general version of the type of algorithm we analyze here
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Input: unlabeled data set U = {x1, x2, . . . , }
a learning algorithm A that learns a weight vector from labeled data
a sequence of sample sizes 0 < m̃1 < m̃2 < . . . < m̃s = m̃s+1

a sequence of cut-off values bk > 0 (k = 1, . . . , s)
Output: classifier ŵs.
Label data points x1, . . . , xm̃1 by a human expert
iterate k = 1, . . . , s

use A to learn weight vector ŵk from the first m̃k labeled samples.
for j = m̃k + 1, . . . , m̃k+1

if |ŵk · xj | > bk then let yj = sign(ŵk · xj)
else label data point xj by a human expert

end for
end iterate

Fig. 1. Margin-based Active Learning

is described in Figure 1. Specific choices for the learning algorithm A, sample sizes
mk, and cut-off values bk depends on various assumptions we will make about the data,
which we will investigate in details in the following sections.

3 The Realizable Case Under the Uniform Distribution

We consider here a commonly studied setting in the active learning literature [7,8,9].
Specifically, we assume that the data instances are drawn uniformly from the the unit
ball in Rd, and that the labels are consistent with a linear separator w∗ going through
the origin (that is P (w∗ · xy ≤ 0) = 0). We assume that ‖w∗‖2 = 1. It is worth noting
that even in this seemingly simple looking scenario, there exists an Ω

(
1
ε

(
d + log 1

δ

))

lower bound on the PAC learning sample complexity [12].
We start by informally presenting why active learning is in principle possible, at

least when d is constant. We show it is not difficult to improve the labeled data sample

complexity from Õ
(

d
ε

)
to Õ

(
d

3
2 log

(
1
ε

))
. Specifically, let us consider Procedure 1,

where A is a learning algorithm for finding a linear classifier consistent with the training
data. Assume that in each iteration k, A finds a linear separator ŵk , ‖ŵk‖2 = 1 which
is consistent with the first m̃k labeled examples. We want to ensure that err(ŵk) ≤
1
2k (with large probability), which (by standard VC bounds) requires a sample of size
m̃k = Õ

(
2kd

)
; note that this implies we need to add in each iteration about mk =

m̃k+1 − m̃k = Õ
(
2kd

)
new labeled examples. The desired result will follow if we can

show that by choosing appropriate bk, we only need to ask the human expert to label
Õ(d3/2) out of the mk = Õ

(
2kd

)
data points and ensure that all mk data points are

correctly labeled (i.e. the examples labeled automatically are in fact correctly labeled).
Note that given our assumption about the data distribution the error rate of any

given separator w is err(w) = θ(w,w∗)
π , where θ(w, w∗) = arccos(w · w∗). There-

fore err(ŵk) ≤ 2−k implies that ‖ŵk − w∗‖2 ≤ 2−kπ. This implies we can safely
label all the points with |ŵk · x| ≥ 2−kπ because w∗ and ŵk predict the same on those
examples. The probability of x such that |ŵk ·x| ≤ 2−kπ is Õ(2−k

√
d) because in high
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dimensions, the 1-dimensional projection of uniform random variables in the unit ball
is approximately a Gaussian variable with variance 1/d. Therefore if we let bk = 2−kπ
in the k-th iteration, and draw mk+1 − mk = Õ

(
2kd

)
new examples to achieve an

error rate of 2−(k+1) for ŵk+1, the expected number of human labels needed is at most
Õ(d

3
2 ). This essentially implies the desired result. For a high probability statement, we

can use Procedure 2, which is a modification of Procedure 1.

Input: allowed error rate ε, probab. of failure δ, a sampling oracle for PX , a labeling oracle
a sequence of sample sizes mk > 0, k ∈ Z+; a sequence of cut-off values bk > 0, k ∈ Z+

Output: weight vector ŵs of error at most ε with probability 1 − δ
Draw m1 examples from PX , label them and put into a working set W (1).
iterate k = 1, . . . , s

find a hypothesis ŵk (‖ŵk‖2 = 1) consistent with all labeled examples in W (k).
let W (k + 1) = W (k).
until mk+1 additional data points are labeled, draw sample x from PX

if |ŵk · x| ≥ bk, reject x
otherwise, ask for label of x, and put into W (k + 1)

end iterate

Fig. 2. Margin-based Active Learning (separable case)

Note that we can apply our favorite algorithm for finding a consistent linear sepa-
rator (e.g., SVM for the realizable case, linear programming, etc.) at each iteration of
Procedure 2, and the overall procedure is computationally efficient.

Theorem 1. There exists a constant C, s. t. for any ε, δ > 0, using Procedure 2 with
bk = π

2k−1 and mk = Cd
1
2

(
d ln d + ln k

δ

)
, after s = �log2

1
ε � iterations, we find a

separator of error at most ε with probability 1 − δ.

Proof. The proof is a rigorous version of the informal one given earlier. We prove by
induction on k that at the k’th iteration, with probability 1 − δ(1− 1/(k + 1)), we have
err(ŵ) ≤ 2−k for all separators ŵ consistent with data in the set W (k); in particular,
err(ŵk) ≤ 2−k.

For k = 1, according to Theorem 7 in Appendix A, we only need m1 = O(d +
ln(1/δ)) examples to obtain the desired result. In particular, we have err(ŵ1) ≤ 1/2
with probability 1 − δ/2. Assume now the claim is true for k − 1. Then at the k-th
iteration, we can let S1 = {x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}.
Using the notation err(w|S) = Prx((w · x)(w∗ · x) < 0|x ∈ S), for all ŵ we have:

err(ŵ) = err(ŵ|S1) Pr(S1) + err(ŵ|S2) Pr(S2).

Consider an arbitrary ŵ consistent with the data in W (k − 1). By induction hypothesis,
we know that with probability at least 1 − δ(1 − 1/k), both ŵk−1 and ŵ have errors
at most 21−k (because both are consistent with W (k − 1)). As discussed earlier, this
implies that ‖ŵk−1 − w∗‖2 ≤ 21−kπ and ‖ŵ − w∗‖2 ≤ 21−kπ. So, ∀x ∈ S2, we have
(ŵk−1 · x)(ŵ · x) > 0 and (ŵk−1 · x)(w∗ · x) > 0. This implies that err(ŵ|S2) =
0. Now using the estimate provided in Lemma 4 with γ1 = bk−1 and γ2 = 0, we
obtain Prx(S1) ≤ bk−1

√
4d/π. Therefore err(ŵ) ≤ 22−k

√
4πd · err(ŵ|S1), for all ŵ
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consistent with W (k − 1). Now, since we are labeling mk data points in S1 at iteration
k−1, it follows from Theorem 7 that we can find C s. t. with probability 1−δ/(k2+k),
for all ŵ consistent with the data in W (k), err(ŵ|S1), the error of ŵ on S1, is no more
than 1/(4

√
4πd). That is we have err(ŵ) ≤ 2−k with probability 1 − δ((1 − 1/k) +

1/(k2 + k)) = 1 − δ(1 − 1/(k + 1)) for all ŵ consistent with W (k), and in particular
err(ŵk) ≤ 2−k, as desired. 
�

The choice of rejection region in Theorem 1 essentially follows the idea in [6]. It was
suggested there that one should not sample from a region (S2 in the proof) in which all
classifiers in the current version space (in our case, classifiers consistent with the labeled
examples in W (k)) predict the same label. A more general version, with theoretical
analysis, was considered in [2]. Here we have used a more a refined VC-bound for the
realizable case, e.g., Theorem 7, to get a better bound. However, the strategy of choosing
bk in Theorem 1 (thus the idea of [6]) is not optimal. This can be seen from the proof,
in which we showed err(ŵs|S2) = 0. If we enlarge S2 (using a smaller bk), we can still
ensure that err(ŵs|S2) is small; furthermore, Pr(S1) becomes smaller, which allows us
to use fewer labeled examples to achieve the same reduction in error. Therefore in order
to show that we can achieve an improvement from Õ

(
d
ε

)
to Õ

(
d log

(
1
ε

))
as in [9], we

need a more aggressive strategy. Specifically, at round k we set as margin parameter

bk = Õ
(

log (k)

2k
√

d

)
, and in consequence use fewer examples to transition between rounds.

In order to prove correctness we need to refine the analysis as follows:

Theorem 2. There exists a constant C s. t. for d ≥ 4, and for any ε, δ > 0, ε <
1/4, using Procedure 2 with mk = C

√
ln(1 + k)

(
d ln(1 + ln k) + ln k

δ

)
and bk =

21−kπd−1/2
√

5 + ln(1 + k), after s = �log2
1
ε � − 2 iterations, we find a separator of

error ≤ ε with probability 1 − δ.

Proof. As in Theorem 1, we prove by induction on k that at the k’s iteration, for k ≤ s,
with probability at least 1 − δ(1 − 1/(k + 1)), we err(ŵ) ≤ 2−k−2 for all choices of ŵ
consistent with data in the working set W (k); in particular err(ŵk) ≤ 2−k−2.

For k = 1, according to Theorem 7, we only need mk = O(d + ln(1/δ)) examples
to obtain the desired result; in particular, we have err(ŵ1) ≤ 2−k−2 with probability
1−δ/(k+1). Assume now the claim is true for k−1 (k > 1). Then at the k-th iteration,
we can let S1 = {x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}. Consider
an arbitrary ŵ consistent with the data in W (k − 1). By induction hypothesis, we know
that with probability 1 − δ(1 − 1/k), both ŵk−1 and ŵ have errors at most 2−k−1,
implying θ(ŵk−1, w

∗) ≤ 2−k−1π and θ(ŵ, w∗) ≤ 2−k−1π. Therefore θ(ŵ, ŵk−1) ≤
2−kπ. Let β̃ = 2−kπ and using cos β̃/ sin β̃ ≤ 1/β̃ and sin β̃ ≤ β̃ it is easy to verify

that bk−1 ≥ 2 sin β̃d−1/2

√

5 + ln
(

1 +
√

ln max(1, cos β̃/ sin β̃)
)

. By Lemma 7, we

have both

Prx [(ŵk−1 · x)(ŵ · x) < 0, x ∈ S2] ≤ sin β̃

e5 cos β̃
≤

√
2β̃

e5 and

Prx [(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤ sin β̃

e5 cos β̃
≤

√
2β̃

e5 .
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Taking the sum, we obtain Prx [(ŵ · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃
e5 ≤ 2−(k+3). Us-

ing now Lemma 4 we get that for all ŵ consistent with the data in W (k − 1) we have:

err(ŵ) ≤err(ŵ|S1) Pr(S1) + 2−(k+3) ≤ err(ŵk|S1)bk−1

√
4d/π + 2−(k+3)

≤2−(k+2)
(
err(ŵ|S1)16

√
4π

√
5 + ln(1 + k) + 1/2

)
.

Since we are labelling mk points in S1 at iteration k−1, we know from Theorem 7 that
∃C s. t. with probability 1− δ/(k + k2) we have err(ŵk|S1)16

√
4π

√
5 + ln(1 + k) ≤

0.5 for all ŵ consistent with W (k); so, with probability 1−δ((1−1/k)+1/(k+k2)) =
1 − δ(1 − 1/(k + 1)), we have err(ŵ) ≤ 2−k−2 for all ŵ consistent with W (k). 
�

The bound in Theorem 2 is generally better than the one in Theorem 1 due to the
improved dependency on d in mk. However, mk depends on

√
ln k ln ln k, for k ≤

�log2
1
ε � − 2. Therefore when d  ln k(ln ln k)2, Theorem 1 offers a better bound.

Note that the strategy used in Theorem 2 is more aggressive than the strategy used in
the selective sampling algorithm of [2,6]. Indeed, we do not sample from the entire
region of uncertainty – but we sample just from a subregion carefully chosen. This
helps us to get rid of the undesired d1/2. Clearly, our analysis also holds with very small
modifications when the input distribution comes from a high dimensional Gaussian.

4 The Non-realizable Case Under the Uniform Distribution

We show that a result similar to Theorem 2 can be obtained even for non-separable
problems. The non-realizable (noisy) case for active learning in the context of classi-
fication was recently explored in [2,4]. We consider here a model which is related to
the simple one-dimensional problem in [4], which assumes that the data satisfy the in-
creasingly popular Tsybakov small noise condition along the decision boundary[14].
We first consider a simple version which still leads to exponential convergence similar
to Theorem 2. Specifically, we still assume that the data instances are drawn uniformly
from the the unit ball in Rd, and a linear classifier w∗ is the Bayes classifier. However,
we do not assume that the Bayes error is zero. We consider the following low noise
condition: there exists a known parameter β > 0 such that:

PX(|P (Y = 1|X) − P (Y = −1|X)| ≥ 4β) = 1.

In supervised learning, such a condition can lead to fast convergence rates. As we will
show in this section, the condition can also be used to quantify the effectiveness of
active-learning. The key point is that this assumption implies the stability condition
required for active learning:

β min
(
1, 4θ(w,w∗)

π

)1/(1−α)

≤ err(w) − err(w∗) (1)

with α = 0. We analyze here a more general setting with α ∈ [0, 1). As mentioned
already, the one dimensional setting was examined in [4]. We call err(w) − err(w∗)
the excess error of w. In this setting, Procedure 2 needs to be slightly modified, as in
Figure 3.
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Input: allowed error rate ε, probab. of failure δ, a sampling oracle for PX , and a labeling oracle
a sequence of sample sizes mk > 0, k ∈ Z+; a sequence of cut-off values bk > 0, k ∈ Z+

a sequence of hypothesis space radii rk > 0, k ∈ Z+;
a sequence of precision values εk > 0, k ∈ Z+

Output: weight vector ŵs of excess error at most ε with probability 1 − δ
Pick random ŵ0: ‖ŵ0‖2 = 1.
Draw m1 examples from PX , label them and put into a working set W .
iterate k = 1, . . . , s

find ŵk ∈ B(ŵk−1, rk) (‖ŵk‖2 = 1) to approximately minimize training error:∑
(x,y)∈W I(ŵk · xy) ≤ minw∈B(ŵk−1 ,rk)

∑
(x,y)∈W I(w · xy) + mkεk.

clear the working set W
until mk+1 additional data points are labeled, draw sample x from PX

if |ŵk · x| ≥ bk, reject x
otherwise, ask for label of x, and put into W

end iterate

Fig. 3. Margin-based Active Learning (non-separable case)

Theorem 3. Let d ≥ 4. Assume there exists a weight vector w∗ s. t. the stability con-
dition (1) holds. Then there exists a constant C, s. t. for any ε, δ > 0, ε < β/8, us-
ing Procedure 3 with bk = 2−(1−α)kπd−1/2

√
5 + αk ln 2 − ln β + ln(2 + k), rk =

2−(1−α)k−2π for k > 1, r1 = π, εk = 2−α(k−1)−4β/
√

5 + αk ln 2 − ln β + ln(1+k),
and mk = Cε−2

k

(
d + ln k

δ

)
, after s = �log2(β/ε)� iterations, we find a separator with

excess error ≤ ε with probability 1 − δ.

Proof. The proof is similar to that of Theorem 2. We prove by induction on k that after
k ≤ s iterations, err(ŵk) − err(w∗) ≤ 2−kβ with probability 1 − δ(1 − 1/(k + 1)).

For k = 1, according to Theorem 8, we only need mk = β−2O(d + ln(k/δ)) exam-
ples to obtain ŵ1 with excess error 2−kβ with probability 1−δ/(k+1). Assume now the
claim is true for k − 1 (k ≥ 2). Then at the k-th iteration, we can let S1 = {x : |ŵk−1 ·
x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}. By induction hypothesis, we know that
with probability at least 1−δ(1−1/k), ŵk−1 has excess errors at most 2−k+1β, imply-
ing θ(ŵk−1, w

∗) ≤ 2−(1−α)(k−1)π/4. By assumption, θ(ŵk−1, ŵk) ≤ 2−(1−α)k−2π.
Let β̃ = 2−(1−α)k−2π and using cos β̃/ sin β̃ ≤ 1/β̃ and sin β̃ ≤ β̃, it is easy to verify

that bk−1 ≥ 2 sin β̃d−1/2

√

5 + αk ln 2 − ln β + ln
(

1 +
√

ln(cos β̃/ sin β̃)
)

. From

Lemma 7, we have both
Prx [(ŵk−1 · x)(ŵk · x) < 0, x ∈ S2] ≤ sin β̃

e5β−12αk cos β̃
≤

√
2β̃β

2αke5 and

Prx [(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤ sin β̃

e5β−12αk cos β̃
≤

√
2β̃β

2αke5 .

Taking the sum, we obtain Prx [(ŵk · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃β
2αke5 ≤ 2−(k+1)β.

Therefore we have (using Lemma 4):

err(ŵk) − err(w∗) ≤(err(ŵk|S1) − err(w∗|S1)) Pr(S1) + 2−(k+1)β

≤(err(ŵk|S1) − err(w∗|S1))bk−1

√
4d/π + 2−(k+1)β

≤2−kβ
(
(err(ŵk|S1) − err(w∗|S1))

√
π/(4εk) + 1/2

)
.
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By Theorem 7, we can choose C s. t. with mk samples, we obtain err(ŵk|S1) −
err(w∗|S1) ≤ 2εk/

√
π with probability 1−δ/(k+k2). Therefore err(ŵk)−err(w∗) ≤

2−kβ with probability 1 − δ((1 − 1/k) + 1/(k + k2)) = 1 − δ(1 − 1/(k + 1)). 
�

If α = 0, then we can achieve exponential convergence similar to Theorem 2, even for
noisy problems. However, for α ∈ (0, 1), we must label

∑
k mk = O(ε−2α ln(1/ε)(d+

ln(s/δ)) examples2 to achieve an error rate of ε That is, we only get a polynomial
improvement compared to the batch learning case (with sample complexity between
O(ε−2) and O(ε−1)). In general, one cannot improve such polynomial behavior – see
[4] for some simple one-dimensional examples.

Note: Instead of rejecting x when |ŵk · x| ≥ bk, we can add them to W using the
automatic labels from ŵk. We can then remove the requirement ŵk ∈ B(ŵk−1, rk)
(thus removing the parameters rk). The resulting procedure will have the same con-
vergence behavior as Theorem 3 because the probability of making error by ŵk when
|ŵk · x| ≥ bk is no more than 2−(k+2)β.

5 Dimension Independent Bounds

Although we showed that active learning can improve sample complexity, the bounds
depend on the dimensionality d. In many practical problems, such dependency can be
removed if the classifier can separate the data with large margin. We consider the fol-
lowing simple case, with x drawn from a d-dimensional Gaussian with bounded total
variance: x ∼ N(0, Σ), Σ = diag(σ2

1 , . . . , σ
2
d) and σ1 ≥ · · · ≥ σd > 0. Note that

Ex‖x‖2
2 =

∑
j σ2

j . The Gaussian assumption can also be replaced by other similar
assumptions such as uniform distribution in an ellipsoid. We employ the Gaussian as-
sumption for computational simplicity. We assume further that the label is consistent
with a weight vector w∗ with ‖w∗‖2 = 1. However, if we do not impose any restric-
tions on w∗, then it is not possible to learn w∗ without the d-dependence. A standard
assumption that becomes popular in recent years is to assume that w∗ achieves a good
margin distribution. In particular, we may impose the following margin distribution
condition ∀γ > 0:

Px(|w∗ · x| ≤ γ) ≤ 2γ√
2πσ

(2)

Condition (2) says that the probability of small margin is small. Since the projection
w∗ · x is normal with variance σ2 =

∑

j

σ2
j (w∗

j )2, the margin condition (2) can be

replaced by

‖w∗‖Σ ≥ σ (3)

where ‖ξ‖Σ =
√∑

j ξ2
j σ2

j , which says that the variance of x projected to w∗ is at least

σ. This condition restricts the hypothesis space containing w∗ so that we may develop
a learning bound that is independent of d. Although one can explicitly impose a margin
constraint based on (3), for simplicity, we shall consider a different method here that

2 We are ignoring dependence on β here.
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approximates w∗ with a vector in a small dimensional space. Lemma 1 shows that it is

possible. For w, w′ ∈ Rd, we define θΣ(w, w′) = arccos
∑

j σ2
j wjw′

j

‖w‖Σ‖w′‖Σ
.

Lemma 1. If w∗ with ‖w∗‖2 = 1 satisfies (3) and let w∗[k] = [w∗
1 , . . . , w∗

k, 0, . . . , 0],
then sin θΣ(w∗, w∗[k]) ≤ σk+1/σ.

Proof. By assumption, we have:

sin(θΣ(w∗, w∗[k]))2 =
∑d

j=k+1 σj(w∗
j )2

∑
d
j=1 σ2

j (w∗
j )2

≤ σ2
k+1

∑d
j=k+1(w∗

j )2
∑

d
j=1 σ2

j (w∗
j )2

≤ σ2
k+1

∑
j(w

∗
j )2

∑
j σ2

j (w∗
j )2

=

(σk+1/σ)2, as desired. 
�
Note that the error of classifier w is given by err(w) = θΣ(w,w∗)

π . Therefore Lemma 1
shows that under the margin distribution condition (2), it is possible to approximate w∗

using a low dimensional w∗[k] with small error. We can now prove that:

Theorem 4. Assume that the true separator w∗ with ‖w∗‖2 = 1 satisfies (3). There
exists C s. t. ∀ε, δ > 0, ε < 1/8, using Procedure 4 with bk = 21−kπ

√
5 + ln(1 + k),

b0 = 0, dk = inf{� : sin(2−(k+4)e−b2k−1/2π ≥ σ�+1/σ}, rk = 2−kπ for k > 1, r1 =
π, εk = 2−5/

√
5 + ln(1 + k), and mk = Cε−2

k

(
dk + ln k

δ

)
, after s = �log2

(
1
ε

)
� − 2

iterations, we find a separator with excess error ≤ ε with probability 1 − δ.

Proof. We prove by induction on k that after k ≤ s iterations, err(ŵk) − err(w∗) ≤
2−(k+2) with probability 1 − δ(1 − 1/(k + 1)). Note that by Lemma 1, the choice of
dk ensures that θΣ(w∗, w∗[dk]) ≤ 2−(k+3)π, and thus err(w∗[dk]) ≤ 2−(k+3).

For k = 1, according to Theorem 7, we only need mk = O(dk + ln(k/δ)) examples
to obtain ŵ1 ∈ H[dk] with excess error 2−(k+2) with probability 1−δ/(k+1). Assume
now the claim is true for k − 1 (k ≥ 2). Then at the k-th iteration, we can let S1 =
{x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}. By induction hypothesis,
we know that with probability at least 1 − δ(1 − 1/k), ŵk−1 has excess errors at most
2−(k+1), implying θ(ŵk−1, w

∗) ≤ 2−(k+1)π. By assumption, θ(ŵk−1, ŵk) ≤ 2−kπ.
Let β̃ = 2−kπ and use cos β̃/ sin β̃ ≤ 1/β̃ and sin β̃ ≤ β̃, it is easy to verify that the

following inequality holds bk−1 ≥
√

2 sin β̃

√

5 + ln
(

1 +
√

ln(cos β̃/ sin β̃)
)

.

Let P = Prx [(ŵk−1 · x)(ŵk · x) < 0, x ∈ S2], and let (ξ1, ξ2) ∼ N(0, I2×2) and
θ = θΣ(ŵk, ŵk−1). By Lemma 3, we have

P =2 Pr
x

[ξ1 ≤ 0, ξ1 cos(θ) + ξ2 sin(θ) ≥ bk−1]

≤2 Pr
x

[
ξ1 ≤ 0, ξ1 + ξ2 sin(β̃)/ cos(β̃) ≥ bk−1/ cos(β̃)

]

≤ sin β̃

cos β̃

(

1 +
√

ln(cos(β̃)/ sin(β̃))
)

e−b2k−1/(2 sin(β̃)2) ≤
√

2β̃

e5
.

Similarly, we also have Prx [(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤
√

2β̃
e5 . This implies that

Prx [(ŵk · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃
e5 ≤ 2−(k+3). Now using Lemma 2, we have

err(ŵk) ≤err(ŵk|S1) Pr(S1) + 2−(k+3) ≤ err(ŵk|S1)bk−1/
√

2π + 2−(k+3)

≤2−(k+2)
(
err(ŵk|S1)8

√
5 + ln(1 + k) + 1/2

)
.
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Our choice of dk ensures that err(w∗[dk]|S1) ≤ 2−6/
√

5 + ln k. From Theorem 8,
we know it is possible to choose a constant C such that with mk samples we have
err(ŵk|S1)8

√
5 + ln(1 + k) ≤ 0.5 with probability 1 − δ/(k + k2). Hence err(ŵk) ≤

2−k−2 with probability 1 − δ((1 − 1/k) + 1/(k + k2)) = 1 − δ(1 − 1/(k + 1)). 
�

Input: allowed error rate ε, probab. of failure δ, a sampling oracle for PX , and a labeling oracle
Σ = diag(σ2

1 , . . . , σ2
d), a sequence of sample sizes mk > 0, k ∈ Z+

a sequence of cut-off values bk > 0, k ∈ Z+ and one of hypothesis space radii rk > 0, k ∈ Z+

a sequence of hypothesis space dimensions dk > 0, k ∈ Z+

a sequence precision values εk > 0, k ∈ Z+.
Output: weight vector ŵs of excess error at most ε with probability 1 − δ
Pick random ŵ0: ‖ŵ0‖Σ = 1.
Draw m1 examples from PX , label them and put into a working set W .
iterate k = 1, . . . , s

find ŵk ∈ H[dk] (‖ŵk‖Σ = 1, ‖ŵk − ŵk−1‖Σ ≤ 2(1 − cos(rk))) such that∑
(x,y)∈W I(ŵk · xy) ≤ mkεk,

where H[dk] = {w ∈ Rd : wdk+1 = · · · = wd = 0}
clear the working set W
until mk+1 additional data points are labeled, draw sample x from PX

if |ŵk · x| ≥ bk, reject x
otherwise, ask for label of x, and put into W

end iterate

Fig. 4. Margin-based Active Learning (with low-dimensional approximation)

Using a more refined ratio VC-bound, one can easily improve the choice of mk =
Cε−2

k (dk +ln(k/δ)) to mk = Cε−1
k (dk ln ε−1+ln(k/δ) in Theorem 4. In Algorithm 4,

instead of putting constraint of ŵk using rk, one can also use ŵk−1 to label data x and
put them into the working set W such that |ŵk−1 · x| ≥ bk−1, which introduces error at
most 2−(k+3). One may then train a ŵk using labeled data in W without the constraint
‖ŵk − ŵk−1‖Σ ≤ 2(1 − cos(rk)); the results will be similar.

The sample complexity of Procedure 4 depends on dk which is determined by the
decay of σk instead of d. In particular we can consider a few possible decays with
d = ∞:

– Assume σk ≤ O(2−βk) with constant β > 0, which is the eigenvalue decaying
behavior for exponential kernels. In this case dk is O(k/β). Therefore we only
need mk = O(k2 ln k) examples at each iteration k.

– Assume σk ≤ O(k−β) with constant β > 0, which is the eigenvalue decaying
behavior for spline kernels. In this case dk is O(2k/β). Therefore we need mk =
Õ(2k/β) examples at each iteration k. The total samples needed to achieve accuracy
ε is Õ(ε−1/β). Note that when β > 1, we achieve faster than O(1/ε).

– When the total variation is bounded:
∑

j σ2
j ≤ 1, which means that ‖x‖2 is bounded

on average (corresponding to standard large margin kernel methods with bounded
‖x‖2), then σk ≤ 1/

√
k. Therefore we can take dk = O(22k) and mk = Õ(22k).

The total sample size needed to achieve accuracy ε is Õ(ε−2). The constant will
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depend on the margin σ/
√∑

j σ2
j but independent of the dimensionality d which

is infinity.

6 A General Analysis for Margin Based Active Learning

We show here a general bound for Algorithm 1 based on assumptions about the algo-
rithm A, the sample sizes mk, and the thresholds bk. This is a more abstract version of
the same underlying idea used in proving the results presented earlier in the paper.

Theorem 5. Consider Algorithm 1. Let A be empirical risk minimization algorithm
with respect to the hypothesis space H and assume that given ε, δ > 0, with m ≥
M(H, ε, δ) samples, we have distribution free uniform convergence bound. I.e.:

P
[
supw∈H

∣
∣EI(w · xy ≤ 0) − 1

m

∑m
i=1 I(w · xiyi ≤ 0)

∣
∣ ≤ ε

]
≥ 1 − δ. (4)

Let δ ∈ (0, 1) be the probability of failure. Assume that we ensure that at each stage k:

– Choose margin threshold bk−1 such that with probability 1 − 0.5δ/(k + k2), ∃ŵ∗:
P ((ŵk−1 · x)(ŵ∗ · x) ≤ 0, |ŵk−1 · x| > bk−1) ≤ 2−(k+2) and P (ŵ∗ · xy ≤ 0) ≤
infw∈H err(w) + 2−(k+2).

– Take mk = m̃k − m̃k−1 = M(H, 2−(k+3), 0.5δ/(k + k2)).

Then after s iterations, err(ŵs) ≤ infw∈H err(w)+2−s with probability at least 1− δ.

Proof Sketch: By the assumption on mk, with probability 1 − δ/(k + k2), we have:
err(ŵk) ≤ P (ŵk · xy ≤ 0, x ∈ S1) + P ((ŵk · x)(ŵ∗ · x) ≤ 0, x ∈ S2) + P (ŵ∗ · xy ≤
0, x ∈ S2) ≤ P (ŵk ·xy ≤ 0, x ∈ S1)+P ((ŵk ·x)(ŵk−1 ·x) ≤ 0, x ∈ S2)+P (ŵ∗ ·xy ≤
0, x ∈ S2)+2−(k+2) ≤ P (ŵ∗ ·xy ≤ 0, x ∈ S1)+P ((ŵ∗ ·x)(ŵk−1 ·x) ≤ 0, x ∈ S2)+
P (ŵ∗ ·xy ≤ 0, x ∈ S2)+2 ·2−(k+2) ≤ err(ŵ∗)+3 ·2−(k+2) ≤ infw∈H err(w)+2−k.


�

In order to obtain a robust active learning algorithm that does not depend on the underly-
ing data generation assumptions, one can estimate M(H, ε, δ) using sample complexity
bounds. For example, we have used standard bounds such as Theorem 8 in earlier sec-
tions. A similar approach is taken in [2]. One can also replace (4) with a ratio uniform
convergence bound such similar to the realizable case VC bound in Theorem 7. For
some problems, this may lead to improvements.

In principle, it is also possible to estimate bk using theoretical analysis. We only
need to find bk such that when ŵk · x > bk, no weight vector w can disagree with
ŵk with probability more than 2−(k+3) if err(w) is within 2−k of the optimal value.
However, the computation is more complicated, and requires that we know the under-
lying distribution of x. Note that in the theorems proved in earlier sections, we were
able to estimate bk because specific distributions of x were considered. Without such
knowledge, practitioners often pick bk by heuristics. Picking the right bk is necessary
for achieving good performance in our analysis. One practical solution is to perturb ŵk

(e.g. using bootstrap samples) and find bk such that the perturbed vectors agrees with
ŵk with large probability when ŵk · x > bk. Another possibility is to use a procedure
that tests for the best bk. This is relatively easy to do for realizable problems, as shown
in Figure 5. We can then prove that:
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Theorem 6. Consider Algorithm 5. Let A be the empirical risk minimization algo-
rithm with respect to the hypothesis space H, and assume that ∀ε, δ > 0, with m ≥
M(H, ε, δ) samples we have distribution free uniform convergence bound: i.e. with
probability 1 − δ, ∀w ∈ H, we have both

EI(w · xy ≤ 0) ≤ 2
m

∑m
i=1 I(w · xiyi ≤ 0) + ε and

1
m

∑m
i=1 I(w · xiyi ≤ 0) ≤ 2EI(w · xy ≤ 0) + ε.

Let N(ε, δ) be a distribution free convergence bound for the binary random variables
ξ ∈ {0, 1}: i. e. for m ≥ N(ε, δ) with probability 1 − δ we have both

Eξ ≤ 1.5
m

∑m
i=1 ξi + ε and 1

m

∑m
i=1 ξi ≤ 1.5Eξ + ε.

Let mk = M(H, 2−(k+5), 0.5δ/(k+k2)), nk = N(2−(k+3), 0.25δ/(�k(k+k2))), and
εk = 2−(k+1). Assume also we take bk,�k

s.t. P (ŵk−1 · x ≥ bk,�k
) ≤ 2−(k+5).

If infw∈H I(w ·xy ≤ 0) = 0, then after s iterations, with probability 1− δ, we have:

– At each iteration k ≤ s, before the for loop over q stops: ∀ŵ∗ ∈ H such that
P (ŵ∗·xy ≤ 0) > 2−(k+6): P ((ŵk−1 ·x)(ŵ∗ ·x) ≤ 0, |ŵk−1·x| > bk,q) > 2−(k+6).

– The final error is err(ŵs) ≤ 2−s.

We omit the proof here due to lack of space. Note that Theorem 6 implies that we only
need to label a portion of data, with margins bk,qk

, where qk is the smallest q such that
∃ŵ∗ ∈ H with P (ŵ∗ · xy ≤ 0) ≤ 2−(k+6) and P ((ŵk−1 · x)(ŵ∗ · x) ≤ 0, |ŵk−1 · x| >
bk,q) ≤ 2−(k+6). It does not require us to estimate bk as in earlier theorems. However, it
requires an extra nk labeled data at each iteration to select the optimal margin bk,q . This
penalty is usually small because the testing sample size nk is often significantly smaller
than mk. For example, for d dimensional linear classifiers consider earlier, mk needs to

Input: a learning algorithm A that learns a weight vector from labeled data
a sequence of training sample sizes m1, . . . , ms;
a sequence of validation sample sizes n1, . . . , ns and one of acceptance thresholds ε1, . . . , εs

a sequence of cut-off points {−1 = bk,0 < bk,1 < · · · < bk,�k
} (k = 1, . . . , s)

Output: classifier ŵs

label data points x1, . . . , xm1 by a human expert and use A to learn weight vector ŵ1.
iterate k = 2, . . . , s

generate and label nk samples (x′
1, y

′
1), . . . , (x

′
nk

, y′
nk

)
generate mk samples xj with labels yj = sign(ŵk−1 · xj) (j = 1, . . . , mk)
for q = 1, . . . , �k

label yj by a human expert if |ŵk−1 · xj | ∈ (bk,q−1, bk,q] (j = 1, . . . , mk)
use A to learn weight vector ŵk from examples (xj , yj) (j = 1, . . . , mk)
if (error of ŵk on (x′

j , y
′
j) (j = 1, . . . , nk) is less than εk) break

end for
end iterate

Fig. 5. Margin-based Active Learning with Testing
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depend on d but nk can be d-independent. Therefore it is possible to achieve significant
improvement with this testing procedure. Its advantage is that we can choose bk based
on data, and thus the procedure can be applied to distributions that are not uniform.

7 Discussion and Open Problems

While our procedure is computationally efficient in the realizable case, it remains an
open problem to make it efficient in the general case. It is conceivable that for some
special cases (e.g. the marginal distribution over the instance space is uniform, as in
section 4) one could use the recent results of Kalai et. al. for Agnostically Learning
Halfspaces [11]. In fact, it would be interesting to derive precise bounds for the more
general of class of log-concave distributions.

Acknowledgements. We thank Alina Beygelzimer, Sanjoy Dasgupta, Adam Kalai, and
John Langford for a number of useful discussions. Part of this work was done while the
first author was visiting Yahoo! Research.
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A Useful Facts

We state here two standard Sample Complexity bounds [1] and a few useful probability
bounds for standard normal variable.

Theorem 7. Let H be a set of functions from X to {−1, 1} with finite VC-dimension
V ≥ 1. Let P be an arbitrary, but fixed probability distribution over X × {−1, 1}. For
any ε, δ > 0, if we draw a sample from P of size N(ε, δ) = 1

ε

(
4V log

(
1
ε

)
+ 2 log

(
2
δ

))
,

then with probability 1−δ, all hypotheses with error ≥ ε are inconsistent with the data.

Theorem 8. Let H be a set of functions from X to {−1, 1} with finite VC-dimension
V ≥ 1. Let P be an arbitrary, but fixed probability distribution over X×{−1, 1}. There
exists a universal constant C, such that for any ε, δ > 0, if we draw a sample ((xi, yi))i

from P of size N = N(ε, δ) = C
ε2

(
V + log

(
1
δ

))
, then with probability 1 − δ, for all

h ∈ H , we have
∣
∣
∣ 1
N

∑N
i=1 I(h(xi) �= yi) − E(X,Y )I(h(X) �= Y )

∣
∣
∣ ≤ ε.

Lemma 2. Assume x = [x1, x2] ∼ N(0, I2×2), then any given γ1, γ2 ≥ 0, we have
Prx((x1, x2) ∈ [0, γ1] × [γ2, 1]) ≤ γ1

2
√

2π
e−γ2

2/2.

Lemma 3. Assume x = [x1, x2] ∼ N(0, I2×2). For any given γ, β > 0, the following

holds: Prx(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ β
2

(
1 +

√
− ln [min(1, β)]

)
e−γ2/(2β2).

B Probability Estimation in High Dimensional Ball

Consider x = [x1, . . . , xd] ∼ Px uniformly distributed on unit ball in Rd. Let A be an
arbitrary set in R2; we are interested in estimating the probability Prx((x1, x2) ∈ A).
Let Vd be the volume of d-dimensional ball; we know Vd = πd/2/Γ (1+ d/2) where Γ
is the Gamma-function. In particular Vd−2/Vd = d/(2π). It follows:

Pr
x

((x1, x2) ∈ A) =
Vd−2

Vd

∫

(x1,x2)∈A

(1 − x2
1 − x2

2)
(d−2)/2dx1dx2 =

d

2π

∫

(x1,x2)∈A

(1 − x2
1 − x2

2)
(d−2)/2dx1dx2 ≤ d

2π

∫

(x1,x2)∈A

e−(d−2)(x2
1+x2

2)/2dx1dx2.

where we use the inequality (1 − z) ≤ e−z .

Lemma 4. Let d ≥ 2 and let x = [x1, . . . , xd] be uniformly distributed in the d-
dimensional unit ball. Given γ1 ∈ [0, 1], γ2 ∈ [0, 1], we have:

Prx((x1, x2) ∈ [0, γ1] × [γ2, 1]) ≤ γ1
√

d
2
√

π
e−(d−2)γ2

2/2.

Proof. Let A = [0, γ1] × [γ2, 1]. We have
Prx((x1, x2)∈A) ≤ d

2π

∫

(x1,x2)∈A

e−(d−2)(x2
1+x2

2)/2dx1dx2 ≤ γ1d
2π

∫

x2∈[γ2,1]

e−(d−2)x2
2/2dx2

≤ γ1d
2π e−(d−2)γ2

2/2
∫

x∈[0,1−γ2)

e−(d−2)x2/2dx ≤ γ1d
2π e−(d−2)γ2

2/2 min
[

1 − γ2,
√

π
2(d−2)

]

.

Note that when d ≥ 2, min(1,
√

π/(2(d − 2))) ≤
√

π/d. 
�
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Lemma 5. Assume x = [x1, . . . , xd] is uniformly distributed in the d-dimensional unit
ball. Given γ1 ∈ [0, 1], we have Prx(x1 ≥ γ1) ≤ 1

2e−dγ2
1/2.

Proof. Let A = [γ1, 1] × [−1, 1]. Using a polar coordinate transform, we have:
Prx((x1, x2) ∈ A) = d

2π

∫
(x1,x2)∈A

(1 − x2
1 − x2

2)
(d−2)/2dx1dx2 =

d
2π

∫
(r,r cos θ)∈[0,1]×[γ1,1]

(1 − r2)
d−2
2 rdrdθ = 1

2π

∫
(r,r cos θ)∈[0,1]×[γ1,1]

dθd(1 − r2)
d
2

≤ 1
2π

∫
(r,θ)∈[γ1,1]×[−π/2,π/2] dθd(1 − r2)d/2 = 0.5(1 − γ2

1)d/2 ≤ 1
2e−dγ2

1/2. 
�

Lemma 6. Let d ≥ 4 and let x = [x1, . . . , xd] be uniformly distributed in the d-
dimensional unit ball. Given γ, β > 0, we have:

Prx(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ β
2 (1 +

√
− lnmin(1, β))e−dγ2/(4β2).

Proof. Let α = β
√

−2d−1 ln min(1, β), we have:
Prx(x1 ≤ 0, x1 + βx2 ≥ γ)

≤ Prx(x1 ≤ −α, x1 + βx2 ≥ γ) + Prx(x1 ∈ [−α, 0], x1 + βx2 ≥ γ)
≤ Prx(x1 ≤ −α, x2 ≥ (α + γ)/β) + Prx(x1 ∈ [−α, 0], x2 ≥ γ/β)
≤ 1

2 Prx(x2 ≥ (α + γ)/β) + Prx(x1 ∈ [0, α], x2 ≥ γ/β)
≤ 1

4e−d(α+γ)2/(2β2) + α
√

d
2
√

π
e−dγ2/(4β2)

≤
[

1
4e

− dα2

2β2 + α
√

d
2
√

π

]

e
− dγ2

4β2 =
[

min(1,β)
4 + β

√
−2 ln min(1,β)

2
√

π

]

e
−dγ2

4β2 . 
�

Lemma 7. Let u and w be two unit vectors in Rd, and assume that θ(u, w) ≤ β̃ < π/2.
Let d ≥ 4 and let x = [x1, . . . , xd] be uniformly distributed in the d-dimensional unit

ball. Consider C > 0, let γ = 2 sin β̃√
d

√

ln C + ln
(

1 +
√

ln max(1, cos β̃/ sin β̃)
)

.

Then Prx [(u · x)(w · x) < 0, |w · x| ≥ γ] ≤ sin β̃

C cos β̃
.

Proof. We rewrite the desired probability as 2 Prx [w · x ≥ γ, u · x < 0] . W.l.g., let
u = (1, 0, 0, ..., 0) and w = (cos(θ), sin(θ), 0, 0, ..., 0). For x = [x1, x2, ..., xd] we
have u·x = x1 and w·x = cos(θ)x1+sin(θ)x2. Using this representation and Lemma 6,
we obtain Prx [w · x ≥ γ, u · x < 0] = Prx[cos(θ)x1 + sin(θ)x2 ≥ γ, x1 < 0] ≤
Prx

[
x1 + sin(β̃)

cos(β̃)
x2 ≥ γ

cos(β̃)
, x1 < 0

]
≤ sin β̃

2 cos β̃

(
1 +

√
ln max(1, cos β̃

sin β̃

)
e
− dγ2

4 sin2 β̃ =
sin β̃

2 cos β̃
C−1, as desired. 
�
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Abstract. We consider the problem of learning an acyclic discrete cir-
cuit with n wires, fan-in bounded by k and alphabet size s using value
injection queries. For the class of transitively reduced circuits, we de-
velop the Distinguishing Paths Algorithm, that learns such a circuit us-
ing (ns)O(k) value injection queries and time polynomial in the number
of queries. We describe a generalization of the algorithm to the class of
circuits with shortcut width bounded by b that uses (ns)O(k+b) value
injection queries. Both algorithms use value injection queries that fix
only O(kd) wires, where d is the depth of the target circuit. We give a
reduction showing that without such restrictions on the topology of the
circuit, the learning problem may be computationally intractable when
s = nΘ(1), even for circuits of depth O(log n). We then apply our large-
alphabet learning algorithms to the problem of approximate learning of
analog circuits whose gate functions satisfy a Lipschitz condition. Fi-
nally, we consider models in which behavioral equivalence queries are
also available, and extend and improve the learning algorithms of [5]
to handle general classes of gates functions that are polynomial time
learnable from counterexamples.

1 Introduction

We consider learning large-alphabet and analog acyclic circuits in the value
injection model introduced in [5]. In this model, we may inject values of our
choice on any subset of wires, but we can only observe the one output of the
circuit. However, the value injection query algorithms in that paper for boolean
and constant alphabet networks do not lift to the case when the size of the
alphabet is polynomial in the size of the circuit.

One motivation for studying the boolean network model includes gene reg-
ulatory networks. In a boolean model, each node in a gene regulatory network
can represent a gene whose state is either active or inactive. However, genes may
have a large number of states of activity. Constant-alphabet network models

� Supported in part by NSF grant CNS-0435201.
�� Supported in part by a research contract from Consolidated Edison.

��� Supported by a Yahoo! Research Kern Family Scholarship.

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 51–65, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



52 D. Angluin et al.

may not adequately capture the information present in these networks, which
motivates our interest in larger alphabets.

Akutsu et al. [2] and Ideker, Thorsson, and Karp [9] consider the discovery
problem that models the experimental capability of gene disruption and over-
expression. In such experiments, it is desirable to manipulate as few genes as
possible. In the particular models considered in these papers, node states are
fully observable – the gene expression data gives the state of every node in the
network at every time step. Their results show that in this model, for bounded
fan-in or sufficiently restricted gene functions, the problem of learning the struc-
ture of a network is tractable.

In contrast, there is ample evidence that learning boolean circuits solely
from input-output behaviors may be computationally intractable. Kearns and
Valiant [12] show that specific cryptographic assumptions imply that NC1 cir-
cuits and TC0 circuits are not PAC learnable in polynomial time. These negative
results have been strengthened to the setting of PAC learning with membership
queries [6], even with respect to the uniform distribution [13]. Furthermore,
positive learnability results exist only for fairly limited classes, including propo-
sitional Horn formulas [3], general read once Boolean formulas [4], and decision
trees [7], and those for specific distributions, including AC0 circuits [14], DNF
formulas [10], and AC0 circuits with a limited number of majority gates [11].1

Thus, Angluin et al. [5] look at the relative contributions of full observation
and full control of learning boolean networks. Their model of value injection
allows full control and restricted observation, and it is the model we study in
this paper. Interestingly, their results show that this model gives the learner
considerably more power than with only input-output behaviors but less than
the power with full observation. In particular, they show that with value injection
queries, NC1 circuits and AC0 circuits are exactly learnable in polynomial time,
but their negative results show that depth limitations are necessary.

A second motivation behind our work is to study the relative importance of
the parameters of the models for learnability results. The impact of alphabet
size on learnability becomes a natural point of inquiry, and ideas from fixed
parameter tractability are very relevant [8,15].

2 Preliminaries

2.1 Circuits

We give a general definition of acyclic circuits whose wires carry values from a set
Σ. For each nonnegative integer k, a gate function of arity k is a function from
Σk to Σ. A circuit C consists of a finite set of wires w1, . . . , wn, and for each
wire wi, a gate function gi of arity ki and an ordered ki-tuple wσ(i,1), . . . , wσ(i,ki)

of wires, the inputs of wi. We define wn to be the output wire of the circuit.
We may think of wires as outputs of gates in C.
1 Algorithms in both [14] and [11] for learning AC0 circuits and their variants run in

quasi-polynomial time.
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The unpruned graph of a circuit C is the directed graph whose vertices are
the wires and whose edges are pairs (wi, wj) such that wi is an input of wj in
C. A wire wi is output-connected if there is a directed path in the unpruned
graph from that wire to the output wire. Wires that are not output-connected
cannot affect the output value of a circuit. The graph of a circuit C is the
subgraph of its unpruned graph induced by the output-connected wires.

A circuit is acyclic if its graph is acyclic. In this paper we consider only acyclic
circuits. If u and v are vertices such that u �= v and there is a directed path from
u to v, then we say that u is an ancestor of v and that v is a descendant of
u. The depth of an output-connected wire wi is the length of a longest path
from wi to the output wire wn. The depth of a circuit is the maximum depth
of any output-connected wire in the circuit. A wire with no inputs is an input
wire; its default value is given by its gate function, which has arity 0 and is
constant.

We consider the property of being transitively reduced [1] and a generalization
of it: bounded shortcut width. Let G be an acyclic directed graph. An edge (u, v)
of G is a shortcut edge if there exists a directed path in G of length at least
two from u to v. G is transitively reduced if it contains no shortcut edges. A
circuit is transitively reduced if its graph is transitively reduced.

The shortcut width of a wire wi is the number of wires wj such that wj is
both an ancestor of wi and an input of a descendant of wi. (Note that we are
counting wires, not edges.) The shortcut width of a circuit C is the maximum
shortcut width of any output-connected wire in C. A circuit is transitively re-
duced if and only if it has shortcut width 0. A circuit’s shortcut width turns out
to be a key parameter in its learnability by value injection queries.

2.2 Experiments on Circuits

Let C be a circuit. An experiment e is a function mapping each wire of C to
Σ ∪{∗}, where ∗ is not an element of Σ. If e(wi) = ∗, then the wire wi is free in
e; otherwise, wi is fixed in e. If e is an experiment that assigns ∗ to wire w, and
σ ∈ Σ, then e|w=σ is the experiment that is equal to e on all wires other than w,
and fixes w to σ. We define an ordering � on Σ ∪{∗} in which all elements of Σ
are incomparable and precede ∗, and lift this to the componentwise ordering on
experiments. Then e1 � e2 if every wire that e2 fixes is fixed to the same value
by e1, and e1 may fix some wires that e2 leaves free.

For each experiment e we inductively define the value wi(e) ∈ Σ, of each
wire wi in C under the experiment e as follows. If e(wi) = σ and σ �= ∗, then
wi(e) = σ. Otherwise, if the values of the input wires of wi have been defined,
then wi(e) is defined by applying the gate function gi to them, that is, wi(e) =
gi(wσ(i,1)(e), . . . , wσ(i,ki)(e)). Because C is acyclic, this uniquely defines wi(e) ∈
Σ for all wires wi. We define the value of the circuit to be the value of its output
wire, that is, C(e) = wn(e) for every experiment e.

Let C and C′ be circuits with the same set of wires and the same value set
Σ. If C(e) = C′(e) for every experiment e, then we say that C and C′ are
behaviorally equivalent. To define approximate equivalence, we assume that
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there is a metric d on Σ mapping pairs of values from Σ to a real-valued distance
between them. If d(C(e), C′(e)) ≤ ε for every experiment e, then we say that C
and C′ are ε-equivalent.

We consider two principal kinds of circuits. A discrete circuit is a circuit for
which the set Σ of wire values is a finite set. An analog circuit is a circuit for
which Σ = [0, 1]. In this case we specify the distance function as d(x, y) = |x−y|.

2.3 The Learning Problems

We consider the following general learning problem. There is an unknown target
circuit C∗ drawn from a known class of possible target circuits. The set of wires
w1, . . . , wn and the value set Σ are given as input. The learning algorithm may
gather information about C∗ by making calls to an oracle that will answer value
injection queries. In a value injection query, the algorithm specifies an exper-
iment e and the oracle returns the value of C∗(e). The algorithm makes a value
injection query by listing a set of wires and their fixed values; the other wires are
assumed to be free, and are not explicitly listed. The goal of a learning algorithm
is to output a circuit C that is either exactly or approximately equivalent to C∗.

In the case of learning discrete circuits, the goal is behavioral equivalence and
the learning algorithm should run in time polynomial in n. In the case of learning
analog circuits, the learning algorithm has an additional parameter ε > 0, and
the goal is ε-equivalence. In this case the learning algorithm should run in time
polynomial in n and 1/ε. In Section 5.1, we consider algorithms that may use
equivalence queries in addition to value injection queries.

3 Learning Large-Alphabet Circuits

In this section we consider the problem of learning a discrete circuit when the
alphabet Σ of possible values is of size nO(1). In Section 4 we reduce the problem
of learning an analog circuit whose gate functions satisfy a Lipschitz condition to
that of learning a discrete circuit over a finite value set Σ; the number of values
is nΘ(1) for an analog circuit of depth O(log n). Using this approach, in order to
learn analog circuits of even moderate depth, we need learning algorithms that
can handle large alphabets.

The algorithm Circuit Builder [5] uses value injection queries to learn acyclic
discrete circuits of unrestricted topology and depth O(log n) with constant fan-
in and constant alphabet size in time polynomial in n. However, the approach
of [5] to building a sufficient set of experiments does not generalize to alphabets
of size nO(1) because the total number of possible settings of side wires along a
test path grows superpolynomially. In fact, we give evidence in Section 3.1 that
this problem becomes computationally intractable for an alphabet of size nΘ(1).

In turn, this negative result justifies a corresponding restriction on the topol-
ogy of the circuits we consider. We first show that a natural top-down algorithm
using value-injection queries learns transitively reduced circuits with arbitrary
depth, constant fan-in and alphabet size nO(1) in time polynomial in n. We then
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give a generalization of this algorithm to circuits that have a constant bound on
their shortcut width. The topological restrictions do not result in trivial classes;
for example, every levelled graph is transitively reduced.

3.1 Hardness for Large Alphabets with Unrestricted Topology

We give a reduction that turns a large-alphabet circuit learning algorithm into
a clique tester. Because the clique problem is complete for the complexity class
W [1] (see [8,15]), this suggests the learning problem may be computationally
intractable for classes of circuits with large alphabets and unrestricted topology.

The Reduction. Suppose the input is (G, k), where k ≥ 2 is an integer and
G = (V, E) is a simple undirected graph with n ≥ 3 vertices, and the desired
output is whether G contains a clique of size k. We construct a circuit C of
depth d =

(
k
2

)
as follows. The alphabet Σ is V ; let v0 be a particular element of

V . Define a gate function g with three inputs s, u, and v as follows: if (u, v) is
an edge of G, then the output of g is equal to the input s; otherwise, the output
is v0. The wires of C are s1, . . . , sd+1 and x1, x2, . . . , xk. The wires xj have no
inputs; their gate functions assign them the default value v0. For i = 1, . . . , d,
the wire si+1 has corresponding gate function g, where the s input is si, and
the u and v inputs are the i-th pair (x�, xm) with � < m in the lexicographic
ordering. Finally, the wire s1 has no inputs, and is assigned some default value
from V − {v0}. The output wire is sd+1.

To understand the behavior of C, consider an experiment e that assigns values
from V to each of x1, . . . , xk, and leaves the other wires free. The gates g pass
along the default value of s1 as long as the values e(x�) and e(xm) are an edge of
G, but if any of those checks fail, the output value will be v0. Thus the default
value of s1 will be passed all the way to the output wire if and only if the vertex
values assigned to x1, . . . , xk form a clique of size k in G.

We may use a learning algorithm as a clique tester as follows. Run the learning
algorithm using C to answer its value-injection queries e. If for some queried
experiment e, the values e(x1), . . . , e(xk) form a clique of k vertices in G, stop
and output the answer “yes.” If the learning algorithm halts and outputs a
circuit without making such a query, then output the answer “no.” Clearly a
“yes” answer is correct, because we have a witness clique. And if there is a
clique of size k in G, the learning algorithm must make such a query, because in
that case, the default value assigned to s1 cannot otherwise be learned correctly;
thus, a “no” answer is correct. Then we have the following.

Theorem 1. If for some nonconstant computable function d(n) an algorithm
using value injection queries can learn the class of circuits of at most n wires,
alphabet size s, fan-in bound 3, and depth bound d(n) in time polynomial in n
and s, then there is an algorithm to decide whether a graph on n vertices has a
clique of size k in time f(k)nα, for some function f and constant α.

Because the clique problem is complete for the complexity class W [1], a poly-
nomial time learning algorithm as hypothesized in the theorem for any non-
constant computable function d(n) would imply fixed-parameter tractability of
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all the problems in W [1] [8,15]. However, we show that restricting the circuit
to be transitively reduced (Theorem 2), or more generally, of bounded shortcut
width (Theorem 3), avoids the necessity of a depth bound at all.2

3.2 Distinguishing Paths

This section develops some properties of distinguishing paths, making no as-
sumptions about shortcut width. Let C∗ be a circuit with n wires, an alphabet
Σ of cardinality s, and fan-in bounded by a constant k. An arbitrary gate func-
tion for such a circuit can be represented by a gate table with sk entries, giving
the value of the gate function for each possible k-tuple of input symbols.

Experiment e distinguishes σ from τ for w if e sets w to ∗ and C∗(e|w=σ) �=
C∗(e|w=τ ). If such an experiment exists, the values σ and τ are distinguishable
for wire w; otherwise, σ and τ are indistinguishable for w.

A test path π for a wire w in C∗ consists of a directed path of wires from
w to the output wire, together with an assignment giving fixed values from Σ
to some set S of other wires; S must be disjoint from the set of wires in the
path, and each element of S must be an input to some wire beyond w along the
path. The wires in S are the side wires of the test path π. The length of a
test path is the number of edges in its directed path. There is just one test path
of length 0, consisting of the output wire and no side wires.

We may associate with a test path π the partial experiment pπ that assigns ∗
to each wire on the path, and the specified value from Σ to each wire in S. An
experiment e agrees with a test path π if e extends the partial experiment pπ,
that is, pπ is a subfunction of e. We also define the experiment eπ that extends
pπ by setting all the other wires to ∗.

If π is a test path and V is a set of wires disjoint from the side wires of π, then
V is functionally determining for π if for any experiment e agreeing with π
and leaving the wires in V free, for any experiment e′ obtained from e by setting
the wires in V to fixed values, the value of C∗(e′) depends only on the values
assigned to the wires in V . That is, the values on the wires in V determine the
output of the circuit, given the assignments specified by pπ. A test path π for w
is isolating if {w} is functionally determining for π.

Lemma 1. If π is an isolating test path for w then the set V of inputs of w is
functionally determining for π.

We define a distinguishing path for wire w and values σ, τ ∈ Σ to be an
isolating test path π for w such that eπ distinguishes between σ and τ for w.
The significance of distinguishing paths is indicated by the following lemma,
which is analogous to Lemma 10 of [5].

Lemma 2. Suppose σ and τ are distinguishable for wire w. Then for any mini-
mal experiment e distinguishing σ from τ for w, there is a distinguishing path π
for wire w and values σ and τ such that the free wires of e are exactly the wires
of the directed path of π, and e agrees with π.
2 The target circuit C constructed in the reduction is of shortcut width k − 1.



Learning Large-Alphabet and Analog Circuits with Value Injection Queries 57

Conversely, a shortest distinguishing path yields a minimal distinguishing ex-
periment, as follows. This does not hold for circuits of general topology without
the restriction to a shortest path.

Lemma 3. Let π be a shortest distinguishing path for wire w and values σ and
τ . Then the experiment e obtained from pπ by setting every unspecified wire to
an arbitrary fixed value is a minimal experiment distinguishing σ from τ for w.

3.3 The Distinguishing Paths Algorithm

In this section we develop the Distinguishing Paths Algorithm.

Theorem 2. The Distinguishing Paths Algorithm learns any transitively reduced
circuit with n wires, alphabet size s, and fan-in bound k, with O(n2k+1s2k+2) value
injection queries and time polynomial in the number of queries.

Lemma 4. If C∗ is a transitively reduced circuit and π is a test path for w in
C∗, then none of the inputs of w is a side wire of π.

The Distinguishing Paths Algorithm builds a directed graph G whose vertices
are the wires of C∗, in which an edge (v, w) represents the discovery that v is an
input of w in C∗. The algorithm also keeps for each wire w a distinguishing
table Tw with

(
s
2

)
entries, one for each unordered pair of values from Σ. The

entry for (σ, τ) in Tw is 1 or 0 according to whether or not a distinguishing path
has been found to distinguish values σ and τ on wire w. Stored together with
each 1 entry is a corresponding distinguishing path and a bit marking whether
the entry is processed or unprocessed.

At each step, for each distinguishing table Tw that has unprocessed 1 entries,
we try to extend the known distinguishing paths to find new edges to add to G
and new 1 entries and corresponding distinguishing paths for the distinguishing
tables of inputs of w. Once every 1 entry in every distinguishing table has been
marked processed, the construction of distinguishing tables terminates. Then a
circuit C is constructed with graph G by computing gate tables for the wires;
the algorithm outputs C and halts.

To extend a distinguishing path for a wire w, it is necessary to find an input
wire of w. Given a distinguishing path π for wire w, an input v of w is relevant
with respect to π if there are two experiments e1 and e2 that agree with π, that
set the inputs of w to fixed values, that differ only by assigning different values
to v, and are such that C∗(e1) �= C∗(e2). Let V (π) denote the set of all inputs
v of w that are relevant with respect to π. It is only relevant inputs of w that
need be found, as shown by the following.

Lemma 5. Let π be a distinguishing path for w. Then V (π) is functionally
determining for π.

Given a distinguishing path π for wire w, we define its corresponding input
experiments Eπ to be the set of all experiments e that agree with π and set
up to 2k additional wires to fixed values and set the rest of the wires free. Note
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that each of these experiments fix at most 2k more values than are already fixed
in the distinguishing path. Consider all pairs (V, Y ) of disjoint sets of wires not
set by pπ such that |V | ≤ k and |Y | ≤ k; for every possible way of setting V ∪Y
to fixed values, there is a corresponding experiment in Eπ .

Find-Inputs. We now describe a procedure, Find-Inputs, that uses the exper-
iments in Eπ to find all the wires in V (π). Define a set V of at most k wires
not set by pπ to be determining if for every disjoint set Y of at most k wires
not set by pπ and for every assignment of values from Σ to the wires in V ∪ Y ,
the value of C∗ on the corresponding experiment from Eπ is determined by the
values assigned to wires in V , independent of the values assigned to wires in Y .
Find-Inputs finds all determining sets V and outputs their intersection.

Lemma 6. Given a distinguishing path π for w and its corresponding input
experiments Eπ, the procedure Find-Inputs returns V (π).

Find-Paths. We now describe a procedure, Find-Paths, that takes the set V (π) of
all inputs of w relevant with respect to π, and searches, for each triple consisting
of v ∈ V (π) and σ, τ ∈ Σ, for two experiments e1 and e2 in Eπ that fix all the
wires of V (π) − {v} in the same way, but set v to σ and τ , respectively, and are
such that C∗(e1) �= C∗(e2). On finding such a triple, the distinguishing path π
for w can be extended to a distinguishing path π′ for v by adding v to the start
of the path, and making all the wires in V (π) − {v} new side wires, with values
fixed as in e1. If this gives a new 1 for entry (σ, τ) in the distinguishing paths
table Tv, then we change the entry, add the corresponding distinguishing path
for v to the table, and mark it unprocessed. We have to verify the following.

Lemma 7. Suppose π′ is a path produced by Find-Paths for wire v and values
σ and τ . Then π′ is a distinguishing path for wire v and values σ, τ .

The Distinguishing Paths Algorithm initializes the simple directed graph G to
have the set of wires of C∗ as its vertex set, with no edges. It initializes Tw

to all 0’s, for every non-output wire w. Every entry in Twn is initialized to 1,
with a corresponding distinguishing path of length 0 with no side wires, and
marked as unprocessed. The Distinguishing Paths Algorithm is summarized in
Algorithm 1; the procedure Construct-Circuit is described below.

We now show that when processing of the tables terminates, the tables Tw

are correct and complete. We first consider the correctness of the 1 entries.

Lemma 8. After the initialization, and after each new 1 entry is placed in a
distinguishing table, every 1 entry in a distinguishing table Tw for (σ, τ) has a
corresponding distinguishing path π for wire w and values σ and τ .

A distinguishing table Tw is complete if for every pair of values σ, τ ∈ Σ such
that σ and τ are distinguishable for w, Tw has a 1 entry for (σ, τ).

Lemma 9. When the Distinguishing Paths Algorithm terminates, Tw is com-
plete for every wire w in C∗.
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Algorithm 1. Distinguishing Paths Algorithm
Initialize G to have the wires as vertices and no edges.
Initialize Twn to all 1’s, marked unprocessed.
Initialize Tw to all 0’s for all non-output wires w.
while there is an unprocessed 1 entry (σ, τ ) in some Tw do

Let π be the corresponding distinguishing path.
Perform all input experiments Eπ.
Use Find-Inputs to determine the set V (π).
Add any new edges (v, w) for v ∈ V (π) to G.
Use Find-Paths to find extensions of π for elements of V (π).
for each extension π′ that gives a new 1 entry in some Tv do

Put the new 1 entry in Tv with distinguishing path π′.
Mark this new 1 entry as unprocessed.

Mark the 1 entry for (σ, τ ) in Tw as processed.
Use Construct-Circuit with G and the tables Tw to construct a circuit C.
Output C and halt.

Construct-Circuit. Now we show how to construct a circuit C behaviorally equiv-
alent to C∗ given the graph G and the final distinguishing tables. G is the graph
of C, determining the input relation between wires. Note that G is a subgraph of
the graph of C∗, because edges are added only when relevant inputs are found.

Gate tables for wires in C will keep different combinations of input values and
their corresponding output. Since some distinguishing tables for wires may have
0 entries, we will record values in gate tables up to equivalence, where σ and τ are
in the same equivalence class for w if they are indistinguishable for w. We process
one wire at a time, in arbitrary order. We first record, for one representative σ
of each equivalence class of values for w, the outputs C∗(eπ|w = σ) for all the
distinguishing paths π in Tw. Given a setting of the inputs to w (in C), we can
tell which equivalence class of values of w it should map to as follows. For each
distinguishing path π in Tw, we record the output of C∗ for the experiment equal
to eπ with the inputs of w set to the given fixed values and w = ∗. The value
of σ with recorded outputs that match these outputs for all π is written in w’s
gate table as the output for this setting of the inputs. Repeating this for every
setting of w’s inputs completes w’s gate table, and we continue to the next gate.

Lemma 10. Given the graph G and distinguishing tables as constructed in the
Distinguishing Paths Algorithm, the procedure Construct-Circuit constructs a
circuit C behaviorally equivalent to C∗.

We analyze the total number of value injection queries used by the Distinguish-
ing Paths Algorithm; the running time is polynomial in the number of queries.
To construct the distinguishing tables, each 1 entry in a distinguishing table is
processed once. The total number of possible 1 entries in all the tables is bounded
by ns2. The processing for each 1 entry is to take the corresponding distinguish-
ing path π and construct the set Eπ of input experiments, each of which consists
of choosing up to 2k wires and setting them to arbitrary values from Σ, for a
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total of O(n2ks2k) queries to construct Eπ. Thus, a total of O(n2k+1s2k+2) value
injection queries are used to construct the distinguishing tables.

To build the gate tables, for each of n wires, we try at most s2 distinguishing
path experiments for at most s values of the wire, which takes at most s3 queries.
We then run the same experiments for each possible setting of the inputs to the
wire, which takes at most sks2 experiments. Thus Construct-Circuit requires a
total of O(n(s3 +sk+2)) experiments, which are already among the ones made in
constructing the distinguishing tables. Note that every experiment fixes at most
O(kd) wires, where d is the depth of C∗. This concludes the proof of Theorem 2.

3.4 The Shortcuts Algorithm

In this section we sketch the Shortcuts Algorithm, which generalizes the Distin-
guishing Paths Algorithm to circuits with bounded shortcut width.

Theorem 3. The Shortcuts Algorithm learns the class of circuits having n wires,
alphabet size s, fan-in bound k, and shortcut width bounded by b using a number of
value injection queries bounded by (ns)O(k+b) and time polynomial in the number
of queries.

When C∗ is not transitively reduced, there may be edges of its graph that are
important to the behavior of the circuit, but are not completely determined by
the behavior of the circuit. For example, three circuits given in [5] are behav-
iorally equivalent, but have different topologies; a behaviorally correct circuit
cannot be constructed with just the edges that are common to the three circuit
graphs. Thus, the Shortcuts Algorithm focuses on finding a sufficient set of
experiments for C∗, and uses Circuit Builder [5] to build the output circuit C.

On the positive side, we can learn quite a bit about the topology of a circuit C∗

from its behavior. An edge (v, w) of the graph of C∗ is discoverable if it is the
initial edge on some minimal distinguishing experiment e for v and some values
σ1 and σ2. This is a behaviorally determined property; all circuits behaviorally
equivalent to C∗ must contain all the discoverable edges of C∗.

We generalize the definition of a distinguishing path to a distinguishing
path with shortcuts, which has an additional set of cut wires K, which is
disjoint from the path wires and the side wires, and is such that every wire in
K is an input to some wire beyond w on the path (where w is the initial wire.)
Moreover, {w} ∪ K is functionally determining for the path.

Like the Distinguishing Paths Algorithm, the Shortcuts Algorithm maintains
a directed graph G containing known edges (v, w) of the graph of C∗, and a
set of distinguishing tables Tw indexed by triples (B, a1, a2), where B is a set
of at most b wires not containing w, and a1 and a2 are assignments of fixed
values to the wires in {w} ∪ B. If there is an entry for (B, a1, a2) in Tw, it is a
distinguishing path with shortcuts π such that K ⊆ B and K ∩ S = ∅ and it
distinguishes a1 from a2. Each entry is marked as processed or unprocessed.

The algorithm processes an entry by using the distinguishing path π for (w, B)
to find new edges (v, w) in G, and to find new or updated entries in the tables
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Tv such that (v, w) is in G. An entry is updated if a new distinguishing path
for the entry is shorter than the current one, which it then replaces. When an
entry is created or updated, it is marked as unprocessed. All entries in Tw are
also marked as unprocessed when a new edge (v, w) is added to G.

We show that when processing of the tables Tw is complete, G contains every
discoverable edge of C∗ and for every wire w and the shortcut wires B(w) of w
in C∗, if the assignments a1 and a2 are distinguishable for (w, B(w)), then there
is a correct entry for (B(w), a1, a2) in Tw. The final tables Tw are used to create
experiments for Circuit Builder. To guarantee a sufficient set of experiments,
this procedure is iterated for every restriction of C∗ obtained by selecting at
most k possible input wires and assigning arbitrary fixed values to them.

4 Learning Analog Circuits Via Discretization

We show how to construct a discrete approximation of an analog circuit, assum-
ing its gate functions satisfy a Lipschitz condition with constant L, and apply
the large-alphabet learning algorithm of Theorem 3.

4.1 A Lipschitz Condition

An analog function g of arity k satisfies a Lipschitz condition with constant L if
for all x1, . . . , xk and x′

1, . . . , x
′
k from [0, 1] we have

|g(x1, . . . , xk) − g(x′
1, . . . , x

′
k)| ≤ L max

i
|xi − x′

i|.

Let m be a positive integer. We define a discretization function Dm from [0, 1]
to the m points {1/2m, 3/2m, . . . , (2m − 1)/2m} by mapping x to the closest
point in this set (choosing the smaller point if x is equidistant from two of them.)
Then |x − Dm(x)| ≤ 1/2m for all x ∈ [0, 1]. We extend Dm to discretize analog
experiments e by defining Dm(∗) = ∗ and applying it componentwise to e.

Lemma 11. If g is an analog function of arity k, satisfying a Lipschitz condition
with constant L and m is a positive integer, then for all x1, . . . , xk in [0, 1],
|g(x1, . . . , xk) − g(Dm(x1), . . . , Dm(xk))| ≤ L/2m.

4.2 Discretizing Analog Circuits

We describe a discretization of an analog gate function in which the inputs and
the output may be discretized differently. Let g be an analog function of arity k
and r, s be positive integers. The (r, s)-discretization of g is g′, defined by

g′(x1, . . . , xk) = Dr(g(Ds(x1), . . . , Ds(xk))).

Let C be an analog circuit of depth dmax and let L and N be positive integers.
Define md = N(3L)d for all nonnegative integers d. We construct a particular
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discretization C′ of C by replacing each gate function gi by its (md, md+1)-
discretization, where d is the depth of wire wi. We also replace the value set
Σ = [0, 1] by the value set Σ′ equal to the union of the ranges of Dmd

for
0 ≤ d ≤ dmax. Note that the wires and tuples of inputs remain unchanged. The
resulting discrete circuit C′ is termed the (L, N)-discretization of C.

Lemma 12. Let L and N be positive integers. Let C be an analog circuit of
depth dmax whose gate functions all satisfy a Lipschitz condition with constant
L. Let C′ denote the (L, N)-discretization of C and let M = N(3L)dmax. Then
for any experiment e for C, |C(e) − C′(DM (e))| ≤ 1/N.

This lemma shows that if every gate of C satisfies a Lipschitz condition with
constant L, we can approximate C’s behavior to within ε using a discretization
with O((3L)d/ε) points, where d is the depth of C. For d = O(log n), this bound
is polynomial in n and 1/ε.

Theorem 4. There is a polynomial time algorithm that approximately learns
any analog circuit of n wires, depth O(log n), constant fan-in, gate functions
satisfying a Lipschitz condition, and shortcut width bounded by a constant.

5 Learning with Experiments and Counterexamples

In this section, we consider the problem of learning circuits using both value
injection queries and counterexamples. In a counterexample query, the al-
gorithm proposes a hypothesis C and receives as answer either the fact that C
exactly equivalent to the target circuit C∗, or a counterexample, that is, an
experiment e such that C(e) �= C∗(e). In [5], polynomial-time algorithms are
given that use value injection queries and counterexample queries to learn (1)
acyclic circuits of arbitrary depth with arbitrary gates of constant fan-in, and
(2) acyclic circuits of arbitrary depth with NOT gates and AND, OR, NAND,
and NOR gates of arbitrary fan-in.

The algorithm that we now develop generalizes both previous algorithms by
permitting any class of gates that is polynomial time learnable with counterex-
amples. It also guarantees that the depth of the output circuit is no greater than
the depth of the target circuit and the number of additional wires fixed in value
injection queries is bounded by O(kd), where k is a bound on the fan-in and d
is a bound on the depth of the target circuit.

5.1 The Learning Algorithm

The algorithm proceeds in a cycle of proposing a hypothesis, getting a coun-
terexample, processing the counterexample, and then proposing a new hypoth-
esis. Whenever we receive a counterexample e, we process the counterexample
so that we can “blame” at least one gate in C; we find a witness experiment e∗

eliminating a gate g in C. In effect, we reduce the problem of learning a circuit
to the problem of learning individual gates with counterexamples.
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An experiment e∗ is a witness experiment eliminating g, if and only if e∗

fixes all inputs of g but sets g free and C(e∗|w=g(e∗)) �= C(e∗). It is important
that we require e∗ fix all inputs of g, because then we know it is g and not its
ancestors computing wrong values. The main operation of the procedure that
processes counterexamples is to fix wires.

Given a counterexample e, let procedure minimize fix wires in e while pre-
serving the property that C(e) �= C′(e) until it cannot fix any more. Therefore,
e∗ = minimize(e) is a minimal counterexample for C′ under the partial order �
defined in Sect. 2.2. The following lemma is a consequence of Lemma 10 in [5].

Lemma 13. If e∗ is a minimal counterexample for C′, there exists a gate g in
C′ such that e∗ is a witness experiment for g.

Now we run a separate counterexample learning algorithm for each individual
wire. Whenever C′ receives a counterexample, at least one of the learning algo-
rithms will receive one. However, if we run all the learning algorithms simulta-
neously and let each learning algorithm propose a gate function, the hypothesis
circuit may not be acyclic. Instead we will use Algorithm 2 to coordinate them,
which can be viewed as a generalization of the circuit building algorithm for
learning AND/OR circuits in [5]. Conflicts are defined below.

Algorithm 2. Learning with experiments and counterexamples
Run an individual learning algorithm for each wire w. Each learning algorithm takes
as candidate inputs only wires that have fewer conflicts.
Let C be the hypothesis circuit.
while there is a counterexample for C do

Process the counterexample to obtain a counterexample for a wire w.
Run the learning algorithm for w with the new counterexample.
if there is a conflict for w then

Restart the learning algorithms for w and all wires whose candidate inputs have
changed.

The algorithm builds an acyclic circuit C because each wire has as inputs only
wires that have fewer conflicts. At the start, each individual learning algorithm
runs with an empty candidate input set since there is yet no conflict. Thus,
each of them tries to learn each gate as a constant gate, and some of them
will not succeed. A conflict for w happens when there is no hypothesis in the
hypothesis space that is consistent with the set of counterexamples received by
w. For constant gates, there is a conflict when we receive a counterexample for
each of the |Σ| possible constant functions. We note that there will be no conflict
for a wire w if the set of candidate inputs contains the set of true inputs of w in
the target circuit C∗, because then the hypothesis space contains the true gate.

Whenever a conflict occurs for a wire, it has a chance of having more wires as
candidate inputs. Therefore, our learning algorithm can be seen as repeatedly
rebuilding a partial order over wires based on their numbers of conflicts. Another
natural partial order on wires is given by the level of a wire, defined as the length
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of a longest directed path in C∗ from a constant gate to the wire. The following
lemma shows an interesting connection between levels and numbers of conflicts.

Lemma 14. The number of conflicts each wire receives is bounded by its level.

Corollary 1. The depth of C is at most the depth of C∗.

In fact, the depth of C is bounded by the minimum depth of any circuit behav-
iorally equivalent to C∗.

Theorem 5. Circuits whose gates are polynomial time learnable with counterex-
amples are learnable in polynomial time with experiments and counterexamples.

Proof. By the learnability assumption of each gate, Algorithm 2 will receive only
polynomially many counterexamples between two conflicts, because the candi-
date inputs for every wire are unchanged. (A conflict can be detected when the
number of counterexamples exceeds the polynomial bound.) Lemma 14 bounds
the number of conflicts for each wire by its level, which then bounds the total
number of counterexamples of Algorithm 2 by a polynomial. It is clear that we
use O(n) experiments to process each counterexample. Thus, the total number
of experiments is bounded by a polynomial as well.

5.2 A New Diagnosis Algorithm

A shortcoming of minimize is that it fixes many wires, which may be undesir-
able in the context of gene expression experiments. In this section, we propose a
new diagnosis algorithm to find a witness experiment e∗ for some gate g in C. If
the hypothesis circuit C has depth d and fan-in bound k, the new algorithm fixes
only O(dk) more gates than the number fixed in the original counterexample.

Given a counterexample e, we first gather a list of potentially wrong wires.
Let wC(e) be the value of wire w in C under experiment e. We can compute
wC(e) given e because we know C. The potentially wrong wires are those w’s
such that C∗(e|w=wC(e)) �= C∗(e). It is not hard to see that a potentially wrong
wire must be a free wire in e. We can gather all potentially wrong wires by
conducting n experiments, each fixing one more wire than e does.

Now, pick an arbitrary potentially wrong wire w and let g be its gate function
in C. If g’s inputs are fixed in e, then e is a witness experiment for g, and we
are done. Otherwise, fix all g’s free input wires to their values in C, and let e′

be the resulting experiment. There are two cases: either g is wrong or one of g’s
inputs computes a wrong value.

1. If C∗(e′|w=wC(e)) �= C∗(e′), then e′ is a witness experiment for g.
2. Otherwise, we have C∗(e′|w=wC(e)) = C∗(e′). Because C∗(e|w=wC(e)) �=

C∗(e), we have either C∗(e′) �= C∗(e) or C∗(e′|w=wC(e)) �= C∗(e|w=wC(e)).
Note that the only difference between e and e′ is that e′ fixes free inputs of
g to their values in C. So either e or e|w=wC(e) is an experiment in which
fixing all g’s free inputs gives us a change in the circuit outputs. We then
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start from whichever experiment gives us such a change and fix free inputs
of g in C one after another, until the circuit output changes. We will find
an experiment e′′, for which one of g’s inputs is potentially wrong. We then
restart the process with e′′ and this input of g.

At each iteration, we go to a deeper gate in C. The process will stop within d
iterations. If C has fan-in at most k, the whole process will fix at most d(k−1)+1
more gates than were fixed in the original experiment e.

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1, 131–137 (1972)

2. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of gene regula-
tory networks by strategic gene disruptions and gene overexpressions. In: SODA
’98: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 695–702, Philadelphia, PA, USA, Society for Industrial and Applied
Mathematics (1998)

3. Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Machine
Learning 9, 147–164 (1992)

4. Angluin, D., Hellerstein, L., Karpinski, M.: Learning read-once formulas with
queries. J. ACM 40, 185–210 (1993)

5. Angluin, D., Aspnes, J., Chen, J., Wu, Y.: Learning a circuit by injecting val-
ues. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of
Computing, pp. 584–593. ACM Press, New York, USA (2006)

6. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput.
Syst. Sci. 50(2), 336–355 (1995)

7. Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Inf.
Comput. 123(1), 146–153 (1995)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

9. Ideker, T., Thorsson, V., Karp, R.: Discovery of regulatory interactions through
perturbation: Inference and experimental design. In: Pacific Symposium on Bio-
computing 5, 302–313 (2000)

10. Jackson, J.C.: An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. J. Comput. Syst. Sci. 55(3), 414–440 (1997)

11. Jackson, J.C., Klivans, A.R., Servedio, R.A.: Learnability beyond AC0. In: STOC
’02: Proceedings of the thirty-fourth annual ACM symposium on Theory of com-
puting, pp. 776–784. ACM Press, New York, USA (2002)

12. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. J. ACM 41(1), 67–95 (1994)

13. Kharitonov, M.: Cryptographic hardness of distribution-specific learning. In: STOC
’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of com-
puting, pp. 372–381. ACM Press, New York, USA (1993)

14. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and
learnability. Journal of the ACM 40(3), 607–620 (1993)

15. Niedermeier, R. (ed.): Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, Oxford (2006)



Teaching Dimension and the Complexity of

Active Learning

Steve Hanneke

Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

shanneke@cs.cmu.edu

Abstract. We study the label complexity of pool-based active learning
in the PAC model with noise. Taking inspiration from extant literature
on Exact learning with membership queries, we derive upper and lower
bounds on the label complexity in terms of generalizations of extended
teaching dimension. Among the contributions of this work is the first
nontrivial general upper bound on label complexity in the presence of
persistent classification noise.

1 Overview of Main Results

In supervised machine learning, it is becoming increasingly apparent that well-
designed interactive learning algorithms can provide valuable improvements over
passive algorithms in learning performance while reducing the amount of effort
required of a human annotator. In particular, there is presently much interest in
the pool-based active learning setting, in which a learner can request the label
of any example in a large pool of unlabeled examples. In this case, one crucial
quantity is the number of label requests required by a learning algorithm: the
label complexity. This quantity is sometimes significantly smaller than the sample
complexity of passive learning. A thorough theoretical understanding of these
improvements seems essential to fully exploit the potential of active learning.

In particular, active learning is formalized in the PAC model as follows. The
pool of m unlabeled examples are sampled i.i.d. according to some distribution
D. A binary label is assigned to each example by a (possibly randomized) oracle,
but is hidden from the learner unless it requests the label. The error rate of a
classifier h is defined as the probability of h disagreeing with the oracle on a
fresh example X ∼ D. A learning algorithm outputs a classifier ĥ from a concept
space C, and we refer to the infimum error rate over classifiers in C as the
noise rate, denoted ν. For ε, δ, η ∈ (0, 1), we define the label complexity, denoted
#LQ(C, D, ε, δ, η), as the smallest number q such that there is an algorithm that
outputs a classifier ĥ ∈ C, and for sufficiently large m, for any oracle with ν ≤ η,
with probability at least 1 − δ over the sample and internal randomness, the
algorithm makes at most q label requests and ĥ has error rate at most ν + ε.1

1 Alternatively, if we know q ahead of time, we can have the algorithm halt if it ever
tries to make more than q queries. The analysis is nearly identical in either case.
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The careful reader will note that this definition does not require the algorithm
to be successful if ν > η, distinguishing this from the fully agnostic setting [1];
we discuss possible methods to bridge this gap in later sections.

Kulkarni [2] has shown that if there is no noise, and one is allowed arbitrary bi-
nary valued queries, then O (log N(ε)) ≤ O

(
d log 1

ε

)
queries suffice to PAC learn,

where N(ε) denotes the size of a minimal ε-cover of C with respect to D, and d is
the VC dimension of C. This bound often has exponentially better dependence
on 1

ε , compared to the sample complexity of passive learning. However, many
binary valued queries are unnatural and difficult to answer in practice. One of
the driving motivations for research on the label complexity of active learning
is identifying, in a general way, which concept spaces and distributions allow us
to obtain this exponential improvement using only label requests for examples
in the unlabeled sample. A further question is whether such improvements can
be sustained in the presence of classification noise. In this paper, we investigate
these questions from the perspective of a general analysis.

On the subject of learning through interaction, there is a rich literature con-
cerning the complexity of Exact learning with membership queries [3, 4]. The
interested reader should consult the limpid survey by Angluin [4]. The essen-
tial distinction between that setting and the setting we are presently concerned
with is that, in Exact learning, the learning algorithm is required to identify the
oracle’s actual target function, rather than approximating it with high probabil-
ity; on the other hand, in the Exact setting there is no classification noise and
the algorithm can ask for the label of any example. In a sense, Exact learning
with membership queries is a limiting case of PAC active learning. As such, we
may hope to draw inspiration from the extant work on Exact learning when
formulating an analysis for the PAC setting.

To quantify #MQ(C), the worst-case number of membership queries required
for Exact learning with concept space C, Hegedüs [3] defines a quantity called the
extended teaching dimension of C, based on the teaching dimension of Goldman
& Kearns [5]. Letting t0 denote this quantity, Hegedüs proves that

max{t0, log2 |C|} ≤ #MQ(C) ≤ t0 log2 |C|,

where the upper bound is achieved by a version of the Halving algorithm.
Inspired by these results, we generalize the extended teaching dimension to

the PAC setting, adding dependences on ε, δ, η, and D. Specifically, we define
two quantities, t and t̃, both of which have t0 as a limiting case. We show that

Ω

(

max
{

η2

ε2
, t̃, log N(2ε)

})

≤ #LQ(C, D, ε, δ, η) ≤ Õ

((
η2

ε2
+1

)

t log N(ε/2)
)

where Õ hides factors logarithmic in 1
ε ,1δ , and d. The upper bound is achieved

by an active learning algorithm inspired by the Halving algorithm, which uses
Õ

(
dη+ε

ε2

)
unlabeled examples. With these tools in hand, we analyze the label

complexity of axis-aligned rectangles with respect to product distributions, show-
ing improvements over known passive learning results in dependence on η when
positive examples are not too rare.
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The rest of the paper is organized as follows. In Section 2, we briefly survey the
related literature on the label complexity of active learning. This is followed in
Section 3 with the introduction of definitions and notation, and a brief discussion
of known results for Exact learning in Section 4. In Section 5, we move into
results for the PAC setting, beginning with the noise-free case for simplicity.
Then, in Section 6, we describe the general setting, and prove an upper bound
on the label complexity of active learning with noise; to the author’s knowledge,
this is the first general result of its kind, and along with lower bounds on label
complexity presented in Section 7, represents the primary contribution of this
work. We continue in Section 8, with an application of these bounds to describe
the label complexity of axis-aligned rectangles with product distributions. We
conclude with some enticing open problems in Section 9.

2 Context and Related Work

The recent literature studying general label complexity can be coarsely parti-
tioned by the measure of progress used in the analysis. Specifically, there are at
least three distinct ways to measure the progress of an active learning algorithm:
diameter of the version space, measure of the region of disagreement, and size
of the version space. By the version space at a time during the algorithm exe-
cution, we mean the set of concepts in C that have not yet been ruled out as a
possible output. One approach to studying label complexity is to summarize in a
single quantity how easy it is to make progress in terms of one of these progress
metrics. This quantity, apart from itself being interesting, can then be used to
derive upper and lower bounds on the label complexity.

To study the ease of reducing the diameter of the version space in active learn-
ing, Dasgupta [6] defines a quantity ρ he calls the splitting index. ρ is dependent
on C, D, ε, and another parameter τ he defines, as well as the oracle itself.
Dasgupta finds that when the noise rate is zero, roughly Õ(d

ρ) label requests
are sufficient, and Ω( 1

ρ ) are necessary for learning (for respectively appropriate
τ values). However, Dasgupta’s analysis is restricted to the noise-free case, and
there are no known extensions addressing the noisy case.

In studying ways to enable active learning in the presence of noise, Balcan et
al. [1] propose the A2 algorithm. This algorithm is able to learn in the presence
of arbitrary classification noise. The strategy behind A2 is to induce confidence
intervals for the differences of error rates of concepts in the version space. If
an estimated difference is statistically significant, the algorithm removes the
worst of the two concepts. The key observation is that, since the algorithm only
estimates error differences, there is no need to request the label of any example
that all remaining concepts agree on. Thus, the number of label requests made
by A2 is largely controlled by how quickly the region of disagreement collapses
as the algorithm progresses. However, apart from fall-back guarantees and a few
special cases, there is presently no published general analysis of the number of
label requests made by A2, and no general index of how easy it is to reduce the
region of disagreement.
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The third progress metric is reduction in the size of the version space. If the
concept space is infinite, an ε′-cover of C can be substituted for C, for some
suitable ε′.2 This paper presents the first general study of the ease of reducing
the size of the version space. The corresponding index summarizing the potential
for progress in this metric remains informative in the presence of noise, given
access to an upper bound on the noise rate.

In addition to the above studies, Kääriäinen [7] presents an interesting analysis
of active learning with various types of noise. Specifically, he proves that under
noise that is not persistent (in that requesting the same label twice may yield
different responses) and where the Bayes optimal classifier is in C, any algorithm
that is successful for the zero noise setting can be transformed into a successful
algorithm for the noisy setting with only a small increase in the number of label
requests. However, these positive results do not carry into our present setting
(arbitrary persistent classification noise). In fact, in addition to these positive
results, Kääriäinen [7] presents negative results in the form of a general lower
bound on the label complexity of active learning with arbitrary (persistent)
classification noise. Specifically, he finds that for most nontrivial distributions
D, one can force any algorithm to make Ω

(
ν2

ε2

)
label requests.

3 Notation

We begin by introducing some notation. Let X be a set, called the instance
space, and F be a corresponding σ-algebra. Let DXY be a probability measure
on X ×{−1, 1}. We use D to denote the marginal distribution of DXY over X . CF
is the set of all F -measurable f : X → {−1, 1}. C ⊆ CF is a concept space on X ,
and we use d to denote the VC dimension of C; to focus on nontrivial learning, we
assume d > 0. For any h, h′ ∈ CF , define erD(h, h′) = PrX∼D {h(X) �= h′(X)}.
If U ∈ X m, define erU (h, h′) = 1

m

∑
x∈U I[h(x) �= h′(x)].3 If L ∈ (X ×{−1, 1})m,

define erL(h) = 1
m

∑
(x,y)∈L I[h(x) �= y]. For any h ∈ CF , define er(h) =

Pr(X,Y )∼DXY
{h(X) �= Y }. Define the noise rate ν = infh∈C er(h). An α-cover

of C is any V ⊆ C s.t. ∀h ∈ C, ∃h′ ∈ V with erD(h, h′) ≤ α.
Generally, in this setting data is sampled i.i.d. according to DXY , but the

labels are hidden from the learner unless it asks the oracle for them individually.
In particular, requesting the same example’s label twice gives the same label both
times (though if the data sequence contains two identical examples, requesting

2 An alternative, but very similar progress metric is the size of an ε-cover of the version
space. The author suspects the analysis presented in this paper can be extended to
describe that type of progress as well.

3 We overload the standard set-theoretic notation to also apply to sequences. In par-
ticular,

∑
x∈U indicates a sum over entries of the sequence U (not necessarily all

distinct). Similarly, we use |U| to denote length of the sequence U , S ⊆ U to denote
a subsequence of U , S ∪ U to denote concatenation of two sequences, and for any
particular x ∈ U , U \ {x} indicates the subsequence of U with all entries except the
single occurrence of x that is implicitly referenced in the statement. It may help to
think of each instance x in a sample as having a unique identifier.
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both labels might give two different values). However, for notational simplicity,
we often abuse this notation by stating that X ∼ D and later stating that
the algorithm requests the label of X , denoted Oracle(X); by this, we implicitly
mean that (X, Y ) ∼ DXY , and the oracle reveals the value of Y upon request. In
particular, for U ∼ Dm, h ∈ CF , define erU (h) = 1

m

∑
x∈U I[h(x) �= Oracle(x)].

Definition 1. For V ⊆ C with finite |V |, the majority vote concept hmaj ∈ CF
is defined by hmaj(x) = 1 iff |{h ∈ V : h(x) = 1}| ≥ 1

2 |V |.

Definition 2. For U ∈ X m, h ∈ CF , we overload notation to define the se-
quence of labels h(U) = {h(x)}x∈U assigned to entries of U by h. For V ⊆ CF ,
V [U ] denotes any subset of V such that ∀h ∈ V, |{h′ ∈ V [U ] : h′(U) = h(U)}| = 1.
V [U ] represents the labelings of U realizable by V .

4 Extended Teaching Dimension

Definition 3. (Extended Teaching Dimension [3]) Let V ⊆ C, m ≥ 0, U ∈ X m.

∀f ∈ CF , XTD(f, V, U) = inf{t|∃R ⊆ U : |{h∈V : h(R)=f(R)}|≤1 ∧ |R|≤ t}.

XTD(V, U) = sup
f∈CF

XTD(f, V, U).

For a given f , we call any R ⊆ U such that |{h ∈ V : h(R) = f(R)}| ≤ 1 a
specifying set for f on U with respect to V .4

The goal of Exact learning with membership queries is to ask for the labels f(x)
of individual examples x ∈ X until the only concept in C consistent with the
observed labels is the target f ∈ C. Hegedüs [3] presents the following algorithm.

Algorithm: MembHalving
Output: The target concept f ∈ C

0. V ← C

1. Repeat until |V | = 1
2. Let hmaj be the majority vote of V
3. Let R ⊆ X be a minimal specifying set for hmaj on X with respect to V
4. Ask for the label f(x) of every x ∈ R
5. Let V ← {h ∈ V |∀x ∈ R, f(x) = h(x)}
6. Return the remaining element of V

Theorem 1. (Exact Learning: Hegedüs [3]). Letting #MQ(C) denote the Exact
learning query complexity of C with membership queries on any examples in X ,
and t0 = XTD(C, X ), then the following inequalities are valid if |C| > 2.

max{t0, log2 |C|} ≤ #MQ(C) ≤ t0 log2 |C|.
Furthermore, this upper bound is achieved by the MembHalving algorithm.5

4 We also overload all of these definitions in the obvious way for sets U ⊆ X .
5 By a slight alteration to choose queries in a particular greedy order, Hegedüs is able

to reduce this upper bound to 2 t0
log2 t0

log2 |C|. However, it is the simpler form of the

algorithm (presented here) that we draw inspiration from in the following sections.
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The upper bound of Theorem 1 is clear when we view MembHalving as a version
of the Halving algorithm [8]. That is, querying all examples in a specifying set
for h guarantees either h makes a mistake or we identify f . Thus, querying a
specifying set for hmaj guarantees that we at least halve the version space.

The following definitions represent natural extensions of XTD to the PAC
setting. The relation of these quantities to the complexity of active learning is
our primary focus.

Definition 4. (XTD Growth Function) For m ≥ 0, V ⊆ C, δ ∈ [0, 1],

XTD(V, D, m, δ) = inf{t|∀f ∈ CF , PrU∼Dm{XTD(f, V [U ], U) > t} ≤ δ}.

XTD(V, m) = sup
U∈Xm

XTD(V [U ], U).

XTD(C, D, m, δ) plays an important role in distribution-dependent bounds on
the label complexity, while XTD(C, m) plays an analogous role in distribution-
free bounds. Clearly 0 ≤ XTD(C, D, m, δ) ≤ XTD(C, m) ≤ m.

As a simple example, consider the space of thresholds on the line. That is,
suppose X = R and C = {hθ : θ ∈ R, hθ(x) = +1 iff x ≥ θ}. In this case,
XTD(C, m) = 2, since for any set U of m points, and any f ∈ CF , we can form
a specifying set with the points min{x ∈ U : f(x) = +1} and max{x ∈ U :
f(x) = −1}, (if they exist).

5 The Complexity of Realizable Active Learning

Before discussing the general setting, we begin with realizable learning (η = 0),
because the analysis is quite simple, and clearly highlights the relationship to
the MembHalving algorithm. We handle noisy labels in the next section.

Based on Theorem 1, it should be clear that for m ≥ Ω
(

1
ε

(
d log 1

ε + log 1
δ

))
,

#LQ(C, D, ε, δ, 0) ≤ XTD(C, m)d log2
em
d . Roughly speaking, this is achieved

by drawing m unlabeled examples U and executing MembHalving with con-
cept space C[U ] and instance space U . This gives a data-dependent bound of
XTD(C[U ], U) log2 |C[U ]| ≤ XTD(C, m)d log2

em
d . We can also obtain a related

distribution-dependent result as follows. Consider the following algorithm.

Algorithm: ActiveHalving
Input: V ⊆ CF , values ε, δ ∈ (0, 1), U = {x1, x2, . . . , xm} ∈ X m, constant n ∈ N

Output: Concept ĥ ∈ V
0. Let i ← 0
1. Repeat
2. i ← i + 1
3. Let Ui = {x1+n(i−1), x2+n(i−1), . . . , xni}
4. Let hmaj be the majority vote of V
5. Let R ⊆ Ui be a minimal specifying set for hmaj on Ui w.r.t. V [Ui]
6. Ask for the label f(x) of every x ∈ R
7. Let V ← {h ∈ V |f(R) = h(R)}
8. If ∃h ∈ V s.t. hmaj(Ui) = h(Ui), Return arg minĥ∈V erU (ĥ, hmaj)
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Theorem 2. Let m =
⌈

256d
ε

(
ln 92d

εδ

)2
⌉
, and n =

⌈
4
ε ln 12d log2

4em
δ

δ

⌉
. Let

t̂ = XTD
(
C, D, n, δ

12d log2
4em

δ

)
. If N(δ/(2m)) is the size of a minimal δ

2m -cover
of C, then

#LQ(C, D, ε, δ, 0) ≤ t̂ log2 N(δ/(2m)) ≤ O

(

t̂d log
d

εδ

)

.

Proof. The bound is achieved by ActiveHalving(V, ε, δ, U , n), where U ∼Dm, and
V is a minimal δ

2m -cover of C. Let f ∈ C have er(f)=0. Let f̂ =argminh∈V er(h).
With probability ≥ 1 − δ/2, f(U) = f̂(U). Suppose this happens. In each itera-
tion, if the condition in step 8 does not obtain, then either ∃x ∈ R : hmaj(x) �=
f(x) or else V [Ui] = {h} for some h ∈ V such that ∃x ∈ Ui : hmaj(x) �= h(x) =
f(x). Either way, we must have eliminated at least half of V in step 7, so the
condition in step 8 fails at most log2 N(δ/(2m)) < 2d log2

4em
δ − 1 times.

On the other hand, suppose the condition in step 8 obtains. This happens
only when hmaj(Ui) = f(Ui). PrUi

{
erUi(hmaj , f) = 0 ∧ erU (hmaj , f) > ε

4

}
≤

δ
12d log2

4em
δ

. By a union bound, the probability that an hmaj with erU (hmaj , f) >
ε
4 satisfies the condition in step 8 on any iteration is at most δ

6 . If this does not
happen, then the ĥ ∈ V we return has erU (ĥ, f) ≤ erU (ĥ, hmaj)+erU (hmaj , f) ≤
erU (f, hmaj) + erU (hmaj , f) ≤ ε

2 . By Chernoff and union bounds, m is large
enough so that with probability at least 1 − δ

6 , erU (ĥ, f) ≤ ε
2 ⇒ erD(ĥ, f) ≤ ε.

So with probability 1 − 5δ
6 , we return an ĥ ∈ C with erD(ĥ, f) ≤ ε.

On the issue of number of queries, each iteration queries a minimal specifying
set for hmaj on a set of size n. The probability the size of this set is larger than t̂
for a particular set Ui is at most δ

12d log2
4em

δ

. By a union bound, the probability

it is larger than t̂ on any iteration is at most δ
6 . Thus, the total probability of

success (in learning and obtaining the query bound) is at least 1 − δ. ��

Note that we can obtain a worst-case label bound for ActiveHalving by replacing
t̂ above with XTD(C, n). Theorem 2 highlights the relationship to known results
in Exact learning with membership queries [3]. In particular, if C and X are
finite, and D has support everywhere on X , then as ε → 0 and δ → 0, the bound
converges to XTD(C, X ) log2 |C|, the upper bound in Theorem 1.

6 The Complexity of Active Learning with Noise

The following algorithm can be viewed as a noise-tolerant version of ActiveHalv-
ing. Significant care is needed to ensure we do not discard the best concept, and
that the final classifier is near-optimal. The main trick is to use subsamples of
size < 1

16η . Since the probability of such a subsample containing a noisy example
is small, the specifying sets for hmaj will often be noise-free. Therefore, if h ∈ V
is contradicted in many such specifying sets, we can be confident h is subopti-
mal. Likewise, if for a particular unqueried x, there are many such subsamples
containing x where hmaj is not contradicted, and where there is a consistent h,
then more often than not, h(x) = h∗(x), where h∗ = arg minh′∈V er(h′).
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Algorithm: ReduceAndLabel(V, U , ε, δ, η̂)
Input: Finite V ⊆ CF , U = {x1, x2, . . . , xm} ∈ X m, values ε, δ, η̂ ∈ (0, 1].
Output: Concept h ∈ V .
0. Let u = �|U|/(5 ln |V |)�
1. Let V0 ← V , i ← 0
2. Do
3. i ← i + 1
4. Let Ui = {x1+u(i−1), x2+u(i−1), . . . , xui}
5. Vi ← Reduce

(
Vi−1, Ui,

δ
48 ln |V | , η̂ + ε

2

)

6. Until |Vi| > 3
4 |Vi−1| or |Vi| ≤ 1

7. Let Ū = {xui+1, xui+2, . . . , xui+�}, where � =
⌈
12 η̂

ε2 ln 12|V |
δ

⌉

8. L ← Label
(
Vi−1, Ū , δ

12 , η̂ + ε
2

)

9. Return h ∈ Vi having smallest erL(h), (or any h ∈ V if Vi = ∅)

Subroutine: Reduce(V, U , δ, η̂)
Input: Finite V ⊆ CF , unlabeled sequence U , values δ, η̂ ∈ (0, 1]
Output: Concept space V ′ ⊆ V

0. Let m = |U|, n =
⌊

1
16η̂

⌋
, r =

⌈
397 ln 2

δ

⌉
, θ = 27

320

1. Let hmaj be the majority vote of V
2. For i ∈ {1, 2, . . . , r}
3. Sample a subsequence Si of size n uniformly without replacement from U
4. Let Ri be a minimal specifying set for hmaj in Si with respect to V [Si]
5. Ask for the label of every example in Ri

6. Let V̄i be the concepts h ∈ V s.t. h(Ri) �= Oracle(Ri)
7. Let V̄ be the set of h ∈ V that appear in > θ · r of the sets V̄i

8. Return V ′ = V \ V̄

Subroutine: Label(V, U , δ, η̂)
Input: Finite V ⊆ CF , unlabeled sequence U , values δ, η̂ ∈ (0, 1]
Output: Labeled sequence L
0. Let � = |U|, n =

⌊
1

16η̂

⌋
, k =

⌈
167 �

n ln 3�
δ

⌉

1. Let hmaj be the majority vote of V , and let L ← {}
2. For i ∈ {1, 2, . . . , k}
3. Sample a subsequence Si of size n uniformly without replacement from U
4. Let Ri be a minimal specifying set for hmaj in Si with respect to V [Si]
5. For each x ∈ Ri, ask the oracle for its label yx and let L ← L ∪ {(x, yx)}
6. Let Û ⊆ U be the subsequence of examples we did not ask for the label of
7. For each x ∈ Û
8. Let Îx = {i : x ∈ Si and ∃h ∈ V s.t. h(Ri) = hmaj(Ri) = Oracle(Ri)}
9. For each i ∈ Îx, let hi ∈ V be s.t. hi(Ri) = Oracle(Ri)
10. Let y be the majority value of {hi(x) : i ∈ Îx} (breaking ties arbitrarily)
11. Let L ← L ∪ {(x, y)}
12.Return L
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Lemma 1. (Reduce) Suppose h∗ ∈ V is a concept such that erU (h∗) ≤ η̂ < 1
32 .

Let V ′ be the set returned by Reduce(V, U , ε, δ, η̂). With probability at least 1− δ,
h∗ ∈ V ′, and if erU(hmaj , h

∗) ≥ 10η̂ then |V ′| ≤ 3
4 |V |.

Proof. By a noisy example, in this context we mean any x ∈ U for which h∗(x)
disagrees with the oracle’s label. Let n =

⌊
1

16η̂

⌋
and r =

⌈
397 ln 2

δ

⌉
, θ = 27

320 . By
a Chernoff bound, sampling r subsequences of size n, each without replacement
from U , guarantees with probability ≥ 1− δ

2 that at most θr of the subsequences
contain any noisy examples. In particular, this would imply h∗ ∈ V ′.

Now suppose erU (hmaj , h
∗) ≥ 10η̂. For any particular subsampled sequence

Si, PrSi∼Un(U) {hmaj(Si) = h∗(Si)} ≤ (1 − 10η̂)n ≤ 0.627. So the probability
there is some x ∈ Si with hmaj(x) �= h∗(x) is at least 0.373. By a Chernoff
bound, with probability at least 1 − δ

2 , at least 4θr of the r subsamples contain
some x ∈ U such that hmaj(x) �= h∗(x).

By a union bound, the total probability the above two events succeed is at least
1 − δ. Suppose this happens. Any sequence Si containing no noisy examples but
∃x ∈ Si such that hmaj(x) �= h∗(x) necessarily has |V̄i| ≥ 1

2 |V |. Since there are at
least 3θr such subsamples Si, we have |V̄ | ≥

(
3θr· 1

2 |V | − θr·|V |
)
/ (2θr) = 1

4 |V |,
so that |V ′| ≤ 3

4 |V |. ��

Lemma 2. (Label) Let U ∈ X �, � > n. Suppose h∗ ∈ V has erU (h∗) ≤ η̂ < 1
32 .

Let hmaj be the majority vote of V , and suppose erU (hmaj , h
∗) ≤ 12η̂. Let L

be the sequence returned by Label(V, U , δ, η̂). With probability at least 1 − δ, for
every (x, y) ∈ L, y is either the oracle’s label for x or y = h∗(x). In any case,
∀x ∈ U , |{y : (x, y) ∈ L}| = 1.

Proof. As above, a noisy example is any x ∈ U such that h∗(x) disagrees with
the oracle. For any x we ask for the label of, the entry (x, y) ∈ L has y equal
to the oracle’s label, so the focus of the proof is on Û . For each x ∈ Û , let
Ix = {i : x ∈ Si}, A = {i : ∃x′ ∈ Ri, h

∗(x′) �= Oracle(x′)}, and B = {i :
∃x′ ∈ Ri, hmaj(x′) �= h∗(x′)}. ∀x ∈ Û , if |Ix ∩ A| < |(Ix \ B) \ A|, we have that
|{i ∈ Ix : h∗(Ri) = hmaj(Ri) = Oracle(Ri)}| > 1

2 |Îx| > 0. In particular, this
means the majority value of {hi(x) : i ∈ Îx} is h∗(x). The remainder of the proof
bounds the probability this fails to happen.

For x ∈ Û , for i ∈ {1, 2, . . . , k} let S̄i,x of size n be sampled uniformly without
replacement from U \ {x}, Āx = {i : ∃x′ ∈ S̄i,x, h∗(x′) �=Oracle(x′)}, and B̄x =
{i : ∃x′ ∈ S̄i,x, hmaj(x′) �=h∗(x′)}.

Pr
{

∃x ∈ Û : |Ix ∩ A| ≥ |(Ix \ B) \ A|
}

≤
∑

x∈U
Pr

{
|Ix| < nk

2�

}
+ Pr

{
|Ix ∩ Āx| ≥

√
96−1
80 |Ix| ∧ |Ix| ≥ nk

2�

}
+

Pr
{

|(Ix \ B̄x) \ Āx| ≤
√

96−1
80 |Ix| ∧ |Ix| ≥ nk

2�

}
≤ �

[
e−

kn
8� + 2e−

nk
167�

]
≤ δ.

The second inequality is due to Chernoff and Hoeffding bounds. ��
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Lemma 3. Suppose ν = infh∈C er(h) ≤ η and η + 3
4ε < 1

32 . Let V be an ε
2 -cover

of C. Let U ∼ Dm, with m=
⌈
224 η+ε/2

ε2 ln 48 ln |V |
δ

⌉
�5 ln |V |�. Let n=

⌊
1

16(η+3ε/4)

⌋
,

� =
⌈
48 η+ε/2

ε2 ln 12|V |
δ

⌉
, s =

⌈
397 ln 96 ln |V |

δ

⌉
(4 ln |V |) +

⌈
167 �

n ln 36�
δ

⌉
, and t =

XTD
(
V, D, n, δ

2s

)
. With probability ≥ 1− δ, ReduceAndLabel

(
V, U , ε

2 , δ, η + ε
2

)

makes at most ts label queries and returns a concept h with er(h) ≤ ν + ε.

Proof. Let h∗ ∈ V have er(h∗) ≤ ν + ε
2 . Suppose the value of i is ι when we

reach step 7. Clearly ι ≤ log4/3 |V | ≤ 4 ln |V |. Let hi
maj denote the majority vote

of Vi. We proceed by bounding the probability that any of six specific events fail
to happen. The first event is

[
∀i ∈ {1, 2, . . . , ι}, erUi(h∗) ≤ η + 3

4 ε
]
.

The probability this fails is ≤ (4 ln |V |)e−� m
5 ln |V |� ε2

η+ε/2
1
48 ≤ δ

12 (by Chernoff and
union bounds). The next event we consider is

[
∀i ∈ {1, 2, . . . , ι}, h∗ ∈ Vi and (if |Vι| > 1) erUι

(
hι−1

maj, h
∗) < 10

(
η + 3

4ε
) ]

.

By Lemma 1 and a union bound, the previous event succeeds but this one fails
with probability ≤ δ

12 . Next, note that the event
[
∀i ∈ {1, 2, ..., ι}, erUi

(
hi−1

maj , h
∗)<10

(
η + 3

4ε
)

⇒ erD
(
hi−1

maj , h
∗)≤ 21

2

(
η + 3

4ε
) ]

fails with probability ≤ (4 ln |V |)e−� m
5 ln |V |�(η+ 3

4 ε) 1
84 ≤ δ

12 . The fourth event is
[
erŪ

(
hι−1

maj , h
∗) ≤ 12

(
η + 3

4ε
)]

.

By a Chernoff bound, the probability this fails when the previous three events
succeed is ≤ e−

�
14 (η+ 3

4 ε) ≤ δ
12 . The fifth event is

[erŪ (h∗) ≤ er(h∗) + ε
4 and ∀h ∈ Vι−1, er(h) > er(h∗) + ε

2 ⇒ erŪ (h) > erŪ (h∗)].

By Chernoff and union bounds, the probability the previous events succeed but

this fails is ≤ |V |e−
�
48

ε2
η+ε/2 ≤ δ

12 . Finally, consider the event

[∀(x, y) ∈ L, y = h∗(x) or y = Oracle(x)].

By Lemma 2, this fails when the other five succeed with probability ≤ δ
12 . Thus

the probability all of these events succeed is ≥ 1 − δ
2 . If they succeed, then any

h′ ∈ Vι with er(h′) > ν+ε ≥ er(h∗)+ ε
2 has erL(h′) > erL(h∗) ≥ minh∈Vι erL(h).

Thus the h we return has er(h) ≤ ν + ε.
In each call to Reduce, we ask for the labels of a minimal specifying set for

r =
⌈
397 ln 96 ln |V |

δ

⌉
sequences of length n. For each, we make at most t label

requests with probability ≥ 1 − δ
2s , so the probability any call to Reduce makes

more than tr label requests is ≤ 4δr ln |V |
2s . Similarly, in Label we request the

labels of a minimal specifying set for ≤ k =
⌈
167 �

n ln 36�
δ

⌉
sequences of length n.

So we make at most tk queries in Label with probability ≥ 1− δk
2s . Thus, the total

probability we make more than t(k+4r ln |V |) = ts queries is ≤ 4δr ln |V |
2s + δk

2s = δ
2 .

The total probability either the query or error bound is violated is at most δ. ��
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Theorem 3. Let n =
⌊

1
16(η+3ε/4)

⌋
, and let N be the size of a minimal ε

2 -cover

of C. Let � =
⌈
48 η+ε/2

ε2 ln 12N
δ

⌉
. Let s =

⌈
(397 ln 96 ln N

δ )
⌉
(4 ln N)+

⌈
167 �

n ln 36�
δ

⌉
,

and t = XTD
(
C, D, n, δ

2s

)
.

#LQ(C, D, ε, δ, η) ≤ ts = O

(

t

(
η2

ε2
+ 1

) (

d log
1
ε

+ log
1
δ

) (

log
d

εδ

))

.

Proof. It is known that N < 2
(

4e
ε ln 4e

ε

)d [9]. If η + 3
4 ε ≥ 1

32 , the bound exceeds
the passive sample complexity, so it clearly holds. Otherwise, the result follows
from Lemma 3 and the fact that XTD

(
V, D, n, δ

2s

)
≤ XTD

(
C, D, n, δ

2s

)
. ��

Generally, if we do not know an upper bound η on the noise rate ν, then we
can perform a guess-and-double procedure using a labeled validation set, which
grows to size at most Õ

(
ν+ε
ε2

)
. See Section 9 for more discussion of this matter.

We can create a general algorithm, independent of D, by using unlabeled ex-
amples to (with probability ≥ 1− δ/2) construct the ε

2 -cover. It is possible to do

this while maintaining |V | ≤ N ′ = 2
(

16e
ε ln 16e

ε

)d using O
(

1
ε2

(
d log 1

ε + log 1
δ

))

unlabeled examples. Thus, replacing t in Theorem 3 with XTD(C, n) and in-
creasing N to N ′ gives an upper bound on the distribution-free label complexity.

7 Lower Bounds

In this section, we prove lower bounds on the label complexity.

Definition 5. (Extended Partial Teaching Dimension) Let V ⊆ C, m ≥ 0,
δ ≥ 0. ∀f ∈ CF , U ∈ X �m	,

XPTD(f, V, U , δ)= inf{t|∃R ⊆ U : |{h∈V : h(R)=f(R)}|≤ δ|V |+1 ∧ |R|≤ t}.

XPTD(V, D, δ) = inf{t|∀f ∈ CF , lim
n→∞PrU∼Dn{XPTD(f, V, U , δ) > t} = 0}.

XPTD(V, m, δ) = sup
f∈CF

sup
U∈X �m�

XPTD(f, V [U ], U , δ).

Theorem 4. Let ε ∈ [0, 1/2), δ ∈ [0, 1). For any 2ε-separated set V ⊆ C with
respect to D,

max{log [(1 − δ)|V |] , XPTD(V, D, δ)} ≤ #LQ(C, D, ε, δ, 0).

If 0 < δ < 1/16 and 0 < ε/2 ≤ η < 1/2, and there are h1, h2 ∈ C such that
erD(h1, h2) > 2(η + ε), then

Ω

((
η2

ε2
+ 1

)

log
1
δ

)

≤ #LQ(C, D, ε, δ, η).

Also, the following distribution-free lower bound applies. If ∀x ∈ X , {x} ∈ F ,6

then letting D denote the set of all probability distributions on X , for any V ⊆ C,

XPTD(V, (1 − ε)/ε, δ) ≤ sup
D′∈D

#LQ(C, D′, ε, δ, 0).

6 This condition is not necessary, but simplifies the proof.
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Proof. The log [(1 − δ)|V |] lower bound is due to Kulkarni [2].
We prove the XPTD(V, D, δ) lower bound by the probabilistic method as

follows. If δ|V | + 1 ≥ |V |, the bound is trivially true, so assume δ|V | + 1 < |V |
(and in particular, |V | < ∞). Let m ≥ 0, t̃ = XPTD(V, D, δ). By definition
of t̃, ∃f ′ ∈ CF such that limn→∞ PrU∼Dn{XPTD(f ′, V, U , δ) ≥ t̃} > 0. By
the Dominated Convergence Theorem and Kolmogorov’s Zero-One Law, this
implies limn→∞ PrU∼Dn{XPTD(f ′, V, U , δ) ≥ t̃} = 1. Since this probability is
nonincreasing in n, this means PrU∼Dm{XPTD(f ′, V, U , δ) ≥ t̃} = 1. Suppose
A is a learning algorithm. For U ∈ Xm, f ∈ CF , define random quantities
RU ,f ⊆ U and hU ,f ∈ C, denoting the examples queried and classifier returned
by A, respectively, when the oracle answers consistent with f and the input
unlabeled sequence is U ∼ Dm. If we sample f uniformly at random from V ,

Ef

[
PrU ,RU,f ,hU,f

{
erD(f, hU ,f ) > ε ∨ |RU ,f | ≥ t̃

}]

≥ Prf,U ,RU,f ,hU,f

{
f(RU ,f ) = f ′(RU ,f) ∧ erD(f, hU ,f ) > ε ∨ |RU ,f | ≥ t̃

}

≥ EU

[

inf
h∈C,R⊆U :|R|<t̃

Prf {f(R) = f ′(R) ∧ erD(h, f) > ε}
]

> δ.

Therefore, there must be some fixed target f ∈ C such that the probability that
erD(f, hU ,f) > ε or |RU ,f | ≥ XPTD(V, D, δ) is > δ, proving the lower bound.

Kääriäinen [7] proves a distribution-free version of the Ω
((

η2

ε2 + 1
)

log 1
δ

)

bound, and also mentions its extendibility to the distribution-dependent set-
ting. Since the distribution-dependent claim and proof thereof are only im-
plicit in that reference, for completeness we present a brief proof here. Let
Δ = {x : h1(x) �= h2(x)}. Suppose h∗ is chosen from {h1, h2} by an ad-
versary. Given D, we construct a distribution DXY with the following prop-
erty7. ∀A ∈ F , Pr(X,Y )∼DXY

{Y = h∗(X)|X ∈ A ∩ Δ} = 1
2 + ε

2(η+ε) , and
Pr(X,Y )∼DXY

{Y = h1(X)|X ∈ A\Δ} = 1. Any concept h ∈ C with er(h) ≤ η+ε

has Pr{h(X) = h∗(X)|h1(X) �= h2(X)} > 1
2 . Since this probability can be es-

timated to arbitrary precision with arbitrarily high probability using unlabeled
examples, we have a reduction to active learning from the task of determining
with probability ≥ 1− δ whether h1 or h2 is h∗. Examining the latter task, since
every subset of Δ in F yields the same conditional distribution, any optimal
strategy is based on samples from this distribution. It is known (e.g., [10, 11])
that this requires expected number of samples at least

(1−8δ) log 1
8δ

8DKL( 1
2+ ε

2(η+ε) || 12− ε
2(η+ε) )

> 1
40

(η+ε)2

ε2 ln 1
8δ ,

where DKL(p||q) = p log p
q + (1 − p) log 1−p

1−q .
We prove the XPTD(V, (1 − ε)/ε, δ) bound as follows. Let n = 1−ε

ε . For
S ∈ X �n	, let DS be the uniform distribution on the entries of S. Let f ′′ ∈ CF be
such that XPTD(f ′′, V [S], S, δ) = maxf∈V [S] XPTD(f, V [S], S, δ), and define

7 Although this proof relies on stochasticity of the oracle, with additional assumptions
on D and Δ similar to Kääriäinen’s [7], a similar result holds for deterministic oracles.



78 S. Hanneke

t′′ = XPTD(f ′′, V [S], S, δ). Let m ≥ 0. Let RU ,f and hU ,f be defined as above,
for U ∼ Dm

S . As above, we use the probabilistic method, this time by sampling
the target function f uniformly from V [S].

Ef

[
PrU ,RU,f ,hU,f

{erDS (hU ,f , f) > ε ∨ |RU ,f | ≥ t′′}
]

≥ EU
[
Prf,RU,f ,hU,f

{f(RU ,f ) = f ′′(RU ,f) ∧ hU ,f(S) �= f(S) ∨ |RU ,f | ≥ t′′}
]

≥ min
h∈C,R⊆S:|R|<t′′

Prf {f(R) = f ′′(R) ∧ h(S) �= f(S)} > δ.

Taking the supremum over S ∈ X �n	 completes the proof. ��

8 Example: Axis-Aligned Rectangles

As an application, we analyze axis-aligned rectangles, when D is a product den-
sity. An axis-aligned rectangle in R

n is defined by a sequence {(ai, bi)}n
i=1, such

that ai ≤ bi, and the examples labeled +1 are {x ∈ X : ∀i, ai ≤ x ≤ bi}.
Throughout this section, we assume F is the standard Borel σ-algebra on R

n.

Lemma 4. (Balanced Axis-Aligned Rectangles) If D is a product distribution
on R

n with continuous CDF, and C is the set of axis-aligned rectangles such
that ∀h ∈ C, PrX∼D{h(X) = +1} ≥ λ, then

XTD(C, D, m, δ) ≤ O

(
n2

λ
log

nm

δ

)

.

Proof. If Gi is the CDF of Xi for X ∼ D, then Gi(Xi) is uniform in (0, 1), and for
any h ∈ C, the function h′(x) = h({min{y : xi = Gi(y)}}n

i=1) (for x ∈ (0, 1)n) is
an axis-aligned rectangle. This mapping of the problem into (0, 1)n is equivalent
to the original, so for the rest of this proof, we assume D is uniform on (0, 1)n.

If m is smaller than the bound, the result clearly holds, so assume m ≥ 2n +
4n
λ

(
ln 8n

δ + 2n ln 2nm2

δ

)
. Our first step is to discretize the concept space. Let S be

the set of concepts h such that the region {x : h(x) = +1} is specified by the inte-
rior of some rectangle {(ai, bi)}n

i=1 with ai, bi ∈
{

0, δ
2nm2 , 2 δ

2nm2 ,...,
⌈

2nm2

δ

⌉
δ

2nm2

}
,

ai < bi. By a union bound, with probability ≥ 1− δ/2 over the draw of U ∼ Dm,
∀x, y ∈ U , ∀i ∈ {1, 2, . . . , n}, |xi − yi| > δ

2nm2 . In particular, this would im-
ply there are valid choices of S[U ] and C[U ] so that C[U ] ⊆ S[U ]. As such,
XTD(C, D, m, δ) ≤ XTD(S ∩ C, D, m, δ/2).

Let f ∈ CF . If PrX∼D {f(X) = +1} < 3
4λ, then with probability ≥ 1 − δ/2,

for each h ∈ S ∩ C, there is at least one x ∈ U s.t. h(x) = +1 �= f(x). Thus
PrU∼Dm

{
XTD(f, (C ∩ S)[U ], U) > 4

λ ln 2|S|
δ

}
≤ δ/2.

For any set of examples R, let CLOS(R) be the smallest axis-aligned rectangle
h ∈ S that labels all of R as +1. This is known as the closure of R. Additionally,
let A ⊆ R be a smallest set such that CLOS(A) = CLOS(R). This is known as
a minimal spanning set of R. Clearly |A| ≤ 2n, since the extreme points in each
direction form a spanning set.
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Let h ∈ S be such that PrX∼D{h(X) = +1} ≥ λ
2 . Let {(ai, bi)}n

i=1 define the
rectangle. Let x(ai) be the example in U with largest x

(ai)
i component such that

x
(ai)
i < ai and ∀j �= i, aj ≤ x

(ai)
j ≤ bj, or if no such example exists, x(ai) is defined

as the x ∈ U with smallest xi. Let x(bi) be defined similarly, except having the
smallest x

(bi)
i component with x

(bi)
i > bi, and again ∀j �= i, aj ≤ x

(bi)
j ≤ bj . If

no such example exists, then x(bi) is defined as the x ∈ U with largest xi. Let
Ah,U ⊆ U be the subsequence of all examples x ∈ U such that ∃i ∈ {1, 2, . . . , n}
with x

(ai)
i ≤ xi < ai or bi < xi ≤ x

(bi)
i . The surface volume of each face of the

rectangle is at least λ/2. By a union bound over the 2n faces of the rectangle,
with probability at least 1 − δ/(4|S|), |Ah,U | ≤ 4n

λ ln 8n|S|
δ . With probability

≥ 1 − δ/4, this is satisfied for every h ∈ S with PrX∼D{h(X) = +1} ≥ λ
2 .

Now suppose f ∈ CF satisfies PrX∼D{f(X) = +1} ≥ 3λ
4 . Let U+ = {x ∈ U :

f(x) = +1}, hclos = CLOS(U+). If any x ∈ U \ U+ has hclos(x) = +1, we can
form a specifying set for f on U with respect to S[U ] using a minimal spanning
set for U+ along with this x. If there is no such x, then hclos(U) = f(U), and we
use a minimal specifying set for hclos. With probability ≥ 1−δ/4, for every h ∈ S
such that PrX∼D{h(X) = +1} < λ

2 , there is some x ∈ U+ such that h(x) = −1.
If this happens, since hclos ∈ S, this implies PrX∼D{hclos(X) = +1} ≥ λ

2 . In this
case, for a specifying set, we use Ahclos,U along with a minimal spanning set for

{x ∈ U : f(x) = +1}. So PrU∼Dm

{
XTD(f, (C ∩ S)[U ], U) > 2n + 4n

λ ln 8n|S|
δ

}

≤ δ/2. Noting that |S| ≤
(

2nm2

δ

)2n

completes the proof. ��

Note that we can obtain an estimate p̂ of p = Pr(X,Y )∼DXY
{Y = +1} that, with

probability ≥ 1− δ/2, satisfies p/2 ≤ p̂ ≤ 2p, using at most O
(

1
p log 1

pδ

)
labeled

examples (by guess-and-halve). Since clearly PrX∼D{h∗(X) = +1} ≥ p − η, we
can take λ = (p̂/2) − η, giving the following oracle-dependent bound.

Theorem 5. If D is as in Lemma 4 and C is the set of all axis-aligned rectan-
gles, then if p = Pr(X,Y )∼DXY

{Y = +1} > 4η, we can, with probability ≥ 1 − δ,
find an h ∈ C with er(h) ≤ ν + ε without the number of label requests exceeding

Õ

(
n3

(p/4) − η

(
η2

ε2
+ 1

))

.

This result is somewhat encouraging, since if η < ε and p is not too small, the
label bound represents an exponential improvement in 1

ε compared to known
results for passive learning, while maintaining polylog dependence on 1

δ and
polynomial dependence on n, though the degree increases from 1 to 3. We might
wonder whether the property of being balanced is sufficient for these improve-
ments. However, as the following theorem shows, balancedness alone is insuffi-
cient for guaranteeing polylog dependence on 1

ε . The proof is omitted for brevity.
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Theorem 6. If n ≥ 2, there is a distribution D′ on R
n such that, if C is the set

of axis-aligned rectangles h with PrX∼D′{h(X) = +1} ≥ λ, then there is a V ⊂
C 2ε-separated with respect to D′ such that Ω

(
(1−δ)(1−λ)

ε

)
≤ XPTD(V, D′, δ).

9 Open Problems

There are a number of possibilities for tightening these bounds. The upper bound
of Theorem 3 contains a O

(
log d

εδ

)
factor, which does not appear in any known

lower bounds. In the worst case, when XTD(C, D, n, δ) = O(n), this factor
clearly does not belong, since the bound exceeds the passive learning sample
complexity in that case. It may be possible to reduce or remove this factor.
On a related note, Hegedüs [3] introduces a modified MembHalving algorithm,
which makes queries in a particular greedy order. By doing so, the bound de-
creases to 2 t0

log t0
log2 |C| instead of t0 log2 |C|. A similar technique might be pos-

sible here, though the effect seems more difficult to quantify. Additionally, a
more careful treatment of the constants in these bounds may yield significant
improvements.

The present analysis requires access to an upper bound η on the noise rate.
As mentioned, it is possible to remove this assumption by a guess-and-double
procedure, using a labeled validation set of size Ω(1/ε). In practice, this may
not be too severe, since we often use a validation set to tune parameters or
estimate the final error rate anyway. Nonetheless, it would be nice to remove
this requirement without sacrificing anything in dependence on 1

ε . In particular,
it may sometimes be possible to determine whether a classifier is near-optimal
using only a few carefully chosen queries.

As a final remark, exploring the connections between the present analysis and
the related approaches discussed in Section 2 could prove fruitful. Thorough
study of these approaches and their interrelations seems essential for a complete
understanding of the label complexity of active learning.
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Abstract. In the multi-view regression problem, we have a regression
problem where the input variable (which is a real vector) can be par-
titioned into two different views, where it is assumed that either view
of the input is sufficient to make accurate predictions — this is essen-
tially (a significantly weaker version of) the co-training assumption for
the regression problem.

We provide a semi-supervised algorithm which first uses unlabeled
data to learn a norm (or, equivalently, a kernel) and then uses labeled
data in a ridge regression algorithm (with this induced norm) to pro-
vide the predictor. The unlabeled data is used via canonical correlation
analysis (CCA, which is a closely related to PCA for two random vari-
ables) to derive an appropriate norm over functions. We are able to char-
acterize the intrinsic dimensionality of the subsequent ridge regression
problem (which uses this norm) by the correlation coefficients provided
by CCA in a rather simple expression. Interestingly, the norm used by
the ridge regression algorithm is derived from CCA, unlike in standard
kernel methods where a special apriori norm is assumed (i.e. a Banach
space is assumed). We discuss how this result shows that unlabeled data
can decrease the sample complexity.

1 Introduction

Extracting information relevant to a task in an unsupervised (or semi-supervised)
manner is one of the fundamental challenges in machine learning — the underlying
question is how unlabeled data can be used to improve performance. In the “multi-
view” approach to semi-supervised learning [Yarowsky, 1995, Blum and Mitchell,
1998], one assumes that the input variable x can be split into two different “views”
(x(1), x(2)), such that good predictors based on each view tend to agree. Roughly
speaking, the common underlying multi-view assumption is that the best predic-
tor from either view has a low error — thus the best predictors tend to agree with
each other.

There are many applications where this underlying assumption is applicable.
For example, object recognition with pictures form different camera angles —
we expect a predictor based on either angle to have good performance. One

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 82–96, 2007.
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can even consider multi-modal views, e.g. identity recognition where the task
might be to identify a person with one view being a video stream and the other
an audio stream — each of these views would be sufficient to determine the
identity. In NLP, an example would be a paired document corpus, consisting of
a document and its translation into another language. The motivating example
in Blum and Mitchell [1998] is a web-page classification task, where one view
was the text in the page and the other was the hyperlink structure.

A characteristic of many of the multi-view learning algorithms [Yarowsky,
1995, Blum and Mitchell, 1998, Farquhar et al., 2005, Sindhwani et al., 2005,
Brefeld et al., 2006] is to force agreement between the predictors, based on either
view. The idea is to force a predictor, h(1)(·), based on view one to agree with
a predictor, h(2)(·), based on view two, i.e. by constraining h(1)(x(1)) to usually
equal h(2)(x(2)). The intuition is that the complexity of the learning problem
should be reduced by eliminating hypothesis from each view that do not agree
with each other (which can be done using unlabeled data).

This paper studies the multi-view, linear regression case: the inputs x(1) and
x(2) are real vectors; the outputs y are real valued; the samples ((x(1), x(2)), y)
are jointly distributed; and the prediction of y is linear in the input x. Our first
contribution is to explicitly formalize a multi-view assumption for regression.
The multi-view assumption we use is a regret based one, where we assume that
the best linear predictor from each view is roughly as good as the best linear
predictor based on both views. Denote the (expected) squared loss of a prediction
function g(x) to be loss(g). More precisely, the multi-view assumption is that

loss(f (1)) − loss(f) ≤ ε

loss(f (2)) − loss(f) ≤ ε

where f (ν) is the best linear predictor based on view ν ∈ {1, 2} and f is the best
linear predictor based on both views (so f (ν) is a linear function of x(ν) and f
is a linear function of x = (x(1), x(2))). This assumption implies that (only on
average) the predictors must agree (shown in Lemma 1). Clearly, if the both op-
timal predictors f (1) and f (2) have small error, then this assumption is satisfied,
though this precondition is not necessary. This (average) agreement is explic-
itly used in the “co-regularized” least squares algorithms of Sindhwani et al.
[2005], Brefeld et al. [2006], which directly constrain such an agreement in a
least squares optimization problem.

This assumption is rather weak in comparison to previous assumptions
[Blum and Mitchell, 1998, Dasgupta et al., 2001, Abney, 2004]. Our assumption
can be viewed as weakening the original co-training assumption (for the classi-
fication case). First, our assumption is stated in terms of expected errors only
and implies only expected approximate agreement (see Lemma 1). Second, our
assumption is only in terms of regret — we do not require that the loss of any
predictor be small. Lastly, we make no further distributional assumptions (aside
from a bounded second moment on the output variable), such as the commonly
used, overly-stringent assumption that the distribution of the views be condi-
tionally independent given the label [Blum and Mitchell, 1998, Dasgupta et al.,
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2001, Abney, 2004]. In Balcan and Blum [2006], they provide a compatibility
notion which also relaxes this latter assumption, though it is unclear if this
compatibility notion (defined for the classification setting) easily extends to the
assumption above.

Our main result provides an algorithm and an analysis under the above multi-
view regression assumption. The algorithm used can be thought of as a ridge
regression algorithm with regularization based on a norm that is determined by
canonical correlation analysis (CCA). Intuitively, CCA [Hotelling, 1935] is an
unsupervised method for analyzing jointly distributed random vectors. In our
setting, CCA can be performed with the unlabeled data.

We characterize the expected regret of our multi-view algorithm, in compari-
son to the best linear predictor, as a sum of a bias and a variance term: the bias
is 4ε so it is small if the multi-view assumption is good; and the variance is d

n ,
where n is the sample size and d is the intrinsic dimensionality which we show
to be the sum of the squares of the correlation coefficients provided by CCA.
The notion of intrinsic dimensionality we use is the related to that of Zhang
[2005], which provides a notion of intrinsic dimensionality for kernel methods.

An interesting aspect to our setting is that no apriori assumptions are made
about any special norm over the space of linear predictions, unlike in kernel meth-
ods which apriori impose a Banach space over predictors. In fact, our multi-view
assumption is co-ordinate free — the assumption is stated in terms of the best
linear predictor for the given linear subspaces, which has no reference to any co-
ordinate system. Furthermore, no apriori assumptions about the dimensionality
of our spaces are made — thus being applicable to infinite dimensional methods,
including kernel methods. In fact, kernel CCA methods have been developed in
Hardoon et al. [2004].

The remainder of the paper is organized as follows. Section 2 formalizes our
multi-view assumption and reviews CCA. Section 3 presents the main results,
where the bias-variance tradeoff and the intrinsic dimensionality are charac-
terized. The Discussion expands on a number of points. The foremost issue ad-
dressed is how the multi-view assumption, with unlabeled data, could potentially
allow a significant reduction in the sample size. Essentially, in the high (or infi-
nite) dimensional case, the multi-view assumption imposes a norm which could
coincide with a much lower intrinsic dimensionality. In the Discussion, we also
examine two related multi-view learning algorithms: the SVM-2K algorithm of
Farquhar et al. [2005] and the co-regularized least squares regression algorithm
of Sindhwani et al. [2005].

2 Preliminaries

This first part of this section presents the multi-view regression setting and for-
malizes the multi-view assumption. As is standard, we work with a distribution
D(x, y) over input-output pairs. To abstract away the difficulties of analyzing
the use of a random unlabeled set sampled from D(x), we instead assume that
the second order statistics of x are known. The transductive setting and the
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fixed design setting (which we discuss later in Section 3) are cases where this
assumption is satisfied. The second part of this section reviews CCA.

2.1 Regression with Multiple Views

Assume that the input space X is a subset of a real linear space, which is of either
finite dimension (i.e. X ⊂ R

d) or countably infinite dimension. Also assume that
each x ∈ X is in �2 (i.e. x is a squared summable sequence). In the multi-view
framework, assume each x has the form x = (x(1), x(2)), where x(1) and x(2)

are interpreted as the two views of x. Hence, x(1) is an element of a real linear
space X(1) and x(2) is in a real linear space X(2) (and both x(1) and x(2) are in
�2). Conceptually, we should think of these spaces as being high dimensional (or
countably infinite dimensional).

We also have outputs y that are in R, along with a joint distribution D(x, y)
over X × R. We assume that the second moment of the output is bounded by 1,
i.e. E[y2|x] ≤ 1 — it is not required that y itself be bounded. No boundedness
assumptions on x ∈ X are made, since these assumptions would have no impact
on our analysis as it is only the subspace defined by X that is relevant.

We also assume that our algorithm has knowledge of the second order statistics
of D(x), i.e. we assume that the covariance matrix of x is known. In both the
transductive setting and the fixed design setting, such an assumption holds. This
is discussed in more detail in Section 3.

The loss function considered for g : X → R is the average squared error. More
formally,

loss(g) = E
[
(g(x) − y)2

]

where the expectation is with respect to (x, y) sampled from D. We are also
interested in the losses for predictors, g(1) : X(1) → R and g(2) : X(2) → R,
based on the different views, which are just loss(g(ν)) for ν ∈ {1, 2}.

The following assumption is made throughout the paper.

Assumption 1. (Multi-View Assumption) Define L(Z) to be the space of linear
mappings from a linear space Z to the reals and define:

f (1) = argming∈L(X(1))loss(g)

f (2) = argming∈L(X(2))loss(g)
f = argming∈L(X)loss(g)

which exist since X is a subset of �2. The multi-view assumption is that

loss(f (ν)) − loss(f) ≤ ε

for ν ∈ {1, 2}.

Note that this assumption makes no reference to any coordinate system or norm
over the linear functions. Also, it is not necessarily assumed that the losses,
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themselves are small. However, if loss(f (ν)) is small for ν ∈ {1, 2}, say less than
ε, then it is clear that the above assumption is satisfied.

The following Lemma shows that the above assumption implies that f (1) and
f (2) tend to agree on average.

Lemma 1. Assumption 1 implies that:

E

(
f (1)(x(1)) − f (2)(x(2))

)2

≤ 4ε

where the expectation is with respect to x sampled from D.

The proof is provided in the Appendix. As mentioned in the Introduction, this
agreement is explicitly used in the co-regularized least squares algorithms of
Sindhwani et al. [2005], Brefeld et al. [2006].

2.2 CCA and the Canonical Basis

A useful basis is that provided by CCA, which we define as the canonical basis.

Definition 1. Let B(1) be a basis of X(1) and B(2) be a basis of X(2). Let
x

(ν)
1 , x

(ν)
2 , . . . be the coordinates of x(ν) in B(ν). The pair of bases B(1) and B(2)

are the canonical bases if the following holds (where the expectation is with re-
spect to D):

1. Orthogonality Conditions:

E[x(ν)
i x

(ν)
j ] =

{
1 if i = j
0 else

2. Correlation Conditions:

E

[
x

(1)
i x

(2)
j

]
=

{
λi if i = j
0 else

where, without loss of generality, it is assumed that 1 ≥ λi ≥ 0 and that

1 ≥ λ1 ≥ λ2 ≥ . . .

The i-th canonical correlation coefficient is defined as λi.

Roughly speaking, the joint covariance matrix of x = (x(1), x(2)) in the canonical
basis has a particular structured form: the individual covariance matrices of x(1)

and x(2) are just identity matrices and the cross covariance matrix between
x(1) and x(2) is diagonal. CCA can also be specified as an eigenvalue problem1

(see Hardoon et al. [2004] for review).
1 CCA finds such a basis is as follows. The correlation coefficient between two real

values (jointly distributed) is defined as corr(z, z′) = E[zz′]√
E[z2]E[z′2]

Let Πax be the

projection operator, which projects x onto direction a. The first canonical basis
vectors b

(1)
1 ∈ B(1) and b

(2)
1 ∈ B(2) are the unit length directions a and b which

maximize corr(Πax(1), Πbx
(2)) and the corresponding canonical correlation coeffi-

cient λ1 is this maximal correlation. Inductively, the next pair of directions can be
found which maximize the correlation subject to the pair being orthogonal to the
previously found pairs.
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3 Learning

Now let us assume we have observed a training sample T = {(x(ν)
m , ym)}n

m=1 of
size n from a view ν, where the samples drawn independently from D. We also
assume that our algorithm has access to the covariance matrix of x, so that the
algorithm can construct the canonical basis.

Our goal is to construct an estimator f̂ (ν) of f (ν) — recall f (ν) is the best
linear predictor using only view ν — such that the regret

loss(f̂ (ν)) − loss(f (ν))

is small.

Remark 1. (The Transductive and Fixed Design Setting) There are two natural
settings where this assumption of knowledge about the second order statistics of x
holds — the random transductive case and the fixed design case. In both cases, X is
a known finite set. In the random transductive case, the distribution D is assumed
to be uniform over X , so each xm is sampled uniformly from X and each ym is
sampled from D(y|xm). In the fixed design case, assume that each x ∈ X appears
exactly once in T and again ym is sampled from D(y|xm). The fixed design case
is commonly studied in statistics and is also referred to as signal reconstruction.2

The covariance matrix of x is clearly known in both cases.

3.1 A Shrinkage Estimator (Via Ridge Regression)

Let the representation of our estimator f̂ (ν) in the canonical basis B(ν) be

f̂ (ν)(x(ν)) =
∑

i

β̂
(ν)
i x

(ν)
i (1)

where x
(ν)
i is the i-th coordinate in B(ν). Define the canonical shrinkage estimator

of β̂(ν) as:

β̂
(ν)
i = λiÊ[xiy] ≡ λi

n

∑

m

x
(ν)
m,iym (2)

Intuitively, the shrinkage by λi down-weights directions that are less correlated
with the other view. In the extreme case, this estimator ignores the uncorrelated
coordinates, those where λi = 0. The following remark shows how this estimator
has a natural interpretation in the fixed design setting — it is the result of ridge
regression with a specific norm (induced by CCA) over functions in L(X(ν)).

Remark 2. (Canonical Ridge Regression). We now specify a ridge regression al-
gorithm for which the shrinkage estimator is the solution. Define the canonical

2 In the fixed design case, one can view each ym = f(xm) + η, where η is 0 mean noise

so f(xm) is the conditional mean. After observing a sample {(x(ν)
m , ym)}|X|

m=1 for all
x ∈ X (so n = |X|), the goal is to reconstruct f(·) accurately.
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norm for a linear function in L(X(ν)) as follows: using the representation of f̂ (ν)

in B(ν) as defined in Equation 1, the canonical norm of f̂ (ν) is defined as:

||f̂ (ν)||CCA =

√
∑

i

1 − λi

λi

(
β̂

(ν)
i

)2

(3)

where we overload notation and write ||f̂ (ν)||CCA = ||β̂(ν)||CCA. Hence, functions
which have large weights in the less correlated directions (those with small λi)
have larger norms. Equipped with this norm, the functions in L(X(ν)) define a
Banach space. In the fixed design setting, the ridge regression algorithm with
this norm chooses the β̂(ν) which minimizes:

1
|X |

|X|∑

m=1

(
ym − β̂(ν) · x(ν)

m

)2

+ ||β̂(ν)||2CCA

Recall, that in the fixed design setting, we have a training example for each
x ∈ X , so the sum is over all x ∈ X .

It is straightforward to show (by using orthogonality) that the estimator which
minimizes this loss is the canonical shrinkage estimator defined above. In the
more general transductive case, it is not quite this estimator, since the sampled
points {x

(ν)
m }m may not be orthogonal in the training sample (they are only

orthogonal when summed over all x ∈ X). However, in this case, we expect
that the estimator provided by ridge regression is approximately equal to the
shrinkage estimator.

We now state the first main theorem.

Theorem 1. Assume that E[y2|x] ≤ 1 and that Assumption 1 holds. Let f̂ (ν) be
the estimator constructed with the canonical shrinkage estimator (Equation 2)
on training set T . For ν ∈ 1, 2, then

ET [loss(f̂ (ν))] − loss(f (ν)) ≤ 4ε +
∑

i λ2
i

n

where expectation is with respect to the training set T sampled according to Dn.

We comment on obtaining high probability bounds in the Discussion. The proof
(presented in Section 3.3) shows that the 4ε results from the bias in the algorithm
and

∑
i λ2

i

n results from the variance. It is natural to interpret
∑

i λ2
i as the

intrinsic dimensionality.
Note that Assumption 1 implies that:

ET [loss(f̂ (ν))] − loss(f) ≤ 5ε +
∑

i λ2
i

n

where the comparison is to the best linear predictor f over both views.
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Remark 3. (Intrinsic Dimensionality) Let β̂(ν) be a linear estimator in the vector
of sampled outputs, Y = (y1, y2, . . . ym). Note that the previous thresholded
estimator is such a linear estimator (in the fixed design case). We can write
β̂(ν) = PY where P is a linear operator. Zhang [2005] defines tr(PT P ) as the
intrinsic dimensionality, where tr(·) is the trace operator. This was motivated
by the fact that in the fixed design setting the error drops as tr(P T P )

n , which
is bounded by d

n in a finite dimensional space. Zhang [2005] then goes on to
analyze the intrinsic dimensionality of kernel methods in the random design
setting (obtaining high probability bounds). In our setting, the sum

∑
i λ2

i is
precisely this trace, as P is a diagonal matrix with entries λi.

3.2 A (Possibly) Lower Dimensional Estimator

Consider the thresholded estimator:

β̂
(ν)
i =

{
Ê[xiy] if λi ≥ 1 −

√
ε

0 else
(4)

where again Ê[xiy] is the empirical expectation 1
n

∑
m x

(ν)
m,iym. This estimator

uses an unbiased estimator of β
(ν)
i for those i with large λi and thresholds to 0

for those i with small λi. Hence, the estimator lives in a finite dimensional space
(determined by the number of λi which are greater than 1 −

√
ε).

Theorem 2. Assume that E[y2|x] ≤ 1 and that Assumption 1 holds. Let d be
the number of λi for which λi ≥ 1 − √

ε. Let f̂ (ν) be the estimator constructed
with the threshold estimator (Equation 4) on training set T . For ν ∈ 1, 2, then

ET [loss(f̂ (ν))] − loss(f (ν)) ≤ 4
√

ε +
d

n

where expectation is with respect to the training set T sampled according to Dn.

Essentially, the above increases the bias to 4
√

ε and (potentially) decreases the
variance. Such a bound may be useful if we desire to explicitly keep β̂(ν) in a lower
dimensional space — in contrast, the explicit dimensionality of the shrinkage
estimator could be as large as |X |.

3.3 The Bias-Variance Tradeoff

This section provides lemmas for the proofs of the previous theorems. We char-
acterize the bias-variance tradeoff in this error analysis. First, a key technical
lemma is useful, for which the proof is provided in the Appendix.

Lemma 2. Let the representation of the best linear predictor f (ν) (defined in
Assumption 1) in the canonical basis B(ν) be

f (ν)(x(ν)) =
∑

i

β
(ν)
i x

(ν)
i (5)
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Assumption 1 implies that
∑

i

(1 − λi)
(
β

(ν)
i

)2

≤ 4ε

for ν ∈ {1, 2}.

This lemma shows how the weights (of an optimal linear predictor) cannot be too
large in coordinates with small canonical correlation coefficients. This is because
for those coordinates with small λi, the corresponding βi must be small enough
so that the bound is not violated. This lemma provides the technical motivation
for our algorithms.

Now let us review some useful properties of the square loss. Using the repre-
sentations of f (ν) and f defined in Equations 1 and 5, a basic fact for the square
loss with linear predictors is that

loss(f̂ (ν)) − loss(f (ν)) = ||β̂(ν) − β(ν)||22
where ||x||2 =

√∑
i x2

i . The expected regret can be decomposed as follows:

ET

[
||β̂(ν) − β(ν)||22

]
= ||ET [β̂(ν)] − β(ν)||22 + ET

[
||β̂(ν) − ET [β̂(ν)]||22

]
(6)

= ||ET [β̂(ν)] − β(ν)||22 +
∑

i

Var(β̂(ν)
i ) (7)

where the first term is the bias and the second is the variance.
The proof of Theorems 1 and 2 follow directly from the next two lemmas.

Lemma 3. (Bias-Variance for the Shrinkage Estimator) Under the precondi-
tions of Theorem 1, the bias is bounded as:

||ET [β̂(ν)] − β(ν)||22 ≤ 4ε

and the variance is bounded as:
∑

i

Var(β̂(ν)
i ) ≤

∑
i λ2

i

n

Proof. It is straightforward to see that:

β
(ν)
i = E[xiy]

which implies that
ET [β̂(ν)

i ] = λiβ
(ν)
i

Hence, for the bias term, we have:

||ET [β̂(ν)] − β(ν)||22 =
∑

i

(1 − λi)2(β
(ν)
i )2

≤
∑

i

(1 − λi)(β
(ν)
i )2

≤ 4ε
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We have for the variance

Var(β̂(ν)
i ) =

λ2
i

n
Var(x(ν)

i y)

≤ λ2
i

n
E[(x(ν)

i y)2]

=
λ2

i

n
E[(x(ν)

i )2E[y2|x]]

≤ λ2
i

n
E[(x(ν)

i )2]

=
λ2

i

n

The proof is completed by summing over i. 	

Lemma 4. (Bias-Variance for the Thresholded Estimator) Under the precondi-
tions of Theorem 2, the bias is bounded as:

||ET [β̂(ν)] − β(ν)||22 ≤ 4
√

ε

and the variance is bounded as:
∑

i

Var(β̂(ν)
i ) ≤ d

n

Proof. For those i such that λi ≥ 1 −
√

ε,

ET [β̂(ν)
i ] = β

(ν)
i

Let j be the index at which the thresholding begins to occur, i.e. it is the smallest
integer such that λj < 1 −

√
ε. Using that for i ≥ j, we have 1 < (1 − λj)/

√
ε ≤

(1 − λi)/
√

ε, so the bias can be bounded as follows:

||ET [β̂(ν)] − β(ν)||22 =
∑

i

(
ET [β̂(ν)

i ] − β
(ν)
i

)2

=
∑

i≥j

(β(ν)
i )2

≤
∑

i≥j

1 − λi√
ε

(β(ν)
i )2

≤ 1√
ε

∑

i

(1 − λi)(β
(ν)
i )2

≤ 4
√

ε

where the last step uses Lemma 2.
Analogous to the previous proof, for each i < j, we have:

Var(β̂(ν)
i ) ≤ 1

and there are d such i. 	
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4 Discussion

Why does unlabeled data help? Theorem 1 shows that the regret drops at a
uniform rate (down to ε). This rate is the intrinsic dimensionality,

∑
i λ2

i , divided
by the sample size n. Note that this intrinsic dimensionality is only a property
of the input distribution. Without the multi-view assumption (or working in
the single view case), the rate at which our error drops is governed by the
extrinsic dimensionality of x, which could be large (or countably infinite), making
this rate very slow without further assumptions. It is straightforward to see
that the intrinsic dimensionality is no greater than the extrinsic dimensionality
(since λi is bounded by 1), though it could be much less. The knowledge of the
covariance matrix of x allows us to compute the CCA basis and construct the
shrinkage estimator which has the improved converge rate based on the intrinsic
dimensionality. Such second order statistical knowledge can be provided by the
unlabeled data, such as in the transductive and fixed design settings.

Let us compare to a ridge regression algorithm (in the single view case), where
one apriori chooses a norm for regularization (such as an RKHS norm imposed
by a kernel). As discussed in Zhang [2005], this regularization governs the bias-
variance tradeoff. The regularization can significantly decrease the variance —
the variance drops as d

n where d is a notion of intrinsic dimensionality defined in
Zhang [2005]. However, the regularization also biases the algorithm to predictors
with small norm — there is no apriori reason that there exists a good predic-
tor with a bounded norm (under the pre-specified norm). In order to obtain a
reasonable convergence rate, it must also be the case that the best predictor (or
a good one) has a small norm under our pre-specified norm. In contrast, in the
multi-view case, the multi-view assumption implies that the bias is bounded —
recall that Lemma 3 showed that the bias was bounded by 4ε. Essentially, our
proof shows that the bias induced by using the special norm induced by CCA
(in Equation 3) is small.

Now it may be the case that we have apriori knowledge of what a good norm
is. However, learning the norm (or learning the kernel) is an important open
question. The multi-view setting provides one solution to this problem.

Can the bias be decreased to 0 asymptotically? Theorem 1 shows that
the error drops down to 4ε for large n. It turns out that we can not drive this
bias to 0 asymptotically without further assumptions, as the input space could
be infinite dimensional.

On obtaining high probability bounds. Clearly, stronger assumptions are
needed than just a bounded second moment to obtain high probability bounds
with concentration properties. For the fixed design setting, if y is bounded, then it
is straightforward to obtain high probability bounds through standard Chernoff
arguments. For the random transductive case, this assumption is not sufficient —
this is due to the additional randomness from x. Note that we cannot artificially
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impose a bound on x as the algorithm only depends on the subspace spanned
by X , so upper bounds have no meaning — note the algorithm scales X such
that it has an identity covariance matrix (e.g. E[x2

i ] = 1). However, if we have a
higher moment bound, say on the ratio of E[x4

i ]/E[x2
i ], then one could use the

Bennett bound can be used to obtain data dependent high probability bounds,
though providing these is beyond the scope of this paper.

Related Work. The most closely related multi-view learning algorithms are the
SVM-2K algorithm of Farquhar et al. [2005] and the co-regularized least squares
regression algorithm of Sindhwani et al. [2005]. Roughly speaking, both of these
algorithms try to find two hypothesis — h(1)(·), based on view one, and h(2)(·),
based on view two — which both have low training error and which tend to
agree with each other on unlabeled error, where the latter condition is enforced
by constraining h(1)(x(1)) to usually equal h(2)(x(2)) on an unlabeled data set.

The SVM-2K algorithm considers a classification setting and the algorithm
attempts to force agreement between the two hypothesis with slack variable style
constraints, common to SVM algorithms. While this algorithm is motivated by
kernel CCA and SVMs, the algorithm does not directly use kernel CCA, in
contrast to our algorithm, where CCA naturally provides a coordinate system.
The theoretical analysis in [Farquhar et al., 2005] argues that the Rademacher
complexity of the hypothesis space is reduced due to the agreement constraint
between the two views.

The multi-view approach to regression has been previously considered in
Sindhwani et al. [2005]. Here, they specify a co-regularized least squares regres-
sion algorithm, which is a ridge regression algorithm with an additional penalty
term which forces the two predictions, from both views, to agree. A theoretical
analysis of this algorithm is provided in Rosenberg and Bartlett [2007], which
shows that the Rademacher complexity of the hypothesis class is reduced by
forcing agreement.

Both of these previous analysis do not explicitly state a multi-view assump-
tion, so it hard to directly compare the results. In our setting, the multi-view re-
gret is explicitly characterized by ε. In a rather straightforward manner (without
appealing to Rademacher complexities), we have shown that the rate at which
the regret drops to 4ε is determined by the intrinsic dimensionality. Further-
more, both of these previous algorithms use an apriori specified norm over their
class of functions (induced by an apriori specified kernel), and the Rademacher
complexities (which are used to bound the convergence rates) depend on this
norm. In contrast, our framework assumes no norm — the norm over functions
is imposed by the correlation structure between the two views.

We should also note that their are close connections to those unsupervised
learning algorithms which attempt to maximize relevant information. The Imax
framework of Becker and Hinton [1992], Becker [1996] attempts to maximize in-
formation between two views x(1) and x(2), for which CCA is a special case (in a
continuous version). Subsequently, the information bottleneck provided a frame-
work for capturing the mutual information between two signals [Tishby et al.,
1999]. Here, the goal is to compress a signal x(1) such that it captures relevant
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information about another signal x(2). The framework here is unsupervised as
there is no specific supervised task at hand. For the case in which the joint distri-
bution of x(1) and x(2) is Gaussian, Chechik et al. [2003] completely characterizes
the compression tradeoffs for capturing the mutual information between these
two signals — CCA provides the coordinate system for this compression.

In our setting, we do not explicitly care about the mutual information between
x(1) and x(2) — performance is judged only by performance at the task at hand,
namely our loss when predicting some other variable y. However, as we show,
it turns out that these unsupervised mutual information maximizing algorithms
provide appropriate intuition for multi-view regression, as they result in CCA
as a basis.
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Appendix

We now provide the proof of Lemma 1

Proof (of Lemma 1). Let β(ν) be the weights for f (ν) and let β be the weights
of f in some basis. Let β(ν) · x(ν) and β · x be the representation of f (ν) and f
in this basis. By Assumption 1

ε ≥ E(β(ν) · x(ν) − y)2 − E(β · x − y)2

= E(β(ν) · x(ν) − β · x + β · x − y)2 − E(β · x − y)2

= E(β(ν) · x(ν) − β · x)2 − 2E[(β(ν) · x(ν) − β · x)(β · x − y)]

Now the “normal equations” for β (the first derivative conditions for the optimal
linear predictor β) states that for each i:

E[xi(β · x − y)] = 0

where xi is the i component of x. This implies that both

E[β · x(β · x − y)] = 0
E[β(ν) · x(ν)(β · x − y)] = 0

where the last equation follows since x(ν) has components in x.
Hence,

E[(β(ν) · x(ν) − β · x)(β · x − y)] = 0

and we have shown that:

E(β(1) · x(1) − β · x)2 ≤ ε

E(β(2) · x(2) − β · x)2 ≤ ε
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The triangle inequality states that:

E(β(1) · x(1) − β(2) · x)2

≤
(√

E(β(1) · x(1) − β · x)2 +
√

E(β(2) · x(2) − β · x)2
)2

≤ (2
√

ε)2

which completes the proof. 	


Below is the proof of Lemma 2.

Proof (of Lemma 2). From Lemma 1, we have:

4ε ≥ E

[
(β(1) · x(1) − β(2) · x(2))2

]

=
∑

i

(
(β(1)

i )2 + (β(2)
i )2 − 2λiβ

(1)
i β

(2)
i

)

=
∑

i

(
(1 − λi)(β

(1)
i )2 + (1 − λi)(β

(2)
i )2 + λi((β

(1)
i )2 + (β(2)

i )2 − 2β
(1)
i β

(2)
i )

)

=
∑

i

(
(1 − λi)(β

(1)
i )2 + (1 − λi)(β

(2)
i )2 + λi(β

(1)
i − β

(2)
i )2

)

≥
∑

i

(
(1 − λi)(β

(1)
i )2 + (1 − λi)(β

(2)
i )2

)

≥
∑

i

(1 − λi)(β
(ν)
i )2

where the last step holds for either ν = 1 or ν = 2. 	
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Abstract. In the present paper, we study the problem of aggregation
under the squared loss in the model of regression with deterministic
design. We obtain sharp oracle inequalities for convex aggregates defined
via exponential weights, under general assumptions on the distribution
of errors and on the functions to aggregate. We show how these results
can be applied to derive a sparsity oracle inequality.

1 Introduction

Consider the regression model

Yi = f(xi) + ξi, i = 1, . . . , n, (1)

where x1, . . . , xn are given elements of a set X , f : X → R is an unknown
function, and ξi are i.i.d. zero-mean random variables on a probability space
(Ω, F , P ) where Ω ⊆ R. The problem is to estimate the function f from the
data Dn = ((x1, Y1), . . . , (xn, Yn)).

Let (Λ, A) be a probability space and denote by PΛ the set of all probability
measures defined on (Λ, A). Assume that we are given a family {fλ, λ ∈ Λ}
of functions fλ : X → R such that the mapping λ �→ fλ is measurable, R

being equipped with the Borel σ-field. Functions fλ can be viewed either as
weak learners or as some preliminary estimators of f based on a training sample
independent of Y � (Y1, . . . , Yn) and considered as frozen.

We study the problem of aggregation of functions in {fλ, λ ∈ Λ} under the
squared loss. Specifically, we construct an estimator f̂n based on the data Dn

and called aggregate such that the expected value of its squared error

‖f̂n − f‖2
n � 1

n

n∑

i=1

(
f̂n(xi) − f(xi)

)2

is approximately as small as the oracle value infλ∈Λ ‖f − fλ‖2
n.

In this paper we consider aggregates that are mixtures of functions fλ with
exponential weights. For a measure π from PΛ and for β > 0 we set

f̂n(x) �
∫

Λ

θλ(β, π,Y)fλ(x)π(dλ), x ∈ X , (2)

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 97–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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with

θλ(β, π,Y) =
exp

{
− n‖Y − fλ‖2

n/β
}

∫
Λ exp

{
− n‖Y − fw‖2

n/β
}
π(dw)

(3)

where ‖Y − fλ‖2
n � 1

n

∑n
i=1

(
Yi − fλ(xi)

)2 and we assume that π is such that
the integral in (2) is finite.

Note that f̂n depends on two tuning parameters: the prior measure π and the
“temperature” parameter β. They have to be selected in a suitable way.

Using the Bayesian terminology, π(·) is a prior distribution and f̂n is the
posterior mean of fλ in a “phantom” model Yi = fλ(xi) + ξ′i, where ξ′i are iid
normally distributed with mean 0 and variance β/2.

The idea of mixing with exponential weights has been discussed by many
authors apparently since 1970-ies (see [27] for a nice overview of the subject).
Most of the work focused on the important particular case where the set of esti-
mators is finite, i.e., w.l.o.g. Λ = {1, . . . , M}, and the distribution π is uniform
on Λ. Procedures of the type (2)–(3) with general sets Λ and priors π came
into consideration quite recently [9,8,3,29,30,1,2,25], partly in connection to the
PAC-Bayesian approach. For finite Λ, procedures (2)–(3) were independently in-
troduced for prediction of deterministic individual sequences with expert advice.
Representative work and references can be found in [24,17,11]; in this framework
the results are proved for cumulative loss and no assumption is made on the
statistical nature of the data, whereas the observations Yi are supposed to be
uniformly bounded by a known constant. This is not the case for the regression
model that we consider here.

We mention also related work on cumulative exponential weighting methods:
there the aggregate is defined as the average n−1

∑n
k=1 f̂k. For regression models

with random design, such procedures are introduced and analyzed in [8], [9]
and [26]. In particular, [8] and [9] establish a sharp oracle inequality, i.e., an
inequality with leading constant 1. This result is further refined in [3] and [13].
In addition, [13] derives sharp oracle inequalities not only for the squared loss
but also for general loss functions. However, these techniques are not helpful in
the framework that we consider here, because the averaging device cannot be
meaningfully adapted to models with non-identically distributed observations.

Aggregate f̂n can be computed on-line. This, in particular, motivated its use
for on-line prediction with finite Λ. Papers [13], [14] point out that f̂n and its
averaged version can be obtained as a special case of mirror descent algorithms
that were considered earlier in deterministic minimization. Finally, [10] estab-
lishes an interesting link between the results for cumulative risks proved in the
theory of prediction of deterministic sequences and generalization error bounds
for the aggregates in the stochastic i.i.d. case.

In this paper we establish sharp oracle inequalities for the aggregate f̂n under
the squared loss, i.e., oracle inequalities with leading constant 1 and optimal rate
of the remainder term. For a particular case, such an inequality has been pio-
neered in [16]. The result of [16] is proved for a finite set Λ and Gaussian errors.
It makes use of Stein’s unbiased risk formula, and gives a very precise constant
in the remainder term of the inequality. The inequalities that we prove below are
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valid for general Λ and arbitrary functions fλ satisfying some mild conditions.
Furthermore, we treat non-Gaussian errors. We introduce new techniques of the
proof based on dummy randomization which allows us to obtain the result for
“n-divisible” distributions of errors ξi. We then apply the Skorokhod embedding
to cover the class of all symmetric error distributions with finite exponential
moments. Finally, we consider the case where fλ is a linear combination of M
known functions with the vector of weights λ ∈ R

M . For this case, as a conse-
quence of our main result we obtain a sparsity oracle inequality (SOI). We refer
to [22] where the notion of SOI is introduced in a general context. Examples of
SOI are proved in [15,5,4,6,23]. In particular, [5] deals with the regression model
with fixed design that we consider here and proves approximate SOI for BIC
type and Lasso type aggregates. We show that the aggregate with exponential
weights satisfies a sharp SOI, i.e., a SOI with leading constant 1.

2 Risk Bounds for n-Divisible Distributions of Errors

The assumptions that we need to derive our main result concern essentially the
probability distribution of the i.i.d. errors ξi.
(A) There exist i.i.d. random variables ζ1, . . . , ζn defined on an enlargement of

the probability space (Ω, F , P ) such that:
(A1) the random variable ξ1 + ζ1 has the same distribution as (1 + 1/n)ξ1,
(A2) the vectors ζ = (ζ1, . . . , ζn) and ξ = (ξ1, . . . , ξn) are independent.

Note that (A) is an assumption on the distribution of ξ1. If ξ1 satisfies (A1),
then we will say that its distribution is n-divisible. We defer to Section 4 the
discussion about how rich is the class of n-divisible distributions.

Hereafter, we will write for brevity θλ instead of θλ(β, π,Y). Denote by P ′
Λ

the set of all the measures μ ∈ PΛ such that λ �→ fλ(x) is integrable w.r.t. μ
for x ∈ {x1, . . . , xn}. Clearly P ′

Λ is a convex subset of PΛ. For any measure
μ ∈ P ′

Λ we define

f̄μ(xi) =
∫

Λ

fλ(xi)μ(dλ), i = 1, . . . , n.

We denote by θ ·π the probability measure A �→
∫

A θλ π(dλ) defined on A. With
the above notation, we have f̂n = f̄θ·π.

We will need one more assumption. Let Lζ : R → R ∪ {∞} be the moment
generating function of the random variable ζ1, i.e., Lζ(t) = E(etζ1), t ∈ R.
(B) There exist a functional Ψβ : P ′

Λ × P ′
Λ → R and a real number β0 > 0

such that
⎧
⎪⎪⎨

⎪⎪⎩

e(‖f−f̄μ′‖2
n−‖f−f̄μ‖2

n)/β
∏n

i=1 Lζ

(
2(f̄μ(xi)−f̄μ′ (xi))

β

)
≤ Ψβ(μ, μ′),

μ �→ Ψβ(μ, μ′) is concave and continuous in the total
variation norm for any μ′ ∈ P ′

Λ,

Ψβ(μ, μ) = 1, (4)

for any β ≥ β0.
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Simple sufficient conditions for this assumption to hold in particular cases are
given in Section 4.

The next theorem presents a “PAC-Bayesian” type bound.

Theorem 1. Let π be an element of PΛ such that θ · π ∈ P ′
Λ for all Y ∈ R

n

and β > 0. If assumptions (A) and (B) are fulfilled, then the aggregate f̂n defined
by (2) with β ≥ β0 satisfies the oracle inequality

E
(
‖f̂n − f‖2

n

)
≤

∫

‖fλ − f‖2
n p(dλ) +

β K(p, π)
n + 1

, ∀ p ∈ PΛ, (5)

where K(p, π) stands for the Kullback-Leibler divergence between p and π.

Proof. Define the mapping H : P ′
Λ → R

n by

Hμ = (f̄μ(x1) − f(x1), . . . , f̄μ(xn) − f(xn))�, μ ∈ P ′
Λ.

For brevity, we will write

hλ = Hδλ
= (fλ(x1) − f(x1), . . . , fλ(xn) − f(xn))�, λ ∈ Λ,

where δλ is the Dirac measure at λ (that is δλ(A) = 1l(λ ∈ A) for any A ∈ A
where 1l(·) denotes the indicator function).

Since E(ξi) = 0, assumption (A1) implies that E(ζi) = 0 for i = 1, . . . , n. On
the other hand, (A2) implies that ζ is independent of θλ. Therefore, we have

E
(
‖f̄θ·π − f‖2

n

)
= βE log exp

{‖f̄θ·π − f‖2
n − 2ζ�Hθ·π
β

}
= S + S1

where

S = −βE log
∫

Λ

θλ exp
{

− ‖fλ − f‖2
n − 2ζ�hλ

β

}
π(dλ),

S1 = βE log
∫

Λ

θλ exp
{‖f̄θ·π − f‖2

n − ‖fλ − f‖2
n + 2ζ�(hλ − Hθ·π)

β

}
π(dλ).

The definition of θλ yields

S = −βE log
∫

Λ

exp
{

− n‖Y − fλ‖2
n + ‖fλ − f‖2

n − 2ζ�hλ

β

}
π(dλ)

+ βE log
∫

Λ

exp
{

− n‖Y − fλ‖2
n

β

}
π(dλ). (6)

Since ‖Y − fλ‖2
n = ‖ξ‖2

n − 2n−1ξ�hλ + ‖fλ − f‖2
n, we get

S = −βE log
∫

Λ

exp
{

− (n + 1)‖fλ − f‖2
n − 2(ξ + ζ)�hλ

β

}
π(dλ)

+ βE log
∫

Λ

exp
{

− n‖f − fλ‖2
n − 2ξ�hλ

β

}
π(dλ)

= βE log
∫

Λ

e−nρ(λ)π(dλ) − βE log
∫

Λ

e−(n+1)ρ(λ)π(dλ), (7)
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where we used the notation ρ(λ) = (‖f −fλ‖2
n −2n−1ξ�hλ)/β and the fact that

ξ+ζ can be replaced by (1+1/n)ξ inside the expectation. The Hölder inequality
implies that

∫
Λ e−nρ(λ)π(dλ) ≤ (

∫
Λ e−(n+1)ρ(λ)π(dλ))

n
n+1 . Therefore,

S ≤ − β

n + 1
E log

∫

Λ

e−(n+1)ρ(λ) π(dλ). (8)

Assume now that p ∈ PΛ is absolutely continuous with respect to π. Denote
by φ the corresponding Radon-Nikodym derivative and by Λ+ the support of p.
Using the concavity of the logarithm and Jensen’s inequality we get

−E log
∫

Λ

e−(n+1)ρ(λ)π(dλ) ≤ −E log
∫

Λ+

e−(n+1)ρ(λ)π(dλ)

= −E log
∫

Λ+

e−(n+1)ρ(λ)φ−1(λ) p(dλ)

≤ (n + 1)E
∫

Λ+

ρ(λ) p(dλ) +
∫

Λ+

log φ(λ) p(dλ).

Noticing that the last integral here equals to K(p, π) and combining the resulting
inequality with (8) we obtain

S ≤ βE

∫

Λ

ρ(λ) p(dλ) +
β K(p, π)

n + 1
.

Since E(ξi) = 0 for every i = 1, . . . , n, we have βE(ρ(λ)) = ‖fλ −f‖2
n, and using

the Fubini theorem we find

S ≤
∫

Λ

‖fλ − f‖2
n p(dλ) +

β K(p, π)
n + 1

. (9)

Note that this inequality also holds in the case where p is not absolutely contin-
uous with respect to π, since in this case K(p, π) = ∞.

To complete the proof, it remains to show that S1 ≤ 0. Let Eξ(·) denote the
conditional expectation E(·|ξ). By the concavity of the logarithm,

S1 ≤ βE log
∫

Λ

θλEξ exp
{‖f̄θ·π − f‖2

n − ‖fλ − f‖2
n + 2ζ�(hλ − Hθ·π)

β

}
π(dλ).

Since fλ = f̄δλ
and ζ is independent of θλ, the last expectation on the right hand

side of this inequality is bounded from above by Ψβ(δλ, θ ·π). Now, the fact that
S1 ≤ 0 follows from the concavity and continuity of the functional Ψβ(·, θ · π),
Jensen’s inequality and the equality Ψβ(θ · π, θ · π) = 1.

Remark. Another way to read the result of Theorem 1 is that, if the probabilistic
“phantom” Gaussian error model is used to construct f̂n, with variance taken
larger than a certain threshold value, then the Bayesian posterior mean under
the true model is close in expectation to the best prediction, even when the true
data generating distribution does not have Gaussian errors, but errors of more
general type.
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3 Model Selection with Finite or Countable Λ

Consider now the particular case where Λ is countable. W.l.o.g. we suppose that
Λ = {1, 2, . . .}, {fλ, λ ∈ Λ} = {fj}∞j=1 and we set πj � π(λ = j). As a corollary
of Theorem 1 we get the following sharp oracle inequalities for model selection
type aggregation.

Theorem 2. Assume that π is an element of PΛ such that θ · π ∈ P ′
Λ for

all Y ∈ R
n and β > 0. Let assumptions (A) and (B) be fulfilled and let Λ be

countable. Then for any β ≥ β0 the aggregate f̂n satisfies the inequality

E
(
‖f̂n − f‖2

n

)
≤ inf

j≥1

(

‖fj − f‖2
n +

β log π−1
j

n + 1

)

.

In particular, if πj = 1/M , j = 1, . . . , M , we have

E
(
‖f̂n − f‖2

n

)
≤ min

j=1,...,M
‖fj − f‖2

n +
β log M

n + 1
. (10)

Proof. For a fixed integer j0 ≥ 1 we apply Theorem 1 with p being the Dirac
measure: p(λ = j) = 1l(j = j0), j ≥ 1. This gives

E
(
‖f̂n − f‖2

n

)
≤ ‖fj0 − f‖2

n +
β log π−1

j0

n + 1
.

Since this inequality holds for every j0, we obtain the first inequality of the
proposition. The second inequality is an obvious consequence of the first one.

Remark. The rate of convergence (log M)/n obtained in (10) is optimal rate of
model selection type aggregation when the errors ξi are Gaussian [21,5].

4 Checking Assumptions (A) and (B)

In this section we give some sufficient conditions for assumptions (A) and (B).
Denote by Dn the set of all probability distributions of ξ1 satisfying assumption
(A1). First, it is easy to see that all zero-mean Gaussian or double-exponential
distributions belong to Dn. Furthermore, Dn contains all stable distributions.
However, since non-Gaussian stable distributions do not have second order mo-
ments, they do not satisfy (4). One can also check that the convolution of
two distributions from Dn belongs to Dn. Finally, note that the intersection
D = ∩n≥1Dn is included in the set of all infinitely divisible distributions and is
called the L-class (see [19], Theorem 3.6, p. 102).

However, some basic distributions such as the uniform or the Bernoulli dis-
tribution do not belong to Dn. To show this, let us recall that the characteristic
function of the uniform on [−a, a] distribution is given by ϕ(t) = sin(at)/(πat).
For this function, ϕ((n + 1)t)/ϕ(nt) is equal to infinity at the points where
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sin(nat) vanishes (unless n = 1). Therefore, it cannot be a characteristic func-
tion. Similar argument shows that the centered Bernoulli and centered binomial
distributions do not belong to Dn.

We now discuss two important cases of Theorem 1 where the errors ξi are
either Gaussian or double exponential.

Proposition 1. Assume that supλ∈Λ ‖f − fλ‖n ≤ L < ∞. If the random vari-
ables ξi are i.i.d. Gaussian N (0, σ2), σ2 > 0, then for every β ≥ (4+2/n)σ2+2L2

the aggregate f̂n satisfies inequality (5).

Proof. If ξi ∼ N (0, σ2), assumption (A) is fulfilled with random variables ζi hav-
ing the Gaussian distribution N (0, (2n+1)σ2/n2). Using the Laplace transform
of the Gaussian distribution we get Lζ(u) = exp(σ2u2(2n+1)/(2n2)). Therefore,
take

Ψβ(μ, μ′) = exp
(

‖f − f̄μ′‖2
n − ‖f − f̄μ‖2

n

β
+

2σ2(2n + 1)‖f̄μ − f̄μ′‖2
n

nβ2

)

.

This functional satisfies Ψβ(μ, μ) = 1, and it is not hard to see that the mapping
μ �→ Ψβ(μ, μ′) is continuous in the total variation norm. Finally, this mapping
is concave for every β ≥ (4 + 2/n)σ2 + 2 supλ ‖f − fλ‖2

n by virtue of Lemma 3
in the Appendix. Therefore, assumption (B) is fulfilled and the desired result
follows from Theorem 1.

Assume now that ξi are distributed with the double exponential density

fξ(x) =
1√
2σ2

e−
√

2|x|/σ, x ∈ R.

Aggregation under this assumption is discussed in [28] where it is recommended
to modify the shape of the aggregate in order to match the shape of the distri-
bution of the errors. The next proposition shows that sharp risk bounds can be
obtained without modifying the algorithm.

Proposition 2. Assume that supλ∈Λ ‖f − fλ‖n ≤ L < ∞ and supi,λ |fλ(xi)| ≤
L̄ < ∞. Let the random variables ξi be i.i.d. double exponential with variance
σ2 > 0. Then for any β larger than

max
((

8 +
4
n

)

σ2 + 2L2, 4σ

(

1 +
1
n

)

L̄

)

the aggregate f̂n satisfies inequality (5).

Proof. We apply Theorem 1. The characteristic function of the double exponen-
tial density is ϕ(t) = 2/(2+ σ2t2). Solving ϕ(t)ϕζ(t) = ϕ((n + 1)t/n) we get the
characteristic function ϕζ of ζ1. The corresponding Laplace transform Lζ in this
case is Lζ(t) = ϕζ(−it), which yields

Lζ(t) = 1 +
(2n + 1)σ2t2

2n2 − (n + 1)2σ2t2
.
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Therefore
log Lζ(t) ≤ (2n + 1)(σt/n)2, |t| ≤ n

(n + 1)σ
.

We now use this inequality to check assumption (B). For all μ, μ′ ∈ PΛ we have

2
∣
∣f̄μ(xi) − f̄μ′(xi)

∣
∣/β ≤ 4L̄/β, i = 1, . . . , n.

Therefore, for β > 4σ
(
1 + 1/n

)
L̄ we get

log Lζ

(

2
∣
∣f̄μ(xi) − f̄μ′(xi)

∣
∣/β

)

≤ 4σ2(2n + 1)(f̄μ(xi) − f̄μ′(xi))2

nβ2
.

Thus, we get the functional Ψβ of the same form as in the proof of Proposition 1,
with the only difference that σ2 is now replaced by 2σ2. Therefore, it suffices to
repeat the reasoning of the proof of Proposition 1 to complete the proof.

5 Risk Bounds for General Distributions of Errors

As discussed above, assumption (A) restricts the application of Theorem 1 to mod-
els with “n-divisible” errors. We now show that this limitation can be dropped.
Recall that the main idea of the proof of Theorem 1 consists in an artificial intro-
duction of the dummy random vector ζ independent of ξ. However, the indepen-
dence property is too strong as compared to what we really need in the proof of
Theorem 1. Below we come to a weaker condition invoking a version of Skorokhod
embedding (a detailed survey on this subject can be found in [18]).

For simplicity we assume that the errors ξi are symmetric, i.e., P (ξi > a) =
P (ξi < −a) for all a ∈ R. The argument can be adapted to the asymmetric case
as well, but we do not discuss it here.

We now describe a version of Skorokhod’s construction that will be used below,
cf. [20, Proposition II.3.8].

Lemma 1. Let ξ1, . . . , ξn be i.i.d. symmetric random variables on (Ω, F , P ).
Then there exist i.i.d. random variables ζ1, . . . , ζn defined on an enlargement of
the probability space (Ω, F , P ) such that

(a) ξ + ζ has the same distribution as (1 + 1/n)ξ.
(b) E(ζi|ξi) = 0, i = 1, . . . , n,
(c) for any λ > 0 and for any i = 1, . . . , n, we have

E(eλζi |ξi) ≤ e(λξi)
2(n+1)/n2

.

Proof. Define ζi as a random variable such that, given ξi, it takes values ξi/n or
−2ξi−ξi/n with conditional probabilities P (ζi = ξi/n|ξi) = (2n+1)/(2n+2) and
P (ζi = −2ξi − ξi/n|ξi) = 1/(2n + 2). Then properties (a) and (b) are straight-
forward. Property (c) follows from the relation

E(eλζi |ξi) = e
λξi
n

(

1 +
1

2n + 2
(
e−2λξi(1+1/n) − 1

)
)

and Lemma 2 in the Appendix with x = λξi/n and α = 2n + 2.
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We now state the main result of this section.

Theorem 3. Fix some α > 0 and assume that supλ∈Λ ‖f − fλ‖n ≤ L for a
finite constant L. If the errors ξi are symmetric and have a finite second moment
E(ξ2

i ), then for any β ≥ 4(1 + 1/n)α + 2L2 we have

E
(
‖f̂n − f‖2

n

)
≤

∫

Λ

‖fλ − f‖2
n p(dλ) +

β K(p, π)
n + 1

+ Rn, ∀ p ∈ PΛ, (11)

where the residual term Rn is given by

Rn = E∗
(

sup
λ∈Λ

n∑

i=1

4(n + 1)(ξ2
i − α)(fλ(xi) − f̄θ·π(xi))2

n2β

)

and E∗ denotes expectation with respect to the outer probability P ∗.

Proof. In view of Lemma 1(b) the conditional expectation of random variable
ζi given θλ vanishes. Therefore, with the notation of the proof of Theorem 1,
we get E(‖f̂n − f‖2

n) = S + S1. Using Lemma 1(a) and acting exactly as in the
proof of Theorem 1 we get that S is bounded as in (9). Finally, as shown in the
proof of Theorem 1 the term S1 satisfies

S1 ≤ βE log
∫

Λ

θλEξ exp
{‖f̄θ·π − f‖2

n − ‖fλ − f‖2
n + 2ζ�(hλ − Hθ·π)

β

}
π(dλ).

According to Lemma 1(c),

Eξ

(
e2ζT (hλ−Hθ·π)/β

)
≤ exp

{ n∑

i=1

4(n + 1)(fλ(xi) − f̄θ·π(xi))2ξ2
i

n2β2

}

.

Therefore, S1 ≤ S2 + Rn, where

S2 = βE log
∫

Λ

θλexp
(4α(n + 1)‖fλ − f̄θ·π‖2

n

nβ2
−‖f − fλ‖2

n − ‖f − f̄θ·π‖2
n

β

)
π(dλ).

Finally, we apply Lemma 3 with s2 = 4α(n + 1) and Jensen’s inequality to get
that S2 ≤ 0.

Corollary 1. Let the assumptions of Theorem 3 be satisfied and let |ξi| ≤ B

almost surely where B is a finite constant. Then the aggregate f̂n satisfies in-
equality (5) for any β ≥ 4B2(1 + 1/n) + 2L2.

Proof. It suffices to note that for α = B2 we get Rn ≤ 0.

Corollary 2. Let the assumptions of Theorem 3 be satisfied and suppose that
E(et|ξi|κ) ≤ B for some finite constants t > 0, κ > 0, B > 0. Then for any
n ≥ e2/κ and any β ≥ 4(1 + 1/n)(2(logn)/t)1/κ + 2L2 we have

E
(
‖f̂n − f‖2

n

)
≤

∫

Λ

‖fλ − f‖2
n p(dλ) +

β K(p, π)
n + 1

(12)

+
16BL2(n + 1)(2 logn)2/κ

n2β t2/κ
, ∀ p ∈ PΛ.
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In particular, if Λ = {1, . . . , M} and π is the uniform measure on Λ we get

E
(
‖f̂n − f‖2

n

)
≤ min

j=1,...,M
‖fj − f‖2

n +
β log M

n + 1
(13)

+
16BL2(n + 1)(2 log n)2/κ

n2β t2/κ
.

Proof. Set α = (2(log n)/t)1/κ and note that

Rn ≤ 4(n + 1)
n2β

sup
λ∈Λ,μ∈P′

Λ

‖fλ − f̄μ‖2
n

n∑

i=1

E(ξ2
i − α)+ ≤ 16L2(n + 1)

nβ
E(ξ2

1 − α)+

where a+ = max(0, a). For any x ≥ (2/(tκ))1/κ the function x2e−txκ

is decreas-
ing. Therefore, for any n ≥ e2/κ we have x2e−txκ ≤ α2e−tακ

= α2/n2, as soon
as x ≥ α. Hence, E(ξ2

1 − α)+ ≤ Bα2/n2 and the desired inequality follows.

Remark. Corollary 2 shows that if the tails of the errors have exponential decay
and β is of the order (log n)1/κ which minimizes the remainder term, then the
rate of convergence in the oracle inequality (13) is of the order (log n)

1
κ (log M)/n.

In the case κ = 1, comparing our result with the risk bound obtained in [13]
for averaged algorithm in random design regression, we see that an extra log n
multiplier appears. We conjecture that this deterioration is due to the technique
of the proof and probably can be removed.

6 Sparsity Oracle Inequality

Let φ1, . . . , φM be some functions from X to R. Consider the case where Λ ⊆ R
M

and fλ =
∑

j λjφj , λ = (λ1, . . . , λM ). For λ ∈ R
M denote by J(λ) the set of indi-

ces j such that λj �= 0, and set M(λ) � Card(J(λ)). For any τ > 0, 0 < L0 ≤ ∞,
define the probability densities

q0(t) =
3

2(1 + |t|)4 , ∀t ∈ R,

q(λ) =
1
C0

M∏

j=1

τ−1 q0

(
λj/τ

)
1l(‖λ‖ ≤ L0), ∀λ ∈ R

M ,

where C0 = C0(τ, M, L0) is the normalizing constant and ‖λ‖ stands for the
Euclidean norm of λ ∈ R

M .
Sparsity oracle inequalities (SOI) are oracle inequalities bounding the risk in

terms of the sparsity index M(λ) or similar characteristics. The next theorem
provides a general tool to derive SOI from the “PAC-Bayesian” bound (5). Note
that in this theorem f̂n is not necessarily defined by (2). It can be any procedure
satisfying (5).
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Theorem 4. Let f̂n satisfy (5) with π(dλ) = q(λ) dλ and τ ≤ δL0/
√

M where
0 < L0 ≤ ∞, 0 < δ < 1. Assume that Λ contains the ball {λ ∈ R

M : ‖λ‖ ≤ L0}.
Then for all λ∗ such that ‖λ∗‖ ≤ (1 − δ)L0 we have

E
(
‖f̂n − f‖2

n

)
≤ ‖fλ∗ − f‖2

n +
4β

n + 1

∑

j∈J(λ∗)

log(1 + τ−1|λ∗
j |) + R(M, τ, L0, δ),

where the residual term is

R(M, τ, L0, δ) = τ2e2τ3M5/2(δL0)
−3

M∑

j=1

‖φj‖2
n +

2βτ3M5/2

(n + 1)δ3L3
0

for L0 < ∞ and R(M, τ, ∞, δ) = τ2
∑M

j=1 ‖φj‖2
n.

Proof. We apply Theorem 1 with p(dλ) = C−1
λ∗ q(λ − λ∗)1l(‖λ − λ∗‖ ≤ δL0) dλ,

where Cλ∗ is the normalizing constant. Using the symmetry of q and the fact
that fλ − fλ∗ = fλ−λ∗ = −fλ∗−λ we get

∫

Λ

〈fλ∗ − f, fλ − fλ∗〉n p(dλ) = C−1
λ∗

∫

‖w‖≤δL0

〈fλ∗ − f, fw〉n q(w) dw = 0.

Therefore
∫

Λ ‖fλ − f‖2
n p(dλ) = ‖fλ∗ − f‖2

n +
∫

Λ ‖fλ − fλ∗‖2
n p(dλ). On the other

hand, bounding the indicator 1l(‖λ− λ∗‖ ≤ δL0) by one and using the identities∫
R

q0(t) dt =
∫

R
t2q0(t) dt = 1, we obtain

∫

Λ

‖fλ − fλ∗‖2
n p(dλ) ≤ 1

C0Cλ∗

M∑

j=1

‖φj‖2
n

∫

R

w2
j

τ
q0

(wj

τ

)
dwj =

τ2
∑M

j=1 ‖φj‖2
n

C0Cλ∗
.

Since 1 − x ≥ e−2x for all x ∈ [0, 1/2], we get

Cλ∗C0 =
1

τM

∫

‖λ‖≤δL0

{ M∏

j=1

q0

(λj

τ

)}
dλ ≥ 1

τM

M∏

j=1

{∫

|λj |≤ δL0√
M

q0

(λj

τ

)
dλj

}

=
( ∫ δL0/τ

√
M

0

3dt

(1 + t)4

)M

=
(

1 − 1
(1 + δL0τ−1M−1/2)3

)M

≥ exp
(

− 2M

(1 + δL0τ−1M−1/2)3
)

≥ exp(−2τ3M5/2(δL0)−3).

On the other hand, in view of the inequality 1 + |λj/τ | ≤ (1 + |λ∗
j/τ |)(1 + |λj −

λ∗
j |/τ) the Kullback-Leibler divergence between p and π is bounded as follows:

K(p, π) =
∫

RM

log
(

C−1
λ∗ q(λ − λ∗)

q(λ)

)

p(dλ) ≤ 4
M∑

j=1

log(1 + |τ−1λ∗
j |) − log Cλ∗ .

Easy computation yields C0 ≤ 1. Therefore Cλ∗ ≥ C0Cλ∗ ≥ exp(− 2τ3M5/2

(δL0)3 ) and
the desired result follows.

We now discuss a consequence of the obtained inequality in the case where the
errors are Gaussian. Let us denote by Φ the Gram matrix associated to the family



108 A.S. Dalalyan and A.B. Tsybakov

(φj)j=1,...,M , i.e., M ×M matrix with entries Φj,j′ = n−1
∑n

i=1 φj(xi)φj′ (xi) for
every j, j′ ∈ {1, . . . , M}. We denote by λmax(Φ) the maximal eigenvalue of Φ. In
what follows, for every x > 0, we write log+ x = (log x)+.

Corollary 3. Let f̂n be defined by (2) with π(dλ) = q(λ) dλ and let τ = δL0
M

√
n

with 0 < L0 < ∞, 0 < δ < 1. Let ξi be i.i.d. Gaussian N (0, σ2) with σ2 > 0,
λmax(Φ) ≤ K2, ‖f‖n ≤ L̄ and let β ≥ (4 + 2n−1)σ2 + 2L2 with L = L̄ + L0K.
Then for all λ∗ ∈ R

M such that ‖λ∗‖ ≤ (1 − δ)L0 we have

E
[
‖f̂n − f‖2

n

]
≤ ‖fλ∗ − f‖2

n +
4β

n + 1

[
M(λ∗)

(
1+ log+

{M
√

n

δL0

})
+

∑

J(λ∗)

log+ |λ∗
j |

]

+
C

nM1/2 min(M1/2, n3/2)
,

where C is a positive constant independent of n, M and λ∗.

Proof. We apply Theorem 4 with Λ = {λ ∈ R
M : ‖λ‖ ≤ L0}. We need to check

that f̂n satisfies (5). This is indeed the case in view of Proposition 1 and the
inequalities ‖fλ − f‖n ≤ ‖f‖n +

√
λ�Φλ ≤ L̄ + K‖λ‖ ≤ L. Thus we have

E
(
‖f̂n − f‖2

n

)
≤ ‖fλ∗ − f‖2

n +
4β

n + 1

∑

j∈J(λ∗)

log(1 + τ−1|λ∗
j |) + R(M, τ, L0, δ),

with R(M, τ, L0, δ) as in Theorem 4. One easily checks that log(1 + τ−1|λ∗
j |) ≤

1 + log+(τ−1|λ∗
j |) ≤ 1 + log+(τ−1) + log+(|λ∗

j |). Hence, the desired inequality
follows from

R(M, τ, L0, δ) = (δL0)
2

M2n e2M−3n−3/2M5/2 ∑M
j=1 ‖φj‖2

n + 2βM5/2

(n+1)M3n3/2

≤ (δL0)
2MK2e2

M2n + 2β
(n+1)M1/2n3/2 ≤ C

nM1/2 min(M1/2,n3/2)
.

Remark. The result of Corollary 3 can be compared with the SOI obtained for
other procedures [5,6,7]. These papers impose heavy restrictions on the Gram ma-
trix Φ either in terms of the coherence introduced in [12] or analogous local charac-
teristics. Our result is not of that kind: we need only that the maximal eigenvalue
of Φ were bounded. On the other hand, we assume that the oracle vector λ∗ be-
longs to a ball of radius < L0 in �2 with known L0. This assumption is not very
restrictive in the sense that the �2 constraint is weaker than the �1 constraint that
is frequently imposed. Moreover, the structure of our oracle inequality is such that
we can consider slowly growing L0, without seriously damaging the result.
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http://www.stat.fsu.edu/~flori
http://www.stat.fsu.edu/~wegkamp
http://www.proba.jussieu.fr/mathdoc/preprints/index.html#1999
https://hal.ccsd.cnrs.fr/ccsd-00014097


110 A.S. Dalalyan and A.B. Tsybakov

24. Vovk, V.: Aggregating Strategies. In: Proceedings of the 3rd Annual Workshop
on Computational Learning Theory, COLT1990, pp. 371–386. Morgan Kaufmann,
San Francisco, CA (1990)

25. Vovk, V.: Competitive on-line statistics. International Statistical Review 69, 213–
248 (2001)

26. Yang, Y.: Combining different procedures for adaptive regression. Journal of Mul-
tivariate Analysis 74, 135–161 (2000)

27. Yang, Y.: Adaptive regression by mixing. Journal of the American Statistical As-
sociation 96, 574–588 (2001)

28. Yang, Y.: Regression with multiple candidate models: selecting or mixing? Statist.
Sinica 13, 783–809 (2003)

29. Zhang, T.: From epsilon-entropy to KL-complexity: analysis of minimum informa-
tion complexity density estimation. Annals of Statistics, to appear (2007)

30. Zhang, T.: Information theoretical upper and lower bounds for statistical estima-
tion. IEEE Transactions on Information Theory, to appear (2007)

A Appendix

Lemma 2. For any x ∈ R and any α > 0, x + log
(
1 + 1

α

(
e−xα − 1

))
≤ x2α

2 .

Proof. On the interval (−∞, 0], the function x �→ x + log
(
1 + 1

α (e−xα − 1)
)

is
increasing, therefore it is bounded by its value at 0, that is by 0. For positive
values of x, we combine the inequalities e−y ≤ 1 − y + y2/2 (with y = xα) and
log(1 + y) ≤ y (with y = 1 + 1

α (e−xα − 1)).

Lemma 3. For any β ≥ s2/n + 2 supλ∈Λ ‖f − fλ‖2
n and for every μ′ ∈ P ′

Λ, the
function

μ �→ exp
(s2‖f̄μ′ − f̄μ‖2

n

nβ2
− ‖f − f̄μ‖2

n

β

)

is concave.

Proof. Consider first the case where Card(Λ) = m < ∞. Then every element of
PΛ can be viewed as a vector from R

m. Set

Q(μ) = (1 − γ)‖f − fμ‖2
n + 2γ〈f − fμ, f − fμ′〉n

= (1 − γ)μT HT
n Hnμ + 2γμT HT

n Hnμ′,

where γ = s2/(nβ) and Hn is the n×m matrix with entries (f(xi)−fλ(xi))/
√

n.
The statement of the lemma is equivalent to the concavity of e−Q(μ)/β as a func-
tion of μ ∈ PΛ, which holds if and only if the matrix β∇2Q(μ)−∇Q(μ)∇Q(μ)T

is positive-semidefinite. Simple algebra shows that ∇2Q(μ) = 2(1−γ)HT
n Hn and

∇Q(μ) = 2HT
n [(1 − γ)Hnμ + γHnμ′]. Therefore, ∇Q(μ)∇Q(μ)T = HT

n MHn,
where M = 4Hnμ̃μ̃T HT

n with μ̃ = (1 − γ)μ + γμ′. Under our assumptions, β is
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larger than s2/n, ensuring thus that μ̃ ∈ PΛ. Clearly, M is a symmetric and
positive-semidefinite matrix. Moreover,

λmax(M) ≤ Tr(M) = 4‖Hnμ̃‖2 =
4
n

n∑

i=1

( ∑

λ∈Λ

μ̃λ(f − fλ)(xi)
)2

≤ 4
n

n∑

i=1

∑

λ∈Λ

μ̃λ(f(xi) − fλ(xi))2 = 4
∑

λ∈Λ

μ̃λ‖f − fλ‖2
n

≤ 4 max
λ∈Λ

‖f − fλ‖2
n

where λmax(M) is the largest eigenvalue of M and Tr(M) is its trace. This
estimate yields the matrix inequality

∇Q(μ)∇Q(μ)T ≤ 4 max
λ∈Λ

‖f − fλ‖2
n HT

n Hn.

Hence, the function e−Q(μ)/β is concave as soon as 4 maxλ∈Λ ‖f −fλ‖2
n ≤ 2β(1−

γ). The last inequality holds for every β ≥ n−1s2 + 2 maxλ∈Λ ‖f − fλ‖2
n.

The general case can be reduced to the case of finite Λ as follows. The con-
cavity of the functional G(μ) = exp

(
s2‖f̄μ′−f̄μ‖2

n

nβ2 − ‖f−f̄μ‖2
n

β

)
is equivalent to the

validity of the inequality

G
(μ + μ̃

2

)
≥ G(μ) + G(μ̃)

2
, ∀ μ, μ̃ ∈ P ′

Λ. (14)

Fix now arbitrary μ, μ̃ ∈ P ′
Λ. Take Λ̃ = {1, 2, 3} and consider the set of functions

{f̃λ, λ ∈ Λ̃} = {f̄μ, f̄μ̃, f̄μ′}. Since Λ̃ is finite, P ′
Λ̃

= PΛ̃. According to the first
part of the proof, the functional

G̃(ν) = exp
(

s2‖f̄μ′ − ¯̃fν‖2
n

nβ2
− ‖f − ¯̃fν‖2

n

β

)

, ν ∈ PΛ̃,

is concave on PΛ̃ as soon as β ≥ s2/n + 2 maxλ∈Λ̃ ‖f − f̃λ‖2
n, and therefore for

every β ≥ s2/n + 2 supλ∈Λ ‖f − fλ‖2
n as well. (Indeed, by Jensen’s inequality for

any measure μ ∈ P ′
Λ we have ‖f−f̄μ‖2

n ≤
∫

‖f−fλ‖2
nμ(dλ) ≤ supλ∈Λ ‖f−fλ‖2

n.)
This leads to

G̃
(ν + ν̃

2

)
≥ G̃(ν) + G̃(ν̃)

2
, ∀ ν, ν̃ ∈ PΛ̃.

Taking here the Dirac measures ν and ν̃ defined by ν(λ = j) = 1l(j = 1) and
ν̃(λ = j) = 1l(j = 2), j = 1, 2, 3, we arrive at (14). This completes the proof of
the lemma.
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Abstract. We establish a generic theoretical tool to construct prob-
abilistic bounds for algorithms where the output is a subset of objects
from an initial pool of candidates (or more generally, a probability distri-
bution on said pool). This general device, dubbed “Occam’s hammer”,
acts as a meta layer when a probabilistic bound is already known on
the objects of the pool taken individually, and aims at controlling the
proportion of the objects in the set output not satisfying their individ-
ual bound. In this regard, it can be seen as a non-trivial generalization
of the “union bound with a prior” (“Occam’s razor”), a familiar tool
in learning theory. We give applications of this principle to randomized
classifiers (providing an interesting alternative approach to PAC-Bayes
bounds) and multiple testing (where it allows to retrieve exactly and
extend the so-called Benjamini-Yekutieli testing procedure).

1 Introduction

In this paper, we establish a generic theoretical tool allowing to construct prob-
abilistic bounds for algorithms which take as input some (random) data and
return as an output a set A of objects among a pool H of candidates (instead
of a single object h ∈ H in the classical setting). Here the “objects” could be
for example classifiers, functions, hypotheses. . . according to the setting. One
wishes to predict that each object h in the output set A satisfies a property
R(h, α) (where α is an ajustable level parameter); the purpose of the proba-
bilistic bound is to guarantee that the proportion of objects in A for which the
prediction is false does not exceed a certain value, and this with a prescribed
statistical confidence 1 − δ. Our setting also covers the more general case where
the algorithm returns a (data-dependent) probability density over H.

Such a wide scope can appear dubious in its generality at first and even seem
to border with abstract nonsense, so let us try to explain right away what is the
nature of our result, and pinpoint a particular example to fix ideas. The reason
we encompass such a general framework is that our result acts as a ’meta’ layer:
we will pose that we already have at hand a probabilistic bound for single,
fixed elements h ∈ H. Assuming the reader is acquainted with classical learning
theory, let us consider the familiar example where H is a set of classifiers and
we observe an i.i.d. labeled sample of training data as an input. For each fixed
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classifier h ∈ H, we can predict with success probability at least 1−δ the property
R(h, δ) that the generalization error of h is bounded by the training error up to
a quantity ε(δ), for example using the Chernoff bound. In the classical setting, a
learning method will return a single classifier h ∈ H. If nothing is known about
the algorithm, we have to resort to worst-case analysis, that is, obtain a uniform
bound over H; or in other terms, ensure that the probability that the predicted
properties hold for all h ∈ H is at least 1 − δ. The simplest way to achieve this
is to apply the union bound, combined with a prior Π on H (assumed to be
countable in this situation) prescribing how to distribute the failure probability
δ over H. In the folklore, this is generally referred to as Occam’s razor bound,
because the quantity − log(Π(h)), which can be interpreted as a coding length for
objects h ∈ H, appears in some explicit forms of the bound. This can be traced
back to [4] where the motivations and framework were somewhat different. The
formulation we use here seems to have first appeared explicitly in [9] .

The goal of the present work is to put forward what can be seen as an analogue
of the above “union bound with a prior” for the set output (or probability output)
case, which we call Occam’s hammer by remote analogy with the principle under-
lying Occam’s razor bound. Occam’s hammer relies on two priors: a complexity
prior similar to the razor’s (except it can be continuous) and a second prior over
the output set size or inverse output density. We believe that Occam’s hammer
is not as immediately straightforward as the classical union bound, and hope to
show that it has potential for interesting applications. For reasons of space, we
will cut to the chase and first present Occam’s hammer in an abstract setting in
the next section (the reader should keep in mind the classifiers example to have a
concrete instance at hand) then proceed to some applications in Section 3 (includ-
ing a detailed treatment of the classifiers example in Section 3.1) and a discussion
about tightness in Section 4. A natural application field is multiple testing, where
we want to accept or reject (in the classical statistical sense) hypotheses from a
pool H; this will be developed in section 3.2. The present work was motivated by
the PASCAL theoretical challenge [6] on this topic.

2 Main Result

2.1 Setting

Assume we have a pool of objects which is a measurable space (H, H) and observe
a random variable X (which can possibly represent an entire data sample) from
a probability space (X , X, P ). Our basic assumption is:

Assumption A: for every h ∈ H, and δ ∈ [0, 1], we have at hand a set B(h, δ) ∈
X such that PX∼P [X ∈ B(h, δ)] ≤ δ. We call B(h, δ) “bad event at level δ for h”.
Moreover, we assume that the function (x, h, δ) ∈ X ×H×[0, 1] �→ 1{x ∈ B(h, δ)}
is jointly measurable in its three variables (this amounts to say that the set
defined by this indicator function is measurable in the product space). Finally,
we assume that for any h ∈ H we have B(h, 0) = ∅.

It should be understood that “bad events” represent regions where a cer-
tain desired property does not hold, such as the true error being larger than the
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empirical error plus ε(δ) in the classification case. Note that this ’desirable prop-
erty’ implicitly depends on the assigned confidence level 1 − δ. We should keep
in mind that as δ decreases, the set of observations satisfying the corresponding
property grows larger, but the property itself loses significance (as is clear once
again in the generalization error bound example). Of course, the ’properties’
corresponding to δ = 0 or 1 will generally be trivial ones, i.e. B(h, 0) ≡ ∅ and
B(h, 1) ≡ X . Let us reformulate the union bound in this setting:

Proposition 2.1 (Abstract Occam’s razor). Let Π be a prior probability
distribution on H and assume (A) holds. Then

PX∼P [∃h ∈ H, X ∈ B(h, δΠ({h}))] ≤ δ. (1)

The following formulation is equivalent: for any rule taking X as an input and
returning hX ∈ H as an output (in a measurable way as a function of X), we
have

PX∼P [X ∈ B(hX , δΠ({hX}))] ≤ δ. (2)

Proof. In the first inequality we want to bound the probability of the event
⋃

h∈H
B(h, δΠ({h})) .

Since we assumed B(h, 0) = ∅ the above union can be reduced to a countable
union over the set {h ∈ H : Π({h}) > 0}. It is in particular measurable. Then,
we apply the union bound over the sets in this union. The event in the second
inequality can be written as

⋃

h∈H
({X : hX = h} ∩ B(h, δΠ({h}))) .

It is measurable by the same argument as above, and a subset of the first consid-
ered event. Finally, from the second inequality we can recover the first one by con-
sidering a rule that for any X returns an element of {h ∈ H|X ∈ B(h, δΠ({h}))}
if this set is non empty, and some arbitrary fixed h0 otherwise. It is possible to
do so in a measurable way again because the set of atoms of Π is countable. 
�

Note that Occam’s razor is obviously only interesting for atomic priors, and
therefore essentially only useful for a countable object space H.

2.2 False Prediction Rate

Let us now assume that we have an algorithm or “rule” taking X as an input
and returning as an output a subset AX ⊂ H; we assume the function (X, h) ∈
X × H �→ 1{h ∈ AX} is jointly measurable in its two variables. What we are
interested in is upper bounding the proportion of objects in AX falling in a “bad
event”. Here the word ’proportion’ refers to a volume ratio, where volumes are
measured through a reference measure Λ on (H, H). Like in Occam’s razor, we
want to allow the set level to depend on h and possibly on AX . Here is a formal
definition for this:
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Definition 2.2 (False prediction rate, FPR). Pose assumption (A). Fix a
function Δ : H × R+ → [0, 1], jointly measurable in its two parameters, called
the level function. Let Λ be a volume measure on H; we adopt the notation
|S| ≡ Λ(S) for S ∈ H. Define the false prediction rate for level function Δ as

ρΔ(X, A) =
|A ∩ {h ∈ H : X ∈ B(h, Δ(h, |A|))} |

|A| , if |A| ∈ (0, ∞); (3)

and ρΔ(X, A) = 0, if |A| = 0 or |A| = ∞.

The name false prediction rate was chosen by reference to the notion of false
discovery rate (FDR) for multiple testing (see below Section 3.2). We will drop
the index Δ to lighten notation when it is unambiguous. The pointwise false
prediction rate for a specific algorithm X �→ AX is therefore ρ(X, AX). In what
follows, we will actually upper bound the expected value EX [ρ(X, AX)] over
the drawing of X . In some cases, controlling the averaged FPR is a goal of
its own right. Furthermore, if we have a bound on EX [ρ], then we can apply
straightforwardly Markov’s inequality to obtain a confidence bound over ρ:

EX [ρ(X, AX)] ≤ γ ⇒ ρ(X, AX) ≤ γδ−1 with probability at least 1 − δ.

2.3 Warming Up: Algorithm with Constant Volume Output

To begin with, let us consider the easier case where the set ouput given by the
algorithm has a fixed size, i.e. |AX | = a is a constant instead of being random.

Proposition 2.3. Suppose assumption (A) holds and that (X, h) ∈ X × H �→
1{h ∈ AX} is jointly measurable in its two variables. Assume |AX | = Λ(AX) ≡ a
a.s. Let π be a probability density function on H with respect to the measure Λ.
Then putting Δ(h, |A|) = min(δaπ(h), 1), it holds that

EX∼P [ρ(X, AX)] ≤ δ.

Proof: Obviously, Δ is jointly measurable in its two variables, and by the com-
position rule so is the function X �→ ρ(X, AX) . We then have

EX∼P [ρ(X, AX)] = EX∼P

[
a−1|AX ∩ {h ∈ H, X ∈ B(h, Δ(h, |AX |))} |

]

≤ EX∼P [| {h ∈ H : X ∈ B(h, min(δaπ(h), 1))} |] a−1

= EX∼P

[∫

h

1{X ∈ B(h, min(δaπ(h), 1))}dΛ(h)
]

a−1

=
∫

h

PX∼P [X ∈ B(h, min(δaπ(h), 1))] dΛ(h)a−1

≤ δ

∫

h

π(h)dΛ(h) = δ. 
�

As a sanity check, consider a countable set H with Λ the counting measure, and
an algorithm returning only singletons, AX = {hX}, so that |AX | ≡ 1. Then
in this case ρ ∈ {0, 1}, and with the above choice of Δ, we get ρ(X, {h}) =
1{X ∈ B(h, δπ(h))}. Therefore, EX [ρ(X, AX)] = PX [X ∈ B(hX , δπ(hX))] ≤ δ,
i.e., we have recovered version (2) of Occam’s razor.
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2.4 General Case

The previous section might let us hope that Δ(h, |A|) = δ|A|π(h) would be
a suitable level function in the more general situation where the size |AX | is
also variable; but things get more involved. The observant reader might have
noticed that, in Proposition 2.3, the weaker assumption |AX | ≥ a a.s. is actually
sufficient to ensure the conclusion. This thefore suggests the following strategy
to deal with variable size of AX : (1) consider a discretization of sizes through
a decreasing sequence (ak) converging to zero; and a prior Γ on the elements
of the sequence; (2) apply Proposition 2.3 for all k with (ak, Γ (ak)δ) in place
of (a, δ); (3) define Δ(h, |A|) = δπ(h)akΓ (ak) whenever |A| ∈ [ak, ak−1); then
by summation over k (or, to put it differently, the union bound) it holds that
E [ρ] ≤ δ for this choice of Δ.

This is a valid approach, but we will not enter into more details concerning it;
rather, we propose what we consider to be an improved and more elegant result
below, which will additionally allow to handle the more general case where the
algorithm returns a probability density over H instead of just a subset. However,
we will require a slight strengthening of assumption (A):

Assumption A’: like assumption (A), but we additionaly require that for any
h ∈ H, B(h, δ) is a nondecreasing sequence of sets as a function of δ, i.e., B(h, δ) ⊂
B(h, δ′) for δ ≤ δ′.

The assumption of nondecreasing bad events as a function of their probability
seems quite natural and is satisfied in the applications we have in mind; in
classification for example, bounds on the true error are nonincreasing in the
parameter δ (so the set of samples where the bound is violated is nondecreasing).
We now state our main result (proof found in the appendix):

Theorem 2.4 (Occam’s hammer). Pose assumption (A’) satisfied. Let:
(i) Λ be a nonnegative reference measure on H (the volumic measure);
(ii) Π be a probability distribution on H absolutely continuous wrt Λ (the

complexity prior), and denote π = dΠ
dΛ ;

(iii) Γ be a probability distribution on (0, +∞) (the inverse density prior).
Put β(x) =

∫ x

0
udΓ (u) for x ∈ (0, +∞). Define the level function

Δ(h, u) = min(δπ(h)β(u), 1).

Then for any algorithm X �→ θX returning a probability density θX over H
with respect to Λ, and such that (X, h) �→ θX(h) is jointly measurable in its two
variables, it holds that

PX∼P,h∼ΘX

[
X ∈ B(h, Δ(h, θX(h)−1))

]
≤ δ ,

where ΘX is the distribution on H such that dΘX

dΛ = θX .

Comments: The conclusion of the above theorem is a probabilistic statement
over the joint draw of the input variable X and the object h , where the condi-
tional distribution of h given X is ΘX .
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Note that a rule returning a probability density distribution over H is more
general than a rule returning a set, as the latter case can be cast into the for-
mer by considering a constant density over the set, θA(h) = |A|−11{h ∈ A} ; in
this case the inner probability over h ∼ ΘAX is exactly the false prediction rate
ρΔ(X, AX) introduced previously. This specialization gives a maybe more intu-
itive interpretation of the inverse density prior Γ , which then actually becomes
a prior on the volume of the set output. We can thus recover the case of constant
set volume a of Proposition 2.3 by using the above specialization and taking a
Dirac distribution for the inverse density prior, Γ = δa. In particular, version
(2) of Occam’s razor is a specialization of Occam’s hammer (up to the minor
strengthening in assumption (A’)).

To compare with the “naive” strategy described earlier based on a size dis-
cretization sequence (ak), we get the following advantages: Occam’s hammer
also works with the more general case of a probability output; it avoids any dis-
cretization of the prior; finally, if even we take the discrete prior Γ =

∑
k γkδak

in
Occam’s hammer, the level function for |A| ∈ [ak, ak−1) will be proportional to
the partial sum

∑
j≤k γjaj, instead of only the term γkak in the naive approach

(remember that the higher the level function, the better, since the corresponding
’desirable property’ is more significant for higher levels).

3 Applications

3.1 Randomized Classifiers: An Alternate Look at PAC-Bayes
Bounds

Our first application is concerned with our running example, classifiers. More
precisely, assume the input variable is actually an i.i.d. sample S = (Xi, Yi)n

i=1,
and H is a set of classifiers. Let E(h) , resp. Ê(h, S) , denote the generalization,
resp. training, error. We assume that generalization and training error are mea-
surable in their respective variables, which is a tame assumption for all practical
purposes. We consider a randomized classification algorithm, consisting in select-
ing a probability density function θS on H based on the sample (again, jointly
measurable in (x, h)), then drawing a classifier at random from H using the dis-
tribution ΘS such that dΘS

dΛ = θS , where Λ is here assumed to be a reference
probability measure. For example, we could return the uniform density on the
set of classifiers AS ⊂ H having their empirical error less than a (possibly data-
dependent) threshold. Combining Occam’s Hammer with the Chernoff bound,
we obtain the following result:

Proposition 3.1. Let Λ be a probability measure over H; consider an algorithm
S �→ θS returning a probability density θS over H (wrt. Λ). Let δ ∈ (0, 1) and
k > 0 be fixed. If hS is a randomized classifier drawn according to ΘS , the
following inequality holds with probability 1− δ over the joint draw of S and hS:

D+

(
Ê(hS , S)‖E(hS)

)
≤ 1

n

(

log
(
(k + 1)δ−1

)
+

(

1 +
1
k

)

log+ θS(hS)
)

, (4)
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where log+ is the positive part of the logarithm; and D+(q||p) = q log q
p + (1 −

q) log 1−q
1−p if q < p and 0 otherwise.

Proof. Define the bad events B(h, δ) =
{
S : D+(Ê(h, S)‖E(h)) ≤ log δ−1

n

}
, satis-

fying assumption (A’) by Chernoff’s bound (see, e.g., [7]), including the mea-
surability assumptions of (A) by the composition rule. Choose Π = Λ , i.e.,
π ≡ 1 , and Γ the probability distribution on [0, 1] having density 1

kx−1+ 1
k , so

that β(x) = 1
k+1 min(x1+ 1

k , 1), and apply Occam’s hammer. Replacing δ by the
level function given by Occam’s hammer gives rise to the following factor:

log(min(δπ(hS)β(θS(hS)−1), 1)−1) = log+(δ−1 min((k + 1)−1θS(hS)−
k+1

k , 1)−1)

= log+(δ−1 max((k + 1)θS(hS)
k+1

k , 1))

≤ log+((k + 1)δ−1 max(θS(hS)
k+1

k , 1))

≤ log((k + 1)δ−1) + log+(θS(hS)
k+1

k )

= log((k + 1)δ−1) +
(

1 +
1
k

)

log+(θS(hS)) .


�

Comparison with PAC-Bayes bounds. The by now quite well-established
PAC-Bayes bounds ([9], see also [7] and references therein, and [5,1,10] for recent
developments) deal with a similar setting of randomized classifiers. One impor-
tant difference is that PAC-Bayes bounds are generally concerned with bounding
the averaged error Eh∼ΘS [E(h)] of the randomized procedure. Occam’s hammer,
on the other hand, bounds directly the true error of a single randomized out-
put: this is particularly relevant in practice since the information given to the
user by Occam’s hammer bound concerns precisely the classifier returned by the
rule. In other words, Proposition 3.1 appears as a pointwise version of the PAC-
Bayes bound. It is important to understand that a pointwise version is a stronger
statement, as we can recover a traditional PAC-Bayes bound as a consequence
of Proposition 3.1 (the proof is found in the appendix):

Corollary 3.2. Provided the conclusion of Proposition 3.1 holds, for any k > 0
the following holds with probability δ over the the draw of S:

D+

(
EhS∼ΘS

[
Ê(hS , S)

]∥
∥
∥ EhS∼ΘS [E(hS)]

)

≤ 1
n

(

log
(
(k + 1)δ−1

)
+

k + 1
k

KL(ΘS‖Λ) + 3.5 +
1
2k

)

,

where KL denotes the Kullback-Leibler divergence.

It is interesting to compare this to an existing version of the PAC-Bayes bound:
if we pick k = n − 1 in the above corollary, then we recover almost exactly a
tight version of the PAC-Bayes bound given in [7], Theorem 5.1 (the differences
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are: a (n − 1)−1 instead of n−1 factor in front of the KL divergence term, and
the additional trailing terms bounded by 4

n ). Hence, Proposition 3.1 proves a
stronger property than the latter cited PAC-Bayes bound (admittedly up to the
very minor loosening just mentioned).

Note that pointwise results for randomized procedures using the PAC-Bayes
approach have already appeared in recent work [1,5], using a Bernstein type
bound rather than Chernoff. It is not clear to us however whether the method-
ology developed there is precise enough to obtain a Chernoff type bound and
recover a pointwise version of [7], Theorem 5.1, which is what we do here.

At any rate, we believe the Occam’s hammer approach should turn out more
precise for pointwise results. To give some support to this claim, we note that all
existing PAC-Bayes bounds up to now structurally rely on Chernoff’s method (i.e.
using the Laplace transform) via two main ingredients: (1) the entropy extremal
inequality EP [X ] ≥ log EQ

[
eX

]
+ D(P ||Q) and (2) inequalities on the Laplace

transform of i.i.d. sums. Occam’s hammer is, in a sense, less sophisticated since it
only relies on simple set measure manipulations and contains no intrinsic exponen-
tial moment inequality argument. On the other hand, it acts as a ’meta’ layer into
which any other bound family can be plugged in. These could be bounds based on
the Laplace transform (Chernoff method) as above, or not: in the above example,
we have used Chernoff’s bound for the sake of comparison with earlier work, but
we could as well have plugged in the tighter binomial tail inversion bound (which
is the most accurate deterministic bound possible for estimating a Bernoulli pa-
rameter), and this is clearly a potential improvement for finite size training sets.
To this regard, we plan to make an extensive comparison on simulations in future
work. In classical PAC-Bayes, there is no such clear separation between the bound
and the randomization; they are intertwined in the analysis.

3.2 Multiple Testing: A Family of “Step-Up” Algorithms with
Distribution-Free FDR Control

We now change gears and switch to the context of multiple testing. H is now a set
of null hypotheses concerning the distribution P . In this section we will assume
for simplicity that H is finite and the volume measure Λ is the counting measure,
although this could be obviously extended. The goal is, based on oberved data, to
discover a subset of hypotheses which are predicted to be false (or “rejected”).
To have an example in mind, think of microarray data, where we observe a
small number of i.i.d. repetitions of a variable in very high dimension d (the
total number of genes), corresponding to the expression level of said genes, and
we want to find a set of genes having average expression level bigger than some
fixed threshold t. In this case, there is one null hypothesis h per gene, namely
that the average expression level for this gene is lower than t.

We assume that we already have at hand a family of tests T (X, h, α) of level α
for each individual h. That is, T (X, h, α) is a measurable function taking values
in {0, 1} (the value 1 corresponds to “null hypothesis rejected”) such that for all
h ∈ H, for all distributions P such that h is true, PX∼P [T (X, h, α) = 1] ≤ α . To
apply Occam’s hammer, we suppose that the family T (X, h, α) is increasing, i.e.
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α ≥ α′ ⇒ T (X, h, α) ≥ T (X, h, α′) . This is generally statisfied, as typically tests
have the form T (X, h, α) = 1{F (h, X) > φ(α)}, where F is some test statistic
and φ(α) is a nonincreasing threshold function (as, for example, in a one-sided
T-test).

For a fixed, but unknown, data distribution P , let us define

H0 = {h ∈ H : P satisfies hypothesis h}
the set of true null hypotheses, and H1 = H \ H0 its complementary. An impor-
tant and relatively recent concept in multiple testing is that of false discovery
rate (FDR) introduced in [2]. Let A : X �→ AX ⊂ H be a rule returning a set of
rejected hypotheses based on the data. The FDR of such a procedure is defined
as

FDR(A) = EX∼P

[
|AX ∩ H0|

|AX |

]

. (5)

Note that, in contrast to our notion of FPR introduced in Section 2.2, the FDR
is already an averaged quantity. A desirable goal is to design testing procedures
where it can be ensured that the FDR is controlled by some fixed level α. The
rationale behind this is that, in practice, one can afford that a small proportion
of rejected hypotheses are actually true. Before this notion was introduced, in
most cases one would instead bound the probability that at least one hypothesis
was falsely rejected: this is typically achieved using the (uniform) union bound,
known as “Bonferroni’s correction” in the multitesting literature. The hope is
that, by allowing a little more slack in the acceptable error by controlling only
the FDR, one obtains less conservative testing procedures as a counterpart. We
refer the reader to [2] for a more extended discussion on these issues.

Let us now describe how Occam’s hammer can be put to use here. Let Π be a
probability distribution over H, Γ be a probability distribution over the integer
inteval [1 . . . |H|], and β(k) =

∑
i≤k iΓ (i). Define the procedure returning the

following set of hypotheses :

A : X �→ AX =
⋃

{G ⊂ H : ∀h ∈ G, T (X, h, αΠ(h)β(|G|)) = 1} . (6)

This type of procedure is called “step-up” and can be implemented through a
simple water-emptying type algorithm. Namely, it is easy to see that if we define

Bγ = {h : T (X, h, αΠ(h)γ) = 1} , and γ(X) = sup {γ ≥ 0 : β(|Bγ |) ≥ γ} ,

then AX = Bγ(X) . The easiest way to construct this is to sort the hypotheses
h ∈ H by increasing order of their “weighted p-values”

p(h, X) = Π(h) inf {γ ≥ 0 : T (X, h, γ) = 1} ,

and to return the k(X) first hypotheses for this order, where k(X) is the largest
integer such that p(k)(X) ≤ αβ(k) ( where p(k)(X) is the k-th ordered p-value
as defined above).

We have the following property for this procedure:

Proposition 3.3. The set of hypotheses returned by the procedure defined by
(6) has its false discovery rate bounded by Π(H0)α ≤ α.
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Proof. It can be checked easily that (x, h) �→ |AX |−11{h ∈ AX} is measurable
in its two variables (this is greatly simplified by the fact that H is assumed to be
finite here). Define the collection of “bad events” B(h, δ) = {X : T (X, h, δ) = 1}
if h ∈ H0, and B(h, δ) = ∅ otherwise. It is an increasing family by the assumption
on the test family. Obviously, for any G ⊂ H, and any level function Δ:

G∩{h ∈ H : X ∈ B(h, Δ(h, |G|))} = G∩H0 ∩{h ∈ H : T (X, h, Δ(h, |G|)) = 1} ;

therefore, for any G satifying

G ⊂ {h ∈ H : T (X, h, Δ(h, |G|)) = 1} , (7)

it holds that |G∩{h ∈ H : X ∈ B(h, Δ(h, |G|))} | = |G∩H0| , so that the averaged
(over the draw of X) FPR (3) for level function Δ coincides with the FDR (5).
When Δ is nondecreasing in its second parameter, it is straightforward that
the union of two sets satisfying (7) also satisfies (7), hence AX satisfies the
above condition for the level function given by Occam’s Hammer. Define the
modified prior Π̃(h) = 1{h ∈ H0}Π(H0)−1Π(h). Apply Occam’s hammer with
the reference measure Λ being the counting measure; priors Π̃ , Γ as defined
above and δ = Π(H0)α to conclude. 
�

Interestingly, the above result specialized to the case where Π is uniform on H
and Γ (i) = κ−1i−1, κ =

∑
i≤|H| i

−1 results in β(i) = κ−1i, and yields exactly
what is known as the Benjamini-Yekutieli (BY) step-up procedure [3]. Unfortu-
nately, the interest of the BY procedure is mainly theoretical, because the more
popular Benjamini-Hochberg (BH) step-up procedure [2] is generally preferred
in practice. The BH procedure is in all points similar to BY, except the above
constant κ is replaced by 1. The BH procedure was shown to result in controlled
FDR at level α if the test statistics are independent or satisfy a certain form
of positive dependency [3]. In contrast, the BY procedure is distribution-free.
Practitioners usually favor the less conservative BH, although the underlying
statistical assumption is disputable. For example, in the interesting case of mi-
croarray data analysis, it is reported that the amplification of genes during the
process can be very unequal as genes “compete” for the amount of polymerase
available. A few RNA strands can “take over” early in the RT-PCR process, and,
due to the exponential reaction, can let other strands non-amplified because of
a lack of polymerase later in the process. Such an effect creates strong statisti-
cal dependencies between individual gene amplifications, in particular negative
dependencies in the oberved expression levels.

This dicussion aside, we think there are several interesting added benefits in
retrieving the BY procedure via Occam’s hammer. First, in our opinion Occam’s
hammer sheds a totally new light on this kind of multi-testing procedure as the
proof method followed in [3] was different and very specific to the framework
and properties of statistical testing. Secondly, Occam’s hammer allows us to
generalize straightforwardly this procedure to an entire family by playing with
the prior Π and more importantly the size prior Γ . In particular, it is clear
that if something is known a priori over the expected size of the output, then
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this should be taken into account in the size prior Γ , possibly leading to a
more powerful testing procedure. Further, there is a significant hope that we
can improve the accuracy of the procedure by considering priors depending on
unknown quantities, but which can be suitably approximated in view of the
data, thereby following the general principle of “self-bounding” algorithms that
has proved to be quite powerful ([8], see also [5,1] where this idea is used as
well under a different form, called “localization”). This is certainly an exciting
direction for future developments.

4 Tightness of Occam’s Hammer Bound

It is of interest to know whether Occams’ hammer is accurate in the sense that
equality in the bound can be achieved in some (worst case) situations. A simple
argument is that Occam’s hammer is a generalization of Occam’s razor: and since
the razor is sharp [7], so is the hammer. . . This is somewhat unsatisfying since
this ignores the situation Occam’s hammer was designed for. In this section,
we address this point by imposing an (almost) arbitrary inverse density prior
ν and exhibiting an example where the bound is tight. Furthermore, in order
to represent a “realistic” situation, we want the “bad sets” B(h, α) to be of
the form {Xh > t(h, α)} where Xh is a certain real random variable associated
to h. This is consistent with situations of interest described above (confidence
intervals and hypothesis testing). We have the following result:

Proposition 4.1. Let H = [0, 1] with interval extremities identified (i.e. the
unit circumference circle). Let ν be a probability distribution on [0, 1], and α0 ∈
[0, 1] be given. Put β(x) =

∫ x

0
udν(u). Assume that β is a continuous, increasing

function. Then there exists a family of real random variables (Xh)h∈H , having
identical marginal distributions P and a random subset A ⊂ [0, 1] such that, if
t(α) is the upper α-quantile of P (i.e., P (X > t(α)) = α ), then

E(Xh)

[
| {h ∈ A and Xh > t(α0β(|A|))} |

|A|

]

= α0 .

Furthermore, P can be made equal to any arbitrary distribution without atoms.

Comments. In the proposed construction (see proof in the appendix), the FPR is
a.s. equal to α0 , and the marginal distribution of |A| is precisely ν. This example
shows that Occam’s hammer can be sharp for the type of situation it was crafted
for (set output procedures), and it reinforces the interpretation of ν as a “prior”,
since the bound is sharp precisely when the output distribution corresponds to
the chosen prior. However, this example is still not entirely satisfying because in
the above construction, we are basically oberving a single sample of (Xh) , while in
most interesting applications we have statistics based on averages of i.i.d. samples.
If we could construct an example in which (Xh) is a Gaussian process, it would be
fine, since observing an i.i.d. sample and taking the average would amount to a
variance rescaling of the original process. In the above, although we can choose
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each Xh to have a marginal Gaussian distribution, the whole family is unfortu-
nately not jointly Gaussian (inspecting the proof, it appears that for h �= h′ there
is a nonzero probability that Xh = Xh′ , as well as Xh �= Xh′ , so that (Xh, Xh′)
cannot be jointly Gaussian). Finding a good sharpness example using a Gaussian
process (the most natural candidate would be a stationary process on the circle
with some specific spectral structure) is an interesting open problem.

5 Conclusion

We hope to have shown convincingly that Occam’s hammer is a powerful and ver-
satile theoretical device. It allows an alternate, and perhaps unexpected, approach
to PAC-Bayes type bounds, as well as to multiple testing procedures. For the ap-
plication to PAC-Bayes type bounds, an interesting feature of Occam’s hammer
approach is to provide a bound that is valid for the particular classifier returned by
the randomization procedure and not just on average performance over the ran-
dom output, and the former property is stronger.Furthermore, the tightest bounds
available for a single classifier (i.e. by binomial tail inversion) can be plugged in
without further ado. For multiple testing, the fact that we retrieve exactly the BY
distribution-free multitesting procedure and extend it to a whole family shows that
Occam’s hammer has a strong potential for producing practically useful bounds
and procedures. In particular, a very interesting direction for future research is
to include in the priors knowledge about the typical behavior of the output set
size. At any rate, a significant feat of Occam’s hammer is to provide a strong first
bridging between the worlds of learning theory and multiple hypothesis testing.

Finally, we want to underline once again that, like Occam’s razor, Occam’s
hammer is a meta device that can apply on top of other bounds. This feature
is particularly nice and leads us to expect that this tool will prove to have
meaningful uses for other applications.
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A Appendix – Additional Proofs

Proof of Theorem 2.4. The proof of Occam’s hammer is in essence an inte-
gration by parts argument, where the “parts” are level sets over X × H of the
output density θX(h) . We prove a slightly more general result than announced:
let us consider a level function of the form

Δ(h, u) = min(δG(h, u), 1) ,

where G : H × R+ → R+ is a measurable function which is nondecreasing in its
second parameter, and satisfying

∫

h∈H

∫

t≥0

G(h, t)t−2dΛ(h)dt ≤ 1 .

Then the announced conclusion holds for this level function. First, note that the
function (X, h) �→ 1{X ∈ B(h, Δ(h, θX(h)−1))} is jointly measurable in its two
variables by the composition rule using the measurability assumption in (A); on
θX(h) in the statement of the theorem; and on G above. We then have

PX∼P,h∼ΘX

[
X ∈ B(h, Δ(h, θX(h)−1))

]

=
∫

(X,h)

1{X ∈ B(h, Δ(h, θX(h)−1))}θX(h)dΛ(h)dP (X)

=
∫

(X,h)

1{X ∈ B(h, Δ(h, θX(h)−1))}
∫

y>0

y−21{y ≥ θX(h)−1}dydP (X)dΛ(h)

=
∫

y>0

y−2

∫

(X,h)

1{X ∈ B(h, Δ(h, θX(h)−1))}1{θX(h)−1 ≤ y}dP (X)dΛ(h)dy

≤
∫

y>0

y−2

∫

(X,h)

1{X ∈ B(h, Δ(h, y))}dP (x)dΛ(h)dy

=
∫

y>0

y−2

∫

h

PX∼P [X ∈ B(h, min(δG(h, y), 1))] dΛ(h)dy

≤
∫ ∞

y=0

∫

h

y−2δG(h, y)dΛ(h)dy ≤ δ .

For the first inequality, we have used assumption (A’) that B(h, δ) is an increas-
ing family and the fact Δ(h, u) is a nondecreasing function in u (by assumption
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on G). In the second inequality we have used the assumption on the probability
of bad events. The other equalities are obtained using Fubini’s theorem.

Now, it is easy to check that G(h, t) = π(h)β(t) satisfies the above require-
ments, since it is obviously measurable, β is a nondecreasing function, and
∫

h∈H

∫

t≥0

π(h)β(t)t−2dΛ(h)dt =
∫

h

π(h)dΛ(h)
∫

t≥0

∫

u≥0

ut−21{u ≤ t}dΓ (u)dt

=
∫

u≥0

dΓ (u) = 1 .

Note that in a more general case, if we have a joint prior probability distribution
Γ on the product space H × R+ , and if H is a Polish space, then there exists a
regular conditional probability distribution Γ (t|h) , and the function G(h, t) =
∫ t

u=0 udΓ (u|h) is measurable and has the required properties by an obvious
extension of the above argument. We opted to state our main result only in the
case of a product prior for the sake of simplicity, but this generalization might
be relevant for future applications. 
�
Proof of Corollary 3.2. Let us denote by Aδ ⊂ H×S (here S denotes the set of
samples S) the event where inequality (4) is violated; Proposition 3.1 states that
ES∼P [Ph∼ΘS [(h, S) ∈ Aδ]] ≤ δ , hence by Markov’s inequality, for any γ ∈ (0, 1)
it holds with probability 1 − δ over the drawing of S ∼ P that

Ph∼ΘS [(h, S) ∈ Aδγ ] ≤ γ .

Let us consider the above statement for (δi, γi) = (δ2−i, 2−i) , and perform the
union bound over the δi for integers i ≥ 1. Since

∑
i≥1 δi = δ, we obtain that

with probability 1 − δ over the drawing of S ∼ P , it holds that for all integers
i ≥ 0 (the case i = 0 is trivial):

Ph∼ΘS [(h, S) ∈ Aδ2−2i ] ≤ 2−i .

From now on, consider a fixed sample S such that the above is satisfied. Let us
denote

F (h, S) = nD+(Ê(h, S)‖E(hS)) − log
(
(k + 1)δ−1

)
−

(

1 +
1
k

)

log+ θS(h) .

By the assumption on S , for all integers i ≥ 0 : Ph∼ΘS [F (h, S) ≥ 2i log 2] ≤ 2−i ;
so that

Eh∼ΘS [F (h, S)] ≤
∫

t>0

Ph∼ΘS [F (h, S) ≥ t] dt

≤ 2 log 2
∑

i≥0

Ph∼ΘS [F (h, S) ≥ 2i log 2] ≤ 3 .

Now let us detail specific terms entering in the expectation Eh∼ΘS [F (h, S)] : we
have

EhS∼ΘS

[
D+(Ê(h, S)‖E(hS))

]
≥ D+

(
EhS∼ΘS

[
Ê(hS , S)

]∥
∥
∥ EhS∼ΘS [E(hS)]

)
,
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because the function D+ is convex in is two joint parameters. Finally,

EhS∼ΘS

[
log+ θS(h)

]
= EhS∼Λ

[
θS(h) log+ θS(h)

]

≤ EhS∼Λ [θS(h) log θS(h)] − min
0≤x<1

x log x

= KL(ΘS‖Λ) + e−1 .

Bounding e−1 by 1/2 and gathering the terms leads to the conclusion. 
�
Proof of Proposition 4.1. Let ν and α0 be fixed. We will construct explicitly
the family (Xh)h∈H . Now, let U be a random variable uniformly distributed
in [0, 1] and V an independent variable with distribution ν . We now define the
family (Xh) given (U, V ) the following way:

Xh =

{
g(V ) if h ∈ [U, U + α0V ] ,
Y otherwise,

where g(v) is a decreasing real function [0, 1] → [t0, +∞) , and Y is a random
variable independent of (U, V ) , and with values in (−∞, t0] . We will show that it
is possible to choose g, Y, t0 to satisfy the claim of the proposition. In the above
construction, remember that since we are working on the circle, the interval
[U, U + α0V ] should be “wrapped around” if U + α0 > 1 .

First, let us compute explicitly the upper quantile t(α) of Xh for α ≤ α0 . We
have assumed that Y < t0 a.s., so that for any h ∈ H , t ≥ t0 ,

P [Xh > t] = EV [P [Xh > t|V ]] = EV [P [g(V ) > t ; h ∈ [U, U + α0V ]|V ]]

=
∫ g−1(t)

0

α0vdν(v) = α0β(g−1(t)) .

Setting the above quantity equal to α , entails that t(α) = g(β−1(α−1
0 α)) . Now,

let us choose A = [U, U + V ] (note that due to the simplified structure of this
example, the values of U and V can be inferred by looking at the family (Xh)
alone since [U, U+α0V ] = {h : Xh ≥ t0} , hence A can really be seen as a function
of the observed data alone) . Then |A| = V , hence

t(α0β(|A|)) = g(β−1(α−1
0 α0β(V ))) = g(V ) .

This entails that we have precisely A∩{h : Xh ≥ t(α0(β(|A|)))} = [U, U +α0V ] ,
so that | {h ∈ A and Xh ≥ t(α0β(|A|)} | |A|−1 = α0 a.s. Finally, if we want a
prescribed marginal distribution P for Xh, we can take t0 as the upper α0-
quantile of P , Y a variable with distribution the conditional of P (x) given
x < t0 , and, since β is continuous increasing, we can choose g so that t(α)
matches the upper quantiles of P for α ≤ α0 . 
�
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Abstract. We study generalized bootstrapped confidence regions for
the mean of a random vector whose coordinates have an unknown de-
pendence structure, with a non-asymptotic control of the confidence
level. The random vector is supposed to be either Gaussian or to have a
symmetric bounded distribution. We consider two approaches, the first
based on a concentration principle and the second on a direct boost-
rapped quantile. The first one allows us to deal with a very large class
of resampling weights while our results for the second are restricted to
Rademacher weights. However, the second method seems more accu-
rate in practice. Our results are motivated by multiple testing problems,
and we show on simulations that our procedures are better than the
Bonferroni procedure (union bound) as soon as the observed vector has
sufficiently correlated coordinates.

1 Introduction

In this work, we assume that we observe a sample Y := (Y1, . . . ,Yn) of n ≥ 2
i.i.d. observations of an integrable random vector Yi ∈ R

K with a dimension K
possibly much larger than n. Let μ ∈ R

K denote the common mean of the Yi ; our
main goal is to find a non-asymptotic (1−α)-confidence region for μ , of the form:

{
x ∈ R

K s.t. φ
(
Y − x

)
≤ tα(Y)

}
, (1)

where φ : R
K → R is a measurable function fixed in advance by the user (measur-

ing a kind of distance), α ∈ (0, 1), tα :
(
R

K
)n → R is a measurable data-dependent

threshold, and Y = 1
n

∑n
i=1 Yi is the empirical mean of the sample Y.

The form of the confidence region (1) is motivated by the following multiple
testing problem: if we want to test simultaneously for all 1 ≤ k ≤ K the hy-
potheses H0,k = {μk ≤ 0} against H1,k = {μk > 0}, we propose to reject the
H0,k corresponding to

{1 ≤ k ≤ K s.t. Yk > tα(Y)} .
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The error of this multiple testing procedure can be measured by the family-
wise error rate defined by the probability that at least one hypothesis is wrongly
rejected. Here, this error will be strongly (i.e. for any value of μ) controlled by
α as soon as the confidence region (1) for μ with φ = sup(·) is of level at least
1 − α. Indeed, for all μ,

P
(
∃k s.t. Yk > tα(Y) and μk ≤ 0

)
≤ P

(
∃k s.t. Yk − μk > tα(Y)

)

= P

(

sup
k

{
Yk − μk

}
> tα(Y)

)

.

The same reasoning with φ = sup |·| allows us to test H0,k = {μk = 0} against
H1,k = {μk �= 0}, by choosing the rejection set {1 ≤ k ≤ K s.t.

∣
∣Yk

∣
∣ > tα(Y)}.

While this goal is statistical in motivation, to tackle it we want to follow
a point of view inspired from learning theory, in the following sense: first, we
want a non-asymptotical result valid for any fixed K and n ; secondly, we do not
want to make any assumptions on the dependency structure of the coordinates
of Yi (although we will consider some general assumptions over the distribution
of Y, for example that it is Gaussian). Since the dimensionality K is possibly
larger than the number of observations n, it is not appropriate here to estimate
the dependency structure (e.g. the covariance matrix) via classical parametric
procedures to construct a confidence region.

The ideal threshold tα in (1) is obviously the 1 − α quantile of the distribu-
tion of φ

(
Y − μ

)
. However, this quantity depends on the unknown dependency

structure of the coordinates of Yi and is therefore itself unknown.
We propose here to approach tα by some resampling scheme: the heuristics of

the resampling method (introduced by Efron [1] , generalized to exchangeable
weighted bootstrap by Mason and Newton [2] and Praestgaard and Wellner [3])
is that the distribution of Y − μ is “close” to the one of

Y[W−W ] :=
1
n

n∑

i=1

(Wi − W )Yi =
1
n

n∑

i=1

Wi(Yi − Y) =
(
Y − Y

)
[W ]

,

conditionally to Y, where (Wi)1≤i≤n are real random variables independent of
Y called the resampling weights, and W = n−1

∑n
i=1 Wi . We emphasize that

the family (Wi)1≤i≤n itself need not be independent.
Following this idea, we propose two different approaches to obtain non-

asymptotic confidence regions:

1. The expectations of φ
(
Y − μ

)
and φ

(
Y[W−W ]

)
can be precisely com-

pared, and the processes φ
(
Y − μ

)
and E

[
φ
(
Y[W−W ]

) ∣
∣Y

]
concentrate

well around their expectations.
2. The 1 − α quantile of the distribution of φ

(
Y[W−W ]

)
conditionally to Y is

close to the one of φ
(
Y − μ

)
.

Method 1 above is closely related to the Rademacher complexity approach in
learning theory, and our results in this direction are heavily inspired by the work



Resampling-Based Confidence Regions and Multiple Tests 129

of Fromont [4], who studies general resampling schemes in a learning theoretical
setting. It may also be seen as a generalization of cross-validation methods. For
method 2, we will restrict ourselves specifically to Rademacher weights in our
analysis, because we use a symmetrization trick.

Using resampling to construct confidence regions or tests is a vast field of
study in statistics (see e.g. [1,2,3,5,6,7,8,9] and the references therein). Roughly
speaking, we can mainly distinguish between two types of results: asymptotic
results which are not adapted to the goals we have fixed here, and exact ran-
domized tests. The latter are based on an invariance of the null distribution
under a given transformation. In the setting considered in this paper, we will
consider symmetric distributions, allowing us to use symmetrization techniques.
However, because our first goal is to derive a confidence region, the vector of
the means is unknown and we cannot use directly exact randomized tests (this
argument applies to the one-sided test setting as well where the mean is also
unknown). Our method 2 uses a symmetrization argument after having empiri-
cally recentred the data. To our knowledge, this gives the first non-asymptotic
approximation result on resampled quantiles.

Finally, following [8], we note that all our multiple testing procedures can be
transformed into step-down procedures (this will be detailed in the long version
of this paper).

Let us now define a few notations that will be useful throughout this paper.

– Vectors, such as data vectors Yi = (Yi
k)1≤k≤K , will always be column vec-

tors. Thus, Y is a K × n data matrix.
– If μ ∈ R

K , Y−μ is the matrix obtained by subtracting μ from each (column)
vector of Y. If c ∈ R and W ∈ R

n, W − c = (Wi − c)1≤i≤n ∈ R
n.

– If X is a random variable, D(X) is its distribution and Var(X) is its variance.
– The vector σ = (σk)1≤k≤K is the vector of the standard deviations of the

data: ∀k, 1 ≤ k ≤ K, σk = Var1/2(Y1
k).

– Φ is the standard Gaussian upper tail function.

Several properties may be assumed for the function φ : R
K → R:

– Subadditivity: ∀x, x′ ∈ R
K , φ (x + x′) ≤ φ(x) + φ (x′) .

– Positive-homogeneity: ∀x ∈ R
K , ∀λ ∈ R+, φ (λx) = λφ(x) .

– Bounded by the p-norm, p ∈ [1, ∞]: ∀x ∈ R
K , |φ (x)| ≤ ‖x‖p, where ‖x‖p is

equal to (
∑K

k=1 |xk|p)1/p if p < ∞ and maxk{|xk|} otherwise.

Finally, different assumptions on the generating distribution of Y can be made:

(GA) The Gaussian assumption: the Yi are Gaussian vectors
(SA) The symmetric assumption: the Yi are symmetric with respect to μ i.e.

Yi − μ ∼ μ − Yi .
(BA)(p, M) The bounded assumption:

∥
∥Yi − μ

∥
∥

p
≤ M a.s.

In this paper, our primary focus is on the Gaussian framework (GA), because the
corresponding results will be more accurate. In addition, we will always assume
that we know some upper bound on a p-norm of σ for some p > 0.
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The paper is organized as follows: Section 2 deals with the concentration
method with general weights. In Section 3, we propose an approach based on
resampling quantiles, with Rademacher weights. We illustrate our methods in
Section 4 with a simulation study. The proofs of our results are given in Section 5.

2 Confidence Region Using Concentration

In this section, we consider a general R
n-valued resampling weight vector W ,

satisfying the following properties: W is independent of Y, for all i ∈ {1, . . . , n}
E
[
W 2

i

]
< ∞ , the (Wi)1≤i≤n have an exchangeable distribution (i.e. invariant

under any permutation of the indices) and the coordinates of W are not a.s.
equal, i.e. E

∣
∣W1 − W

∣
∣ > 0. Several examples of resampling weight vectors are

given in Section 2.3, where we also tackle the question of choosing a resampling.
Four constants that depend only on the distribution of W appear in the results

below (the fourth one is defined only for a particular class of weights). They are
defined as follows and computed for classical resamplings in Tab. 1:

AW := E
∣
∣W1 − W

∣
∣ (2)

BW := E

⎡

⎣

(
1
n

n∑

i=1

(
Wi − W

)2
) 1

2
⎤

⎦ (3)

CW :=
(

n

n − 1
E

[(
W1 − W

)2]
) 1

2

(4)

DW := a + E
∣
∣W − x0

∣
∣ if ∀i, |Wi − x0| = a a.s. (with a > 0, x0 ∈ R) . (5)

Note that under our assumptions, these quantities are positive. Moreover, if
the weights are i.i.d., CW = Var(W1)

1
2 . We can now state the main result of this

section:

Theorem 2.1. Fix α ∈ (0, 1) and p ∈ [1, ∞]. Let φ : R
K → R be any function

subadditive, positive-homogeneous and bounded by the p-norm, and let W be a
resampling weight vector.

1. If Y satisfies (GA), then

φ
(
Y − μ

)
<

E

[
φ
(
Y[W−W ]

) ∣
∣Y

]

BW
+ ‖σ‖p Φ

−1
(α/2)

[
CW

nBW
+

1√
n

]

(6)

holds with probability at least 1 − α. The same bound holds for the lower
deviations, i.e. with inequality (6) reversed and the additive term replaced by
its opposite.

2. If Y satisfies (BA)(p, M) and (SA), then

φ
(
Y − μ

)
<

E

[
φ
(
Y[W−W ]

) ∣
∣Y

]

AW
+

2M√
n

√
log(1/α)
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holds with probability at least 1 − α . If moreover the weights satisfy the
assumption of (5), then

φ
(
Y − μ

)
>

E

[
φ
(
Y[W−W ]

) ∣
∣Y

]

DW
− M√

n

√

1 +
A2

W

D2
W

√
2 log(1/α)

holds with probability at least 1 − α .

If there exists a deterministic threshold tα such that P(φ
(
Y − μ

)
> tα) ≤ α,

the following corollary establishes that we can combine the above concentration
threshold with tα to get a new threshold almost better than both.

Corollary 2.2. Fix α, δ ∈ (0, 1), p ∈ [1, ∞] and take φ and W as in Theo-
rem 2.1. Suppose that Y satisfies (GA) and that tα(1−δ) is a real number such
that P

(
φ
(
Y − μ

)
> tα(1−δ)

)
≤ α(1 − δ). Then with probability at least 1 − α,

φ
(
Y − μ

)
is upper bounded by the minimum between tα(1−δ) and

E

[
φ
(
Y[W−W ]

) ∣
∣Y

]

BW
+

‖σ‖p√
n

Φ
−1

(
α(1 − δ)

2

)

+
‖σ‖p CW

nBW
Φ
−1

(
αδ

2

)

. (7)

Remark 2.3. 1. Corollary 2.2 is a consequence of the proof of Theorem 2.1,
rather than of the theorem itself. The point here is that E

[
φ
(
Y[W−W ]

) ∣
∣Y

]

is almost deterministic, because it concentrates at the rate n−1 (= o(n−1/2)).
2. For instance, if φ = sup(·) (resp. sup |·|), Corollary 2.2 may be applied with

tα equal to the classical Bonferroni threshold for multiple testing (obtained
using a simple union bound over coordinates)

tBonf,α :=
1√
n

‖σ‖∞ Φ
−1

( α

K

)(

resp. t′Bonf,α :=
1√
n

‖σ‖∞ Φ
−1

( α

2K

))

.

We thus obtain a confidence region almost equal to Bonferroni’s for small
correlations and better than Bonferroni’s for strong correlations (see simu-
lations in Section 4).

The proof of Theorem 2.1 involves results which are of self interest: the com-
parison between the expectations of the two processes E

[
φ
(
Y[W−W ]

) ∣
∣Y

]
and

φ
(
Y − μ

)
and the concentration of these processes around their means. This

is examinated in the two following subsections. The last subsection gives some
elements for a wise choice of resampling weight vectors among several classical
examples.

2.1 Comparison in Expectation

In this section, we compare E

[
φ
(
Y[W−W ]

)]
and E

[
φ
(
Y − μ

)]
. We note that

these expectations exist in the Gaussian and the bounded case provided that φ is
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measurable and bounded by a p-norm. Otherwise, in particular in Propositions
2.4 and 2.6, we assume that these expectations exist. In the Gaussian case, these
quantities are equal up to a factor that depends only on the distribution of W :

Proposition 2.4. Let Y be a sample satisfying (GA) and W a resampling
weight vector. Then, for any measurable positive-homogeneous function φ : R

K →
R, we have the following equality

BW E
[
φ
(
Y − μ

)]
= E

[
φ
(
Y[W−W ]

)]
. (8)

Remark 2.5. 1. In general, we can compute the value of BW by simulation. For
some classical weights, we give bounds or exact expressions in Tab. 1.

2. In a non-Gaussian framework, the constant BW is still relevant, at least
asymptotically: in their Theorem 3.6.13, Van der Vaart and Wellner [10] use
the limit of BW when n goes to infinity as a normalizing constant.

When the sample is only symmetric we obtain the following inequalities :

Proposition 2.6. Let Y be a sample satisfying (SA), W a resampling weight
vector and φ : R

K → R any subadditive, positive-homogeneous function.

(i) We have the general following lower bound :

AW E
[
φ
(
Y − μ

)]
≤ E

[
φ
(
Y[W−W ]

)]
. (9)

(ii) Moreover, if the weights satisfy the assumption of (5), we have the following
upper bound

DW E
[
φ
(
Y − μ

)]
≥ E

[
φ
(
Y[W−W ]

)]
. (10)

Remark 2.7. 1. The bounds (9) and (10) are tight for Rademacher and Random
hold-out (n/2) weights, but far less optimal in some other cases like Leave-
one-out (see Section 2.3).

2. When Y is not assumed to be symmetric and W = 1 a.s., Proposition 2 in
[4] shows that (9) holds with E(W1 − W )+ instead of AW . Therefore, the
symmetry of the sample allows us to get a tighter result (for instance twice
sharper with Efron or Random hold-out (q) weights).

2.2 Concentration Around the Expectation

In this section we present concentration results for the two processes φ
(
Y − μ

)

and E

[
φ
(
Y[W−W ]

) ∣
∣Y

]
in the Gaussian framework.

Proposition 2.8. Let p ∈ [1, +∞], Y a sample satisfying (GA) and φ : R
K →

R be any subadditive function, bounded by the p-norm.
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(i) For all α ∈ (0, 1), with probability at least 1 − α the following holds:

φ
(
Y − μ

)
< E

[
φ
(
Y − μ

)]
+

‖σ‖p Φ
−1

(α/2)
√

n
, (11)

and the same bound holds for the corresponding lower deviations.
(ii) Let W be some exchangeable resampling weight vector. does not depend on

(i, j), i �= j and E(Wi − W )2 do not depend on i. Then, for all α ∈ (0, 1),
with probability at least 1 − α the following holds:

E

[
φ
(
Y[W−W ]

) ∣
∣Y

]
< E

[
φ
(
Y[W−W ]

)]
+

‖σ‖p CW Φ
−1

(α/2)
n

, (12)

and the same bound holds for the corresponding lower deviations.

The first bound (11) with a remainder in n−1/2 is classical. The last one (12) is
much more interesting since it enlights one of the key properties of the resampling
idea: the “stabilization”. Indeed, the resampling quantity E

[
φ
(
Y[W−W ]

)
|Y

]

concentrates around its expectation at the rate CW n−1 = o
(
n−1/2

)
for most of

the weights (see Section 2.3 and Tab. 1 for more details). Thus, compared to the
original process, it is almost deterministic and equal to BW E

[
φ
(
Y − μ

)]
.

Remark 2.9. Combining expression (8) and Proposition 2.8 (ii), we derive that
for a Gaussian sample Y and any p ∈ [1, ∞], the following upper bound holds
with probability at least 1 − α :

E
∥
∥Y − μ

∥
∥

p
<

E

[∥
∥
∥Y[W−W ]

∥
∥
∥

p

∣
∣
∣Y

]

BW
+

‖σ‖p CW

nBW
Φ
−1

(α/2), (13)

and a similar lower bound holds. This gives a control with high probability of
the Lp-risk of the estimator Y of the mean μ ∈ R

K at the rate CW B−1
W n−1.

2.3 Resampling Weight Vectors

In this section, we consider the question of choosing some appropriate resam-
pling weight vector W when using Theorem 2.1 or Corollary 2.2. We define the
following classical resampling weight vectors:

1. Rademacher: Wi i.i.d. Rademacher variables, i.e. Wi ∈ {−1, 1} with equal
probabilities.

2. Efron: W has a multinomial distribution with parameters (n; n−1, . . . , n−1).
3. Random hold-out (q) (R. h.-o.), q ∈ {1, . . . , n}: Wi = n

q 1i∈I , where I is
uniformly distributed on subsets of {1, . . . , n} of cardinality q. These weights
may also be called cross validation weights, or leave-(n − q)-out weights. A
classical choice is q = n/2 (when 2|n). When q = n − 1, these weights are
called leave-one-out weights.
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Table 1. Resampling constants for classical resampling weight vector

Efron 2
(
1 − 1

n

)n
= AW ≤ BW ≤

√
n−1

n
CW = 1

Efr., n → +∞ 2
e

= AW ≤ BW ≤ 1 = CW

Rademacher 1 − 1√
n

≤ AW ≤ BW ≤
√

1 − 1
n

CW = 1 DW ≤ 1 + 1√
n

Rad., n → +∞ AW = BW = CW = DW = 1

R. h.-o. (q)
AW = 2

(
1 − q

n

)
BW =

√
n
q

− 1

CW =
√

n
n−1

√
n
q

− 1 DW = n
2q

+
∣
∣
∣1 − n

2q

∣
∣
∣

R. h.-o. (n/2) (2|n) AW = BW = DW = 1 CW =
√

n
n−1

Leave-one-out 2
n

= AW ≤ BW = 1√
n−1 CW =

√
n

n−1 DW = 1

For these classical weights, exact or approximate values for the quantities AW ,
BW , CW and DW (defined by equations (2) to (5)) can be easily derived (see
Tab. 1). Now, to use Theorem 2.1 or Corollary 2.2, we have to choose a particular
resampling weight vector. In the Gaussian case, we propose the following accuracy
and complexity criteria: first, relations (6), (7) and (8) suggest that the quantity
CW B−1

W can be proposed as accuracy index for W . Secondly, an upper bound on
the computational burden to compute exactly the resampling quantity is given by
the cardinality of the support of D(W ), thus providing a complexity index.

These two criteria are estimated in Tab. 2 for classical weights. Since for
any exchangeable weight vector W , we have CW B−1

W ≥ [n/(n − 1)]1/2 and the
cardinality of the support of D(W ) is greater than n, the leave-one-out weights
satisfy the best accuracy-complexity trade-off among exchangeable weights.

Remark 2.10. Of course, for general weights (complex or not), the computation
of resampling quantities can be done by Monte-Carlo simulations, i.e. drawing
randomly a small number of independent weight vectors (see [9], appendix II
for a discussion). We did not yet investigate the analysis of the corresponding
approximation.

Remark 2.11. When the leave-one-out weights are too complex (if n is large),
we can use “piece-wise exchangeable” weights instead: consider a regular par-
tition (Bj)1≤j≤V of {1, . . . , n} (where V ∈ {2, . . . , n} and V |n), and define the
weights Wi = V

V −11i/∈BJ
with J uniformly distributed on {1, . . . , V }. These

weights are called the (regular) V -fold cross validation weights (V -f. c.v.).
Considering the process (Ỹj)1≤j≤K where Ỹj = V

n

∑
i∈Bj

Yi is the empirical
mean of Y on block Bj , we can show that Theorem 2.1 can be extended to (reg-
ular) V -fold cross validation weights with the following resampling constants 1:
AW = 2/V , BW = (V − 1)−1/2 , CW =

√
n(V − 1)−1 , DW = 1. Thus, while the

complexity index of V -f. c.v. weights is only V , we lose a factor [(n−1)/(V −1)]1/2

in the accuracy index.
1 When V does not divide n and the blocks are no longer regular, Theorem 2.1 can

also be generalized, but the constants have more complex expressions.
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Remark 2.12 (Link to leave-one-out prediction risk estimation). Consider us-
ing Y for predicting a new data point Yn+1 ∼ Y1 (independent on Y =
(Y 1, . . . , Y n)). The corresponding Lp-prediction risk is given by E

∥
∥Y − Yn+1

∥
∥

p
.

For Gaussians, this prediction risk is proportional to the Lp-risk: E
∥
∥Y − μ

∥
∥

p
=

(n + 1)
1
2 E

∥
∥Y − Yn+1

∥
∥

p
, so that the estimator of the Lp-risk proposed in

Remark 2.9 leads to an estimator of the prediction risk. In particular, using
leave-one-out weights and noting Y

(−i)
the mean of the (Yj , j �= i, 1 ≤ j ≤ n) ,

we have then established that the leave-one-out estimator 1
n

∑n
i=1

∥
∥
∥Y

(−i) − Yi
∥
∥
∥

p

correctly estimates the prediction risk (up to the factor (1 − 1/n2)
1
2 ∼ 1).

Table 2. Choice of the resampling weight vectors : accuracy-complexity tradeoff

Resampling CW B−1
W (accuracy) Card (suppL(W )) (complexity)

Efron ≤ 1
2

(
1 − 1

n

)−n −−−−→
n→∞

e
2

(2n−1
n−1

)
∝ n− 1

2 4n

Rademacher ≤
(
1 − n−1/2

)−1
−−−−→
n→∞

1 2n

R. h.-o. (n/2) =
√

n
n−1 −−−−→

n→∞
1

(
n

n/2

)
∝ n−1/22n

Leave-one-out =
√

n
n−1 −−−−→

n→∞
1 n

3 Confidence Region Using Resampled Quantiles

In this section, we present a different approach: we approximate the quantiles of
the variable φ

(
Y − μ

)
by the quantiles of the corresponding resampled distri-

bution D
(
φ
(
Y[W−W ]

) ∣
∣Y

)
, in the particular Rademacher resampling scheme.

Let us define for a function φ the resampled empirical quantile:

qα(φ,Y) = inf
{
x ∈ R s.t. PW

[
φ(Y[W ]) > x

]
≤ α

}
,

where in W is an i.i.d Rademacher weight vector. We now state the main tech-
nical result of this section:

Proposition 3.1. Fix δ, α ∈ (0, 1). Let Y be a data sample satisfying assump-
tion (SA). Let f :

(
R

K
)n → [0, ∞) be a nonnegative (measurable) function on the

set of data samples. Let φ be a nonnegative, subadditive, positive-homogeneous
function. Denote φ̃(x) = max (φ(x), φ(−x)) . Finally, for η ∈ (0, 1) , denote

B(n, η) = min

{

k ∈ {0, . . . , n} s.t. 2−n
n∑

i=k+1

(
n

i

)

< η

}

,

the upper quantile function of a binomial (n, 1
2 ) variable. Then we have:

P
[
φ(Y − μ) > qα(1−δ)

(
φ,Y − Y

)
+ f(Y)

]

≤ α + P

[

φ̃(Y − μ) >
n

2B
(
n, αδ

2

)
− n

f(Y)

]
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Remark 3.2. By Hoeffding’s inequality, n

2B(n, αδ
2 )−n

≥
(

n

2 ln( 2
αδ )

)1/2

.

By iteration of this proposition we obtain the following corollary:

Corollary 3.3. Fix J a positive integer, (αi)i=0,...,J−1 a finite sequence in (0, 1)
and β, δ ∈ (0, 1) . Let Y be a data sample satisfying assumption (SA). Let φ :
R

K → R be a nonnegative, subadditive, positive-homogeneous function and f :(
R

K
)n → [0, ∞) be a nonnegative function on the set of data samples. Then the

following holds:

P

[

φ(Y − μ) > q(1−δ)α0(φ,Y − Y) +
J−1∑

i=1

γiq(1−δ)αi
(φ̃,Y − Y) + γJf(Y)

]

≤
J−1∑

i=0

αi + P

[
φ̃(Y − μ) > f(Y)

]
, (14)

where, for k ≥ 1, γk = n−k
k−1∏

i=0

(

2B
(

n,
αiδ

2

)

− n

)

.

The rationale behind this result is that the sum appearing inside the probability
in (14) should be interpreted as a series of corrective terms of decreasing order of
magnitude, since we expect the sequence γk to be sharply decreasing. Looking at
Hoeffding’s bound, this will be the case if the levels are such that αi  exp(−n) .

Looking at (14), we still have to deal with the trailing term on the right-hand-
side to obtain a useful result. We did not succeed in obtaining a self-contained
result based on the symmetry assumption (SA) alone. However, to upper-bound
the trailing term, we can assume some additional regularity assumption on the
distribution of the data. For example, if the data are Gaussian or bounded, we
can apply the results of the previous section (or apply some other device like
Bonferroni’s bound (8)). We want to emphasize that the bound used in this
last step does not have to be particularly sharp: since we expect (in favorable
cases) γJ to be very small, the trailing probability term on the right-hand side
as well as the contribution of γJf(Y) to the left-hand side should be very minor.
Therefore, even a coarse bound on this last term should suffice.

Finally, we note as in the previous section that, for computational reasons, it
might be relevant to consider a block-wise Rademacher resampling scheme.

4 Simulations

For simulations we consider data of the form Yt = μt +Gt , where t belongs to an
m×m discretized 2D torus of K = m2 “pixels”, identified with T

2
m = (Z/mZ)2 ,

and G is a centered Gaussian vector obtained by 2D discrete convolution of an
i.i.d. standard Gaussian field (“white noise”) on T

2
m with a function F : T

2
m → R

such that
∑

t∈T2
m

F 2(t) = 1 . This ensures that G is a stationary Gaussian process
on the discrete torus, it is in particular isotropic with E

[
G2

t

]
= 1 for all t ∈ T

2
m .



Resampling-Based Confidence Regions and Multiple Tests 137

20 40 60 80 100 120

20

40

60

80

100

120

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  5  10  15  20  25  30  35  40
A

v.
 th

re
sh

ol
d

Convolution kernel width (pixels)

Gaussian kernel convolution, K=128x128, n=1000, level 5%

Quant.+conc.
Quant.+bonf.

Conc.
Bonferroni

min(conc.,bonf.)
Est. true quantile

Single test

Fig. 1. Left: example of a 128x128 pixel image obtained by convolution of Gaussian
white noise with a (toroidal) Gaussian filter with width b = 18 pixels. Right: average
thresholds obtained for the different approaches, see text.

In the simulations below we consider for the function F a “Gaussian” convo-
lution filter of bandwidth b on the torus:

Fb(t) = Cb exp
(
−d(0, t)2/b2

)
,

where d(t, t′) is the standard distance on the torus and Cb is a normalizing
constant. Note that for actual simulations it is more convenient to work in the
Fourier domain and to apply the inverse DFT which can be computed efficiently.
We then compare the different thresholds obtained by the methods proposed in
this work for varying values of b . Remember that the only information available
to the algorithm is the bound on the marginal variance; the form of the function
Fb itself is of course unknown.

On Fig. 1 we compare the thresholds obtained when φ = sup |·| , which cor-
responds to the two-sided multiple testing situation. We use the different ap-
proaches proposed in this work, with the following parameters: the dimension is
K = 1282 = 16384 , the number of data points per sample is n = 1000 (much
smaller than K, so that we really are in a non-asymptotic framework), the width
b takes even values in the range [0, 40] , the overall level is α = 0.05 . For the con-
centration threshold (6) (’conc.’), we used Rademacher weights. For the “com-
pound” threshold of Corollary 2.2 (’min(conc.,bonf.)’), we used δ = 0.1 and the
Bonferroni threshold t′Bonf,0.9α as the deterministic reference threshold. For the
quantile approach (14), we used J = 1 , α0 = 0.9α , δ = 0.1 , and the function
f is given either by the Bonferroni threshold (’quant.+bonf.’) or the concen-
tration threshold (’quant.+conc.’), both at level 0.1α . Each point represents an
average over 50 experiments. Finally, we included in the figure the Bonferroni
threshold t′Bonf,α, the threshold for a single test for comparison, and an esti-
mation of the true quantile (actually, an empirical quantile over 1000 samples).
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The quantiles or expectation with Rademacher weights were estimated by
Monte-Carlo with 1000 draws. On the figure we did not include standard devia-
tions: they are quite low, of the order of 10−3 , although it is worth noting that
the quantile threshold has a standard deviation roughly twice as large as the
concentration threshold (we did not investigate at this point what part of this
variation is due to the MC approximation).

The overall conclusion of this preliminary experiment is that the different
thresholds proposed in this work are relevant in the sense that they are smaller
than the Bonferroni threshold provided the vector has strong enough correla-
tions. As expected, the quantile approach appears to lead to tighter thresholds.
(However, this might not be always the case for smaller sample sizes.) One ad-
vantage of the concentration approach is that the ’compound’ threshold (7) can
“fall back” on the Bonferroni threshold when needed, at the price of a minimal
threshold increase.

5 Proofs

Proof (Proof of Prop. 2.4). Denoting by Σ the common covariance matrix of
the Yi, we have D(Y[W−W ]|W ) = N

(
0, (n−1

∑n
i=1(Wi − W )2)n−1Σ

)
, and the

result follows because D(Y − μ) = N (0, n−1Σ) and φ is positive-homogeneous.
��

Proof (Proof of Prop. 2.6). (i). By independence between W and Y, using the
positive homogeneity, then convexity of φ, for every realization of Y we have:

AW φ
(
Y − μ

)
= φ

(

E

[
1
n

n∑

i=1

∣
∣Wi − W

∣
∣
(
Yi − μ

)
∣
∣
∣
∣Y

])

≤ E

[

φ

(
1
n

n∑

i=1

∣
∣Wi − W

∣
∣
(
Yi − μ

)
) ∣
∣
∣
∣Y

]

.

We integrate with respect to Y, and use the symmetry of the Yi with respect
to μ and again the independence between W and Y to show finally that

AW E
[
φ
(
Y − μ

)]
≤ E

[

φ

(
1
n

n∑

i=1

∣
∣Wi − W

∣
∣
(
Yi − μ

)
)]

= E

[

φ

(
1
n

n∑

i=1

(
Wi − W

) (
Yi − μ

)
)]

= E

[
φ
(
Y[W−W ]

)]
.

We obtain (ii) via the triangle inequality and the same symmetrization trick. ��

Proof (Proof of Prop. 2.8). We denote by A a square root of the common co-
variance matrix of the Yi and by (ak)1≤k≤K the rows of A. If G is a K × m
matrix with standard centered i.i.d. Gaussian entries, then AG has the same
distribution as Y − μ . We let for all ζ ∈

(
R

K
)n

, T1(ζ) := φ
(

1
n

∑n
i=1 Aζi

)
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and T2(ζ) := E
[
φ
(

1
n

∑n
i=1(Wi − W )Aζi

)]
. From the Gaussian concentration

theorem of Cirel’son, Ibragimov and Sudakov (see for example [11], Thm. 3.8),
we just need to prove that T1 (resp. T2) is a Lipschitz function with constant
‖σ‖p /

√
n (resp. ‖σ‖p CW /n), for the Euclidean norm ‖·‖2,Kn on

(
R

K
)n. Let

ζ, ζ′ ∈
(
R

K
)n. Using firstly that φ is 1-Lipschitz (since it is subadditive and

bounded by the p-norm), and secondly Cauchy-Schwartz’s inequality coordinate-
wise and ‖ak‖2 ≤ σk, we deduce

|T1(ζ) − T1(ζ′)| ≤
∥
∥
∥
∥

1
n

n∑

i=1

A (ζi − ζ′i)
∥
∥
∥
∥

p

≤ ‖σ‖p

∥
∥
∥
∥

1
n

n∑

i=1

(ζi − ζ′i)
∥
∥
∥
∥

2

.

Therefore, we get |T1(ζ) − T1(ζ′)| ≤ ‖σ‖p√
n

‖ζ − ζ′‖2,Kn by convexity of x ∈ R
K →

‖x‖2
2, and we obtain (i). For T2, we use the same method as for T1 :

|T2(ζ) − T2(ζ′)| ≤ ‖σ‖p E

∥
∥
∥
∥

1
n

n∑

i=1

(Wi − W )(ζi − ζ′i)
∥
∥
∥
∥

2

≤
‖σ‖p

n

√
√
√
√E

∥
∥
∥
∥

n∑

i=1

(Wi − W )(ζi − ζ′i)
∥
∥
∥
∥

2

2

. (15)

We now develop
∥
∥
∑n

i=1(Wi − W )(ζi − ζ′i)
∥
∥2

2
in the Euclidean space R

K (note

that from
(∑n

i=1(Wi − W )
)2

= 0, we have E(W1 − W )(W2 − W ) = −C2
W /n):

E

∥
∥
∥
∥

n∑

i=1

(Wi − W )(ζi − ζ′i)
∥
∥
∥
∥

2

2

= C2
W

n∑

i=1

‖ζi − ζ′i‖
2
2 − C2

W

n

∥
∥
∥
∥

n∑

i=1

(ζi − ζ′i)
∥
∥
∥
∥

2

2

.

Consequently,

E

∥
∥
∥
∥

n∑

i=1

(
Wi − W

)
(ζi − ζ′i)

∥
∥
∥
∥

2

2

≤ C2
W

n∑

i=1

‖ζi − ζ′i‖
2
2 ≤ C2

W ‖ζ − ζ′‖2
2,Kn . (16)

Combining expression (15) and (16), we find that T2 is ‖σ‖p CW /n-Lipschitz. ��

Proof (Proof of Thm. 2.1). The case (BA)(p, M) and (SA) is obtained by com-
bining Prop. 2.6 and McDiarmid’s inequality (see for instance [4]). The (GA)
case is a straightforward consequence of Prop. 2.4 and the proof of Prop. 2.8. ��

Proof (Proof of Cor. 2.2). From Prop. 2.8 (i), with probability at least 1 −
α(1 − δ), φ

(
Y − μ

)
is upper bounded by the minimum between tα(1−δ) and

E
[
φ
(
Y − μ

)]
+

‖σ‖pΦ
−1

(α(1−δ)/2)√
n

(because these thresholds are deterministic).
In addition, Prop. 2.4 and Proposition 2.8 (ii) give that with probability at least

1−αδ, E
[
φ
(
Y − μ

)]
≤ E[φ(Y−μ)|Y]

BW
+

‖σ‖pCW

BW n Φ
−1

(αδ/2). The result follows by
combining the two last expressions. ��
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Proof (Proof of Prop. 3.1). Remember the following inequality coming from the
definition of the quantile qα : for any fixed Y

PW

[
φ
(
Y[W ]

)
> qα(φ,Y)

]
≤ α ≤ PW

[
φ
(
Y[W ]

)
≥ qα(φ,Y)

]
, (17)

which will be useful in this proof. We have

PY
[
φ(Y − μ) > qα(φ,Y − μ)

]
=EW

[
PY

[
φ
(
(Y − μ)[W ]

)
>qα(φ, (Y − μ)[W ])

]]

= EY

[
PW

[
φ
(
(Y − μ)[W ]

)
> qα(φ,Y − μ)

]]

≤ α . (18)

The first equality is due to the fact that the distribution of Y satisfies assumption
(SA), hence the distribution of (Y − μ) invariant by reweighting by (arbitrary)
signs W ∈ {−1, 1}n . In the second equality we used Fubini’s theorem and the
fact that for any arbitrary signs W as above qα(φ, (Y − μ)[W ]) = qα(φ,Y − μ) ;
finally the last inequality comes from (17). Let us define the event

Ω =
{
Y s.t. qα(φ,Y − μ) ≤ qα(1−δ)(φ,Y − Y) + f(Y)

}
;

then we have using (18) :

P
[
φ(Y − μ) > qα(1−δ)(φ,Y − Y) + f(Y)

]

≤ P
[
φ(Y − μ) > qα(φ,Y − μ)

]
+ P [Y ∈ Ωc]

≤ α + P [Y ∈ Ωc] .
(19)

We now concentrate on the event Ωc . Using the subadditivity of φ, and the
fact that (Y − μ)[W ] = (Y − Y)[W ] +W (Y −μ) , we have for any fixed Y ∈ Ωc:

α ≤ PW

[
φ((Y − μ)[W ]) ≥ qα(φ,Y − μ)

]

≤ PW

[
φ((Y − μ)[W ]) > qα(1−δ)(φ,Y − Y) + f(Y)

]

≤ PW

[
φ((Y − Y)[W ]) > qα(1−δ)(φ,Y − Y)

]
+ PW

[
φ(W (Y − μ)) > f(Y)

]

≤ α(1 − δ) + PW

[
φ(W (Y − μ)) > f(Y)

]
.

For the first and last inequalities we have used (17), and for the second inequality
the definition of Ωc. From this we deduce that

Ωc ⊂
{
Y s.t. PW

[
φ(W (Y − μ)) > f(Y)

]
≥ αδ

}
.
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Now using the homogeneity of φ, and the fact that both φ and f are nonnegative:

PW

[
φ(W (Y − μ)) > f(Y)

]
= PW

[
∣
∣W

∣
∣ >

f(Y)
φ(sign(W )(Y − μ))

]

≤ PW

[
∣
∣W

∣
∣ >

f(Y)

φ̃(Y − μ)

]

= 2P

[
1
n

(2Bn, 1
2

− n) >
f(Y)

φ̃(Y − μ)

∣
∣
∣
∣Y

]

,

where Bn, 1
2

denotes a binomial (n, 1
2 ) variable (independent of Y). From the two

last displays we conclude

Ωc ⊂
{

Y s.t. φ̃(Y − μ) >
n

2B
(
n, αδ

2

)
− n

f(Y)

}

,

which, put back in (19), leads to the desired conclusion. ��
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Abstract. Let F be a set of M classification procedures with values in
[−1, 1]. Given a loss function, we want to construct a procedure which
mimics at the best possible rate the best procedure in F . This fastest
rate is called optimal rate of aggregation. Considering a continuous scale
of loss functions with various types of convexity, we prove that optimal
rates of aggregation can be either ((log M)/n)1/2 or (log M)/n. We prove
that, if all the M classifiers are binary, the (penalized) Empirical Risk
Minimization procedures are suboptimal (even under the margin/low
noise condition) when the loss function is somewhat more than convex,
whereas, in that case, aggregation procedures with exponential weights
achieve the optimal rate of aggregation.

1 Introduction

Consider the problem of binary classification. Let (X , A) be a measurable space.
Let (X, Y ) be a couple of random variables, where X takes its values in X and
Y is a random label taking values in {−1, 1}. We denote by π the probability
distribution of (X, Y ). For any function φ : R �−→ R, define the φ−risk of a real
valued classifier f : X �−→ R by

Aφ(f) = E[φ(Y f(X))].

Many different losses have been discussed in the literature along the last decade
(cf. [10,13,26,14,6]), for instance:

φ0(x) = 1I(x≤0) classical loss or 0 − 1 loss
φ1(x) = max(0, 1 − x) hinge loss (SVM loss)
x �−→ log2(1 + exp(−x)) logit-boosting loss
x �−→ exp(−x) exponential boosting loss
x �−→ (1 − x)2 squared loss
x �−→ max(0, 1 − x)2 2-norm soft margin loss

We will be especially interested in losses having convex properties as it is con-
sidered in the following definition (cf. [17]).
� Paper to be considered for the Mark Fulk Award for the “best student paper”.
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c© Springer-Verlag Berlin Heidelberg 2007



Suboptimality of Penalized Empirical Risk Minimization in Classification 143

Definition 1. Let φ : R �−→ R be a function and β be a positive number. We
say that φ is β−convex on [−1, 1] when

[φ′(x)]2 ≤ βφ′′(x), ∀|x| ≤ 1.

For example, logit-boosting loss is (e/ log 2)−convex, exponential boosting loss
is e−convex, squared and 2−norm soft margin losses are 2−convex.

We denote by f∗
φ a function from X to R which minimizes Aφ over all real-

valued functions and by Aφ
∗

def= Aφ(f∗
φ) the minimal φ−risk. In most of the cases

studied f∗
φ or its sign is equal to the Bayes classifier

f∗(x) = sign(2η(x) − 1),

where η is the conditional probability function x �−→ P(Y = 1|X = x) de-
fined on X (cf. [3,26,34]). The Bayes classifier f∗ is a minimizer of the φ0−risk
(cf. [11]).

Our framework is the same as the one considered, among others, by [27,33,7]
and [29,17]. We have a family F of M classifiers f1, . . . , fM and a loss function
φ. Our goal is to mimic the oracle minf∈F(Aφ(f)−Aφ

∗ ) based on a sample Dn of
n i.i.d. observations (X1, Y1), . . . , (Xn, Yn) of (X, Y ). These classifiers may have
been constructed from a previous sample or they can belong to a dictionary of
simple prediction rules like decision stumps. The problem is to find a strategy
which mimics as fast as possible the best classifier in F . Such strategies can
then be used to construct efficient adaptive estimators (cf. [27,22,23,9]). We
consider the following definition, which is inspired by the one given in [29] for
the regression model.

Definition 2. Let φ be a loss function. The remainder term γ(n, M) is called
optimal rate of aggregation for the φ−risk, if the following two inequalities
hold.

i) For any finite set F of M functions from X to [−1, 1], there exists a statistic
f̃n such that for any underlying probability measure π and any integer n ≥ 1,

E[Aφ(f̃n) − Aφ
∗ ] ≤ min

f∈F
(
Aφ(f) − Aφ

∗
)

+ C1γ(n, M). (1)

ii) There exists a finite set F of M functions from X to [−1, 1] such that for
any statistic f̄n there exists a probability distribution π such that for all
n ≥ 1

E
[
Aφ(f̄n) − Aφ

∗
]

≥ min
f∈F

(
Aφ(f) − Aφ

∗
)

+ C2γ(n, M). (2)

Here C1 and C2 are absolute positive constants which may depend on φ. More-
over, when the above two properties i) and ii) are satisfied, we say that the
procedure f̃n, appearing in (1), is an optimal aggregation procedure for
the φ−risk.

The paper is organized as follows. In the next Section we present three aggre-
gation strategies that will be shown to attain the optimal rates of aggregation.
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Section 3 presents performance of these procedures. In Section 4 we give some
proofs of the optimality of these procedures depending on the loss function. In
Section 5 we state a result on suboptimality of the penalized Empirical Risk
Minimization procedures and of procedures called selectors. In Section 6 we give
some remarks. All the proofs are postponed to the last Section.

2 Aggregation Procedures

We introduce procedures that will be shown to achieve optimal rates of aggre-
gation depending on the loss function φ : R �−→ R. All these procedures are
constructed with the empirical version of the φ−risk and the main idea is that
a classifier fj with a small empirical φ−risk is likely to have a small φ−risk. We
denote by

Aφ
n(f) =

1
n

n∑

i=1

φ(Yif(Xi))

the empirical φ−risk of a real-valued classifier f .
The Empirical Risk Minimization (ERM) procedure, is defined by

f̃ERM
n ∈ Arg min

f∈F
Aφ

n(f). (3)

This is an example of what we call a selector which is an aggregate with values
in the family F . Penalized ERM procedures are also examples of selectors.

The Aggregation with Exponential Weights (AEW) procedure is given by

f̃AEW
n =

∑

f∈F
w(n)(f)f, (4)

where the weights w(n)(f) are defined by

w(n)(f) =
exp

(
−nAφ

n(f)
)

∑
g∈F exp

(
−nAφ

n(g)
) , ∀f ∈ F . (5)

The Cumulative Aggregation with Exponential Weights (CAEW) procedure,
is defined by

f̃CAEW
n,β =

1
n

n∑

k=1

f̃AEW
k,β , (6)

where f̃AEW
k,β is constructed as in (4) based on the sample (X1, Y1), . . . , (Xk, Yk)

of size k and with the ’temperature’ parameter β > 0. Namely,

f̃AEW
k,β =

∑

f∈F
w

(k)
β (f)f, where w

(k)
β (f) =

exp
(
−β−1kAφ

k (f)
)

∑
g∈F exp

(
−β−1kAφ

k(g)
) , ∀f ∈ F .

The idea of the ERM procedure goes to Le Cam and Vapnik. Exponential
weights have been discussed, for example, in [2,15,19,33,7,25,35,1] or in [32,8] in
the on-line prediction setup.
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3 Exact Oracle Inequalities

We now recall some known upper bounds on the excess risk. The first point of
the following Theorem goes to [31], the second point can be found in [18] or [9]
and the last point, dealing with the case of a β−convex loss function, is Corollary
4.4 of [17].

Theorem 1. Let φ : R �−→ R be a bounded loss function. Let F be a family of
M functions f1, . . . , fM with values in [−1, 1], where M ≥ 2 is an integer.

i) The Empirical Risk Minimization procedure f̃n = f̃ERM
n satisfies

E[Aφ(f̃n) − Aφ
∗ ] ≤ min

f∈F
(Aφ(f) − Aφ

∗ ) + C

√
log M

n
, (7)

where C > 0 is a constant depending only on φ.
ii) If φ is convex, then the CAEW procedure f̃n = f̃CAEW

n with “temperature
parameter” β = 1 and the AEW procedure f̃n = f̃AEW

n satisfy (7).
iii) If φ is β−convex for a positive number β, then the CAEW procedure with

“temperature parameter” β, satisfies

E[Aφ(f̃CAEW
n,β ) − Aφ

∗ ] ≤ min
f∈F

(Aφ(f) − Aφ
∗ ) + β

log M

n
.

4 Optimal Rates of Aggregation

To understand how behaves the optimal rate of aggregation depending on the
loss we introduce a “continuous scale” of loss functions indexed by a non negative
number h,

φh(x) =
{

hφ1(x) + (1 − h)φ0(x) if 0 ≤ h ≤ 1
(h − 1)x2 − x + 1 if h > 1,

defined for any x ∈ R, where φ0 is the 0 − 1 loss and φ1 is the hinge loss.
This set of losses is representative enough since it describes different type of

convexity: for any h > 1, φh is β−convex on [−1, 1] with β ≥ βh
def= (2h −

1)2/(2(h − 1)) ≥ 2, for h = 1 the loss is linear and for h < 1, φh is non-convex.
For h ≥ 0, we consider

Ah(f) def= Aφh(f), f∗
h

def= f∗
φh

and A∗
h

def= Aφh∗ = Aφh(f∗
h).

Theorem 2. Let M ≥ 2 be an integer. Assume that the space X is infinite.
If 0 ≤ h < 1, then the optimal rate of aggregation for the φh−risk is achieved

by the ERM procedure and is equal to
√

log M

n
.
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For h = 1, the optimal rate of aggregation for the φ1−risk is achieved by the
ERM, the AEW and the CAEW (with ’temperature’ parameter β = 1) procedures
and is equal to √

log M

n
.

If h > 1 then, the optimal rate of aggregation for the φh−risk is achieved by
the CAEW, with ’temperature’ parameter βh and is equal to

log M

n
.

5 Suboptimality of Penalized ERM Procedures

In this Section we prove a lower bound under the margin assumption for any
selector and we give a more precise lower bound for penalized ERM procedures.
First, we recall the definition of the margin assumption introduced in [30].

Margin Assumption(MA): The probability measure π satisfies the margin
assumption MA(κ), where κ ≥ 1 if we have

E[|f(X) − f∗(X)|] ≤ c(A0(f) − A∗
0)

1/κ, (8)

for any measurable function f with values in {−1, 1}
We denote by Pκ the set of all probability distribution π satisfying MA(κ).

Theorem 3. Let M ≥ 2 be an integer, κ ≥ 1 be a real number, X be infinite
and φ : R �−→ R be a loss function such that aφ

def= φ(−1) − φ(1) > 0. There
exists a family F of M classifiers with values in {−1, 1} satisfying the following.

Let f̃n be a selector with values in F . Assume that
√

(log M)/n ≤ 1/2. There
exists a probability measure π ∈ Pκ and an absolute constant C3 > 0 such that
f̃n satisfies

E

[
Aφ(f̃n) − Aφ

∗
]

≥ min
f∈F

(
Aφ(f) − Aφ

∗
)

+ C3

( log M

n

) κ
2κ−1

. (9)

Consider the penalized ERM procedure f̃pERM
n associated with F , defined by

f̃pERM
n ∈ Arg min

f∈F
(Aφ

n(f) + pen(f))

where the penalty function pen(·) satisfies |pen(f)| ≤ C
√

(log M)/n, ∀f ∈ F ,

with 0 ≤ C <
√

2/3. Assume that 1188πC2M9C2
log M ≤ n. If κ > 1 then, there

exists a probability measure π ∈ Pκ and an absolute constant C4 > 0 such that
the penalized ERM procedure f̃pERM

n satisfies

E

[
Aφ(f̃pERM

n ) − Aφ
∗
]

≥ min
f∈F

(
Aφ(f) − Aφ

∗
)

+ C4

√
log M

n
.
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Remark 1. Inspection of the proof shows that Theorem 3 is valid for any family
F of classifiers f1, . . . , fM , with values in {−1, 1}, such that there exist points
x1, . . . , x2M in X satisfying

{
(f1(xj), . . . , fM (xj)) : j = 1, . . . , 2M

}
= {−1, 1}M .

Remark 2. If we use a penalty function such that |pen(f)| ≤ γn−1/2, ∀f ∈ F ,
where γ > 0 is an absolute constant (i.e. 0 ≤ C ≤ γ(log M)−1/2), then the
condition “1188πC2M9C2

log M ≤ n” of Theorem 3 is equivalent to “n greater
than a constant”.

Theorem 3 states that the ERM procedure (and even penalized ERM procedures)
cannot mimic the best classifier in F with rates faster than ((log M)/n)1/2 if the
basis classifiers in F are different enough, under a very mild condition on the loss
φ. If there is no margin assumption (which corresponds to the case κ = +∞),
the result of Theorem 3 can be easily deduced from the lower bound in Chap-
ter 7 of [11]. The main message of Theorem 3 is that such a negative statement
remains true even under the margin assumption MA(κ). Selectors aggregate can-
not mimic the oracle faster than ((log M)/n)1/2 in general. Under MA(κ), they
cannot mimic the best classifier in F with rates faster than ((log M)/n)κ/(2κ−1)

(which is greater than (log M)/n when κ > 1). We know, according to Theo-
rem 1, that the CAEW procedure mimics the best classifier in F at the rate
(log M)/n if the loss is β−convex. Thus, penalized ERM procedures (and more
generally, selectors) are suboptimal aggregation procedures when the loss func-
tion is β−convex even if we add the constraint that π satisfies MA(κ).

We can extend Theorem 3 to a more general framework [24] and we obtain
that, if the loss function associated with a risk is somewhat more than con-
vex then it is better to use aggregation procedures with exponential weights
instead of selectors (in particular penalized ERM or pure ERM). We do not
know whether the lower bound (9) is sharp, i.e., whether there exists a selector
attaining the reverse inequality with the same rate.

6 Discussion

We proved in Theorem 2 that the ERM procedure is optimal only for non-convex
losses and for the borderline case of the hinge loss. But, for non-convex losses,
the implementation of the ERM procedure requires minimization of a function
which is not convex. This is hard to implement and not efficient from a practical
point of view. In conclusion, the ERM procedure is theoretically optimal only for
non-convex losses but in that case it is practically inefficient and it is practically
efficient only for the cases where ERM is theoretically suboptimal.

For any convex loss φ, we have 1
n

∑n
k=1 Aφ(f̃AEW

k,β ) ≤ Aφ(f̃CAEW
β ). Next, less

observations are used for the construction of f̃AEW
k,β , 1 ≤ k ≤ n − 1, than for

the construction of f̃AEW
n,β . We can therefore expect the φ−risk of f̃AEW

n,β to be
smaller than the φ−risk of f̃AEW

k,β for all 1 ≤ k ≤ n − 1 and hence smaller than
the φ−risk of f̃CAEW

n,β . Thus, the AEW procedure is likely to be an optimal
aggregation procedure for the convex loss functions.
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The hinge loss happens to be really hinge for different reasons. For losses
“between” the 0 − 1 loss and the hinge loss (0 ≤ h ≤ 1), the ERM is an optimal
aggregation procedure and the optimal rate of aggregation is

√
(log M)/n. For

losses ”over” the hinge loss (h > 1), the ERM procedure is suboptimal and
(log M)/n is the optimal rate of aggregation. Thus, there is a breakdown point
in the optimal rate of aggregation just after the hinge loss. This breakdown can
be explained by the concept of margin : this argument has not been introduced
here by the lack of space, but can be found in [24]. Moreover for the hinge loss
we get, by linearity

min
f∈C

A1(f) − A∗
1 = min

f∈F
A1(f) − A∗

1,

where C is the convex hull of F . Thus, for the particular case of the hinge loss,
“model selection” aggregation and “convex” aggregation are identical problems
(cf. [21] for more details).

7 Proofs

Proof of Theorem 2: The optimal rates of aggregation of Theorem 2 are
achieved by the procedures introduced in Section 2. Depending on the value of
h, Theorem 1 provides the exact oracle inequalities required by the point (1) of
Definition 2. To show optimality of these rates of aggregation, we need only to
prove the corresponding lower bounds. We consider two cases: 0 ≤ h ≤ 1 and
h > 1. Denote by P the set of all probability distributions on X × {−1, 1}.

Let 0 ≤ h ≤ 1. It is easy to check that the Bayes rule f∗ is a minimizer of
the φh−risk. Moreover, using the inequality A1(f) − A∗

1 ≥ A0(f) − A∗
0, which

holds for any real-valued function f (cf. [34]), we have for any prediction rules
f1, . . . , fM (with values in {−1, 1}) and for any finite set F of M real valued
functions,

inf
f̂n

sup
π∈P

(

E

[
Ah(f̂n) − A∗

h

]
− min

f∈F
(Ah(f) − A∗

h)
)

(10)

≥ inf
f̂n

sup
π∈P

f∗∈{f1,...,fM}

(
E

[
Ah(f̂n) − A∗

h

] )
≥ inf

f̂n

sup
π∈P

f∗∈{f1,...,fM}

(
E

[
A0(f̂n) − A∗

0

] )
.

Let N be an integer such that 2N−1 ≤ M , x1, . . . , xN be N distinct points
of X and w be a positive number satisfying (N − 1)w ≤ 1. Denote by PX

the probability measure on X such that PX({xj}) = w, for j = 1, . . . , N − 1
and PX({xN}) = 1 − (N − 1)w. We consider the cube Ω = {−1, 1}N−1. Let
0 < h < 1. For all σ = (σ1, . . . , σN−1) ∈ Ω we consider

ησ(x) =
{

(1 + σjh)/2 if x = x1, . . . , xN−1,
1 if x = xN .

For all σ ∈ Ω we denote by πσ the probability measure on X × {−1, 1} defined
by its marginal PX on X and its conditional probability function ησ.
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We denote by ρ the Hamming distance on Ω. Let σ, σ′ ∈ Ω such that
ρ(σ, σ′) = 1. Denote by H the Hellinger’s distance. Since H2

(
π⊗n

σ , π⊗n
σ′

)
=

2
(
1 −

(
1 − H2(πσ, πσ′ )/2

)n)
and H2(πσ , πσ′) = 2w(1 −

√
1 − h2), then, the

Hellinger’s distance between the measures π⊗n
σ and π⊗n

σ′ satisfies

H2
(
π⊗n

σ , π⊗n
σ′

)
= 2

(
1 − (1 − w(1 −

√
1 − h2))n

)
.

Take w and h such that w(1 −
√

1 − h2) ≤ n−1. Then, H2
(
π⊗n

σ , π⊗n
σ′

)
≤

2(1 − e−1) < 2 for any integer n.
Let σ ∈ Ω and f̂n be an estimator with values in {−1, 1} (only the sign of a

statistic is used when we work with the 0 − 1 loss). For π = πσ, we have

Eπσ [A0(f̂n) − A∗
0] ≥ hwEπσ

[ N−1∑

j=1

|f̂n(xj) − σj |
]
.

Using Assouad’s Lemma (cf. Lemma 1), we obtain

inf
f̂n

sup
σ∈Ω

(
Eπσ

[
A0(f̂n) − A∗

0

])
≥ hw

N − 1
4e2

. (11)

Take now w = (nh2)−1, N = 
log M/ log 2�, h =
(
n−1
log M/ log 2�

)1/2. We
complete the proof by replacing w, h and N in (11) and (10) by their values.

For the case h > 1, we consider an integer N such that 2N−1 ≤ M , N − 1
different points x1, . . . , xN of X and a positive number w such that (N−1)w ≤ 1.
We denote by PX the probability measure on X such that PX({xj}) = w
for j = 1, . . . , N − 1 and PX({xN}) = 1 − (N − 1)w. Denote by Ω the cube
{−1, 1}N−1. For any σ ∈ Ω and h > 1, we consider the conditional probability
function ησ in two different cases. If 2(h − 1) ≤ 1 we take

ησ(x) =
{

(1 + 2σj(h − 1))/2 if x = x1, . . . , xN−1

2(h − 1) if x = xN ,

and if 2(h − 1) > 1 we take

ησ(x) =
{

(1 + σj)/2 if x = x1, . . . , xN−1

1 if x = xN .

For all σ ∈ Ω we denote by πσ the probability measure on X × {−1, 1} with the
marginal PX on X and the conditional probability function ησ of Y knowing X .

Consider

ρ(h) =
{

1 if 2(h − 1) ≤ 1
(4(h − 1))−1 if 2(h − 1) > 1 and g∗σ(x) =

{
σj if x = x1, . . . , xN−1

1 if x = xN .

A minimizer of the φh−risk when the underlying distribution is πσ is given by

f∗
h,σ

def=
2ησ(x) − 1
2(h − 1)

= ρ(h)g∗σ(x), ∀x ∈ X ,

for any h > 1 and σ ∈ Ω.
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When we choose {f∗
h,σ : σ ∈ Ω} for the set F = {f1, . . . , fM} of basis func-

tions, we obtain

sup
{f1,...,fM}

inf
f̂n

sup
π∈P

(

E

[
Ah(f̂n) − A∗

h

]
− min

j=1,...,M
(Ah(fj) − A∗

h)
)

≥ inf
f̂n

sup
π∈P:

f∗
h∈{f∗

h,σ :σ∈Ω}

(
E

[
Ah(f̂n) − A∗

h

])
.

Let σ be an element of Ω. Under the probability distribution πσ, we have Ah(f)−
A∗

h = (h − 1)E[(f(X) − f∗
h,σ(X))2], for any real-valued function f on X . Thus,

for a real valued estimator f̂n based on Dn, we have

Ah(f̂n) − A∗
h ≥ (h − 1)w

N−1∑

j=1

(f̂n(xj) − ρ(h)σj)2.

We consider the projection function ψh(x) = ψ(x/ρ(h)) for any x ∈ X , where
ψ(y) = max(−1, min(1, y)), ∀y ∈ R. We have

Eσ[Ah(f̂n) − A∗
h] ≥ w(h − 1)

N−1∑

j=1

Eσ(ψh(f̂n(xj)) − ρ(h)σj)2

≥ w(h − 1)(ρ(h))2
N−1∑

j=1

Eσ(ψ(f̂n(xj)) − σj)2

≥ 4w(h − 1)(ρ(h))2 inf
σ̂∈[0,1]N−1

max
σ∈Ω

Eσ

⎡

⎣
N−1∑

j=1

|σ̂j − σj |2
⎤

⎦ ,

where the infimum inf σ̂∈[0,1]N−1 is taken over all estimators σ̂ based on one obser-
vation from the statistical experience {π⊗n

σ |σ ∈ Ω} and with values in [0, 1]N−1.
For any σ, σ′ ∈ Ω such that ρ(σ, σ′) = 1, the Hellinger’s distance between the

measures π⊗n
σ and π⊗n

σ′ satisfies

H2
(
π⊗n

σ , π⊗n
σ′

)
=

{
2

(
1 − (1 − 2w(1 −

√
1 − h2))n

)
if 2(h − 1) < 1

2
(
1 − (1 − 2w(1 −

√
3/4))n

)
if 2(h − 1) ≥ 1

.

We take

w =
{

(2n(h − 1)2) if 2(h − 1) < 1
8n−1 if 2(h − 1) ≥ 1.

Thus, we have for any σ, σ′ ∈ Ω such that ρ(σ, σ′) = 1,

H2
(
π⊗n

σ , π⊗n
σ′

)
≤ 2(1 − e−1).

To complete the proof we apply Lemma 1 with N = 
(log M)/n�.
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Proof of Theorem 3: Consider F a family of classifiers f1, . . . , fM , with val-
ues in {−1, 1}, such that there exist 2M points x1, . . . , x2M in X satisfying
{
(f1(xj), . . . , fM (xj)) : j = 1, . . . , 2M

}
= {−1, 1}M def= SM .

Consider the lexicographic order on SM :

(−1, . . . , −1) � (−1, . . . , −1, 1) � (−1, . . . , −1, 1, −1) � . . . � (1, . . . , 1).

Take j in {1, . . . , 2M} and denote by x′
j the element in {x1, . . . , x2M } such that

(f1(x′
j), . . . , fM (x′

j)) is the j−th element of SM for the lexicographic order. We
denote by ϕ the bijection between SM and {x1, . . . , x2M } such that the value
of ϕ at the j−th element of SM is x′

j . By using the bijection ϕ we can work
independently either on the set SM or on {x1, . . . , x2M }. Without any assumption
on the space X , we consider, in what follows, functions and probability measures
on SM . Remark that for the bijection ϕ we have

fj(ϕ(x)) = xj , ∀x = (x1, . . . , xM ) ∈ SM , ∀j ∈ {1, . . . , M}.

With a slight abuse of notation, we still denote by F the set of functions
f1, . . . , fM defined by fj(x) = xj , for any j = 1, . . . , M.

First remark that for any f, g from X to {−1, 1}, using E[φ(Y f(X))|X ] =
E[φ(Y )|X ]1I(f(X)=1) + E[φ(−Y )|X ]1I(f(X)=−1), we have

E[φ(Y f(X))|X ] − E[φ(Y g(X))|X ] = aφ(1/2 − η(X))(f(X) − g(X)).

Hence, we obtain Aφ(f) − Aφ(g) = aφ(A0(f) − A0(g)). So, we have for any
j = 1, . . . , M,

Aφ(fj) − Aφ(f∗) = aφ(A0(fj) − A∗
0).

Moreover, for any f : SM �−→ {−1, 1} we have Aφ
n(f) = φ(1) + aφAφ0

n (f) and
aφ > 0 by assumption, hence,

f̃pERM
n ∈ Arg min

f∈F
(Aφ0

n (f) + pen(f)).

Thus, it suffices to prove Theorem 3, when the loss function φ is the classical
0 − 1 loss function φ0.

We denote by SM+1 the set {−1, 1}M+1 and by X0, . . . , XM , M + 1 inde-
pendent random variables with values in {−1, 1} such that X0 is distributed
according to a Bernoulli B(w, 1) with parameter w (that is P(X0 = 1) = w and
P(X0 = −1) = 1 − w) and the M other variables X1, . . . , XM are distributed
according to a Bernoulli B(1/2, 1). The parameter 0 ≤ w ≤ 1 will be chosen
wisely in what follows.

For any j ∈ {1, . . . , M}, we consider the probability distribution πj =
(PX , η(j)) of a couple of random variables (X, Y ) with values in SM+1 ×{−1, 1},
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where PX is the probability distribution on SM+1 of X = (X0, . . . , XM ) and
η(j)(x) is the regression function at the point x ∈ SM+1, of Y = 1 knowing that
X = x, given by

η(j)(x) =

⎧
⎨

⎩

1 if x0 = 1
1/2 + h/2 if x0 = −1, xj = −1
1/2 + h if x0 = −1, xj = 1

, ∀x = (x0, x1, . . . , xM ) ∈ SM+1,

where h > 0 is a parameter chosen wisely in what follows. The Bayes rule f∗,
associated with the distribution πj = (PX , η(j)), is identically equal to 1 on
SM+1.

If the probability distribution of (X, Y ) is πj for a j ∈ {1, . . . , M} then, for
any 0 < t < 1, we have P[|2η(X) − 1| ≤ t] ≤ (1 − w)1Ih≤t. Now, we take

1 − w = h
1

κ−1 ,

then, we have P[|2η(X) − 1| ≤ t] ≤ t
1

κ−1 and so πj ∈ Pκ.
We extend the definition of the fj ’s to the set SM+1 by fj(x) = xj for any x =

(x0, . . . , xM ) ∈ SM+1 and j = 1, . . . , M . Consider F = {f1, . . . , fM}. Assume
that (X, Y ) is distributed according to πj for a j ∈ {1, . . . , M}. For any k ∈
{1, . . . , M} and k �= j, we have

A0(fk) − A∗
0 =

∑

x∈SM+1

|η(x) − 1/2||fk(x) − 1|P[X = x] =
3h(1 − w)

8
+

w

2

and the excess risk of fj is given by A0(fj) − A∗
0 = (1 − w)h/4 + w/2. Thus, we

have
min
f∈F

A0(f) − A∗
0 = A0(fj) − A∗

0 = (1 − w)h/4 + w/2.

First, we prove the lower bound for any selector. Let f̃n be a selector with
values in F . If the underlying probability measure is πj for a j ∈ {1, . . . , M}
then,

E
(j)
n [A0(f̃n) − A∗

0] =
M∑

k=1

(A0(fk) − A∗
0)π

⊗n
j [f̃n = fk]

= min
f∈F

(A0(f) − A∗
0) +

h(1 − w)
8

π⊗n
j [f̃n �= fj ],

where E
(j)
n denotes the expectation w.r.t. the observations Dn when (X, Y ) is

distributed according to πj . Hence, we have

max
1≤j≤M

{E
(j)
n [A0(f̃n)−A∗

0]−min
f∈F

(A0(f)−A∗
0)} ≥ h(1 − w)

8
inf
φ̂n

max
1≤j≤M

π⊗n
j [φ̂n �= j],

where the infimum inf φ̂n
is taken over all tests valued in {1, . . . , M} constructed

from one observation in the model (SM+1 × {−1, 1}, A × T , {π1, . . . , πM})⊗n,
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where T is the natural σ−algebra on {−1, 1}. Moreover, for any j ∈ {1, . . . , M},
we have

K(π⊗n
j |π⊗n

1 ) ≤ nh2

4(1 − h − 2h2)
,

where K(P |Q) is the Kullback-Leibler divergence between P and Q (that is∫
log(dP/dQ)dP if P << Q and +∞ otherwise). Thus, if we apply Lemma 2

with h = ((log M)/n)(κ−1)/(2κ−1), we obtain the result.
Second, we prove the lower bound for the pERM procedure f̂n = f̃pERM

n .
Now, we assume that the probability distribution of (X, Y ) is πM and we take

h =
(
C2 log M

n

) κ−1
2κ

. (12)

We have E[A0(f̂n) − A∗
0] = min

f∈F
(A0(f) − A∗

0) +
h(1 − w)

8
P[f̂n �= fM ]. Now, we

upper bound P[f̂n = fM ], conditionally to Y = (Y1, . . . , Yn). We have

P[f̂n = fM |Y]
= P[∀j = 1, . . . , M − 1, Aφ0

n (fM ) + pen(fM ) ≤ Aφ0
n (fj) + pen(fj)|Y]

= P[∀j = 1, . . . , M − 1, νM ≤ νj + n(pen(fj) − pen(fM ))|Y],

where νj =
∑n

i=1 1I(YiX
j
i ≤0), ∀j = 1, . . . , M and Xi = (Xj

i )j=0,...,M ∈ SM+1, ∀i =

1, . . . , n. Moreover, the coordinates Xj
i , i = 1, . . . , n; j = 0, . . . , M are inde-

pendent, Y1, . . . , Yn are independent of Xj
i , i = 1, . . . , n; j = 1, . . . , M − 1 and

|pen(fj)| ≤ hκ/(κ−1), ∀j = 1, . . . , M . So, we have

P[f̂n = fM |Y] =
n∑

k=0

P[νM = k|Y]
M−1∏

j=1

P[k ≤ νj + n(pen(fj) − pen(fM ))|Y]

≤
n∑

k=0

P[νM = k|Y]
(

P[k ≤ ν1 + 2nhκ/(κ−1)|Y]
)M−1

≤ P[νM ≤ k̄|Y] +
(
P[k̄ ≤ ν1 + 2nhκ/(κ−1)|Y]

)M−1
,

where

k̄ = E[νM |Y] − 2nhκ/(κ−1)

=
1
2

n∑

i=1

(2 − 4h

2 − 3h
1I(Yi=−1) +

1 + h1/(κ−1)(h/2 − 1/2)
1 + h1/(κ−1)(3h/4 − 1/2)

1I(Yi=1)

)
− 2nhκ/(κ−1).

Using Einmahl and Masson’s concentration inequality (cf. [12]), we obtain

P[νM ≤ k̄|Y] ≤ exp(−2nh2κ/(κ−1)).



154 G. Lecué

Using Berry-Esséen’s theorem (cf. p.471 in [4]), the fact that Y is independent
of (Xj

i ; 1 ≤ i ≤ n, 1 ≤ j ≤ M − 1) and k̄ ≥ n/2 − 9nhκ/(κ−1)/4, we get

P[k̄ ≤ ν1 + 2nh
κ

κ−1 |Y] ≤ P

[
n/2 − ν1√

n/2
≤ 6h

κ
κ−1

√
n

]

≤ Φ(6h
κ

κ−1
√

n) +
66√
n

,

where Φ stands for the standard normal distribution function. Thus, we have

E[A0(f̂n) − A∗
0] ≥ min

f∈F
(A0(f) − A∗

0) (13)

+
(1 − w)h

8

(
1 − exp(−2nh2κ/(κ−1)) −

(
Φ(6hκ/(κ−1)

√
n) + 66/

√
n
)M−1)

.

Next, for any a > 0, by the elementary properties of the tails of normal
distribution, we have

1 − Φ(a) =
1√
2π

∫ +∞

a

exp(−t2/2)dt ≥ a√
2π(a2 + 1)

e−a2/2. (14)

Besides, we have for 0 < C <
√

2/6 (a modification for C = 0 is obvious) and
(3376C)2(2πM36C2

log M) ≤ n, thus, if we replace h by its value given in (12)
and if we apply (14) with a = 16C

√
log M , then we obtain

(
Φ(6hκ/(κ−1)√n)+66/

√
n
)M−1

≤ exp
[
− M1−18C2

18C
√

2π log M
+

66(M − 1)√
n

]
. (15)

Combining (13) and (15), we obtain the result with C4 = (C/4)
(
1−exp(−8C2)−

exp(−1/(36C
√

2π log 2))
)

> 0. �

The following lemma is used to establish the lower bounds of Theorem 2. It is a
version of Assouad’s Lemma (cf. [28]). Proof can be found in [24].

Lemma 1. Let (X , A) be a measurable space. Consider a set of probability
{Pω/ω ∈ Ω} indexed by the cube Ω = {0, 1}m. Denote by Eω the expectation
under Pω. Let θ ≥ 1 be a number. Assume that:

∀ω, ω′ ∈ Ω/ρ(ω, ω′) = 1, H2(Pω, Pω′) ≤ α < 2,

then we have

inf
ŵ∈[0,1]m

max
ω∈Ω

Eω

⎡

⎣
m∑

j=1

|ŵj − wj |θ
⎤

⎦ ≥ m2−3−θ(2 − α)2

where the infimum infŵ∈[0,1]m is taken over all estimator based on an observation
from the statistical experience {Pω|ω ∈ Ω} and with values in [0, 1]m.

We use the following lemma to prove the weakness of selector aggregates. A
proof can be found p. 84 in [28].
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Lemma 2. Let P1, . . . , PM be M probability measures on a measurable space

(Z, T ) satisfying
1
M

M∑

j=1

K(Pj |P1) ≤ α log M, where 0 < α < 1/8. We have

inf
φ̂

max
1≤j≤M

Pj(φ̂ �= j) ≥
√

M

1 +
√

M

(
1 − 2α − 2

√
α

log 2

)
,

where the infimum inf φ̂ is taken over all tests φ̂ with values in {1, . . . , M} con-
structed from one observation in the statistical model (Z, T , {P1, . . . , PM}).
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21. Lecué, G.: Optimal rates of aggregation in classification. Submitted (2005)
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Abstract. We present data-dependent error bounds for transductive
learning based on transductive Rademacher complexity. For specific al-
gorithms we provide bounds on their Rademacher complexity based on
their “unlabeled-labeled” decomposition. This decomposition technique
applies to many current and practical graph-based algorithms. Finally,
we present a new PAC-Bayesian bound for mixtures of transductive al-
gorithms based on our Rademacher bounds.

1 Introduction

Transductive learning was already proposed and briefly studied more than thirty
years ago [19], but only lately has it been empirically recognized that transduc-
tion can often facilitate more efficient or accurate learning than the traditional
supervised learning approach (see, e.g., [8]). This recognition has motivated a
flurry of recent activity focusing on transductive learning, with many new al-
gorithms and heuristics being proposed. Nevertheless, issues such as the iden-
tification of “universally” effective learning principles for transduction remain
unresolved. Statistical learning theory provides a principled approach to attack
such questions through the study of error bounds. For example, in inductive
learning such bounds have proven instrumental in characterizing learning prin-
ciples and deriving practical algorithms.

So far, several general error bounds for transductive inference have been de-
veloped [20,6,9,12]. In this paper we continue this fruitful line of research and de-
velop tight, high probability data-dependent error bounds for transduction based
on the Rademacher complexity. Inspired by [16] (Theorem 24), our main result
in this regard is Theorem 2, offering a sufficient condition for transductive learn-
ing. While this result is syntactically similar to known inductive Rademacher
bounds (see, e.g., [3]), it is fundamentally different in the sense that the trans-
ductive Rademacher averages are taken with respect to hypothesis spaces that
can depend on the unlabeled training and test examples. This opportunity is
unavailable in the inductive setting where the hypothesis space must be fixed
before any example is observed.

Our second contribution is a technique for establishing Rademacher bounds
for specific algorithms based on their unlabeled-labeled decomposition (ULD). In

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 157–171, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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this decomposition we present the algorithm as sgn(Kα), where K is a matrix
that depends on the unlabeled data and α is a vector that may depend on all
given information including the labeled training set. We show that many state-
of-the-art algorithms have non-trivial ULD leading to tight error bounds. In
particular, we provide such bounds for the Gaussian random field transductive
algorithm of [23], the “consistency method” of [22], the spectral graph trans-
ducer (SGT) algorithm of [15], the eigenmap algorithm of [5] and the Tikhonov
regularization algorithm of [4].

We also show a simple Monte-Carlo scheme for bounding the Rademacher
complexity of any transductive algorithm using its ULD. We demonstrate the
efficacy of this scheme for the “consistency method” of [22]. Experimental evi-
dence from [8] (Chapter 21) indicates that the SGT algorithm of [15] is amongst
the better transductive algorithms currently known. Motivated by this fact we
derived a specific error bound for this algorithm. Our final contribution is a
PAC-Bayesian bound for transductive mixture algorithms. This result, which is
stated in Theorem 3, is obtained as a consequence of Theorem 2 using the tech-
niques of [17]. This result motivates the use of ensemble methods in transduction
that are yet to be explored in this setting.

Related Work. Vapnik [20] presented the first general 0/1 loss bounds for trans-
duction. His bounds are implicit in the sense that tail probabilities are specified
in the bound as the outcome of a computational routine. Vapnik’s bounds can be
refined to include prior “beliefs” as noted in [9]. Similar implicit but somewhat
tighter bounds were developed in [6] for the 0/1 loss case. Explicit PAC-Bayesian
transductive bounds for any bounded loss function were presented in [9]. The
bounds of [1] for semi-supervised learning also hold in the transductive setting,
making them conceptually similar to some transductive PAC-Bayesian bounds.
General error bounds based on stability were developed in [12].

Effective applications of the general bounds mentioned above to particular
algorithms or “learning principles” is not automatic. In the case of the PAC-
Bayesian bounds several such successful applications are presented in terms
of appropriate “priors” that promote various structural properties of the data
[9,11,13]. Ad-hoc bounds for particular algorithms were developed in [4,21].

Error bounds based on the Rademacher complexity are a well-established
topic in induction (see [3] and references therein). The first Rademacher trans-
ductive risk bound was presented in [16]. This bound, which is a straightforward
extension of the inductive Rademacher techniques of [3], is limited to the special
case when training and test sets are of equal size. The bound presented here
overcomes this limitation.

2 Transductive Rademacher Complexity

We begin with some definitions. Consider a fixed set Sm+u = (〈xi, yi〉)m+u
i=1 of

m + u points xi in some space together with their labels yi. The learner is
provided with the (unlabeled) full-sample Xm+u = {xi}m+u

i=1 . A set consisting
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of m points is selected from Xm+u uniformly at random among all subsets of
size m. These m points together with their labels are given to the learner as
a training set. Re-numbering the points we denote the training set points by
Xm = {x1, . . . , xm} and the labeled training set by Sm = (〈xi, yi〉)m

i=1. The set
Xu

�= {xm+1, . . . , xm+u} = Xm+u \ Xm is called the test set. The learner’s goal
is to predict the labels of the test points in Xu based on Sm ∪ Xu.

This paper focuses on binary learning problems where labels y ∈ {±1}.
The learning algorithms we consider generate “soft classification” vectors h =
(h(1), . . . h(m+u)) ∈ R

m+u, where h(i) (or h(xi)) is the soft, or confidence-rated,
label of example xi given by the “hypothesis” h. For actual (binary) classification
of xi the algorithm outputs sgn(h(i)).

Based on the full-sample Xm+u the algorithm selects an hypothesis space H
of such soft classification hypotheses. Then, given the labels of training points
the algorithm selects one hypothesis from H for classification. The goal is to
minimize its test error Lu(h) �= 1

u

∑m+u
i=m+1 �(h(xi), yi) w.r.t. the 0/1 loss function

�. In this work we use also the margin loss function �γ . For a positive real γ,
�γ(y1, y2) = 0 if y1y2 ≥ γ and �γ(y1, y2) = min{1, 1 − y1y2/γ} otherwise. The
empirical (margin) error of h is L̂γ

m(h) �= 1
m

∑m
i=1 �γ(h(xi), yi). We denote by

Lγ
u(h) the test margin error.
We adapt the inductive Rademacher complexity to our transductive setting

but generalize it a bit to include “neutral” Rademacher values also.

Definition 1 (Transductive Rademacher Complexity). Let V ⊆ R
m+u

and p ∈ [0, 1/2]. Let σ = (σ1, . . . , σm+u} be a vector of i.i.d. random variables
such that

σi
�=

⎧
⎪⎨

⎪⎩

1 w.p. p;
−1 w.p. p;
0 w.p. 1 − 2p.

(1)

The Transductive Rademacher Complexity with parameter p is Rm+u(V , p) �=
( 1

m + 1
u ) · Eσ {supv∈V σ · v}.

For the case p = 1/2 and m = u the resulting transductive complexity coincides
with the standard inductive definition (see, e.g., [3]) up to the normalization fac-
tor ( 1

m + 1
u ). Whenever p < 1/2, some Rademacher variables will obtain (neutral)

zero values and reduce the complexity (see Lemma 1). We use this parameterized
version of the complexity to tighten our bounds. Notice that the transductive
complexity is an empirical quantity that does not depend on any underlying dis-
tribution. Also, the transductive complexity depends on the test points whereas
the inductive complexity only depends on the (unlabeled) training points.

The following lemma states that Rm+u(V , p) is monotone increasing with p.
The proof of the lemma is omitted and will appear in the full version. The proof
of Lemma 1 is based on the technique used in the proof of Lemma 5 in [17].

Lemma 1. For any V ⊆ R
m+u and 0 ≤ p1 < p2 ≤ 1/2, Rm+u(V , p1) <

Rm+u(V , p2).
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The statements that follow utilize the Rademacher complexity with p0
�= mu

(m+u)2 .

We abbreviate Rm+u(V) �= Rm+u(V , p0). By Lemma 1, all our bounds apply also
to Rm+u(V , p) for all p > p0.

3 Uniform Concentration Inequality for a Set of Vectors

Denote by Is
r for the set of natural numbers {r, . . . , s} (r < s). Let Z �= Zm+u

1
�=

(Z1, . . . , Zm+u) be a random permutation vector where the variable Zk, k ∈
Im+u
1 , is the kth component of a permutation of Im+u

1 that is chosen uniformly
at random. Let Zij be a perturbed permutation vector obtained by exchanging
Zi and Zj in Z. Any function f on permutations of Im+u

1 is called (m, u)-
permutation symmetric if f(Z) �= f(Z1, . . . , Zm+u) is symmetric on Z1, . . . , Zm

as well as on Zm+1, . . . , Zm+u.
The following lemma (that will be utilized in the proof of Theorem 1) presents

a concentration inequality that is a slight extension of Lemma 2 from [12]. The
argument relies on the Hoeffding-Azuma inequality for martingales (the proof
will appear in the full version). Note that a similar but weaker statement can be
extracted using the technique of [16] (Claim 2 of the proof of Theorem 24).1

Lemma 2 ([12]). Let Z be a random permutation vector over Im+u
1 . Let f(Z)

be an (m, u)-permutation symmetric function satisfying
∣
∣f(Z) − f(Zij)

∣
∣ ≤ β for

all i ∈ Im
1 , j ∈ Im+u

m+1 . Then

PZ {f(Z) − EZ {f(Z)} ≥ ε} ≤ exp
(

− ε2(m + u)
2β2mu

)

. (2)

Let V be a set of vectors in [B1, B2]m+u, B1 ≤ 0, B2 ≥ 0 and set B
�= B2 − B1,

Bmax = max(|B1|, |B2|). Consider two independent permutations of Im+u
1 , Z and

Z′ . For any v ∈ V denote by v(Z) �= (v(Z1), v(Z2), . . . , v(Zm+u)) the vector v
permuted according to Z. We use the following abbreviations for averages of
v over subsets of its components: Hk{v(Z)} �= 1

m

∑k
i=1 v(Zi), Tk{v(Z)} �=

1
u

∑m+u
i=k+1 v(Zi) (note that H stands for ‘head’ and T, for ’tail’). In the special

case where k = m we set H{v(Z)} �= Hm{v(Z)}, and T{v(Z)} �= Tm{v(Z)}.
Finally, the average component of v is denoted v̄ �= 1

m+u

∑m+u
i=1 v(i).

1 The idea in [16] is to represent a function of the permutation of m + u indices as a
function of independent random variables and use McDiarmid’s bounded difference
inequality for independent random variables. It is not hard to extend the result of [16]
for m = u to the general case of m �= u, but the resulting concentration inequality
would have a 1/(m + u) term instead of the (m+ u)/(mu) term as in our Lemma 2.
We achieve this advantage by exploiting the (m, u)-symmetry. The resulting sharper
bound is critical for obtaining converging error bounds using our techniques.
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For any v ∈ V and any permutation Z of Im+u
1 we have

T{v(Z)} = H{v(Z)} + T{v(Z)} − H{v(Z)}

≤ H{v(Z)} + sup
v∈V

[
T{v(Z)} − v̄ + v̄ − H{v(Z)}

]

= H{v(Z)} + sup
v∈V

[
T{v(Z)} − EZ′T{v(Z′)} + EZ′H{v(Z′)} − H{v(Z)}

]

≤ H{v(Z)} + EZ′ sup
v∈V

[
T{v(Z)} − T{v(Z′)} + H{v(Z′)} − H{v(Z)}

]

︸ ︷︷ ︸
�
=g(Z)

.

The function g(Z) is (m, u)-permutation symmetric in Z. It can be verified
that |g(Z) − g(Zij)| ≤ B

(
1
m + 1

u

)
. Therefore, we can apply Lemma 2 with

β
�= B

(
1
m + 1

u

)
to g(Z). Since T{v(Z)} − H{v(Z)} ≤ g(Z), we obtain, with

probability of at least 1 − δ over random permutation Z of Im+u
1 , for all v ∈ V :

T{v(Z)} ≤ H{v(Z)} + EZ {g(Z)} + B

(
1
m

+
1
u

)√
2mu

m + u
ln

1
δ

= H{v(Z)} + EZ {g(Z)} + B

√

2
(

1
m

+
1
u

)

ln
1
δ
. (3)

Our goal is to bound the expectation EZ {g(Z)}. For technical convenience
we use the following definition of the Rademacher complexity with pairwise
Rademacher variables. This definition is equivalent to Def. 1 with p = mu

(m+u)2 .

Definition 2. Let v = (v(1), . . . , v(m + u)) ∈ R
m+u. Let V be a set of vectors

from R
m+u. Let σ̃ = {σ̃i}m+u

i=1 be a vector of i.i.d. random variables defined as:

σ̃i = (σ̃i,1, σ̃i,2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
− 1

m , − 1
u

)
with prob. mu

(m+u)2 ,
(
− 1

m , 1
m

)
with prob. m2

(m+u)2 ,
(

1
u , 1

m

)
with prob. mu

(m+u)2 ,
(

1
u , − 1

u

)
with prob. u2

(m+u)2 .

(4)

The “pairwise” transductive Rademacher complexity is defined to be

R̃m+u(V) �= Eσ̃

{

sup
v∈V

m+u∑

i=1

(σ̃i,1 + σ̃i,2)v(i)

}

. (5)

It is not hard to see from the definition of σ and σ̃ that Rm+u(V) = R̃m+u(V).

Lemma 3. Let Z be a random permutation of Im+u
1 . Let c0 =

√
32 ln(4e)

3 < 5.05.
Then

EZ {g(Z)} ≤ R̃m+u(V) + c0B

(
1
u

+
1
m

)
√

min(m, u). (6)

Proof: The proof of Lemma 3 is based on ideas from the proof of Lemma 3
in [3]. Let n1, n2 and n3 be the number of random variables σ̃i realizing the value
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(
− 1

m , − 1
u

)
,
(
− 1

m , 1
m

)
,
(

1
u , 1

m

)
, respectively. Set N1

�= n1 +n2 and N2
�= n2 +n3.

Note that the ni’s and Ni’s are random variables. Denote by R the distribution of
σ̃ defined by (4) and by R(N1, N2), the distribution R conditioned on the events
n1 + n2 = N1 and n2 + n3 = N2. We define

s(N1, N2)
�= Eσ̃∼R(N1,N2)

{

sup
v∈V

m+u∑

i=1

(σ̃i,1 + σ̃i,2) v(i)

}

. (7)

The rest of the proof is based on the following three claims:

Claim 1. R̃m+u(V) = EN1,N2{s(N1, N2)}.
Claim 2. EZg(Z)} = s (Eσ̃N1,Eσ̃N2).
Claim 3. s (Eσ̃N1,Eσ̃N2) − EN1,N2{s(N1, N2)} ≤ c0B

(
1
u + 1

m

)√
m.

Having established these three claims we immediately obtain

EZ {g(Z)} ≤ R̃m+u(V) + c0B

(
1
u

+
1
m

)√
m. (8)

The entire development is symmetric in m and u and, therefore, we also obtain
the same result but with

√
u instead of

√
m. By taking the minimum of (8) and

the symmetric bound (with
√

u) we establish the theorem. It remains to prove the
three claims.

Proof of Claim 1. Note that N1 and N2 are random variables whose distribu-
tion is induced by the distribution of σ̃. We have

R̃m+u(V) = EN1,N2Eσ̃∼Rad(N1,N2) sup
v∈V

m+u∑

i=1

(σ̃i,1 + σ̃i,2) v(i) = EN1,N2s(N1, N2).

Proof of Claim 2. (Sketch) By the definitions of Hk and Tk (appearing just
after Lemma 2), for any N1, N2 ∈ Im+u

1 we have

EZ,Z′ sup
v∈V

[
TN1{v(Z)} − TN2{v(Z′)} + HN2{v(Z′)} − HN1{v(Z)}

]
=

EZ,Z′ sup
v∈V

[
1
u

m+u∑

i=N1+1

v(Zi) − 1
u

m+u∑

i=N2+1

v(Z ′
i) +

1
m

N2∑

i=1

v(Z ′
i) − 1

m

N1∑

i=1

v(Zi)

]

.

(9)

The values of N1 and N2, and the distribution of Z and Z′, with respect
to which we take the expectation in (9), induce a distribution of assignments
of coefficients { 1

m , − 1
m , 1

u , − 1
u} to the components of v. For any N1, N2 and

realizations of Z and Z′, each component v(i), i ∈ Im+u
1 , is assigned to exactly

two coefficients, one for each of the two permutations (Z and Z′). Let a �=
(a1, . . . , am+u), where ai

�= (ai,1, ai,2). For any i ∈ Im+u
1 , the pair (ai,1, ai,2)

takes the values of the coefficients of v(i), where the first component is induced
by the realization Z (i.e., ai,1 is either − 1

m or 1
u ) and the second component by

the realization of Z′ (i.e., ai,2 is either 1
m or − 1

u ).
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Let A(N1, N2) be the distribution of vectors a, induced by the distribution of
Z and Z′, for particular N1, N2. Using this definition we can write

(9) = Ea∼A(N1,N2) sup
v∈V

[
m+u∑

i=1

(ai,1 + ai,2)v(i)

]

. (10)

We argue (the full proof will appear in the full version) that the distributions
R(N1, N2) and A(N1, N2) are identical. Therefore, it follows from (10) that

(9) = Eσ̃∼R(N1,N2)

{

sup
v∈V

[
m+u∑

i=1

(σ̃i,1 + σ̃i,2)v(i)

]}

= s(N1, N2). (11)

Note that Eσ̃N1 = Eσ̃{n1 + n2} = m and Eσ̃N2 = Eσ̃{n2 + n3} = m. Hence

EZ{g(Z)} = Eσ̃∼Rad(m,m)

{

sup
v∈V

[
m+u∑

i=1

(σ̃i,1 + σ̃i,2) v(i)

]}

= s (Eσ̃N1,Eσ̃N2) .

Proof of Claim 3. (Sketch) Abbreviate Q
�= 1

m + 1
u . For any 1 ≤ N1, N2, N

′
1, N

′
2

≤ m + u we have (the technical proof will appear in the full version),

|s(N1, N2) − s(N ′
1, N2)| ≤ Bmax |N1 − N ′

1| Q , (12)
|s(N1, N2) − s(N1, N

′
2)| ≤ Bmax |N2 − N ′

2| Q . (13)

We use the following Bernstein-type concentration inequality (see [10], Prob-
lem 8.3) for the Binomial random variable X ∼ Bin(p, n): PX {|X − EX | > t} <

2 exp
(
− 3t2

8np

)
. Noting that N1, N2 ∼ Bin

(
m

m+u , m + u
)
, we use (12), (13) and

the Bernstein-type inequality (applied with n
�= m + u and p

�= m
m+u ) to obtain

PN1,N2 {|s(N1, N2) − s(Eσ̃ {N1} ,Eσ̃ {N2})| ≥ ε}
≤ PN1,N2 {|s(N1, N2) − s(N1,Eσ̃N2)| + |s(N1,Eσ̃N2) − s(Eσ̃N1,Eσ̃N2)| ≥ ε}

≤ PN1,N2

{
|s(N1, N2) − s(N1,Eσ̃N2)| ≥ ε

2

}

+PN1,N2

{
|s(N1,Eσ̃N2) − s(Eσ̃N1,Eσ̃N2)| ≥ ε

2

}

≤ PN2

{
|N2 − Eσ̃N2| BmaxQ ≥ ε

2

}
+ PN1

{
|N1 − Eσ̃N1|BmaxQ ≥ ε

2

}

≤ 4 exp

(

− 3ε2

32(m + u) m
m+uB2

maxQ
2

)

= 4 exp
(

− 3ε2

32mB2
maxQ

2

)

.

Next we use the following fact (see [10], Problem 12.1): if a nonnegative ran-
dom variable X satisfies P{X > t} ≤ c · exp(−kt2), then EX ≤

√
ln(ce)/k.

Using this fact with c
�= 4 and k

�= 3/(32mQ2) we have

|EN1,N2 {s(N1, N2)} − s(Eσ̃N1,Eσ̃N2)| ≤ EN1,N2 |s(N1, N2) − s(Eσ̃N1,Eσ̃N2)|

≤
√

32 ln(4e)
3

mB2
maxQ

2. (14)

�
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By combining (3) and Lemma 3 we obtain the next concentration inequality,
which is the main result of this section.

Theorem 1. Let B1 ≤ 0, B2 ≥ 0 and V be a (possibly infinite) set of real-
valued vectors in [B1, B2]m+u. Let B

�= B2 − B1 and Bmax
�= max(|B1|, |B2|).

Let Q
�=
(

1
u + 1

m

)
. Then with probability of at least 1−δ over random permutation

Z of Im+u
1 , for all v ∈ V,

T{v(Z)} ≤ H{v(Z)} + Rm+u(V) + Bmaxc0Q
√

min(m, u) + B

√

2Q ln
1
δ
. (15)

4 Uniform Rademacher Error Bound

Our goal now is to utilize the concentration inequality of Theorem 1 to derive a
uniform error bound for all soft labelings h ∈ H of the full-sample. The idea is to
apply Theorem 1 with an appropriate instantiation of the set V so that T{v(Z)}
will correspond to the test error and H{v(Z)} to the empirical error. The fol-
lowing lemma will be used in this analysis. The lemma is an adaptation, which
accommodates the transductive Rademacher variables, of Lemma 5 from [17].
The proof is omitted (but will be provided in the full version).

Lemma 4. Let H ⊆ R
m+u be a set of vectors. Let f and g be real-valued func-

tions. Let σ = {σi}m+u
i=1 be Rademacher variables, as defined in (1). If for all

1 ≤ i ≤ m+u and any h,h′ ∈ H, |f(h(i))− f(h′(i))| ≤ |g(h(i))− g(h′(i))|, then

Eσ sup
h∈H

[
m+u∑

i=1

σif(h(i))

]

≤ Eσ sup
h∈H

[
m+u∑

i=1

σig(h(i))

]

. (16)

Let Y ∈ {±1}m+u, and denote by Y (i) the ith component of Y . For any Y

define �Y
γ (h(i)) �= �γ(h(i), Y (i)). Noting that �Y

γ satisfies the Lipschitz condition
|�Y

γ (h(i)) − �Y
γ (h′(i))| ≤ 1

γ |h(i) − h′(i)|, we apply Lemma 4 with the functions
f(h(i)) = �Y

γ (h(i)) and g(h(i)) = h(i)/γ, to get

Eσ

{

sup
h∈H

m+u∑

i=1

σi�
Y
γ (h(i))

}

≤ 1
γ
Eσ

{

sup
h∈H

m+u∑

i=1

σih(i)

}

. (17)

For any Y , define �Y
γ (h) �= (�Y

γ (h(1)), . . . , �Y
γ (h(m+u))). Taking Y to be the true

(unknown) labeling of the full-sample, we set Lγ
H = {v : v = �Y

γ (h),h ∈ H}.
It follows from (17) that Rm+u(Lγ

H) ≤ 1
γ Rm+u(H). Applying Theorem 1 with

v �= �γ(h), V �= Lγ
H, Bmax = B = 1, and using the last inequality we obtain:2

2 This bound holds for any fixed margin parameter γ. Using the technique of the proof
of Theorem 18 in [7] we can also obtain a bound that is uniform in γ.
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Theorem 2. Let H be any set of full-sample soft labelings. The choice of H can

depend on the full-sample Xm+u. Let c0 =
√

32 ln(4e)
3 < 5.05 and Q

�=
(

1
u + 1

m

)
.

For any fixed γ, with probability of at least 1 − δ over the choice of the training
set from Xm+u, for all h ∈ H,

Lu(h) ≤ Lγ
u(h) ≤ L̂γ

m(h) +
Rm+u(H)

γ
+ c0Q

√
min(m, u) +

√

2Q ln
1
δ
. (18)

5 Bounds for Unlabeled-Labeled Decompositions (ULDs)

Let r be any natural number and let K be an (m+u)×r matrix depending only
on Xm+u. Let α be an r × 1 vector that may depend on both Sm and Xu. The
soft classification output y of any transductive algorithm can be represented by

y = K · α. (19)

We refer to (19) as an unlabeled-labeled decomposition (ULD). In this section
we develop bounds on the Rademacher complexity of algorithms based on their
ULDs. We note that any transductive algorithm has a trivial ULD, for example,
by taking r = m + u, setting K to be the identity matrix and assigning α to
any desired (soft) labels. We are interested in “non-trivial” ULDs and provide
useful bounds for such decompositions.3

In a “vanilla” ULD, K is an (m+u)×(m+u) matrix and α = (α1, . . . , αm+u)
simply specifies the given labels in Sm (where αi ∈ {±1} for labeled points, and
αi = 0 otherwise). From our point of view any vanilla ULD is not trivial because
α does not encode the final classification of the algorithm. For example, the
algorithm of Zhou et al. [22] straightforwardly admits a vanilla ULD. On the
other hand, the natural (non-trivial) ULD of the algorithms of Zhu et al. [23]
and of Belkin and Niyogi [5] is not of the vanilla type. For some algorithms it
is not necessarily obvious how to find non-tirivial ULDs. Later we mention such
cases – in particular, the algorithms of Joachims [15] and of Belkin et al. [4].

We now present a bound on the transductive Rademacher complexity of any
transductive algorithm basing on their ULD. Let {λi}r

i=1 be the singular values
of K. We use the well-known fact that ‖K‖Fro =

√∑r
i=1 λ2

i , where ‖K‖Fro
�=√∑

i,j(K(i, j))2 is the Frobenius norm of K. Suppose that ‖α‖2 ≤ μ1 for some

μ1. Let H �= H(K) be the transductive hypothesis space induced by the matrix
K; that is, H is the set of all possible outputs of the algorithm corresponding to
a fixed full-sample Xm+u, all possible training/test partitions and all possible
labelings of the training set. Using the abbreviation K(i, ·) for the ith row of
K and following the proof idea of Lemma 22 in [3], we obtain (the complete
derivation will appear in the full version),
3 For the trivial decomposition where K is the identity matrix it can be shown that

the risk bound (18), combined with the forthcoming Rademacher complexity bound
(20), is greater than 1 (the proof will be provided in the full version).
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Rm+u(H) = Eσ

{

sup
h∈H

m+u∑

i=1

σih(xi)

}

= Eσ

{

sup
α:‖α‖2≤μ1

m+u∑

i=1

σi〈α, K(i, ·)〉
}

≤ μ1

√
√
√
√

m+u∑

i=1

2
mu

〈K(i, ·), K(i, ·)〉 = μ1

√
2

mu
‖K‖2

Fro = μ1

√
√
√
√ 2

mu

r∑

i=1

λ2
i , (20)

where the inequality is obtained using the Cauchy-Schwartz and Jensen in-
equalities. Using the bound (20) in conjunction with Theorem 2 we get a data-
dependent error bound for any algorithm, that can be computed once we derive
an upper bound on the maximal length of possible values of the α vector, appear-
ing in its ULD. Notice that for any vanilla ULD, μ1 =

√
m. Later on we derive a

tight μ1 for non-trivial ULDs of SGT [15] and of the “consistency method” [22].
The bound (20) is syntactically similar in form to a corresponding inductive

Rademacher bound of kernel machines [3]. However, as noted above, the fun-
damental difference is that in induction, the choice of the kernel (and therefore
H) must be data-independent in the sense that it must be selected before the
training examples are observed. In our transductive setting, K and H can be
selected based on the unlabeled full-sample.

5.1 Example: Analysis of SGT

We now exemplify the use of the ULD Rademacher bound (20) and analyze
the SGT algorithm [15]. We start with a description of a simplified version
of SGT that captures the essence of the algorithm.4 Let W be a symmetric
(m+u)× (m+u) similarity matrix of the full-sample Xm+u. The matrix W can
be built in various ways, for example, it can be a k-nearest neighbors graph. Let
D be a diagonal matrix, whose (i, i)th entry is the sum of the ith row in W . An
unnormalized Laplacian of W is L = D−W . Let τ = (τ1, . . . , τm+u) be a vector
that specifies the given labels in Sm; that is, τi ∈ {±1} for labeled points, and
τi = 0 otherwise. Let c be a fixed constant and 1 be an (m+u)×1 vector whose
entries are 1 and let C be a diagonal matrix such that C(i, i) = 1 iff example i
is in the training set (and zero otherwise). The soft classification h∗ produced
by the SGT algorithm is the solution of the following optimization problem:

min
h∈Rm+u

hT Lh + c(h − τ )T C(h − τ ) (21)

s.t. hT 1 = 0, hT h = m + u. (22)

It is shown in [15] that h∗ = Kα, where K is an (m+u)×r matrix5 whose columns
are orthonormal eigenvectors corresponding to non-zero eigenvalues of the Lapla-
cian L and α is an r×1 vector. While α depends on both the training and test sets,
the matrix K depends only on the unlabeled full-sample. Substituting h∗ = Kα
to the second constraint in (22) and using the orthonormality of the columns of
4 We omit some heuristics that are optional in SGT. Their inclusion does not affect

the error bound we derive.
5 r is the number of non-zero eigenvalues of L, after performing spectral transformations.

Joachims set the default r to 80.
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K, we get m + u = hT h = αT KT Kα = αT α. Hence, ‖α‖2 =
√

m + u and
we can take μ1 =

√
m + u. Since K is an (m + u) × r matrix with orthonormal

columns, ‖K‖2
Fro = r. Consequently, by (20) the transductive Rademacher com-

plexity of SGT is upper bounded by
√

2r
(

1
m + 1

u

)
, where r is the number of non-

zero eigenvalues of L. Notice that this bound is oblivious to the magnitude of these
eigenvalues.

5.2 Kernel ULD

If r = m + u and K is a kernel matrix (this holds if K is positive semidefinite),
then we say that the decomposition is a kernel-ULD. Let H ⊆ R

m+u be the
reproducing kernel Hilbert space (RKHS), corresponding to K. We denote by
〈·, ·〉H the inner product in H. Since K is a kernel matrix, by the reproducing
property6 of H, K(i, j) = 〈K(i, ·), K(j, ·)〉H. Suppose that the vector α satisfies√

αT Kα ≤ μ2 for some μ2. Let {λi}m+u
i=1 be the eigenvalues of K. By similar

arguments used to derive (20) we have (details will appear in the full version):

Rm+u(H) = Eσ

{

sup
h∈H

m+u∑

i=1

σih(xi)

}

= Eσ

⎧
⎨

⎩
sup

α:
√

αT Kα≤μ2

m+u∑

i,j=1

σiαjK(i, j)

⎫
⎬

⎭

≤ μ2

√
√
√
√

m+u∑

i=1

2
mu

K(i, i) = μ2

√
2 · trace(K)

mu
= μ2

√
√
√
√ 2

mu

m+u∑

i=1

λi. (23)

By defining the RKHS induced by the unnormalized Laplacian, as in [14], and
using a generalized representer theorem [18], it can be shown that the algorithm
of Belkin et al. [4] has a kernel-ULD (the details will appear in the full version).

5.3 Monte-Carlo Rademacher Bounds

We now show how to compute Monte-Carlo Rademacher bounds with high confi-
dence for any transductive algorithm using its ULD. Our empirical examination
of these bounds shows that they are tighter than the analytical bounds (20)
and (23). The technique, which is based on a simple application of Hoeffding’s
inequality, is made particularly simple for vanilla ULDs.

Let V ⊆ R
m+u be a set of vectors, σ ∈ R

m+u to be a Rademacher vector (1),
and g(σ) = supv∈V σ ·v. By Def. 1, Rm+u(V) = Eσ{g(σ)}. Let σ1, . . . , σn be an
i.i.d. sample of Rademacher vectors. We estimate Rm+u(V) with high-confidence
by applying the Hoeffding inequality on

∑n
i=1

1
ng(σi). To apply the Hoeffding

inequality we need a bound on supσ |g(σ)|, which is derived for the case where V
is all possible outputs of the algorithm (for a fixed Xm+u). Specifically, suppose
that v ∈ V is an output of the algorithm, v = Kα, and assume that ‖α‖2 ≤ μ1.
By Def. 1, for all σ, ‖σ‖2 ≤ b

�=
√

m + u
(

1
m + 1

u

)
. Using elementary linear al-

gebra we have supσ |g(σ)| ≤ sup‖σ‖2≤b, ‖α‖2≤μ1
|σKα| ≤ bμ1λmax, where λmax

6 This means that ∀h ∈ H and i ∈ Im+u
1 , h(i) = 〈K(i, ·), h〉H.
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is a maximal singular value of K. Applying the one-sided Hoeffding inequality
on n samples of g(σ) we have, for any given δ, that with probability of at least
1 − δ over the random i.i.d. choice of the vectors σ1, . . . , σn,

Rm+u(V) ≤ 1
n

n∑

i=1

sup
α:‖α‖2≤μ1

σiKα + μ1

√
m + u

(
1
m

+
1
u

)

λmax

√

2 ln 1
δ

n
. (24)

To use the bound (24), the value of supα:‖α‖2≤μ σiKα should be computed for
each randomly drawn σi. This computation is algorithm-dependent and below
we show how to compute it for the algorithm of [22].7 In cases where we can
compute the supremum exactly (as in vanilla ULDs; see below) we can also get
a lower bound using the symmetric Hoeffding inequality.

Example: Application to the CM algorithm. We start with a brief description
of the Consistency Method (CM) algorithm of [22]. The algorithm has a natural
vanilla ULD (see definition at the beginning of Sec. 5), where the matrix K
is computed as follows. Let W and D be matrices as in SGT (see Sec. 5.1).
A normalized Laplacian of W is L = D−1/2WD−1/2. Let β be a parameter
in (0, 1). Then, K

�= (1 − β)(I − βL)−1 and the output of CM is y = K · α,
where α specifies the given labels. Consequently ‖α‖2 ≤

√
m. Moreover, it

can be verified that K is a kernel matrix, and therefore, the decomposition is
a kernel-ULD. It turns out that for CM, the exact value of the supremum in
(24) can be analytically derived. The vectors α, that induce the CM hypothesis
space for a particular K, have exactly m components with values in {±1}; the
rest of the components are zeros. Let Ψ be the set of all possible such α’s.
Let t(σi) = (t1, . . . , tm+u) �= σiK ∈ R

1×(m+u) and |t(σi)| �= (|t1|, . . . , |tm+u|).
Then, for any fixed σi, supα∈Ψ σiKα is the sum of the m largest elements in
|t(σi)|. This derivation holds for any vanilla ULD.

To demonstrate the Rademacher bounds discussed in this paper we present
an empirical comparison of the bounds over two datasets (Voting, and Pima)
from the UCI repository. For each dataset we took m + u to be the size of the
dataset (435 and 768, respectively) and we took m to be 1/3 of the full-sample
size. The matrix W is the 10-nearest neighbor graph computed with the cosine
similarity metric. We applied the CM algorithm with β = 0.5. The Monte-Carlo
bounds (both upper and lower) were computed with δ = 0.05 and n = 105.

We compared the Mote-Carlo bounds with the ULD bound (20), named here
“the SVD bound”, and the kernel-ULD bound (23), named here “the eigenvalue
bound”. The graphs in Figure 1 compare these four bounds for each of the
datasets as a function of the number of non-zero eigenvalues of K (trimmed to
maximum 430 eigenvalues). Specifically, each point t on the x-axis corresponds
to bounds computed with a matrix Kt that approximates K using only the
smallest t eigenvalues of K. In both examples the lower and upper Monte-Carlo
bounds tightly “sandwich” the true Rademacher complexity. It is striking that

7 An application of this approach in induction seems to be very hard, if not impossible.
For example, in the case of RBF kernel machines we will need to optimize over
(typically) infinite-dimensional vectors in the feature space.
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Fig. 1. A comparison of transductive Rademacher bounds

the SVD bound is very close to the true Rademacher complexity. In principle,
with our simple Monte-Carlo method we can approximate the true Rademacher
complexity up to any desired accuracy (with high confidence) at the cost of
drawing sufficiently many Rademacher vectors.

6 PAC-Bayesian Bound for Transductive Mixtures

In this section we adapt part of the results of [17] to transduction. The proofs of
all results presented in this section will appear in the full version of the paper.

Let B = {hi}|B|
i=1 be a finite set of base-hypotheses. The class B can be formed

after observing the full-sample Xm+u, but before obtaining the training/test set
partition and the labels. Let q = (q1, . . . , q|B|) ∈ R

|B|. Our goal is to construct
a useful mixture hypothesis, h̃q

�=
∑|B|

i=1 qihi. We assume that q belongs to a
domain Ωg,A = {q | g(q) ≤ A}, where g : R

|B| → R is a predefined function and
A ∈ R is a constant. The domain Ωg,A and the set B induce the class B̃g,A of all
possible mixtures h̃q. Recalling that Q

�= (1/m+1/u) and c0 =
√

32 ln(4e)/3 <

5.05, we apply Theorem 2 with H �= B̃g,A and obtain that with probability of at
least 1 − δ over the training/test partition of Xm+u, for all h̃q ∈ B̃g,A,

Lu(h̃q) ≤ L̂γ
m(h̃q) +

Rm+u(B̃g,A)
γ

+ c0Q
√

min(m, u) +

√

2Q ln
1
δ
. (25)

Let Q1
�=
√

2Q (ln(1/δ) + 2 ln logs (sg̃(q)/g0)). It is straightforward to apply
the technique used in the proof of Theorem 10 in [17] and obtain the following
bound, which eliminates the dependence on A.

Corollary 1. Let g0 > 0, s > 1 and g̃(q) = s max(g(q), g0). For any (fixed) g,
with probability of at least 1 − δ over the training/test set partition, for all8 h̃q,

Lu(h̃q) ≤ L̂γ
m(h̃q) +

Rm+u(B̃g,g̃(q))
γ

+ c0Q
√

min(m, u) + Q1. (26)

8 In the bound (26) the meaning of Rm+u(B̃g,g̃(q)) is as follows. For any q let A = g̃(q)

and Rm+u(B̃g,g̃(q))
�
= Rm+u(B̃g,A).
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We now instantiate Corollary 1 for g(q) being the KL-divergence and derive
a PAC-Bayesian bound. To this end, we restrict q to be a probability vector.
Let p ∈ R

|B| be a “prior” probability vector. The vector p can only depend on
the unlabeled full-sample Xm+u. For a particular prior p let g(q) �= D(q‖p) =
∑|B|

i=1 qi ln
(

qi

pi

)
. Adopting Lemma 11 of [17] to the transductive Rademacher

variables, defined in (1), we obtain the following bound.

Theorem 3. Let g0 > 0, s > 1. Let p and q be any prior and posterior dis-
tribution over B, respectively. Set g(q) �= D(q‖p) and g̃(q) �= s max(g(q), g0).
Then, with prob. of at least 1 − δ over the training/test set partition, for all h̃q,

Lu(h̃q) ≤ L̂γ
m(h̃q) +

Q

γ

√
2g̃(q) sup

h∈B
‖h‖2

2 + c0Q
√

min(m, u) + Q1. (27)

Theorem 3 is a PAC-Bayesian result, where the prior p can depend on Xm+u

and the posterior can be optimized adaptively, based also on Sm.

7 Concluding Remarks

We have studied the use of Rademacher complexity analysis in the transductive
setting. Our results include the first general Rademacher bound for soft clas-
sification algorithms, the unlabeled-labeled decomposition (ULD) technique for
bounding Rademacher complexity of any transductive algorithm and a bound
for Bayesian mixtures.

It would be nice to further improve our bounds using, for example, the local
Rademacher approach [2]. However, we believe that the main advantage of these
transductive bounds is the possibility of selecting a hypothesis space based on the
full-sample. A clever data-dependent choice of this space should provide sufficient
flexibility to achieve a low training error with low Rademacher complexity. In
our opinion this opportunity can be explored and exploited much further.

This work opens up new avenues for future research. For example, it would
be interesting to optimize the matrix K in the ULD representation explicitly (to
fit the data) under a constraint of low Rademacher complexity. Also, it would
be nice to find “low-Rademacher” approximations of particular K matrices. The
PAC-Bayesian bound for mixture algorithms motivates the development and use
of transductive mixtures, an area that has yet to be investigated.

Acknowledgement. We thank Yair Wiener for useful comments.
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Abstract. This paper solves an important problem left open in the
literature by showing that U-shapes are unnecessary in iterative learning .
A U-shape occurs when a learner first learns, then unlearns, and, finally,
relearns, some target concept. Iterative learning is a Gold-style learning
model in which each of a learner’s output conjectures depends only upon
the learner’s just previous conjecture and upon the most recent input
element. Previous results had shown, for example, that U-shapes are
unnecessary for explanatory learning, but are necessary for behaviorally
correct learning.

Work on the aforementioned problem led to the consideration of an
iterative-like learning model, in which each of a learner’s conjectures
may, in addition, depend upon the number of elements so far presented
to the learner. Learners in this new model are strictly more powerful
than traditional iterative learners, yet not as powerful as full explana-
tory learners. Can any class of languages learnable in this new model be
learned without U-shapes? For now, this problem is left open.

1 Introduction

U-Shapes. A U-shape occurs when a learner first learns , then unlearns , and,
finally, relearns , some target concept. This phenomenon has been observed, for
example, in children learning the use of regular and irregular verbs, e.g., a child
first correctly learns that the past tense of “speak” is “spoke”; then, the child
overregularizes and incorrectly uses “speaked”; finally, the child returns to cor-
rectly using “spoke” [18,20,23].

Important questions regarding U-shapes are the following. Are U-shapes an
unnecessary accident of human evolution, or , are there classes of tasks that can
be learned with U-shapes, but not otherwise? That is, are there classes of tasks
that are learnable only by returning to some abandoned correct behavior?

There have been mathematical attempts to answer these questions in the
context of Gold-style language learning [12,14].1 Models of Gold-style language
1 In this paper, we focus exclusively on language learning, as opposed to, say, function

learning [14].

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 172–186, 2007.
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learning differ from one another in ways described hereafter, however, the follow-
ing is common to all. Infinitely often, a learner is fed successively longer finite,
initial sequences of an infinite sequence of numbers and, possibly, pauses (#).
The set of all such numbers represents a language, and, the infinite sequence,
itself, is called a text for the language. For each such initial sequence, the learner
outputs a conjecture (i.e., grammar) for the language contained in the text.

One way in which Gold models differ from one another is in the criteria used
to judge the success of a learner. Examples of models with differing criteria
are explanatory learning (Ex-learning) [12,14]2 and behaviorally correct learning
(Bc-learning) [8,14]. In both models, for a learner to be successful, all but finitely
many of the learner’s conjectures must correctly (semantically) identify the input
language. However, Ex-learning has the additional requirement that a learner
converge syntactically to a single conjecture.

In Gold-style learning, a U-shape is formalized as: outputting a semantically
correct conjecture, then outputting a semantically incorrect conjecture, and,
finally, returning to a semantically correct conjecture [3,4,1]. As it turns out,
U-shapes are unnecessary for Ex-learning, i.e., every class of languages that can
be Ex-learned can be Ex-learned without U-shapes [1, Theorem 20]. On the
other hand, U-shapes are necessary for Bc-learning, i.e., there are classes of
languages that can be Bc-learned with U-shapes, but not without [11, proof of
Theorem 4]. Thus, in at least some contexts, this seemingly inefficient behavior
can actually increase one’s learning power.3

Iterative Learning. For both Ex-learning and Bc-learning, a learner is free
to base a conjecture upon every element presented to the learner up to that
point. Thus, in a sense, an Ex-learner or Bc-learner can remember every element
presented to it. One could argue that such an ability is beyond that possessed
by (most) humans. This calls into question the applicability of Ex-learning and
Bc-learning to modeling human learning. That is, it would seem that any model
of human learning should be memory limited in some respect.

Iterative learning (It-learning) [25,16,7] is a straightforward variation of the
Ex-learning model that is memory limited.4 In this model, each of a learner’s
conjectures can depend only upon the learner’s just previous conjecture and
upon the most recent input element. An It-learner can remember elements that
it has seen by coding them into its conjectures. However, like an Ex-learner, an
It-learner is required to converge syntactically to a single conjecture. Thus, on
any given text, an It-learner can perform such a coding-trick for only finitely
many elements.

There have been previous attempts to determine whether U-shapes are nec-
essary in It-learning [4,13]. The memory limited aspect of It-learning makes
it more nearly applicable than Ex-learning or Bc-learning to modeling human
learning.

2 Ex-learning is the model that was actually studied by Gold [12].
3 There exist Gold models that lie strictly between Ex and Bc [5]. For nearly every

such model considered, U-shapes are necessary [3].
4 Other memory limited models are considered in [19,11,7,4].
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Herein (Theorem 2 in Section 3), we solve this important open problem by
showing that U-shapes are unnecessary in It-learning, i.e., any class of languages
that can be It-learned can be It-learned without U-shapes.

Other Restricted Forms of Learning. Two other restricted forms of learning
that have been well studied are set-driven learning (SDEx-learning) and partly
set-driven learning (PSDEx-learning) [24,22,10,17].5 The SDEx-learning model
requires that a learner output syntactically identical conjectures when fed two
different initial sequences with the same content, i.e., listing the same set of
numbers. So, for example, when forming a conjecture, an SDEx-learner cannot
consider the number of elements so far presented to it, or the order in which those
elements were presented. The PSDEx-learning model is similar, except that a
learner is required to output identical conjectures when fed initial sequences
with the same content and length. Thus, when forming a conjecture, a PSDEx-
learner cannot consider the order in which elements were presented to it, but
can consider the number of such elements.

SDEx-learners and It-learners are alike in that neither can consider the num-
ber of elements so far presented to it when forming a conjecture. Furthermore,
PSDEx-learners are like SDEx-learners with just this one restriction lifted.
Herein, we consider a similar counterpart to It-learners. That is, we consider a
model in which each of a learner’s output conjectures can depend only upon the
learner’s just previous conjecture, the most recent input element, and a counter
indicating the number of elements so far presented to the learner. We call this
model iterative-with-counter learning (ItCtr-learning). In Section 4, we show
that ItCtr-learning and SDEx-learning are incomparable (Theorems 3 and 4),
i.e., for each, there is a class of languages learnable by that one, but not the
other. It follows that ItCtr-learning is strictly more powerful than It-learning,
yet not as powerful as full Ex-learning.

In an early attempt at showing that U-shapes are unnecessary in It-learning,
we obtained the partial result that U-shapes are unnecessary in It-learning of
classes of infinite languages. Independently, Sanjay Jain obtained the same (par-
tial) result [13]. Thus, we hypothesize: learning without U-shapes is easier when
the learner has access to some source of infinitude, e.g., the cardinality of the in-
put language. This belief is what led us to consider the ItCtr-learning model, as
every learner in this model has access to a source of infinitude, i.e., the counter,
even when fed a text for a finite language.

Assuming our above hypothesis is correct, it should be easy to show that
U-shapes are unnecessary in ItCtr-learning. Unfortunately, however, this prob-
lem has turned out to be more difficult than we had anticipated. So, for now, it
is left open.

Organization. The remainder of this paper is organized as follows. Section 2,
just below, gives notation and preliminaries. Section 3 proves our main result,

5 PSDEx-learning is also called rearrangement independent learning in the litera-
ture (e.g., [17]).
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namely, that U-shapes are unnecessary in It-learning. Section 4 explores ItCtr-
learning, and, restates, formally, the problem that this paper leaves open.

2 Notation and Preliminaries

Computability-theoretic concepts not explained below are treated in [21].
N denotes the set of natural numbers, {0, 1, 2, . . .}. Lowercase Roman letters,

with or without decorations, range over elements of N, unless stated otherwise.
A and L, with or without decorations, range over subsets of N. L ranges over col-
lections of subsets of N. For all finite, nonempty A, maxA denotes the maximum
element of A. max ∅ def= −1.

ψ ranges over one-argument partial functions. For all ψ and x, ψ(x)↓ denotes
that ψ(x) converges; ψ(x)↑ denotes that ψ(x) diverges.6 For all ψ, dom(ψ) def=
{x : ψ(x)↓} and rng(ψ) def= {y : (∃x)[ψ(x) = y]}. We use ↑ to denote the value of
a divergent computation. λ denotes the empty function.

ϕ0, ϕ1, ... denotes any fixed, acceptable numbering of all one-argument partial
computable functions [21]. Φ denotes a fixed Blum complexity measure for ϕ [2].
For all p, Wp

def= dom(ϕp). Thus, for all p, Wp is the pth recursively enumerable
set [21]. W↑ def= ∅.

(N ∪ {#})∗ denotes the set of all finite initial segments of total functions of
type N → (N ∪ {#}). (N ∪ {#})≤ω denotes the set of all (finite and infinite)
initial segments of total functions of type N → (N∪{#}). α, β, �, σ, and τ , with
or without decorations, range over elements of (N ∪ {#})∗. T , with or without
decorations, ranges over total functions of type N → (N ∪ {#}).

For all f ∈ (N ∪ {#})≤ω, content(f) def= rng(f) − {#}. For all T and L, T
is a text for L def⇔ content(T ) = L. For all σ, |σ| (pronounced: the length of σ)
def= |dom(σ)|. For all f ∈ (N ∪ {#})≤ω, and all σ, n, and i, (1) and (2) below.

f [n](i) def=

{
f(i), if i < n;
↑, otherwise. (1)

(σ 
 f)(i) def=

{
σ(i), if i < |σ|;
f(i − |σ|), otherwise. (2)

M, with or without decorations, ranges over partial computable functions of
type (N ∪ {#})∗ → (N ∪ {?}).7

The following are the Gold-style learning models considered in this paper.

Definition 1. For all M and L, (a)-(e) below.

(a) M Ex-identifies L ⇔ for all texts T for L, there exist i and p such that
(∀j ≥ i)

[
M(T [j]) = p

]
and Wp = L.

6 For all one-argument partial functions ψ and x, ψ(x) converges iff there exists y such
that ψ(x) = y; ψ(x) diverges iff there is no y such that ψ(x) = y. If ψ is partial
computable, and x is such that ψ(x) diverges, then one can imagine that a program
associated with ψ goes into an infinite loop on input x.

7 Such an M is often called an inductive inference machine [14].
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(b) M SDEx-identifies L ⇔ M Ex-identifies L, and , for all � and σ, if
content(�) = content(σ), then M(�) = M(σ).

(c) M PSDEx-identifies L ⇔ M Ex-identifies L, and , for all � and σ, if
|�| = |σ| and content(�) = content(σ), then M(�) = M(σ).

(d) M It-identifies L ⇔ M Ex-identifies L, and , for all �, σ, and τ such that
content(�) ∪ content(σ) ∪ content(τ) ⊆ L, (i) and (ii) below.8

(i) M(�)↓.
(ii) M(�) = M(σ) ⇒ M(� 
 τ) = M(σ 
 τ).

(e) M ItCtr-identifies L ⇔ M Ex-identifies L, and , for all �, σ, and τ such
that content(�) ∪ content(σ) ∪ content(τ) ⊆ L, (i) and (ii) below.

(i) M(�)↓.
(ii) [|�| = |σ| ∧ M(�) = M(σ)] ⇒ M(� 
 τ) = M(σ 
 τ).

Ex, SD, PSD, It, and ItCtr are mnemonic for explanatory, set-driven, partly
set-driven, iterative, and iterative-with-counter , respectively.

Definition 2. For all I ∈ {Ex,SDEx,PSDEx, It, ItCtr}, (a) and (b) below.

(a) For all M, I(M) = {L : M I-identifies L}.
(b) I = {L : (∃M)[L ⊆ I(M)]}.

Definition 3. For all I ∈ {Ex,SDEx,PSDEx, It, ItCtr}, (a) and (b) below.

(a) For all M, L, and texts T for L, M exhibits a U-shape on T ⇔ there exist
i, j, and k such that i < j < k, {M(T [i]),M(T [j]),M(T [k])} ⊂ N, and

WM(T [i]) = L ∧ WM(T [j]) �= L ∧ WM(T [k]) = L. (3)

(b) NUI =
{
L : (∃M)

[
L ⊆ I(M) ∧ (∀L ∈ L)[M does not exhibit a

U-shape on any text for L]
]}

.

NU is mnemonic for non-U-shaped . Clearly, for all I as above, NUI ⊆ I.

8 In some parts of the literature (e.g., [4]), an iterative learner is defined as a partial
computable function of type ((N ∪ {?}) × (N ∪ {#})) → (N ∪ {?}) satisfying certain
conditions. An advantage to typing an iterative learner in this way is that it makes
explicit the fact that each of the learner’s conjectures is based upon another conjec-
ture and an input element. However, we prefer the type given in Definition 1(d), as
it is consistent with that of a learner in other models, e.g., Ex.

There is some similarity between an iterative learner and an automaton with a
potentially infinite set of states, corresponding to the learner’s conjectures. It was
thinking of iterative learners in this way, and the Myhill-Nerode Theorem [9], that led
us to formulate iterative learners as in Definition 1(d). A proof that this formulation
is equivalent to that of [4] can be found in [6].
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3 It = NUIt

In this section, we prove our main result (Theorem 2), namely, that U-shapes
are unnecessary in It-learning.

Definition 4, below, introduces a notion that we call canniness . Intuitively, an
It-learner that is canny does not change its mind excessively, and is, therefore,
much easier to reason about. Theorem 1, below, shows that, for any L ∈ It,
there exists a canny learner that It-identifies every language in L. This fact is
used in the proof of Theorem 2.

Proving Theorem 1 does not appear to be trivial. However, due to space
constraints, its proof omitted. A proof of Theorem 1 can be found in [6].

Definition 4. For all M, M is canny ⇔ for all σ, (a)-(c) below.

(a) M(σ)↓ ⇒ M(σ) ∈ N, i.e., M never outputs ?.
(b) M(σ 
 #) = M(σ).
(c) For all x ∈ N, if M(σ 
x) �= M(σ), then, for all τ ⊇ σ 
x, M(τ 
x) = M(τ).

Theorem 1. For all L ∈ It, there exists M′ such that L ⊆ It(M′) and M′ is
canny.

Definition 5. For all M and σ, (a)-(d) below.

(a) CM(σ) = {x ∈ N ∪ {#} : M(σ 
 x)↓ = M(σ)↓}.
(b) BM(σ) = {x ∈ N ∪ {#} : M(σ 
 x)↓ �= M(σ)↓}.

(c) B∩
M(σ) =

⋂

0 ≤ i ≤ |σ| BM(σ[i]).

(d) CBM(σ) =
( ⋃

0 ≤ i < |σ| CM(σ[i])
)

∩ BM(σ).

C is mnemonic for cycle. B is mnemonic for branch.

Lemma 1. Suppose that M and L are such that L ⊆ It(M) and M is canny.
Suppose that L and σ are such that L ∈ L and content(σ) ⊆ L. Suppose, finally,
that L ∩ B∩

M(σ) = ∅ and that L ∩ CBM(σ) is finite. Then, WM(σ) = L.

Proof (Sketch). Suppose the hypotheses. Let A = L ∩ CBM(σ). Clearly,

(∀x ∈ A)(∃� ⊂ σ)[x ∈ CM(�)]. (4)

Furthermore, since L ∩ B∩
M(σ) = ∅,

L − A ⊆ CM(σ). (5)

Consider a text T for L described, informally, as follows. T looks, initially, like
σ with the elements of A interspersed. The elements of A are positioned in T
in such a way that M does not make a mind-change when encountering these
elements. The � in (4) make this possible. Beyond this initial sequence resembling
σ, T consists of the elements of L − A and, possibly, pauses (#), in any order.
Clearly, by (5) and the fact the M is canny, M converges to M(σ) on such a
text T . Thus, it must be the case that WM(σ) = L. ≈ (Lemma 1 )
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Lemma 2. Suppose that M, L, L, and σ are as in Lemma 1. Suppose, in
addition, that L is finite. Then, for all τ such that [σ ⊆ τ ∧ content(τ) ⊆ L],
WM(τ) = L.

Proof. Suppose the hypotheses, and let τ be such that σ ⊆ τ and content(τ) ⊆ L.
Since L ∩ B∩

M(σ) = ∅ and σ ⊆ τ , clearly, L ∩ B∩
M(τ) = ∅. Furthermore, since L

is finite, L ∩ CBM(τ) is finite. Thus, by Lemma 1, WM(τ) = L. (Lemma 2 )

Lemma 3. Suppose that M and L are such that L ⊆ It(M). Suppose that
L and σ are such that L ∈ L and content(σ) ⊆ L. Suppose, finally, that L ∩
BM(σ) is infinite. Then, for all texts T for L, and all i, there exists j ≥ i such
that T (j) ∈ BM(σ).

Proof. Suppose the hypotheses. By way of contradiction, let T and i be such
that, for all j ≥ i, T (j) �∈ BM(σ). Then it must be the case that L ∩ BM(σ) ⊆
{T (0), ..., T (i − 1)} ∩ BM(σ). But since L ∩ BM(σ) is infinite and {T (0), ...,
T (i − 1)} ∩ BM(σ) is finite, this is a contradiction. (Lemma 3 )

Theorem 2. It = NUIt.

Proof. Clearly, NUIt ⊆ It. Thus, it suffices to show that It ⊆ NUIt. Let L ∈ It
be fixed. A machine M′ is constructed such that L ⊆ It(M′) and M′ does not
exhibit a U-shape on any text for a language in L.

Let M be such that L ⊆ It(M). Without loss of generality, assume that M
is canny. Let pM be such that

ϕpM = M. (6)

Let e : (N ∪ {#})∗ × N → N be a partial computable function such that, for all
σ, (a)-(c) below.

(a) dom
(
e(σ, ·)

)
is an initial segment of N.

(b) e(σ, ·) is 1-1.
(c) rng

(
e(σ, ·)

)
= WM(σ).

Clearly, such an e exists. Let f : (N ∪ {#})∗ × N × (N ∪ {#})∗ → N be a 1-1,
computable function such that, for all σ, m, α, and q, if f(σ, m, α) = q, then Wq

is the least fixpoint of the following recursive definition.9

Stage s ≥ 0. If e(σ, s)↓, then let x = e(σ, s), and let A = W s
q ∪ {x}. If each

of (a)-(d) below is satisfied, then set W s+1
q = A and proceed to stage s + 1;

otherwise, go into an infinite loop thereby making Wq finite.
(a) e(σ, s)↓.
(b) M(σ 
 x)↓.
(c) x ∈ CM(σ) ∪ CBM(σ).
(d) (∀w ∈ A)[w ∈ CBM(σ) ⇒ w ≤ m]

∨ (∀τ)
[
[σ ⊂ τ ∧ content(τ) ⊆ A ∧ |τ | ≤ |A|] ⇒ A ⊆ Wf(τ,0,λ)

]
.

9 The requirement that the programs produced by f witness least fixpoints of this
definition is, in fact, not necessary for the proof of the theorem. The requirement is
here simply to make the definition of Wf(·,·,·) unambiguous.
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Clearly, such an f exists.
Claim 1.

(a) For all σ, m, and α, Wf(σ,m,α) ⊆ WM(σ).
(b) For all σ, m, n, and α, if m ≤ n, then Wf(σ,m,α) ⊆ Wf(σ,n,α).
(c) For all σ, m, α, and β, Wf(σ,m,α) = Wf(σ,m,β).

Proof of Claim. Easily verifiable from the definition of f . (Claim 1 )

Let P be such that, for all σ and m, and all x ∈ N ∪ {#}, P (σ, m, x) ⇔ x �= #
and

(∃w)[ΦM(σ)(w) ≤ x ∧ ΦpM(σ 
 w) ≤ x ∧ w ∈ CBM(σ) ∧ m < w ≤ x]. (7)

Note that P is a computable predicate. Let M′ be such that M′(λ) = f(λ, 0, λ),
and, for all �, σ, m, and α, and all x ∈ N ∪ {#}, if M′(�)↑, then M′(� 
 x)↑;
furthermore, if M′(�) = f(σ, m, α), then M′(� 
 x) is:

↑, if (i) M(σ)↑ ∨ M(σ 
 x)↑ ∨ M(σ 
 α)↑ ∨ M(σ 
 α 
 x)↑;
f(σ 
 α 
 x, 0, λ ), if (ii) ¬(i) ∧

[
x ∈ B∩

M(σ) ∨ [x ∈ CBM(σ) ∧ x > m]
]
;

f(σ, m, α 
 x), if (iii) ¬(i) ∧ x ∈ CBM(σ 
 α) ∧ x ≤ m;
f(σ, x, λ ), if (iv) ¬(i) ∧ x ∈ CM(σ 
 α) ∧ P (σ, m, x) ∧ α = λ;
f(σ 
 α, 0, λ ), if (v) ¬(i) ∧ x ∈ CM(σ 
 α) ∧ P (σ, m, x) ∧ α �= λ;
f(σ, m, α ), if (vi) ¬(i) ∧ x ∈ CM(σ 
 α) ∧ ¬P (σ, m, x).

Let L ∈ L be fixed, and let T be a fixed text for L.

Claim 2. For all i, M′(T [i])↓.
Proof of Claim. Clearly, for all i, σ, m, and α, if M′(T [i]) = f(σ, m, α), then
content(σ) ∪ content(α) ⊆ content(T [i]) ⊆ L. It follows that condition (i) never
applies as M′ is fed T , and, thus, for all i, M′(T [i])↓. (Claim 2 )

For all i, let σi, mi, and αi be such that

M′(T [i]) = f(σi, mi, αi). (8)

By Claim 2, such σi, mi, and αi exist.

Claim 3. For all i, (a)-(e) below.

(a) σi 
 αi ⊆ σi+1 
 αi+1 ⊆ σi 
 αi 
 T (i).
(b) If T (i) ∈ BM(σi 
 αi), then σi+1 
 αi+1 = σi 
 αi 
 T (i).
(c) If T (i) ∈ B∩

M(σi), then σi+1 = σi 
 αi 
 T (i).
(d) If σi = σi+1, then mi ≤ mi+1.
(e) M(T [i])↓ = M(σi 
 αi)↓.

Proof of Claim. (a)-(d) are easily verifiable from the definition of M′. (e) follows
from (a) and (b). (Claim 3 )
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Claim 4. There exists i such that, for all j ≥ i, condition (vi) applies in calcu-
lating M′(T [j + 1]).

Proof of Claim. Suppose, by way of contradiction, that one or more of conditions
(i)-(v) applies infinitely often as M′ is fed T . By Claim 2, condition (i) never
applies as M′ is fed T . Also, note that, for all i, if condition (v) applies in
calculating M′(T [i + 1]), then αi �= λ and αi+1 = λ. Furthermore, for all i, if
αi = λ and αi+1 �= λ, then condition (iii) applies in calculating M′(T [i + 1]).
Thus, if condition (v) applies infinitely often, then it must also be the case
that condition (iii) applies infinitely often. Therefore, it suffices to consider the
following cases.

Case condition (iii) applies infinitely often. Then, for infinitely many i,
T (i) ∈ BM(σi 
 αi). Furthermore, by Claim 3(e), for infinitely many i,
T (i) ∈ BM(T [i]). Thus, M does not converge on T — a contradiction.
Case condition (ii) applies infinitely often, but condition (iii) applies only
finitely often. Let i be such that, for all j ≥ i, condition (iii) does not apply
in calculating M′(T [j + 1]). Let j be such that j ≥ i and αj = λ. Since
condition (ii) applies infinitely often, such a j must exist.
Clearly, by the definition of M′,

(∀k ≥ j)[αk = λ]. (9)

Since condition (ii) applies infinitely often, for infinitely many k ≥ j,

T (k) ∈ BM(σk)
= BM(σk 
 αk) {by (9)},
= BM(T [k]) {by Claim 3(e)}.

Thus, M does not converge on T — a contradiction.
Case condition (iv) applies infinitely often, but conditions (ii) and (iii) apply
only finitely often. Let i be such that, for all j ≥ i, neither condition (ii) nor
(iii) applies in calculating M′(T [j +1]). Let j be such that j ≥ i and αj = λ.
Since condition (iv) applies infinitely often, such a j must exist.
Clearly, by the definition of M′,

(∀k ≥ j)[σk = σj ∧ αk = λ]. (10)

Furthermore, for all k ≥ j,

M(T [k]) = M(σk 
 αk) {by Claim 3(e)}
= M(σj) {by (10)}.

Thus, M converges to M(σj) on T , and, therefore, WM(σj) = L. Since condi-
tion (iv) applies infinitely often, it must be the case that WM(σj) ∩CBM(σj)
is infinite. Thus, L∩CBM(σj) is infinite. By Lemma 3, there exists k ≥ j such
that T (k) ∈ BM(σj). Thus, there exists k ≥ j such that T (k) ∈ BM(σk 
αk).
But then, clearly, condition (ii) or (iii) applies in calculating M′(T [k+1]) —
a contradiction. (Claim 4 )
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Henceforth, let k1 be least such that

(∀i ≥ k1)[condition (vi) applies in calculating M′(T [i + 1])]. (11)

By Claim 4, such a k1 exists.

Claim 5. For all i ≥ k1, (a)-(g) below.
(a) σi = σk1 .
(b) mi = mk1 .
(c) αi = αk1 .
(d) T (i) ∈ CM(σk1) ∪ CBM(σk1).
(e) T (i) ∈ CBM(σk1 ) ⇒ T (i) ≤ mk1 .
(f) ¬P

(
σk1 , mk1 , T (i)

)
.

(g) M′(T [i]) = M′(T [k1]).

Proof of Claim. (a)-(f) follow from the definition of M′ and the choice of k1. (g)
follows from (a)-(c). (Claim 5 )

Claim 6. L ∩ B∩
M(σk1) = ∅.

Proof of Claim. By way of contradiction, let x be such that x ∈ L∩B∩
M(σk1 ). By

Claim 5(d), there exists i < k1 such that T (i) = x. Clearly, x ∈ B∩
M(σi). Thus,

by Claim 3(c), it must be the case that x ∈ content(σk1). But this contradicts
the assumption that M is canny. (Claim 6 )

Henceforth, let k0 be least such that

L ∩ B∩
M(σk0 ) = ∅. (12)

By Claim 6, such a k0 exists.

Claim 7. For all i < k0, L �⊆ WM′(T [i]).
Proof of Claim. Let i be such that i < k0. By the choice of k0, there exists x
such that x ∈ L ∩ B∩

M(σi). Since x ∈ B∩
M(σi), clearly, by the definition of f ,

x �∈ WM′(T [i]). (Claim 7 )

Claim 8. If L is finite, then, for all σ′ such that [σk0 ⊆ σ′ ∧ content(σ′) ⊆ L],
(a) and (b) below.

(a) WM(σ′) = L.
(b) WM(σ′) ∩ B∩

M(σ′) = ∅.

Proof of Claim. (a) is immediate by Lemma 2. (b) follows from (a) and the choice
of k0. (Claim 8 )

Let Q be such that, for all σ′, Q(σ′) ⇔ for all τ ,

[σ′ ⊂ τ ∧ content(τ) ⊆ WM(σ′) ∧ |τ | ≤ |WM(σ′)|] ⇒ WM(σ′) ⊆ Wf(τ,0,λ). (13)

Claim 9. If L is finite, then, for all σ′ such that [σk0 ⊆ σ′ ∧ content(σ′) ⊆ L
∧ Q(σ′)], L ⊆ Wf(σ′,0,λ).
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Proof of Claim. Suppose that L is finite. Let σ′ be such that σk0 ⊆ σ′,
content(σ′) ⊆ L, and Q(σ′). By Claim 8(a), WM(σ′) = L. Consider the cal-
culation of f(σ′, 0, λ). Clearly, if it can be shown that, for each stage s in which
e(σ′, s)↓, conditions (b)-(d) are satisfied, then L ⊆ Wf(σ′,0,λ).

Let s be such that e(σ′, s)↓. Let x and A be as in stage s of the cal-
culation of f(σ′, 0, λ). Since x ∈ WM(σ′) = L, clearly, M(σ′ 
 x)↓. Fur-
thermore, by Claim 8(b), WM(σ′) ∩ B∩

M(σ′) = ∅. Thus, since x ∈ WM(σ′),
x ∈ CM(σ′) ∪ CBM(σ′). Finally, since Q(σ′) and A ⊆ WM(σ′),

(∀τ)
[
[σ′ ⊂ τ ∧ content(τ) ⊆ A ∧ |τ | ≤ |A|] ⇒ A ⊆ Wf(τ,0,λ)

]
. (14)

(Claim 9 )

Claim 10. If L is finite, then, for all σ′ such that [σk0 ⊆ σ′ ∧ content(σ′) ⊆ L],
Q(σ′).
Proof of Claim. Suppose that L is finite. Let σ′ be such that σk0 ⊆ σ′ and
content(σ′) ⊆ L. By Claim 8(a), WM(σ′) = L. Thus, if |σ′| ≥ |L|, then Q(σ′)
holds vacuously. So, suppose, inductively, that

(∀σ′′)
[
[σk0 ⊆ σ′′ ∧ content(σ′′) ⊆ L ∧ |σ′| < |σ′′|] ⇒ Q(σ′′)

]
. (15)

Let τ be such that σ′ ⊂ τ and content(τ) ⊆ WM(σ′). Clearly, σk0 ⊆ τ ,
content(τ) ⊆ L, and |σ′| < |τ |. Thus, by (15), Q(τ). Furthermore,

Wf(τ,0,λ) ⊇ L {by Claim 9}
= WM(σ′) {by Claim 8(a)}.

(Claim 10 )

Claim 11. If L is finite, then, for all σ′ such that [σk0 ⊆ σ′ ∧ content(σ′) ⊆ L],
L ⊆ Wf(σ′,0,λ).
Proof of Claim. Immediate by Claims 9 and 10. (Claim 11 )

Claim 12. If L is finite, then, for all i ≥ k0, WM′(T [i]) = L.
Proof of Claim. Suppose that L is finite, and let i be such that i ≥ k0. Clearly,
by the definition of M′, σk0 ⊆ σi. Thus,

L ⊆ Wf(σi,0,λ) {by Claim 11}
⊆ WM′(T [i]) {by (b) and (c) of Claim 1}
⊆ WM(σi) {by Claim 1(a)}
= L {by Claim 8(a)}.

(Claim 12 )

Claim 13. If L is finite, then, for all i, WM′(T [i]) = L ⇔ i ≥ k0.
Proof of Claim. Immediate by Claims 7 and 12. (Claim 13 )

Claim 14. If L is finite, then M′ It-identifies L from T , and, furthermore, M′

does not exhibit a U-shape on T .
Proof of Claim. Immediate by Claims 5(g) and 13. (Claim 14 )
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Claim 15. For all i such that k0 ≤ i < k1, if σi �= σi+1, then there exists
w ∈ (L ∪ WM(σi)) ∩ CBM(σi) such that w > mi.
Proof of Claim. Let i be such that k0 ≤ i < k1 and σi �= σi+1. Clearly, one of
the following cases must apply.

Case condition (ii) applies in calculating M′(T [i+1]). Then, clearly, T (i) ∈
L ∩ CBM(σi) and T (i) > mi.
Case condition (v) applies in calculating M′(T [i + 1]). Then, since
P

(
σi, mi, T (i)

)
, clearly, there exists w ∈ WM(σi) ∩ CBM(σi) such that

w > mi. (Claim 15 )

Claim 16. For all i such that k0 ≤ i < k1, if there exists j such that i < j ≤ k1

and σi �= σj , then there exists w ∈ (L ∪ WM(σi)) ∩ CBM(σi) such that w > mi.
Proof of Claim. Let i be such that k0 ≤ i < k1, and let j be least such that
i < j ≤ k1 and σi �= σj . By Claim 15, there exists w ∈ (L ∪ WM(σj−1)) ∩
CBM(σj−1) = (L ∪ WM(σi)) ∩ CBM(σi) such that w > mj−1. Furthermore, by
Claim 3(d), mj−1 ≥ mi, and, thus, w > mi. (Claim 16 )

Claim 17. If L is infinite, then, for all i and j such that k0 ≤ i < j ≤ k1, if
L ⊆ WM′(T [i]), then WM′(T [i]) ⊆ WM′(T [j]).
Proof of Claim. By way of contradiction, suppose that L is infinite, and let i
and j be such that k0 ≤ i < j ≤ k1, L ⊆ WM′(T [i]), and WM′(T [i]) �⊆ WM′(T [j]).
By Claim 1(a), L ⊆ WM(σi). By (b) and (c) of Claim 1, it must be the case
that σi ⊂ σj . Thus, by Claim 16, there exists w ∈ (L ∪ WM(σi)) ∩ CBM(σi) =
WM(σi) ∩ CBM(σi) such that w > mi.

For all s, let xs denote the value of x during stage s of the calculation of
f(σi, mi, αi), and let As denote the contents of the set A during stage s of the
calculation of f(σi, mi, αi). Choose s such that (a)-(f) below.

(a) M(σi 
 xs)↓.
(b) xs ∈ CM(σi) ∪ CBM(σi).
(c) w ∈ As.
(d) content(σj) ⊆ As.
(e) |σj | ≤ |As|.
(f) As �⊆ WM′(T [j]).

Clearly, such an s exists. However, since As �⊆ WM′(T [j]), by (b) and (c) of
Claim 1, As �⊆ Wf(σj ,0,λ). Thus, by the definition of f , it must be the case that
WM′(T [i]) is finite. But this contradicts L ⊆ WM′(T [i]). (Claim 17 )

Claim 18. L ∩ CBM(σk1 ) is finite.
Proof of Claim. By Claim 5(e), L ∩ CBM(σk1 ) ⊆ content(T [k1]) ∪ {0, ...,
mk1}. (Claim 18 )

Claim 19. WM(σk1 ) = L.
Proof of Claim. Immediate by Claims 6 and 18, and by Lemma 1.

(Claim 19 )
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Claim 20. If L is infinite, then max
(
L ∩ CBM(σk1)

)
≤ mk1 .

Proof of Claim. By way of contradiction, suppose that L is infinite, and let x
be such that x ∈ L ∩ CBM(σk1 ) and x > mk1 . Choose i ≥ k1 such that (a)-(c)
below.

(a) ΦM(σk1 )(x) ≤ T (i).
(b) ΦpM(σk1 
 x) ≤ T (i).
(c) x ≤ T (i).

By Claim 19 and the fact that L is infinite, such an i exists. Clearly,
P

(
σk1 , mk1 , T (i)

)
. But this contradicts Claim 5(f). (Claim 20 )

Claim 21. If L is infinite, then WM′(T [k1]) = L.
Proof of Claim. Follows from Claims 6, 19, and 20, and from the definition of
f . (Claim 21 )

Claim 22. If L is infinite, then there exists i such that, for all j, WM′(T [j]) = L
⇔ j ≥ i.
Proof of Claim. Immediate by Claims 7, 17, and 21. (Claim 22 )

Claim 23. If L is infinite, then M′ It-identifies L from T , and, furthermore, M′

does not exhibit a U-shape on T .
Proof of Claim. Immediate by Claims 5(g) and 22. (Claim 23 )

(Theorem 2 )

4 Iterative-with-Counter Learning

This section explores a learning model that we call iterative-with-counter learning
(ItCtr-learning) (Definition 6, below). In this model, each of a learner’s output
conjectures can depend only upon the learner’s just previous conjecture, the most
recent input element, and a counter indicating the number of elements so far
presented to the learner. Theorems 3 and 4, together, show that ItCtr-learning
and SDEx-learning are incomparable, i.e., for each, there is a class of languages
learnable by that one, but not the other. It follows that ItCtr-learning is strictly
more powerful than It-learning, yet not as powerful as full Ex-learning. Finally,
Problem 1, below, restates, formally, the problem that this paper leaves open.

Due to space constraints, the proofs of Theorems 3 and 4 are omitted. Proofs
of these theorems can be found in [6].

ItCtr-learning was introduced in Definition 1(e) in Section 2, but is repeated
here for convenience.

Definition 6.

(a) For all M and L, M ItCtr-identifies L ⇔ M Ex-identifies L, and , for all
�, σ, and τ such that content(�) ∪ content(σ) ∪ content(τ) ⊆ L, (i) and (ii)
below.
(i) M(�)↓.
(ii) [|�| = |σ| ∧ M(�) = M(σ)] ⇒ M(� 
 τ) = M(σ 
 τ).
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(b) For all M, ItCtr(M) = {L : M ItCtr-identifies L}.
(c) ItCtr = {L : (∃M)[L ⊆ ItCtr(M)]}.

Theorem 3 (Based on [15, remark on page 238]). Let L be such that

L =
{
{0, ..., m} : m ∈ N

}
∪

{
N − {0}

}
. (16)

Then, L ∈ SDEx − ItCtr.

Theorem 4. Let 〈·, ·〉 : N × N → N be any 1-1, onto, computable function [21],
and let L be such that

L =
{
{〈e, i〉 : i ∈ N} : ϕe(0)↑

}
∪

{
{〈e, i〉 : i ≤ ϕe(0)} : ϕe(0)↓

}
. (17)

Then, L ∈ ItCtr − SDEx.

Kinber, et al. [15, Theorem 7.7 and remark on page 238] showed that It ⊂ SDEx.
Schäfer-Richter [22] and Fulk [10], independently, showed that SDEx ⊂ PSDEx
and that PSDEx = Ex. Clearly, It ⊆ ItCtr ⊆ Ex. From these observations
and Theorems 3 and 4, above, it follows that the only inclusions (represented
by arrows) among It, SDEx, ItCtr, and PSDEx = Ex are the following.

SDEx

ItCtr

PSDEx = Ex

It

Problem 1. Is it the case that ItCtr = NUItCtr?
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Abstract. This paper analyzes the problem of learning the structure of a Bayes
net (BN) in the theoretical framework of Gold’s learning paradigm. Bayes nets
are one of the most prominent formalisms for knowledge representation and prob-
abilistic and causal reasoning. We follow constraint-based approaches to learning
Bayes net structure, where learning is based on observed conditional dependen-
cies between variables of interest (e.g., “X is dependent on Y given any as-
signment to variable Z”). Applying learning criteria in this model leads to the
following results. (1) The mind change complexity of identifying a Bayes net
graph over variables V from dependency data is

(|V|
2

)
, the maximum number of

edges. (2) There is a unique fastest mind-change optimal Bayes net learner; con-
vergence speed is evaluated using Gold’s dominance notion of “uniformly faster
convergence”. This learner conjectures a graph if it is the unique Bayes net pat-
tern that satisfies the observed dependencies with a minimum number of edges,
and outputs “no guess” otherwise. Therefore we are using standard learning crite-
ria to define a natural and novel Bayes net learning algorithm. We investigate the
complexity of computing the output of the fastest mind-change optimal learner,
and show that this problem is NP-hard (assuming P = RP). To our knowledge
this is the first NP-hardness result concerning the existence of a uniquely optimal
Bayes net structure.

1 Introduction

One of the goals of computational learning theory is to analyze the complexity of prac-
tically important learning problems, and to design optimal learning algorithms for them
that meet performance guarantees. In this paper, we model learning the structure of a
Bayes net as a language learning problem in the Gold paradigm. We apply identifica-
tion criteria such as mind change bounds [9, Ch. 12.2][20], mind-change optimality
[11,12], and text-efficiency (minimizing time or number of data points before conver-
gence) [16,8]. Bayes nets, one of the most prominent knowledge representation for-
malisms [18,19], are widely used to define probabilistic models in a graphical manner,
with a directed acyclic graph (DAG) whose edges link the variables of interest.

We base our model of BN structure learning on an approach known as “constraint-
based” learning [5]. Constraint-based learning views a BN structure as a specification
of conditional dependencies of the form X⊥�⊥ Y |S, where X and Y are variables of
interest and S is a set of variables disjoint from {X, Y }. (Read X⊥�⊥ Y |S as “variable
X is dependent on variable Y given values for the variables in the set S”.) For example,

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 187–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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a conditional dependence statement represented by a Bayes net may be “father’s eye
colour is dependent on mother’s eye colour given child’s eye colour”. In this view, a
BN structure is a syntactic representation of a dependency relation [18, Sec.3.3]. It is
possible for distinct BN structures to represent the same dependency relation; in that
case the equivalent BN structures share a partially directed graph known as a pattern
(defined below), so a BN pattern is a unique syntactic representation of a dependency
relation. A dependency relation meets the mathematical definition of a language in the
sense of Gold’s paradigm, where the basic “strings” are dependence statements of the
form “X⊥�⊥ Y |S”. We show that in this learning model, the mind change complexity
of learning a Bayes net graph for a given set of variables V is

(|V|
2

)
—the maximum

number of edges in a graph with node set V. Our analysis leads to a characterization
of BN learning algorithms that are mind-change optimal. A learner is mind-change
optimal if it minimizes the number of mind changes not only globally in the entire
learning problem, but also locally in subproblems encountered after receiving some
evidence [11,12]; see Section 5. Mind-change optimal BN learners are exactly those
that conjecture a BN pattern G only if the pattern is the unique one that satisfies the
observed dependencies with a minimum number of edges.

Applying Gold’s notion of dominance in convergence time [8, p.462], we show that
there is a fastest mind-change optimal learner whose convergence time dominates that
of all other mind-change optimal learners. The fastest learner is defined as follows: If
there is more than one BN pattern G that satisfies the observed dependencies with a
minimum number of edges, output “?” (for “no guess”). If there is a unique pattern
G that satisfies the observed dependencies with a minimum number of edges, output
G. Thus standard identification criteria in Gold’s paradigm lead to a natural and novel
algorithm for learning BN structure. The technically most complex result of the paper
examines the computational complexity of the fastest mind-change optimal BN learner:
we show that computing its conjectures is NP-hard (assuming that P = RP).

Related Work. Many BN learning systems follow the “search and score” paradigm, and
seek a structure that optimizes some numeric score [5]. Our work is in the alternative
constraint-based paradigm. Constraint-based (CB) algorithms for learning Bayes net
structure are a well-developed area of machine learning. Introductory overviews are
provided in [5], [15, Ch.10]. The Tetrad system [6] includes a number of CB methods
for different classes of Bayes nets. A fundamental difference between existing CB ap-
proaches and our model is that the existing methods assume access to an oracle that
returns an answer for every query of the form “does X⊥�⊥ Y |S hold?” In contrast, our
model corresponds to the situation of a learner whose evidence (in the form of depen-
dency assertions) grows incrementally over time. Another difference is that existing CB
methods assume that their oracle indicates both whether two variables are conditionally
dependent and whether they are conditionally independent. In language learning terms,
the CB method has access to both positive data (dependencies) and negative data (inde-
pendencies). In our analysis, the learner receives only positive data (dependencies). To
our knowledge, our work is the first application of Gold’s language learning paradigm
to Bayes net learning.

A Bayes net that satisfies a set of given dependencies D is said to be an I-map for D.
We show the NP-hardness of the following problem: for a given set of dependencies D
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represented by an oracle O (Section 6), decide whether there is a unique edge minimal
I-map G for D, and if so, output G. Bouckaert proved that the problem is NP-hard
without the uniqueness condition [2, Lm. 4.5]. However, Bouckaert’s proof cannot be
adapted for our uniqueness problem, which requires a much more complex reduction.
To our knowledge, this is the first NP-hardness result for deciding the existence of a
uniquely optimal Bayes net structure for any optimality criterion.

We introduce concepts and results from both learning theory and Bayes net theory in
the next section. Section 3 presents and discusses our model of BN structure learning
as a language learning problem. Section 4 analyzes the mind change complexity of BN
structure learning. Section 5 characterizes the mind-change optimal learning algorithms
for this problems and describes the fastest mind-change optimal learner. The final two
sections define the problem of computing the output of the fastest mind-change optimal
learner and show that the problem is NP-hard.

2 Preliminaries: Language Identification and Bayes Nets

We first introduce general concepts from learning theory, followed by basic definitions
from Bayes net theory.

2.1 Language Identification with Bounded Mind Changes

We employ notation and terminology from [10], [13, Ch.1], [16], and [8]. We write N

for the set of natural numbers {0, 1, 2, ...}. The symbols ⊆, ⊇, ⊂, ⊃, and ∅ respectively
stand for subset, superset, proper subset, proper superset, and the empty set. We assume
that there is an at most countable set E of potential evidence items (strings in language
learning). A language is a subset of E; we write L for a generic language [8, p.449].
A language learning problem is a collection of languages; we write L for a generic
collection of languages. A text T is a mapping of N into E ∪{#}, where # is a symbol
not in E. (The symbol # models pauses in data presentation.) We write content(T )
for the intersection of E and the range of T . A text T is for a language L iff L =
content(T ). The initial sequence of text T of length n is denoted by T [n]. The set of all
finite initial sequences over E ∪{#} is denoted by SEQ. We also use SEQ(L) to denote
finite initial sequences consistent with languages in L. Greek letters σ and τ range over
SEQ. We write content(σ) for the intersection of E and the range of σ. We write σ ⊂ T
to denote that text T extends initial sequence σ; similarly for σ ⊂ τ . A learner Ψ for
a collection of languages L is a mapping of SEQ(L) into L ∪ {?}. Our term “learner”
corresponds to the term “scientist” in [13, Ch.2.1.2]. We say that a learner Ψ identifies
a language L on a text T for L, if Ψ(T [n]) = L for all but a finitely many n. Next we
define identification of a language collection relative to some evidence.

Definition 1. A learner Ψ for L identifies L given σ ⇐⇒ for every language L ∈ L,
and for every text T ⊃ σ for L, the learner Ψ identifies L on T .

Thus a learner Ψ identifies a language collection L if Ψ identifies L given the empty
sequence Λ. A learner Ψ changes its mind at some nonempty finite sequence σ ∈ SEQ
if Ψ(σ) �= Ψ(σ−) and Ψ(σ−) �= ?, where σ− is the initial segment of σ with σ’s last
element removed [9, Ch.12.2]. (No mind changes occur at the empty sequence Λ.).



190 O. Schulte, W. Luo, and R. Greiner

Definition 2. Let MC(Ψ, T, σ) denote the total number of mind changes of Ψ on text T
after sequence σ (i.e., MC(Ψ, T, σ) = |{τ : σ ⊂ τ ⊂ T : Ψ changes its mind at τ}|).

1. Ψ identifies L with mind-change bound k given σ ⇐⇒ Ψ identifies L given σ and
Ψ changes its mind at most k times on any text T ⊃ σ for a language in L after σ
(i.e., if T ⊃ σ extends data sequence σ and T is a text for any language L ∈ L,
then MC(Ψ, T, σ) ≤ k).

2. A language collection L is identifiable with mind change bound k given σ ⇐⇒
there is a learner Ψ such that Ψ identifies L with mind change bound k given σ.

2.2 Bayes Nets: Basic Concepts and Definitions

We employ notation and terminology from [19], [18] and [22]. A Bayes net structure
is a directed acyclic graph G = (V, E). Two nodes X, Y are adjacent in a BN if G
contains an edge X → Y or Y → X . The pattern π(G) of DAG G is the partially
directed graph over V that has the same adjacencies as G, and contains an arrowhead
X → Y if and only if G contains a triple X → Y ← Z where X and Z are not
adjacent. A node W is a collider on undirected path p in DAG G if and only if the left
and right neighbours of W on p point into W . Every BN structure defines a separability
relation between a pair of nodes X, Y relative to a set of nodes S, called d-separation.
If X, Y are two variables and S is a set of variables disjoint from {X, Y }, then S d-
separates X and Y if along every (undirected) path between X and Y there is a node W
satisfying one of the following conditions: (1) W is a collider on the path and neither
W nor any of its descendants is in S, or (2) W is not a collider on the path and W is
in S. We write (X ⊥⊥ Y |S)G if X and Y are d-separated by S in graph G. If two
nodes X and Y are not d-separated by S in graph G, then X and Y are d-connected
by S in G, written (X⊥�⊥ Y |S)G. The d-connection relation, or dependency relation,
for a graph is denoted by DG, that is, 〈X, Y,S〉 ∈ DG iff (X⊥�⊥ Y |S)G. Verma and
Pearl proved that two Bayes nets G1 and G2 represent the same dependency relation iff
they have the same pattern (i.e., DG1 = DG2 iff π(G1) = π(G2) [24, Thm. 1]). Thus
we use a pattern as a syntactic representation for a Bayes net dependency relation and
write G to denote both graphs and patterns unless there is ambiguity. The statement
space over a set of variables V, denoted by UV, contains all conditional dependency
statements of the form (X⊥�⊥ Y |S), where X, Y are distinct variables in V and S ⊆
V \ {X, Y }.

Fig. 1 shows a Bayes net from [19, p.15]. In this network, node wet is an unshielded
collider on the path sprinkler− wet − rain; node wet is not a collider on the path
sprinkler − wet − slippery. The pattern of the network has the same skeleton,
but contains only two edges that induce the collider wet. From d-separation we have
(sprinkler ⊥⊥ rain|{season})G and (sprinkler⊥�⊥ rain|{season, wet})G. Next
we introduce our model of BN structure learning, which associates a language collec-
tion LV with a given set of variables V; the language collection LV comprises all
dependency relations defined by Bayes net structures.
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season

sprinkler rain

wet

slippery

season

sprinkler rain

wet

slippery

Fig. 1. Sprinkler network and its pattern

Table 1. The correspondence between constraint-based learning of Bayes Nets from conditional
dependency data and Gold’s language learning model

General Language Learning Bayes Net Structure Learning
string conditional dependency statement X⊥�⊥ Y |S
language conditional dependency relation
index pattern
text complete dependency sequence

3 Bayes Net Learning with Bounded Mind Changes

This section defines our model of BN structure learning. We discuss the assumptions
in the model and compare them to assumptions made in other constraint-based BN
learning approaches.

3.1 Definition of the Learning Model

Fix a set of variables V. The evidence item set E is the statement space UV. Let
LV be the set of BN-dependency relations over variables V (i.e., LV = {DG :
G is a pattern over V}). A complete dependency sequence T is a mapping of N into
UV ∪ {#}. A dependency sequence T is for a dependency relation D iff D = content
(T ). A Bayes net learning algorithm Ψ maps a finite data sequence σ over UV ∪ {#}
to a pattern G. As Table 1 illustrates, this defines a language learning model, with some
changes in terminology that reflect the Bayes net context.

Example. Let G be the DAG in Figure 1. The dependency relation for the graph DG con-
tains { 〈season, sprinkler, ∅〉, 〈season, sprinkler, {rain}〉, . . . , 〈sprinkler,
rain, {season, wet}〉, 〈sprinkler, rain, {season, slippery}〉}. Any text enumer-
ating DG is a dependency sequence for DG.

3.2 Discussion

A Bayes net defines a dependency relation via the d-separation criterion. The motiva-
tion for this criterion stems from how a Bayes net represents a probability distribution
P . Let P be a joint distribution over variables V. If X,Y and Z are three disjoint
sets of variables, then X and Y are stochastically independent given S, denoted by
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(X ⊥⊥ Y|S)P , if P (X,Y|S) = P (X|S)P (Y|S) whenever P (S) > 0. If X, Y,
and S are disjoint sets of nodes in G and X and Y are not empty, then X and Y
are d-separated by S if and only if every pair 〈X, Y 〉 in X × Y is d-separated by S.
In constraint-based BN learning, it is common to assume that the probability distribu-
tion generating the data of interest has a faithful BN representation [22, Thm.3.2], [19,
Ch.2.4].

Definition 3. Let V be a set of variables, G a Bayes net over V, and P a joint distri-
bution over V. Then G is faithful to P if (X⊥�⊥ Y|S)P in P ⇐⇒ (X⊥�⊥ Y|S)G in
G.

Assuming faithfulness, the dependencies in the data can be exactly represented in a
Bayes net or a pattern, which is the assumption in our language learning model. It is
easy to see that a graph G is faithful to a distribution P if and only if G is faithful with
respect to variable pairs, that is, if (X⊥�⊥ Y |S)P in P ⇐⇒ (X⊥�⊥ Y |S)G in G for all
variables X, Y . Therefore CB methods focus on conditional dependencies of the form
X⊥�⊥ Y |S, which is the approach we follow throughout the paper.

As Gold’s paradigm does not specify how linguistic data are generated for the
learner, our model does not specify how the observed dependencies are generated. In
practice, a BN learner obtains a random sample d drawn from the operating joint dis-
tribution over the variables V, and applies a suitable statistical criterion to decide if a
dependency X⊥�⊥ Y |S holds. One way in which data for our model can be generated
from random samples is the following: For every triple X⊥�⊥ Y |S with {X, Y }∩S = ∅,
a statistical test is performed with X ⊥⊥ Y |S as the null hypothesis. (For small num-
bers of variables, this is a common procedure in statistics called “all subsets variable
selection” [25, p.59].) If the test rejects the null hypothesis, the dependency X⊥�⊥ Y |S
is added to the dependency data; otherwise no conclusion is drawn. Many CB systems
also use a statistical test to answer queries to a dependency oracle: given a query “Does
X⊥�⊥ Y |S hold?”, the system answers “yes” if the test rejects the hypothesis X ⊥⊥ Y |S,
and “no” otherwise. The assumption that this procedure yields correct results is called
the assumption of valid statistical testing [5, Sect.6.2]. Our model is more realistic in
two respects. First, the model assumes only that dependency information is available,
but does not rely on independence data. In fact, many statisticians hold that no indepen-
dence conclusion should be drawn when a statistical significance test fails to reject an
independence hypothesis [7]. Second, our model does not assume that the dependency
information is supplied by an oracle all at once, but explicitly considers learning in a
setting where more information becomes available as the sample size increases.

Since the set of dependency relations LV constitutes a language collection in the
sense of the Gold paradigm, we can employ standard identification criteria to analyze
this learning problem. We begin by applying a fundamental result in Bayes net theory
to determine the mind change complexity of the problem.

4 The Mind Change Complexity of Learning Bayes Net Structure

Following Angluin [1, Condition 3] and Shinohara [21], we say that a class of lan-
guages L has finite thickness if the set {L ∈ L : s ∈ L} is finite for every string
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or evidence item s ∈
⋃

L. For language collections with finite thickness, their mind
change complexity is determined by a structural feature called the inclusion depth [12,
Def.6.1].

Definition 4. Let L be a language collection and L be a language in L. The inclusion
depth of L in L is the size n of the largest index set {Li}1≤i≤n of distinct languages
in L, such that L ⊂ L1 ⊂ · · · ⊂ Li ⊂ · · · ⊂ Ln. The inclusion depth of L is the
maximum of the inclusion depths of languages in L.

The next proposition establishes the connection between inclusion depth and mind
change complexity. It follows immediately from the general result for ordinal mind
change bounds established in [12, Prop. 6.1].

Proposition 1. Let L be a language collection with finite thickness. Then there is a
learner Ψ that identifies L with mind change bound k ⇐⇒ the inclusion depth of L is
at most k.

Since we are considering Bayes nets with finitely many variables, the statement space
UV is finite, so the language collection LV containing all BN-dependency relations is
finite and therefore LV has finite thickness. Hence we have the following corollary.

Corollary 1. Let V be a set of variables. There exists a learner Ψ that identifies LV

with mind change bound k ⇐⇒ the inclusion depth of LV is at most k.

A fundamental result in Bayes net theory allows us to determine the inclusion depth of
a dependency relation in LV. An edge A → B is covered in a DAG G if the parents of
B are exactly the parents of A plus A itself (see Figure 2). The operation that reverses
the direction of the arrow between A and B is a covered edge reversal. The following
theorem was conjectured by Meek [14] and proven by Chickering [3, Thm.4].

D
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����
��

��
�

���
��

��
��

F

������������������

A �� B

Fig. 2. Edge A → B is covered, whereas D → A is not covered

Theorem 1 (Meek-Chickering). Let G and H be two DAGs over the same set of
variables V. Then DG ⊆ DH ⇐⇒ the DAG H can be transformed into the DAG
G by repeating the following two operations: (1) covered edge reversal, and (2) single
edge deletion.

The next corollary characterizes the inclusion depth of the BN dependence relation DG

for a graph G in terms of a simple syntactic feature of G, namely the number of missing
adjacencies.

Corollary 2. Let G = (V, E) be a Bayes net structure. Then the inclusion depth of the
BN-dependence relation DG equals

(|V|
2

)
− |E|, the number of adjacencies not in G.

In particular, the totally disconnected network has inclusion depth
(|V|

2

)
; a complete

network has inclusion depth 0.
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Proof. We use downward induction on the number of edges n in graph G. Let N =(|V|
2

)
. Base case: n = N . Then G is a complete graph, so DG contains all dependency

statements in the statement space UV, and therefore has 0 inclusion depth. Inductive
step: Assume the hypothesis for n + 1 and consider a graph G with n edges. Add an
edge to G to obtain a BN G′ with n +1 edges that is a supergraph of G′. The definition
of d-separation implies that DG ⊂ DG′ . By inductive hypothesis, there is an inclusion
chain DG′ ⊂ DG1 · · · ⊂ DGN−(n+1) consisting of BN dependency relations. Hence the
inclusion depth of G is at least N − (n + 1) + 1 = N − n.

To show that the inclusion depth of G is exactly N −n, suppose for contradiction that
it is greater than N − n. Then there is an inclusion chain DG ⊂ DH1 ⊂ DH2 ⊂ · · · ⊂
UV of length greater than N −n. So the inclusion depth of DH2 is at least N − (n + 1)
and the inclusion depth of DH1 is at least N − n. Hence by inductive hypothesis, the
number of edges in H2 is at most n+1 and in H1 at most n. So at least two of the graphs
G, H1, H2 have the same number of edges. Without loss of generality, assume that H1

and H2 have the same number of edges. Since DH1 ⊂ DH2 , Theorem 1 implies that
H1 can be obtained from H2 with covered edge reversals. But covered edge reversals
are symmetric, so we also have DH2 ⊆ DH1 , which contradicts the choice of H1 and
H2. So the inclusion depth of DG is N − n, which completes the inductive proof.

Together with Proposition 1, the corollary implies that the mind change complexity of
identifying a Bayes Net structure over variables V is given by the maximum number of
edges over V.

Theorem 2. For any set of variables V, the inclusion depth of LV is
(|V|

2

)
. So the mind

change complexity of identifying the correct Bayes Net structure from dependency data
is

(|V|
2

)
.

The next section characterizes the BN learning algorithms that achieve optimal mind
change performance.

5 Mind-Change Optimal Learners for Bayes Net Structure

We analyze mind-change optimal algorithms for identifying Bayes net structure. The
intuition underlying mind-change optimality is that a learner that is efficient with re-
spect to mind changes minimizes mind changes not only globally in the entire learning
problem, but also locally in subproblems after receiving some evidence [12,11]. We
formalize this idea as in [12, Def.2.3]. If a mind change bound exists for L given σ,
let MCL(σ) be the least k such that L is identifiable with k mind changes given σ. For
example, given a sequence σ of dependencies, let G = (V, E) be a BN that satisfies
the dependencies in σ with a minimum number of edges. Then the mind change com-
plexity MCLV(σ) is

(|V|
2

)
− |E|. Mind change optimality requires that a learner should

succeed with MCL(σ) mind changes after each data sequence σ.

Definition 5 (based on Def.2.3 of [12]). A learner Ψ is strongly mind-change optimal
(SMC-optimal) for L if for all data sequences σ the learner Ψ identifies L given σ with
at most MCL(σ) mind changes.
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The next proposition characterizes SMC-optimal learners for language collections with
finite inclusion depth. It follows from the general characterization of SMC-optimal
learners for all language collections established in [12, Prop.4.1].

Proposition 2. Let Ψ be a learner that identifies a language collection L with finite
inclusion depth. Then Ψ is SMC-optimal for L if and only if for all data sequences σ: if
Ψ(σ) �= ?, then Ψ(σ) is the unique language with the largest inclusion depth for σ.

Applying the proposition to Bayes net learners yields the following corollary.

Corollary 3. Let Ψ be a Bayes net learner that identifies the correct Bayes net pattern
for a set of variables V. The learner Ψ is SMC-optimal for LV ⇐⇒ for all dependency
sequences σ, if the output of Ψ is not ?, then Ψ outputs a uniquely edge-minimal pattern
for the dependencies D = content(σ).

It is easy to implement a slow SMC-optimal BN learner. For example, for a given set
of dependencies D it is straightforward to check if there is a pattern G that covers
exactly those dependencies (i.e., DG = D). So an SMC-optimal learner could output a
pattern G if there is one that matches the observed dependencies exactly, and output ?
otherwise. But such a slow learner requires exponentially many dependency statements
as input. There are SMC-optimal learners that produce a guess faster; in fact, using
Gold’s notion of “uniformly faster”, we can show that there is a unique fastest SMC-
optimal learner. Gold proposed the following way to compare the convergence speed of
two learners [8, p. 462].

Definition 6. Let L be a language collection.

1. The convergence time of a learner Ψ on text T is defined as CP(Ψ, T ) ≡ the least
time m such that Ψ(T [m]) = Ψ(T [m′]) for all m′ ≥ m.

2. A learner Ψ identifies L uniformly faster than learner Φ ⇐⇒
(a) for all languages L ∈ L and all texts T for L, we have CP(Ψ, T ) ≤ CP(Φ, T ),

and
(b) for some language L ∈ L and some text T for L, we have CP(Ψ, T ) <

CP(Φ, T ).

For a language collection L with finite inclusion depth, Proposition 2 implies that if
there is no language L that uniquely maximizes inclusion depth given σ, then a learner
that is SMC-optimal outputs ? on σ. Intuitively, the fastest SMC-optimal learner delays
making a conjecture no longer than is necessary to meet this condition. Formally, this
learner is defined as follows for all sequences σ ∈ SEQ(L):

ΨL
fast(σ) =

{
? if no language uniquely maximizes inclusion depth given σ

L if L ∈ L uniquely maximizes inclusion depth given σ.

The next observation asserts that ΨL
fast is the fastest SMC-optimal method for L.

Observation 1. Let L be a language collection with finite inclusion depth. Then ΨL
fast

is SMC-optimal and identifies L uniformly faster than any other SMC-optimal learner
for L.
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Proof. The proof is a variant of standard results on text-efficiency (e.g., [13, Ch.2.3.3])
and is omitted for space reasons.

Observation 1 leads to the following algorithm for identifying a BN pattern.

Corollary 4. Let V be a set of variables. For a given sequence of dependencies σ,
the learner ΨV

fast outputs ? if there is more than one edge-minimal pattern that covers
the dependencies in σ, and otherwise outputs a uniquely edge-minimal pattern for the
dependencies D = content(σ). The learner ΨV

fast is SMC-optimal and identifies the
correct pattern uniformly faster than any other SMC-optimal BN structure learner.

The remainder of the paper analyzes the run-time complexity of the ΨV
fast method; we

show that computing the output of the learner is NP-hard (assuming that P = RP).

6 Computational Complexity of Fast Mind-Change Optimal
Identification of Bayes Net structure

This section considers the computational complexity of implementing the fastest SMC-
optimal learner ΨV

fast. We describe the standard approach of analyzing the complexity of
constraint-based learners in the Bayes net literature and state some known results from
complexity theory for background.

As with any run-time analysis, an important issue is the representation of the input
to the algorithm. The most straightforward approach for our learning model would be
to take the input as a list of dependencies, and the input size to be the size of that list.
However, in practice CB learners do not receive an explicitly enumerated list of depen-
dencies, but rather they have access to a dependency oracle (cf. Section 3.2). Enumerat-
ing relevant dependencies through repeated queries is part of the computational task of
a CB learner. Accordingly, the standard complexity analysis takes a dependency oracle
and a set of variables as the input to the learning algorithm (e.g., [4, Def.12],[2]).

Definition 7. A dependency oracle O for a variable set V is a function that takes as
input dependency queries from the statement space UV and returns, in constant time,
either “yes” or “?”.

The dependency relation associated with oracle O is given by DO = {X⊥�⊥ Y |S ∈
UV : O returns “yes” on input X⊥�⊥ Y |S}. We note that our model of learning Bayes
net structure can be reformulated in terms of a sequence of oracles: Instead of a com-
plete sequence of dependency statements for a dependence relation DG, the learner
could be presented with a sequence of dependency oracles O1, O2, . . . , On, . . . such
that DOi ⊆ DOi+1 and

⋃∞
i=1 DOi = DG. The mind change and convergence time

results remain the same in this model.
We will reduce the problem of computing the output of the fastest mind change

optimal learner ΨV
fast to deciding the existence of a unique exact cover by 3-sets.

UEC3SET
Instance A finite set X with |X | = 3q and a collection C of 3-element subsets of X .
Question Does C contain a unique exact cover for X , that is, a unique subcollection

C′ ⊆ C such that every element of X occurs in exactly one member of C′?
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We apply the following well-known result. The class RP comprises the decision prob-
lems that can be decided in polynomial time with a randomized algorithm [17, Def.11.1].

Proposition 3. A polynomial time algorithm for UEC3SET yields a polynomial time
algorithm for the satisfiability problem SAT provided that P = RP. So UEC3SET is
NP-hard under that assumption.

The proposition follows from the famous theorem of Valiant and Vazirani that gives a
probabilistic reduction of SAT to UNIQUE SAT [23]. Standard reductions show that
UNIQUE SAT reduces to UEC3SET. Computing the conjectures of the learner ΨV

fast

poses the following computational problem.

UNIQUE MINIMAL I-MAP

Input A set of variables V and a dependency oracle O for V.
Output If there is a unique DAG pattern G that covers the dependencies in O with a

minimal number of edges, output G. Otherwise output ?.

This is a function minimization problem; the corresponding decision problem is the
following.

UNIQUE I-MAP

Instance A set of variables V, a dependency oracle O for V, and a bound k.
Question Is there a DAG pattern G such that: G covers the dependencies in O, every

other DAG pattern G′ covering the dependencies in O has more edges than G, and
G has at most k edges?

Clearly an efficient algorithm for the function minimization problem yields an efficient
algorithm for UNIQUE I-MAP. We will show that UNIQUE I-MAP is NP-hard, assuming
that P = RP. Let ≤P denote polynomial-time many-one reducibility.

Theorem 3. UEC3SET ≤P UNIQUE I-MAP ≤P UNIQUE MINIMAL I-MAP. So
UNIQUE MINIMAL I-MAP is NP-hard provided that P = RP.

Proof. We give a reduction from UEC3SET to UNIQUE I-MAP. Consider an instance
of UEC3SET with sets universe U of size |U | = 3m, and c1, .., cp, where |ci| = 3 for
i = 1, .., p and U = ∪m

i=1ci. Define the following set V of variables.

1. For every set ci, a set variable Ci.
2. For every element xj of the universe U , a member variable Xj .
3. A root variable R.

Set the bound k = 3p+m. The following program M implements a dependency oracle
O over the variables V , in time polynomial in the size of the given UEC3SET instance.

Definition of Dependency Oracle
Input A dependency query V1⊥�⊥ V2|S.
Output Oracle Clauses

1. If V1 = Ci, V2 = Xj , and xj ∈ ci, then return “dependent”.
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Fig. 3. The basic graph for the NP-hardness proof. A set cover of size m corresponds to m edges
of the form C → R.

2. If V1 = Xi, V2 = Xj , and there is a set ck ⊇ {xi, xj} such that Ck ∈ S, then
return “dependent”.

3. If V1 = R, V2 = Xj,S = ∅ then return “dependent”.
4. If V1 = R, V2 = Xj, |S| = 1, and S �= {C} where xj ∈ c, then return

“dependent”.
5. In all other cases, return ?.

We argue that there is a unique exact set cover for an instance 〈U, {ci}〉 iff there is a
unique I-map with at most k edges for O. So if there were a polynomial time algorithm
A for UNIQUE I-MAP, we could solve the UEC3SET instance in polynomial time by
using the program M to “simulate” the oracle O and use A to solve the corresponding
instance of UNIQUE I-MAP. Our proof strategy is as follows. The basic graph for O
is the following DAG B: (1) for every two variables Xj , Ci, the graph contains an
arrow Xj → Ci iff xj ∈ ci, and (2) for every variable Ci, there is an arrow Ci → R.
The basic graph is also a pattern because all arrows correspond to unshielded colliders;
see Figure 3. We show that if there is a unique I-map G for O with at most k edges,
then G is a subgraph of the basic graph, with possibly edges Ci → R missing for
some sets ci, such that the set of variables {C1, C2, ..., Cm} with the edge Ci → R
in G corresponds to an exact cover {c1, .., cm}. Conversely, any unique exact cover
corresponds to a subgraph of the basic graph in the same manner. For reasons of space,
we just illustrate most of the following assertions rather than giving full proofs. It is
easiest to consider separately the constraints imposed by each clause of M . Let Di be
the set of dependencies corresponding to Clause i. For example, D1 = {〈Ci, Xj ,S〉 :
xj ∈ ci}.

Assertion 1. Let DAG G be an I-map for D1. Then any two variables X and C are
adjacent whenever x ∈ c.

Assertion 2. Let DAG G be an I-map for D1 ∪ D2, and suppose that xi, xj are two
elements of a set c. Then Xi and Xj are adjacent in G, or G contains a component
Xi → C ← Xj .

Clause 3 requires that every member variable X be d-connected to the root variable.
The intuition is that the basic graph B contains the most edge-efficient way to achieve
the connection because with just one edge C → R the graph d-connects three member
variables at once. We show that any I-map for D3 can be transformed into a subgraph
of B without increasing the number of edges. We begin by establishing that in an I-map
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G of D3, all arcs originating in the root variable R can be reversed with the result G′

still an I-map of D3.

Assertion 3. Let DAG G be an I-map of D3. Let G′ be the graph obtained by reversing
all edges of the form R → V . Then G′ is an I-map of D3.

Illustration: Suppose G contains a componentR → X → X ′. Reverse the edge R → X
to obtain G′. Consider the d-connecting path R → X → X ′ in G. We can replace
the edge R → X by R ← X in G′ without introducing additional colliders, so d-
connection still holds. The next assertion shows that inductively, all nodes can be ori-
ented towards R.

Assertion 4. Let DAG G be an I-map of D3, with some node A an ancestor of R. Let
G′ be the graph obtained by reversing all edges of the form A → V where V is not an
ancestor of R. Then G′ is an I-map of D3.

Illustration: Suppose G contains a component X ′ ← X → C → R. Reverse the edge
X ′ ← X to obtain G′. Consider the d-connecting path X ′ ← X → C → R in G.
In any such directed path in G′ we can replace the edge X ′ ← X by X ′ → X in G′

without introducing additional colliders, so d-connection still holds.

Assertion 5. Let DAG G be an I-map of D3. Suppose that for some node V , there are
two directed paths V → U1 → · · · → Up → R and V → W1 → · · · → Wq → R. Let
G′ be the graph obtained from G by deleting the edge V → U1. Then G′ is an I-map of
D3.

Illustration: Suppose G contains two paths X → C → R and X → X ′ → R. Delete
the edge X → X ′ to obtain G′. Then X remains d-connected to R. In general, a d-
connecting path to R in G using the edge X → X ′ can be “rerouted” via either X or
X ′.

For a DAG G, let sets(G) = {C : C is adjacent to R in G} comprise all set variables
adjacent to R; these set variables are covered. A member variable X is covered in G
if there is a covered set variable C such that x ∈ c. The covered component of G
consists of the root variable R, and the covered set and member variables of G (so the
covered component is {R} ∪ sets(G) ∪ {X : ∃C ∈ sets(G) s.t. x ∈ c}). A DAG G is
normally directed if all covered components of G are ancestors of the root variable R.
By Assertion 4 we can normally direct every DAG G and still satisfy the dependencies
in D3.

Assertion 6. Let DAG G be a normally directed I-map of D1 ∪ D2 ∪ D3. Suppose
that G contains an adjacency V − V ′ where V is covered in G and V ′ is not. Unless
V − V ′ = X → C for x ∈ c, there is a normally directed I-map G′ of D1 ∪ D2 ∪ D3

such that V ′ is covered in G′, all covered variables in G are covered in G′, and G′ has
no more edges than G.

Illustration: Suppose G contains an edge X → C where X is not covered, and a path
X → X ′ → C′ → R. Add the edge C → R and delete the edge X → X ′ to obtain
G′. Then X is d-connected to R via C. In general, a d-connecting path in G using the
edge X → X ′ can be “rerouted” via either X or X ′.
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Assertion 7. Suppose that DAG G is an I-map of D1 ∪ D2 ∪ D3 and not all member
variables X are covered in G. Then there is an I-map G′ of D1 ∪ D2 ∪ D3 that covers
all member variables such that G′ has no more edges than G, and sets(G′) ⊃ sets(G).

Illustration: Suppose that X is uncovered, and that G contains an edge X → C. Since
X is not covered, the edge C → R is not in G. Since G covers D3, the variable X must
be d-connected to the root variable R; suppose that G contains an edge X → R. We can
add an edge C → R to obtain G∗ without losing any d-connection. Now there are two
directed paths connecting X to R, so by Assertion 5 deleting the edge X → R yields a
graph G′ with the same number of edges as G that is still an I-map of D1 ∪ D2 ∪ D3.

Assertion 8. No I-map of D1 ∪ D2 ∪ D3 has fewer than k edges.

Proof: Let G be an I-map of D1 ∪ D2 ∪ D3. By Assertion 1, every I-map G of D1 ∪ D2

contains 3p edges connecting each member variable with the set variables for the sets
containing it. By Assertion 6 we can transform G into a graph G′ such that G′ is an
I-map of D1 ∪ D2 ∪ D3, covers all its member variables, and has the same number of
edges as G. Thus sets(G′) is a set cover for U , and so the size of sets(G′) is at least
m, which means that we have at least m edges connecting the root variable R to set
variables. Hence overall G′ and hence G has k = 3p + m edges.

Assertion 9. Let DAG G be an I-map of D1 ∪ D2 ∪ D3 with k edges. Then for every
uncovered member variable X of G, there is exactly one undirected path from X to R
in G.

Illustration: Suppose that G contains an edge X → R and a path X → X ′ → C′ → R
where X is not covered. Then as in Assertion 5, we can delete the edge X → R to
obtain a graph with fewer than k edges that is still an I-map of D1 ∪ D2 ∪ D3. But this
contradicts Assertion 8. The final assertion adds the constraints of Clause 4.

Assertion 10. Let DAG G be an I-map of O with k edges. Then G is normally directed,
every member variable in G is covered, and sets(G) is an exact set cover of U .

An exact set cover corresponds to a unique normally directed I-map for the dependency
oracle O with k = 3p + m edges (the I-map contains m edges C → R for each set
c in the cover). Conversely Assertion 10 implies that every I-map for O with k edges
corresponds to a unique exact set cover. Hence there is a 1-1 and onto correspondence
between exact set covers and I-maps for O.

7 Conclusion

This paper applied learning-theoretic analysis to a practically important learning prob-
lem: identifying a correct Bayes net structure. We presented a model of this task in
which learning is based on conditional dependencies between variables of interest. This
model fits Gold’s definition of a language learning problem, so identification criteria
from Gold’s paradigm apply. We considered mind-change optimality and text efficiency.
The mind change complexity of identifying a Bayes net over variable set V is

(|V|
2

)
, the
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maximum number of edges in a graph with node set V. There is a unique mind-change
optimal learner ΨV

fast whose convergence time dominates that of all other mind-change
optimal learners. This learner outputs a BN pattern G if G is the unique graph satisfying
the observed dependencies with a minimum number of edges; otherwise ΨV

fast outputs
? for “no guess”. In many language learning problems, it is plausible to view the mind
change complexity of a language as a form of simplicity [12, Sec.4]. Our results es-
tablish that the mind-change based notion of simplicity for a Bayes net graph G is the
inclusion depth of G, which is measured by the number of edges absent in G. Using the
number of edges as a simplicity criterion to guide learning appears to be a new idea in
Bayes net learning research.

The technically most complex result of the paper shows that an exact implementa-
tion of the unique mind-change optimal learner ΨV

fast is NP-hard because determining
whether there is a uniquely simplest (edge-minimal) Bayes net for a given set of depen-
dencies is NP-hard. To our knowledge, this is the first NP-hardness result for deciding
the existence of a uniquely optimal Bayes net structure by any optimality criterion.
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Abstract. We investigate a new paradigm in the context of learning
in the limit: learning correction grammars for classes of r.e. languages.
Knowing a language may feature a representation of the target language
in terms of two sets of rules (two grammars). The second grammar is used
to make corrections to the first grammar. Such a pair of grammars can
be seen as a single description of (or grammar for) the language. We call
such grammars correction grammars. Correction grammars capture the
observable fact that people do correct their linguistic utterances during
their usual linguistic activities.

We show that learning correction grammars for classes of r.e. lan-
guages in the TxtEx-model (i.e., converging to a single correct correc-
tion grammar in the limit) is sometimes more powerful than learning
ordinary grammars even in the TxtBc-model (where the learner is al-
lowed to converge to infinitely many syntactically distinct but correct
conjectures in the limit). For each n ≥ 0, there is a similar learning
advantage, where we compare learning correction grammars that make
n + 1 corrections to those that make n corrections.

The concept of a correction grammar can be extended into the construc-
tive transfinite, using the idea of counting-down from notations for trans-
finite constructive ordinals. For u a notation in Kleene’s general system
(O, <o) of ordinal notations, we introduce the concept of an u-correction
grammar, where u is used to bound the number of corrections that the
grammar is allowed to make. We prove a general hierarchy result: if u and
v are notations for constructive ordinals such that u <o v, then there
are classes of r.e. languages that can be TxtEx-learned by conjecturing
v-correction grammars but not by conjecturing u-correction grammars.

Surprisingly, we show that — above “ω-many” corrections — it is
not possible to strengthen the hierarchy: TxtEx-learning u-correction
grammars of classes of r.e. languages, where u is a notation in O for any
ordinal, can be simulated by TxtBc-learning w-correction grammars,
where w is any notation for the smallest infinite ordinal ω.
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1 Introduction and Motivation

We investigate a new model in the context of Gold-style computability-theoretic
learning theory (see [19,21]): learning “correction grammars”. Burgin [5] sug-
gested that knowing a language may feature a representation of the language
in terms of two sets of rules, i.e., two grammars, say g1 and g2: g2 is used to
“edit” errors of (make corrections to) g1. In set-theoretic terms, the language L
is represented as the difference (L1 − L2), where Li is the language generated
by the grammar gi. The pair 〈g1, g2〉 can thus be seen as a single description
of (or “grammar” for) the language L. Burgin called these grammars grammars
with prohibition. We call them correction grammars. It is quite natural to gen-
eralize the idea to include descriptions of a language in terms of finitely many
differences, i.e., to “grammars” that are allowed up to a fixed finite number
of corrections: p = 〈i1, . . . , in〉 is an n-correction grammar for L if and only if
L = Li1 − (Li2 − · · · (Lin−1 − Lin) · · ·).

Correction grammars can be seen as capturing the observable fact that people
do correct their linguistic utterances. The idea of correction grammars explores
the theoretical possibility that the cause of self-correcting behaviour depends on
the form of the rules themselves, rather than, e.g., on an error in the rule or in
rule application.

Is there some learning gain, in using correction grammars, that compensates
for the need of self-corrections? We investigate a formal version of this question,
in the context of computability-theoretic learning theory [19,21]: a learning ma-
chine (an algorithmic device) receives as input a sequence e1, e2, . . . of all and only
the elements of an r.e. language L (any such sequence is called a text for L) and
outputs a corresponding infinite sequence g1, g2, . . . of standard type-0 grammars
[20] (or, equivalently, r.e. indices [28]) that may generate L. Several criteria of
successful learning of a language can and have been studied. The most basic one
is Explanatory Learning from Text (TxtEx-learning): the machine is required
to output, past some point, one and the same correct grammar for the input
language. A more liberal (and more powerful) criterion is Behaviourally Correct
Learning from Text (TxtBc-learning): the machine is required to output, past
some point, only correct grammars, though possibly infinitely many syntacti-
cally distinct ones. Both criteria feature learning in the limit (the machine does
not know if and when it has converged) and require success of the learner on any
order of presentation of the data. Since learning a single r.e. language is trivial in
this model, the simultaneous learning of classes of r.e. languages is studied. The
formal version of the above question is now: what is the power of an algorithmic
learning machine that outputs correction grammars instead of r.e. indices for
r.e. languages?

One of the main results of the present paper (Theorem 12) implies that learn-
ing correction grammars for classes of r.e. languages is more powerful than learn-
ing ordinary r.e. indices in the TxtEx-model. The increase in power is so strong
that there are classes of recursive languages that are TxtEx-learnable by a
machine that outputs correction grammars but not by any TxtBc-learner con-
jecturing r.e. indices — and this even if the learner is presented with full graphs
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of characteristic functions of the languages in the class. Theorem 12 in fact is
stronger: it shows the advantages of learning (n + 1)-correction grammars over
learning n-correction grammars for recursive languages.

The next, mathematically natural step is to extend the concept of a correc-
tion grammar into the constructive transfinite. The constructive ordinals are
those ordinals that have a program (called a notation) in some system which
specifies how to build them. We use ordinal notations to bound the number of
corrections allowed to a correction grammar (see [18] and [1] for other uses of
ordinal notations in the context of inductive inference). For example, counting
down corrections allowed from any notation w for the smallest infinite ordinal
ω = 0 < 1 < 2 < . . . is equivalent to declaring algorithmically, at the time a
first correction is made, the finite number of further corrections to be allowed.
This is more powerful than just initially setting the finite number of corrections
allowed.

We use Kleene’s general notation system (O, <o) [24,25,26] and concepts
from the Ershov Hierarchy [13,14,15] to rigorously formalize the concept of a
u-correction grammar, where u is a notation in O for some constructive ordinal.

O has at least one notation for each constructive ordinal, and the order relation
<o on notations in O naturally embeds into the ordering of the corresponding
ordinals.

The Ershov Hierarchy is based on effective iteration of set-theoretic difference
on r.e. sets including up into the constructive transfinite. A correction grammar
for an r.e. set will be a “description” of the r.e. set as belonging to some level of
the Ershov Hierarchy.

We use particular acceptable programming systems from [10] for the relevant
classes of the Ershov Hierarchy. Our results are independent of which accept-
able programming systems is used. The acceptable programming systems for a
class are those which contain a universal simulator and into which all other uni-
versal programming systems for the class can be compiled. Acceptable systems
are characterized as universal systems with an algorithmic substitutivity prin-
ciple called S-m-n, and also satisfy self-reference principles such as Recursion
Theorems [28,29,10].

Let u and v be notations in O for constructive ordinals α and β, respectively,
such that u <o v (which implies α < β). Corollary 11 implies that there are
classes of recursive languages that can be TxtEx-learned by conjecturing cor-
rection grammars that count-down from v but not by conjecturing correction
grammars that count-down from u — and this even if the learner is required
to be successful only on the full graphs of the characteristic functions of the
languages in the class, instead of on arbitrary texts for those languages.

Surprisingly, Theorem 16 and Theorem 20 show that the following collapse
occurs: any class of r.e. languages that is TxtEx-learnable or TxtBc-learnable
by a learner outputting u-correction grammars, for any notation u for a trans-
finite ordinal, is already TxtBc-learnable by a learner outputting w-correction
grammars, where w is a notation for the smallest infinite ordinal ω. Hence, there
is a learning power tradeoff between, on the one hand, employing u-corrections,
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where u is a notation for a very large transfinite ordinal, with TxtEx-learning
which nicely features only one correct correction grammar in the limit and, on
the other hand, stopping at “ω” corrections but, then, paying the price of in-
finitely many distinct correction grammars in the limit. Several other similar
collapsing results are proved.

Proofs which are omitted here due to space restrictions are given in [6].

2 Preliminaries

2.1 Notation and Recursion Theory Background

Any unexplained recursion theoretic notation is from [28]. The symbol N denotes
the set of natural numbers, {0, 1, 2, 3, . . .}. The symbols ∅, ⊆, ⊂, ⊇, ⊃, and Δ
denote empty set, subset, proper subset, superset, proper superset, and sym-
metric difference, respectively. The cardinality of a set S is denoted by card(S).
card(S) ≤ ∗ denotes that S is finite. We use the convention n < ∗ for all n ∈ N.
The maximum and minimum of a set are denoted by max(·), min(·), respectively,
where max(∅) = 0 and min(∅) = ∞. L1 =n L2 means that card(L1ΔL2) ≤ n
and L1 and L2 are called n-variants. L1 =∗ L2 means that card(L1ΔL2) ≤ ∗,
i.e., is finite; in this case L1 and L2 are called finite-variants.

We let 〈·, ·〉 stand for Cantor’s computable, bijective mapping 〈x, y〉 = 1
2 (x+y)

(x+y+1)+x from N×N onto N [28]. Note that 〈·, ·〉 is monotonically increasing
in both of its arguments. We define π1(〈x, y〉) = x and π2(〈x, y〉) = y.

By ϕ we denote a fixed acceptable programming system for the partial-
recursive functions mapping N to N. By ϕi we denote the partial-recursive
function computed by the program number i in the ϕ-system. We assume that
multiple arguments are coded in some standard way [28] and suppress the ex-
plicit coding. By Φ we denote an arbitrary fixed Blum complexity measure [4,20]
for the ϕ-system. By convention we use Φi to denote the partial recursive func-
tion x → Φ(i, x). Intuitively, Φi(x) may be thought as the number of steps it
takes to compute ϕi(x). ϕi,s denotes the complexity-bounded version of ϕi, that
is, ϕi,s(x) = ϕi(x), if x < s and Φi(x) < s; ϕi,s(x) is undefined otherwise.

Wi denotes domain(ϕi). That is, Wi is the set of all numbers on which the
ϕ-program i halts. This treats i as an acceptor program for Wi [20]. By Wi,s we
denote the set domain(ϕi,s) = {x < s | Φi(x) < s}. χL denotes the characteristic
function of L. We say that p is a limiting recursive program for a total function
f if ϕp is a total function, and for all x, limt→∞ ϕp(x, t) = f(x).

The symbol E will denote the set of all r.e. languages. The symbol L ranges
over E . The symbol L ranges over subsets of E .

2.2 Constructive Ordinals and Kleene’s O

We proceed informally (for a detailed treatment see [28,2]). A system of notation
S is a collection of (numerical codes of) programs (S-notations) each of which
specifies a structured algorithmic description of some ordinal. A system of nota-
tion S will consist of a subset NS of N (the set of S-notations), and a mapping
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S[·] from NS to an initial segment of the ordinals. The notations are (codes
of) programs for building, or laying down end-to-end, the denoted ordinal. An
ordinal is called constructive when it has a notation in some system of notation.

A system of notation S is acceptable if any other system is recursively order-
preservingly embeddable in it. Each acceptable system of notation assigns at least
one notation to every constructive ordinal. A system of notation S is univalent
if S[·] is injective. It is known that every acceptable system fails to be univalent
(see [28]).

Kleene [24,25,26,28] developed a general acceptable system of notation O.
Every constructive ordinal has at least one notation in O. O is endowed with
a relation <o on notations that naturally embeds in the ordering of the corre-
sponding constructive ordinals. We define ‘x =o y’ to mean ‘x, y ∈ O and x = y’.
‘x ≤o y’, ‘x ≥o y’, and ‘x >o y’ have the obvious meaning. For all x, y ∈ O, it
is true that, if x <o y then O[x] < O[y]. It is also true that, for all y ∈ O, if
O[y] = β, then for every α < β, there is an x such that x <o y and O[x] = α. If
u ∈ O and O[u] = α, then we say that u is for α.

We shall use the following basic properties of O in later proofs.

Lemma 1 (Some properties of O, [28])

1. For every n ∈ N there exists a unique O-notation for n. This notation will
be denoted by n.

2. For every v ∈ O, {u | u <o v} is a univalent system of notations for the
corresponding initial segment of the ordinals.

3. There exists an r.e. set Z such that {u | u <o v} = {u | 〈u, v〉 ∈ Z}, for each
v ∈ O.

4. There exists a computable mapping +o : N × N −→ N such that, for every
u, v ∈ O, (i) u +o v ∈ O, (ii) O[u +o v] = O[u] + O[v], and (iii) if v �= 0 then
u <o u +o v.

In the rest of this paper, u, v, w denote elements in O.

2.3 The Ershov Hierarchy

We introduce the Ershov Hierarchy [13,14,15], and give the definition of a particu-
lar acceptable universal programming system Wu — due to Case and Royer [10] —
for each level of the hierarchy (this system was created in part to make sure there
is such an acceptable system; the construction of the Wu’s is also nicely uniform
in u ∈ O). Our presentation of the Ershov Hierarchy is in terms of count-down
functions from O-notations for constructive ordinals. For a similar presentation,
see [2].

Definition 2 (Count-Down Function). A computable function F : N×N →
O is a count-down function if for all x and t, F (x, t + 1) ≤o F (x, t).

For a binary function h we write h(x, ∞) for the limit limt→∞ h(x, t).
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Definition 3 (Ershov Hierarchy). A ∈ Σ−1
u if and only if there exists a

computable function h : N × N → {0, 1} and a count-down function F such
that, for all x, t ∈ N,

(i) χA(x) = h(x, ∞),
(ii) h(x, 0) = 0 and F (x, 0) ≤o u,
(iii) h(x, t + 1) �= h(x, t) ⇒ F (x, t + 1) <o F (x, t).

In this case we say that h and F witness A ∈ Σ−1
u .

Note that Σ−1
0 = {∅}. Definition 3 immediately implies that u <o v ⇒ Σ−1

u ⊆
Σ−1

v . The containment is in fact proper, so that one speaks of the Ershov
Hierarchy.

Every set X in Σ−1
u+o1 is equal to Y − Z for some Y ∈ E , Z ∈ Σ−1

u , such that
Z ⊆ Y . In particular, X in Σ−1

n is a difference of n r.e. sets.
Let us denote by ϕTM an acceptable programming system for the partial

computable functions based on a coding of deterministic multi-tape Turing Ma-
chines [28]. For each x and i in N, let ΦTM

i (x) be the runtime of Turing Ma-
chine i on input x. ΦTM

i (x) is a Blum Complexity Measure [4] for ϕTM and
{〈x, i, t〉 | ΦTM

i (x) ≤ t} is primitive recursively decidable (see, e.g., [29]).
Let z0 be a fixed ϕTM-program for accepting Z, where Z is as in part 3 of

Lemma 1.

Definition 4 (Convenient Function). Let F be a count-down function. Then
F is convenient (relative to z0) if

(∀x)(∀t)[F (x, t + 1) <o F (x, t) ⇒ ΦTM
z0

(〈F (x, t + 1), F (x, t)〉) ≤ t].

We say that h and F conveniently witness A ∈ Σ−1
u when h and F witness

A ∈ Σ−1
u and F is convenient.

Let ψ be a standard programming system for the primitive recursive functions,
(i.e., one for which the S-m-n Theorem, Recursion Theorems, etc. all hold) [29].

Definition 5. Let u ∈ O. We say that i, j, x are u-consistent through t when
ψi(x, 0) = 0, ψj(x, 0) =o u and for each t′ < t

(i) ψi(x, t′ + 1) ∈ {0, 1},
(ii) ψj(x, t′ + 1) �= ψj(x, t′) ⇔ ΦTM

z0
(ψj(x, t′ + 1), ψj(x, t′)) ≤ t′,

(iii) ψi(x, t′ + 1) �= ψi(x, t′) ⇒ ψj(x, t′ + 1) <o ψj(x, t′).

Definition 6. Let u ∈ O. For each i, j, x, t let

hu(i, j, x, t) =

⎧
⎪⎨

⎪⎩

0 if i, j, x are not u -consistent through 0;
ψi(x, t′) otherwise, where

t′ is the greatest number ≤ t
such that i, j, x are u-consistent through t′.

For each i, j ∈ N, let

Wu
〈i,j〉 = {x : hu(i, j, x,∞) = 1}.
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We call p = 〈i, j〉 a u-correction grammar for Wu
p , and we are herein inter-

ested in such grammars for r.e. languages. We abbreviate hu(π1(p), π2(p), x, t)
as θu

p (x, t).
Case and Royer [10] proved that Wu is an acceptable universal programming

system for Σ−1
u . In particular, the Kleene Recursion Theorem holds in the Wu-

system: given a Wu-system task p, there exists an e such that program e in
the Wu-system makes a self-copy (i.e., computes a copy of its own code) and
applies that task p to this self-copy (and, of course, to its external input). In
proofs below, for convenience, we will give the description of what such an e
does with its self-copy in an informal system. We will describe task-relevant
functions h and F , each informally in terms of e, such that F is a count-down
function and h and F witness that {x | h(x, ∞) = 1} ∈ Σ−1

u (Definition 3).
We then invoke the acceptability of Wu to obtain a formal translation into the
Wu-system of the informal description involving h and F . In practice, though,
we will merely describe informally what such a formal e does with its self-copy,
and only implicitly invoke the acceptability of the Wu-systems.

2.4 Learning Criteria

We present concepts from language learning theory (see [21]) and then formally
define learning correction grammars.

A sequence σ is a mapping from an initial segment of N into (N ∪ {#}).
The empty sequence is denoted by λ. The content of a sequence σ, denoted
content(σ), is the set of natural numbers in the range of σ. The length of σ,
denoted by |σ|, is the number of elements in σ. So, |λ| = 0. For n ≤ |σ|, the
initial sequence of σ of length n is denoted by σ[n]. So, σ[0] is λ.

Intuitively, the pause-symbol # represents a pause in the presentation of data.
We let σ, τ and γ range over finite sequences. Concatenation of σ and τ is denoted
by στ . Sometimes we abuse the notation and use σx to denote the concatenation
of sequence σ and the sequence of length 1 which contains the element x.

A text T for a language L is a mapping from N into (N ∪ {#}) such that L
is the set of natural numbers in the range of T . T (i) represents the (i + 1)-st
element in the text. The content of a text T , denoted by content(T ), is the set
of natural numbers in the range of T ; that is, the language which T is a text for.
T [n] denotes the finite initial sequence of T with length n.

A learning machine (or just learner) is an algorithmic device which computes a
mapping from the set of all finite sequences into N. We let M range over learning
machines. We note that, without loss of generality, for all criteria of learning
discussed in this paper, a learner M may be assumed to be total. M(T [n])
denotes the hypothesis of the learner M after it has seen the first n members of
T . M(T ) = e denotes that M converges on T to e, that is M(T [n]) = e, for all
but finitely many n.

There are several criteria for a learning machine to be successful on a language.
We now define Explanatory [9,19] and Behaviourally Correct [9,27] learning.
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Definition 7. [9,19,27] Suppose a ∈ N ∪ {∗}.

(a) M TxtExa-identifies a text T just in case (∃i | Wi =a content(T ))
(∀∞n)[M(T [n]) = i].

(b) M TxtBca-identifies a text T just in case (∀∞n ∈ N)[WM(T [n]) =a

content(T )].

For I ∈ {Ex,Bc}, TxtIa, we say that a machine M TxtIa-identifies a language
if M TxtIa-identifies each text for the language. A machine M is said to TxtIa-
identify a class of languages if M TxtIa-identifies each language in the class.
TxtIa denotes the collection of all classes of languages that can be TxtIa-
identified by some machine.

For a = 0, we often write I instead of Ia. It is well-known that TxtExa ⊂
TxtBca (see [21]).

For results about learning with anomalies, we refer to [21] and only recall
that for both TxtEx- and TxtBc-learning allowing more anomalies in the limit
increases learning power, and that TxtEx∗ and TxtBc are incomparable.

When we only require that a learner is successful when fed the graph of
the characteristic function of the language instead of any text, we obtain the
concept of learning from informant (see [19]). For an informant I, we denote
by I[n], the first n elements of I. A canonical informant for a language L is
(0, χL(0)), (1, χL(1)), (2, χL(2)), . . .. For a characteristic function f , we use f [n]
to denote the initial segment (0, f(0)), (1, f(1)), . . . , (n − 1, f(n − 1)).

Using Inf instead of Txt in the name of any learning criterion indicates
that the requirement of learning from texts is substituted by the requirement
of learning from informant. It is well-known that more can be learned from
informant than from text (see [21]).

We can now formally introduce learning by correction grammars. Intuitively,
a CoruI-learner, where I is any learning criterion, is a successful I-learner when
its conjectures are interpreted as u-correction grammars.

Definition 8 (Learning Correction Grammars). Let u ∈ O, a ∈ N ∪ {∗}.

(a) CoruTxtExa is the collection of all classes L of r.e. languages such
that there exists an M such that (∀L ∈ L)(∀ texts T for L)(∃i)[Wu

i =a L ∧
(∀∞n)[M(T [n]) = i]] — in this case we say that L is CoruTxtExa-identified by
M.

(b) CoruTxtBca is the collection of all classes L of r.e. languages such that
there exists an M such that (∀L ∈ L)(∀ texts T for L)(∀∞n)[Wu

M(T [n]) =a L] —
in this case we say that L is CoruTxtBca-identified by M.

It is important to note that, while the Ershov Hierarchy goes well beyond the
r.e. languages, we are herein interested in the r.e. languages and their learnability
with respect to u-correction grammars.

The following result shows the advantages of allowing more anomalies in the
final conjectures. It can be proved using techniques for similar results featuring
learning standard r.e. grammars.
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Theorem 9. For all u ∈ O, for all n ∈ N,

(a) TxtEx2n+1 − CoruTxtBcn �= ∅.
(b) TxtBcn+1 − CoruTxtBcn �= ∅.
(c) TxtExn+1 − CoruTxtExn �= ∅.
(d) CoruInfEx∗ ⊆ CoruInfBc.
(e) For w an O-notation for ω, E ∈ CorwInfBc.

3 Hierarchy Results

In this section we prove some hierarchy results about learning correction gram-
mars. Each of the separation results is witnessed by a class of recursive languages.

Our first main result (Corollary 11) shows that an increase in learning power
is obtained — in the context of TxtEx-learning correction grammars — when
the number of corrections allowed is counted by (notations for) larger and larger
constructive transfinite ordinals.

Next (Theorem 12) we prove a strengthening of this hierarchy for all finite
levels: for all n ∈ N, there are classes of recursive languages that can be TxtEx-
learned by a learner conjecturing n + 1-correction grammars that cannot be
TxtBc-learned by any learner conjecturing n-correction grammars (not even
from informant). We will show in Section 4 that this strengthening is best pos-
sible: it cannot be extended beyond the ω-th level of the hierarchy.

We now prove that for all u, v ∈ O such that u <o v there exist classes
of recursive languages that are learnable by a TxtEx-learner that outputs v-
correction grammars but such that no TxtEx-learner can learn those classes
using u-correction grammars, even if presented with informants instead of texts.

Notation: We use h(·, s) to denote the function which maps x to h(x, s).

Theorem 10. For all n ∈ N, u ∈ O, Coru+o1TxtEx − CoruInfExn �= ∅.

Proof. Let L = {L recursive | L �= ∅ ∧ W
u+o1
min(L) = L}. Clearly L ∈

Coru+o1TxtEx. Suppose by way of contradiction that M CoruInfExn-
identifies L.

By the Kleene Recursion Theorem in the system Wu+o1 there exists an e such
that W

u+o1
e = {x | h(x, ∞) = 1}, where h is a function informally defined in

stages below (we will have that e = min({x | h(x, ∞) = 1})). Along with h we
informally define another function F , such that F is a count-down function and
h and F witness that {x | h(x, ∞) = 1} ∈ Σ−1

u+o1 (Definition 3).
Initially, h(x, 0) = 0 for all x; h(y, 1) = 0, for y < e, and h(y, 1) = 1, for y ≥ e.

F (y, 0) = u +o 1 and F (y, 1) = u, for all y. Let x1 = e + 1. Go to stage 1 (we
start with stage 1 for ease of notation).

We will have the invariants that, at the start of stage s,

(1) for x > xs + n, h(x, s) = 1 and F (x, s) = u.
(2) for x < xs, for all t > s, h(x, t) = h(x, s).
(3) For all xs ≤ x ≤ xs + n, either
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(3a) for i = M(h(·, s)[xs]),
h(x, s) = 1 − θu

i (x, s), and
F (x, s) = ψπ2(i)(x, s), or

(3b) h(x, s) = 1, F (x, s) = u (in this case xs �= xs−1, where we take x0 = 0).

Stage s
1. If there exists a z, xs + n < z ≤ s, such that M(h(·, s)[z]) �= M(h(·, s)[xs]),

then
Let xs+1 = z.
For all x, let h(x, s + 1) = h(x, s) and F (x, s + 1) = F (x, s).
Go to stage s + 1.

2. Else,
2.1 Let i = M(h(·, s)[xs]).
2.2 For xs ≤ x ≤ xs + n, let

h(x, s + 1) = 1 − θu
i (x, s + 1), and

F (x, s + 1) = ψπ2(i)(x, s + 1).
(Note that above change is valid, based on invariant 3 above).

2.3 For x < xs or x > xs + n, let
h(x, s + 1) = h(x, s), and
F (x, s + 1) = F (x, s).

2.4 Let xs+1 = xs.
Go to stage s + 1.

End stage s

It is easy to see that the invariants are satisfied. We now consider two cases.
Case 1: lims→∞ xs is infinite.
In this case, clearly, the function mapping x to limt→∞ h(x, t) is a recursive

function, and on this function M makes infinitely many mind-changes. Further-
more, clearly, limt→∞ h(x, t) is a characteristic function for a language in L.

Case 2: lims→∞ xs is finite.
Suppose limt→∞ xt = z = xs. In this case, clearly, the function mapping

x to limt→∞ h(x, t) is a recursive function, and a characteristic function for a
language (say L) in L. Let χL denote the characteristic function of L and let
M(χL) denote M’s final conjecture when the input informant is χL. We have
that M(χL) = M(χL[z]), as the condition in step 1 did not succeed beyond
stage s. Furthermore, using invariant (3), M(χL[z]) makes errors on inputs x,
for xs ≤ x ≤ xs + n.

From both the above cases, we have that e is a (u +o 1)-correction grammar
for a language in L which is not CoruInfExn-identified by M. ��

Corollary 11. For all u, v ∈ O, if u <o v then for all n ∈ N
(a) CorvTxtEx − CoruInfExn �= ∅.
(b) CoruTxtExn ⊂ CorvTxtExn.
(c) CoruInfExn ⊂ CorvInfExn.

We show that for finite levels the results of the previous section can be strength-
ened considerably. We will show in Section 4 that it is impossible to obtain the
analogous strengthening for transfinite levels.
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Theorem 12. For k ∈ N, Cork+1TxtEx − CorkInfBc �= ∅.

Proof. Let L = {L recursive | L �= ∅ ∧ W
k+1

min(L) = L}. Clearly, L ∈
Cork+1TxtEx. Now suppose by way of contradiction that L ∈ CorkTxtBc
as witnessed by M.

By the Kleene Recursion Theorem in the system W k+1, there exists an e

such that W
k+1
e = {x | h(x, ∞) = 1}, where h can be informally defined in

stages as follows. We will ensure that h(x, ·) changes its mind for any x at most
k + 1-times. Thus, the definition of a function F such that h and F witness
{x | h(x, ∞) = 1} ∈ Σ−1

k+1 is implicit in our construction.
We will also define finite sets S0 ⊆ S1 . . .. These sets denote the values of x

whose membership in L = W
k+1
e has been frozen: for all s, for all x ∈ Ss, for all

t ≥ s, h(x, t) = h(x, s).
Let MC(h, x, s) = card({t < s | h(x, t) �= h(x, t + 1)}) (the num-

ber of mind changes in the sequence h(x, 0), h(x, 1), . . . , h(x, s)). Similarly, let
MCP (i, x, s) = card({t < s | θ

k
i (x, t) �= θ

k
i (x, t + 1)}).

We will have the following invariants for each s.

(1) For all x �∈ Ss+1, MC(h, x, s+1) ≤ 1+MCP (i, x, s), where i = M(h(·, s+
1)[x]).

(2) For all x ∈ Ss+1, MC(h, x, s + 1) ≤ k + 1.
(3) If x �∈ Ss+1 and x ≤ s, then h(x, s + 1) �= θ

k
M(h(·,s+1)[x])(x, s).

Initially, h(x, 0) = 0, for all x; h(x, 1) = 0, for x < e and h(x, 1) = 1 for all
x ≥ e. Let S1 = {x | x ≤ e}. Clearly, the invariants are satisfied in the beginning.
Go to stage s = 1 (we start with stage 1, for ease of notation).

Begin Stage s:

1. If there exists an x ≤ s, x �∈ Ss such that θ
k
M(h(·,s)[x])(x, s) = h(x, s), then

pick the least such x and go to step 2. Otherwise, go to step 3.
(* For i = M(h(·, s)[x]), note that invariant (1) implies that MC(h, x, s) ≤

1+MCP (i, x, s−1) ≤ 1+MCP (i, x, s). Thus, θ
k
M(h(·,s)[x])(x, s) = h(x, s),

implies, MC(h, x, s) ≤ MCP (i, x, s). Thus, step 2 modification of h(x, s+
1) preserves invariant (1). *)

2. Let h(x, s + 1) = 1 − h(x, s). For y �= x, let h(y, s + 1) = h(y, s).
Let Ss+1 = Ss∪{y < x | MC(h, y, s+1) < MC(h, x, s+1)}∪{y | x < y ≤ s}.
(* Intuitively, {y < x | MC(h, y, s+1) < MC(h, x, s+1)} is added to Ss+1,

as these y’s had too few mind changes, and we need to freeze them to
maintain recursiveness of W

k+1
e . Set {y | x < y ≤ s}, is added to Ss+1 as

the diagonalizations done up to now for these y are no longer valid due to
a change in the membership of x; thus, to maintain invariant (1) and (3)
we need to place such y into Ss+1. *)

Go to stage s + 1.
3. For all x, let h(x, s + 1) = h(x, s), and let Ss+1 = Ss.

Go to stage s + 1.
End Stage s
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It is easy to verify that the invariants are satisfied. Also, using invariants (1),
(2) we have that h ∈ Σ−1

k+1. Let L be the language for which h is the limiting
characteristic function. We will show below that L is recursive. Thus, L ∈ L. We
now argue that L is not CorkTxtBc-identified by M.

Let k′ ≤ k + 1 be maximal such that there are infinitely many inputs x for
which MC(h, x, ∞) = limt→∞ MC(h, x, t) = k′. Let s be the largest stage such
that MC(h, z, s+1) > MC(h, z, s) ≥ k′ for some z. Such a largest stage s exists
by the maximality of k′.

Note that if x > z, and MC(h, x, t + 1) = k′ > MC(h, x, t), for some t > s,
then for all y < x, for all t′ > t, h(y, t′) = h(y, t), as either MC(h, y, t) ≥ k′, or y
will be placed in St+1 at stage t. It follows that all such x are not in

⋃
s′∈N Ss′

,
and thus θ

k
M(χL[x])(x) �= h(x, ∞), by invariant (3).

Recursiveness of L = W
k+1
e follows because — except for finitely many ele-

ments on which h has > k′ mind-changes — once we find an element x on which
h has k′ mind-changes, we know the membership in W

k+1
e for all y ≤ x. ��

We note that the proof of Theorem 12 essentially also shows that for all n ∈ N,
Corn+1TxtEx−CornInfEx∗ �= ∅. Also, the proof can be modified to yield that
for n ∈ N, for all m ∈ N, Corn+1TxtEx − CornInfBcm �= ∅.

For TxtBc∗-learning, we can show that Cor2TxtBc∗ − Cor1TxtBc∗ �= ∅,
but the existence of a hierarchy is open in general (in Section 4 we show that
there is no hierarchy for CoruTxtBc∗-learning above any notation for ω).

4 Collapsing Results

In this section we show some surprising collapsing results: every CoruTxtEx-
learnable class is already behaviourally learnable by a learner outputting gram-
mars that make at most ω mind-changes. We show analogous collapsing results
for TxtEx∗, TxtBca, for a ∈ N ∪ {∗}.

Lemma 13. Suppose L ∈ E. Given a program p for limiting recursively com-
puting χL, one can effectively (in p, i, t) define gt

i , such that

(a) for all but finitely many t, for all but finitely many i, gt
i is the minimal

ϕ-grammar for L, and
(b) for all t, the sequence gt

0, g
t
1, . . . is a non-increasing sequence starting with t.

Proof. Given a limiting recursive program p, let gt
0 = t and let gt

r+1 = min({gt
r}∪

{i < gt
r | Wi,t ⊆ {x | ϕp(x, t + r) = 1} and {x < t | ϕp(x, t + r) = 1} ⊆ Wi,r}).

Now suppose p is a limiting recursive program for χL and j is the minimal
grammar for L. Let t > j be a large enough number such that for all i < j, there
exists an x < t, such that (i) ϕp(x, ·) does not make a mind-change beyond t
(that is for all t′ > t, ϕp(x, t′) = ϕp(x, t)), and (ii) x ∈ Wi if and only if x ∈ Wi,t

and (iii) Wi and L differ at x.
It is then easy to verify that for all t′ > t, limr→∞ gt′

r converges to j. ��
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Corollary 14. Let w be any O-notation for ω, and u ∈ O. There exists a re-
cursive function h(·, ·) such that, for any Wu-grammar q for an r.e. language L,
for all but finitely many n, h(q, n) is a Ww-grammar for L.

Proof. h(q, n) is defined as follows. Let p be such that p is a limiting recursive
program for χL. Note that p can be obtained effectively from q. Let gt

i be as
defined in Lemma 13 for p.

Let en be such that ϕen(x, 0) = 0 and ϕen(x, s + 1) = 1, if and only if
x ∈ Wgn

s ,s. Thus, by Lemma 13, for all but finitely many n, en is a limiting
recursive program for χL, and ϕen(x, ·) changes its mind at most 2n + 2 times.

By acceptability of Ww, one can effectively get a Ww grammar in (from en,
and thus from q, n) for {x | limt→∞ ϕen(x, t) = 1}. We are now done by defining
h(q, n) = in as above. ��

Corollary 15. Let w be any O-notation for ω, and u ∈ O. There exists a re-
cursive function h(·) such that, for any Wu-grammar q for an r.e. language L,
h(q) is a Ww-grammar for a finite variant of L.

Proof. h(q) is defined as follows. Let p be such that p is a limiting recursive
program for χL. Note that p can be obtained effectively from q. Let gt

i be as
defined in Lemma 13 for p.

Let e be such that ϕe(x, 0) = 0 and ϕe(x, s + 1) = 1, if and only if x ∈ Wgx
s ,s.

Thus, by Lemma 13, for all but finitely many x, ϕe(x, ∞) = χL(x), and ϕe(x, ·)
changes its mind at most 2x + 2 times.

By acceptability of Ww, one can effectively get a Ww-grammar i (from e, and
thus from q) for {x | limt→∞ ϕe(x, t) = 1}. We are now done by defining h(q) = i
as above. ��

Theorem 16. For all u ∈ O, for all O-notation w for ω, CoruTxtEx ⊆
CorwTxtBc.

Proof. Let h be as defined in Corollary 14. Let M be CoruTxtEx-learner for
L. Let M′(T [n]) = h(M(T [n]), n). Theorem now follows from Corollary 14. ��

The above theorem can be generalized to show that for all u ∈ O, for all O-
notation w for ω, for all m ∈ N, CoruTxtEx2m ⊆ CorwTxtBcm. One can also
show the following.

Theorem 17. For all u ∈ O, CoruTxtEx∗ ⊆ TxtBc∗.

The next result shows that the hierarchy Cor1TxtEx∗ ⊂ Cor2TxtEx∗ ⊂ . . .
(see Section 3) collapses at level ω.

Theorem 18. For all u ∈ O, for all O-notation w for ω, CoruTxtEx∗ ⊆
CorwTxtEx∗.

Proof. Let h be as defined in Corollary 15. Let M be CoruTxtEx-learner for
L. Let M′(T [n]) = h(M(T [n])). Theorem now follows from Corollary 15. ��
The same proof as above gives the following:
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Theorem 19. For all u ∈ O, for all O-notation w for ω, CoruTxtBc∗ ⊆
CorwTxtBc∗.

It is open whether there exists a hierarchy of learning n-correction grammars,
for n ∈ N, with respect to the TxtBc∗-model.

Theorem 20. For all u ∈ O, for all O-notation w for ω, for all m ∈ N,
CoruTxtBcm ⊆ CorwTxtBcm.

5 Learning Succinct Correction Grammars

In scientific inference, parsimony of explanations is considered highly desirable.
Grammar size is one of many ways to measure parsimony of grammars [16,22].
For r.e. L, let MinGram(L) be the minimal i such that Wi = L. For L ∈ TxtEx
as witnessed by M, if there is a computable function g such that, for every L ∈ L,
for all texts T for L, M(T ) ≤ g(MinGram(L)), then we say L ∈ TxtMEx
(as witnessed by M and g). In this setting we call g a parsimony factor. The
final grammars of a TxtMEx-learner are nearly minimal-size: they are within a
computable factor of minimal size grammars. Kinber [23] proved that requiring
nearly-minimal size final conjectures limits learning power: the class Zero∗ =
{{〈x, f(x)〉 | x ∈ N} | f is a recursive function and (∀∞x)[f(x) = 0]} witnesses
TxtMEx ⊂ TxtEx. Chen [12] later showed that Zero∗ is not even in TxtMExn

for every n ∈ N. By contrast, we have the following theorem. Thus, one can learn
very succinct correction grammars, when compared to ordinary grammars.

Theorem 21. There exists a learner M which Cor2TxtEx-identifies Zero∗,
and for some recursive function g, for all texts T for L ∈ Zero∗, M(T ) ≤
g(MinGram(L)).

Acknowledgements. We thank the referees for several helpful comments.
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Abstract. For the natural notion of splitting classes into two disjoint
subclasses via a recursive classifier working on texts, the question is ad-
dressed how these splittings can look in the case of learnable classes.
Here the strength of the classes is compared using the strong and weak
reducibility from intrinsic complexity. It is shown that, for explanatorily
learnable classes, the complete classes are also mitotic with respect to
weak and strong reducibility, respectively. But there is a weak complete
class which cannot be split into two classes which are of the same com-
plexity with respect to strong reducibility. It is shown that for complete
classes for behaviourally correct learning, one half of each splitting is
complete for this learning notion as well. Furthermore, it is shown that
explanatorily learnable and recursively enumerable classes always have a
splitting into two incomparable classes; this gives an inductive inference
counterpart of Sacks Splitting Theorem from recursion theory.

1 Introduction

A well-known observation is that infinite sets can be split into two parts of the
same cardinality as the original set, while finite sets cannot be split in such a way;
for example, the integers can be split into the sets of the even and odd numbers
while splitting a set of 5 elements would result in subsets of unequal sizes. In this
sense, infinite sets are more perfect than finite ones. The corresponding question
in complexity and recursion theory is the following: which sets can be split into
two sets of the same complexity as the orginal set [1,9,10,14].

Ambos-Spies [1] defined one of the variants of mitocity using many-one re-
ducibilities. Here a set A is many-one reducible to a set B iff there is a recursive
function f such that A(x) = B(f(x)). That is, one translates every input x for
A into an input f(x) for B, takes the solution provided by B (in the set or out of
the set) and then copies this to obtain the solution for A. Similarly one considers
also complexity-theoretic counterparts of many-one reductions; for example one
can translate an instance (G1, G2) of the Graph-Isomorphism problem into an
instance φ of the Satisfiability problem in polynomial time, where G1 is isomor-
phic to G2 iff φ is satisfiable. Here, one can choose the reduction such that one
� Supported in part by NUS grant number R252-000-212-112.
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does not only test membership, but can also translate a solution of ψ into an
isomorphism between G1 and G2 whenever such a solution exists for ψ. Indeed,
NP-complete problems are characterized as those into which every NP problem
can be translated. This general method of reducing problems and translating so-
lutions (although here the translation of the solution is just the identity) occurs
quite frequently in other fields of mathematics. In inductive inference, intrinsic
complexity is based on the notion of reducing one learning problem L to another
problem H: first an operator translates a text T for a set L in L into a text
Θ(T ) for a set H in H and then another operator translates a solution E, which
is a sequence converging to an index e of H , into a solution for L given as a
sequence converging to an index e′ of L. Before explaining this in more detail,
some terminology is necessary to make it precise.

– A partial recursive function is a partial function computed by a Turing ma-
chine, where the machine does not halt on inputs on which the function is
undefined. A recursively enumerable (r.e.) set is the domain or the range of a
partial-recursive function. There is an acceptable numbering W0, W1, W2, . . .
of all r.e. sets [15, Section II.5] which is kept fixed from now on.

– A general recursive operator Θ is a mapping from total functions to total
functions such that there is a recursively enumerable set E of triples which
satisfies the following: for every total function f and every x, y, Θ(f)(x) = y
iff there is an n such that (f(0)f(1) . . . f(n), x, y) ∈ E.

– A language is a recursively enumerable subset of the natural numbers.
– A class L is a set of languages. A family L0, L1, L2, . . . is an indexing for L

iff {(e, x) : x ∈ Le} is r.e. and L = {L0, L1, L2, . . .}.
– A text T for a set L ∈ L is a mapping from the set N of natural numbers

to N ∪ {#} such that L = {T (n) | n ∈ N ∧ T (n) ∈ N}. The latter set
on the right hand side of the equation is called the content of T , in short,
content(T ). T [n] denotes the first n elements of sequence T , that is T [n] =
T (0), T (1) . . . , T (n − 1).

– A learner is a general recursive operator (see [20]) which translates T into
another sequence E. The learner converges on T iff there is a single e such
that E(n) = e for almost all n — in this case one says that the learner
converges on T to e. The learner identifies (see [11]) T iff it converges to
some e such that We = content(T ). A learner identifies L iff it identifies
every text for L and it identifies L iff it identifies every L ∈ L. Note that, in
some cases, learning algorithms can also be described such that they use the
indices from a given indexing for L; such indices can always be translated
into indices of the acceptable numbering W0, W1, . . . of all r.e. sets.

– A classifier [19] is a general recursive operator which translates texts to
sequences over {0, 1}. A classifier C converges on a text T to a iff C(T [n]) = a
for almost all n.

– For the learning criteria considered in this paper, one can assume without loss
of generality that the learner M computes E(n) from input T [n]. M(T [n])
denotes this hypothesis. A similar convention holds for classifiers.
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Freivalds, Kinber and Smith [6] consider reductions between learnability prob-
lems for function classes. Jain and Sharma [13] carried this idea over to the
field of learning languages from positive data and formalized the following two
reducibilities for learnability problems. The main difference between these two
notions is that Θ can be one-to-many in the case of the weak reducibility, as dif-
ferent texts for the same language can go to texts for different languages, while
for the strong reducibility this is not allowed, at least for languages in the given
class.

– A class L is weakly reducible to H iff there are general recursive operators
Θ and Ψ such that

- Whenever T is a text for a language in L, Θ(T ) is a text for a language
in H;

- Whenever E is a sequence which converges to an index e with We =
content(Θ(T )) for some text T of a language in L, Ψ(E) is a sequence
converging to an e′ with We′ = content(T ).

One writes L ≤weak H in this case.
– A class L is strongly reducible to H iff there are general recursive operators

Θ, Ψ as above with the following additional constraint. Whenever T, T ′ are
texts for the same language in L, Θ(T ), Θ(T ′) are texts for the same language
in H. One writes L ≤strong H in this case. Furthermore, Θ(L) denotes the
language content(Θ(T )), where T is a text for L.

Jain, Kinber, Sharma and Wiehagen investigated these concepts in several papers
[12,13]. They found that there are complete classes with respect to ≤weak and
≤strong. Here a class H is complete with respect to ≤weak (≤strong) iff H can
be learned in the limit from text and for every learnable class L it holds that
L ≤weak H (L ≤strong H). If � is a recursive dense linear ordering on N without
least and greatest element (which makes N an order-isomorphic copy of the
rationals) then

Q = { {y ∈ N | y � x} | x ∈ N}

is a class which is complete for both, ≤weak and ≤strong. The following classes
are complete for ≤weak but not for ≤strong:

I = { {0, 1, . . . , x} | x ∈ N};
CS = { N − {x} | x ∈ N}

If one looks at CS, one can easily see that it is the disjoint union of two classes
of equivalent intrinsic complexity, namely the class { N − {x} | x is even} and
{ N − {x} | x is odd}. All three classes can be translated into each other and
a classifier can witness the splitting: if T is a text for a member of CS, then
the classifier converges in the limit to the remainder of x divided by 2 for the
unique x /∈ content(T ). This type of splitting can be formalized to the notion of
a mitotic class.



Mitotic Classes 221

Definition 1. Two infinite classes L0 and L1 are called a splitting of a class L
iff L0 ∪ L1 = L, L0 ∩ L1 = ∅ and there exists a classifier C such that, for all
a ∈ {0, 1} and for all texts T with content(T ) ∈ La, C converges on T to a.

A class L is strong mitotic (weak mitotic) iff there is a splitting L0, L1 of L
such that L ≡strong L0 ≡strong L1 (L ≡weak L0 ≡weak L1).

The study of such notions is motivated from recursion theory [15,20] where a
recursively enumerable set is called mitotic iff it is the disjoint union of two other
recursively enumerable sets which have the same Turing degree. The importance
of this notion is reflected by Ladner’s result that an r.e. set is mitotic iff it
is autoreducible, that is, iff there is an oracle Turing machine M such that
A(x) = MA∪{x}(x) for all x [14]. Furthermore the notion had been carried over
to complexity theory where it is still an important research topic [1,9,10].

Although intrinsic complexity is not the exact counterpart of Turing degrees
in recursion theory, it is the only type of complexity which is defined via re-
ducibilities and not via measures such as counting mind changes or the size
of long term memory in inductive inference. Therefore, from the viewpoint of
inductive inference, the above defined version of mitotic classes is reasonable.
Indeed, there are some obvious parallels: in recursion theory, any r.e. cylinder is
mitotic, where a cylinder A is a set of the form {(x, y) | x ∈ B, y ∈ N} for some
set B ⊆ N. A corresponding cylindrification of a class L would be the class

{ {(x, y) | y ∈ L} | x ∈ N, L ∈ L}.

It can easily be seen that this class is strong mitotic and thus also weak mitotic.
Indeed, two constraints are placed in Definition 1 in order to be as near to the
original definition of mitoticity in recursion theory as possible:

– If A is split into two r.e. sets A0, A1 with A0 ≡T A1 then A ≡T A0 ≡T

A1. Thus all three classes involved are required to have the same intrinsic
complexity degree.

– There is a partial-recursive function with domain A mapping the elements
of Aa to a for all a ∈ {0, 1}. This is taken over by requiring the existence of
a classifier which works correctly on all texts of the class. It is not required
to converge on every text as then many naturally strong mitotic classes, like
CS, would no longer be mitotic. This has a parallel in recursion theory: if one
splits a maximal set (as defined in Remark 8 below) into two r.e. sets A0 and
A1, which are both not recursive, then the sets A0 and A1 are recursively
inseparable.

Besides the reducibilities ≤weak and ≤strong considered here, other reducibilities
have also been considered [12,13]. This paper deals only with ≤weak and ≤strong,
as these two are the most natural and representative.

One emphasis of the current work is on the search for natural classes which
split or do not split. Therefore it is always required that the class under consid-
eration is learnable in the limit. Furthermore, one tries to show properties for
complete classes, recursively enumerable classes and indexed families. Angluin
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[2] defined that {L0, L1, L2, . . .} is an indexed family iff the function e, x �→ Le(x)
is recursive. For indexed families {L0, L1, L2, . . .} one can assume, without loss
of generality, that Ln = Lm whenever n = m. A learner for this family is called
exact iff it converges on every text for Ln to n. The following remark is important
for several proofs.

Remark 2. One says that a learner M or a classifier C converges on T to a
value a iff M(T [n]) = a or C(T [n]) = a for almost all n, respectively. But
it does not matter – in the framework of inductive inference – how fast this
convergence is; the machine can be slowed down by starting with an arbitrary
guess and later repeating hypotheses, if needed. Similarly, if one translates one
text of a language L into a text of a language H , it is not important how fast
the symbols of H show up in the translated text, it is only important that they
show up eventually. Therefore the translator can put into the translated text
pause symbols until more data is available or certain simulated computations
have terminated.

Therefore, learners, operators translating texts and classifiers can be made
primitive recursive by the just mentioned delaying techniques. Thus one can have
recursive enumerations Θ0, Θ1, Θ2, . . . of translators from texts to texts, M0, M1,
M2, . . . of learners and C0, C1, C2, . . . of classifiers such that, for every given
translator, learner or classifier, this list contains an equivalent one. These lists
can be used in proofs where diagonalizations are needed.

Given a text T and a number n, one denotes by Θ(T [n]) the initial part
Θ(T )[m] for the largest m ≤ n such that Θ(T )[m] is produced without accessing
any datum in T beyond the n-th position. Note that, for every m, there is an n
such that Θ(T [n]) extends Θ(T )[m] and Θ(T [n]) can be computed from T [n].

2 Complete Classes

The two main results are that classes which are complete for ≤strong are strong
mitotic and classes which are complete for ≤weak are weak mitotic. This stands
in contrast to the situation in recursion theory where some Turing-complete r.e.
sets are not mitotic [14]. Note that certain classes which are complete only for
≤weak fail to be strong mitotic; thus the main results cannot be improved.

Theorem 3. Every class which is complete for ≤strong is also strong mitotic.

Proof. Let L and H be any classes which are complete for ≤strong. Then the
class K consisting of the sets I = {1, 3, 5, 7, . . .}, J = {0} ∪ I, {2x + 3 : x ∈ H}
and J ∪ {2x + 2 : x ∈ H} for every H ∈ H is also complete for ≤strong. Since
L is complete for ≤strong, there is a translation Θ which maps languages in K
to languages in L such that proper inclusion is preserved. Thus there is some
e ∈ Θ(J) − Θ(I). As H is complete for ≤strong, the subclasses {Θ({2x + 3 :
x ∈ H}) : H ∈ H} and {Θ(J ∪ {2x + 2 : x ∈ H}) : H ∈ H} of L are also
complete for ≤strong. All members of the first class do not contain e while all
members of the second class contain e as an element. It follows that the subclasses
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L0 = {L ∈ L : e /∈ L} and L1 = {L ∈ L : e ∈ L} are complete and disjoint and
can be classified by a C, which conjectures 1 if e has shown up in the text so far
and 0 otherwise. Therefore, L is strong mitotic. ��

The following notion is used to formulate Proposition 6 which is a central ingre-
dient of Theorem 7. Furthermore, learners with certain properties are needed.

Definition 4. For any sequence T of symbols, let all(T ) be the length of the
shortest prefix of T containing all symbols which show up in T , that is, let

all(T ) = sup{n + 1 : content(T [n]) ⊂ content(T )}.

Note that all(T ) < ∞ iff content(T ) is a finite set.

The following remark combines some ideas of Blum and Blum [4] and Fulk [8].

Remark 5. Let L be a learnable class. Then there is a learner M for L with
the following properties:

– M is prudent, that is, whenever M outputs an index e on some input data,
then M learns We;

– M is order independent, that is, for every set L, either M diverges on all
texts for L or M converges on all texts for L to the same index;

– for every text T and index e, if M(T [n]) = e for infinitely many n, then
M(T [n]) = e for almost all n.

Proposition 6. Suppose I ≤weak L and M is a learner for L which satisfies the
conditions in Remark 5. Then there is a reduction (Θ, Ψ) from I to L such that,
for all texts T for a language in I, M converges on Θ(T ) to an index e > all(T ).

Proof. Assume that (Θ′′, Ψ ′′) witnesses that I ≤weak L. Now a reduction
(Θ′, Ψ ′) from I to I is constructed such that Θ can be taken to be the compo-
sition of Θ′ and Θ′′.

The key idea for this is the following: one constructs (Θ′, Ψ ′) from I to I
such that, for every text T of a set in I, M converges on Θ′′(Θ′(T )) to an index
e > all(T ). Note that all(T ) is finite for all texts for members of I. By Remark 2,
assume without loss of generality that Θ′′ is primitive recursive. The idea is that
Θ′ translates a text T for In = {0, 1, . . . , n} to a text for I2n(1+2m) for some m;
Ψ ′ translates any sequence converging to an index of the set I2n(1+2m) into a
sequence converging to an index of In.

Given a sequence E of indices, Ψ ′(E)(s) is computed as follows. Let k be the
least number such that WE(s),s ⊆ Ik. Choose m, n such that 2n(1+2m) = k and
output the canonical index for In. It is easy to see that this translation works
whenever E converges to an index of some set in I.

Construction of Θ′. The construction of Θ′ is more involved. For the con-
struction, the special properties of M from Remark 5 are important. The most
adequate way to describe Θ′(T ) is to build longer and longer finite prefixes
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τ0, τ1, τ2, . . . of this target Θ′(T ). The construction starts with τ0 = 0# and in
stage s, the extension τs+1 of τs be defined according to the first case which
applies:

Case 1: M(Θ′′(τs)) ≤ all(T [s]). Then let τs+1 be the first extension of τs found
such that M(Θ′′(τs+1)) = M(Θ′′(τs));

Case 2: Case 1 does not hold but content(τs) = I2n(1+2m) for all m, where n is
the least number with content(T [s]) ⊆ In. Then let τs+1 = τsa for the least
nonelement a of content(τs);

Case 3: Case 1 and Case 2 do not hold. Then τs+1 = τs#.

Here Θ′′(τs) and Θ′′(τs+1) are defined as in Remark 2 and can be computed
from τs and τs+1, respectively.

Verification. For the verification, assume that a set In = {0, 1, 2, . . . , n} ∈ I
and a text T for In are given.

First note that, in Case 1 of the construction, the extension τs+1 of τs can
always be found. To see this, note that there are two texts T1, T2 extending τs

for different sets in I. It follows that Θ′′(T1) and Θ′′(T2) are texts of different
sets and thus M converges on them to different indices. Thus one can take a
sufficiently long prefix of one of T1, T2 in order to get the desired τs+1.

Second, it can be shown by induction that |τs| > s in all stages s; this guar-
antees that Θ′ is indeed a general recursive operator.

Third, one shows that M does not converge on Θ′′(Θ′(T )) to any index
less than or equal to all(T ). By Case 1 in the construction, M cannot con-
verge on Θ′′(Θ′(T )) to an index e ≤ all(T ). Thus, by Remark 5, there is a
stage s0 such that Case 1 of the construction is never taken after stage s0 and
content(T [s0]) = In.

Fourth, one shows that Θ′(T ) is a text for some language in I. There is a least
m such that content(τs0) ⊆ I2n(1+2m). For all stages s > s0, if content(τs) ⊂
I2n(1+2m), then τs+1 is chosen by Case 2, else τs+1 is chosen by Case 3. One
can easily see that the resulting text Θ′(T ) = lims→∞ τs is a text for I2n(1+2m).
Indeed, Θ′(T ) = τs1#∞ for s1 = s0 + 2n(1 + 2m) + 2.

So it follows that Θ′ maps every text of a set In to a text for some set I2n(1+2m)

as desired. So, for all texts T of sets in I, M converges on Θ′′(Θ′(T )) to some
index e > all(T ). �

Theorem 7. Let L be a learnable class which is complete for ≤weak. Then L is
weak mitotic.

Proof. Let In = {0, 1, . . . , n}. By Proposition 6 there is a reduction (Θ, Ψ)
from I to L and a learner M such that M satisfies the conditions outlined in
Remark 5 and, for every text T of a member of I, M converges on Θ(T ) to
an index e > all(T ). For this reason, using oracle K for the halting problem,
one can check, for every index e, whether there is a text T for a language in
I such that M on Θ(T ) converges to e. This can be seen as follows: One can
assume, without loss of generality, that, besides #, no data-item in a text is
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repeated. Also, among the texts for sets in I, only the texts of the sets {0},
{0, 1}, {0, 1, 2}, . . ., {0, 1, 2, . . . , e} can satisfy all(T ) ≤ e. Thus, one has just to
check the behaviour of the given learner M for the class L on the texts in the
class

Te = {Θ(T ′) | T ′ ∈ {0, 1, . . . , e,#}e · #∞ ∧ content(T ) ∈ I}.

Now, define a classifier C such that on a text T , the n-th guess of C is 1 iff
there is an odd number m ≤ M(T [n]) and a text T ′′ ∈ TM(T [n]) for Im such that
M(Θ(T ′′)[n]) = M(T [n]).

For the verification that C is a classifier, assume that M converges on T to
some index e. Then C converges on T to 1 iff there is a an odd number m and a
text T ′ for Im in Te such that M converges on the texts T and Θ(T ′) to the same
number. Otherwise C converges on T to 0. If M does not converge on T , then T
is not a text for a set in L and the behaviour of C on T is irrelevant. Thus C is
a classifier which splits L into two classes L0 and L1. These classes L0 and L1

contain the images of repetition-free texts of sets in the classes {I0, I2, I4, . . .}
and {I1, I3, I5, . . .}, respectively. Thus both classes are complete for ≤weak and
the splitting of L into L0 and L1 witnesses that L is weak mitotic. �
As several proofs use known properties of maximal sets, the following remark
summarizes some of these properties.

Remark 8. A set A is maximal iff (a) A is recursively enumerable, (b) A has
an infinite complement and (c) every recursively enumerable set B satisfies that
either B − A is finite or the complement of A ∪ B is finite.

A maximal set is dense simple, that is, if a0, a1, a2, . . . gives the complement
in ascending order and f is a recursive function, then f(an) < an+1 for almost
all n.

For any partial-recursive function ψ and maximal set A, the following state-
ments hold.

– Either ψ(x) is defined for almost all x ∈ A or for only finitely many x ∈ A.
– The set {x /∈ A | ψ(x) ∈ A} is either finite or contains almost all elements

of A.
– If, for every x, there is some y > x such that y /∈ A, ψ(y) is defined, ψ(y) > x

and ψ(y) /∈ A, then ψ(z) is defined and ψ(z) = z for almost all z ∈ A.

These basic facts about maximal sets will be used in several proofs. Odifreddi
[15, Pages 288–294] provides more information on maximal sets including the
proof of the existence by Friedberg [7].

Theorem 9. There exists an indexed family {L0, L1, L2, . . .} which is weak mi-
totic and complete for ≤weak, but not strong mitotic.

Proof. Let A be a maximal set with complement {a0, a1, . . .} where an < an+1

for all n. Now let L consist of the sets

– {x, x + 1, x + 2, . . . , x + y} for all x ∈ A and y ∈ N;
– {x, x + 1, x + 2, . . .} for all x /∈ A.
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As A is r.e., L can be represented as an indexed family. Learnability is also
clear as the learner, on input σ, first determines x = min(content(σ)) and then
conjectures content(σ) if x ∈ A|σ|, and conjectures {x, x+1, x+2, . . .} otherwise.
Without loss of generality, it can be assumed that a0 > 0 and thus L is a
superclass of I and therefore L is complete for ≤weak. By Theorem 7, L is weak
mitotic.

Let L0 and L1 be two disjoint classes with union L. Without loss of generality,
{a0, a0 +1, a0+2, . . .} ∈ L1. Assume now by way of contradiction that L ≤strong

L0 as witnessed by (Θ, Ψ). As Θ has to preserve the proper subset relation
on the content of the texts while translating, every text of a set of the form
{an, an + 1, an + 2, . . .} has to be translated into a text for a set of the form
{am, am +1, am+2, . . .} (to preserve the property that translation of {an, an +1,
an + 2, . . .} has infinitely many subsets in the class).

Now consider the function f which outputs, on input x, the first element found
to be in the range of the image Θ(σ) for some σ with x = min(content(σ)). The
function f is recursive, but by Remark 8 and A being maximal, the relation
f(an) < an+1 holds for almost all n. It follows that if n is sufficiently large, then
some text of {an, an + 1, an + 2, . . .} is translated to a text of one of the sets
{ak, ak + 1, ak + 2, . . .} with k ≤ n. Now fix a text T for {an, an +1, an + 2, . . .}.
One can then inductively define a sequence of strings σn, σn−1, . . . , σ0 such that
each sequence σnσn−1 . . . σmT is a text for {am, am + 1, am + 2, . . .} and

content(Θ(σnσn−1 . . . σmσm−1)) ⊆ content(Θ(σnσn−1 . . . σmT ))

for each m ≤ n. As Θ maps texts of infinite sets in L to texts of infinite sets in
L, one can conclude that

content(Θ(σnσn−1 . . . σmT )) = {am, am + 1, am + 2, . . .}.

Thus, for every m, some text of the set {am, am + 1, am + 2, . . .} is mapped to
a text for the same set in contradiction to the assumption that Θ does not have
{a0, a0 + 1, a0 + 2, . . .} in its range. Therefore L is not strong mitotic. �

3 Incomplete Learnable Classes

Finite classes are not mitotic and thus every nonempty class has a subclass
which is not mitotic. For infinite classes, one can get that the corresponding sub-
class is also infinite. The proof is a standard application of Ramsey’s Theorem:
Given classifiers C0, C1, C2, . . . one selects a subclass {H0, H1, H2, . . .} of {L0,
L1, L2, . . .} such that each classifier Cn classifies Hn, Hn+1, Hn+2, . . . in the same
way. The class {H0, H1, H2, . . .} may not be an indexed family but be a very
thin class in the sense that the indices of Hn with respect to L0, L1, L2, . . . are
growing very fast. Alternatively, one can also take the H0, H1, H2, . . . such that,
for a given enumeration of primitive recursive operators, the text Θn(Tm) of the
ascending text Tm of Hm is not a text for any Hk with k > max({n, m}). The
latter method gives the following result.
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Theorem 10. Every infinite class L has an infinite subclass H such that H is
not weakly isomorphic to any proper subclass of H. In particular, H is not weak
mitotic.

There is an easier example of a class which is not weak mitotic. It is even an
indexed family of finite sets.

Example 11. Assume that {L0, L1, L2, . . .} is given as L0 = {0, 1} and Ln =
{n} for all n ∈ N − {0}. Then {L0, L1, L2, . . .} is not weak mitotic.

Proof. Given any splitting L0, L1 of {L0, L1, L2, . . .}, one of these classes, say
L0, contains at most one of the sets L0, L1. Then, for any given reduction (Θ, Ψ)
from {L0, L1, L2, . . .} to L0, Θ(σ) produces some string of nonempty content
for some σ ∈ 1#∗. Thus there are texts T0, T1 extending σ for L0 and L1,
respectively, such that Θ(T0) and Θ(T1) are texts for different sets in L0 with a
nonempty intersection. However, such sets do not exist, by choice of L0. �
Note that the class

{{0, 1, 2}, {1, 2}, {2}, {3}, {4}, {5}, . . . , {n}, . . .}

compared with the class from Example 11 has the following slight improvement.
For any splitting L0, L1 of the class, one half of the splitting contains an ascend-
ing chain of two or three sets, while the other half contains only disjoint sets.
Thus the two halves are not equivalent with respect to ≤weak.

As these two examples show, it is more adequate to study the splitting of
more restrictive classes like the inclusion-free classes. A special case of such
classes are the finitely learnable classes. Here a class is finitely learnable [11] iff
there is a learner which, on every text for a language to be learnt, outputs only
one hypothesis, which must be correct. For technical reasons, the learner keeps
outputting a special symbol denoting the absence of a reasonable conjecture
until it outputs its only hypothesis.

Theorem 12. {L0, L1, L2, . . .} ≡strong {H0, H1, H2, . . .} whenever both classes
are infinite indexed families which are finitely learnable. In particular, every such
class is strong mitotic.

Proof. As {L0, L1, L2, . . .} and {H0, H1, H2, . . .} are infinite, one can without
loss of generality assume that the underlying enumerations are one-to-one. Fur-
thermore, they have exact finite learners M and N , respectively, which use
the corresponding indexing. Now one translates {L0, L1, L2, . . .} to {H0, H1,
H2, . . .} by mapping Ln to Hn; thus Ψ is the identity mapping, where in the
domain the n stands for Hn and in the range the n stands for Ln. Θ(T ) = #kTn

where k is the least number such that M outputs a hypothesis n on input T [k]
(that is, first position where M conjectures a hypothesis) and Tn is the ascending
text of Hn. This completes the proof of the first statement.

Given now an infinite finitely learnable class {L0, L1, L2, . . .}, one can split it
into {L0, L2, L4, . . .} and {L1, L3, L5, . . .} which are the subclasses of languages
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with even and odd index, respectively. Both classes are also infinite indexed
families which are finitely learnable. Thus they are all equivalent by the above
result. Furthermore, a classifier for splitting can be obtained by simulating the
learner M on the input text, and then converging to 0 if the (only) grammar
output by M on the input text is even, and to 1 if the (only) grammar output
by M on the input text is odd. �

4 Further Splitting Theorems

Another question is whether classes can be split into incomparable classes. So
one would ask whether there is a parallel result to Sacks Splitting Theorem [18]:
Every nonrecursive r.e. set A is the disjoint union of two r.e. sets A0 and A1 such
that the Turing degrees of A0 and A1 are incomparable and strictly below the
one of A. The next example shows that there are classes where every splitting
is of this form; so these classes are not weak mitotic. Furthermore, splittings
exist, so the result is not making use of a pathological diagonalization against
all classifiers.

Example 13. Let A be a maximal set. If a /∈ A, then let La = {a}, else let La =
A. Then {L0, L1, L2, . . .} is recursively enumerable and finitely learnable, but any
splitting L0, L1 of {L0, L1, L2, . . .} satisfies L0 ≤weak L1 and L1 ≤weak L0.

Proof. Let T0, T1, T2, . . . be a recursive enumeration of recursive texts for L0, L1,
L2, . . ., respectively. Let F (a) be the cardinality of {b < a | b /∈ A}. It is easy
to see that one can split {L0, L1, L2, . . .} into {La | a ∈ A ∨ F (a) is even} and
{La | a /∈ A ∧ F (a) is odd}. Thus this class has a splitting; in fact there are
infinitely many of them. Furthermore, {L0, L1, L2, . . .} is finitely learnable by
outputting an index for La for the first a occurring in a given text.

Assume now by way of contradiction that there is a splitting L0, L1 with
L0 ≤weak L1 via a reduction (Θ, Ψ). Now one defines the partial-recursive func-
tion f which outputs on input a the first number occurring in Θ(Ta); if there
occurs no number then f(a) is undefined. As L0 is infinite, there are infinitely
many a /∈ A with La ∈ L0. For all but one of these, Θ(Ta) has to be a text for
some set Lb = A in L1. Then Lb = {b} and f(a) = b /∈ A for these a. It follows
that, for every x, there is an a > x with a /∈ A ∧ f(a) /∈ A ∧ f(a) > x. Then, by
Remark 8, f(a) = a for almost all a /∈ A. As infinitely many of these a belong to
an La ∈ L0, one has that Θ(Ta) is a text for La and Θ translates some text for
a set in L0 into a text for a set in L0 and not into a text for a set in L1. Thus
L0 ≤weak L1. By symmetry of the argument, L1 ≤weak L0. �

While the previous example showed that there are classes for which every split-
ting is a Sacks splitting, the next result shows that every learnable recursively
enumerable class has a Sacks splitting; but it might also have other splittings.

Theorem 14. Every infinite recursively enumerable and learnable class {L0, L1,
L2, . . .} has a splitting into two infinite subclasses L0, L1 such that L0 ≤weak L1

and L1 ≤weak L0.
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For this reason, one cannot give a recursively enumerable class where all split-
tings L0, L1 satisfy either L0 ≤strong L1 or L1 ≤strong L0. Furthermore, com-
plete classes have comparable splittings like before as they are mitotic and have
even equivalent splittings. The next example gives a class where some splittings
are comparable but where they are never equivalent.

Example 15. Let A be a maximal set. For all a ∈ N and b ∈ {0, 1, 2}, let
L3a+b = {3a + b} if a /∈ A and L3a+b = {3c + b | c ∈ A} if a ∈ A. Then {L0, L1,
L2, . . .} is not weak mitotic but has a splitting L0, L1 with L0 ≤strong L1.

Proof. If one takes the splitting L0 = {L0, L3, L6, . . .} and L1 = {L1, L2, L4,
L5, L7, L8, . . .} then it is easy to see that L0 ≤strong L1 via (Θ, Ψ) such that Θ
is based on translating every datum 3x to 3x+1 and Ψ is based on transforming
every index e into an index for {3x | 3x + 1 ∈ We}. The details are left to the
reader.

Given now a further splitting L2, L3 of {L0, L1, L2, . . .}, one of these two
classes, say L2, must contain at least two of the sets L3a, L3a+1, L3a+2 for in-
finitely many a /∈ A. Assume by way of contradiction that (Θ, Ψ) would witness
L2 ≤weak L3. Now one defines the following functions fb for b = 0, 1, 2 by letting
fb(a) to be the first number x found such that 3x or 3x + 1 or 3x + 2 occurs in
the text Θ((3a + b)∞). Now choose two different b, b′ ∈ {0, 1, 2} such that there
are infinitely many a ∈ N − A with L3a+b, L3a+b′ ∈ L2. Then one knows that,
for every bound c, there are infinitely many a ∈ N − A such that L3a+b ∈ L2

and Θ((3a + b)∞) is a text for some language in L3 − {L0, L1, L2, . . . , Lc}. It
follows by Remark 8 that fb(a) = a for almost all a /∈ A. The same applies to
fb′ . So there is an a /∈ A such that L3a+b, L3a+b′ are both in L2 and that Θ
maps texts of both languages to texts of the sets L3a, L3a+1, L3a+2. As only one
of these sets can be in L3, Θ has to map texts of different languages to texts of
the same language, a contradiction. Thus L2 ≤weak L3 and the class cannot be
weak mitotic. �

5 Beyond Explanatory Learning

One could, besides classes which are complete for (explanatorily) learning, also
consider classes which are complete for behaviourally correct learning [3,5,16]
with respect to ≤strong. Note that such a class L is no longer explanatorily
learnable, but L satisfies the following two properties:

– The class L is behaviourally correct learnable, that is, there is a learner
which outputs, on every text T for a language in L, an infinite sequence
e0, e1, e2, . . . of hypotheses such that Wen = content(T ) for almost all n;

– Every behaviourally correct learnable class H satisfies H ≤strong L.

Note that the reduction ≤strong considered in this paper is always the same as
defined for explanatory learning; reducibilities more adapted to behaviourally
correct learning had also been studied [12,13].
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It is easy to show that such complete classes exist. Consider as an example the
class L of all sets {x}∪{x+ y +1 | y ∈ L}, where the x-th behaviourally correct
learner learns the set L. So given any behaviourally correct learnable class and
an index x of its learner, the translation L �→ {x} ∪ {x + y + 1 | y ∈ L} would
translate all the sets learnt by this learner into sets in L.

In the following let L be any class which is complete for behaviourally correct
learning with respect to ≤strong. Note that methods similar to those in Theo-
rem 3 show that L is strong mitotic. The next result shows that for any splitting
L0, L1 of L, one of these two classes is complete for behaviourally correct learning
as well and therefore this class cannot be split into two incomparable subclasses.

Theorem 16. If L0, L1 are a splitting of a class which is complete for beha-
viourally correct learning with respect to ≤strong, then either L0 ≡strong L0 ∪L1

or L1 ≡strong L0 ∪ L1.

As just seen, any splitting L0, L1 of a class which is complete for behaviourally
correct learning satisfies either L0 ≡strong L1 or L0 <strong L1 or L1 <strong L0.
As the class is strong mitotic, it can happen that the two halves of a split are
equivalent although this is not always the case. The next result gives a class
where the two halves of a splitting are always comparable but never equivalent.

Theorem 17. There is a recursively enumerable and behaviourally correctly
learnable class, which is not weak mitotic, such that every splitting L0, L1 of
the class satisfies either L0 ≤strong L1 or L1 ≤strong L0, but not L0 ≡weak L1.

6 Autoreducibility

Trakhtenbrot [21] defined that a set A is autoreducible iff one can reduce A to A
such that A(x) is obtained by accessing A only at places different to x. Ladner
[14] showed that a recursively enumerable set is mitotic iff it is autoreducible.
Ambos-Spies pointed this result out to the authors and asked whether the same
holds in the setting of inductive inference. Unfortunately, this characterisation
fails for both of the major variants of autoreducibility. These variants are the
ones corresponding to strong and weak reducibility.

Definition 18. A class L is strong (weak) autoreducible iff there is a strong
(weak) reduction (Θ, Ψ) from L to L such that, for all sets L ∈ L and all texts
T for L, Θ(T ) is a text for a language in L − {L}.

Example 19. Let A be a maximal set and L contain the following sets:

– {3x}, {3x + 1}, {3x + 2} for all x /∈ A;
– {3y : y ∈ A}, {3y + 1 : y ∈ A}, {3y + 2 : y ∈ A}.

Then the class L is neither strong mitotic nor weak mitotic. But L is autore-
ducible via some (Θ, Ψ) where Θ maps any text T to a text T ′ such that all
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elements of the form 3y in T have the form 3y + 1 in T ′, all elements of the
form 3y + 1 in T have the form 3y + 2 in T ′ and all elements of the form 3y + 2
have the form 3y in T ′.

So even the implication “strong autoreducible ⇒ weak mitotic” fails. The re-
maining question is whether at least the converse direction is true in inductive
inference. This is still unknown, but there is some preliminary result on sets
which are complete for ≤weak.

Theorem 20. If a class L is weak complete, then it is weak autoreducible.

Proof. Let L be weak complete and M be a learner for L which satisfies the
conditions from Remark 5. As L is weak complete, by Proposition 6, there is a re-
duction (Θ, Ψ) from the class I to L such that, for any set Ix = {0, 1, . . . , x} ∈ I
and any text T for Ix, Θ(T ) is a text for a set on which M does not con-
verge to an index less than or equal to x. Now, an autoreduction (Θ′, Ψ ′) is
constructed.

For this, one first defines Θ′′ as follows and then concatenates it with Θ. The
operator Θ′′ translates every text T for a set L into a text for I2n(1+2m) where
m, n are chosen such that n is the value to which M converges on T and m
is so large that all the elements put into Θ′′(T ), when following intermediate
hypotheses of M on T , are contained in the set I2n(1+2m). It is easy to verify
that this can be done. Then Θ′ is given as Θ′(T ) = Θ(Θ′′(T )). The sequence
Θ′(T ) is a text for a set in L with the additional property that M converges on
it to an index larger than 2n(1 + 2m); this index is therefore different from n
and content(Θ′(T )) = content(T ).

The reverse operator Ψ ′ can easily be generated from Ψ . If E converges to
an index for content(Θ′(T )), then Ψ(E) converges to some index for I2n(1+2m).
The number 2n(1 + 2m) can be determined in the limit from this index by
enumerating the corresponding finite set; thus Ψ ′ can translate E via Ψ(E) to a
sequence which converges to n. �

Example 21. The class L from Theorem 9 is weak complete and weak autore-
ducible but not strong autoreducible.

Proof. Let L and a0, a1, a2, . . . be as in Theorem 9. Assume that (Θ, Ψ) witness
that L is strong autoreducible. Then Θ has to preserve inclusions and therefore
map infinite sets in L to infinite sets. So, content(Θ(a0 (a0 + 1) (a0 + 2) . . .)) is
an infinite set in L different from {a0, a0 + 1, a0 + 2, . . .}. By induction, one can
show that

content(Θ(an (an + 1) (an + 2) . . .)) ⊆ {an+1, an+1 + 1, an+1 + 2, . . .} and
content(Θ(an (an + 1) (an + 2) . . .)) ⊂ {an, an + 1, an + 2, . . .}.

But in Theorem 9 it was shown that no recursive operator has these proper-
ties. That L is weak complete was shown in Theorem 9 and that L is weak
autoreducible follows from Theorem 20. �
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Regret to the Best vs. Regret to the Average

Eyal Even-Dar1, Michael Kearns1, Yishay Mansour2,�, and Jennifer Wortman1

1 Department of Computer and Information Science, University of Pennsylvania
2 School of Computer Science, Tel Aviv University

Abstract. We study online regret minimization algorithms in a bicrite-
ria setting, examining not only the standard notion of regret to the best
expert, but also the regret to the average of all experts, the regret to any
fixed mixture of experts, and the regret to the worst expert. This study
leads both to new understanding of the limitations of existing no-regret
algorithms, and to new algorithms with novel performance guarantees.
More specifically, we show that any algorithm that achieves only O(

√
T )

cumulative regret to the best expert on a sequence of T trials must, in the
worst case, suffer regret Ω(

√
T ) to the average, and that for a wide class

of update rules that includes many existing no-regret algorithms (such
as Exponential Weights and Follow the Perturbed Leader), the product
of the regret to the best and the regret to the average is Ω(T ). We then
describe and analyze a new multi-phase algorithm, which achieves cumu-
lative regret only O(

√
T log T ) to the best expert and has only constant

regret to any fixed distribution over experts (that is, with no dependence
on either T or the number of experts N). The key to the new algorithm
is the gradual increase in the “aggressiveness” of updates in response to
observed divergences in expert performances.

1 Introduction

Beginning at least as early as the 1950s, the long and still-growing literature on
no-regret learning has established the following type of result. On any sequence
of T trials in which the predictions of N “experts” are observed, it is possible to
maintain a dynamically weighted prediction whose cumulative regret to the best
single expert in hindsight (that is, after the full sequence has been revealed) is
O(

√
T log N), with absolutely no statistical assumptions on the sequence. Such

results are especially interesting in light of the fact that even in known stochastic
models, there is a matching lower bound of Ω(

√
T log N). The term “no-regret”

derives from the fact that the per-step regret is only O(
√

log N/T ), which ap-
proaches zero as T becomes large.

In this paper we revisit no-regret learning, but with a bicriteria performance
measure that is of both practical and philosophical interest. More specifically,
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in addition to looking at the cumulative regret to the best expert in hindsight,
we simultaneously analyze the regret to the average gain of all experts (or more
generally, any fixed weighting of the experts). For comparisons to the average,
the gold standard will be only constant regret (independent of T and N). Note
that considering regret to the average in isolation, zero regret is easily achieved
by simply leaving the weights uniform at all times.

We consider a setting in which each expert receives a (bounded) gain at each
time step. The gain of the algorithm on a given time step is then a weighted
average of these expert gains. The regret of the algorithm is measured in terms
of cumulative gains over time. Our results establish hard trade-offs between re-
gret to the best expert and the regret to the average in this setting, demonstrate
that most known algorithms manage this trade-off poorly, and provide new al-
gorithms with near optimal bicriteria performance. On the practical side, our
new algorithms augment traditional no-regret results with a “safety net”: while
still managing to track the best expert near-optimally, they are guaranteed to
never underperform the average (or any other fixed weighting of experts) by
more than just constant regret. On the philosophical side, the bicriteria analyses
and lower bounds shed new light on prior no-regret algorithms, showing that
the unchecked aggressiveness of their updates can indeed cause them to badly
underperform simple benchmarks like the average.

Viewed at a suitably high level, many existing no-regret algorithms have a
similar flavor. These algorithms maintain a distribution over the experts that
is adjusted according to performance. Since we would like to compete with the
best expert, a “greedy” or “momentum” algorithm that rapidly adds weight to
an outperforming expert (or set of experts) is natural. Most known algorithms
shift weight between competing experts at a rate proportional to 1/

√
T , in order

to balance the tracking of the current best expert with the possibility of this
expert’s performance suddenly dropping. Updates on the scale of 1/

√
T can be

viewed as “aggressive”, at least in comparison to the minimal average update
of 1/T required for any interesting learning effects. (If updates are o(1/T ), the
algorithm cannot make even a constant change to any given weight in T steps.)

How poorly can existing regret minimization algorithms perform with respect
to the average? Consider a sequence of gains for two experts where the gains for
expert 1 are 1, 0, 1, 0, · · · , while the gains for expert 2 are 0, 1, 0, 1, · · · . Typical
regret minimization algorithms (such as Exponential Weights [1,2], Follow the
Perturbed Leader [3], and the Prod algorithm [4]) will yield a gain of T/2 −
O(

√
T ), meeting their guarantee of O(

√
T ) regret with respect to the best expert.

However, this performance leaves something to be desired. Note that in this
example the performance of the best expert, worst expert, and average of the
experts is identically T/2. Thus all of the algorithms mentioned above actually
suffer a regret to the average (and to the worst expert) of Ω(

√
T ). The problem

stems from the fact that in all even time steps the probability of expert 1 is
exactly 1/2; after expert 1 observes a gain of 1 we increase its probability by
c/

√
T ; and therefore in odd steps the probability of expert 2 is only (1/2−c/

√
T )
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Summary of Lower Bounds
Algorithm: If Regret to Best Is: Then Regret to Average Is:

Any Algorithm O(
√

T ) Ω(
√

T )

Any Algorithm ≤
√

T log T/10 Ω(T ε)

Any Difference Algorithm O(T
1
2+α) Ω(T

1
2 −α)

Summary of Algorithmic Results
Algorithm: Regret to Best: Regret to Average: Regret to Worst:

Phased Aggression O(
√

T log N(logT+loglogN)) O(1) O(1)

BestAverage O(
√

TN log T ) O(1) O(1)

BestWorst O(N
√

T log N) O(
√

T log N) 0

EW O(T
1
2+α log N) O(T

1
2 −α) O(T

1
2 −α)

Fig. 1. Summary of lower bounds and algorithmic results presented in this paper

(where the value of c depends on the specific algorithm). Note that adding a third
expert, which is the average, would not change this.1

This paper establishes a sequence of results that demonstrates the inherent
tension between regret to the best expert and the average, illuminates the prob-
lems of existing algorithms in managing this tension, and provides new algo-
rithms that enjoy optimal bicriteria performance guarantees.

On the negative side, we show that any algorithm that has a regret of O(
√

T )
to the best expert must suffer a regret of Ω(

√
T ) to the average. We also show

that any regret minimization algorithm that achieves at most
√

T log T/10 regret
to the best expert, must, in the worst case, suffer regret Ω(T ε) to the average,
for some constant ε ≥ 0.02. These lower bounds are established even when
N = 2.

On the positive side, we describe a new algorithm, Phased Aggression, that
almost matches the lower bounds above. Given any algorithm whose cumulative
regret to the best expert is at most R (which may be a function of T and N), we
can use it to derive an algorithm whose regret to the best expert is O(R log R)
with only constant regret to the average (or any fixed distribution over the
experts). Using an O(

√
T log N) regret algorithm, this gives regret to the best

of O(
√

T log N(log T + log log N)). In addition, we show how to use an R-regret
algorithm to derive an algorithm with regret O(NR) to the best expert and zero
regret to the worst expert. These algorithms treat the given R-regret algorithm
as a black box. Remaining closer to the specifics of existing algorithms, we also
show that by restarting the Exponential Weights algorithm with progressively
more aggressive learning rates (starting initially at the most conservative rate
of 1/T ), we achieve a somewhat inferior tradeoff of O(

√
TN log T ) regret to the

best expert and constant regret to the average.

1 The third expert would clearly have a gain of 1/2 at every time step. At odd time
steps, the weight of the first expert would be 1/3 + c/

√
T , while that of the second

expert would be 1/3 − c/
√

T , resulting in a regret of Ω(
√

T ) to the average.
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Our algorithms are somewhat different than many of the traditional regret
minimization algorithms, especially in their apparently essential use of restarts
that are driven by observed differences in expert performance. We show that
this is no coincidence. For a wide class of update rules that includes many ex-
isting algorithms (such as Weighted Majority/Exponential Weights, Follow the
Perturbed Leader, and Prod), we show that the product of the regret to the best
and the regret to the average is Ω(T ). This establishes a frontier from which such
algorithms inherently cannot escape. Furthermore, any point on this frontier can
in fact be achieved by such an algorithm (i.e., a standard multiplicative update
rule with an appropriately tuned learning rate).

It is worth noting that it is not possible in general to guarantee o(
√

T ) regret
to any arbitrary pair of distributions, D1 and D2. Suppose D1 places all weight
on one expert, while D2 places all weight on a second. Competing simultaneously
with both distributions is then equivalent to competing with the best expert.

Finally, we remark that our lower bounds on the trade-off between best and
average regret cannot be circumvented by simply adding an “average expert” and
running standard no-regret algorithms, even with the use of a prior distribution
with a significant amount of weight on the average.2

Related Work: Previous work by Auer et al. [5] considered adapting the learn-
ing rate of expert algorithms gradually. However, the goal of their work was to
get an any-time regret bound without using the standard doubling technique.
Vovk [6] also considered trade-offs in best expert algorithms. His work examined
for which values of a and b it is possible for an algorithm’s gain to be bounded
by aGbest,T + b logN , where Gbest,T is the gain of the best expert.

2 Preliminaries

In the classic experts framework, each expert i ∈ {1, · · · , N} receives a gain
gi,t ∈ [0, 1] at each time step t.3 The cumulative gain of expert i up to time t

is Gi,t =
∑t

t′=1 gi,t′ . We denote the average cumulative gain of the experts at
time t as Gavg,t = (1/N)

∑N
i=1 Gi,t, and the gain of the best and worst expert as

Gbest,t = maxi Gi,t and Gworst,t = mini Gi,t. For any fixed distribution D over
the experts, we define the gain of this distribution to be GD,t =

∑N
i=1 D(i)Gi,t.

At each time t, an algorithm A assigns a weight wi,t to each expert i. These
weights are normalized to probabilities pi,t = wi,t/Wt where Wt =

∑
i wi,t.

Algorithm A then receives a gain gA,t =
∑N

i=1 pi,tgi,t. The cumulative gain of
algorithm A up to time t is GA,t =

∑t
t′=1 gA,t′ =

∑t
t′=1

∑N
i=1 pi,t′gi,t′ .

The standard goal of an algorithm in this setting is to minimize the re-
gret to the best expert at a fixed time T . In particular, we would like to
2 Achieving a constant regret to the average would require a prior of 1 − O(1/T ) on

this artificial expert and a learning rate of O(1/T ). Putting this much weight on the
average results in Ω(T ) regret to each of the original experts.

3 All results presented in this paper can be generalized to hold for instantaneous gains
in any bounded region.
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minimize the regret Rbest,A,T = max{Gbest,T − GA,T , 1}.4 In this work, we
are simultaneously concerned with minimizing both this regret and the re-
gret to the average and worst expert, Ravg,A,T = max{Gavg,T − GA,T , 1} and
Rworst,A,T = max{Gworst,T − GA,T , 1} respectively, in addition to the regret
RD,A,T to an arbitrary distribution D, which is defined similarly.

3 The Θ(T ) Frontier for Difference Algorithms

We begin our results with an analysis of the trade-off between regret to the best
and average for a wide class of existing algorithms, showing that the product
between the two regrets for this class is Θ(T ).

We call an algorithm A a difference algorithm if, when N = 2 and instanta-
neous gains are restricted to {0, 1}, the normalized weights A places on each of
the two experts depend only on the difference between the experts’ cumulative
gains. In other words, A is a difference algorithm if there exists a function f such
that when N = 2 and gi,t ∈ {0, 1} for all i and t, p1,t = f(dt) and p2,t = 1−f(dt)
where dt = G1,t − G2,t. Exponential Weights [1,2], Follow the Perturbed Leader
[3], and the Prod algorithm [4] are all examples of difference algorithms.5 While
a more general definition of the class of difference algorithms might be possible,
this simple definition is sufficient to show the lower bound.

3.1 Difference Frontier Lower Bound

Theorem 1. Let A be any difference algorithm. Then

Rbest,A,T · Ravg,A,T ≥ Rbest,A,T · Rworst,A,T = Ω(T ).

Proof. For simplicity, assume that T is an even integer. We will consider the
behavior of the difference algorithm A on two sequences of expert payoffs. Both
sequences involve only two experts with instantaneous gains in {0, 1}. (Since the
theorem provides a lower bound, it is sufficient to consider an example in this
restricted setting.) Assume without loss of generality that initially p1,1 ≤ 1/2.

In the first sequence, S1, Expert 1 has a gain of 1 at every time step while
Expert 2 always has a gain 0. Let ρ be the first time t at which A has p1,t ≥ 2/3.
A must have regret Rbest,A,T ≥ ρ/3 since it loses at least 1/3 to the best expert
on each of the first ρ time steps and cannot compensate for this later.6

Since the probability of Expert 1 increases from p1,1 ≤ 1/2 to at least 2/3 in ρ
time steps in S1, there must be one time step τ ∈ [2, ρ] in which the probability
of Expert 1 increased by at least 1/(6ρ), i.e., p1,τ − p1,τ−1 ≥ 1/(6ρ). The second
sequence S2 we consider is as follows. For the first τ time steps, Expert 1 will
have a gain of 1 (as in S1). For the last τ time steps, Expert 1 will have a gain
of 0. For the remaining T − 2τ time steps (in the range [τ, T − τ ]), the gain
4 This minimal value of 1 makes the presentation of the trade-off “nicer” (for example

in the statement of Theorem 1), but has no real significance otherwise.
5 For Prod, this follows from the restriction on the instantaneous gains to {0, 1}.
6 If such a ρ does not exists, then Rbest,A,T = Ω(T ) and we are done.
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of Expert 1 will alternate 0, 1, 0, 1, · · · . Throughout the sequence, Expert 2 will
have a gain of 1 whenever Expert 1 has a gain of 0 and a gain of 0 every time
Expert 1 has a gain of 1. This implies that each expert has a gain of exactly T/2
(and hence Gbest,T = Gavg,T = Gworst,T = T/2).

During the period [τ, T − τ ], consider a pair of consecutive times such that
g1,t = 0 and g1,t+1 = 1. Since A is a difference algorithm we have that p1,t =
p1,τ and p1,t+1 = p1,τ−1. The gain of algorithm A in time steps t and t + 1 is
(1−p1,τ )+p1,τ−1 ≤ 1−1/(6ρ), since p1,τ −p1,τ−1 ≥ 1/(6ρ). In every pair of time
steps t and T − t, for t ≤ τ , the gain of A in those times steps is exactly 1, since
the difference between the experts is identical at times t and T − t, and hence
the probabilities are identical. This implies that the total gain of the algorithm
A is at most

τ +
T − 2τ

2

(

1 − 1
6ρ

)

≤ T

2
− T − 2τ

12ρ

On sequence S1, the regret of algorithm A with respect to the best expert
is Ω(ρ). On sequence S2, the regret with respect to the average and worst is
Ω(T/ρ). The theorem follows. ��

3.2 A Difference Algorithm Achieving the Frontier

We now show that the standard Exponential Weights (EW) algorithm with an
appropriate choice of the learning rate parameter η [2] is a difference algorithm
achieving the trade-off described in Section 3.1, thus rendering it tight for this
class. Recall that for all experts i, EW assigns initial weights wi,1 = 1, and at
each subsequent time t, updates weights with wi,t+1 = eηGi,t = wi,te

ηgi,t . The
probability with which expert i is chosen at time t is then given by pi,t = wi,t/Wt

where Wt =
∑N

j=1 wj,t.

Theorem 2. Let G∗ ≤ T be an upper bound on Gmax. For any α such that
0 ≤ α ≤ 1/2, let EW = EW (η) with η = (G∗)−(1/2+α). Then Rbest,EW,T ≤
(G∗)1/2+α(1 + lnN) and Ravg,EW,T ≤ (G∗)1/2−α.

Proof. These bounds can be derived using a series of bounds on the quantity
ln(WT+1/W1). First we bound this quantity in terms of the gain of the best
expert. This piece of the analysis is standard (see, for example, Theorem 2.4 in
[7]), and gives us the following: Gbest,T − GEW,T ≤ ηGEW,T + ln N/η.

Next we bound the same quantity in terms of the average cumulative gain,
using the fact that the arithmetic mean of a set of numbers is always greater
than or equal to the geometric mean.

ln
(

WT+1

W1

)

= ln

(∑N
i=1 wi,T+1

N

)

≥ ln

⎛

⎝

(
N∏

i=1

wi,T+1

) 1
N

⎞

⎠ (1)

=
1
N

N∑

i=1

ln wi,T+1 =
1
N

N∑

i=1

ηGi,T = ηGavg,T

Together with the analysis in [7], this gives us Gavg,T − GEW,T ≤ ηGEW,T .
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Note that if Gbest,T ≤ GEW,T , both the regret to the best expert and the
regret to the average will be minimal, so we can assume this is not the case and
replace the term GEW,T on the right hand side of these bounds with Gbest,T

which is in turn bounded by G∗. This yields the following pair of bounds.

Gbest,T − GEW,T ≤ ηG∗ + lnN/η, Gavg,T − GEW,T ≤ ηG∗

By changing the value of η, we can construct different trade-offs between the
two bounds. Setting η = (G∗)−(1/2+α) yields the desired result. ��

This trade-off can be generalized to hold when we would like to compete with an
arbitrary distribution D by initializing wi,1 = D(i) and substituting an alternate
inequality into (1). The ln(N) term in the regret to the best expert will be
replaced by maxi∈N ln(1/D(i)), making this practical only for distributions that
lie inside the probability simplex and not too close to the boundaries.

4 Breaking the Difference Frontier Via Restarts

The results so far have established a Θ(T ) frontier on the product of regrets to
the best and average experts for difference algorithms. In this section, we will
show how this frontier can be broken by non-difference algorithms that gradually
increase the aggressiveness of their updates via a series of restarts invoked by
observed differences in performance so far. As a warm-up, we first show how
a very simple algorithm that is not a difference algorithm can enjoy standard
regret bounds compared to the best expert in terms of T (though worse in terms
of N), while having zero cumulative regret to the worst.

4.1 Regret to the Best and Worst Experts

Using a standard regret-minimization algorithm as a black box, we can produce
a very simple algorithm that achieves a clear trade-off between regret to the best
expert and regret to the worst expert. Let A be a regret minimization algorithm
such that Rbest,A,T ≤ R for some R which may be a function of T and N .
We define the modified algorithm BestWorst(A) as follows. While the difference
between the cumulative gains of the best and worst experts is smaller than NR,
BestWorst(A) places equal weight on each expert, playing the average. After the
first time τ at which this condition is violated, it begins running a fresh instance
of algorithm A and continues to use A until the end of the sequence.

Until time τ , this algorithm must be performing at least as well as the worst
expert since it is playing the average. At time τ , the algorithm’s gain must be
R more than that of the worst expert since the gain of the best expert is NR
above the gain of the worst. Now since from time τ algorithm A is run, we know
that the gain of BestWorst(A) in the final T − τ time steps will be within R of
the gain of the best expert. Therefore, BestWorst(A) will maintain a lead over
the worst expert. In addition, the regret of the algorithm to the best expert will
be bounded by NR, since up to time τ it will have a regret of at most (N − 1)R
with respect to the best expert. This establishes the following theorem.
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BestAverage (G∗)
Let k∗ = 1

2 log G∗ − 3 and � = 8
√

NG∗

for k = 1 : k∗ − 1 do
Reset weights and run a new instance of EW(η) with η = ηk = 2k

G∗ until a time
t such that (Gp

best,t − Gp
avg,t) ≥ �

end

Reset and run EW(η) with η = ηk∗ = 2k∗

G∗ until time T

Fig. 2. The BestAverage algorithm for N experts

Theorem 3. Let A be a regret minimization algorithm with regret at most R to
the best expert and let BW be BestWorst(A). Then Rbest,BW,T = O(NR) and
GBW,T ≥ Gworst,T .

It follows immediately that using a standard regret minimization algorithm with
R = O(

√
T log N) as the black box, we can achieve a regret of O(N

√
T log N)

to the best expert while maintaining a lead over the worst.

4.2 An EW-Based Algorithm with Restarts

In Section 4.3 below we will give a general algorithm whose specialization will
produce our best bicriteria regret bounds to the best and average. For peda-
gogical purposes, in this section we first present an algorithm for which we can
prove inferior bicriteria bounds, but which works by directly applying restarts
with increasingly aggressive learning rates to an existing difference algorithm.
This multi-phase algorithm, which we shall call BestAverage, competes with the
best expert while maintaining only constant regret to the average.

The algorithm is given in Figure 2. In each phase, a new instance of EW is
run with a new, increasingly large value for the learning rate η. In the pseudo-
code and throughout the remainder of this paper, we will use the notation Gp

i,t

to mean the cumulative gain of expert i at time t only from the current phase
of the algorithm, i.e. the amount that expert i has gained since the last time
the learning rate η was reset. Similarly we will use Gp

best,t, Gp
avg,t, and Gp

BA,t to
be the gain of the best expert, average, and the BestAverage algorithm in the
current phase through time t.

The following theorem states that BestAverage can guarantee a regret to the
best expert that is “almost” as low as a standard no-regret algorithm while main-
taining a constant regret to the average. The proof, which involves an analysis
of the algorithm’s gain compared to the gain of the best expert and the average
both in the middle and at the end of each phase, has been omitted due to lack of
space. The main insight of the proof is that whenever BestAverage exits a phase,
it must have a quantifiable gain over the average. While the algorithm may lose
to the average during the next phase, it will never lose much more than the gain
it has already acquired. At the same time, we can bound how far the average is
behind the best expert at any given phase and use this to bound the regret of
the algorithm to the best expert.
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PhasedAggression (A, R, D)
for k = 1 : log(R) do

Let η = 2k−1/R
Reset and run a new instance of A
while (Gp

best,t − Gp
D,t < 2R) do

Feed A with the previous gains gt−1 and let qt be it distribution
Use pt = ηqt + (1 − η)D

end
end
Reset and run a new instance of A until time T

Fig. 3. The Phased Aggression algorithm for N experts

Theorem 4. Let G∗ ≤ T be an upper bound on Gmax. Then Rbest,BA,T =
O(

√
G∗N log G∗) and Ravg,BA,T ≤ 2.

This theorem can be extended to hold when we would like to compete with
arbitrary distributions D by using the generalized version of EW with prior
D. The term

√
N in the regret to the best expert will be replaced by max

(
√

N, maxi∈N ln(1/D(i))).

4.3 Improved Dependence on N and Fixed Mixtures

Figure 3 shows Phased Aggression, an algorithm that achieves similar guarantees
to BestAverage with a considerably better dependence on the number of experts.
This algorithm has the added advantage that it can achieve a constant regret
to any specified distribution D, not only the average, with no change to the
bounds. The name of the algorithm refers to the fact that it operates in distinct
phases separated by restarts, with each phase more aggressive than the last.

The idea behind the algorithm is rather simple. We take a regret minimization
algorithm A, and mix between A and the target distribution D. As the gain of
the best expert exceeds the gain of D by larger amounts, we put more and more
weight on the regret minimization algorithm A, “resetting” A to its initial state
at the start of each phase. Once the weight on A has been increased, it is never
decreased again. We note that this algorithm (or reduction) is similar in spirit
to the EW-based approach above, in the sense that each successive phase is
moving weight from something that is not learning at all (the fixed distribution
D) to an algorithm that is implicitly learning aggressively (the given algorithm
A). As before, new phases are invoked only in response to greater and greater
outperformance by the current best expert.

Theorem 5. Let A be any algorithm with regret R to the best expert, D be any
distribution, and PA be an instantiation of PhasedAggression(A, R, D). Then
Rbest,PA,T ≤ 2R(logR + 1) and RD,PA,T ≤ 1.

Proof. We will again analyze the performance of the algorithm compared to the
best expert and the distribution D both during and at the end of any phase k.
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First consider any time t during phase k. The regret of the algorithm is split
between the regret of the fixed mixture and the regret of the no-regret algorithm
according to their weights. Since A is an R-regret algorithm its regret to both
the best expert and to the distribution D is bounded by R, and thus the regret
of the algorithm due to the weight on A is 2k−1/R times R. With the remaining
1 − (2k−1/R) weight, the regret to the best expert is bounded by 2R since
Gp

best,t −Gp
D,t < 2R during the phase, and its regret to distribution D is 0. Thus

at any time t during phase k we have

Gp
best,t − Gp

PA,t < R

(
2k−1

R

)

+ 2R

(

1 − 2k−1

R

)

< 2R

and

Gp
D,t − Gp

PA,t ≤ R

(
2k−1

R

)

= 2k−1

Now consider what happens when the algorithm exits phase k. A phase is
only exited at some time t such that Gp

best,t − Gp
D,t > 2R. Since A is R-regret,

its gain (in the current phase) will be within R of the gain of the best expert,
resulting in the algorithm PA gaining a lead over distribution D for the phase:
Gp

PA,t − Gp
D,t ≥ R(2k−1/R) = 2k−1.

Combining these inequalities, it is clear that if the algorithm ends in phase k
at time T , then

Gbest,T − GPA,T ≤ 2Rk ≤ 2R(log R + 1)

and

GD,T − GPA,T ≤ 2k−1 −
k−1∑

j=1

2j−1 = 2k−1 − (2k−1 − 1) = 1

These inequalities hold even when the algorithm reaches the final phase and
has all of its weight on A, thus proving the theorem. ��

5 A General Lower Bound

So far we have seen that a wide class of existing algorithms (namely all difference
algorithms) is burdened with a stark best/average regret trade-off, but that this
frontier can be obliterated by simple algorithms that tune how aggressively they
update, in phases modulated by the observed payoffs so far. What is the limit
of what can be achieved in our bicriteria regret setting?

In this section we show a pair of general lower bounds that hold for all algo-
rithms. The bounds are stated and proved for the average but once again hold
for any fixed distribution D. These lower bounds come close to the upper bound
achieved by the Phased Aggression algorithm described in the previous section.

Theorem 6. Any algorithm with regret O(
√

T ) to the best expert must have
regret Ω(

√
T ) to the average. Furthermore, any algorithm with regret at most√

T log T/10 to the best expert must have regret Ω(T ε) to the average for some
positive constant ε ≥ 0.02.
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More specifically, we will show that for any constant α > 0, there exists a
constant β > 0 such that for sufficiently large values of T (i.e. T > (150α)2),
for any algorithm A, there exists a sequence of gains g of length T such that
if Rbest,A,T ≤ α

√
T then Ravg,A,T ≥ β

√
T . Additionally, for any constant α′ >

1/10 there exist constants β′ > 0 and ε > 0 such that for sufficiently large values
of T (i.e. T > 2(10α)2), for any algorithm A, there exists a sequence of gains of
length T such that if Rbest,A,T ≤ α′√T log T then Ravg,A,T ≥ β′T ε.

The proof of this theorem begins by defining a procedure for creating a “bad”
sequence g of expert gains for a given algorithm A. This sequence can be di-
vided into a number of (possibly noncontiguous) segments. By first analyzing
the maximum amount that the algorithm can gain over the average and the
minimum amount it can lose to the average in each segment, and then bounding
the total number of segments possible under the assumption that an algorithm
is no-regret, we can show that it is not possible for an algorithm to have O(

√
T )

regret to the best expert without having Ω(
√

T ) regret to the average. The full
proof is rather technical and appears in a separate subsection below.

5.1 Proof of Theorem 6

Fix a constant α > 0. Given an algorithm A, we will generate a sequence of expert
gains g of length T > (150α)2 such that g will be “bad” for A. In Figure 4, we
show how to generate such a sequence. Here dt is the difference between the
gains of the two experts at time t, and εt is the increase in the probability that
the algorithm assigns to the current best expert since the last time the dt was
smaller. This is used to ensure that the best expert will only do well when the
algorithm does not have “too much” weight on it. The function f and parameter
γ will be defined later in the analysis.

We say that an algorithm A is f -compliant if at any time t we have εt =
f(dt−1) ± δ, for an arbitrarily small δ, and if for any time t in which dt = 0, we
have p1,t = p2,t = 1/2. For the sake of this analysis, it is more convenient to think
of εt as being exactly equal to f(dt−1) and to allow the algorithm to “choose”
whether it should be considered larger or smaller. Lemma 1 states that given the
sequence generation process in Figure 4, we can concentrate only on the class of
f -compliant algorithms. Due to space constraints, the proof is omitted.

Lemma 1. Consider any algorithm A and let g = GenerateBadSeq(A, f, γ).
There exists an f -compliant algorithm A′ such that GenerateBadSeq(A′, f, γ) =
g and at any time t, gA′,t ≥ gA,t.

Given an f -compliant algorithm, we can write its probabilities as a function
of the difference between expert gains dt. We define a function F (d) = 1/2 +
∑|d|

i=1 f(i), where F (0) = 1/2. It is easy to verify that an algorithm A that sets
the probability of the best expert at time t to F (dt) is an f -compliant algorithm.

We are now ready to define the function f used in the sequence generation.

f(d) =
2m(d)−1

γ
√

T
where m(d) =

⌈
16α√

T
|d|

⌉
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GenerateBadSeq(A, f, γ)
t = 1; Gavg,0 = GA,0 = d0 = 0;
while (Gavg,t−1 − GA,t−1 ≤ 0.115

√
T/γ) do

p1,t = A(g); p2,t = 1 − A(g)
if (dt−1 = 0) then

if
(
p1,t ≤ 1

2

)
then

g1,t = 1; g2,t = 0; last(|dt−1|) = p1,t;
else

g1,t = 0; g2,t = 1; last(|dt−1|) = p2,t;
end

else
it = argmaxi Gi,t; jt = argminj Gj,t;
last(|dt−1|) = pit,t;
εt = pit,t − last(|dt−1 − 1|);
if (εt ≤ f(|dt−1|)) then

git,t = 1; gjt,t = 0;
else

git,t = 0; gjt,t = 1;
end

end
GA,t = GA,t−1 + p1,tg1,t + p2,tg2,t;
Gavg,t = Gavg,t−1 + (g1,t + g2,t)/2;
dt = dt−1 + g1,t − g2,t;
t = t + 1;

end
g1,t = g2,t = 1

2 for the rest of the sequence

Fig. 4. Algorithm for creating a bad sequence for any algorithm A

The following fact is immediate from this definition and will be useful many
times in our analysis.

F (d) ≤ 1
2

+
m(d)∑

i=1

2i−1

γ
√

T

(√
T

16α

)

≤ 1
2

+
2m(d)

16γα
(2)

We define the (possibly noncontiguous) m segment to be the set of all times t
for which m(dt) = m, or more explicitly, all times t for which (m−1)(

√
T/(16α))

≤ |dt| < m(
√

T/(16α)). We denote this set of times by Tm.
We now introduce the notion of matched times and unmatched times. We

define a pair of matched times as two times t1 and t2 such that the difference
between the cumulative gains the two experts changes from d to d + 1 at time
t1 and stays at least as high as d+1 until changing from d+1 back to d at time
t2. More formally, for some difference d, dt1−1 = d, dt1 = d + 1, dt2 = d, and for
all t such that t1 < t < t2, dt > d (which implies that dt2−1 = d + 1). Clearly
each pair of matched times consists of one time step in which the gain of one
expert is 1 and the other 0 while at the other time step the reverse holds. We
refer to any time at which one expert has gain 1 while the other has gain 0 that
is not part of a pair of matched times as an unmatched time. If at any time t
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we have dt = d, then there must have been d unmatched times. We denote by
Mm and UMm the matched and unmatched times in Tm, respectively. These
concepts will become important due to the fact that an algorithm will generally
lose with respect to the average for every pair of matched times, but will gain
with respect to the average on every unmatched time.

The following lemma quantifies the algorithm’s regret to the best expert and
the average of all experts for each pair of matched times.

Lemma 2. For any f -compliant algorithm A and any pair of matched times
t1 and t2 in the m segment, the algorithm’s gain from times t1 and t2 is 1 −
2m−1/(γ

√
T ), while the gain of the average and the best expert is 1.

Proof. Let d = dt1 −1. Without loss of generality assume that the leading expert
is expert 1, i.e., d ≥ 0. The gain of the algorithm at time t1 is p1,t1 = F (d), while
the gain at t2 is p2,t2 = 1 − p1,t2 = 1 − F (d + 1) = 1 − (F (d) + f(d)). Thus the
algorithm has a total gain of 1−f(d) = 1−2m−1/(γ

√
T ) for these time steps. ��

Our next step is to provide an upper bound for the gain of the algorithm over
the average expert from the unmatched times only.

Lemma 3. The gain of any f -compliant algorithm A in only the unmatched
times in the m segment of the algorithm is at most 2m

√
T/(256γα2) larger

than the gain of the average expert in the unmatched times in segment m,i.e.,∑
t∈UMm

gA,t − 1/2 ≤ 2m
√

T/(256γα2).

Proof. Since the leading expert does not change in the unmatched times (in
retrospect), we can assume w.l.o.g. that it is expert 1. From (2), it follows that

∑

t∈UMm

gA,t − 1/2 ≤

√
T

16α∑

i=0

(

F (d + i) − 1
2

)

≤ 2m

16γα

√
T

16α
≤ 2m

√
T

256γα2

��

Combining lemmas 2 and 3, we can compute the number of matched times
needed in the m segment in order for the loss of the algorithm to the average
from matched times to cancel the gain of the algorithm over the average from
unmatched times.

Lemma 4. For any given x, if there are at least T/(128α2)+x pairs of matched
times in the m segment, then the gain of any f -compliant algorithm A in the m
segment is bounded by the gain of the average expert in the m segment minus
x2m−1/(γ

√
T ), i.e.

∑
t∈Tm

gA,t ≤
∑

t∈Tm
(1/2) − 2m−1x/(γ

√
T ).

Proof. From Lemma 2, the loss of A with respect to the average for each pair of
matched times is 2m−1/(γ

√
T ). From Lemma 3, A could not have gained more

than 2m
√

T/(256α2γ) over the average in the m segment. Since there are at
least 2T/(128α2) + 2x matched times, the total amount the algorithm loses to
the average in the m segment is at least 2m−1x/(γ

√
T ). ��
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The next lemma bounds the number of segments in the sequence using the fact
that A is α

√
T -regret algorithm.

Lemma 5. For any f -compliant algorithm A such that Rbest,A,T < α
√

T

and for γ = 248α2
/α, there are at most 48α2 segments in g =

GenerateBadSeq(A, f, γ).

Proof. Once again we assume that leading expert is expert 1. Setting γ =
248α2

/α in (2), ensures that F (d) is bounded by 2/3 as long as m remains below
48α2. Thus F (d) is bounded by 2/3 for all unmatched times until we reach seg-
ment 48α2. This implies that if the sequence reaches segment 48α2, then the re-
gret with respect to the best expert will be at least 48α2

√
T/(16α)(1/3) = α

√
T

which contradicts the fact that A is a α
√

T -regret algorithm, so it cannot be the
case that the sequence has 48α2 or more segments. ��

The following observation will be useful in simplifying the main proof, allowing us
to further restrict our attention to the class of monotone f -compliant algorithms,
where an algorithm is monotone if it never returns to a segment m after moving
on to segment m+1. A lower bound on the performance of monotone algorithms
will imply the general lower bound.

Lemma 6. Suppose dt = d > 0, dt+1 = d + 1, dt+2 = d + 2, and dt+3 = d + 1.
The gain of an f -compliant algorithm will not decrease if we instead let dt+2 = d.

We are now ready to prove the main lower bound theorem.

Proof. (Theorem 6) First, consider the case in which the main while loop of
GenerateBadSeq(A, f, γ) terminates before time T . It must be the case that
Gavg,t−1 − GA,t−1 > 0.115

√
T/γ = Ω(

√
T ) and there is nothing more to prove.

Throughout the rest of the proof, assume that the main while loop is never
exited while generating the sequence g. From Lemma 4 we know that if there
are at least T/(128α2) pairs of matched times in the � segment, then the loss to
the average from these times will cancel the gain from unmatched times in this
segment. By Lemma 5 there are at most 48α2 segments. If the algorithm has
exactly T/(128α2) pairs of matched times at each segment, it will have at most
a total of T/(128α2)(48α2) = (3/8)T pairs of matched times and will cancel
all of its gain over the average from the unmatched times in all segments. Note
that there are at most 48α2

√
T/(16α) = 3α

√
T unmatched times. Since we have

chosen T such that α <
√

T/150, we can bound this by 0.02T . This implies that
there are at least 0.49T pairs of matched times. We define the following quantity
for algorithm A: xm = |Mm|/2 − T/(128α2). We have that

48α2
∑

m=1

xm =

⎛

⎝
48α2
∑

m=1

|Mm|
2

⎞

⎠ − 3T

8
≥ 0.49T − (3/8)T = 0.115T

Let m∗ be the first segment for which we have
∑m

i=1 xi ≥ 0.115T (since we
consider only monotone algorithms we need not worry about timing issues). For
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every k, 1 ≤ k ≤ m∗, we have zk =
∑m∗

i=k xi > 0 (otherwise m∗ would not be
the first segment). Note that we can bound the regret to the average as follows.

m∗
∑

i=1

xi
2i−1

γ
√

T
=

1
γ
√

T
x1 +

1
γ
√

T

m∗
∑

i=2

xi

⎛

⎝1 +
i−1∑

j=1

2j−1

⎞

⎠

=
1

γ
√

T

m∗
∑

i=1

xi +
1

γ
√

T

m∗
∑

i=2

i∑

j=2

2j−2xi

=
1

γ
√

T
z1 +

1
γ
√

T

m∗
∑

i=2

2i−2zi ≥ 0.115T

γ
√

T
=

0.115
√

T

γ

This shows that the regret to the average must be at least 0.115
√

T/γ = β
√

T

where β = 0.115α/248α2
, yielding the first result of the theorem.

If we now let T be large enough that α ≤
√

log T/10, this regret must be at
least (0.115α/2(48/100) log T )

√
T = 0.115αT 1/2−48/100 = O(T 1/50), which proves

the last part of the theorem. ��
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Abstract. We propose simple randomized strategies for sequential pre-
diction under imperfect monitoring, that is, when the forecaster does not
have access to the past outcomes but rather to a feedback signal. The
proposed strategies are consistent in the sense that they achieve, asymp-
totically, the best possible average reward. It was Rustichini [11] who
first proved the existence of such consistent predictors. The forecasters
presented here offer the first constructive proof of consistency. Moreover,
the proposed algorithms are computationally efficient. We also establish
upper bounds for the rates of convergence. In the case of deterministic
feedback, these rates are optimal up to logarithmic terms.

1 Introduction

Sequential prediction of arbitrary (or “individual”) sequences has received a lot
of attention in learning theory, game theory, and information theory; see [3]
for an extensive review. In this paper we focus on the problem of prediction
of sequences taking values in a finite alphabet when the forecaster has limited
information about the past outcomes of the sequence.

The randomized prediction problem is described as follows. Consider a se-
quential decision problem where a forecaster has to predict the environment’s
action. At each round, the forecaster chooses an action i ∈ {1, . . . , N}, and
the environment chooses an action j ∈ {1, . . . , M} (which we also call an “out-
come”). The forecaster’s reward r(i, j) is the value of a reward function r :
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{1, . . . , N} × {1, . . . , M} → [0, 1]. Now suppose that, at the t-th round, the
forecaster chooses a probability distribution pt = (p1,t, . . . , pN,t) over the set
of actions, and plays action i with probability pi,t. We denote the forecaster’s
action at time t by It. If the environment chooses action Jt ∈ {1, . . . , M}, the
reward of the forecaster is r(It, Jt). The prediction problem is defined as follows:

Randomized prediction with perfect monitoring

Parameters: number N of actions, cardinality M of outcome space, reward
function r, number n of game rounds.
For each round t = 1, 2, . . . , n,

(1) the environment chooses the next outcome Jt;
(2) the forecaster chooses pt and determines the random action It, dis-

tributed according to pt;
(3) the environment reveals Jt;
(4) the forecaster receives a reward r(It, yt).

The goal of the forecaster is to minimize the average regret

max
i=1,...,N

1
n

n∑

t=1

r(i, Jt) − 1
n

n∑

t=1

r(It, Jt) ,

that is, the realized difference between the cumulative reward of the best strat-
egy i ∈ {1, . . . , N}, in hindsight, and the reward of the forecaster. Denoting
by r(p, j) =

∑N
i=1 pir(i, j) the linear extension of the reward function r, the

Hoeffding-Azuma inequality for sums of bounded martingale differences (see [8],
[1]), implies that for any δ ∈ (0, 1), with probability at least 1 − δ,

1
n

n∑

t=1

r(It, Jt) ≥ 1
n

n∑

t=1

r(pt, Jt) −
√

1
2n

ln
1
δ

,

so it suffices to study the average expected reward (1/n)
∑n

t=1 r(pt, Jt). Han-
nan [7] and Blackwell [2] were the first to show the existence of a forecaster
whose regret is o(1) for all possible behaviors of the opponent. Here we mention
one of the simplest, yet quite powerful forecasting strategies, the exponentially
weighted average forecaster. This forecaster selects, at time t, an action It ac-
cording to the probabilities

pi,t =
exp

(
η

∑t−1
s=1 r(i, Js)

)

∑N
k=1 exp

(
η

∑t−1
s=1 r(k, Js)

) i = 1, . . . , N,
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where η > 0 is a parameter of the forecaster. One of the basic well-known results
in the theory of prediction of individual sequences states that the regret of the
exponentially weighted average forecaster is bounded as

max
i=1,...,N

1
n

n∑

t=1

r(i, Jt) − 1
n

n∑

t=1

r(pt, Jt) ≤ ln N

nη
+

η

8
. (1)

With the choice η =
√

8 lnN/n the upper bound becomes
√

ln N/(2n). Different
versions of this result have been proved by several authors; see [3] for a review.

In this paper we are concerned with problems in which the forecaster does not
have access to the outcomes Jt. The information available to the forecaster at
each round is called the feedback. These feedbacks may depend on the outcomes
Jt only or on the action–outcome pairs (It, Jt) and may be deterministic or
drawn at random. In the simplest case when the feedback is deterministic, the
information available to the forecaster is st = h(It, Jt), given by a fixed (and
known) deterministic feedback function h : {1, . . . , N} × {1, . . . , M} → S where
S is the finite set of signals. In the most general case, the feedback is governed
by a random feedback function of the form H : {1, . . . , N}×{1, . . . , M} → P(S)
where P(S) is the set of probability distributions over the signals. The received
feedback st is then drawn at random according to the probability distribution
H(It, Jt) by using an external independent randomization.

To make notation uniform throughout the paper, we identify a deterministic
feedback function h : {1, . . . , N} × {1, . . . , M} → S with the random feedback
function H : {1, . . . , N} × {1, . . . , M} → P(S) which, to each pair (i, j), as-
signs δh(i,j) where δs is the probability distribution over the set of signals S
concentrated on the single element s ∈ S.

We will see that the prediction problem becomes significantly simpler in the
special case when the feedback distribution depends only on the outcome, that
is, when for all j = 1, . . . , M , H(·, j) is constant. In other words, H depends on
the outcome Jt but not on the forecaster’s action It. To simplify notation in this
case, we write H(Jt) = H(It, Jt) for the feedback at time t (h(Jt) = h(It, Jt) in
case of deterministic feedback). This setting encompasses, for instance, the full-
information case (when the outcomes Jt are revealed) and the setting of noisy
observations (when a finite random variable with distribution depending only on
Jt is observed).

The sequential prediction problem under imperfect monitoring is formalized
in Figure 1.

Next we describe a reasonable goal for the forecaster and define the appro-
priate notion of consistency. To this end, we introduce some notation. If p =
(p1, . . . , pN) and q = (q1, . . . , qM ) are probability distributions over {1, . . . , N}
and {1, . . . , M}, respectively, then, with a slight abuse of notation, we write

r(p, q) =
N∑

i=1

M∑

j=1

piqjr(i, j)



Strategies for Prediction Under Imperfect Monitoring 251

Randomized prediction under imperfect monitoring

Parameters: number Nof actions, number M of outcomes, reward function r,
random feedback function H , number n of rounds.

For each round t = 1, 2 . . . , n,

1. the environment chooses the next outcome Jt ∈ {1, . . . , M} without revealing
it;

2. the forecaster chooses a probability distribution pt over the set of N actions
and draws an action It ∈ {1, . . . , N} according to this distribution;

3. the forecaster receives reward r(It, Jt) and each action i gets reward r(i, Jt),
where none of these values is revealed to the forecaster;

4. a feedback st drawn at random according to H(It, Jt) is revealed to the fore-
caster.

Fig. 1. The game of randomized prediction under imperfect monitoring

for the linear extension of the reward function r. We also extend linearly the
random feedback function in its second argument: for a probability distribution
q = (q1, . . . , qM ) over {1, . . . , M}, define the vector in �|S|

H(i, q) =
M∑

j=1

qjH(i, j) , i = 1, . . . , N.

Denote by F the convex set of all the N -vectors H(·, q) = (H(1, q), . . . , H(N, q))
of probability distributions obtained this way when q varies. (F ⊂ �

|S|N is the
set of feasible distributions over the signals). In the case where the feedback
only depends on the outcome, all components of this vector are equal and we
denote their common value by H(q). We note that in the general case, the set F
is the convex hull of the M vectors H(·, j). Therefore, performing a Euclidean
projection on F can be done efficiently using quadratic programming.

To each probability distribution p over {1, . . . , N} and probability distribution
Δ ∈ F , we may assign the quantity

ρ(p, Δ) = min
q:H(·,q)=Δ

r(p, q) .

Note that ρ ∈ [0, 1], and ρ is concave in p and convex in Δ.
To define the goal of the forecaster, let qn denote the empirical distribution of

the outcomes J1, . . . , Jn up to round n. This distribution may be unknown to the
forecaster since the forecaster observes the signals rather than the outcomes. The
best the forecaster can hope for is an average reward close to maxp ρ(p, H(·, qn)).
Indeed, even if H(·, qn) was known beforehand, the maximal expected reward
for the forecaster would be maxp ρ(p, H(·, qn)), simply because without any
additional information the forecaster cannot hope to do better than against the
worst element which is equivalent to q as far as the signals are concerned.
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Based on this argument, the (per-round) regret Rn is defined as the aver-
aged difference between the obtained cumulative reward and the target quantity
described above, that is,

Rn = max
p

ρ(p, H(·, qn)) − 1
n

n∑

t=1

r(It, Jt) .

Rustichini [11] proves the existence of a forecasting strategy whose per-round
regret is guaranteed to satisfy lim supn→∞ Rn ≤ 0 with probability one, for
all possible imperfect monitoring problems. However, Rustichini’s proof is not
constructive and it seems unlikely that his proof method can give rise to com-
putationally efficient prediction algorithms.

Several partial solutions had been proposed so far. Piccolboni and Schin-
delhauer [10] and Cesa-Bianchi, Lugosi, and Stoltz [4] study the case when
maxp ρ(p, H(·, qn)) = maxi=1,...,N r(i, qn) = maxi=1,...,N (1/n)

∑n
t=1 r(i, Jt). In

this case strategies with a vanishing per-round regret are called Hannan con-
sistent. This case turns out to be considerably simpler than the general case
and computationally tractable explicit algorithms have been derived. Also, it
is shown in [4] that in this case it is possible to construct strategies whose re-
gret decreases as Op(n−1/3). (Note that Hannan consistency is achievable, for
example, in the adversarial multi-armed bandit problem, as shown in [4].)

The general case was considered by Mannor and Shimkin [9] who construct
an approachability based algorithm with vanishing regret in the case when the
feedback depends only on the outcome. In addition, Mannor and Shimkin discuss
the more general case of feedback that depends on both the action and the
outcome and provide an algorithm that attains a relaxed goal comparing to the
goal attained in this work.

In this paper we construct simple and computationally efficient strategies
whose regret vanishes with probability one. In Section 2 we consider the sim-
plest special case when the actions of the forecaster do not influence the feedback
which is, moreover, deterministic. This case is basically as easy as the full in-
formation case and we obtain a regret bound of the order of n−1/2 (with high
probability). In Section 3 we study random feedback but still with the restriction
that it is only determined by the outcome. Here we are able to obtain a regret
of the order of n−1/4

√
log n. The most general case is dealt with in Section 4.

The forecaster introduced there has a regret of the order of n−1/5
√

log n. Fi-
nally, in Section 5 we show that this may be improved to n−1/3 in the case of
deterministic feedback, which is known to be optimal (see [4]).

2 Deterministic Feedback Only Depends on Outcome

We start with the simplest case when the feedback signal is deterministic and it
does not depend on the action It of the forecaster. In other words, after making
the prediction at time t, the forecaster observes h(Jt).

In this case, we group the outcomes according to the deterministic feed-
back they are associated to. Each signal s is uniquely associated to a group of
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outcomes. This situation is very similar to the case of full monitoring except that
rewards are measured by ρ and not by r. This does not pose a problem since r
is lower bounded by ρ in the sense that for all p and j,

r(p, j) ≥ ρ(p, δh(j)) .

We introduce a forecaster that resembles the gradient-based strategies described,
for example, in Cesa-Bianchi and Lugosi [3, Section 2.5]. The forecaster uses any
sub-gradient of ρ(·, δh(Jt)) at time t. (Recall that if f is a concave function defined
over a convex subset of �d, any vector b(x) ∈ �d is a sub-gradient of f at x if
f(y) − f(x) ≤ b(x) · (y − x) for all y in the domain of f . Sub-gradients always
exist in the interior of the domain of a concave function. Here, in view of the
exponentially weighted update rules, we only evaluate them in the interior of the
simplex.) The forecaster requires a tuning parameter η > 0. The i-th component
of pt is

pi,t =
eη

∑ t−1
s=1(r̃(ps,δh(Js)))i

∑N
j=1 e

η
∑ t−1

s=1(r̃(ps,δh(Js)))j

,

where
(
r̃(ps, δh(Js))

)
i

is the i-th component of any sub-gradient r̃(ps, δh(Js)) ∈
∇ρ(ps, δh(Js)) of the concave function f(·) = ρ(·, δh(Js)).

The computation of a sub-gradient is trivial whenever ρ(ps, δh(Js)) is differ-
entiable because it is then locally linear and the gradient equals the column
of the reward matrix corresponding to the outcome ys for which r(ps, ys) =
ρ(ps, δh(Js)). Note that ρ(·, δh(Js)) is differentiable exactly at those points at
which it is locally linear. Since it is concave, the Lebesgue measure of the set
where it is non-differentiable equals zero. To avoid such values, one may add a
small random perturbation to pt or just calculate a sub-gradient using the sim-
plex method. Note that the components of the sub-gradients are always bounded
by a constant that depends on the game parameters. This is the case since
ρ(·, δh(Js)) is concave and continuous on a compact set and is therefore Lips-
chitz leading to a bounded sub-gradient. Let K denote a constant such that
supp maxj ‖r̃(p, δh(j))‖∞ ≤ K. This constant depends on the specific parame-
ters of the game. The regret is bounded as follows. Note that the following bound
(and the considered forecaster) coincide with those of (1) in case of perfect mon-
itoring. (In that case, ρ(·, δh(j)) = r(·, j), the subgradients are given by r, and
therefore, are bounded between 0 and 1.).

Proposition 1. For all η > 0, for all strategies of the environment, for all
δ > 0, the above strategy of the forecaster ensures that, with probability at least
1 − δ,

Rn ≤ ln N

ηn
+

K2η

2
+

√
1
2n

ln
1
δ

.

In particular, choosing η ∼
√

(ln N)/n yields Rn = O(n−1/2
√

ln(N/δ)).
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Proof. Note that since the feedback is deterministic, H(qn) takes the simple
form H(qn) = 1

n

∑n
t=1 δh(Jt). Now, for any p,

nρ(p, H(qn)) −
n∑

t=1

r(pt, Jt)

≤ nρ(p, H(qn)) −
n∑

t=1

ρ(pt, δh(Jt)) (by the lower bound on r in terms of ρ)

≤
n∑

t=1

(
ρ(p, δh(Jt)) − ρ(pt, δh(Jt))

)
(by convexity of ρ in the second argument)

≤
n∑

t=1

r̃(pt, δh(Jt)) · (p − pt) (by concavity of ρ in the first argument)

≤ ln N

η
+

nK2η

2
(by (1), after proper rescaling),

where at the last step we used the fact that the forecaster is just the exponen-
tially weighted average predictor based on the rewards (r̃(ps, δh(Js)))i and that
all these reward vectors have components between −K and K. The proof is con-
cluded by the Hoeffding-Azuma inequality, which ensures that, with probability
at least 1 − δ,

n∑

t=1

r(It, Jt) ≥
n∑

t=1

r(pt, Jt) −
√

n

2
ln

1
δ

. (2)

3 Random Feedback Only Depends on Outcome

Next we consider the case when the feedback does not depend on the forecaster’s
actions, but, at time t, the signal st is drawn at random according to the distri-
bution H(Jt). In this case the forecaster does not have a direct access to

H(qn) =
1
n

n∑

t=1

H(Jt)

anymore, but only observes the realizations st drawn at random according to
H(Jt). In order to overcome this problem, we group together several consecutive
time rounds (m of them) and estimate the probability distributions according
to which the signals have been drawn.

To this end, denote by Π the Euclidean projection onto F (since the feedback
depends only on the outcome we may now view the set F of feasible distributions
over the signals as a subset of P(S), the latter being identified with a subset of
�

|S| in a natural way). Let m, 1 ≤ m ≤ n, be a parameter of the algorithm. For
b = 0, 1, . . ., we denote

Δ̂b = Π

⎛

⎝ 1
m

(b+1)m∑

t=bm+1

δst

⎞

⎠ . (3)
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Parameters: Integer m ≥ 1, real number η > 0.
Initialization: w0 = (1, . . . , 1).

For each round t = 1, 2, . . .

1. If bm + 1 ≤ t < (b + 1)m for some integer b, choose the distribution pt = pb

given by

pk,t = pb
k =

wb
k

∑N
j=1 wb

j

and draw an action It from {1, . . . , N} according to it;
2. if t = (b + 1)m for some integer b, perform the update

wb+1
k = wb

k eη (r̃(pb,Δ̂b))
k for each k = 1, . . . , N ,

where for all Δ, r̃(·, Δ) is a sub-gradient of ρ(·, Δ) and Δ̂b is defined in (3).

Fig. 2. The forecaster for random feedback depending only on outcome

For the sake of the analysis, we also introduce

Δb =
1
m

(b+1)m∑

t=bm+1

H(Jt) .

The proposed strategy is described in Figure 2. Observe that the practical im-
plementation of the forecaster only requires the computation of (sub)gradients
and of �2 projections, which can be done in polytime. The next theorem bounds
the regret of the strategy which is of the order of n−1/4

√
log n. The price we pay

for having to estimate the distribution is thus a deteriorated rate of convergence
(from the O(n−1/2) obtained in the case of deterministic feedback). We do not
know whether this rate can be improved significantly as we do not know of any
nontrivial lower bound in this case.

Theorem 1. For all integers m ≥ 1, for all η > 0, and for all δ > 0, the
regret against any strategy of the environment is bounded, with probability at
least 1 − (n/m + 1)δ, by

Rn ≤ 2
√

2 L
1√
m

√

ln
2
δ

+
m ln N

nη
+

K2η

2
+

m

n
+

√
1
2n

ln
1
δ

,

where K, L are constants which depend only on the parameters of the game. The
choices m = �

√
n� and η ∼

√
(m ln N)/n imply Rn = O(n−1/4

√
ln(nN/δ)) with

probability of at least 1 − δ.

The proof of the theorem relies on the following Lipschitzness property of ρ,
which we state without a proof in this extended abstract.
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Proposition 2. The function (p, Δ) → ρ(p, Δ) is uniformly Lipschitz in its
second argument.

Proof (of Theorem 1). We start by grouping time rounds m by m. For simplicity,
we assume that n = (B + 1)m for some integer B (this accounts for the m/n
term in the bound). For all p,

n ρ(p, H(qn)) −
n∑

t=1

r(pt, Jt) ≤
B∑

b=0

⎛

⎝m ρ
(
p, Δb

)
− m r

⎛

⎝pb,
1
m

(b+1)m∑

t=bm+1

δJt

⎞

⎠

⎞

⎠

≤ m

B∑

b=0

(
ρ

(
p, Δb

)
− ρ

(
pb, Δb

))
,

where we used the definition of the algorithm, convexity of ρ in its second argu-
ment, and finally, the definition of ρ as a minimum. We proceed by estimating
Δb by Δ̂b. By a version of the Hoeffding-Azuma inequality in Hilbert spaces
proved by Chen and White [5, Lemma 3.2], and since the �2 projection can only
help, for all b, with probability at least 1 − δ,

�
�
�Δb − Δ̂b

�
�
�

2
≤

√

2 ln 2
δ

m
.

By Proposition 2, ρ is uniformly Lipschitz in its second argument (with constant
L), and therefore we may further bound as follows. With probability 1−(B+1)δ,

m

B∑

b=0

(
ρ

(
p, Δb

)
− ρ

(
pb, Δb

))

≤ m

B∑

b=0

(
ρ

(
p, Δ̂b

)
− ρ

(
pb, Δ̂b

))
+ 2 L(B + 1)

√

2m ln
2
δ

.

The term containing (B + 1)
√

m = n/
√

m is the first term in the upper bound.
The remaining part is bounded by using the same slope inequality argument as
in the previous section (recall that r̃ denotes a sub-gradient),

m

B∑

b=0

(
ρ

(
p, Δ̂b

)
− ρ

(
pb, Δ̂b

))
≤ m

B∑

b=0

r̃
(
pb, Δ̂b

)
·

(
p − pb

)

≤ m

(
ln N

η
+

(B + 1)K2η

2

)

=
m lnN

η
+

nK2η

2

where we used Theorem 1 and the boundedness of the function r̃ between −K
and K. The proof is concluded by the Hoeffding-Azuma inequality which, as
in (2), gives the final term in the bound. The union bound indicates that the
obtained bound holds with probability at least 1 − (B + 2)δ ≥ 1 − (n/m + 1)δ.
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4 Random Feedback Depends on Action–Outcome Pair

We now turn to the most general case, where the feedback is random and de-
pends on the action–outcome pairs (It, Jt). The key is, again, to exhibit efficient
estimators of the (unobserved) H(·, qn).

Denote by Π the projection, in the Euclidian distance, onto F (where F , as a
subset of (P(S))N , is identified with a subset of �|S|N ). For b = 0, 1, . . ., denote

Δ̂b = Π

⎛

⎝ 1
m

(b+1)m∑

t=bm+1

[
ĥi,t

]

i=1,...,N

⎞

⎠ (4)

where the distribution H(i, Jt) of the random signal st received by action i at
round t is estimated by

ĥi,t =
δst

pi,t
�It=i .

We prove that the ĥi,t are conditionally unbiased estimators. Denote by �t

the conditional expectation with respect to the information available to the
forecaster at the beginning of round t. This conditioning fixes the values of pt

and Jt. Thus,

�t

[
ĥi,t

]
=

1
pi,t

�t [δst�It=i] =
1

pi,t
�t [H(It, Jt)�It=i] =

1
pi,t

H(i, Jt)pi,t

= H(i, Jt) .

For the sake of the analysis, introduce Δb =
1
m

(b+1)m∑

t=bm+1

H(·, Jt) . The proposed

forecasting strategy is sketched in Figure 3. Here again, the practical implemen-
tation of the forecaster only requires the computation of (sub)gradients and of
�2 projections, which can be done efficiently. The next theorem states that the
regret in this most general case is at most of the order of n−1/5

√
log n. Again,

we do not know whether this bound can be improved significantly.

Theorem 2. For all integers m ≥ 1, for all η > 0, γ ∈ (0, 1), and δ > 0,
the regret against any strategy of the environment is bounded, with probability at
least 1 − (n/m + 1)δ, as

Rn ≤ L N

√
2 |S|
γm

ln
2N |S|

δ
+ L

N3/2
√

|S|
3γm

ln
2N |S|

δ

+
m lnN

nη
+

K2η

2
+ γ +

m

n
+

√
1
2n

ln
1
δ

,

where L and K are constants which depend on the parameters of the game.
The choices m = �n3/5�, η ∼

√
(m ln N)/n, and γ ∼ n−1/5 ensure that, with

probability at least 1 − δ, Rn = O
(
n−1/5N

√
ln Nn

δ + n−2/5N3/2 ln Nn
δ

)
.
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Parameters: Integer m ≥ 1, real numbers η, γ > 0.
Initialization: w0 = (1, . . . , 1).

For each round t = 1, 2, . . .

1. if bm + 1 ≤ t < (b + 1)m for some integer b, choose the distribution pt = pb =
(1 − γ)p̃b + γu, where p̃b is defined component-wise as

p̃b
k =

wb
k

∑N
j=1 wb

j

and u denotes the uniform distribution, u = (1/N, . . . , 1/N);
2. draw an action It from {1, . . . , N} according to it;
3. if t = (b + 1)m for some integer b, perform the update

wb+1
k = wb

k e
η (r̃(pb,Δ̂b))

k for each k = 1, . . . , N ,

where for all Δ ∈ F , r̃(·, Δ) is a sub-gradient of ρ(·, Δ) and Δ̂b is defined in
(4).

Fig. 3. The forecaster for random feedback depending on action–outcome pair

Proof. The proof is similar to the one of Theorem 1. A difference is that we
bound the accuracy of the estimation of the Δb via a martingale analog of
Bernstein’s inequality due to Freedman [6] rather than the Hoeffding-Azuma
inequality. Also, the mixing with the uniform distribution of Step 1 needs to be
handled.

We start by grouping time rounds m by m. Assume, for simplicity, that n =
(B + 1)m for some integer B (this accounts for the m/n term in the bound). As
before, we get that, for all p,

n ρ(p, H(·, qn)) −
n∑

t=1

r(pt, Jt) ≤ m

B∑

b=0

(
ρ

(
p, Δb

)
− ρ

(
pb, Δb

))
(5)

and proceed by estimating Δb by Δ̂b. Freedman’s inequality [6] (see, also, [4,
Lemma A.1]) implies that for all b = 0, 1, . . . , B, i = 1, . . . , N , s ∈ S, and δ > 0,

∣
∣
∣
∣
∣
∣
Δb

i (s) − 1
m

(b+1)m∑

t=bm+1

ĥi,t(s)

∣
∣
∣
∣
∣
∣
≤

√

2
N

γm
ln

2
δ

+
1
3

N

γm
ln

2
δ

where ĥi,t(s) is the probability mass put on s by ĥi,t and Δb
i(s) is the i-th

component of Δb. This is because the sums of the conditional variances are
bounded as

(b+1)m∑

t=bm+1

Vart

(
�It=i,st=s

pi,t

)

≤
(b+1)m∑

t=bm+1

1
pi,t

≤ mN

γ
.
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Summing (since the �2 projection can only help), the union bound shows that
for all b, with probability at least 1 − δ,

�
�
�Δb − Δ̂b

�
�
�

2
≤ d

def=
√

N |S|
(√

2
N

γm
ln

2N |S|
δ

+
1
3

N

γm
ln

2N |S|
δ

)

.

By using uniform Lipschitzness of ρ in its second argument (with constant L;
see Proposition 2), we may further bound (5) with probability 1 − (B + 1)δ by

m

B∑

b=0

(
ρ

(
p, Δb

)
− ρ

(
pb, Δb

))
≤ m

B∑

b=0

(
ρ

(
p, Δ̂b

)
− ρ

(
pb, Δ̂b

)
+ L d

)

=m

B∑

b=0

(
ρ

(
p, Δ̂b

)
− ρ

(
pb, Δ̂b

))
+ m(B + 1)L d.

The terms m(B + 1)L d = nL d are the first two terms in the upper bound of
the theorem. The remaining part is bounded by using the same slope inequality
argument as in the previous section (recall that r̃ denotes a sub-gradient bounded
between −K and K):

m

B∑

b=0

(
ρ

(
p, Δ̂b

)
− ρ

(
pb, Δ̂b

))
≤ m

B∑

b=0

r̃
(
pb, Δ̂b

)
·

(
p − pb

)
.

Finally, we deal with the mixing with the uniform distribution:

m

B∑

b=0

r̃
(
pb, Δ̂b

)
·
(
p − pb

)
≤ (1 − γ)m

B∑

b=0

r̃
(
pb, Δ̂b

)
·

(
p − p̃b

)
+ γm(B + 1)

(since, by definition, pb = (1 − γ)p̃b + γu)

≤ (1 − γ)m
(

ln N

η
+

(B + 1)K2η

2

)

+ γm(B + 1)

(by (1))

≤ m ln N

η
+

nK2η

2
+ γn .

The proof is concluded by the Hoeffding-Azuma inequality which, as in (2), gives
the final term in the bound. The union bound indicates that the obtained bound
hold with probability at least 1 − (B + 2)δ ≥ 1 − (n/m + 1)δ.

5 Deterministic Feedback Depends on Action–Outcome
Pair

In this last section we explain how in the case of deterministic feedback the fore-
caster of the previous section can be modified so that the order of magnitude of
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the per-round regret improves to n−1/3. This relies on the linearity of ρ in its
second argument. In the case of random feedback, ρ may not be linear which re-
quired grouping rounds of size m. If the feedback is deterministic, such grouping
is not needed and the n−1/3 rate is obtained as a trade-off between an explo-
ration term (γ) and the cost payed for estimating the feedbacks (

√
1/(γn)). This

rate of convergence has been shown to be optimal in [4] even in the Hannan con-
sistent case. The key property is summarized in the next technical lemma whose
proof is omitted for the lack of space.

Lemma 1. For every fixed p, the function ρ(p, ·) is linear on F .

Next we describe the modified forecaster. Denote by H the vector space generated
by F ⊂ �

|S|N and Π the linear operator which projects any element of �|S|N

onto H. Since the ρ(p, ·) are linear on F , we may extend them linearly to H (and
with a slight abuse of notation we write ρ for the extension). As a consequence,
the functions ρ(p, Π(·)) are linear defined on�|S|N and coincide with the original
definition on F . We denote by r̃ a sub-gradient (i.e., for all Δ ∈ �|S|N , r̃(·, Δ)
is a sub-gradient of ρ(·, Π(Δ))).

The sub-gradients are evaluated at the following points. (Recall that since the
feedback is deterministic, st = h(It, Jt).) For t = 1, 2, . . ., let

ĥt =
[
ĥi,t

]

i=1,...,N
=

[
δst

pi,t
�It=i

]

i=1,...,N

. (6)

The ĥi,t estimate the feedbacks H(i, Jt) = δh(i,Jt) received by action i at round
t. They are still conditionally unbiased estimators of the h(i, Jt), and so is ĥt for
H(·, Jt). The proposed forecaster is defined in Figure 4 and the regret bound is
established in Theorem 3.

Theorem 3. There exists a constant C only depending on r and h such that for
all δ > 0, γ ∈ (0, 1), and η > 0, the regret against any strategy of the environment
is bounded, with probability at least 1 − δ, as

Rn ≤ 2NC

√
2

nγ
ln

2
δ

+
NC

3γn
ln

2
δ

+
ln N

ηn
+

ηK2

2
+ γ +

√
1
2n

ln
2
δ

.

The choice γ ∼ n−1/3N2/3 and η ∼
√

(ln N)/n ensures that, with probability at

least 1 − δ, Rn = O
(
n−1/3N2/3

√
ln(1/δ)

)
.

Proof. The proof is similar to the one of Theorem 2, except that we do not have
to consider the grouping steps and that we do not apply the Hoeffding-Azuma
inequality to the estimated feedbacks but to the estimated rewards. By the bound
on r in terms of ρ and convexity (linearity) of ρ in its second argument,

n ρ(p, H(·, qn)) −
n∑

t=1

r(pt, Jt) ≤
n∑

t=1

(ρ (p, H(·, Jt)) − ρ (pt, H(·, Jt))) .
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Parameters: Real numbers η, γ > 0.
Initialization: w1 = (1, . . . , 1).

For each round t = 1, 2, . . .

1. choose the distribution pt = (1−γ)p̃t+γu, where p̃t is defined component-wise
as

p̃k,t =
wk,t

∑N
j=1 wj,t

and u denotes the uniform distribution, u = (1/N, . . . , 1/N); then draw an
action It from {1, . . . , N} according to pt;

2. perform the update

wk,t+1 = wk,t eη (r̃(pt,ĥt))
k for each k = 1, . . . , N ,

where Π is the projection operator defined after the statement of Lemma 1,
for all Δ ∈ �|S|N , r̃(·, Δ) is a sub-gradient of ρ(·, Π(Δ)), and ĥt is defined in
(6).

Fig. 4. The forecaster for deterministic feedback depending on action–outcome pair

Next we estimate

ρ (p, H(·, Jt)) − ρ (pt, H(·, Jt)) by ρ
(
p, Π

(
ĥt

))
− ρ

(
pt, Π

(
ĥt

))
.

By Freedman’s inequality (see, again, [4, Lemma A.1]), since ĥt is a conditionally
unbiased estimator of H(·, Jt) and all functions at hand are linear in their second
argument, we get that, with probability at least 1 − δ/2,

n∑

t=1

(ρ (p, H(·, Jt)) − ρ (pt, H(·, Jt)))

=
n∑

t=1

(ρ (p, Π (H(·, Jt))) − ρ (pt, Π (H(·, Jt))))

≤
n∑

t=1

(
ρ

(
p, Π

(
ĥt

))
− ρ

(
pt, Π

(
ĥt

)))
+ 2NC

√

2
n

γ
ln

2
δ

+
NC

3γ
ln

2
δ

where, denoting by ei(δh(i,j)) the column vector whose i-th component is δh(i,j)

and all other components equal 0,

C = max
i,j

max
p

ρ
(
p, Π

[
ei(δh(i,j))

])
< +∞ .

This is because for all t, the conditional variances are bounded as follows. For
all p′,

�t

[

ρ
(
p′, Π

(
ĥt

))2
]

=
N∑

i=1

pi,t ρ
(
p′, Π

[
ei(δh(i,j)/pi,t)

])2
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=
N∑

i=1

1
pi,t

ρ
(
p′, Π

[
ei(δh(i,j)/pi,t)

])2 ≤
N∑

i=1

C2

pi,t
≤ C2N2

γ
.

The remaining part is bounded by using the same slope inequality argument
as in the previous sections (recall that r̃ denotes a sub-gradient in the first
argument of ρ(·, Π(·)), bounded between −K and K),

n∑

t=1

(
ρ

(
p, Π

(
ĥt

))
− ρ

(
pt, Π

(
ĥt

)))
≤

n∑

t=1

r̃
(
pt, ĥt

)
· (p − pt) .

Finally, we deal with the mixing with the uniform distribution:
n∑

t=1

r̃
(
p, ĥt

)
· (p − p) ≤ (1 − γ)

n∑

t=1

r̃
(
pt, ĥt

)
· (p − p̃t) + γn

(since by definition pt = (1 − γ)p̃t + γu)

≤ (1 − γ)
(

ln N

η
+

nηK2

2

)

+ γn (by (1)).

As before, the proof is concluded by the Hoeffding-Azuma inequality (2) and the
union bound.
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Abstract. Bounded parameter Markov Decision Processes (BMDPs)
address the issue of dealing with uncertainty in the parameters of a
Markov Decision Process (MDP). Unlike the case of an MDP, the notion
of an optimal policy for a BMDP is not entirely straightforward. We
consider two notions of optimality based on optimistic and pessimistic
criteria. These have been analyzed for discounted BMDPs. Here we pro-
vide results for average reward BMDPs.

We establish a fundamental relationship between the discounted and
the average reward problems, prove the existence of Blackwell optimal
policies and, for both notions of optimality, derive algorithms that con-
verge to the optimal value function.

1 Introduction

Markov Decision Processes (MDPs) are a widely used tool to model decision
making under uncertainty. In an MDP, the uncertainty involved in the outcome
of making a decision in a certain state is represented using various probabilities.
However, these probabilities themselves may not be known precisely. This can
happen for a variety of reasons. The probabilities might have been obtained via
an estimation process. In such a case, it is natural that confidence intervals will
be associated with them. State aggregation, where groups of similar states of
a large MDP are merged to form a smaller MDP, can also lead to a situation
where probabilities are no longer known precisely but are only known to lie in
an interval.

This paper is concerned with such higher level uncertainty, namely uncertainty
about the parameters of an MDP. Bounded parameter MDPs (BMDPs) have
been introduced in the literature [1] to address this problem. They use intervals
(or equivalently, lower and upper bounds) to represent the set in which the
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parameters of an MDP can lie. We obtain an entire family, say M, of MDPs by
taking all possible choices of parameters consistent with these intervals. For an
exact MDP M and a policy μ (which is a mapping specifying the actions to take
in various states), the α-discounted return from state i, Vα,μ,M (i) and the long
term average return Vμ,M (i) are two standard ways of measuring the quality of
μ with respect to M . When we have a family M of MDPs, we are immediately
faced with the problem of finding a way to measure the quality of a policy. An
optimal policy will then be the one that maximizes the particular performance
measure chosen.

We might choose to put a distribution over M and define the return of a
policy as its average return under this distribution. In this paper, however, we
will avoid taking this approach. Instead, we will consider the worst and the best
MDP for each policy and accordingly define two performance measures,

V opt
μ (i) := sup

M∈M
Vμ,M (i)

V pes
μ (i) := inf

M∈M
Vμ,M (i)

where the superscripts denote that these are optimistic and pessimistic criteria
respectively. Analogous quantities for the discounted case were defined in [1] and
algorithms were given to compute them. In this paper, our aim is to analyze the
average reward setting.

The optimistic criterion is motivated by the optimism in the face of uncer-
tainty principle. Several learning algorithms for MDPs [2,3,4,5] proceed in the
following manner. Faced with an unknown MDP, they start collecting data which
yields confidence intervals for the parameters of the MDP. Then they choose a
policy which is optimal in the sense of the optimistic criterion. This policy is
followed for the next phase of data collection and the process repeats. In fact,
the algorithm of Auer and Ortner requires, as a blackbox, an algorithm to com-
pute the optimal (with respect to the optimistic criterion) value function for a
BMDP.

The pessimistic criterion is related to research on robust control of MDPs [6].
If nature is adversarial, then once we pick a policy μ it will pick the worst possible
MDP M from M. In such a scenario, it is reasonable to choose a policy which
is best in the worst case. Our work also extends this line of research to the case
of the average reward criterion.

A brief outline of the paper is as follows. Notation and preliminary results
are established in Section 2. Most of these results are not new but are needed
later, and we provide independent, self-contained proofs in the appendix. Sec-
tion 3 proves one of the key results of the paper: the existence of Blackwell
optimal policies. In the exact MDP case, a Blackwell optimal policy is a pol-
icy that is optimal for an entire range of discount factors in the neighbourhood
of 1. Existence of Blackwell optimal policies is an important result in the the-
ory of MDPs. We extend this result to BMDPs. Then, in Section 4, we exploit
the relationship between the discounted and average returns together with the
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existence of a Blackwell optimal policy to derive algorithms that converge to
optimal value functions for both optimistic as well as pessimistic criteria.

2 Preliminaries

A Markov Decision Process is a tuple 〈S, A, R, {p(i,j)(a)}〉. Here S is a finite set
of states, A a finite set of actions, R : S �→ [0, 1] is the reward function and pi,j(a)
is the probability of moving to state j upon taking action a in state i. A policy
μ : S �→ A is a mapping from states to actions. Any policy induces a Markov
chain on the state space of a given MDP M . Let Eμ,M [·] denote expectation
taken with respect to this Markov chain. For α ∈ [0, 1), define the α-discounted
value function at state i ∈ S by

Vα,μ,M (i) := (1 − α)Eμ,M

[ ∞∑

t=0

αtR(st)

∣
∣
∣
∣
∣

s0 = i

]

.

The optimal value function is obtained by maximizing over policies.

V ∗
α,M (i) := max

μ
Vα,μ,M (i) .

From the definition it is not obvious that there is a single policy achieving the
maximum above for all i ∈ S. However, it is a fundamental result of the theory
of MDPs that such an optimal policy exists.

Instead of considering the discounted sum, we can also consider the long term
average reward. This leads us to the following definition.

Vμ,M (i) := lim
T→∞

Eμ,M

[∑T
t=0 R(st)

∣
∣
∣ s0 = i

]

T + 1

The above definition assumes that the limit on the right hand side exists for
every policy. This is shown in several standard texts [7]. There is an important
relationship between the discounted and undiscounted value functions of a policy.
For every policy μ, there is a function hμ,M : S �→ R such that

∀i, Vμ,M (i) = Vα,μ,M (i) + (1 − α)hμ,M (i) + O
(
|1 − α|2

)
. (1)

A bounded parameter MDP (BMDP) is a collection of MDPs specified by
bounds on the parameters of the MDPs. For simplicity, we will assume that the
reward function is fixed, so that the only parameters that vary are the transition
probabilities. Suppose, for each state-action pair i, a, we are given lower and
upper bounds, l(i, j, a) and u(i, j, a) respectively, on the transition probability
pi,j(a). We assume that the bounds are legitimate, that is

∀i, a, j, 0 ≤ l(i, j, a) ≤ u(i, j, a) ,

∀i, a,
∑

j

l(i, j, a) ≤ 1 &
∑

j

u(i, j, a) ≥ 1 .
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This means that the set defined1 by

Ci,a := {q ∈ R
|S|
+ : qT 1 = 1 & ∀j, l(i, j, a) ≤ qj ≤ u(i, j, a)}

is non-empty for each state-action pair i, a. Finally, define the collection of MDPs

M := { 〈S, A, R, {pi,j(a)}〉 : ∀i, a, pi,·(a) ∈ Ci,a } .

Given a BMDP M and a policy μ, there are two natural choices for the value
function: an optimistic and a pessimistic one,

V opt
α,μ (i) := sup

M∈M
Vα,μ,M (i) V pes

α,μ (i) := inf
M∈M

Vα,μ,M (i) .

We also define the undiscounted value functions,

V opt
μ (i) := sup

M∈M
Vμ,M (i) V pes

μ (i) := inf
M∈M

Vμ,M (i) .

Optimal value functions are defined by maximizing over policies.

Vopt
α (i) := max

μ
V opt

α,μ (i) Vpes
α (i) := max

μ
V pes

α,μ (i)

Vopt(i) := max
μ

V opt
μ (i) Vpes(i) := max

μ
V pes

μ (i)

In this paper, we are interested in computing Vopt and Vpes. Algorithms
to compute Vopt

α and Vpes
α have already been proposed in the literature. Let

us review some of the results pertaining to the discounted case. We note that
the results in this section, with the exception of Corollary 4, either appear or
can easily be deduced from results appearing in [1]. However, we provide self-
contained proofs of these in the appendix. Before we state the results, we need
to introduce a few important operators. Note that, since Ci,a is a closed, convex
set, the maximum (or minimum) of qT V (a linear function of q) appearing in
the definitions below is achieved.

(Tα,μ,MV ) (i) := (1 − α)R(i) + α
∑

j

pi,j(μ(i))V (j)

(Tα,MV ) (i) := max
a∈A

⎡

⎣(1 − α)R(i) + α
∑

j

pi,j(a)V (j)

⎤

⎦

(
T opt

α,μV
)
(i) := (1 − α)R(i) + α max

q∈Ci,μ(i)

qT V

(
T opt

α V
)
(i) := max

a∈A

[

(1 − α)R(i) + α max
q∈Ci,a

qT V

]

(
T pes

α,μV
)
(i) := (1 − α)R(i) + α min

q∈Ci,μ(i)

qT V

(T pes
α V ) (i) := max

a∈A

[

(1 − α)R(i) + α min
q∈Ci,a

qT V

]

1 We denote the transpose of a vector q by qT .
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Recall that an operator T is a contraction mapping with respect to a norm ‖ · ‖
if there is an α ∈ [0, 1) such that

∀V1, V2, ‖TV1 − TV2‖ ≤ α‖V1 − V2‖ .

A contraction mapping has a unique solution to the fixed point equation TV = V
and the sequence {T kV0} converges to that solution for any choice of V0. It is
straightforward to verify that the six operators defined above are contraction
mappings (with factor α) with respect to the norm

‖V ‖∞ := max
i

|V (i)| .

It is well known that the fixed points of Tα,μ,M and Tα,M are Vα,μ,M and V ∗
α,M re-

spectively. The following theorem tells us what the fixed points of the remaining
four operators are.

Theorem 1. The fixed points of T opt
α,μ , T opt

α , T pes
α,μ and T pes

α are V opt
α,μ ,Vopt

α , V pes
α,μ

and Vpes
α respectively.

Existence of optimal policies for BMDPs is established by the following theorem.

Theorem 2. For any α ∈ [0, 1), there exist optimal policies μ1 and μ2 such
that, for all i ∈ S,

V opt
α,μ1

(i) = Vopt
α (i) ,

V pes
α,μ2

(i) = Vpes
α (i) .

A very important fact is that out of the uncountably infinite set M, only a finite
set is of real interest.

Theorem 3. There exist finite subsets Mopt, Mpes ⊂ M with the following
property. For all α ∈ [0, 1) and for every policy μ there exist M1 ∈ Mopt,
M2 ∈ Mpes such that

V opt
α,μ = Vα,μ,M1 ,

V pes
α,μ = Vα,μ,M2 .

Corollary 4. The optimal undiscounted value functions are limits of the optimal
discounted value functions. That is, for all i ∈ S, we have

lim
α→1

Vopt
α (i) = Vopt(i) , (2)

lim
α→1

Vpes
α (i) = Vpes(i) . (3)

Proof. Fix i ∈ S. We first prove (2). Using Theorem 3, we have

Vopt
α (i) = max

μ
max

M∈Mopt
Vα,μ,M (i) .
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Therefore,

lim
α→1

Vopt
α (i) = lim

α→1
max

μ
max

M∈Mopt
Vα,μ,M (i)

= max
μ

max
M∈Mopt

lim
α→1

Vα,μ,M (i)

= max
μ

max
M∈Mopt

Vμ,M (i)

= Vopt(i) .

The second equality holds because lim and max over a finite set commute. Note
that finiteness is crucial here since lim and sup do not commute. The third
equality follows from (1).

To prove (3), one repeats the steps above with appropriate changes. In this
case, one additionally uses the fact that lim and min over a finite set also
commute.

3 Existence of Blackwell Optimal Policies

Theorem 5. There exist αopt ∈ (0, 1), a policy μopt and an MDP Mopt ∈ Mopt

such that
∀α ∈ (αopt, 1), Vα,μopt,Mopt = Vopt

α .

Similarly, there exist αpes ∈ (0, 1), a policy μpes and an MDP Mpes ∈ Mpes such
that

∀α ∈ (αpes, 1), Vα,μpes,Mpes = Vpes
α .

Proof. Given an MDP M = 〈S, A, R, {pi,j(a)}〉 and a policy μ, define the asso-
ciated matrix PM

μ by
PM

μ (i, j) := pi,j(μ(i)) .

The value function Vα,μ,M has a closed form expression.

Vα,μ,M = (1 − α)
(
I − αPM

μ

)−1
R

Therefore, for all i, the map α �→ Vα,μ,M (i) is a rational function of α. Two
rational functions are either identical or intersect each other at a finite number
of points. Further, the number of policies and the number of MDPs in Mopt is
finite. Therefore, for each i, there exists αi ∈ [0, 1) such that no two functions
in the set

{α �→ Vα,μ,M (i) : μ : S �→ A, M ∈ Mopt}
intersect each other in the interval (αi, 1). Let αopt = maxi αi. By Theorem 2,
there is an optimal policy, say μopt, such that

V opt
αopt,μopt

= Vopt
αopt

.

By Theorem 3, there is an MDP, say Mopt, in Mopt such that

Vαopt,μopt,Mopt = V opt
αopt,μopt

= Vopt
αopt

. (4)
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We now claim that
Vα,μopt,Mopt = Vopt

αopt

for all α ∈ (αopt, 1). If not, there is an α′ ∈ (αopt, 1), a policy μ′ and an MDP
M ′ ∈ Mopt such that

Vα′,μopt,Mopt(i) < Vα′,μ′,M ′(i)

for some i. But this yields a contradiction, since (4) holds and by definition of
αopt, the functions

α �→ Vα,μopt,Mopt(i)

and
α �→ Vα,μ′,M ′(i)

cannot intersect in (αopt, 1).
The proof of the existence of αpes, μpes and Mpes is based on similar argu-

ments.

4 Algorithms to Compute the Optimal Value Functions

4.1 Optimistic Value Function

The idea behind our algorithm (Algorithm 1) is to start with some initial vector
and perform a sequence of updates while increasing the discount factor at a cer-
tain rate. The following theorem guarantees that the sequence of value functions
thus generated converge to the optimal value function. Note that if we held the
discount factor constant at some value, say α, the sequence would converge to
Vopt

α .

Algorithm 1. Algorithm to Compute Vopt

V (0) ← 0
for k = 0, 1, . . . do

αk ← k+1
k+2

for all i ∈ S do
V (k+1)(i) ← maxa∈A

[
(1 − αk)R(i) + αk maxq∈Ci,a qT V (k)

]

end for
end for

Theorem 6. Let {V (k)} be the sequence of functions generated by Algorithm 1.
Then we have, for all i ∈ S,

lim
k→∞

V (k)(i) = Vopt(i) .
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We need a few intermediate results before proving this theorem. Let αopt, μopt

and Mopt be as given by Theorem 5. To avoid too many subscripts, let μ and M
denote μopt and Mopt respectively for the remainder of this subsection. From (1),
we have that for k large enough, say k ≥ k1, we have,

∣
∣Vαk,μ,M (i) − Vαk+1,μ,M (i)

∣
∣ ≤ K(αk+1 − αk) , (5)

where K can be taken to be ‖hμ,M‖∞ + 1. Since αk ↑ 1, we have αk > αopt for
all k > k2 for some k2. Let k0 = max{k1, k2}. Define

δk0 := ‖V (k0) − Vαk0 ,μ,M‖∞ . (6)

Since rewards are in [0, 1], we have δk0 ≤ 1. For k ≥ k0, define δk+1 recursively
as

δk+1 := K(αk+1 − αk) + αkδk . (7)

The following lemma shows that this sequence bounds the norm of the difference
between V (k) and Vαk,μ,M .

Lemma 7. Let {V (k)} be the sequence of functions generated by Algorithm 1.
Further, let μ, M denote μopt, Mopt mentioned in Theorem 5. Then, for k ≥ k0,
we have

‖V (k) − Vαk,μ,M‖∞ ≤ δk .

Proof. Base case of k = k0 is true by definition of δk0 . Now assume we have
proved the claim till k ≥ k0. So we know that,

max
i

∣
∣
∣V (k)(i) − Vαk,μ,M (i)

∣
∣
∣ ≤ δk . (8)

We wish to show

max
i

∣
∣
∣V (k+1)(i) − Vαk+1,μ,M (i)

∣
∣
∣ ≤ δk+1 . (9)

Recall that Vopt
α is the fixed point of T opt

α by Theorem 1. We therefore have, for
all i,

Vαk,μ,M (i) =
(
T opt

αk
Vαk,μ,M

)
(i)

[ αk > αopt and Vα,μ,M = Vopt
α for α > αopt ]

= max
a∈A

[ (1 − αk)R(i) + αk max
q∈Ci,a

∑

j

q(j)Vαk,μ,M (j) ]

[ defn. of T opt
αk

]

≤ max
a∈A

[ (1 − αk)R(i) + αk max
q∈Ci,a

∑

j

q(j)V (k)(j) ] + αkδk

[ (8) and
∑

j

q(j)δk = δk]

= V (k+1)(i) + αkδk .

[ defn. of V (k+1)(i) ]
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Similarly, for all i,

V (k+1)(i) = max
a∈A

[ (1 − αk)R(i) + αk max
q∈Ci,a

∑

j

q(j)V (k)(j) ]

[ defn. of V (k+1)(i)]

≤ max
a∈A

[ (1 − αk)R(i) + αk max
q∈Ci,a

∑

j

q(j)Vαk,μ,M (j) ] + αkδk

[ (8) and
∑

j

q(j)δk = δk]

=
(
T opt

αk
Vαk,μ,M

)
(i) + αkδk

[ defn. of T opt
αk

]

= Vαk,μ,M (i) + αkδk .

[ αk > αopt and Vα,μ,M = Vopt
α for α > αopt ]

Thus, for all i, ∣
∣
∣V (k+1)(i) − Vαk,μ,M (i)

∣
∣
∣ ≤ αkδk .

Combining this with (5) (as k ≥ k0 ≥ k1), we get
∣
∣
∣V (k+1)(i) − Vαk+1,μ,M (i)

∣
∣
∣ ≤ αkδk + K(αk+1 − αk) .

Thus we have shown (9).

The sequence {δk} can be shown to converge to zero using elementary
arguments.

Lemma 8. The sequence {δk} defined for k ≥ k0 by equations (6) and (7)
converges to 0.

Proof. Plugging αk = k+1
k+2 into the definition of δk+1 we get,

δk+1 = K

(
k + 2
k + 3

− k + 1
k + 2

)

+
k + 1
k + 2

δk

=
K

(k + 3)(k + 2)
+

k + 1
k + 2

δk .

Applying the recursion again for δk, we get

δk+1 =
K

(k + 3)(k + 2)
+

k + 1
k + 2

(
K

(k + 2)(k + 1)
+

k

k + 1
δk−1

)

=
K

k + 2

(
1

k + 3
+

1
k + 2

)

+
k

k + 2
δk−1 .

Continuing in this fashion, we get for any j ≥ 0,

δk+1 =
K

k + 2

(
1

k + 3
+

1
k + 2

+ . . . +
1

k − j + 3

)

+
k − j + 1

k + 2
δk−j .
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Setting j = k − k0 above, we get

δk+1 =
K

k + 2
(Hk+3 − Hk0+2) +

k0 + 1
k + 2

δk0 ,

where Hn = 1+ 1
2 +. . .+ 1

n . This clearly tends to 0 as k → ∞ since Hn = O(log n)
and δk0 ≤ 1.

We can now prove Theorem 6.

Proof. (of Theorem 6) Fix i ∈ S. We have,

|V (k)(i) − Vopt(i)| ≤ |V (k)(i) − Vαk,μ,M (i)|
︸ ︷︷ ︸

≤δk

+ |Vαk,μ,M (i) − Vopt
αk

(i)|
︸ ︷︷ ︸

εk

+ |Vopt
αk

(i) − Vopt(i)|
︸ ︷︷ ︸

ζk

.

We use Lemma 7 to bound the first summand on the right hand side by δk.
By Lemma 8, δk → 0. Also, εk = 0 for sufficiently large k because αk ↑ 1 and
Vα,μ,M (i) = Vopt

α (i) for α sufficiently close to 1 (by Theorem 5). Finally, ζk → 0
by Corollary 4.

4.2 Pessimistic Value Function

Algorithm 2 is the same as Algorithm 1 except that the max over Ci,a appearing
inside the innermost loop gets replaced by a min. The following analogue of
Theorem 6 holds.

Algorithm 2. Algorithm to Compute Vpes

V (0) ← 0
for k = 0, 1, . . . do

αk ← k+1
k+2

for all i ∈ S do
V (k+1)(i) ← maxa∈A

[
(1 − αk)R(i) + αk minq∈Ci,a qT V (k)

]

end for
end for

Theorem 9. Let {V (k)} be the sequence of functions generated by Algorithm 2.
Then we have, for all i ∈ S,

lim
k→∞

V (k)(i) = Vpes(i) .

To prove this theorem, we repeat the argument given in the previous subsection
with appropriate changes. Let αpes, μpes and Mpes be as given by Theorem 5. For
the remainder of this subsection, let μ and M denote μpes and Mpes respectively.
Let k1, k2 be large enough so that, for all k ≥ k1,

∣
∣Vαk,μ,M (i) − Vαk+1,μ,M (i)

∣
∣ ≤ K(αk+1 − αk) ,
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for some constant K (which depends on μ, M), and αk > αpes for k > k2. Set
k0 = max{k1, k2} and define the sequence {δk}k≥k0 as before (equations (6)
and (7)).

The proof of the following lemma can be obtained from that of Lemma 7 by
fairly straightforward changes and is therefore omitted.

Lemma 10. Let {V (k)} be the sequence of functions generated by Algorithm 2.
Further, let μ, M denote μpes, Mpes mentioned in Theorem 5. Then, for k ≥ k0,
we have

‖V (k) − Vαk,μ,M‖∞ ≤ δk .

Theorem 9 is now proved in exactly the same fashion as Theorem 6 and we
therefore omit the proof.

5 Conclusion

In this paper, we chose to represent the uncertainty in the parameters of an
MDP by intervals. One can ask whether similar results can be derived for other
representations. If the intervals for pi,j(a) are equal for all j then our representa-
tion corresponds to an L∞ ball around a probability vector. It will be interesting
to investigate other metrics and even non-metrics like relative entropy (for an
example of an algorithm using sets defined by relative entropy, see [8]). Gen-
eralizing in a different direction, we can enrich the language used to express
constraints on the probabilities. In this paper, constraints had the form

l(i, j, a) ≤ pi,j(a) ≤ u(i, j, a) .

These are simple inequality constraints with two hyperparameters l(i, j, a) and
u(i, j, a). We can permit more hyperparameters and include arbitrary semi-
algebraic constraints (i.e. constraints expressible as boolean combination of poly-
nomial equalities and inequalities). It can be shown using the Tarski-Seidenberg
theorem that Blackwell optimal policies still exist in this much more general
setting. However, the problem of optimizing qT V over Ci,a now becomes more
complicated.

Our last remark is regarding the convergence rate of the algorithms given in
Section 4. Examining the proofs, one can verify that the number of iterations
required to get to within ε accuracy is O(1

ε ). This is a pseudo-polynomial con-
vergence rate. It might be possible to obtain algorithms where the number of
iterations required to achieve ε-accuracy is poly(log 1

ε ).
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Appendix

Throughout this section, vector inequalities of the form V1 ≤ V2 are to be inter-
preted to mean V1(i) ≤ V2(i) for all i.

Proofs of Theorems 1 and 2

Lemma 11. If V1 ≤ V2 then, for all M ∈ M,

Tα,μ,MV1 ≤ T opt
α,μV2 ,

T pes
α,μV1 ≤ Tα,μ,MV2 .

Proof. We prove the first inequality. Fix an MDP M ∈ M. Let pi,j(a) denote
transition probabilities of M . We then have,

(Tα,μ,MV1) (i) = (1 − α)R(i) + α
∑

j

pi,j(μ(i))V1(j)

≤ (1 − α)R(i) + α
∑

j

pi,j(μ(i))V2(j) [ ∵ V1 ≤ V2 ]

≤ (1 − α)R(i) + α max
q∈Ci,μ(i)

qT V2 [ ∵ M ∈ M ]

=
(
T opt

α,μV2

)
(i) .

The proof of the second inequality is similar.
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Lemma 12. If V1 ≤ V2 then, for any policy μ,

T opt
α,μV1 ≤ T opt

α V2 ,

T pes
α,μV1 ≤ T pes

α V2 .

Proof. Again, we prove only the first inequality. Fix a policy μ. We then have,
(
T opt

α,μV1

)
(i) = (1 − α)R(i) + α max

q∈Ci,μ(i)

qT V1

≤ (1 − α)R(i) + α max
q∈Ci,μ(i)

qT V2

≤ max
a∈A

[

(1 − α)R(i) + α max
q∈Ci,a

qT V2

]

=
(
T opt

α V2

)
(i)

Proof (of Theorems 1 and 2). Let Ṽ be the fixed point of T opt
α,μ . This means that

for all i ∈ S,
Ṽ (i) = (1 − α)R(i) + α max

q∈Ci,μ(i)

qT Ṽ .

We wish to show that Ṽ = V opt
α,μ . Let qi be the probability vector that achieves

the maximum above. Construct an MDP M1 ∈ M as follows. Set the transition
probability vector pi,·(μ(i)) to be qi. For a �= μ(i), choose pi,·(a) to be any
element of Ci,a. It is clear that Ṽ satisfies, for all i ∈ S,

Ṽ (i) = (1 − α)R(i) + α
∑

j

pi,j(μ(i))Ṽ (j) ,

and therefore Ṽ = Vα,μ,M1 ≤ V opt
α,μ . It remains to show that Ṽ ≥ V opt

α,μ . For that,
fix an arbitrary MDP M ∈ M. Let V0 be any initial vector. Using Lemma 11
and straightforward induction, we get

∀k ≥ 0, (Tα,μ,M )kV0 ≤ (T opt
α,μ)kV0 .

Taking limits as k → ∞, we get Vα,μ,M ≤ Ṽ . Since M ∈ M was arbitrary, for
any i ∈ S,

V opt
α,μ (i) = sup

M∈M
Vα,μ,M (i) ≤ Ṽ (i) .

Therefore, Ṽ = V opt
α,μ .

Now let Ṽ be the fixed point of T opt
α . This means that for all i ∈ S,

Ṽ (i) = max
a∈A

[

(1 − α)R(i) + α max
q∈Ci,a

qT Ṽ

]

.

We wish to show that Ṽ = Vopt
α . Let μ1(i) be any action that achieves the

maximum above. Since Ṽ satisfies, for all i ∈ S,

Ṽ (i) = (1 − α)R(i) + α max
q∈Ci,μ1(i)

qT Ṽ ,
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we have Ṽ = V opt
α,μ1

≤ Vopt
α . It remains to show that Ṽ ≥ Vopt

α . For that,
fix an arbitrary policy μ. Let V0 be any initial vector. Using Lemma 12 and
straightforward induction, we get

∀k ≥ 0, (T opt
α,μ)kV0 ≤ (T opt

α )kV0 .

Taking limits as k → ∞, we get V opt
α,μ ≤ Ṽ . Since μ was arbitrary, for any i ∈ S,

Vopt
α (i) = max

μ
V opt

α,μ (i) ≤ Ṽ (i) .

Therefore, Ṽ = Vopt
α . Moreover, this also proves the first part of Theorem 2

since
V opt

α,μ1
= Ṽ = Vopt

α .

The claim that the fixed points of T pes
α,μ and T pes

α are V pes
α,μ and Vpes

α respec-
tively, is proved by making a few obvious changes to the argument above. Fur-
ther, as it turned out above, the argument additionally yields the proof of the
second part of Theorem 2.

Proof of Theorem 3

We prove the existence of Mopt only. The existence of Mpes is proved in the same
way. Note that in the proof presented in the previous subsection, given a policy
μ, we explicitly constructed an MDP M1 such that V opt

α,μ = Vα,μ,M1 . Further,
the transition probability vector pi,·(μ(i)) of M1 was a vector that achieved the
maximum in

max
Ci,μ(i)

qT V opt
α,μ .

Recall that the set Ci,μ(i) has the form

{q : qT 1 = 1, ∀j ∈ S, lj ≤ qj ≤ uj} , (10)

where lj = l(i, j, μ(i)), uj = u(i, j, μ(i)). Therefore, all that we require is the
following lemma.

Lemma 13. Given a set C of the form (10), there exists a finite set Q = Q(C)
of cardinality no more than |S|! with the following property. For any vector V ,
there exists q̃ ∈ Q such that

q̃T V = max
q∈C

qT V .

We can then set

Mopt = { 〈S, A, R, {pi,j(a)}〉 : ∀i, a, pi,·(a) ∈ Q(Ci,a) } .

The cardinality of Mopt is at most (|S||A|)|S|!
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Proof (of Lemma 13). A simple greedy algorithm (Algorithm 3) can be used
to find a maximizing q̃. The set C is specified using upper and lower bounds,
denoted by ui and li respectively. The algorithm uses the following idea recur-
sively. Suppose i∗ is the index of a largest component of V . It is clear that we
should set q̃(i∗) as large as possible. The value of q̃(i∗) has to be less than ui.
Moreover, it has to be less than 1 −

∑
i
=i∗ li. Otherwise, the remaining lower

bound constraints cannot be met. So, we set q̃(i∗) to be the minimum of these
two quantities.

Note that the output depends only on the sorted order of the components of
V . Hence, there are only |S|! choices for q̃.

Algorithm 3. A greedy algorithm to maximize qT V over C.
Inputs The vector V and the set C. The latter is specified by bounds {li}i∈S and
{ui}i∈S that satisfy ∀i, 0 ≤ li ≤ ui and

∑
i li ≤ 1 ≤

∑
i ui.

Output A maximizing vector q̃ ∈ C.

indices ← order(V ) � order(V ) gives the indices of the largest to smallest
elements of V

massLeft ← 1
indicesLeft ← S
for all i ∈ indices do

elem ← V (i)
lowerBoundSum ←

∑
j∈indicesLeft,j �=i lj

q̃(i) ← min(ui, massLeft − lowerBoundSum)
massLeft ← massLeft − q̃(i)
indicesLeft ← indicesLeft − {i}

end for
return q̃
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Abstract. We consider on-line density estimation with the multivariate
Gaussian distribution. In each of a sequence of trials, the learner must
posit a mean μ and covariance Σ; the learner then receives an instance x
and incurs loss equal to the negative log-likelihood of x under the Gaus-
sian density parameterized by (μ, Σ). We prove bounds on the regret
for the follow-the-leader strategy, which amounts to choosing the sample
mean and covariance of the previously seen data.

1 Introduction

We consider an on-line learning problem based on Gaussian density estimation
in R

d. The learning task proceeds in a sequence of trials. In trial t, the learner
selects a mean μt and covariance Σt. Then, Nature reveals an instance xt to
the learner, and the learner incurs a loss �t(μt, Σt) equal to the negative log-
likelihood of xt under the Gaussian density parameterized by (μt, Σt).

We will compare the total loss incurred from selecting the (μt, Σt) in T trials
to the total loss incurred using the best fixed strategy for the T trials. A fixed
strategy is one that sets (μt, Σt) to the same (μ, Σ) for each t. The difference
of these total losses is the regret of following a strategy and not instead selecting
this best-in-hindsight (μ, Σ) in every trial; it is the cost of not seeing all of the
data ahead of time. In this paper, we will analyze the regret of the follow-the-
leader strategy: the strategy which chooses (μt, Σt) to be the sample mean and
covariance of {x1, x2, . . . , xt−1}.

First, we find that a näıve formulation of the learning problem suffers from
degenerate cases that lead to unbounded regret. We propose a straightforward
alternative that avoids these problems by incorporating an additional, halluci-
nated, trial at time zero. In this setting, a trivial upper bound on the regret of
follow-the-leader (FTL) is O(T 2) after T trials. We obtain the following bounds.

– For any p > 1, there are sequences (xt) for which FTL has regret Ω(T 1−1/p)
after T trials. A similar result holds for any sublinear function of T .

– There is a linear bound on the regret of FTL that holds for all sequences.
– For any sequence, the average regret of FTL is ≤ 0 in the limit; formally,

For any sequence (xt), lim sup
T≥1

{
Regret after T trials

T

}

≤ 0.

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 278–292, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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On-line density estimation has been previously considered by Freund (1996),
Azoury and Warmuth (2001), and Takimoto and Warmuth (2000a, 2000b).
Collectively, they have considered the Bernoulli, Gamma, and fixed-covariance
Gaussian distributions, as well as a general class of one-dimensional exponential
families. However, on-line Gaussian density estimation with arbitrary covariance
(that is, when the covariance is to be estimated) is all but unmentioned in the
literature, even in the one-dimensional case. Indeed, these earlier bounds are log-
arithmic whereas most of ours are linear, a clear sign of a very different regime.

Learning a covariance matrix on-line is the main challenge not present in
earlier analyses. Even in the univariate case, the total loss of the best fixed
strategy in hindsight after T trials can lie anywhere in the range [T −T log T, T ]
(constants suppressed), while a learner that predicts a fixed variance σ2

t ≡ c in
every trial t will incur a total loss of at least T ln c. This leaves the regret on
the order of T log T in the worst case. Thus, even a linear regret bound is out of
reach unless one makes an effort to estimate the variance.

Letting σ2(t) denote the sample variance of the first t observations, it turns out
that our regret lower bounds are determined by sequences for which σ2(t) → 0 as t
goes to infinity. On the other hand, if lim inf σ2(t) > 0 – that is, if σ2(t) stays above
a fixed constant for all t > T0 – then it is easy to see from Lemmas 1 and 2 that the
regret after T trials (T > T0) is O(T0+log(T/T0)). Thus, our results show that the
performance of FTL depends on which of these two regimes the data falls under.

1.1 Related Work

On-line density estimation is a special case of sequential prediction with expert
advice, a rich and widely applicable framework with roots in information theory,
learning theory, and game theory (Cesa-Bianchi and Lugosi, 2006). In on-line
density estimation, the set of experts is often an uncountably-infinite set, and
the experts’ predictions in a trial t only depend on the outcome xt determined
by Nature. Similar in spirit to density estimation is on-line subspace tracking
(Crammer, 2006; Warmuth and Kuzmin, 2006). In the setup of Warmuth and
Kuzmin, experts are low-dimensional linear subspaces, and the loss is the squared
distance of xt to the subspace (as in PCA).

We already mentioned work by Freund (1996), Azoury and Warmuth (2001),
and Takimoto and Warmuth (2000a, 2000b). In each of the cases they considered,
the regret bound is at most logarithmic in the number of trials. For the Bernoulli
distribution, Freund showed that the Bayes algorithm with Jeffrey’s prior asymp-
totically achieves the minimax regret. For the fixed-covariance Gaussian, Taki-
moto and Warmuth gave a recursively-defined strategy that achieves the minimax
regret of (r2/2)(lnT − ln lnT +O(ln lnT/ lnT )), where ‖xt‖ ≤ r for all 1 ≤ t ≤ T .

Recent algorithms and frameworks for general on-line convex optimization
(Zinkevich, 2003; Hazan et al, 2006; Shalev-Shwartz and Singer, 2006) are appli-
cable to, among several other machine learning problems, many on-line density
estimation tasks. However, they crucially rely on features of the loss function not
enjoyed by the negative logarithm of the Gaussian density (e.g. finite minima,
bounded derivatives). The follow-the-leader strategy and its variants are also
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applicable to many problems (Hannan, 1957; Kalai and Vempala, 2005; Zinke-
vich, 2003; Hazan et al, 2006). While FTL does not guarantee sublinear regret
in many settings, several of the on-line density estimation algorithms derived by
Azoury and Warmuth (2001) are special cases of FTL and do have logarithmic
regret bounds.

2 On-Line Univariate Gaussian Density Estimation

To build intuition, we first demonstrate our results in the one-dimensional case
before showing them in the general multivariate setting.

The learning protocol is as follows.

For trial t = 1, 2, . . .

• The learner selects μt ∈ R and σ2
t ∈ R>0

�= {x ∈ R : x > 0}.
• Nature selects xt ∈ R and reveals it to the learner.
• The learner incurs loss �t(μt, σ

2
t ) (�t implicitly depends on xt).

The loss �t(μ, σ2) is the negative log-likelihood of xt under the Gaussian density
with mean μ and variance σ2 (omitting the constant 2π),

�t(μ, σ2) �= − ln
1√
σ2

exp
{

− (xt − μ)2

2σ2

}

=
(xt − μ)2

2σ2
+

1
2

ln σ2 (1)

Suppose, over the course of the learning task, a strategy S prescribes the sequence
of means and variances ((μt, σ

2
t ) : t = 1, 2, . . .). We denote by LT (S) the total

loss incurred by the learner following strategy S after T trials, and by LT (μ, σ2)
the total loss incurred by the learner following the fixed strategy that selects
(μt, σ

2
t ) = (μ, σ2) for each trial t. So, we have

LT (S) �=
T∑

t=1

�t(μt, σ
2
t ) and LT (μ, σ2) �=

T∑

t=1

�t(μ, σ2). (2)

The learner seeks to adopt a strategy so that the regret after T trials

RT (S) �= LT (S) − inf
μ∈R,σ2∈R>0

LT (μ, σ2) (3)

is as small as possible, even when Nature selects the xt adversarially. Notice that,
because LT (μ, σ2) is the likelihood of {x1, x2, . . . , xT } under a single Gaussian
model, the infimum in (3) is a maximum likelihood problem.

2.1 Degeneracies

Unfortunately, as the setting currently stands, the learner is doomed by two degen-
eracies that lead to unbounded regret. First, since we haven’t restricted the mag-
nitudes of the xt, the regret can be unbounded even after just one trial. Takimoto
and Warmuth (2000b) note that this is an issue even with fixed-variance Gaussian
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density estimation. Their remedy is to assume all |xt| ≤ r for some r ≥ 0, and we
will do the same.

The second degeneracy is specific to allowing arbitrary variances and arises
when the xt are very close to each other. In fact, it stems from a standard difficulty
with maximum likelihood estimation of Gaussians. To see the problem, suppose
that the first few observations x1, x2, . . . , xT are all the same. Then, while any rea-
sonable learner must have set some nonzero variances σ2

t for t = 1, 2, . . . , T (for
fear of facing an infinite penalty), the infimum of LT (μ, σ2) is −∞ because the
true variance of the data is 0. In fact, even if the xt are not all the same, they can
still be arbitrarily close together, leaving the infimum unbounded from below.

Our remedy is to hallucinate a zeroth trial that precludes the above degen-
eracy; it provides some small amount of variance, even if all the subsequent
observations xt are closely bunched together. Specifically, let σ̃2 > 0 be some
fixed constant. In the zeroth trial, we cause the learner to incur a loss of

�0(μ, σ2) �=
1
2

∑

x∈{±σ̃}

(
(x − μ)2

2σ2
+

1
2

ln σ2

)

=
μ2 + σ̃2

2σ2
+

1
2

ln σ2.

Essentially, we hallucinate two instances, σ̃ and −σ̃, and incur half of the usual
loss on each point.1 This can be interpreted as assuming that there is some
non-negligible variation in the sequence of instances, and for convenience, that
it appears up front. We need to include the zeroth trial loss in the total loss after
T trials. Thus, (2) should now read

LT (S) �=
T∑

t=0

�t(μt, σ
2
t ) and LT (μ, σ2) �=

T∑

t=0

�t(μ, σ2).

It can be shown that the infimum in (3) is always finite with the redefined
LT (μ, σ2). With the extra zeroth trial, the infimum is no longer the Gaussian
maximum likelihood problem; nevertheless, the form of the new optimization
problem is similar. We have

inf
μ∈R,σ2∈R>0

LT (μ, σ2) = LT (μT , σ2
T ) =

T + 1
2

+
T + 1

2
ln σ2

T > −∞ (4)

for any T ≥ 0, where

μT =
1

T + 1

T∑

t=1

xt and σ2
T =

1
T + 1

(

σ̃2 +
T∑

t=1

x2
t

)

− μ2 ≥ σ̃2

T + 1

(the last inequality follows from Cauchy-Schwarz).
Before continuing, we pause to recap our notation and setting.

• (μt, σ
2
t ) ∈ R × R>0: parameters selected by the learner in trial t ≥ 0.

• xt ∈ [−r, r]: instances revealed to the learner in trial t ≥ 1.
1 Or, we take the expected loss of a zero-mean random variable with variance σ̃2.
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• �t(μ, σ2): loss incurred for selecting (μ, σ2) in trial t ≥ 0.
• LT (S): total loss of strategy S after T trials (t = 1, 2, . . . , T ), plus the loss

incurred in the hallucinated zeroth trial (t = 0).
• RT (S) = LT (S) − inf(μ,σ2) LT (μ, σ2): regret after T trials of strategy S.

2.2 Follow-the-Leader

Motivated by the simplicity and success of the follow-the-leader based strategies
for on-line density estimation with other distributions (Azoury and Warmuth,
2001), we instantiate such a strategy for on-line Gaussian density estimation. The
name suggests using, in trial t, the setting of (μ, σ2) that minimizes Lt−1(μ, σ2).
We will denote this setting as (μt, σ

2
t ). It is precisely the values (μt−1, σ

2
t−1)

given above; without the benefit of foresight, FTL is always one step behind the
optimal strategy.

As noted in (Azoury and Warmuth, 2001), using FTL for on-line density
estimation with exponential families leads to an intuitive recursive update. For
the Gaussian distribution, it is

μt+1 = μt +
1

t + 1
(xt − μt) and σ2

t+1 =
t

t + 1
σ2

t +
t

(t + 1)2
(xt − μt)2 (5)

for t ≥ 1. The loss function in the zeroth trial is fully known; so in the base
cases, we have (μ0, σ

2
0) = (0, σ̃2) to optimize �0(μ, σ2), and (μ1, σ

2
1) = (μ0, σ

2
0)

as per FTL.
It will prove useful to derive an alternative expression for σ2

t by expanding
the recursion in (5). We have (t+1)σ2

t+1 − tσ2
t = (t/(t+1)) · (xt −μt)2 for t ≥ 1;

by telescoping,

σ2
t =

1
t

(

σ̃2 +
t−1∑

i=1

Δi

)

where Δt
�=

t

t + 1
(xt − μt)2. (6)

2.3 Regret of Following the Leader

We obtain an expression for the regret RT
�= RT (FTL) after T trials by analyz-

ing the telescoping sum of Rt − Rt−1 from t = 1 to T . The difference Rt − Rt−1

is the penalty incurred by FTL for the additional trial t. The output our analysis
will allow us to extract the core contribution of additional trials to the regret.
Looking ahead, we’ll show lower and upper bounds on the regret by focusing on
this part of Rt − Rt−1.

Lemma 1. The regret of FTL after T trials satisfies the bounds

RT ≤
T∑

t=1

1
4(t + 1)

[
(xt − μt)2

σ2
t

]2

+
1
4

ln(T + 1) +
1
12

and

RT ≥
T∑

t=1

(
1

4(t + 1)

[
(xt − μt)2

σ2
t

]2

− 1
6(t + 1)2

[
(xt − μt)2

σ2
t

]3
)

+
1
4

ln(T + 1).
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Proof. First, we make substitutions in Rt −Rt−1 using the FTL update rule (5)
and the minimizer of LT (μ, σ2) (from (4)):

Rt − Rt−1 = (Lt(FTL) − Lt(μt+1, σ
2
t+1)) − (Lt−1(FTL) − Lt−1(μt, σ

2
t ))

= (Lt(FTL) − Lt−1(FTL)) + (Lt−1(μt, σ
2
t ) − Lt(μt+1, σ

2
t+1))

=
(

(xt − μt)2

2σ2
t

+
1
2

ln σ2
t

)

+
(

t

2
+

t

2
ln σ2

t − t + 1
2

− t + 1
2

ln σ2
t+1

)

=
(xt − μt)2

2σ2
t

− t + 1
2

ln
σ2

t+1

σ2
t

− 1
2

=
(xt − μt)2

2σ2
t

− t + 1
2

ln
(

t

t + 1
+

t

(t + 1)2
· (xt − μt)2

σ2
t

)

− 1
2

=
(xt − μt)2

2σ2
t

− t + 1
2

ln
(

1 +
(xt − μt)2

(t + 1)σ2
t

)

+
t + 1

2
ln

t + 1
t

− 1
2
.

To deal with the first two summands, we employ Taylor expansions z − z2/2 +
z3/3 ≥ ln(1+z) ≥ z−z2/2 for z ≥ 0. To deal with the last two, we use Stirling’s
formula via Lemma 6 in the appendix (for a quick estimate, apply the same
Taylor expansions). Finally, since the sum is telescoping and R0 = 0, summing
Rt − Rt−1 from t = 1 to T gives the bounds. 
�

We let UBt be the term inside the summation in the upper bound in Lemma 1,
and LBt be the corresponding term in the lower bound. Using the alternative
expression for the variance (6), we get the following:

T∑

t=1

LBt ≤ RT − 1
4

ln(T + 1) ≤
T∑

t=1

UBt +
1
12

where

UBt
�=

t + 1
4

[
Δt

σ̃2 +
∑t−1

i=1 Δi

]2

and LBt
�= UBt − t + 1

6

[
Δt

σ̃2 +
∑t−1

i=1 Δi

]3

.

2.4 Lower Bounds

We exhibit a sequence (xt) that forces the regret RT incurred by FTL after T
trials to be linear in T . The idea behind the sequence is to trick the learner into
being “overly confident” about its choice of the mean μt and to then suddenly
penalize it with an observation that is far from this mean. The initial ego-building
sequence causes FTL to prescribe a σ2

t so small that when the penalty (xt−μt)2 �=
0 finally hits, the increase in regret Rt − Rt−1 is very large. In fact, this large
increase in regret happens just once, in trial T .

To make this more precise, the form of LBt suggests “choosing” Δt = 0 for
1 ≤ t ≤ T − 1 and hitting the learner with ΔT > 0. Then, while LB1 = LB2 =
· · · = LBT−1 = 0, the final contribution to the regret LBT is linear in T . The
necessary Δt are achieved with the sequence that has x1 = x2 = . . . = xT−1 = 0
and xT = r, so we get the following lower bound.
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Theorem 1. Suppose r ≤ σ̃. For any T ≥ 1, there exists a sequence (xt) such
that the regret of FTL after T trials is

RT ≥ 1
12

·
( r

σ̃

)4

· T 2

T + 1
+

1
4

ln(T + 1).

Proof. Using the sequence described above, we have ΔT = T/(T + 1) and all
other Δt = 0. By Lemma 1, substituting these values in LBt gives the bound. 
�

While Theorem 1 says nothing about the regret after T ′ > T trials, we can iterate
the argument to give a sequence that forces FTL to incur nearly linear regret
for infinitely many T . To motivate our argument, we first show one approach
that doesn’t work: namely, to keep penalizing the learner in successive trials
after the one in trial T . That is, we set Δt = 0 for t < T and then ΔT > 0,
ΔT+1 > 0, ΔT+2 > 0, and so on. The reason this is not too bad for the learner is
that the denominator of LBt increases significantly during t = T + 1, T + 2, . . .;
specifically, the denominator of LBt increases quadratically, while the leading t
only increases linearly. Eventually, the LBt become more like 1/t instead of t.

Instead, we space out the non-zero penalties so that they strike only when
FTL sets very small variances. Let f : N → N be an increasing function and f−1

be its inverse map. We will inflict the nth non-zero penalty in trial f(n), so f
can be thought of as the schedule of penalties. When f doles out the penalties
sparingly enough, the regret after f(n) trials is very close to being linear in f(n).

Theorem 2. Suppose r ≤ σ̃. Let f : N → N be any increasing function and f−1

its inverse map. Then there exists a sequence (xt) such that, for any T in the
range of f , the regret of FTL after T trials is

RT ≥ 1
6

·
( r

σ̃

)4

· T + 1
(f−1(T ) + 1)2

+
1
4

ln(T + 1).

Proof. Following the discussion above, the sequence (xt) is defined so that Δf(n) =
r2/2 for all n ≥ 1 and Δt =0 for all other t. Let xt = μt − sign(μt)r

√
(t + 1)/(2t)

for t in the range of f , and xt = μt elsewhere. In both cases, |xt| ≤ r. Then, in
trial f(n), we have

LBf(n) =
f(n) + 1

4

[
r2/2

σ̃2 + (n − 1)(r2/2)

]2

− f(n) + 1
6

[
r2/2

σ̃2 + (n − 1)(r2/2)

]3

≥ f(n) + 1
6

[
r2/2

σ̃2 + (n − 1)(r2/2)

]2

=
f(n) + 1

6

(
r2/2
σ̃2/2

)2
⎡

⎣ 1

2 + (n − 1) r2/2
σ̃2/2

⎤

⎦

2

≥ f(n) + 1
6

( r

σ̃

)4 1
(n + 1)2

.

Then, Lemma 1 conservatively gives Rf(n) ≥ LBf(n) + (1/4) ln(f(n) + 1). 
�

If f is a polynomial of degree p ≥ 1, we can actually sum (integrate) the LBt

from t = 1 to T (as opposed to just taking the final term LBT ) and yield a
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tighter bound RT ≥ c · (T + 1)1−1/p + (1/4) ln(T + 1) for some positive constant
c. Notice that when f(n) = Θ(n) (the schedule used in our first attempt to give
the bound), the bound has only the log term. Of course, there exists penalty
schedules f for which T/(f−1(T ))2 = ω(T 1−1/p) for any p ≥ 1. For example, if
the penalty schedule is f(n) = Θ(exp(n2)), then T/(f−1(T ))2 is Ω(T/ logT ).

2.5 Upper Bounds

We show two types of upper bounds on the regret of FTL. The first shows that
the regret after T trials is at most linear in T . This bound is not immediately
apparent from the Taylor approximation in Lemma 1: the σ2

t can be as small as
σ̃2/(t + 1), so each UBt can be linear in t, which näıvely would give a quadratic
upper bound on RT . But this cannot be the case for all t: after all, σ2

t can only
be very small in trial t if earlier trials have been relatively penalty-free. The key
to the analysis is the potential function argument of Lemma 2, which shows that
UBt is at most a constant on average, and allows us to conclude the following.

Theorem 3. For any T ≥ 1 and any sequence (xt), the regret of FTL after T
trials is

RT ≤ 1
4

·
((

2r

σ̃

)4

+
(

2r

σ̃

)2
)

· (T + 1) +
1
4

ln(T + 1) +
1
12

.

Proof. We have |μt| ≤ r since it is a convex combination of real numbers in
[−r, r]. So |xt − μt| ≤ 2r by the triangle inequality; the theorem follows from
combining Lemma 1 and Lemma 2 (below) with c = (2r)2/σ̃2, a1 = 0, and
at = Δt−1/σ̃2 for 2 ≤ t ≤ T + 1. 
�

Lemma 2. For any a1, a2, . . . , aT ∈ [0, c],

T∑

t=1

t

[
at

1 +
∑t−1

i=1 ai

]2

≤ (c2 + c) · T ·
(

1 − 1

1 +
∑T

t=1 at

)

.

The bound in the lemma captures the fact that when
∑t−1

i=1 ai is small, a large
penalty may be imminent, but when

∑t−1
i=1 ai is large, the tth penalty cannot be

too large. The final parenthesized term 1 − 1/(1+
∑T

i=1 ai) is treated as 1 when
we apply this lemma, but the more elaborate form is essential for the proof.

Proof. Trivial if c = 0. Otherwise, we proceed by induction on T . In the base case,
we need to show a2

1 ≤ (c2 + c)(1 − 1/(1 + a1)); this follows because a1(1 + a1) ≤
c2 + c. For the inductive step, we assume the bound holds for T − 1 and show
that it holds for T . Let ST = 1 + a1 + . . . aT−1. We need

(c2 + c)(T − 1)
(

1 − 1
ST

)

+ T

[
aT

ST

]2

≤ (c2 + c)T
(

1 − 1
ST + aT

)

.
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After rearranging, this reads

1 + T

(
1

ST
− 1

ST + aT

)

≥ 1
ST

+
T

c2 + c

[
aT

ST

]2

.

Since ST ≥ 1 and aT ≤ c, we have 1 ≥ 1/ST and 1/ST − 1/(ST + aT ) ≥
(aT /ST )2/(c2 + c), which suffices to give the required bound. 
�

The second upper bound we show concerns the average (per-trial) regret, RT /T .
This quantity reflects the improvement of a strategy over time; if RT /T tends
to a positive constant or worse, the strategy can be said to either stagnate or
diminish over time.

Although Theorems 1 and 3 show that the worst-case regret of FTL after T
trials is proportional to T , they don’t imply that the average regret tends to a
positive constant. Theorem 2 exhibits a sequence (xt) for which the regret after
T trials is nearly linear in T for infinitely many T , but the average regret still
tends to 0. The following theorem complements this sublinear lower bound by
showing that, indeed, the average regret of FTL is at most zero in the limit.

Theorem 4. For any sequence (xt), the average regret of FTL after T trials
RT /T satisfies

lim sup
T≥1

RT

T
≤ 0.

Proof. We’ll show, for any ε > 0 sufficiently small, that lim supT≥1 RT /T ≤ ε.
The idea is to partition the trials into two sets: those in which Δt ≤ bε, for
some constant bε (independent of T ), and those in which Δt > bε. The former
trials produce small penalties: the constant bε is chosen so that the average of
these penalties is at most ε. The latter set of trials have larger deviations-from-
the-mean, but therefore cause the variance to rise substantially, which means
they cannot contribute too heavily to regret. To analyze the trials in this second
set, we consider the penalty schedule f : N → N such that the nth trial in this
second set is f(n). Because each Δf(n) is (relatively) large, we can show that,
no matter the schedule f , the cumulative penalty from these trials is o(T ). This
then implies that the average penalty is o(1). The remaining terms in the regret
are at most logarithmic in T , so they contribute o(1) on average, as well.

We just need to detail our handling the penalties from the two sets of trials. Let
A

�= {t ∈ N : Δt ≤ bε} and B
�= {t ∈ N : Δt > bε}, where bε

�= σ̃2(
√

1 + 4ε−1)/2.
Notice that σ̃2/bε ≥ 1 whenever ε ≤ 3/4. Furthermore, let At �= A∩{1, 2, . . . , t}
and Bt �= B ∩ {1, 2, . . . , t}. By Lemma 2 and the choice of bε,

1
T

∑

t∈AT

UBt ≤ 1
4

(
b2
ε

σ̃4
+

bε

σ̃2

)

+ o(1) < ε + o(1).

If B is finite, then we’re done. So assume B is infinite and index it with N

by assigning the nth smallest element of B to f(n). Define f−1(T ) = max{n :
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f(n) ≤ T }, so we have f(f−1(T )) ≤ T with equality when T is in the image of
f . Then, using the fact bε < Δt ≤ (2r)2,

1
T

∑

t∈BT

UBt =
1
T

∑

t∈BT

t + 1
4

[
Δt

σ̃2 +
∑t−1

i=1 Δi

]2

≤ 4r4

T

∑

t∈BT

t + 1
(σ̃2 +

∑
i∈Bt−1 Δi)2

≤ 4r4

T

f−1(T )∑

n=1

f(n) + 1
(σ̃2 + (n − 1)bε)2

≤ 4r4

Tb2
ε

f−1(T )∑

n=1

f(n) + 1
n2

≤ 4r4

Tb2
ε

(

o(f(f−1(T ))) +
π2

6

)

= o(1),

where the second-to-last step follows from Lemma 3. 
�

The following is a consequence of the fact that
∑

n≥1 1/n2 is finite.

Lemma 3. If f : N → N is strictly increasing, then
∑n

k=1 f(k)/k2 = o(f(n)).

Proof. Fix any ε > 0, n0 ∈ N such that
∑∞

k=n0+1 1/k2 ≤ ε/2, and n1 ∈ N such
that f(n0)/f(n1) ≤ 3ε/π2. Then for any n ≥ n1,

1
f(n)

n∑

k=1

f(k)
k2

=
1

f(n)

n0∑

k=1

f(k)
k2

+
1

f(n)

n∑

k=n0+1

f(k)
k2

≤ f(n0)
f(n)

n0∑

k=1

1
k2

+
n∑

k=n0+1

1
k2

which, by the choices of n0 and n1, is at most ε. 
�

3 On-Line Multivariate Gaussian Density Estimation

In the d-dimensional setting, the learning protocol is generalized to the following.

For trial t = 1, 2, . . .

• The learner selects μt ∈ R
d and Σt ∈ S

d�0
�= {X ∈ R

d×d : X =
X�, X � 0} (the cone of symmetric positive-definite d × d matrices).

• Nature selects xt ∈ R
d and reveals it to the learner.

• The learner incurs loss �t(μt, Σt).

The loss �t(μ, Σ) is the negative log-likelihood of xt under the multivariate
Gaussian density with mean μ and covariance matrix Σ (omitting the (2π)d),

�t(μ, Σ) �=
1
2
(xt − μ)�Σ−1(xt − μ) +

1
2

ln |Σ|

where |X| denotes the determinant of a matrix X.
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3.1 Multivariate Degeneracies

Even in the case d = 1, we had to amend the setting to avoid trivial conclusions.
Recall, the one-dimensional degeneracies occur when (1) the |xt| are unbounded,
or (2) the xt are all (nearly) the same. For arbitrary d, the first issue becomes
unbounded ‖xt‖; the remedy is to assume a bound ‖xt‖ ≤ r for all t. The
second issue is similar to the one-dimensional case, except now the issue can
occur along any dimension, such as when the xt lie in (or are arbitrarily close
to) a k < d dimensional subspace. As before, we’ll hallucinate a zeroth trial to
preclude singularity in the data. For a known constant σ̃2 > 0, the loss in this
trial is

�0(μ, Σ) �= Ev

(
1
2
(v − μ)�Σ−1(v − μ) +

1
2

ln |Σ|
)

where v is any zero-mean random vector with Evv� = σ̃2I (for example, take v
to be uniform over the the 2d points {±σ̃

√
dei : i = 1, 2, . . . , d}, where ei is the

ith elementary unit vector). The zeroth trial can be seen as assuming a minimal
amount of full-dimensional variation in the data. Again, including the zeroth
trial loss in the total loss is enough to ensure a non-trivial infimum of LT (μ, Σ)
over μ ∈ R

d and Σ ∈ S
d
�0. We have

inf
μ∈Rd,Σ∈S

d
�0

LT (μ, Σ) = LT (μ, Σ) =
d(T + 1)

2
+

T + 1
2

ln |Σ| > −∞ (7)

for any T ≥ 0, where

μ =
1

T + 1

T∑

t=1

xt and Σ =
1

T + 1

(

σ̃2I +
T∑

t=1

xtx
�
t

)

− μμ� � σ̃2

T + 1
I � 0.

3.2 Multivariate Follow-the-Leader and Regret Bounds

Follow-the-leader for multivariate Gaussian density estimation admits the fol-
lowing recursion for its setting of (μt, Σt): for t ≥ 1

μt+1 = μt +
1

t + 1
(xt − μt) and (t + 1)Σt+1 = tΣt + Δt (8)

where Δt = (xt − μt)(xt − μt)�t/(t + 1); the base cases are (μ0, Σ0) =
(μ1, Σ1) = (0, σ̃2I).

Our bounds for FTL in the univariate case generalize to the following for the
multivariate setting.

Theorem 5. Suppose r ≤ σ̃. For any T ≥ d, there exists a sequence (xt) such
that the regret of FTL after T trials is

RT ≥ d

12
·
( r

σ̃

)4

·
(

T − d

2
+

1
2

) (
T − d + 1
T − d + 2

) (

1 − d − 1
(T − d + 1)(T − d + 2)

)2

+
d

4
ln(T + 1).
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Theorem 6. Suppose r ≤ σ̃. For any strictly increasing f : N → N with f(n) ≥
dn, there exists a sequence (xt) such that, for any T in the range of f , the regret
of FTL after T trials is

RT ≥ d

6
·
( r

σ̃

)4

· T − (d/2) + (3/2)
(f−1(T ) + 1)2

+
d

4
ln(T + 1).

Theorem 7. For any sequence (xt) and any T ≥ 1, the regret of FTL after T
trials is

RT ≤ d

4
·
((

2r

σ̃

)4

+
(

2r

σ̃

)2
)

· (T + 1) +
d

4
ln(T + 1) +

d

12
.

Theorem 8. For any sequence (xt), the average regret of FTL after T trials
RT /T satisfies lim supT≥1 RT /T ≤ 0.

We achieve the extra factor d in the lower bounds by using the sequences from
the one-dimensional bound but repeating each non-zero penalty d times – one
for each orthogonal direction. Some care must be taken to ensure that ‖xt‖ ≤ r;
also, the non-zero penalties are not all of the same value because they occur in
different trials. For the upper bounds, the potential function has to account for
variation in all directions; thus it is now based on Tr(Σ−1

T+1) as opposed to the
variance in any single direction.

3.3 Proof Sketches

We first need to characterize the penalty of FTL for each trial.

Lemma 4. The regret of FTL after T trials satisfies the bounds

RT ≤
T∑

t=1

((xt − μt)�Σ−1
t (xt − μt))2

4(t + 1)
+

d

4
ln(T + 1) +

d

12
and

RT ≥
T∑

t=1

(
((xt − μt)�Σ−1

t (xt − μt))2

4(t + 1)

− ((xt − μt)�Σ−1
t (xt − μt))3

6(t + 1)2

)

+
d

4
ln(T + 1).

Proof. We proceed as in Lemma 1, using (8) and (7) to get

Rt − Rt−1 =
1
2
(xt − μt)�Σ−1

t (xt − μt) − d

2
+

d(t + 1)
2

ln
t + 1

t

− t + 1
2

ln
∣
∣
∣
∣I +

1
t + 1

(xt − μt)(xt − μt)�Σ−1
t

∣
∣
∣
∣ .

The matrix inside the log-determinant has d − 1 eigenvalues equal to 1 and one
eigenvalue equal to 1+(xt −μt)�Σ−1

t (xt −μt)/(t+1). Since the determinant of
a matrix is the product of its eigenvalues, we can apply Taylor approximations
z − z2/2+ z3/3 ≥ ln(1+ z) ≥ z − z2/2 to the log-determinant, and Lemma 6 (in
the appendix) to the other logarithm. 
�
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Once again, we’ll focus on the terms inside the summation. Let UBt be the term
under the summation in the upper bound, and LBt be the that in the lower
bound. Expanding the recursion for Σt in (8), we can express UBt and LBt as

UBt
�= (t + 1)Tr(Δt(σ̃2I +

∑t−1
i=1 Δi)−1)2/4 and

LBt
�= UBt − (t + 1)Tr(Δt(σ̃2I +

∑t−1
i=1 Δi)−1)3/6

Lower Bounds. For Theorem 5, we want to cause non-zero penalties in or-
thogonal directions once the variance in these directions are small. The sequence
begins with xt = 0 for t ≤ T − d, and for i = 1, 2, . . . , d, has

xT−d+i = μT−d+i + r

√

1 − ‖μT−d+i‖2

r2
ei.

For Theorem 6, we combine the techniques from Theorem 5 and Theorem 2.
Non-zero penalties occur in trials f(n)−d+1, f(n)−d+2, . . . , f(n) with ‖δt‖2 =
r2/2 in these trials and ‖δt‖2 = 0 in other trials.

Upper Bounds. The following generalization of Lemma 2 is the key argument
for our upper bounds.

Lemma 5. For any a1, a2, . . . , aT ∈ R
d with ‖at‖2 ≤ c,

T∑

t=1

tTr

⎛

⎝At

(

I +
t−1∑

i=1

Ai

)−1
⎞

⎠

2

≤ (c2 + c) · T ·

⎛

⎝d − Tr

⎛

⎝

(

I +
T∑

i=1

Ai

)−1
⎞

⎠

⎞

⎠

where Ai = aia
�
i for all i.

Proof. Trivial if c = 0. Otherwise we proceed by induction on T . In the base case,
we need d(c2 + c) − (c2 + c)Tr((I + A1)−1) − ‖a1‖4 ≥ 0. Using the Sherman-
Morrison formula (for a matrix M and vector v, (M + vv�)−1 = M−1 −
(M−1vv�M−1)/(1 + v�M−1v)), we have

(c2+c)Tr
(
(I + A1)

−1
)

=(c2+c)Tr
(

I − A1

1 + ‖a1‖2

)

= d(c2+c)− (c2 + c)‖a1‖2

1 + ‖a1‖2

and also
(c2 + c)‖a1‖2

1 + ‖a1‖2
− ‖a1‖4 ≥ c‖a1‖2 − ‖a1‖4 ≥ 0.

Thus the base case follows. For the inductive step, we assume the bound holds
for T − 1 and show that it holds for T . Let S = I + A1 + . . . + AT−1 and
A = aa� = AT . We need

(c2+c)(T −1)
(
d − Tr

(
S−1

))
+TTr

(
AS−1

)2 ≤ (c2+c)T
(
d − Tr

(
(S + A)−1

))
,
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which, after rearranging, reads

d + T
(
Tr

(
S−1

)
− Tr

(
(S + A)−1

))
≥ Tr

(
S−1

)
+

TTr
(
AS−1

)2

c2 + c
.

Since S � I, we have Tr
(
S−1

)
≤ d, which takes care of the first terms on each

side. For the remaining terms, first note that Tr(AS−1) ≤ ‖a‖2 ≤ c. Then, using
Sherman-Morrison again gives

Tr
(
S−1

)
− Tr

(
(S + A)−1

)
= Tr

(
S−1AS−1

1 + Tr (AS−1)

)

=
‖a‖2a�S−2a

‖a‖2 (1 + Tr (AS−1))
.

The denominator is at most c(1 + c), so it remains to show ‖a‖2Tr(a�S−2a) ≥
(a�S−1a)2. Without loss of generality, ‖a‖ = 1 and S is diagonal with eigen-
values λ1, . . . , λd > 0. Then a2

1/λ2
1 + . . .+a2

d/λ2
d ≥ (a2

1/λ1 + . . .+a2
d/λd)2 follows

from Jensen’s inequality. 
�

For Theorem 8, we proceed as in Theorem 4, but to handle the trials in B, we
have to deal with each direction separately, so further partitions are needed.

4 Conclusion and Open Questions

On-line density estimation with a Gaussian distribution presents difficulties
markedly different from those usually encountered in on-line learning. They ap-
pear even in the one-dimensional setting and scale up to the multivariate case
as familiar issues in data analysis (e.g. unknown data scale, hidden low dimen-
sional structure). Although the natural estimation strategy remains vulnerable
to hazards after the problem is rid of degeneracies, our results suggest that it is
still sensible even under adversarial conditions.

We still do not know the minimax strategy for on-line Gaussian density es-
timation with arbitrary covariances – a question first posed by Warmuth and
Takimoto (2000b) – although our work sheds some light on the problem. While
using arbitrary-covariance multivariate Gaussians is a step forward from sim-
pler distributions like the fixed-covariance Gaussian and Bernoulli, it would also
be interesting to consider on-line estimation with other statistical models, such
as low-dimensional Gaussians or a mixture of Gaussians. Extending the work
on on-line PCA (Warmuth and Kuzmin, 2006) may be one approach for the
first.
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Appendix

Lemma 6. For any n ∈ N,

(n + 1) ln
n + 1

n
= 1 +

1
2

ln
n + 1

n
+ s(n) − s(n + 1)

where s(n) = 1/(12n) − 1/(360n3) + . . . is (the tail of) Stirling’s series.

Proof. Apply Stirling’s formula: lnn! = n lnn − n + (1/2) ln(2πn) + s(n). 
�
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Abstract. In this paper the concept of asymptotic complexity of lan-
guages is introduced. This concept formalises the notion of learnability in
a particular environment and generalises Lutz and Fortnow’s concepts of
predictability and dimension. Then asymptotic complexities in different
prediction environments are compared by describing the set of all pairs of
asymptotic complexities w.r.t. different environments. A geometric char-
acterisation in terms of generalised entropies is obtained and thus the
results of Lutz and Fortnow are generalised.

1 Introduction

We consider the following on-line learning problem: given a sequence of pre-
vious outcomes x1, x2, . . . , xn−1, a prediction strategy is required to output a
prediction γn for the next outcome xn.

We assume that outcomes belong to a finite set Ω; it may be thought of as
an alphabet and sequences as words. We allow greater variation in predictions
though. Predictions may be drawn from a compact set. A loss function λ(ω, γ) is
used to measure the discrepancy between predictions and actual outcomes. The
performance of the strategy is measured by the cumulative loss

∑n
i=1 λ(xi, γi).

Different aspects of this prediction problem have been extensively studied; see
[1] for an overview.

A loss function specifies a prediction environment. We study the notion of
predictability in a particular environment. There are different approaches to
formalising this intuitive notion. One is predictive complexity introduced in [2].
In this paper we introduce another formalisation, namely, asymptotic complexity.

Asymptotic complexity applies to languages, i.e., classes of sequences of out-
comes. Roughly speaking, the asymptotic complexity of a language is the loss per
element of the best prediction strategy. This definition can be made precise in
several natural ways. We thus get several different variants. One of them, which
we call lower non-uniform complexity, generalises the concepts of dimension and
predictability from [3] (the conference version was presented at COLT 2002).
In our framework dimension and predictability can be represented by means of
complexities for two specific games.

In this paper we study the following problem. Let AC1 be asymptotic complex-
ity specified by a loss function λ1 and let AC2 be asymptotic complexity specified

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 293–307, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



294 Y. Kalnishkan, V. Vovk, and M.V. Vyugin

by a loss function λ2. What relations exist between them? We give a complete
answer to this question by describing the set (AC1(L), AC2(L)), where L ranges
over all languages, on the Euclidean plane. The main theorem is formulated in
Sect. 4. This set turns out to have a simple geometric description in terms of
so called generalised entropy. Generalised entropy is the optimal expected loss
per element. In the case of the logarithmic loss function, generalised entropy
coincides with Shannon entropy. Generalised entropy is discussed in [4]. In [5]
connections between generalised entropy and predictive complexity are studied.
We thus generalise the result from [3], where only the case of predictability and
dimension is considered.

Our main result holds for all convex games. We show that this requirement
cannot be omitted.

The definitions and results in this paper are formulated without any reference
to computability. However all constructions in the paper are effective. All the
results from the paper can therefore be reformulated in either computable or
polynomial-time computable fashion provided the loss functions are computable
in a sufficiently efficient way. We discuss this in more detail in Sect. 6.

2 Preliminaries

The notation N refers to the set of all non-negative integers {0, 1, 2, . . .}.

2.1 Games, Strategies, and Losses

A game G is a triple 〈Ω, Γ, λ〉, where Ω is an outcome space, Γ is a prediction
space, and λ : Ω × Γ → [0, +∞] is a loss function.

We assume that Ω = {ω(0), ω(1), . . . , ω(M−1)} is a finite set of cardinality
M < +∞. If M = 2, then Ω may be identified with B = {0, 1}; we will call
this case binary. We denote the set of all finite sequences of elements of Ω by
Ω∗ and the set of all infinite sequences by Ω∞; bold letters x, y etc. are used
to refer to both finite and infinite sequences. By |x| we denote the length of
a finite sequence x, i.e., the number of elements in it. The set of sequences of
length n, n = 0, 1, 2, . . ., is denoted by Ωn. We will also be using the notation
�ix for the number of ω(i)s among elements of x. Clearly,

∑M−1
i=0 �ix = |x| for

any finite sequence x. By x|n we denote the prefix of length n of a (finite of
infinite) sequence x.

We also assume that Γ is a compact topological space and λ is continuous
w.r.t. the topology of the extended real line [−∞, +∞]. We treat Ω as a discrete
space and thus the continuity of λ in two arguments is the same as continuity
in the second argument.

In order to take some important games into account we must allow λ to
attain the value +∞. However, we assume that for every γ0 ∈ Γ such that
λ(ω∗, γ0) = +∞ for some ω∗ ∈ Ω, there is a sequence γ1, γ2, . . . ∈ Γ such that
γn → γ0 and λ(ω, γn) < +∞ for all n = 1, 2, . . . and all ω ∈ Ω (but, by con-
tinuity, λ(ω∗, γn) → +∞ as n → +∞). In other terms, we assume that every
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prediction γ0 leading to infinite loss can be approximated by predictions giving
finite losses.

The following are examples of binary games with Ω = B and Γ = [0, 1]: the
square-loss game with the loss function λ(ω, γ) = (ω − γ)2, the absolute-loss
game with the loss function λ(ω, γ) = |ω − γ|, and the logarithmic game with

λ(ω, γ) =
{

− log2(1 − γ) if ω = 0
− log2 γ if ω = 1 .

A prediction strategy A : Ω∗ → Γ maps a finite sequence of outcomes to a
prediction. We say that on a finite sequence x = x1x2 . . . xn ∈ Ωn the strategy
A suffers loss LossG

A(x) =
∑n

i=1 λ(xi, A(x1x2 . . . xi−1)). By definition, we let
LossG

A(Λ) = 0, where Λ is the sequence of length 0.
We need to define one important class of games. The definition is in geometric

terms. An M -tuple (s0, s1, . . . , sM−1) ∈ [0, +∞]M is a superprediction w.r.t. G
if there is a prediction γ ∈ Γ such that λ(ω(i), γ) ≤ si for all i = 0, 1, . . . , M − 1.
We say that the game G is convex if the finite part of its set of superpredictions,
S ∩ R

M , where S is the set of superpredictions, is convex.
It is shown in [6] that convexity is equivalent to another property called weak

mixability. We will be using these terms as synonyms.

2.2 Generalised Entropies

Fix a game G = 〈Ω, Γ, λ〉. Let P(Ω) be the set of probability distributions on
Ω. Since Ω is finite, we can identify P(Ω) with the standard (M − 1)-simplex
PM = {(p0, p1, . . . , pM−1) ∈ [0, 1]M |

∑M−1
i=0 pi = 1}.

Generalised entropy H : P(Ω) → R is the infimum of expected loss over γ ∈ Γ ,
i.e., for p∗ = (p0, p1, . . . , pM−1) ∈ P(Ω)

H(p∗) = min
γ∈Γ

Ep∗λ(ω, γ) = min
γ∈Γ

M−1∑

i=0

piλ(ω(i), γ) .

The minimum in the definition is achieved because λ is continuous and Γ
compact.

Since pi can accept the value 0 and λ(ω(i), γ) can be +∞, we need to resolve
the possible ambiguity. Let us assume that in this definition 0× (+∞) = 0. This
is the same as replacing the minimum by the infimum over the values of γ ∈ Γ
such that λ(ω, γ) < +∞ for all ω ∈ Ω.

In the binary case Ω = B the definition can be simplified. Let p be the
probability of 1. Clearly, p fully specifies a distribution from P(B) and thus
P(B) can be identified with the line segment [0, 1]. We get H(p) = minγ∈Γ [(1 −
p)λ(0, γ) + pλ(1, γ)].

If it is not clear from the context what game we are referring to, we will use
subscripts for H . We will use the term G-entropy to refer to generalised entropy
w.r.t. the game G. The notation ABS, SQ, and LOG will be used to refer to the
absolute-loss, square-loss, and logarithmic games respectively, e.g., we will write
‘ABS-entropy’.
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3 Asymptotic Complexities

Fix a game G = 〈Ω, Γ, λ〉. We are going to define measures of complexity for
languages, i.e., sets of sequences. The finite and infinite sequences should be
considered separately.

3.1 Finite Sequences

In this subsection we consider languages L ⊆ Ω∗. We shall call the values

AC(L) = inf
A

lim sup
n→+∞

max
x∈L∩Ωn

LossA(x)
n

, (1)

AC(L) = inf
A

lim inf
n→+∞ max

x∈L∩Ωn

LossA(x)
n

(2)

upper and lower asymptotic complexity of L w.r.t. the game G. As with gener-
alised entropies, we will use subscripts for AC to specify a particular game if it
is not clear from the context.

In order to complete the definition, we must decide what to do if L contains
no sequences of certain lengths at all. In this paper we are concerned only with
infinite sets of finite sequences. One can say that asymptotic complexity of a
finite language L ⊆ Ω∗ is undefined. Let us also assume that the limits in (1)
and (2) are taken over such n that L ∩ Ωn 
= ∅. An alternative arrangement is
to assume that in (1) max ∅ = 0, while in (2) max∅ = +∞.

3.2 Infinite Sequences

There are two natural ways to define complexities of languages L ⊆ Ω∞.
First we can extend the notions we have just defined. Indeed, every nonempty

set of infinite sequences can be identified with the set of all finite prefixes of all
its sequences. The language thus obtained is infinite and has upper and lower
complexities. For the resulting complexities we shall retain the notation AC(L)
and AC(L). We shall refer to those complexities as uniform.

The second way is the following. Let

AC(L) = inf
A

sup
x∈L

lim sup
n→+∞

LossA(x|n)
n

and AC(L) = inf
A

sup
x∈L

lim inf
n→+∞

LossA(x|n)
n

.

We shall refer to this complexity as non-uniform.
The concept of asymptotic complexity generalises certain complexity measures

studied in the literature. The concepts of predictability and dimension studied
in [3] can be easily reduced to asymptotic complexity: the dimension is the
lower non-uniform complexity w.r.t. a multidimensional generalisation of the
logarithmic game and predictability equals 1 − AC, where AC is the lower non-
uniform complexity w.r.t. a multidimensional generalisation of the absolute-loss
game.
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3.3 Differences Between Complexities

Let us show that the complexities we have introduced are different.
First let us show that upper and lower complexities differ. For example,

consider the absolute-loss game. Let 0(n) be the sequence of n zeros and let
Ξn = {0(n)} × B

n. Consider the language L =
∏∞

i=0 Ξ22i ⊆ B
∞. In other terms,

L consists of sequences that have alternating constant and random segments. It
is easy to see that AC(L) = AC(L) = 1/2, while AC(L) = AC(L) = 0.

Secondly, let us show that uniform complexities differ from non-uniform. Once
again, consider the absolute-loss game. Let L ⊆ B

∞ be the set of all sequences
that have only zeros from some position on. In other terms, L = ∪∞

n=0(B
n ×

{0(∞)}), where 0(∞) is the infinite sequence of zeros. We have AC(L) = AC(L) =
0 while AC(L) = AC(L) = 1/2.

4 Main Result

Consider two games G1 and G2 with the same finite set of outcomes Ω. Let
H1 be G1-entropy and H2 be G2-entropy. The G1/G2-entropy set is the set
{(H1(p), H2(p)) | p ∈ P(Ω)}. The convex hull of the G1/G2-entropy set is called
the G1/G2-entropy hull.

We say that a closed convex S ⊆ R
2 is a spaceship if for every pair of

points (x1, y1), (x2, y2) ∈ S the point (max(x1, x2), max(y1, y2)) belongs to S.
The spaceship closure of a set H ⊆ R

2 is the smallest spaceship containing H,
i.e., the intersection of all spaceships containing H.

We can now formulate the main result of this paper.

Theorem 1. If games G1 and G2 have the same finite outcome space Ω and
are convex, then the spaceship closure of the G1/G2-entropy hull coincides with
the following sets, where AC1 and AC2 are asymptotic complexities w.r.t. G1

and G2:

– {(AC1(L), AC2(L)) | L ⊆ Ω∗ and L is infinite};
– {(AC1(L), AC2(L)) | L ⊆ Ω∗ and L is infinite};
– {(AC1(L), AC2(L)) | L ⊆ Ω∞ and L 
= ∅};
– {(AC1(L), AC2(L)) | L ⊆ Ω∞ and L 
= ∅};
– {(AC1(L), AC2(L)) | L ⊆ Ω∞ and L 
= ∅};
– {(AC

1
(L), AC

2
(L)) | L ⊆ Ω∞ and L 
= ∅}.

In other words, the spaceship closure S of the entropy hull contains all points
(AC1(L), AC2(L)), where AC is one type of complexity, and these points fill the
set S as L ranges over all languages that have complexity. The last item on the
list covers Theorem 5.1 (Main Theorem) from [3].

Appendices A and B contain a discussion of shapes of the entropy hull and
some examples. The theorem is proved in Sect. 5.

The requirement of convexity cannot be omitted. For example, consider the
simple prediction game 〈B, B, λ〉, where λ(ω, γ) is 0 if ω = γ and 1 otherwise.
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The convex hull of the set of superpredictions w.r.t. the simple prediction
game coincides with the set of superpredictions w.r.t. the absolute-loss game.
Geometric considerations imply that their generalised entropies coincide. Thus
the maximum of the generalised entropy w.r.t. the simple prediction game is 1/2
(see Appendix B). On the other hand, it is easy to check that AC(B∗) = 1, where
AC is any of the asymptotic complexities w.r.t. the simple prediction game.

The statement of the theorem does not apply to pairs (AC1(L), AC2(L)) or
pairs (AC1(L), AC

2
(L)). Indeed, let G1 = G2. Then H1 = H2 and the entropy

hull with its spaceship closure are subsets of the bisector of the first quadrant.
At the same time we know that upper and lower complexities differ and thus
there will be pairs outside the bisector.

5 Proof of the Main Theorem

In this section we prove Theorem 1.
The following lemma proved in Appendix C allows us to ‘optimise’ the per-

formance of a strategy w.r.t. two games. We shall call it recalibration lemma.

Lemma 1. If G1 and G2 are convex games with the same finite set of outcomes
Ω and H is the G1/G2-entropy hull, then for every prediction strategy A and
positive ε there are prediction strategies A1

ε and A2
ε and a function f : N → R

such that f(n) = o(n) as n → +∞ and for every sequence x ∈ Ω∗ there exists a
point (ux, vx) ∈ H such that the following inequalities hold:

ux|x| ≤ LossG1
A (x) + ε|x| , (3)

LossG1
A1

ε
(x) ≤ |x|(ux + ε) + f(|x|) , (4)

LossG2
A2

ε
(x) ≤ |x|(vx + ε) + f(|x|) . (5)

Below in Subsect. 5.1 we use this lemma to show that pairs of complexities belong
to the spaceship closure. It remains to show that the pairs fill in the closure and
it is done in Appendix D.

5.1 Every Pair of Complexities Belongs to the Spaceship Closure of
the Hull

Let AC be one of the types of complexity we have introduced. Let us show that
for every language L the pair (AC1(L), AC2(L)) belongs to the spaceship closure
S of the entropy hull.

We start by showing that the pair (AC1(L), AC2(L)) belongs to the cucumber
closure C of the G1/G2-entropy hull H (see Appendix A for a definition).

Let AC1(L) = c. Lemma 1 implies that cmin ≤ c ≤ cmax, where cmin =
minp∈P(Ω) H1(p) and cmax = maxp∈P(Ω) H1(p).

We need to show that c2 ≤ AC2(L) ≤ c1, where c1 and c2 correspond to
intersections of the vertical line x = c with the boundary of the cucumber as
shown on Fig. 1.



Generalised Entropy and Asymptotic Complexities of Languages 299

Cc1

c

c2

Fig. 1. A section of the cucumber hull

Let f1, f2 : [cmin, cmax] → R be the non-decreasing functions that bound C
from above and below, i.e., C = {(x, y) | x ∈ [cmin, cmax] and f2(x) ≤ y ≤ f1(x)}
(see Appendix A). We have f1(c) = c1 and f2(c) = c2. The function f1 is concave
and the function f2 is convex; therefore they are continuous.

Since AC1(L) = c, for every ε > 0 there is a prediction strategy A such that
for certain infinite sets of finite sequences x there are functions g : N → R such
that g(n) = o(n) as n → +∞ and for all appropriate x we have

LossG1
A (x) ≤ (c + ε)|x| + g(|x|) . (6)

Let us apply Lemma 1 to A and ε. We obtain the strategies A1
ε and A2

ε and a
function f : N → R such that f(n) = o(n) as n → +∞ and for every x there
exists a point (ux, vx) ∈ H such that the inequalities

LossG1
A1

ε
(x) ≤ |x|(ux + ε) + f(|x|) ,

LossG2
A2

ε
(x) ≤ |x|(vx + ε) + f(|x|) ,

|x|ux ≤ LossG1
A (x) + ε|x| ≤ (c + 2ε)|x| + g(|x|)

hold. The last inequality implies that ux ≤ c + 2ε + o(1) at |x| → ∞ and thus
for all sufficiently long sequences x we have ux ≤ c + 3ε. Therefore the point
(ux, vx) lies to the left of the line x = c + 3ε. This implies vx ≤ f1(c + 3ε) and
AC2(L) ≤ f1(x + 3ε) + ε. Since f1 is continuous and ε > 0 is arbitrary, we get
AC2(L) ≤ f1(c) = c1.

Now let us prove that AC2(L) ≥ c2. Assume the contrary. Let AC2(L) =
c2 − δ2, where δ2 > 0. There is δ1 > 0 such that f2(c − δ1) = c2 − δ2. By
applying the same argument as above to the ‘swapped’ situation, one can show
that AC1(L) ≤ c − δ1. This contradicts the assumption that AC1(L) = c.

In order to show that (AC1(L), AC2(L)) ∈ S, it remains to prove that
(AC1(L), AC2(L)) /∈ C \ S. Let U = {(u, v) ∈ R

2 | ∃(h1, h2) ∈ H : h1 ≤
u and h2 ≤ v} be the set of points that lie ‘above’ the entropy set H. Let ei,
i = 0, 1, . . . , M − 1, be the vector with the i-th component equal to 1 and all
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other components equal to 0. Clearly, ei ∈ PM ; it represents a special degenerate
distribution. We have H1(ei) = minγ∈Γ1 λ1(ω(i), γ). For any prediction strategy
A we get

LossG1
A (x) ≥

M−1∑

i=0

�ix min
γ∈Γ1

λ1(ω(i), γ) = |x|
M−1∑

i=0

piH1(ei) ,

where pi = �ix/|x|. The same holds for G2. We thus get inequalities

LossG1
A1

(x)
|x| ≥

M−1∑

i=0

piH1(ei) and
LossG2

A2
(x)

|x| ≥
M−1∑

i=0

piH2(ei) ,

where pi depend only on x, for all strategies A1 and A2. Therefore the pair
(LossG1

A1
(x)/|x|, LossG2

A2
(x)/|x|) belongs to U . Since U is closed, the same holds

for every pair (AC1(L), AC2(L)).

6 Computability Aspects

The definition of the asymptotic complexity can be modified in the following
way. The infima in definitions may be taken over a particular class of strategies.
Examples of such classes are the computable strategies and polynomial-time
computable strategies. This provides us with different definitions of asymptotic
complexity. The theorems from this paper still hold for these modified complex-
ities provided some straightforward adjustments are made.

If we want to take computability aspects into consideration, we need to impose
computability restrictions on loss functions. If we are interested in computable
strategies, it is natural to consider computable loss functions.

The definition of weak mixability needs modifying too. It is natural to require
that the strategy A obtained by aggregating A1 and A2 is computable by an
algorithm that has access to oracles computing A1 and A2. Results from [6] still
hold since strategies can be merged effectively provided λ is computable.

The recalibration procedure provides us with strategies A1
ε and A2

ε that are
computable given an oracle computing A. The proof of the main theorem re-
mains valid almost literally. Note that we do not require the languages L to be
computable in any sense. We are only concerned with transforming some strate-
gies into others. If the original strategies are computable, the resulting strategies
will be computable too. All pairs (AC1(L), AC2(L)) still belong to the spaceship
closure of the entropy hull and fill it.

Similar remarks can be made about polynomial-time computability.
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Appendix A: Shapes of Entropy Hulls

In this section we discuss geometrical aspects of the statement of the main
theorem in more detail.

We start with a fundamental property of entropy. The set PM is convex.
Therefore we can prove by direct calculation the following lemma.

Lemma 2. If H : PM → R is G-entropy, then H is concave.

Note that concavity of H implies continuity of H . Therefore every entropy set
is a closed set w.r.t. the standard Euclidean topology. It is also bounded. Thus
the entropy hull is also bounded and closed (see, e.g., [7], Theorem 10).

We need to introduce a classification of planar convex sets. A closed convex
C ⊆ R

2 is a cucumber if for every pair of points (x1, y1), (x2, y2) ∈ C the points
(min(x1, x2), min(y1, y2)) and (max(x1, x2), max(y1, y2)) belong to C. In other
terms, a closed convex C is a cucumber if and only if there are nondecreasing
functions f1, f2 : I → R, where I is an interval, perhaps infinite, such that
C = {(x, y) | x ∈ I and f1(x) ≤ y ≤ f2(x)}.

If a closed convex set is not a cucumber, we call it a turnip.
We will formulate a criterion for H to be a cucumber. Let argmin f , where f

is a function from I to R, be the set of points of I where f achieves the value
of its global minimum on I. If no global minimum exists, the set arg min f is
empty. The notation arg max f is defined similarly.
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Lemma 3. If H1, H2 : I → R, where I ⊆ R
n is a closed bounded set, are two

continuous functions, then the convex hull of the set {(H1(p), H2(p)) | p ∈ I} is
a cucumber if and only if the following pair of conditions hold:

arg min H1 ∩ argmin H2 
= ∅

arg maxH1 ∩ argmaxH2 
= ∅ .

In the binary case natural games, including the absolute-loss, square-loss and
logarithmic games, are symmetric, i.e., their sets of superpredictions are sym-
metric w.r.t. the bisector of the positive quadrangle. For example, every game
G = 〈B, [0, 1], λ〉 such that λ(0, γ) = λ(1, 1 − γ) for all γ ∈ [0, 1] is symmetric.
Clearly, if H is G-entropy w.r.t. a symmetric game G, then H(p) = H(1 − p)
for all p ∈ [0, 1]. Thus H achieves its maximum at p = 1/2 and its minimum at
p = 0 and p = 1. Therefore if H1 and H2 are entropies w.r.t. symmetric games
G1 and G2, then their G1/G2-entropy hull is a cucumber.

The cucumber closure of a set H ⊆ R
2 is the smallest cucumber that contains

H, i.e., the intersection of all cucumbers that contain H.
The definition of a spaceship given above uses only the upper point of the

two that should belong to a cucumber. In terms of boundaries the definition
is as follows. A closed convex S ⊆ R

2 is a spaceship if and only if there are
functions f1, f2 : I → R, where I is an interval, perhaps infinite, such that f2 is
non-decreasing and S = {(x, y) | x ∈ I and f1(x) ≤ y ≤ f2(x)}.

Lemma 4. If H1, H2 : I → R, where I ⊆ R is a closed bounded interval, are
two continuous functions, then the convex hull of the set {(H1(p), H2(p)) | I} is
a spaceship if and only if the following condition holds:

arg maxH1 ∩ argmaxH2 
= ∅ . (7)

Note that the definitions of turnips, cucumbers, and spaceships as well as of
cucumber and spaceship closures are coordinate-dependent.

Appendix B: Examples of Entropy Hulls

This section contains some examples of entropy sets and hulls for the binary
case.

It is easy to check by direct calculation that the ABS-entropy is given by
HABS(p) = min(p, 1 − p), the SQ-entropy is given by HSQ(p) = p(1 − p), and
the LOG-entropy is given by HLOG(p) = −p log2 p− (1−p) log2(1−p), and thus
it coincides with Shannon entropy. The entropy hulls are shown on Figs. 2, 3,
and 4; the corresponding entropy sets are represented by bold lines. Since all the
three games are symmetric, the entropy hulls are cucumbers.

Let us construct an entropy hull that is a turnip. It follows from the previous
section, that the example must be rather artificial. Let G1 = 〈B, [0, 1], λ1〉, where
λ1(0, γ) = γ and λ1(1, γ) = 1 − γ

2 for all γ ∈ [0, 1], and let G2 = 〈B, [0, 1], λ2〉,
where λ2(0, γ) = 1+ γ

2 and λ2(1, γ) = 3
2 −γ for all γ ∈ [0, 1]. It is easy to evaluate
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Fig. 2. The ABS/LOG-
entropy set and hull
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Fig. 3. The ABS/SQ-
entropy set and hull
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1/4

Fig. 4. The LOG/SQ-
entropy set and hull
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5
6
1
2

1
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1
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Fig. 5. The G1/G2-
entropy hull (a turnip)

Fig. 6. The cucumber
closure

Fig. 7. The spaceship
closure

the corresponding entropies, H1(p) = min(p, 1− p
2 ) and H2(p) = min(1+ p

2 , 3
2−p).

Fig. 5 shows G1/G2-entropy hull, which is a turnip. Figure 6 shows its cucumber
closure, while Fig. 7 shows its spaceship closure.

Appendix C: Proof of the Recalibration Lemma

Let G1 = 〈Ω, Γ1, λ1〉 and G2 = 〈Ω, Γ2, λ2〉. We shall describe the procedure
transforming A into A1

ε and A2
ε. The construction is in four stages.

First let us perform an ε-quantisation of A.

Lemma 5. For any G = 〈Ω, Γ, λ〉 and ε > 0 there is a finite set Γε such that
for any γ ∈ Γ there is γ∗ ∈ Γε such that λ(ω, γ∗) ≤ λ(ω, γ)+ ε for every ω ∈ Ω.

Lemma 2 from [6] implies that it is sufficient to consider bounded loss functions
λ. If λ is bounded, the lemma follows from continuity of λ and compactness of
Γ .

Let us find such finite subsets Γε ⊆ Γ1 and Γ ′′
ε ⊆ Γ2. Without restricting

the generality, one can assume that they are of the same size |Γε| = |Γ ′′
ε | = N ;

indeed, if this is not the case, we can add more elements to the smaller set. Let
Γε = {γ1, γ2, . . . , γN} and Γ ′′

ε = {γ′′
1 , γ′′

2 , . . . , γ′′
N}.

There is a strategy Aq
ε that outputs only predictions from Γε and such that

LossG1
Aq

ε
(x) ≤ LossG1

A (x) + ε|x| for all x ∈ Ω∗.
Secondly let us construct the table of frequencies.
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Table 1. Predictions and outcomes for a given sequence x

Predictions Number of ω(0)s Number of ω(1)s
... Number of ω(M−1)s

γ1 n
(0)
1 n

(1)
1 n

(M−1)
1

γ2 n
(0)
2 n

(1)
2

... n
(M−1)
2

. . .

γj n
(0)
j n

(1)
j

... n
(M−1)
j

. . .

γN n
(0)
N n

(1)
N

... n
(M−1)
N

Given a sequence x of length n, let us count the number of times each of
these predictions γ1, γ2, . . . , γN occurs as Aq

ε predicts elements of x. For each
j = 1, 2, . . . , N and i = 0, 1, . . . , M − 1 let n

(i)
j be the number of occasions when

Aq
ε outputs the prediction γj just before the outcome ω(i) occurs. We get Table 1,

where
∑N

j=1 n
(i)
j = �ix for all i = 0, 1, . . . , M − 1.

Thirdly we perform the recalibration and construct auxiliary ‘strategies’
˜
A

(1)
ε

and
˜
A

(2)
ε . Formally they are not strategies because they have access to side

information.
Suppose that we predict elements of x and have access to Table 1 right from

the start. We can optimise the performance of Aq
ε as follows. If on some step

Aq
ε outputs γj , we know that we are on the j-th line of the table. However

γj is not necessarily the best prediction to output in this situation. Let γ∗
j be

an element of Γε where the minimum minγ∈Γε

∑M−1
i=0 n

(i)
j λ1(ω(i), γ) is attained.

This minimum can be expressed though the generalised entropy H1. Put p
(i)
j =

n
(i)
j /

∑
i n

(i)
j ; the M -tuple pj = (p(0)

j , p
(1)
j , . . . , p

(M−1)
j ) is a distribution on Ω.

We have
∑M−1

i=0 n
(i)
j λ1(ω(i), γ) =

(∑
i n

(i)
j

) ∑M−1
i=0 p

(i)
j λ1(ω(i), γ) and thus

(
∑

i

n
(i)
j

)

H1(pj) ≤
M−1∑

i=0

n
(i)
j λ1(ω(i), γ∗

j ) ≤
(

∑

i

n
(i)
j

)

(H1(pj) + ε) . (8)

Let us output γ∗
j each time instead of γj .

This is how the ‘strategy’ Ã1
ε works. The loss of Ã1

ε on x is LossG1

Ã1
ε

(x) =
∑N

j=1

∑M−1
i=0 n

(i)
j λ1(ω(i), γ∗

j ). Put qj =
(∑M−1

i=0 n
(i)
j

)
/n; we have

∑
j qj = 1. It

follows from (8) that
∣
∣
∣
∣
∣
∣
LossG1

Ã1
ε

(x) − n

N∑

j=1

qjH1(pj)

∣
∣
∣
∣
∣
∣
≤ εn . (9)
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On the other hand, LossG1

Ã1
ε

(x) ≤ LossG1
Aq

ε
(x) ≤ LossG1

A (x) + εn because Ã1
ε at-

tempts to minimise losses. Note that each sequence x ∈ Ω∗ specifies its own sets
of values p and q.

The strategy Ã2
ε works as follows. It simulates Ãq

ε and when Ãq
ε outputs γj

it finds itself on the j-th line of the table and outputs γ∗∗
j ∈ Γ ′′

ε such that the

minimum minγ∈Γ ′′
ε

∑M−1
i=0 n

(i)
j λ2(ω(i), γ) is attained on γ∗∗

j . We obtain

∣
∣
∣
∣
∣
LossG2

Ã2
ε

(x) − n

N∑

i=1

qiH2(pi)

∣
∣
∣
∣
∣
≤ εn . (10)

Finally, we should get rid of the side information; prediction strategies are not
supposed to use any. There is a finite number (to be precise, NN) of functions
that map {1, 2, . . . , N} into itself. Every σ : {1, 2, . . . , N} → {1, 2, . . . , N} defines
a strategy that works as follows. The strategy runs Aq

ε , and each time Aq
ε outputs

γi our strategy outputs γσ(i), i = 1, 2, . . . , N . For every finite sequence x there
is a mapping σ such that the corresponding strategy works exactly like Ã1

ε.
Since the game G1 is weakly mixable, we can obtain A1

ε that works nearly
as good as each one from the final pool of strategies when the loss is measured
w.r.t. the loss function λ1. We get

LossG1
A1

ε
(x) ≤ n

N∑

i=1

qiH1(pi) + εn + f1(n) (11)

for every x, where f1(n) = o(n) as n → +∞. Similarly, there is A2
ε such that

LossG2
A2

ε
(x) ≤ n

N∑

i=1

qiH2(pi) + εn + f2(n) (12)

for every x, where f2(n) = o(n) as n → +∞. The lemma follows.

Appendix D: Filling in the Spaceship

We shall now construct languages L ⊆ Ω∞ such that AC1(L) = AC1(L) =
AC1(L) = AC

1
(L) as well as AC2(L) = AC2(L) = AC2(L) = AC

2
(L) and pairs

(AC1(L), AC2(L)) fill the spaceship closure.
We start by constructing languages filling in the entropy set, then construct

languages filling in the entropy hull and finally obtain languages filling in the
spaceship closure. First let u = H1(p) and v = H2(p) for some p ∈ P(Ω).

Lemma 6. For every p ∈ P(Ω) there is a set Lp ⊆ Ω∞ such that for every
game G = 〈Ω, Γ, λ〉 we have AC(Lp) = AC(Lp) = AC(Lp) = AC(Lp) = H(p).
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Proof (of the Lemma)
Let p = (p0, p1, . . . , pM−1) ∈ P(Ω). If some of pi are equal to 0, we can completely
ignore those dimensions, or, in other words, consider the games with the sets of
superpredictions that are the projection of the sets of superpredictions w.r.t.
G1 and G2 to non-zero directions. So let us assume, without restricting the
generality, that all pi 
= 0.

Consider the set Ξ
(p)
n ⊆ Ωn of sequences x of length n with the following

property. For each i = 0, 1, . . . , M − 1 the number of ω(i)s among the elements
of x is between the numbers npi − n3/4 and npi + n3/4, i.e., npi − n3/4 ≤ �ix ≤
npi + n3/4 for i = 0, 1, . . . , M − 1.

We need the Chernoff bound in Hoeffding’s form (see Theorem 1 in [8]):

Proposition 1 (Chernoff bound). If ξ1, ξ2, . . . , ξn are independent random
variables with finite first and second moments and such that 0 ≤ ξi ≤ 1 for all
i = 1, 2, . . . , n then

Pr{ξ − μ ≥ t} ≤ e−2nt2 ,

for all t ∈ (0, 1 − μ), where ξ = (ξ1 + ξ2 + . . . + ξn)/n and μ = Eξ.

Let ξ
(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
n be independent random variables that accept the values

ω(i) with probabilities pi, i = 0, 1, . . . , M − 1. The Chernoff bound implies that

Pr
{∣
∣
∣�i(ξ

(p)
1 ξ

(p)
2 . . . , ξ(p)

n ) − pin
∣
∣
∣ ≥ n3/4

}
≤ 2e−2

√
n (13)

for all n ≥ N0 (the constant N0 is necessary in order to ensure that t ≤ 1 − μ in
the bound) and all i = 0, 1, . . . , M − 1. If we denote by Prp(S) the probability
that ξ

(p)
1 ξ

(p)
2 . . . , ξ

(p)
n ∈ S, we get Prp(Ωn \ Ξ

(p)
n ) ≤ 2Me−2

√
n.

Let Lp = Ξ
(p)
n1 ×Ξ

(p)
n2 ×Ξ

(p)
n3 . . .×Ξ

(p)
nk × . . . ⊆ Ω∞. In other terms, Lp consists

of all infinite sequences x with the following property. For every non-negative
integer k the elements of x from

∑k−1
j=1 nj to

∑k
j=1 nj form a sequence from Ξ

(p)
nk .

We will refer to these elements as the k-th segment of Lp. Take nj = N0 + j so
that

∑k
j=1 nj = kN0 + k(k + 1)/2. We will show that Lp proves the lemma.

First let us prove that AC(Lp) ≤ H(p). Let A(p) be the strategy that al-
ways outputs the same prediction γ∗ ∈ argminγ∈Γ

∑M−1
i=0 piλ(ω(i), γ). Let n =

∑k
j=1 nj . There is a constant Cγ∗ > 0 such that for every x ∈ Lp we get

LossA(p)(x|n) ≤ H(P )n + MCγ∗

k∑

j=1

n
3/4
j .

We have
∑k

j=1 n
3/4
j

n
=

∑k
j=1(N0 + j)3/4

∑k
j=1(N0 + j)

∼
4
7k7/4

1
2k2

→ 0

as k → +∞. Therefore AC(Lp) and AC(Lp) do not exceed H(p).
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Now consider m such that n − nk =
∑k−1

j=1 nj < m <
∑k

j=1 nj = n. It is easy
to see that | LossA(p)(x|n) − LossA(p)(x|m)| ≤ Cγ∗nk. We have

nk

m
≤ (N0 + k)

∑k−1
j=1 (N0 + j)

=
(N0 + k)

N0(k − 1) + k(k − 1)/2
→ 0 (14)

and hence the upper complexities do not exceed H(p) either.
Now let us prove that AC(Lp) ≥ H(p). Consider a strategy A. First let us

assume that λ is bounded and D > 0 is an upper bound on λ. We have

H(p)n ≤ ELossA(ξ(p)
1 ξ

(p)
2 . . . , ξ(p)

n ) ≤ Pr
p

(Ξn) max
x∈Ξn

LossA(x) + Pr
p

(Ωn \ Ξn)Dn .

Therefore there is a sequence x ∈ Ξn such that
LossA(x) ≥ H(p)n − Pr

p
(Ωn \ Ξn)Dn ≥ H(p)n − 2nMDe−2

√
n

provided n ≥ N0.
We construct x ∈ Lp from finite segments of length ni. The series

∑∞
j=1(N0 +

j)e−2
√

N0+j converges and thus upper complexities are at least H(p). We can
extend this bound to lower complexity by using (14).

Now let λ be unbounded. Take λ(D) = min(λ, D), where D is a constant. It
is easy to see that for sufficiently large D we get minγ∈Γ

∑M−1
i=0 piλ(ω(i), γ) =

minγ∈Γ

∑M−1
i=0 piλ

(D)(ω(i), γ) (recall that p ∈ P(Ω) is fixed).
Pick such D and let G(D) be the game with the loss function λ(D). It is easy

to see that for every strategy A and every sequence x we have LossG
A(x) ≥

LossG(D)

A (x). Since the loss function λ(D) is bounded, one can apply the above
argument; for every A and every n there is a sequence x ∈ Lp such that
LossG(D)

A (x|n) ≥ H(p)n − o(n). The inequality implies LossG
A(x|n) ≥ H(p)n −

o(n). This proves the lemma. ��
Secondly let (u, v) be some point from H. The definition of convexity implies that
there are probabilities p1, p2, . . . , pN ∈ P(Ω) and weights q1, q2, . . . , qN ∈ [0, 1]
such that u =

∑N
j=1 qjH1(pj) and v =

∑N
j=1 qjH2(pj).

Let us ‘paint’ all positive integers into N colours 1, 2, . . . , N . Number 1 is
painted colour 1. Suppose that all numbers from 1 to n have been painted and
there are n1 numbers among them painted colour 1, n2 numbers painted colour
2 etc. The values qjn − nj are deficiencies. Let j0 corresponds to the largest
deficiency (if there are several largest deficiencies, we take the one with the
smallest j). We paint the number n + 1 the colour j0.

During the infinite construction process deficiencies never exceed N . Indeed,
the value −(qjn − nj) never exceeds 1 and the sum of all deficiencies is 0.

We now proceed to constructing L ⊆ Ω∞ that corresponds to (u, v). The set L
consists of all infinite sequences x with the following property. The subsequence of
x formed by bits with numbers painted the colour j belongs to Lpj from Lemma 6
for all j = 1, 2, . . . , N . One can easily check that L has all the required properties.

Thirdly let (u, v) ∈ S \ H. It is easy to check that if a game G is weakly
mixable, then for every pair of languages L1, L2 constructed above we have
AC(L1 ∪ L2) = max(AC(L1), AC(L2)).
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Abstract. In this paper, we analyze the convergence of Q-learning with
linear function approximation. We identify a set of conditions that im-
plies the convergence of this method with probability 1, when a fixed
learning policy is used. We discuss the differences and similarities be-
tween our results and those obtained in several related works. We also
discuss the applicability of this method when a changing policy is used.
Finally, we describe the applicability of this approximate method in par-
tially observable scenarios.

1 Introduction

Value-based methods such as TD-learning [1], Q-learning [2], SARSA [3] and
others [4,5,6] have been exhaustively covered in the reinforcement learning (RL)
literature and, under mild assumptions, have been proven to converge to the
desired solution [7].

However, many such algorithms require explicit representation of the state-
space, and it is often the case that the latter is unsuited for explicit repre-
sentation. A common way to overcome this difficulty is to combine a suitable
approximation architecture with one’s favorite learning method [8,9]. Encourag-
ing results were reported, perhaps the most spectacular of which by Tesauro’s
Gammon player [10]. Several other works provided formal analysis of conver-
gence when RL algorithms are combined with function approximation. We refer
the early works by Singh et al. [11], Gordon [12] and Van Roy [13]. A few
other works further extended the applicability/performance of these methods,
e.g., [6, 14, 15, 16].

In this paper, we analyze the convergence of Q-learning with linear function
approximation. Our approach is closely related to interpolation-based Q-learning
[15] and the learning algorithm by Borkar [17]. We identify conditions that ensure
convergence of our method with probability 1 (w.p.1). We interpret the obtained
approximation and discuss the corresponding error bounds. We conclude the
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paper by addressing the applicability of our methods to partially observable
scenarios. 1

2 The Framework of Markov Decision Process

A Markov decision process (MDP) is a tuple (X , A, P, r, γ) where X is compact
subspace of Rp representing the state-space and A is a finite set of possible
actions. Pa(x, U) is a probability kernel determining the probability of moving
from state x ∈ X to a measurable set U ⊂ X by choosing action a ∈ A. The
function r : X × A × X −→ R is a deterministic function assigning a numerical
reward r(x, a, y) every time a transition from x to y occurs after taking action a.
The use of this function r greatly simplifies the notation without introducing a
great loss in generality. We further assume that there is a constant R ∈ R such
that |r(x, a, y)| < R for all x, y ∈ X and all a ∈ A.2 The constant 0 < γ < 1 is
a discount-factor.

The purpose of the agent is to maximize the expected total sum of discounted
rewards, E [

∑∞
t=0 γtR(Xt, At)], where R(x, a) represents the random “reward”

received for taking action a ∈ A in state x ∈ X .3 The optimal value function V ∗

is defined for each state x ∈ X as

V ∗(x) = max
{At}

E

[ ∞∑

t=0

γtR(Xt, At) | X0 = x

]

(1)

and verifies
V ∗(x) = max

a∈A

∫

X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy).

which is a form of the Bellman optimality equation. The optimal Q-values
Q∗(x, a) are defined for each state-action pair (x, a) ∈ X × A as

Q∗(x, a) =
∫

X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy). (2)

From Q∗, the optimal policy is defined as a mapping π∗ : X −→ A verifying

π∗(x) = arg max
a∈A

Q∗(x, a), for all x ∈ X .

Since the optimal policy π∗ can be obtained from Q∗, the optimal control prob-
lem is solved once the function Q∗ is known for all pairs (x, a) ∈ X × A.

More generally, we define a policy πt as a mapping πt : X × A −→ [0, 1] that
generates a control process {At} verifying

P [At = a | Xt = x] = πt(x, a),

1 Due to space limitations, we do not include the proof of the results in here and
simply provide the general idea behind the proof. The details can be found in [18].

2 This assumption is tantamount to the standard requirement that the rewards R(x, a)
have uniformly bounded variance.

3 Notice that R(x, a) is random in its dependence of the next state.
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for all t. Since πt(x, ·) is a probability distribution over A, it must satisfy∑
a∈A πt(x, a) = 1, for all x ∈ X . A stationary policy is a policy π that does not

depend on t. A deterministic policy is a policy assigning probability 1 to a single
action in each state. We denote such policy as a function πt : X −→ A.

Given any function q : X × A −→ R, we can define the operator

(Hq)(x, a) =
∫

X

[
r(x, a, y) + γ max

u∈A
q(y, u)

]
Pa(x, dy). (3)

The function Q∗ introduced above is a fixed-point of the operator H. This oper-
ator is a contraction in the sup-norm and, theoretically, a fixed-point iteration
could be used to determine Q∗. On the other hand, if P or r (or both) are not
known, the Q-learning algorithm can be used, defined by the update rule

Qk+1(x, a) = (1 − αk)Qk(x, a) + αk

[
R(x, a) + γ max

u∈A
Qk(X(x, a), u)

]
, (4)

where Qk(x, a) is the kth estimate of Q∗(x, a), X(x, a) is a X -valued random
variable obtained according to the probabilities defined by P and {αk} is a step-
size sequence. Notice that R(x, a) and X(x, a) can be obtained through some
simulation device, not requiring the knowledge of either P or r. The estimates
Qk converge with probability 1 (w.p.1) to Q∗ as long as

∑

t

αt = ∞
∑

t

α2
t < ∞.

The Q-learning algorithm was first proposed by Watkins in 1989 [2] and its
convergence w.p.1 later established by several authors [19, 7].

3 Q-Learning with Linear Function Approximation

In this section, we establish the convergence properties of Q-learning when using
linear function approximation. We identify the conditions ensuring convergence
w.p.1 and derive error bounds for the obtained approximation. The results de-
rived herein are deeply related with other approaches described in the literature,
e.g., [15, 17].

3.1 Combining Q-Learning with Linear Function Approximation

We previously suggested that a fixed-point iteration could theoretically be used
to determine Q∗. This implicitly requires that the successive estimates for Q∗

can be represented compactly and stored in a computer with finite memory. To
solve for Q∗ we can use the fixed-point iteration proposed in Section 2 or the
Q-learning algorithm, if P and r are not known.

However, if X is an infinite set, it is no longer possible to straightforwardly
apply any of the aforementioned methods. For example, the updates in (4) ex-
plicitly consider the Q-values for each individual state-action pair and there will
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be infinitely many such pairs if X is not finite. Therefore, some compact repre-
sentation of either X or Q∗ is necessary to tackle the infinite nature of X . In our
approach, we focus on compact representations for Q∗.

In our pursuit to approximate Q∗, we consider a family of functions Q = {Qθ}
parameterized by a finite-dimensional parameter vector θ ∈ RM . We replace the
iterative procedure to find Q∗ by a suitable “equivalent” procedure to find a
parameter θ∗ so as to best approximate Q∗ by a function in Q. We thus move
from a search in an infinite dimensional function space to a search in a finite
dimensional space (RM ). This has an immediate implication: unless if Q∗ ∈ Q,
we will not be able to determine Q∗ exactly. Instead, we will determine the fixed
point of a combined operator PH, where P is some mapping that “projects” a
function defined in X × A to a point in Q.

In this paper we admit the family Q to be linear in that if q1, q2 ∈ Q, then
so does αq1 + q2 for any α ∈ R. Thus, Q is the linear span of some set of
linearly independent functions ξi : X × A −→ R, and each q ∈ Q can be written
as a linear combination of such ξi. Therefore, if Ξ = {ξ1, . . . , ξM} is a set of
linearly independent functions, we interchangeably use Qθ and Q(θ) to denote
the function

Qθ(x, a) =
M∑

i=1

ξi(x, a)θ(i) = ξ�(x, a)θ, (5)

where θ(i) is the ith component of the the vector θ ∈ RM and ξi(x, a) is the ith
component of the vector ξ(x, a) ∈ RM .

We throughout take Ξ = {ξi, i = 1, . . . , M} as a set of M bounded, linearly
independent functions verifying

∑

i

|ξi(x, a)| ≤ 1 (6)

for all (x, a) ∈ X × A and eventually introduce further restrictions on the set Ξ
as needed.

3.2 Linear Approximation Using Sample-Based Projection

We now consider a sample-based approximation model that, while imposing
somewhat strict conditions on the set of functions Ξ, will allow us to derive
useful error bounds for the obtained approximation Qθ∗ . For that, we assume
that the functions in Ξ verify

‖ξi‖∞ = 1. (7)

Clearly, if (6) and (7) simultaneously hold, linear independence of the functions
in Ξ arises as an immediate consequence. 4 We take the family Q as the linear
span of Ξ.

For each function ξi ∈ Ξ we take a point (xi, ai) in X×A such that |ξi(xi, ai)|=1
and denote by I the set obtained by gathering M of such points, one for each ξi ∈
4 For each function ξi ∈ Ξ there is a point (x, a) such that |ξi(x, a)| = 1, as ‖ξi‖∞ = 1.

Then, ξj(x, a) = 0 for all j �= i and the functions in Ξ are linearly independent.
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Ξ. Let B is the set of all (essentially) bounded functions defined on X × A and
taking values on R and define the mapping ℘ : B −→ RM as

(℘f)(i) = f(xi, ai), (8)

where (℘f)(i) denotes the ith component of ℘f and (xi, ai) is the point in I
corresponding to ξi. ℘f is properly defined for every f ∈ B and verifies

‖℘f‖∞ ≤ ‖f‖∞
℘[αf1 + f2] = α℘f1 + ℘f2.

Our variant of Q-learning iteratively determines the point θ∗ ∈ RM verifying
the fixed-point recursion

θ∗ = ℘HQ(θ∗), (9)

where H is the operator defined in (3). Since H is a contraction in the sup-norm
and

∑
i |ξi(x, a)| ≤ 1, the fixed point in (9) is properly and uniquely defined.

To derive the expression of the algorithm, we remark that (9) can be explicitly
written as

θ∗(i) =
∫

X
δ(xi,ai)(x, a)

∫

X

[
r(x, a, y) + γ max

u
ξ�(y, u)θ∗

]
Pa(x, dy)dμ(x, a),

where μ is some probability measure on X × A and δ(xi,ai) is the Dirac delta
centered around (xi, ai). Let gε be a smooth Dirac approximation, such that

∫

gε(x, a; y, u)dμ(y, u) = 1

lim
ε→0

∫

gε(x, a; y, u)f(y, u)dμ(y, u) = f(x, a).

Let π be a stochastic stationary policy and suppose that {xt}, {at} and {rt}
are sampled trajectories from the MDP (X , A, P, r, γ) using policy π. Then, given
any initial estimate θ0, we generate a sequence {θt} according to the update rule

θt+1(i) = θt(i) + αtgεt(xi, ai; xt, at)
[
rt + γ max

u∈A
ξ�(xt+1, u)θt − ξ�(xt, at)θt

]
,

where {εt} is a sequence verifying

εt+1 = (1 − βt)εt.

More generally, we can have

εt+1 = εt + βth(εt),

where h is chosen so that the ODE ẋt = h(xt) has a globally asymptotically
stable equilibrium in the origin.

Under some regularity assumptions on the Markov chain (X , Pπ) obtained
using the policy π and on the step-sizes αt and βt, the trajectories of the algo-
rithm closely follow those of an associated ODE with a globally asymptotically



Q-Learning with Linear Function Approximation 313

stable equilibrium point θ∗. Therefore, the sequence {θt} will converge w.p.1 to
the equilibrium point θ∗ of the ODE.

We now state our main convergence result. Given a MDP (X , A, P, r, γ), let
π be a stationary stochastic policy and (X , Pπ) the corresponding Markov chain
with invariant probability measure μX . Denote by Eπ [·] the expectation w.r.t.
the probability measure μπ defined for every set Z × U ⊂ X × A as

μπ(Z × U) =
∫

Z

∑

a∈U

π(x, a)μX (dx).

Also, define α̂t(i) as
α̂t(i) = αtgεt(xi, ai; xt, at).

Theorem 1. Let (X , A, P, r, γ) be a Markov decision process and assume the
Markov chain (X , Pπ) to be geometrically ergodic with invariant probability mea-
sure μX . Suppose that π(x, a) > 0 for all a ∈ A and μX-almost all x ∈ X .

Let Ξ = {ξi, i = 1, . . . , M} be a set of M functions defined on X × A and
taking values in R. In particular, admit the functions in Ξ to verify ‖ξi‖∞ = 1
and

∑
i |ξi(x, a)| ≤ 1.

Then, the following hold:

1. Convergence: For any initial condition θ0 ∈ RM , the algorithm

θt+1(i) = θt(i) + αtgεt(xi, ai; xt, at)
[
rt + γ max

u∈A
ξ�(xt+1, u)θt − ξ�(xt, at)θt

]
,

(10a)

εt+1 = (1 − βt)εt. (10b)

converges w.p.1 as long as the step-size sequences {αt} , {βt} are such that
∑

t

αt = ∞
∑

t

α2
t < ∞; (11a)

∑

t

βt = ∞
∑

t

β2
t < ∞ (11b)

βt = o(αt) and {αt} is built so that mini

∑
t α̂t(i) = ∞.

2. Limit of convergence: Under these conditions, the limit function Q(θ∗)
of (10) verifies

Qθ∗(x, a) = (PHQθ∗)(x, a), (12)

where P : B → Q denotes the operator given by

(PQ)(x, a) = ξ�(x, a)℘Q.

3. Error bounds: Under these conditions, the limit function Qθ∗ verifies the
bound

‖Q(θ∗) − Q∗‖∞ ≤ 1
1 − γ

‖PQ∗ − Q∗‖∞ . (13)

Proof. See [18].
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3.3 Discussion

Before concluding this section, we briefly discuss the conditions of Theorem 1
and compare our results with several related works in the literature.

Convergence Conditions: In Theorem 1 we identified several conditions that
guarantee convergence w.p.1 of the algorithm defined by the update rule in (10).
These conditions can be classified in two main groups: conditions on the problem
and conditions on the algorithm.

The fundamental condition on the model is that of geometric ergodicity of the
Markov chain (X , Pπ). Geometric ergodicity ensures that the chain converges
exponentially fast to stationarity and, as such, its steady-state behavior is prop-
erly captured by the sample trajectories used in the updates. This allows the
analysis of convergence to be conducted in terms of a stationary “version” of it:
we compare the trajectories of the algorithm with those a “mean” ODE, which
is globally asymptotically stable with equilibrium point θ∗.

Moreover, geometric ergodicity also ensures that all “interesting” regions of the
state-space are visited infinitely often [20]. The condition that π(x, a) > 0 for all
a ∈ A and μX -almost every x ∈ X ensures that, in these “interesting” regions
of the state-space, every action is tried infinitely often. Therefore, geometric
ergodicity and the requirement that π(x, a) > 0 for all a ∈ A and μX -almost
all x ∈ X can be interpreted as a continuous counterpart to the usual condition
that all state-action pairs are visited infinitely often.

The conditions on the algorithm are those concerning the basis functions used
and those concerning the step-size sequences ({αt} and {βt}). With respect to
the former, we require that the functions are linearly independent. This is a
simple way of guaranteeing (in a rather conservative way) that no two functions
ξi lead to “colliding updates” as happens in the known counter-example presented
by [21]. Furthermore, by requiring that

∑
|ξi(x, a)| ≤ 1 for all (x, a) ∈ X × A,

we ensure that ‖Q(θ)‖∞ ≤ ‖θ‖∞, thus making HQ(θ) a contraction in θ (in the
sup-norm). This fact is important, for example, to ensure the existence of θ∗.

To clarify the conditions on the step-size sequences, we start by remarking
that, if ε is held fixed, the algorithm will converge to a neighborhood of the
desired point in parameter space. We could then proceed as follows. As soon as
the estimates were “sufficiently close” to this neighborhood, we could decrease ε
and wait for the estimates to, once again, approach a new, smaller neighborhood
of the desired point. We would then decrease ε once again, etc.

This “gross” version of our algorithm illustrates the fact that ε cannot go to
zero arbitrarily fast. In particular, it is necessary to ensure that each component
of the estimate vector θt is “sufficiently” updated as ε is decreased. This clearly
depends on the smooth Dirac approximation chosen. The relation between the
two referred entities (gε and the rate of convergence of εt) is stated in (11).

Such condition on the step-sizes {αt} can be ensured in different ways (for
example, defining αt from the ε-cuts of gε as in [15]). As one final note, we
remark that the use of “broader” Dirac approximations will probably allow faster
convergence of εt while “narrower” Dirac approximations will probably lead to
slower convergence of εt.
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Finally, one last remark to state that since the space B of essentially bounded
functions with the sup-norm is a Banach space (with no orthogonal projection
defined), we defined a projection operator P that is non-expansive in the sup-
norm, thus making the combined operator PH a contraction in this norm.

Related Work: The early works by Gordon [12] and Tsitsiklis and Van Roy [13]
provide convergence analysis for several variations of dynamic programming us-
ing function approximation. There is also a brief discussion on how stochastic
variations of these algorithms can be used. Closely related is the soft-state ag-
gregation approach [11]. This approach uses a “soft”-partition of the state-space
(each state x belongs to region i with a probability pi(x)) and an “average” Q-
value Q(i, a) is defined for each region-action pair. The method uses standard
Q-learning updates to determine the average Q-values for each region.

In a different work, Tsitsiklis and Van Roy [16] provide a detailed analysis of
temporal difference methods for policy evaluation. Given a stationary policy π
whose value function V π is to be estimated, a parameterized linear family V of
functions is used to approximate V π. The authors establish the the convergence
of this method w.p.1 and provide an interpretation of the obtained limit point as
a fixed point of a composite operator PT(λ), where P is the orthogonal projec-
tion into V and T(λ) is the TD operator. The authors also derive error bounds
on the obtained approximation. Several authors later extended these results,
e.g., [6, 14, 22].

Szepesvári and Smart [15] proposed a version of Q-learning that approximates
the optimal Q-values at a given set of sample points {(xi, ai), i = 1, . . . , N} and
then uses interpolation to estimate Q∗ at any query point. This method, dubbed
interpolation-based Q-learning (IBQL) uses the update rule

θt+1(i) = θt(i) + αt(i)gε(xi, ai; xt, at)
(
rt + max

u∈A
Qθt(xt+1, u) − θt(i)

)
. (14)

The authors establish convergence w.p.1 of the algorithm and provide an inter-
pretation of the limit point as the fixed-point of a composite operator PĤ, where
P is a projection-like operator and Ĥ can be interpreted as a modified Bellman
operator.

We emphasize the similarity between the update rules in (14) and (10). The
fundamental difference between these two methods lies on the fact that IBQL
only makes use of the estimated Q-function to predict the value of the next state,
as seen in (14). Therefore, the updates of IBQL rely on a vector d̂t of modified
temporal differences with ith component given by

d̂t(i) = rt + γ max
u∈A

Qθt(xt+1, u) − θt(i) =

= rt + γ max
u∈A

Qθt(xt+1, u) − Qθt(xi, ai).

Notice that each d̂t(i) is not a temporal-difference in the strict sense, since it
does not provide a one-step estimation “error”. This means that the information
provided by d̂t(i) may lead to “misleading” updates. Although not affecting the
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convergence of IBQL in the long-run, IBQL may exhibit slower convergence
because of this. On the other hand, if IBQL is used with a vanishing ε, the effect
of these misleading updates will vanish as t → ∞. In the experimental results
portrayed in [15], a vanishing ε was used. Nevertheless, IBQL exhibited initially
slower convergence than of other methods, probably because of this reported
effect.

We also remark that, in [15], the convergence result requires the underlying
Markov chain to be positive Harris and aperiodic. These conditions are actually
weaker than the geometric ergodicity required by our result. However, in many
practical situations, the former conditions will actually imply the latter.5 This
means that the conditions on the problem required in Theorem 1 are essentially
similar to those in [15] placing the results of both papers in a common line of
work and, basically, leading to concordant conclusions.

Finally, we also refer the close relation between the method in Subsection 3.2
and the algorithm described in [17]. In the aforementioned work, Borkar provides
a convergence analysis of what we may refer to as functional Q-learning. This
functional Q-learning can be seen as an extension of classical Q-learning to func-
tional spaces, and arises from the approach proposed by Baker [23] to stochastic
approximation in function spaces. The update equation for this method is fun-
damentally similar to (10). The main difference is that, while we consider only
a fixed, finite set of points I = {(x1, a1), . . . , (xM , aM )}, the algorithm in [17]
maintains a complete representation of Q∗, each component of which is updated
at each iteration. Clearly, maintaining such a representation of Q∗ is computa-
tionally infeasible and the algorithm should instead maintain a complete record
of the history of past events H = {(x0, a0, r0), . . . , (xt, at, rt), . . .}, used to esti-
mate Q∗ at a generic point (x, a).

4 Partially Observable Markov Decision Processes

Recall that, in a Markov decision process (X , A, P, r, γ), an agent acts at each
time instant based on the current state of the environment and so as to maximize
its expected total discounted reward. However, if the current state is unknown
and the agent has available only a noisy observation of it, the elegant theory and
effective algorithms developed for Markov decision processes are in general not
applicable, even in the simpler case of finite X .

Partially observable Markov decision processes (POMDPs) present a complex
challenge due to the remarkable complications arising from the “simple” con-
sideration of partial state observability. Exact solution methods for POMDPs
generally consist on dynamic-programming based iterative procedures and have
been found computationally too expensive for systems with more than a few
dozen states [24, 25]. This has led many researchers to focus on developing ap-
proximate methods using a variety of approaches. We refer to [26, 27] for good
surveys on POMDP exact and approximate methods.
5 An aperiodic, positive Harris chain is geometrically ergodic as long as supp μX has

non-empty interior.
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Some approximate solution methods rely on value-based reinforcement learn-
ing algorithms such as Q-learning. Examples include the Linear-Q algorithm [28],
the SPOVA-RL algorithm [29] or the Fast-RL algorithm [30]. A thorough analysis
of several such methods can also be found in [26].

In this section we discuss how our results from the previous section can be
applied to POMDPs. We identify a set of conditions on POMDPs that ensure
the applicability of the method in Section 3. As a side-note, we remark that
the Linear-Q algorithm referred above can be cast as a simple variation of the
method described in Section 3. Our analysis in this section can easily be adapted
to provide a formal proof of the convergence of this algorithm.

4.1 Partial Observability and Internal State

Let (X , P) be a finite state-space Markov chain. Let Z be a finite set of possible
observations and suppose that, at each time instant, the the state Xt of the chain
is unaccessible. Instead, a random measurement Zt is “observed” which depends
on the state Xt according to an observation probability given by

P [Zt = z | Xt = x] = O(x, z), (15)

A partially observable Markov chain is a 4-tuple (X , Z, P, O), where X and Z
are, respectively, the state and observation spaces (both considered finite) and
P and O are the transition and observation probability matrices.

Let bt be a discrete probability measure on X conveying the probability dis-
tribution of the state Xt over the set X at time instant t. Since X is assumed
finite, bt is a vector with xth component

bt(x) = P [Xt = x | Ft] , (16)

where Ft is the history up to time t. Suppose that at time instant t the chain is in
state x ∈ X with probability bt(x) and a transition occurs, with an observation
Zt+1 = z made at instant t + 1. Then it holds that

bt+1(y) =
∑

x∈X bt(x)P(x, y)O(y, z)
∑

x,w∈X bt(x)P(x, w)O(w, x)
. (17)

It is clear from (17) that bt+1 is Markovian in its dependence of the past history.
Therefore, we define from bt a sequence {Bt} of random variables, each taking
the value Bt = bt at time instant t. Since each bt is a probability vector with,
say, n + 1 components, Bt lies in the n-dimensional probability simplex S

n.
Summarizing, for any partially observable Markov chain (X , Z, P, O) there is

an equivalent fully-observable Markov chain (Sn, P̂), where the kernel P̂ is given,
for any b ∈ S

n and any measurable set U ⊂ S
n, by

P̂(b, U) =
∑

z

∑

x,y

b(x)P(x, y)O(y, z)IU (B(b, z)),
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where B(b, z) is the vector obtained from b using (17) with observation z and IU

is the indicator function for the set U . Notice that the xth coordinate of vector
Bt describes the belief that the underlying state of the chain is Xt = x, and it
is common to refer to the b vectors as belief-states.

Notice that, by considering the chain (Sn, P̂) of beliefs instead of the partially
observable chain (X , Z, P, O) we move from a finite, partially observable Markov
chain with state-space X to an infinite, fully observable Markov chain with state-
space S

n. We now identify conditions on P and/or O that ensure the chain (Sn, P̂)
to be uniformly ergodic.

Theorem 2. Let (X , Z, P, O) be a partially observable Markov chain, where the
chain (X , P) is irreducible and aperiodic. Suppose that there is an observation
z ∈ Z and a state x∗ ∈ X such that, for all y ∈ X , O(y, z) = δ(x∗, y). Then, the
Markov chain (Sn, P̂) is uniformly ergodic.

Proof. See [18].

4.2 POMDPs and Associated MDPs

A tuple (X , A, Z, P, O, r, γ) is a partially Observable Markov Decision Process
(POMDP), where X , A, P, r and γ are as defined in Section 2, Z is the observation-
space and O represents the (action-dependent) observation probabilities. We con-
sider X , A and Z to be finite sets.

Using a development entirely similar to the one presented in the previous
subsection, given a POMDP (X , A, Z, P, O, r, γ) we can derive a fully observable
MDP (Sn, A, P̂, r̂, γ), where, for each a ∈ A, P̂ and r̂ are defined as

P̂a(b, U) =
∑

z

∑

x,y

b(x)Pa(x, y)Oa(y, z)IU (B(b, a, z));

r̂(b, a, b′) =
∑

x,y

b(x)Pa(x, y)r(x, a, y),

where B(b, a, z) is the updated probability vector given action a and observation
z with yth component given by

B(b, a, z)y =
∑

x∈X bt(x)Pa(x, y)Oa(y, z)
∑

x,w∈X bt(x)Pa(x, w)Oa(w, x)
.

Notice that the reward r̂(b, a, b′) corresponds to the expected immediate reward
for being in each state x with probability b(x) and taking action a. As expected,
it does not depend on b′.6

This new MDP is an infinite state-space counterpart to the partially observ-
able Markov decision process (X , A, Z, P, O, r, γ) and we are interested in apply-
ing the methods from the previous section to this continuous-state MDP.
6 Notice that the rewards do not depend on the observations and the belief b′ is

a function of the current belief, action and observation, so it is natural that r̂ is
independent of b′.
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Notice that, even if the complete POMDP model is known, the use of a
simulation-based solution may still be preferable to the computationally heavier,
exact methods. On the other hand, it may happen that the reward r is unknown
and, therefore, recurring to simulation-based methods is the only alternative
available. Finally, we emphasize that, in order to use the methods from the
previous section, the MDP (Sn, A, P̂, r̂, γ) needs to be fully observable, i.e., the
beliefs bt must be computable at every time step t. This means that the agent
must know the model parameters P and O.

In the new MDP (Sn, A, P̂, r̂, γ), it is straightforward to define the optimal
value function V ∗ : S

n −→ R, verifying

V ∗(b) = max
a∈A

E
[
r̂(b, a, b′) + γV δ(b′)

]
,

and the optimal Q-function, verifying

Q∗(b, a) = E

[

r(b, a, b′) + γ max
u∈A

Q∗(b′, u)
]

.

More intuitive and well-known expressions for these functions can readily be
obtained by replacing P̂ and r̂ by the corresponding definitions, yielding

V ∗(b) = max
a∈A

∑

x,y∈X
b(x)Pa(x, y)

[

r(x, a, y) + γ
∑

z∈Z
Oa(y, z)V ∗(bz)

]

;

Q∗(b, a) =
∑

x,y∈X
b(x)Pa(x, y)

[

r(x, a, y) + γ
∑

z∈Z
Oa(y, z)max

b∈A
Q∗(bz, b)

]

.

To apply the method from Section 3 to the MDP M = (Sn, A, P̂, r̂, γ) with
guaranteed convergence, we need to check if M verifies all conditions on the
problem required in Theorem 1. This condition is concerned with the geometric
ergodicity of the chain obtained with the learning policy. Combining Theorem 1
with Theorem (2), it is immediate that the Q-learning algorithm with linear
function approximation analyzed in Section 3 can be applied to POMDPs with
guaranteed convergence, as long as the underlying MDP is ergodic and there
is a distinguishable state x∗ ∈ X . We note that ergodicity of the underlying
MDP is a standard assumption in classical RL methods and, therefore, partial
observability simply requires the single additional condition of a distinguishable
state.

5 Conclusions and Future Work

In this paper we have analyzed the convergence of Q-learning with linear func-
tion approximation. Given a linear family Q of functions, we defined an update
rule that “relies” on a projection operator P defined in the space of (essentially)
bounded functions. For the algorithm thus obtained we identified the conditions
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under which convergence w.p.1 is guaranteed. We also showed the limit function
to verify the fixed-point recursion

Qθ∗(x, a) = (PHQθ∗)(x, a)

and discussed the relation between the method and results in this paper and
those in related works such as [15,17]. Finally, we showed that partially observ-
able Markov decision processes can be addressed by RL algorithms using function
approximation as long as the typical convergence conditions are verified for the
underlying Markov decision process and there is, at least, one observable state.

Several important remarks are in order. First of all, the error bound in Theo-
rem 1 is given as a function of the quantity ‖PQ∗ − Q∗‖. Notice that the func-
tion PQ∗ can be interpreted as the “best” representation of Q∗ in Q. The error
bound in Theorem 1 means that the obtained approximation is, at most, “almost
as good” as PQ∗. It also means that, this approximation may be of little use, if
the space Q poorly represents the desired function: the closest function in Q will
still be a poor approximation, and there are no guarantees on its practical use-
fulness (in terms of the corresponding greedy policy). Notice nevertheless that,
if Q∗ ∈ Q, the method will deliver the optimal function Q∗. Therefore, when
using function approximation, the space Q should be chosen so as to include all
available information regarding the true function to be estimated. The problem
of how to choose the basis functions is currently the target of intense research
in the RL community. Some work has been done in this area [31, 32, 33], but a
lot more can be done.

A second remark concerns the usefulness of the algorithm in Section 3 if a
fixed policy must be used during learning (instead of a policy that depends on
the estimates Qt). Although the result described in the paper considers a fixed
learning policy, it is possible to extend this result to encompass the use of a policy
πθ that depends continuously on θ. In particular, if the following condition holds
for every (x, a) ∈ X × A

|πθ(x, a) − πθ′(x, a)| ≤ C ‖θ − θ′‖ ,

with C > 0, it is possible to extend the conclusions of Theorem 1 to algorithms
using θ-dependent policies. Further work can explore results on the stability of
perturbed ODEs to extend the fundamental ideas in this paper to address the
convergence of on-policy learning algorithm (e.g., SARSA).

Also, the methods proposed make no use of eligibility traces. It seems likely
that the results in this paper can be modified so as to accommodate eligibility
traces and thus improve their overall performance.

Thirdly, we comment on the results presented in Section 3. In this section,
we described the use of the algorithm in Section 3 to POMDPs by considering
equivalent, fully observable MDPs. Recall that tracking the state of an associ-
ated MDP consists in tracking the belief-state bt of the original POMDP. As
already stated, this implies that the agent must know the parameters P and
O of the POMDP. This is less general than the approach adopted in many RL
methods, where no model of the system is assumed. However, in several practical
applications (e.g., robotic applications) this is a reasonable assumption.
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Finally, notice that the overall conditions required to ensure convergence of
the methods in Section 3 in partially observable scenarios are similar to the
requirements for convergence in fully observable scenarios. Convergence in par-
tially observable scenarios simply requires one extra condition: that at least one
state is identifiable. If we consider that, in many situations, the reinforcement
function provides additional information on the underlying state of the system,
the existence of a distinguishable state may be a less stringent condition than
it appears at first sight. Nevertheless, it is likely that results on the ergodic be-
havior of the posterior probabilities of hidden Markov models may be adapted
so as to alleviate this condition.
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Abstract. Recently, Balcan and Blum [1] suggested a theory of learning
based on general similarity functions, instead of positive semi-definite
kernels. We study the gap between the learning guarantees based on
kernel-based learning, and those that can be obtained by using the ker-
nel as a similarity function, which was left open by Balcan and Blum.
We provide a significantly improved bound on how good a kernel func-
tion is when used as a similarity function, and extend the result also to
the more practically relevant hinge-loss rather then zero-one-error-rate.
Furthermore, we show that this bound is tight, and hence establish that
there is in-fact a real gap between the traditional kernel-based notion of
margin and the newer similarity-based notion.

1 Introduction

A common contemporary approach in machine learning is to encode prior knowl-
edge about objects using a kernel, specifying the inner products between im-
plicit high-dimensional representations of objects. Such inner products can be
viewed as measuring the similarity between objects. In-fact, many generic ker-
nels (e.g. Gaussian kernels), as well as very specific kernels (e.g. Fisher kernels
[2] and kernels for specific structures such as [3]), describe different notions of
similarity between objects, which do not correspond to any intuitive or easily
interpretable high-dimensional representation. However, not every mapping of
pairs of objects to “similarity values” is a valid kernel.

Recently, Balcan and Blum [1] proposed an alternative theory of learning,
which is based on a more general notion of similarity functions between objects,
which unlike valid kernel functions, need not be positive semi-definite. Balcan
and Blum provide a definition for a separation margin of a classification problem
under a general similarity measure and present learning methods with guarantees
that parallel the familiar margin-based guarantees for kernel methods.

It is interesting to study what this alternative theory yields for similarity
functions which are in-fact valid kernel functions. Does the similarity-based the-
ory subsume the kernel-based theory without much deterioration of guarantees?
Or can the kernel-based theory provide better results for functions which are
in-fact positive semi-definite. To answer these questions, one must understand
how a kernel-based margin translates to a similarity-based margin. Balcan and
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Blum showed that if an input distribution can be separated, in the kernel sense,
with margin γ and error rate ε0 (i.e. ε0 of the inputs are allowed to violate
the margin), then viewing the kernel mapping as a similarity measure, for any
ε1 > 0, the target distribution can be separated with similarity-based margin1

γε1
96/γ2−32 log ε1

= Θ̃
(
ε1γ

3
)

and error rate 8ε0/γ + ε1. Although this does establish
that good kernels can also be used as similarity measures, in the Blum and Bal-
can sense, there is a significant deterioration in the margin yielding a significant
deterioration in the learning guarantee. The tightness of this relationship, or a
possible improved bound, was left unresolved. Also, this result of Balcan and
Blum refers only to a zero-one error-rate, which does not yield efficient learning
algorithms. Guarantees referring to the hinge-loss are desirable.

Here, we resolve this question by providing an improved bound, with a simpler
proof, and establishing its tightness. We show that:

– If an input distribution can be separated, in the kernel sense, with margin
γ and error rate ε0, then for any ε1 > 0, it can also be separated by the
kernel mapping viewed as a similarity measure, with similarity-based margin
1
2 (1 − ε0)ε1γ2 and error rate ε0 + ε1.

– We also obtain a similar bound in terms of the average hinge loss, instead of
the margin violation error rate: If for a target distribution we can achieve, in
the kernel sense, average hinge loss of ε0 for margin γ, then for any ε1 > 0,
we can also achieve average hinge loss of ε0 + ε1 for margin 2ε1γ

2, when
the kernel mapping is used as a similarity measure. A result in terms of
the hinge-loss is perhaps more practical, since for computational reasons, we
usually minimize the hinge-loss rather then error rate.

– The above bounds are tight, up to a factor of sixteen: We show, for any
γ < 1

2 and ε1, a specific kernel function and input distribution that can be
separated with margin γ and no errors in the kernel sense, but which can
only be separated with margin at most 32ε1γ

2 in the similarity sense, if we
require hinge loss less than ε1 or error-rate less than 4ε1, when using the
same kernel mapping as a similarity measure.

In the next Section we formally present the framework in which we work and
remind the reader of the definitions and results of Balcan and Blum. We then
state our results (Section 3) and prove them (Sections 4 and 5).

2 Setup

We briefly review the setting used by Balcan and Blum [1], which we also use
here.

We consider input distributions (X, Y ) over X × {±1}, where X is some
abstract object space. As in Balcan and Blum [1], we consider only consistent
input distributions in which the label Y is a deterministic function of X . We can
think of such input distributions as a distributions over X and a deterministic
mapping y(x).
1 The Θ̃ (·) and Õ(·) notations hide logarithmic factors.
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A kernel function is a mapping K : X × X → R for which there exists an
(implicit) feature mapping φ : X → H of objects into an (implicit) Hilbert space
H such that K(x1, x2) = 〈φ(x1), φ(x2)〉. See, e.g., Smola and Schölkopf [4] for
a discussion on conditions for a mapping being a kernel function. Throughout
this work, and without loss of generality, we will only consider kernels such that
K(x, x) ≤ 1 for all x ∈ X . Kernalized large-margin classification relies on the
existence of a large margin linear separator for the input distribution, in the
Hilbert space implied by K. This is captured by the following definition of when
a kernel function is good for an input distribution:

Definition 1. A kernel K is (ε, γ)-kernel-good for an input distribution if
there exists a classifier β ∈ H, ‖β‖ = 1, such that Pr(Y 〈β, φ(X)〉 < γ ) ≤ ε. We
say β has margin-γ-error-rate Pr(Y 〈β, φ(X)〉 < γ ).

Given a kernel that is (ε, γ)-kernel-good (for some unknown source distribution),
a predictor with error rate at most ε + εacc (on the source distribution) can be
learned (with high probability) from a sample of Õ

(
(ε + εacc)/(γ2ε2acc)

)
examples

(drawn independently from the source distribution) by minimizing the number
of margin γ violations on the sample [5]. However, minimizing the number of
margin violations on the sample is a difficult optimization problem. Instead, it
is common to minimize the so-called hinge loss relative to a margin:

Definition 2. A kernel K is (ε, γ)-kernel-good in hinge-loss for an input
distribution if there exists a classifier β ∈ H, ‖β‖ = 1, such that

E[[1 − Y 〈β, φ(X)〉/γ]+] ≤ ε,

where [1 − z]+ = max(1 − z, 0) is the hinge loss.

Given a kernel that is (ε, γ)-kernel-good in hinge-loss, a predictor with error rate
at most ε+εacc can be efficiently learned (with high probability) from a sample of
O

(
1/(γ2ε2acc)

)
examples by minimizing the average hinge loss relative to margin

γ on the sample [6].
A similarity function is any symmetric mapping K : X × X → [−1, +1]. In

particular, a (properly normalized) kernel function is also a similarity function.
Instead of functionals in an implicit Hilbert space, similarity-based predictors
are given in terms of a weight function w : X → [0, 1]. The classification margin
of (x, y) is then defined as [1]:

EX′,Y ′ [w(X ′)Y ′K(x, X ′)|y = Y ′] − EX′,Y ′ [w(X ′)Y ′K(x, X ′)|y �= Y ′]
= yEX′,Y ′ [w(X ′)Y ′K(x, X ′)/p(Y ′)] (1)

where p(Y ′) is the marginal probability of the label, i.e. the prior. We choose
here to stick with this definition used by Balcan and Blum. All our results apply
(up to a factor for 1/2) also to a weaker definition, dropping the factor 1/p(Y ′)
from definition of the classification margin (1).

We are now ready to define when a similarity function is good for an input
distribution:
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Definition 3. A similarity function K is (ε, γ)-similarity-good for an input
distribution if there exists a mapping w : X → [0, 1] such that:

Pr
X,Y

(Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)] < γ ) ≤ ε.

Balcan and Blum showed how, given a similarity function that is (ε, γ)-similarity-
good, a predictor with error at most ε+εacc can be learned (with high probability)
from a sample of Õ

(
(ε + εacc)/(γ2ε2acc)

)
examples. This is done by first using

Õ
(
1/γ2

)
positive and Õ

(
1/γ2

)
negative examples to construct an explicit feature

map φ which is (ε + εacc/2, γ/4)-kernel-good (that is, the inner product in this
space is a good kernel) [1, Theorem 2], and then searching for a margin γ/4
linear separator in this space minimizing the number of margin violations. As
mentioned before, this last step (minimizing margin violations) is a difficult
optimization problem. We can instead consider the hinge-loss:

Definition 4. A similarity function K is (ε, γ)-similarity-good in hinge loss
for an input distribution if there exists a mapping w : X → [0, 1] such that:

EX,Y [[1 − Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)]/γ]+] ≤ ε.

Using the same approach as above, given a similarity function that is (ε, γ)-
similarity-good in hinge loss, a predictor with error at most ε + εacc can be
efficiently learned (with high probability) from a sample of O

(
1/(γ2ε2acc)

)
exam-

ples, where this time in the second stage the hinge loss, rather then the number
of margin violations, is minimized.

We see, then, that very similar learning guarantees can be obtained by using
mappings that are (ε, γ)-kernel-good or (ε, γ)-similarity-good. A natural question
is then, whether a kernel that is (ε, γ)-kernel-good is also (ε, Ωγ)-similarity-good.
A positive answer would indicate that learning guarantees based on similarity-
goodness subsume the more restricted results based on kernel-goodness (up to
constant factors). However, a negative result would indicate that for a mapping
that is a valid kernel (i.e. is positive semi-definite), the theory of kernel-based
learning provides stronger guarantees than those that can be established us-
ing Balcan and Blum’s learning methods and guarantees based on similarity
goodness (it is still possible that stronger similarity-based guarantees might be
possible using a different learning approach).

3 Summary of Results

Considering the question of whether the theory of learning with similarity func-
tion subsumes the theory of learning with kernels, Balcan and Blum showed
[1, Theorem 4] that a kernel that is (ε0, γ)-kernel-good for a (consistent) input
distribution, is also (8ε0/γ + ε1,

γε1
96/γ2−32 log ε1

)-similarity-good for the input dis-
tribution, for any ε1 > 0. This result applies only to margin violation goodness,
and not to the more practically useful hinge-loss notion of goodness. The result
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still leaves a large gap even for the margin violation case, as the margin is de-
creased from γ to Θ̃

(
ε1γ

3
)
, and the error is increased by both an additive factor

of ε1 and a multiplicative factor of 8/γ.
First, we improve on this result, obtaining a better guarantee on similarity-

goodness based on kernel-goodness, that applies both for margin-violations and
for hinge-loss:

Theorem 1 (Main Result, Margin Violations). If K is (ε0, γ)-kernel-good
for some (consistent) input distribution, then it is also (ε0 + ε1,

1
2 (1 − ε0)ε1γ2)-

similarity-good for the distribution, for any ε1 > 0.

Note that in any useful situation ε0 < 1
2 , and so the guaranteed margin is at

least 1
4ε1γ

2.

Theorem 2 (Main Result, Hinge Loss). If K is (ε0, γ)-kernel-good in hinge
loss for some (consistent) input distribution, then it is also (ε0 + ε1, 2ε1γ

2)-
similarity-good in hinge loss for the distribution, for any ε1 > 0.

These guarantees still yield a significant deterioration of the margin, when con-
sidering similarity-goodness as opposed to kernel-goodness. However, we estab-
lish that this is the best that can be hoped for by presenting examples of kernels
for which these guarantees are tight (up to a small multiplicative factor):

Theorem 3 (Tightness, Margin Violations). For any 0 < γ <
√

1/2 and any
0 < ε1 < 1/2, there exists an input distribution and a kernel function K, which
is (0, γ)-kernel-good for the input distribution, but which is only (ε1, 8ε1γ

2)-
similarity-good. That is, it is not (ε1, γ′)-similarity-good for any γ′ > 8ε1γ

2.

Theorem 4 (Tightness, Hinge Loss). For any 0 < γ <
√

1/2 and any 0 <
ε1 < 1/2, there exists an input distribution and a kernel function K, which
is (0, γ)-kernel-good in hinge loss for the input distribution, but which is only
(ε1, 32ε1γ

2)-similarity-good in hinge loss.

4 An Improved Guarantee

We are now ready to prove Theorems 1 and 2. We will consider a kernel function
that is (ε0, γ)-kernel-good and show that it is also good as a similarity function.
We begin, in Section 4.1, with goodness in hinge-loss, and prove Theorem 2,
which can be viewed as a more general result. Then, in Section 4.2, we prove
Theorem 1 in terms of the margin violation error rate, by using the hinge-loss
as a bound on the error rate.

In either case, our proof is based on the representation of the optimal SVM
solution in terms of the dual optimal solution.

4.1 Proof of Theorem 2: Goodness in Hinge-Loss

We consider consistent input distributions, in which Y is a deterministic function
of X . For simplicity of presentation, we first consider finite discrete distributions,
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where:
Pr( (X, Y ) = (xi, yi) ) = pi (2)

for i = 1 . . . n, with
∑n

i=1 pi = 1 and xi �= xj for i �= j.
Let K be any kernel function that is (ε0, γ)-kernel good in hinge loss for

our input distribution. Let φ be the implied feature mapping and denote φi =
φ(xi). Consider the following weighted-SVM quadratic optimization problem
with regularization parameter C:

minimize
1
2

‖β‖2 + C
n∑

i=1

pi[1 − yi〈β, φi〉]+ (3)

The dual of this problem, with dual variables αi, is:

maximize
∑

i

αi − 1
2

∑

ij

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤ Cpi

(4)

There is no duality gap, and furthermore the primal optimum β∗ can be ex-
pressed in terms of the dual optimum α∗: β∗ =

∑
i α∗

i yixi.
Since K is (ε0, γ)-kernel-good in hinge-loss, there exists a predictor ‖β0‖ = 1

with average-hinge loss ε0 relative to margin γ. The primal optimum β∗ of (3),
being the optimum solution, then satisfies:

1
2

‖β∗‖2 + C
∑

i

pi[1 − yi〈β∗, φi〉]+ ≤

1
2

∥
∥
∥
∥

1
γ

β0

∥
∥
∥
∥

2

+ C
∑

i

pi[1 − yi

〈
1
γ

β0, φi

〉

]+

=
1

2γ2
+ CE

[

[1 − Y

〈
1
γ

β0, φ(X)
〉

]+

]

=
1

2γ2
+ Cε0 (5)

Since both terms on the left hand side are non-negative, each of them is bounded
by the right hand side, and in particular:

C
∑

i

pi[1 − yi〈β∗, φi〉]+ ≤ 1
2γ2

+ Cε0 (6)

Dividing by C we get a bound on the average hinge-loss of the predictor β∗,
relative to a margin of one:

E[[1 − Y 〈β∗, φ(X)〉]+] ≤ 1
2Cγ2

+ ε0 (7)

We now use the fact that β∗ can be written as β∗ =
∑

i α∗
i yiφi with 0 ≤ α∗

i ≤
Cpi. Using the weights

wi = w(xi) = α∗
i p(yi)/(Cpi) ≤ p(yi) ≤ 1 (8)



How Good Is a Kernel When Used as a Similarity Measure? 329

we have for every x, y:

yEX′,Y ′ [w(X ′)Y ′K(x, X ′)/p(Y ′)] = y
∑

i

piw(xi)yiK(x, xi)/p(yi) (9)

= y
∑

i

piα
∗
i p(yi)yiK(x, xi)/(Cpip(yi))

= y
∑

i

α∗
i yi〈φi, φ(x)〉/C = y〈β∗, φ(x)〉/C

Multiplying by C and using (7):

EX,Y [ [ 1 − CY EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)] ]+ ]

= EX,Y [ [ 1 − Y 〈β∗, φ(X)〉 ]+ ] ≤ 1
2Cγ2

+ ε0 (10)

This holds for any C, and describes the average hinge-loss relative to margin
1/C. To get an average hinge-loss of ε0 + ε1, we set C = 1/(2ε1γ

2) and get:

EX,Y

[
[ 1 − Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)]/(2ε1γ

2) ]+
]

≤ ε0 + ε1 (11)

This establishes that K is (ε0 + ε1, 2ε1γ
2)-similarity-good in hinge-loss.

Non-discrete Input Distribution. The same arguments apply also in the
general (not necessarily discrete) case, except that this time, instead of a fairly
standard (weighted) SVM problem, we must deal with a variational optimization
problem, where the optimization variable is a random variable (a function from
the sample space to the reals). We will present the dualization in detail.

We consider the primal objective

minimize
1
2

‖β‖2 + CEY,φ[[1 − Y 〈β, φ〉]+] (12)

where the expectation is w.r.t. the input distribution, with φ = φ(X) here and
throughout the rest of this section. We will rewrite this objective using explicit
slack, in the form of a random variable ξ, which will be a variational optimization
variable:

minimize
1
2

‖β‖2 + CE[ξ]

subject to Pr( 1 − y〈β, φ〉 − ξ ≤ 0 ) = 1
Pr( ξ ≥ 0 ) = 1

(13)

In the rest of this section all our constraints will implicitly be required to hold
with probability one. We will now introduce the dual variational optimization
variable α, also a random variable over the same sample space, and write the
problem as a saddle problem:

minβ,ξ maxα
1
2

‖β‖2 + CE[ξ] + E[α(1 − Y 〈β, φ〉 − ξ)]

subject to ξ ≥ 0 α ≥ 0
(14)
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Note that this choice of Lagrangian is a bit different than the more standard
Lagrangian leading to (4). Convexity and the existence of a feasible point in the
dual interior allows us to change the order of maximization and minimization
without changing the value of the problem [7]. Rearranging terms we obtaining
the equivalent problem:

maxα minβ,ξ
1
2

‖β‖2 − 〈E[αY φ], β〉 + E[ξ(C − α)] + E[α]

subject to ξ ≥ 0, α ≥ 0
(15)

Similarly to the finite case, we see that the minimum of the minimization problem
is obtained when β = E[αY φ] and that it is finite when α ≤ C almost surely,
yielding the dual:

maximize E[α] − 1
2
E[αY α′Y K(X, X ′)]

subject to 0 ≤ α ≤ C
(16)

where (X, Y, α) and (X ′, Y ′, α′) are two independent draws from the same dis-
tribution. The primal optimum can be expressed as β∗ = E[α∗Y φ], where α∗ is
the dual optimum. We can now apply the same arguments as in (5),(6) to get
(7). Using the weight mapping

w(x) = E[α∗|x] p(y(x)) / C ≤ 1 (17)

we have for every x, y:

yEX′,Y ′ [w(X ′)Y ′K(x, X ′)/p(Y ′)] = y〈EX′,Y ′,α′ [α′Y ′X ′], x〉/C

= y〈β∗, φ(x)〉/C. (18)

From here we can already get (10) and setting C = 1/(2ε1γ
2) we get (11), which

establishes Theorem 2 for any input distribution.

4.2 Proof of Theorem 1: Margin-Violation Goodness

We will now turn to guarantees on similarity-goodness with respect to the mar-
gin violation error-rate. We base these on the results for goodness in hinge loss,
using the hinge loss as a bound on the margin violation error-rate. In particular,
a violation of margin γ/2 implies a hinge-loss at margin γ of at least 1

2 . There-
fore, twice the average hinge-loss at margin γ is an upper bound on the margin
violation error rate at margin γ/2.

The kernel-separable case, i.e. ε0 = 0, is simpler, and we consider it first. Hav-
ing no margin violations implies zero hinge loss. And so if a kernel K is (0, γ)-
kernel-good, it is also (0, γ)-kernel-good in hinge loss, and by Theorem 2 it is
(ε1/2, 2(ε1/2)γ2)-similarity-good in hinge loss. Now, for any ε1 > 0, by bounding
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the margin 1
2ε1γ

2 error-rate by the ε1γ
2 average hinge loss, K is (ε1, 1

2ε1γ
2)-

similarity-good, establishing Theorem 1 for the case ε0 = 0.
We now return to the non-separable case, and consider a kernel K that is

(ε0, γ)-kernel-good, with some non-zero error-rate ε0. Since we cannot bound the
hinge loss in terms of the margin-violations, we will instead consider a modified
input distribution where the margin-violations are removed.

Since we will be modifying the input distribution, and so potentially also the
label marginals, it will be simpler for us to use a definition of similarity-based
margin that avoids the factor 1/p(Y ′). Therefore, in this Section, we will refer
to similarity-goodness where the classification margin of (x, y) is given by:

yEX′,Y ′ [w(X ′)Y ′K(x, X ′)]. (19)

It is easy to verify, by dropping the factor p(yi) in (8) or (17), that Theorem 2,
and hence also Theorem 1 for the case ε0 = 0, hold also under this definition.
Furthermore, if a kernel is (ε, γ)-good under this definition, then multiplying the
label marginals into the weights establishes that it is also (ε, γ)-good under the
definitions in Section 2.

Let β∗ be the linear classifier achieving ε0 margin violation error-rate with
respect to margin γ, i.e. such that Pr( Y 〈β∗, X〉 ≥ γ ) > 1− ε0. We will consider
an input distribution which is conditioned on Y 〈β∗, X〉 ≥ γ. We denote this
event as ok(X) (recall that Y is a deterministic function of X). The kernel K
is obviously (0, γ)-kernel-good, and so by the arguments above also (ε1, 1

2ε1γ
2)-

similarity-good, on the conditional distribution. Let w be the weight mapping
achieving

Pr
X,Y

(Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)|ok(X ′)] < γ1|ok(X) ) ≤ ε1, (20)

where γ1 = 1
2ε1γ

2, and set w(x) = 0 when ok(X) does not hold. We have:

Pr
X,Y

(Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)] < (1 − ε0)γ1 )

≤ Pr( not ok(X) )
+ Pr(ok(X) ) Pr

X,Y
( Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)] < (1 − ε0)γ1 | ok(X) )

= ε0
+ (1−ε0) Pr

X,Y
(Y (1−ε0)EX′,Y ′ [w(X ′)Y ′K(X, X ′)|ok(X)] < (1−ε0)γ1|ok(X) )

= ε0 + (1 − ε0) Pr
X,Y

(Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)|ok(X)] < γ1|ok(X) )

≤ ε0 + (1 − ε0)ε1 ≤ ε0 + ε1 (21)

establishing that K is (ε0+ε1, γ1)-similarity-good for the original (unconditioned)
distribution, and yielding Theorem 1.
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5 Tightness

Consider a distribution on four labeled points in R
3, which we denote x1, x2,

x3, x4:

p(X = x1 = (γ, γ,
√

1 − 2γ2), Y = 1) =
1
2

− ε

p(X = x2 = (γ, −γ,
√

1 − 2γ2), Y = 1) = ε

p(X = x3 = (−γ, γ,
√

1 − 2γ2), Y = −1) = ε

p(X = x4 = (−γ, −γ,
√

1 − 2γ2), Y = −1) =
1
2

− ε

for some (small) 0 < γ <
√

1
2 and (small) probability 0 < ε < 1

2 . The four
points are all on the unit sphere, and are clearly separated by β = (1, 0, 0) with
a margin of γ. The standard inner-product kernel is therefore (0, γ)-kernel-good
on this distribution.

5.1 Margin-Violation Error-Rate

We will show that when this kernel (the standard inner product kernel in R
3) is

used as a similarity function, the best margin that can be obtained on all four
points, i.e. on at least 1 − ε probability mass of examples, is 8εγ2.

Consider the classification margin on point x2 with weights w (denote wi =
w(xi), and note that p(yi) = 1

2 for all i):

E[w(X)Y K(x2, X)/p(Y )]

= 2(
1
2

− ε)w1(γ2 − γ2 + (1 − 2γ2)) + 2εw2(2γ2 + (1 − 2γ2))

− 2εw3(−2γ2 + (1 − 2γ2)) − 2(
1
2

− ε)w4(−γ2 + γ2 + (1 − 2γ2))

= 2
(

(
1
2

− ε)(w1 − w4) + ε(w2 − w3)
)

(1 − 2γ2) + 4ε(w2 + w3)γ2 (22)

If the first term is positive, we can consider the symmetric calculation

− E[w(X)Y K(x3, X)/p(Y )]

= −2
(

(
1
2

− ε)(w1 − w4) + ε(w2 − w3)
)

(1 − 2γ2) + 4ε(w2 + w3)γ2 (23)

in which the first term is negated. One of the above margins must therefore be
at most

4ε(w2 + w3)γ2 ≤ 8εγ2 (24)

This establishes Theorem 3.
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5.2 Hinge Loss

In the above example, suppose we would like to get an average hinge-loss relative
to margin γ1 of at most ε1:

EX,Y [ [ 1 − Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)]/γ1 ]+ ] ≤ ε1 (25)

Following the arguments above, equation (24) can be used to bound the hinge-
loss on at least one of the points x2 or x3, which, multiplied by the probability
ε of the point, is a bound on the average hinge loss:

EX,Y [ [ 1 − Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)]/γ1 ]+ ] ≥ ε(1 − 8εγ2/γ1) (26)

and so to get an an average hinge-loss of at most ε1 we must have:

γ1 ≤ 8εγ2

1 − ε1/ε
(27)

For any target hinge-loss ε1, consider a distribution with ε = 2ε1, in which case
we get that the maximum margin attaining average hinge-loss ε1 is γ1 = 32ε1γ

2,
even though we can get a hinge loss of zero at margin γ using a kernel. This
establishes Theorem 4.

6 Discussion

In this paper, we studied how tightly the similarity-based theory of learning,
proposed by Balcan and Blum, captures the well-studied theory of kernel-based
learning. In other words, how well does a kernel-based learning guarantee trans-
late to a similarity-based learning guarantee. We significantly improved on the
bounds presented by Balcan and Blum, providing stronger, simpler, bounds that
apply also in the more practically relevant case of hinge-loss minimization. How-
ever, these bounds still leave a gap between the kernel-based learning guarantees
and the learning guarantee obtained when using the kernel as a similarity mea-
sure. We show that the bounds are tight, and so there is a real gap between the
similarity-based theory and the kernel-based theory.

We hope that the results presented here can help us better understand
similarity-based learning, and possibly suggest revisions to the theory presented
by Balcan and Blum.

The quadratic increase in the margin can perhaps be avoided by using the dis-
tances, or perhaps the square root of the kernel, rather then the inner products,
as a similarity function. Consider the simplest case of two points, with opposite
labels and probability half, at (γ,

√
1 − γ2) and (−γ,

√
1 − γ2). The geometric

margin is γ. The inner product (kernel) is only (0, γ2)-similarity-good, but the
distance function, or just the square root of the inner product, is (0, γ)-similarity-
good. It would be interesting to understand what guarantees can be provided
on these measures as similarity functions.
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However, even if distance functions are used, the dependence on ε in the
margin cannot be avoided. Consider the input distribution:

p(X = x1 = (γ,
√

1 − 2γ2), Y = 1) =
1
2

− ε

p(X = x2 = (γ, −
√

1 − 2γ2), Y = 1) = ε

p(X = x3 = (−γ,
√

1 − 2γ2), Y = −1) =
1
2

− ε

p(X = x4 = (−γ, −
√

1 − 2γ2), Y = −1) = ε

It can be shown that the best margin that can be achieved on all four points by
using the distance as a similarity is 2(εγ + 2γ2).

All the results in this paper (and also the results of Balcan and Blum [1]) refer
to consistent input distributions. Noisy input distributions, where some x might
take either label with positive probability, are problematic when we use the
definitions of Section 2: The weight w(x) can depend only on x, but not on the
label y, and so a positive weight yields a contribution from both labels. A point x
with Pr( 1|x ) and Pr(−1|x ) both high, cannot contribute much to the similarity-
based classification margin (in the extreme case, if Pr( 1|x ) = Pr(−1|x ) = 0.5,
its contribution to the similarity-based classification margin will always be zero).

It is possible to use the results presented here also to obtain (rather messy)
results for the noisy case by first removing examples with highly ambiguous
labels, then applying Theorems 1 or 2, and finally correcting the weights to
account for the negative contribution of the “wrong” label. The amount of this
“correction”, which will reduce the margin, can be bounded by the amount
of allowed ambiguity, and the overall number of removed, highly ambiguous
examples, can be bounded in terms of the error-rate. If the error-rate is bounded
away from 1

2 , such an approach introduces only a multiplicative factor to both
the resulting margin, and the associated margin-violations error-rate (note that
in Theorem 1, for the consistent case, we only have an additive increase in the
error-rate). However, since the hinge-loss on those examples that we removed
might be extremely high, the deterioration of the hinge-loss guarantee is much
worse. For this reason, a different approach might be appropriate.

We suggest changing the definition of the similarity-based classification mar-
gin, removing the effect of the label Y ′ and instead allowing both positive and
negative weights in the range [−1, +1], with the following as an alternative to
the classification margin given in equation (1):

yEX′ [w(X ′)K(x, X ′)]. (28)

When the labels are balanced, i.e. p(Y ) is bounded away from 0, this yields
strictly more flexible definitions, up to margin deterioration of (minY p(Y )), for
similarity goodness: the effect of the label can be incorporated into w(x) by
setting w(x) ← w(x)EY [Y/p(Y )|x](minY p(Y )). Nevertheless, all the learning
results and methods of Balcan and Blum hold also using this revised definition
of classification margin.
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Under the revised definitions using (28), there is no problem handling noisy
input distributions: Consider changing the weight mapping of equation (17) to

w(x) = E[Y α∗|x] / C. (29)

We now no longer have to require that the label y is a deterministic function of
x, and obtain the result of Theorems 1 and 2, with the same constants, for both
consistent and noisy distributions, where the classification margin in equation
(28) replaces that of equation (1) in Definitions 3 and 4. Note that the results do
not depend on the label imbalance, and hold also when p(y) is arbitrarily close
to zero.
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Abstract. We show that the stopping criteria used in many support
vector machine (SVM) algorithms working on the dual can be interpreted
as primal optimality bounds which in turn are known to be important for
the statistical analysis of SVMs. To this end we revisit the duality theory
underlying the derivation of the dual and show that in many interesting
cases primal optimality bounds are the same as known dual optimality
bounds.

1 Introduction

Given a labeled training set (x1, y1), . . . , (x�, y�) ∈ X×{−1, 1} on an input space
X the standard L1-SVM for binary classification introduced by Vapnik et. al in
[1] solves an optimization problem of the form

arg min
(f,b,ξ)

R(f, b, ξ) :=
1
2
‖f‖2

H + C

�∑

i=1

ξi

s.t. ξi ≥ 0 and yi(f(xi) + b) ≥ 1 − ξi f.a. i = 1, . . . , �

(1)

where H is the reproducing kernel Hilbert space (RKHS) of a kernel k : X×X →
R and C > 0 is a free regularization parameter. Instead of solving this problem
directly one usually applies standard Lagrange techniques to derive the following
dual problem

min
α∈R�

W (α) :=
1
2
〈Kα, α〉 − α · e

s.t. y · α = 0 and 0 ≤ αi ≤ C f.a. i = 1, . . . , �

(2)

where K := (yiyjk(xi, xj))1≤i,j≤� is the so-called kernel matrix, e ∈ R
� is the

all ones vector, and y := (y1, . . . , y�). Since the kernel is symmetric and positive
semi-definite (2) is a standard convex quadratic optimization problem, which is
simpler to solve than the primal problem (1). The motivation for this procedure
is usually given by the well known fact from Lagrangian Duality Theory, that
for the special convex optimization problems (1) and (2) the strong duality
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c© Springer-Verlag Berlin Heidelberg 2007

nlist@lmi.rub.de
{dhush,jcs,ingo}@lanl.gov


Gaps in Support Vector Optimization 337

assumption holds (see for example [2, Chapter 5]) in the sense that primal and
dual optimal values coincide. Therefore starting from optimal dual solutions one
can calculate optimal primal solutions using a simple transformation.

However, due to the usually large and dense kernel matrix it is not easy to
solve (2) directly. To address this issue several techniques based on sequen-
tially solving small subproblems have been proposed [14,7,15,13,5,11,21]. Of
course, all these methods have in common that they only produce an approx-
imate solution to the dual problem (2). However, recall that in order to es-
tablish guarantees on the generalization performance of (f, b, ξ) one needs to
know that R(f, b, ξ) approximates the minimum of (1) up to some pre-defined
εP > 0 (see e.g. [20]). But unfortunately, it is not obvious why the above
transformation should produce εP -optimal primal points from εD-optimal dual
points. Consequently, the usual statistical analysis of SVMs does not apply
to the learning machines applied in practice. This lack of theoretical guaran-
tees has first been addressed by [6] were the authors showed that εD-optimal
dual points can be transformed to O(

√
εD)-optimal primal points using specific

transformations.
In this paper we will show, that certain dual optimality bounds transform

directly to primal optimality bounds in the sense of εP = εD. Let us note, that
there has already been a similar argumentation for the special case of L1-SVMs
in [18, Sec. 10.1]. The authors there, however, ignore the influence of the offset
parameter b which leads to ambiguous formulas in Proposition 10.1. Besides that
the approach we describe here is far more general and promises to give a unified
approach for analyzing approximate duality.

In addition, we will show, that the above dual optimality bounds coincide with
the σ-gaps that are used to analyze the convergence behavior [5,11] of certain
algorithms working on the dual problem (2). Because of this connection, the
results of this paper make it possible to combine convergence rates for certain L1-
SVM algorithms and oracle inequalities (see e.g. [20]) describing the statistical
performance of the resulting classifier.

The rest of this work is organized as follows: In Section 2 we revisit duality
theory1 and introduce certain gap functions. We then illustrate the theory for
convex quadratic optimization problems. In Section 3 we apply our findings to
L1-SVMs. In particular, we there consider σ-gaps and a stopping criterion for
maximal violating pairs algorithms.

2 Gaps in Constrained Optimization

Let U be a nonempty set and let ϕ : U → R and ci : U → R, i = 1, . . . , m be
real valued functions. Let c : U → R

m denote the function with components ci.
Consider the primal constrained optimization problem

sup
u∈U, c(u)≤0

ϕ(u) (3)

1 See for example [3, Chapter XII] for a more detailed introduction.
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The set C := {u ∈ U | c(u) ≤ 0} is called feasibility region of (3) and each u ∈ C
is called a (primal) feasible point. We define the Lagrangian L : U × R

m → R

associated with (3) by
L(u, λ) := ϕ(u) − λ · c(u) (4)

and write (R+)m := {λ ∈ R
m : λ ≥ 0}. Note that although it is customary

to define the Lagrangian to be ∞ when λ /∈ (R+)m the definition (4) will be
convenient when applying the subdifferential calculus. Now the dual function to
(3) is defined by

ψ(λ) := sup
u∈U

L(u, λ) (5)

and for fixed λ ∈ R
m the maximizers of L(·, λ) are denoted by

Uλ := argmax
u∈U

L(u, λ).

Note that for any u ∈ Uλ we have L(u, λ) = ψ(λ) and L(u, λ) ≥ L(u′, λ) for all
u′ ∈ U. Since the latter equation amounts to one of the two inequalities defining
a saddle point we refer to any (u, λ) ∈ Uλ × R

m as a semi-saddle. The following
lemma attributed to Uzawa from [12, Lemma 5.3.1] provides sufficient conditions
for u ∈ U to be an optimal primal solution:

Lemma 1. Any u ∈ U is a primal optimal point if there exists a λ ≥ 0 such
that u ∈ Uλ,

c(u) ≤ 0

and
λici(u) = 0 for all i = 1, . . . , m.

The second condition is the feasibility of u the third one is called complementary
slackness.

The next lemma shows that without any assumptions on ϕ and c the dual
function has some remarkable properties.

Lemma 2. The dual ψ : R
m → R ∪ {+∞} is convex and for u ∈ Uλ we have

−c(u) ∈ ∂ψ(λ), where ∂ψ(λ) denotes the subdifferential of ψ at λ.

Proof. Since ψ is a pointwise supremum of affine functions it is convex. Moreover,
U �= ∅ implies ψ(λ) = supu∈U L(u, λ) > −∞ for all λ. Finally, for λ′ ∈ R

m and
u ∈ Uλ we obtain

ψ(λ′) ≥ L(u, λ′) = L(u, λ) + λ · c(u) − λ′ · c(u) = ψ(λ) − c(u) · (λ′ − λ). ��

Given the Lagrangian L of the problem (3) the corresponding dual problem is
defined by

inf
λ≥0

ψ(λ). (6)

Note that this a convex optimization problem by Lemma 2. We define the fea-
sibility region of the dual to be (R+)m and any λ ≥ 0 is called a (dual)feasible
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point. Now, for any primal feasible u and any dual feasible λ we have ϕ(u) ≤
ϕ(u) − λ · c(u) = L(u, λ) ≤ ψ(λ) and hence we obtain

ψ(λ) − ϕ(u) ≥ 0, u ∈ C, λ ≥ 0. (7)

Let us write
ϕ∗ := sup

u∈U, c(u)≤0

ϕ(u) and ψ∗ := inf
λ≥0

ψ(λ)

for the values of the primal and dual problem, respectively. Then ψ∗ − ϕ∗ is
the smallest possible gap in (7) and is called the duality gap. However, in this
work we also need the gap for arbitrary primal-dual pairs, i.e. for not necessarily
feasible u ∈ U and λ ∈ R

m we consider

gap(u, λ) := ψ(λ) − ϕ(u). (8)

The following lemma computes gap(u, λ) for semi-saddles.

Lemma 3. For all semi-saddles (u, λ) ∈ Uλ × R
m we have

gap(u, λ) = −λ · c(u).

Proof. We have gap(u, λ) = ψ(λ) − ϕ(u) = L(u, λ) − ϕ(u) = −λ · c(u). ��

Now note that for (u, λ) ∈ (Uλ ∩ C) × (R+)m we have c(u) ≤ 0 and λ ≥ 0 and
hence Lemma 3 shows that gap(u, λ) = 0 is equivalent to the complementary
slackness condition of Lemma 1. This fact leads to the following simple and
natural optimality bounds:

Definition 1 (Forward Gap). The forward gap of a feasible u ∈ U is defined
by −→

G(u) := inf{−λ · c(u) | λ ≥ 0, u ∈ Uλ} . (9)

Definition 2 (Backward Gap). The backward gap of a feasible λ is defined
by ←−

G(λ) := inf
{
−λ · c(u) | u ∈ Uλ, c(u) ≤ 0

}
. (10)

Furthermore, for any feasible primal u ∈ U we define its suboptimality to be

ΔP (u) := ϕ∗ − ϕ(u)

and analogously for any feasible dual λ we define its suboptimality to be

ΔD(λ) := ψ(λ) − ψ∗.

The following simple lemma shows that the gaps control suboptimality:

Lemma 4. Suppose that u and λ are feasible. Then we have

ΔP (u) ≤ −→
G(u) and ΔD(λ) ≤ ←−

G(λ) .

Proof. Using (7) we obtain ΔP (u) = ϕ∗ − ϕ(u) ≤ ψ(λ′) − ϕ(u) = gap(u, λ′)
for all λ′ ≥ 0 satisfying u ∈ Uλ′ . Similarly, for u′ ∈ Uλ ∩ C we have ΔD(λ) =
ψ(λ)−ψ∗ ≤ ψ(λ)−ϕ(u′) = gap(u′, λ). By Lemma 3 we then obtain the assertion.

��
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2.1 Forward Gap and Dual Optimality

Let us now focus on the dual problem with the tools from above in mind. To that
end we consider the dual to be our new “primal” and write (6) as a maximization
problem by changing ψ to −ψ. The corresponding Lagrangian is then

LD(λ, μ) = −ψ(λ) + μ · λ.

Since ψ is convex we observe that λ ∈ Uμ := argmaxλ′∈Rm LD(λ′, μ) if and only
if 0 ∈ ∂λ

(
−LD(λ, μ)

)
= ∂ψ(λ) − μ which occurs if and only if μ ∈ ∂ψ(λ). In

other words we have Uμ = {λ ∈ R
m : μ ∈ ∂ψ(λ)}. Since this implies

{μ ≥ 0 | λ ∈ Uμ} = ∂ψ(λ) ∩ (R+)m

we see that the forward gap of (6) can be computed by

−→
G(λ) = inf

{
μ · λ | μ ∈ ∂ψ(λ), μ ≥ 0

}
(11)

Note, that this gap becomes trivial if ψ is differentiable at λ or is equivalent to
solving a LP if ∂ψ(λ) is a polyhedra. We will see in Section 3, that this forward
gap of the dual is not only of theoretical interest, but is in fact used in analyzing
dual SVM optimization problems.

The following two results establish important properties of (11).

Lemma 5. Given a feasible λ ≥ 0. Then
−→
G (λ) ≥ 0 and the minimum value−→

G(λ) in (11) is finite and attained iff ∂ψ(λ) ∩ (R+)m �= ∅.

Proof. Obviously μ ·λ ≥ 0 for λ, μ ≥ 0. If ∂ψ(λ)∩ (R+)m = ∅ the feasible region
of (11) is empty and therefore

−→
G(λ) = +∞.

In the second case the objective function λ · μ and the constraint set {μ ≥
0 | λ ∈ Uμ} have no direction of recession in common. Moreover {μ ≥ 0 | λ ∈
Uμ} = ∂ψ(λ) ∩ (R+)m is closed and convex and hence we obtain the assertion
by [16, Theorem 27.3]. ��

Theorem 1. If λ ≥ 0 satisfies
−→
G(λ) = 0, then λ is optimal for (6). On the

other hand if λ ≥ 0 is optimal for (6) and ri(domψ) ∩ ri((R+)m) �= ∅ then−→
G(λ) = 0, where riA denotes the relative interior of a set A.

Proof. The first assertion follows directly from Lemma 4. For the second sup-
pose that λ ≥ 0 is optimal for (6). We write (6) as an unconstrained maximiza-
tion of the function −ψ(λ) − 1(R+)m(λ) where we note that for λ ≥ 0 we have
∂1(R+)m(λ) = {μ ≤ 0 | λi > 0 ⇒ μi = 0} . Since λ ≥ 0 is optimal it follows that
0 ∈ ∂(ψ(λ) + 1(R+)m(λ)). However, by [16, Thm. 23.8] the assumptions imply
that ∂(ψ(λ) + 1(R+)m(λ)) = ∂ψ(λ) + ∂1(R+)m(λ) so that we conclude that there
exists a μ ∈ ∂ψ(λ) such that μ ≥ 0 and μi = 0 for all i such that λi > 0. This
implies

−→
G(λ) = 0. ��
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2.2 The Filling Property

Let us now return to the relation between primal and dual problem. Suppose
we have a feasible dual variable λ and we ask for the best possible associated
primal u ∈ Uλ. Given the backward gap

←−
G(λ) and Lemma 4 the answer is easy:

The best possible primal û ∈ Uλ has an expected primal optimality distance of
at most ΔP (û) = ϕ∗ − ϕ(û) ≤ ψ(λ) − ϕ(û) = gap(û, λ) ≤ ←−

G(λ). Our main aim
will be to characterize

←−
G (λ) solely in terms of the dual problem.

Recall therefore that Lemma 2 implies that {−c(u) | u ∈ Uλ} ⊆ ∂ψ(λ). Since
∂ψ(λ) is convex it then follows that

Cλ := {c(u) | u ∈ Uλ}.

satisfies − coCλ ⊆ ∂ψ(λ), where co Cλ denotes the convex hull of Cλ. The reverse
inclusion will prove to be extremely useful so we recall the following definition
from [3, Def. XII.2.3.1]:

Definition 3. We say the filling property holds for λ, iff

− coCλ = ∂ψ(λ) . (12)

If in addition Cλ is convex we say, that the strict filling property holds for λ.

We will present some conditions under which the strict filling property holds
in Section 2.4. To illustrate the importance of (12) we end this section by the
following theorem.2

Theorem 2. Assume the filling property holds for a given λ ≥ 0. Then λ is an
optimal dual solution iff there exist s ≤ m+1 feasible primal points u1, . . . , us ∈
Uλ and α1, . . . , αs ≥ 0 such that

∑s
r=1 αr = 1,

s∑

r=1

αrc(ur) ≤ 0, and λi

s∑

r=1

αrci(ur) = 0 for all i = 1, . . . , m.

Moreover if the strict filling property holds for an optimal λ, then the duality gap
ψ∗−ϕ∗ is 0 and the solutions of the primal problem are given by the feasible u ∈
Uλ, for which gap(u, λ) = 0. Since (u, λ) ∈ Uλ × (R+)m the latter is equivalent
to complementary slackness.

2.3 Relation Between the Gaps

Let us once again repeat the main question in this work: Given a dual feasible
point λ, for which only approximate optimality can be guaranteed, how can this
be translated into approximate optimality guarantees for “associated” primal
points u ∈ Uλ?

The answer is quite simple if we use forward and backward gaps as optimality
bounds as the following main theorem shows:
2 Since this theorem is not needed in the following we omit its elementary proof.
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Theorem 3. Let λ ≥ 0 be a dual point for which the strict filling property holds.
Then we have ←−

G(λ) =
−→
G(λ).

In addition, if
−→
G(λ) is finite, there exists a feasible û ∈ Uλ such that −λ · c(û) =−→

G(λ). Moreover, û is an optimal solution of

sup {ϕ(u) | u ∈ Uλ, c(u) ≤ 0} .

Proof. Since the strict filling property implies that the infima in (10) and (11)
range over the same set, we obtain equality of the gaps. If

−→
G(λ) < +∞ Lemma 5

and the strict filling property then imply, that there exists a feasible û ∈ Uλ

such that
−→
G(λ) = −λ · c(û). Moreover, for (u, λ) ∈ Uλ × R

m Lemma 3 shows
ϕ(u) − λ · c(u) = ψ(λ). Consequently, we see that for fixed λ ≥ 0 maximizing
ϕ is equivalent to minimizing −λ · c(·) and therefore ϕ(û) is also the maximal
value ϕ attains on {u ∈ Uλ | c(u) ≤ 0}. ��

2.4 Sufficient Conditions for Filling

We now show that for concave quadratic optimization problems the strict filling
property holds for any feasible dual point in the effective domain of the dual
function (see [19] for more general settings). To that end let U be a Hilbert
space, w ∈ U , d ∈ R

m, Q : U → U be a nonnegative selfadjoint operator such
that Q : ker(Q)⊥ → ker(Q)⊥ has a continuous inverse Q−1 and A : U → R

m be
continuous and linear. Then the convex quadratic problem

sup
u∈U

Au−d≤0

−1
2
〈Qu, u〉 + 〈w, u〉 (13)

is of the form (3) for ϕ(u) := − 1
2 〈Qu, u〉 + 〈w, u〉 and c(u) := Au − d. The next

lemma, which includes the linear programming case, shows that the strict filling
property holds:

Lemma 6. Consider the convex quadratic programming problem (13). Then the
strict filling property holds for all λ in the domain of the Lagrangian dual crite-
rion function.

Proof. The associated Lagrangian is L(u, λ) = − 1
2 〈Qu, u〉+〈w, u〉−λ·(Au−d) =

− 1
2 〈Qu, u〉+ 〈w −A∗λ, u〉+λ ·d and its dual criterion function is defined by (5).

If w − A∗λ is not orthogonal to kerQ then it is easy to see that ψ(λ) = ∞. Now
suppose that w − A∗λ ∈ (kerQ)⊥ = img Q. Then we can solve 0 = ∂uL(u, λ) =
−Qu + w − A∗λ for u and hence we obtain

Uλ = Q−1(w − A∗λ) + kerQ ,

ψ(λ) =
1
2
〈Q−1(w − A∗λ), w − A∗λ〉 + λ · d

dom ψ = {λ ∈ R
m | w − A∗λ ∈ img Q} . (14)
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The latter formula for domψ implies

∂ψ(λ) = AQ−1(A∗λ − w) + d + {μ | A∗μ ∈ img Q}⊥

for all λ ∈ dom ψ. Moreover, for λ ∈ dom ψ we also obtain

−Cλ := { −c(u) | u ∈ Uλ }
= { d − Au | u ∈ Q−1(w − A∗λ) + kerQ}
= d + AQ−1(A∗λ − w) + A kerQ .

From Lemma 2 it suffices to show that (A ker Q)⊥ ⊂ {μ|A∗μ ∈ img Q} to
complete the proof. To that end suppose that μ ⊥ A kerQ. Then we have
〈A∗μ, z〉 = 〈μ, Az〉 = 0 for all z ∈ kerQ which implies A∗μ ∈ img Q. ��

Let us denote the gradient of the dual criterion function (14) restricted to its
domain by

∇ψ(λ) := AQ−1(A∗λ − w) + d. (15)

Using this notation the following corollary follows immediately from (15), the
definition of the backward-gap and Theorem 3:

Corollary 1. Given a dual feasible point λ ∈ domψ, λ ≥ 0, we have

GQP (λ) :=
←−
G(λ) = inf

z∈ker Q
{λ · (∇ψ(λ) − Az) | ∇ψ(λ) − Az ≥ 0} . (16)

3 Applications to SVM Optimization

In this section we we apply our results to SVMs. We begin by showing, that in
this case (16) is a generalization of the σ-gap which has been used in [5,11] both
as stopping criterion for the dual problem and as an important quantity in the
construction of algorithms which possess convergence rates. We then calculate
the forward-gap for L1-SVMs in Subsection 3.2. Finally, in Section 3.3 we show
that the stopping criteria used in MVP dual algorithms can directly be derived
from this gap leading to primal optimality guarantees.

3.1 The σ-Gap

Let λ∗ denote an optimal solution to the dual problem (6). From the convexity
of ψ it then follows that ψ(λ) − ψ(λ∗) ≤ ∂ψ(λ) · (λ − λ∗). Consequently σ(λ) :=
sup{∂ψ(λ) · (λ − λ́) | λ́ ∈ domψ, λ́ ≥ 0} satisfies ψ(λ) − ψ(λ∗) ≤ σ(λ) and hence
σ can be used as a stopping criteria for the dual. For quadratic convex programs
the σ-gap amounts to that defined in [11], namely

σ(λ) = sup {∇ψ(λ) · (λ − μ) | μ ≥ 0, w − A∗μ ⊥ kerQ} . (17)

It was shown in [5] for L1-SVMs that iterative schemes which choose a successor
λn+1 of λn that satisfies ∂ψ(λn)·(λn−λn+1) ≥ τσ(λn) converge to optimal with a
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rate depending upon τ . This result was improved and extended to general convex
quadratic programming problems in [11]. Our next results relate the σ-gap to
GQP (λ):

Lemma 7. For any feasible λ ∈ domψ such that GQP (λ) < ∞ we have

σ(λ) = GQP (λ) .

Proof. Lemma 6 ensures that the strict filling property holds for any dual point
λ ∈ domψ = {λ | w − A∗λ ⊥ kerQ}. Let P : R

m → A kerQ denote the
orthogonal projection onto A kerQ. Since the duality gap for linear programming
is zero (see for example [3, Cor. XII.2.3.6]) we have

GQP (λ) = inf {λ · (∇ψ(λ) − Az) | z ∈ kerQ, ∇ψ(λ) − Az ≥ 0}
= − sup {λ · η | η ∈ R

m, Pη = 0, η ≤ ∇ψ(λ)} + λ · ∇ψ(λ)
= − inf {μ · ∇ψ(λ) | μ ≥ 0, ν ∈ R

m, μ + Pν = λ} + λ · ∇ψ(λ) .

Since (λ − μ) = Pν is equivalent w − A∗μ ⊥ kerQ the right hand is equivalent
to the σ-gap defined in (17) and the claim follows. ��

The next corollary follows directly from Theorem 3 and Lemma 7:

Corollary 2. Let λ be feasible such that w − A∗λ ⊥ kerQ and σ(λ) < ∞.
Let ẑ optimize the gap GQP (λ) defined in (16). Then û := w − A∗λ + ẑ is a
σ(λ)-optimal solution of the primal problem, i.e

ΔP (û) ≤ σ(λ).

3.2 L1-SVMs

To represent the L1-SVM optimization problem (1) as a quadratic programming
problem (13) we write U := H × R × R

� where H is the RKHS associated
with a kernel k. Recall that the canonical feature map Φ : X → H is given by
Φ(x) = k(x, ·), x ∈ X , and that the reproducing property states f(x) = 〈f, Φ(x)〉,
f ∈ H, x ∈ X . We further write

Q :=

⎛

⎝
IdH 0 0
0H 0 0
0H 0 0

⎞

⎠ , A :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−y1Φ(x1) −y1 −e1

...
...

...
−y�Φ(x�) −y� −e�

0H 0 −e1

...
...

...
0H 0 −e�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

w := −C

⎛

⎝
0H
0
e

⎞

⎠ ,

d :=
(

−e
0

)

,

where 0 denotes the zero vector in R
� and e denotes the vector of all 1’s in R

�.
Let us solve (2) using Corollary 1. To that end let us write λ = ( α

β ) ∈ R
2�. Then

elementary calculations show that the condition w − A∗λ ⊥ kerQ amounts to

y · α = 0 and α + β = Ce. (18)
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For feasible λ satisfying (18) elementary calculations show that

∇ψ(λ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑�
i=1 αiy1yik(xi, x1) − 1

...
∑�

i=1 αiyjyik(xi, xj) − 1
...

∑�
i=1 αiy�yik(xi, x�) − 1

0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
∇W (α)

0

]

∈ R
2�,

where W (α) is given as in (2). Since kerQ equals the last two components of
U = H × R × R

� it follows from (16) that the gap
←−
G (λ) for the L1-SVM is

inf
(b,ξ)

α · (∇W (α) + b · y + ξ) + β · ξ

s.t. ∇W (α) + b · y + ξ ≥ 0, ξ ≥ 0 .

For feasible λ ∈ dom ψ we have αi ≥ 0 and β = C − αi ≥ 0. Therefore the
infimum above for fixed b is obtained by setting each ξi = [−∇W (α)i − byi]

+

where [ν]+ := max (0, ν). If we use the equality ν = [ν]+ − [−ν]+ we conclude
that

←−
G(λ) = G(α) where

G(α) := inf
−b∈R

( �∑

i=1

αi [∇W (α)i − byi]
+ + (C − αi) [byi − ∇W (α)i]

+

)

. (19)

Note, that G(α) can be computed solely in terms of the dual problem since it is
the forward gap on the dual. In the form of the σ-gap it has been a main tool
in deriving convergence guarantees for dual SVM-algorithms [5]. From (19) we
easily see, that for every feasible α we have G(α) < ∞ and using Theorem 3
we know that for each feasible α there exists an associated primal classifier for
which we are now able to give direct primal optimality guarantees:

Corollary 3. Let εD > 0, let 0 ≤ α ≤ C · e be a vector satisfying y	α = 0, and
let b̂ be an optimal solution of (19). Assume that α is εD-optimal in the sense that
G(α) =

−→
G(α) ≤ εD. Define f̂ :=

∑�
i=1 yiαiΦ(xi) and ξ̂i := [b̂yi −∇W (α)i]+, i =

1, .., �. Then (f̂ , b̂, ξ̂) is a εD-optimal solution of (1), i.e.

R(f̂ , b̂, ξ̂) − R∗ ≤ εD.

Recall that [4, Theorem 2] only showed that (f̂ , b̂, ξ̂) is a O(
√

εD)-optimal primal
solution, and consequently the above corollary substantially improves this earlier
result.
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3.3 Optimality Criteria and Maximal Violating Pairs

The most popular SVM algorithms are maximum-violating pair algorithms
(MVP), which are implemented for example in SVMlight and SMO-type algo-
rithms. Often this selection strategy has been motivated directly from Karush-
Kuhn-Tucker (KKT) conditions on the dual [8,9,10], but there has been no
justification in terms of primal optimality guarantees. Let us first introduce some
notation to be able to formulate the stopping criterion used in MVP algorithms.
To that end recall the well known top-bottom candidate definition of Joachims
and Lin [7,9]:

Itop(α) := {i | (αi < C, yi = −1) ∨ (αi > 0, yi = +1)}
Ibot(α) := {i | (αi < C, yi = 1) ∨ (αi > 0, yi = −1)}.

(20)

Any pair (i, j) ∈ Itop(α) × Ibot(α), such that yi∇W (α)i > yj∇W (α)j is called a
violating pair, since it forces at least one of the summands in (19) corresponding
to i or j to be non-zero for any choice of b. For the maximal violating pair define

t̂ := max
i∈Itop(α)

yi∇W (α)i and b̂ := min
i∈Ibot(α)

yi∇W (α)i .

It is well known, that whenever t̂ ≤ b̂ the dual variable α is optimal. This lead
to the heuristic dual stopping criterion t̂ − b̂ ≤ ε. We now show that our results
do also provide primal optimality guarantees for MVP algorithms:

Lemma 8. Given a final solution α̂ of a MVP-algorithm which terminated with
accuracy ε, i.e. t̂ − b̂ ≤ ε, then for any b ∈ [b̂, t̂] the associated primal solution
(f̂ , b, ξ(b)) defined by f̂ :=

∑�
i=1 α̂iΦ(xi) and ξi(b) := [byi − ∇W (α)i]

+ is C� · ε
optimal, i.e.

R(f̂ , b, ξ(b)) − R∗ ≤ C� · ε.

Proof. Using the definition (20) the gap G(α) given in (19) can be computed by

inf
b∈R

( ∑

i∈Itop(α)
yi∇W (α)i>b

μ+
i [yi∇W (α)i − b]+ +

∑

i∈Ibot(α)
yi∇W (α)i<b

μ−
i [b − yi∇W (α)i]

+

)

, (21)

where

μ+
i =

{
αi if yi = +1
C − αi else

and μ−
i =

{
C − αi if yi = +1
αi else

.

Indeed note, that for any i ∈ Itop(α) such that yi∇W (α)i ≤ b we either have
i ∈ Ibot(α) too, and the contribution of index i is counted by the second sum, or
i is a top-only candidate, i.e. αi = 0 and yi = −1 or αi = C and yi = 1. In both
cases the contribution of index i to (19), given by

αi [∇W (α)i − byi]
+ + (C − αi) [byi − ∇W (α)]+
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is zero. Similar arguments hold for bottom-candidates with yi∇W (α)i ≥ b.
We now try to bound the terms in (21) for arbitrary b ∈ [b̂, t̂]. Obviously we have

[yi∇W (α)i − b]+ ≤
[
t̂ − b

]+ ≤
[
t̂ − b̂

]+

for i ∈ Itop(α) and

[b − yi∇W (α)i]
+ ≤

[
b − b̂

]+

≤
[
t̂ − b̂

]+

for i ∈ Ibot(α) .

Since the two sums in (21) range over disjoint index-sets and μ
+/−
i ≤ C we

conclude for any b ∈ [b̂, t̂], that

G(α) ≤ C� ·
[
t̂ − b̂

]+

and the claim follows from Corollary 3. ��

Remark 1. If we count the number

d :=
∣
∣
∣
{

i
∣
∣
∣ (i ∈ Itop(α) ∧ yi∇W (α)i > b̂) ∨ (i ∈ Ibot(α) ∧ yi∇W (α)i < t̂)

}∣
∣
∣

of indices which could indicate a violation if b is chosen in [b̂, t̂]. Then Lemma 8
can be improved so the right hand side is Cd · ε.

4 Conclusion and Open Problems

We have presented a general framework for deriving primal optimality guaran-
tees from dual optimality bounds. We improve the results given in [4] insofar as
we can directly transform dual in primal optimality guarantees without loosing
by an order of O(

√
ε). In addition our results are easily extensible to more general

cases whenever the strict filling property can be proven. The main advantage in
the framework of support vector optimization is however the fact, that important
dual optimality bounds which are used in practice could directly be derived from
the abstract forward-backward gaps. This closes a main gap in analysis of support
vector machine algorithms since now optimality guarantees for approximately op-
timal dual points can be transfered to generalization guarantees for an associated
classifier using the results from statistical learning theory.

We point out, that using results from [19], the generalization of tight relation of
dual and primal problem even for approximately optimal points should be straight
forward but was beyond this work. The question if the strict filling property is also
a necessary condition for this relation is however an open question.

We leave it as an objective for future research, whether the deeper knowledge
about the optimality bounds presented here can be used to extend known con-
vergence guarantees from quadratic optimization to more general optimization
problems.
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Abstract. We present a general study of learning and linear separability
with rational kernels, the sequence kernels commonly used in computa-
tional biology and natural language processing. We give a characteriza-
tion of the class of all languages linearly separable with rational kernels
and prove several properties of the class of languages linearly separable
with a fixed rational kernel. In particular, we show that for kernels with
transducer values in a finite set, these languages are necessarily finite
Boolean combinations of preimages by a transducer of a single sequence.
We also analyze the margin properties of linear separation with rational
kernels and show that kernels with transducer values in a finite set guar-
antee a positive margin and lead to better learning guarantees. Creating
a rational kernel with values in a finite set is often non-trivial even for rel-
atively simple cases. However, we present a novel and general algorithm,
double-tape disambiguation, that takes as input a transducer mapping
sequences to sequence features, and yields an associated transducer that
defines a finite range rational kernel. We describe the algorithm in detail
and show its application to several cases of interest.

1 Motivation

In previous work, we introduced a paradigm for learning languages that con-
sists of mapping strings to an appropriate high-dimensional feature space and
learning a separating hyperplane in that space [13]. We proved that the rich
class of piecewise-testable languages [22] can be linearly separated using a high-
dimensional feature mapping based on subsequences. We also showed that the
positive definite kernel associated to this embedding, the subsequence kernel, can
be efficiently computed. Support vector machines can be used in combination
with this kernel to determine a separating hyperplane for piecewise-testable lan-
guages. We further proved that the languages linearly separable with this kernel
are exactly the piecewise-testable languages.

The subsequence kernel is a rational kernel – that is, a kernel that can be
represented by weighted finite-state transducers [5,12]. Most sequence kernels
successfully used in computational biology and natural language processing,
including mismatch kernels [15], gappy n-gram kernels [16], locality-improved
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kernels [25], convolutions kernels for strings [11], tree kernels [4], n-gram kernels
[5], and moment kernels [6], are special instances of rational kernels. Rational
kernels can be computed in quadratic time using a single general algorithm [5].

This motivates our study of learning with rational kernels, in particular the
question of determining the class of languages that can be linearly separated with
a given rational kernel, thereby generalizing the result relating to subsequence
kernels and piecewise-testable languages, and also analyzing their generalization
properties based on the margin. It is also natural to ask which languages are
separable with rational kernels in general.

This paper deals with precisely these questions. We prove that the family of
languages linearly separable with rational kernels is exactly that of stochastic
languages [21], a class of languages that strictly includes regular languages and
contains non-trivial context-free and context-sensitive languages. We also prove
several properties of the class of languages linearly separable with a fixed rational
kernel. In particular, we show that when the kernel has values in a finite set
these languages are necessarily finite Boolean combinations of the preimages by
a transducer of single sequences.

In previous work, we proved that linear separability with the subsequence
kernel guarantees a positive margin, which helped us derive margin-based bounds
for learning piecewise-testable languages [13]. This property does not hold for
all rational kernels. We prove however that a positive margin is guaranteed for
all rational kernels with transducer values in a finite set.

This quality and the property of the languages they separate in terms of finite
Boolean combinations point out the advantages of using PDS rational kernels
with transducer values in a finite set, such as the subsequence kernel used for
piecewise-testable languages. However, while defining a transducer mapping se-
quences to the feature sequences of interest is typically not hard, creating one
that associates to each sequence at most a predetermined finite number of in-
stances of that feature is often non-trivial, even for relatively simple transducers.

We present a novel algorithm, double-tape disambiguation, precisely to address
this problem. The algorithm takes as input an (unweighted) transducer mapping
sequences to features and yields a transducer associating the same features to
the same input sequences but at most once. The algorithm can thus help define
and represent rational kernels with transducer values in a finite integer range,
which offer better learning guarantees. We describe the algorithm in detail and
show its application to several cases of interest.

The paper is organized as follows. Section 2 introduces the definitions and
notation related to weighted transducers and probabilistic automata that are
used in the remainder of the paper. Section 3 gives the proof of several charac-
terization theorems for the classes of languages that can be linearly separated
with rational kernels. The margin properties of rational kernels are studied in
Section 4. Section 5 describes in detail the double-tape disambiguation algorithm
which can be used to define complex finite range rational kernels and shows its
application to several cases of interest.
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2 Preliminaries

This section gives the standard definition and specifies the notation used for
weighted transducers and briefly summarizes the definition and essential prop-
erties of probabilistic automata, which turn out to play an important role in our
study of linear separability with rational kernels. In all that follows, Σ represents
a finite alphabet. The length of a string x ∈ Σ∗ over that alphabet is denoted
by |x| and the complement of a subset L ⊆ Σ∗ by L = Σ∗ \ L. We also denote
by |x|a the number of occurrences of the symbol a in x.

2.1 Weighted Transducers and Automata

Finite-state transducers are finite automata in which each transition is aug-
mented with an output label in addition to the familiar input label [2,10]. Output
labels are concatenated along a path to form an output sequence and similarly
with input labels. Weighted transducers are finite-state transducers in which
each transition carries some weight in addition to the input and output labels.
The weights of the transducers considered in this paper are real values and are
multiplied along the paths. The weight of a pair of input and output strings
(x, y) is obtained by summing the weights of the paths labeled with (x, y). The
following gives a formal definition of weighted transducers. In the following, K

denotes either the set of real numbers R, rational numbers Q, or integers Z.

Definition 1. A weighted finite-state transducer T over (K, +, ·, 0, 1) is an 8-
tuple T = (Σ, Δ, Q, I, F, E, λ, ρ) where Σ is the finite input alphabet of the trans-
ducer, Δ is the finite output alphabet, Q is a finite set of states, I ⊆ Q the set of
initial states, F ⊆ Q the set of final states, E ⊆ Q×(Σ∪{ε})×(Δ∪{ε})×K×Q
a finite set of transitions, λ : I → K the initial weight function, and ρ : F → K

the final weight function mapping F to K.

For a path π in a transducer, we denote by p[π] the origin state of that path and
by n[π] its destination state. We also denote by P (I, x, y, F ) the set of paths
from the initial states I to the final states F labeled with input string x and
output string y. The weight of a path π is obtained by multiplying the weights
of its constituent transitions and is denoted by w[π]. A transducer T is regulated
if the output weight associated by T to any pair of strings (x, y) by:

T (x, y) =
∑

π∈P (I,x,y,F )

λ(p[π]) · w[π] · ρ[n[π]] (1)

is well-defined and in K. T (x, y) = 0 when P (I, x, y, F ) = ∅. If for all q ∈ Q∑
π∈P (q,ε,ε,q) w[π] ∈ K, then T is regulated. In particular, when T does not admit

any ε-cycle, it is regulated. The weighted transducers we will be considering in
this paper will be regulated. Figure 1(a) shows an example.
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Fig. 1. (a) Example of weighted transducer T . (b) Example of weighted automaton A.
A can be obtained from T by projection on the input. A bold circle indicates an initial
state and a double-circle a final state. A final state carries a weight indicated after the
slash symbol representing the state number. The initial weights are not indicated in
all the examples in this paper since they are all equal to one.

The standard rational operations, sum +, product or concatenation ·, and
Kleene-closure ∗ can be defined for regulated transducers [21,14]. For any pair
of strings (x, y),

(T1+T2)(x, y) = T1(x, y)+T2(x, y) and (T1·T2)(x, y) =
∑

x1x2=x, y1y2=y

T1(x1, y1)·T2(x2, y2).

For any transducer T , we denote by T−1 its inverse, that is the transducer
obtained from T by swapping the input and output label of each transition. The
composition of two weighted transducers T1 and T2 with matching input and
output alphabets Σ, is a weighted transducer denoted by T1 ◦ T2 when the sum:

(T1 ◦ T2)(x, y) =
∑

z∈Σ∗

T1(x, z) · T2(z, y) (2)

is well-defined and in K for all x, y ∈ Σ∗ [21,14].
Weighted automata can be defined as weighted transducers A with identical

input and output labels, for any transition. Thus, only pairs of the form (x, x)
can have a non-zero weight by A, which is why the weight associated by A to
(x, x) is abusively denoted by A(x) and identified with the weight associated by A
to x. Similarly, in the graph representation of weighted automata, the output (or
input) label is omitted. Figure 1(b) shows an example of a weighted automaton.

2.2 Probabilistic Automata

In this paper, we will consider probabilistic automata as originally defined by
Rabin [20,19].

Definition 2. A weighted automaton A over K is said to be probabilistic if its
weights are non-negative, if it admits no ε-transition, and if at each state, the
weights of the outgoing transitions labeled with the same symbol sum to one.
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Thus, a probabilistic automaton in this sense defines a conditional probability
distribution Pr[q′ | q, x] over all states q′ that can be reached from q by reading a
sequence x.1 Probabilistic automata can be used to define languages as follows.

Definition 3 ([20]). A language L is said to be K-stochastic if there exist a
probabilistic automaton A and λ ∈ K, λ > 0, such that L = {x : A(x) > λ}. λ is
then called a cut-point.

Note that stochastic languages are not necessarily regular. They include non-
trivial classes of context-free and context-sensitive languages.2 A cut-point λ is
said to be isolated if there exists δ > 0 such that ∀x ∈ Σ∗, 0 < δ ≤ |A(x) − λ|.
Rabin [20] showed that when λ is an isolated cut-point, then the stochastic
language defined as above is regular.

3 Properties of Linearly Separated Languages

This section analyzes the properties of the languages separated by rational ker-
nels. It presents a characterization of the set of all languages linearly separable
with rational kernels and analyzes the properties of these languages for a fixed
rational kernel.

3.1 Rational Kernels

A general definition of rational kernels based on weighted transducers defined
over arbitrary semirings was given in [5]. Here we consider the following simpler
definition for the case of transducers defined over (K, +, ·, 0, 1).

A string kernel K : Σ∗ × Σ∗ → K is rational if it coincides with the function
defined by a weighted transducer U over (K, +, ·, 0, 1), that is for all x, y ∈
Σ∗, K(x, y) = U(x, y).

Not all rational kernels are positive definite and symmetric (PDS), or equiva-
lently verify the Mercer condition, a condition that guarantees the convergence
of training for discriminant classification algorithms such as SVMs. But, for any
weighted transducer T over (K, +, ·, 0, 1), U = T ◦ T−1 is guaranteed to define a
PDS kernel [5]. Conversely, it was conjectured that PDS rational kernels coincide
with the transducers U of the form U = T ◦ T−1. A number of proofs related to
closure properties favor this conjecture [5]. Furthermore, most rational kernels
used in computational biology and natural language processing are of this form
[15,16,25,4,6,5]. To ensure the PDS property, we will consider in what follows
only rational kernels of this form.
1 This definition of probabilistic automata differs from another one commonly used

in language modeling and other applications (see for example [7]) where A defines
a probability distribution over all strings. With that definition, A is probabilistic if
for any state q ∈ Q,

∑
π∈P (q,q) w[π], the sum of the weights of all cycles at q, is

well-defined and in R+ and
∑

x∈Σ∗ A(x) = 1.
2 We are using here the original terminology of stochastic languages used in formal

language theory [21]. Some authors have recently used the same terminology to refer
to completely different families of languages [9].
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Our paradigm for learning languages is based on a linear separation using
PDS kernels. We will say that a language L ⊆ Σ∗ is linearly separable by a
kernel K, if there exist b ∈ K and a finite number of strings x1, . . . , xm ∈ Σ∗

and elements of K, α1, . . . , αm ∈ K, such that

L = {x :
m∑

i=1

αiK(xi, x) + b > 0}. (3)

Lemma 1. A language L ⊆ Σ∗ is linearly separable by a rational kernel K =
T ◦ T−1 iff there exists an acyclic weighted automaton A and b ∈ K such that

L = {x : A ◦ (T ◦ T−1) ◦ Mx + b > 0}, (4)

where Mx is a finite (unweighted) automaton representing the string x.

Proof. When K is a rational kernel, K = T ◦T−1, the linear combination defining
the separating hyperplane can be written as:

m∑

i=1

αiK(xi, x) =
m∑

i=1

αi(T ◦ T−1)(xi, x) =
m∑

i=1

αi(Mxi ◦ T ◦ T−1 ◦ Mx) (5)

= (
m∑

i=1

αiMxi) ◦ T ◦ T−1 ◦ Mx, (6)

where we used the distributivity of + over composition, that is for any three
weighted transducers (U1 ◦ U3) + (U2 ◦ U3) = (U1 + U2) ◦ U3 (a consequence
of distributivity and of + over · and the definition of composition). The result
follows the observation that a weighted automaton A over (K, +, ·, 0, 1) is acyclic
iff it is equivalent to

∑m
i=1 αiMxi for some strings x1, . . . , xm ∈ Σ∗ and elements

of K, α1, . . . , αm ∈ K. 
�

3.2 Languages Linearly Separable with Rational Kernels

This section presents a characterization of the languages linearly separable with
rational kernels.

Theorem 1. A language L is linearly separable by a PDS rational kernel K =
T ◦ T−1 iff it is stochastic.

Proof. Assume that L is linearly separable by a rational kernel and let T be a
weighted transducer such that K = T ◦ T−1. By lemma 1, there exist b ∈ K and
an acyclic weighted automaton A such that L = {x : A◦ (T ◦T−1)◦Mx +b > 0}.
Let R denote the projection of the weighted transducer A◦T ◦T−1 on the output,
that is the weighted automaton over (K, +, ·, 0, 1) derived from A ◦ T ◦ T−1 by
omitting input labels. Then, A ◦ (T ◦ T−1) ◦ Mx = R ◦ Mx = R(x). Let S be the
weighted automaton R + b, then, L = {x : S(x) > 0}. By Turakainen’s theorem
([23,21]), a language defined in this way is stochastic, which proves one direction
of the theorem’s claim.
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Conversely, let R be a probabilistic automaton and λ ∈ K, λ > 0, such L =
{x : R(x) > λ}. We can assume L �= ∅ since any rational kernel can be trivially
used to linearly separate the empty set by using an empty acyclic automaton A.
It is straightforward to construct a weighted automaton Rλ assigning weight λ to
all strings in Σ∗. Let S denote the weighted automaton over (K, +, ·, 0, 1) defined
by S = R − Rλ. Thus, L = {x : S(x) > 0}. Let T be the weighted transducer
constructed from S by augmenting all transitions of S with the same output
label ε. By construction, for all x, y ∈ Σ∗, T (x, y) = S(x) if y = ε, T (x, y) = 0
otherwise and

(T ◦ T−1)(x, y) =
∑

z∈Σ∗

T (x, z)T (y, z) = T (x, ε)T (y, ε) = S(x) · S(y). (7)

Since L �= ∅, we can select an arbitrary string x0 ∈ L, thus S(x0) > 0. Let A be
the acyclic automaton only accepting the string x0 and with weight 1. Then,

∀x ∈ Σ∗, A ◦ (T ◦ T−1) ◦ Mx = A(x0) · (T ◦ T−1)(x0, x) = S(x0) · S(x). (8)

Since S(x0) > 0, A ◦ (T ◦ T−1) ◦ Mx > 0 iff S(x) > 0, which proves that L can
be linearly separated with a PDS rational kernel. 
�

The theorem highlights the importance of stochastic languages in the question
of linear separation of languages with rational kernels. The proof is constructive.
Given a PDS rational kernel K = T ◦ T−1, b ∈ K, and an acyclic automaton A,
a probabilistic automaton B can be constructed and a cut-off λ ∈ K determined
such that:

L = {x : A ◦ (T ◦ T−1) ◦ Mx + b > 0} = {x : B(x) > λ}, (9)

using the weighted automaton S derived from T , b, and A as in the proof of
Theorem 1, and the following result due to Turakainen [23].

Theorem 2 ([23]). Let S be a weighted automaton over (K, +, ·, 0, 1) with n
states, with K = R or K = Q. A probabilistic automaton B over (K, +, ·, 0, 1)
with n + 3 states can be constructed from S such that:

∀x ∈ Σ+, S(x) = c|x|
(

B(x) − 1
n + 3

)

, (10)

where c ∈ K is a large number.

3.3 Languages Linearly Separable with a Fixed Rational Kernel

Theorem 1 provides a characterization of the set of linearly separable languages
with rational kernels. This section studies the family of languages linearly sepa-
rable by a given PDS rational kernel K = T ◦ T−1.

A weighted transducer T defines an (unweighted) mapping from Σ∗ to 2Σ∗

(a transduction) denoted by T̂ :

∀x ∈ Σ∗, T̂ (x) = {y : T (x, y) �= 0}. (11)
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Fig. 2. (a) Weighted transducer T counting the number of occurrences of non-empty
substrings of any length: for each x ∈ Σ∗ and any substring y ∈ Σ+ of x, T (x, y) gives
the number of occurrences of y in x. All transition weights and final weights are equal
to 1. (b) Corresponding kernel transducer K = T ◦ T −1.

For any x ∈ Σ∗, T̂ (x) is a regular language that can be computed from a weighted
transducer T by projecting Mx ◦T on the output side, applying weighted deter-
minization [18], and then removing the weights.

T̂ (x) can be viewed as the set of non-zero features y (sequences) associated to
x by the kernel K, each with some weight T (x, y). For example, for the kernel
of Figure 2(b), T̂ (x) associates to x the set of its substrings, that is contiguous
sequences of symbols appearing in x.

For all the rational kernels we have seen in practice, the cardinality of T̂ (x) is
finite for any x ∈ Σ∗. T̂ (x) may be for example the set of substrings, n-grams,
or other subsequences, which in all cases are finite. Furthermore, when T̂ (x)
is not finite, then T is typically not a regulated transducer. This justifies the
assumption made in the following theorem.

Theorem 3. Let K = T ◦ T−1 be a PDS rational kernel. Assume that for each
x ∈ Σ∗, T̂ (x) is finite. Then, a language L linearly separable by K is necessarily
of the form

L = {x :
n∑

i=1

λiT (x, zi) + b > 0}, (12)

with z1, . . . , zn ∈ Σ∗ and λ1, . . . , λn, b ∈ K.

Proof. Let L be a language linearly separable by K. By Lemma 1, there exists
an acyclic weighted automaton A and b ∈ K such that L = {x : A ◦ (T ◦
T−1) ◦ Mx + b > 0}, where Mx is a finite automaton representing the string x.
Since T̂ (x) is finite and A is acyclic,

⋃
x:A(x) �=0{y : (A ◦ T )(x, y) �= 0} is a finite

set. Thus, the projection of (A ◦ T ) on the output side is an acyclic weighted
automaton and is thus equivalent to

∑n
i=1 λiMzi for some z1, . . . , zn ∈ Σ∗ and

λ1, . . . , λn, b ∈ K. By definition of L, L = {x :
∑n

i=1 λi Mzi ◦ T−1 ◦ Mx + b} =
{x :

∑n
i=1 λiT (x, zi) + b > 0}. 
�
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Corollary 1. Let K = T ◦ T−1 be a PDS rational kernel. Assume that for each
x ∈ Σ∗, T̂ (x) is finite and that T (x, y) takes values in some finite set ET ⊂ K.
Then, the following two properties hold:

1. L is necessarily of the form:

L = {x :
n∑

i=1

∑

v∈ET

μi,v�{T̂ −1
v (zi)}(x) + b > 0}, (13)

where μi,v ∈ K and T̂v(x) = {y : T (x, y) = v}
2. L is a finite Boolean combination of languages Lz,v = T̂−1

v (z).

Proof. Let L, λi, and zi be as in Equation 12. Define the feature φz,v : Σ∗ →
{0, 1} by φz,v(x) = �{T (x,z)=v}. Then, letting μi,v = vλi, we have

λiT (x, zi) =
∑

v∈ET

μi,vφzi,v(x) =
∑

v∈ET

μi,v�{T̂ −1
v (zi)}(x)

for all x ∈ Σ∗, which proves (13). Now define f : Σ∗ → K by

f(x) = b +
n∑

i=1

∑

v∈ET

μi,vφzi,v(x)

and observe that f must have a finite range {rk ∈ K : k = 1, . . . , F}. Let
Lr ⊆ Σ∗ be defined by

Lr = f−1(r). (14)

A subset I ⊆ {1, 2, . . . , n}×ET is said to be r-acceptable if b+
∑

(i,v)∈I μi,v = r.
Any such r-acceptable set corresponds to a set of strings LI ⊆ Σ∗ such that

LI =

⎛

⎝
⋂

(i,v)∈I

T̂−1
v (zi)

⎞

⎠ \

⎛

⎝
⋃

(i,v)∈I

T̂−1
v (zi)

⎞

⎠ . (15)

Each Lr is the union of finitely many r-acceptable LI ’s, and L is the union of
Lr for positive r. 
�

We will refer to kernels with finite range transducer values as finite range kernels.
The Corollary provides some insight into the family of languages that is linearly
separable with a fixed PDS finite range rational kernel K = T ◦T−1. In practice,
it is often straightforward to determine T̂−1

v (x) for any x ∈ Σ∗. For example,
for the subsequence kernel, T̂−1

1 (x) = T̂−1(x) represents the set of all sequences
admitting x as a subsequence. Corollary 1 shows that any language linearly
separated by K is a finite Boolean combination of these sets. This result and
that of Theorem 3 apply to virtually all cases in computational biology or natural
language processing where string kernels are used in combination with SVMs,
since most string kernels used in practice (if not all) are rational kernels.
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It was proven in [13] that in the case of the subsequence kernel, the second
property of the Corollary 1 gives in fact a characterization of linearly separable
languages (as the piecewise-testable ones). In general, however, the converse may
not hold. There exist indeed finite boolean combinations of T̂−1(x) that are not
linearly separable when K is selected to be the n-gram kernel for example.

Corollary 1 points out an interesting property of PDS rational kernels with
values in a finite set. In the following section, we will see that linear separability
with such kernels also ensures useful margin properties.

4 Learning and Margin Guarantees

This section deals with the problem of learning families of languages using PDS
rational kernels.

Linear separability with some rational kernels K guarantees a positive margin.
In particular, as previously shown, the subsequence kernel guarantees a positive
margin [13]. When this property holds, a linear separation learning technique
such as support vector machines (SVMs) [3,8,24] combined with a rational kernel
K can be used to learn a family of languages. Since rational kernels can be
computed in quadratic time [5], the complexity of the algorithm for a sample
of size m, where xmax is the longest string, is in O(QP(m)) + m2 |xmax|2 |Σ|),
where QP(m) is the cost of solving a quadratic programming problem of size m,
which is at most O(m3).

We will use the standard margin bound to analyze the behavior of that
algorithm when that margin property holds. Note, however, that since the VC-
dimension of the typical family of languages one wishes to learn (e.g., piecewise-
testable languages) is infinite, PAC-learning is not possible and we need to resort
to a weaker guarantee.

Not all PDS rational kernels guarantee a positive margin (as we shall see
later), but we will prove that all PDS finite range rational kernels admit this
property, which further emphasizes their benefits for learning.

4.1 Margin

Let S be a sample extracted from a set X (X = Σ∗ when learning languages)
and let the margin ρ of a hyperplane with weight vector w ∈ K

N and offset b ∈ K

over this sample be defined by:

ρ = inf
x∈S

| 〈w, Φ(x)〉 + b|
‖w‖ .

This definition also holds for infinite-size samples. For finite samples, linear sep-
aration with a hyperplane 〈w, x〉 + b = 0 is equivalent to a positive margin
ρ > 0. But, this may not hold for infinite-size samples, since points in an infinite-
dimensional space may be arbitrarily close to the separating hyperplane and their
infimum distance could be zero. There are in fact PDS rational kernels for which
this can occur.



Learning Languages with Rational Kernels 359

4.2 Example of Linear Separation with Zero Margin

Let K = T ◦ T−1 be the PDS rational defined by the weighted transducer T
counting the number of occurrences of a and b when the alphabet Σ = {a, b}.
Figure 4(c) shows the corresponding weighted transducer. T̂ (x) is finite for all
x ∈ Σ∗, the feature space F associated to K has dimension 2, and the points
mapped by the corresponding feature mapping are those with non-negative inte-
ger coordinates. Let the sample include all non-empty sequences, S = Σ+, and
let H , the hypothesis to be learned, be the hyperplane going through the point
(0, 0) with a positive irrational slope α. By definition, H does not cross any point
with positive integer coordinates (p, q), since p

q ∈ Q, thus it is indeed a separating
hyperplane for S. But, since Q is dense in R, for any ε > 0, there exists a rational
number p

q such that |p
q − α| < ε. This shows that there are points with positive

integer coordinates arbitrarily close to H and thus that the margin associated
to H is zero. The language separated by H is the non-regular language of non-
empty sequences with α times more bs than as:3 L = {x ∈ Σ+ : |x|b > α|x|a}.

The relationship between the existence of a positive margin for a PDS rational
kernel and an isolated cut-off point is not straightforward. By Theorem 2, if for
all x ∈ Σ+, S(x) > ρ > 0, then there exists a probabilistic automaton B with N
states such that ∀x ∈ Σ+, |B(x) − 1

N | > ρ
c|x| . But, since |x| can be arbitrarily

large, this does not guarantee an isolated cut-point.

4.3 Positive Margin

When the values T (x, y) taken by the transducer T for all pairs of sequences (x, y)
are in a finite set ET ⊂ K, then linear separation with a PDS rational kernel
defined by K = T ◦ T−1 guarantees a positive margin. The feature mapping Φ
associated to K then also takes its values in the finite set.

Proposition 1. Let Φ : X → EN

T be mapping from a set X to a finite set
ET ⊂ R and let C be a class of concepts defined over X that is linearly separable
using the mapping Φ and a weight vector w ∈ R

N.4 Then, the margin ρ of the
hyperplane defined by w is strictly positive (ρ > 0).

Proof. By assumption, the support of w is finite. For any x ∈ X , let Φ′(x) be the
projection of Φ(x) on the vector space defined by the support of w, denoted by
supp(w). Thus, Φ′(x) is a finite-dimensional vector for any x ∈ X with discrete
coordinates in ET . Thus, the set of S = {Φ′(x) : x ∈ X} is finite. Since for any
x ∈ X , 〈w, Φ(x)〉 = 〈w, Φ′(x)〉, the margin can be defined over a finite set:

ρ = inf
x∈X

| 〈w, Φ′(x) + b〉 |
‖w‖ = min

z∈S
| 〈w, z〉 + b|

‖w‖ , (16)

which implies ρ > 0 since | 〈w, z〉 + b| > 0 for all z ∈ S. 
�
3 When α is a rational number, it can be shown that the margin is positive, the

language L being still non-regular.
4 As in the general case of kernels (Equation 3), our definition of linear separability

assumes a weight vector with finite support.
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Many of the PDS rational kernels used in practice follow these conditions. In
particular, for kernels such as the subsequence kernels, the transducer T takes
only values 0 or 1. When the existence of a positive margin is guaranteed as in
the case of finite range rational kernels, the following theorem applies.

Theorem 4. Let C be a finitely linearly separable concept class over X with a
feature mapping Φ : X → EN

T . Define the class F of real-valued functions on the
ball of radius R in R

n as

F = {x �→ 〈w, Φ(x)〉 : ‖w‖ ≤ 1, ‖Φ(x)‖ ≤ R}. (17)

There is a constant α0 such that, for all distributions D over X, for any concept
c ∈ C, there exists ρ0 > 0 such that with probability at least 1 − δ over m
independently generated examples according to D, there exists a classifier sgn(f),
with f ∈ F , with margin at least ρ0 on the training examples, and generalization
error no more than

α0

m

(
R2

ρ2
0

log2 m + log(
1
δ
)
)

. (18)

Proof. Fix a concept c ∈ C. By assumption, c is finitely linearly separable by
some hyperplane. By Proposition 1, the corresponding margin ρ0 is strictly pos-
itive, ρ0 > 0. ρ0 is less than or equal to the margin of the optimal hyperplane ρ
separating c from X \ c based on the m examples.

Since the full sample X is linearly separable, so is any subsample of size m.
Let f ∈ F be the linear function corresponding to the optimal hyperplane over
a sample of size m drawn according to D. Then, the margin of f is at least as
large as ρ since not all points of X are used to define f . Thus, the margin of f is
greater than or equal to ρ0 and the statement follows a standard margin bound
of Bartlett and Shawe-Taylor [1]. 
�

Observe that in the statement of the theorem, ρ0 depends on the particular
concept c learned but does not depend on the sample size m.

5 Algorithm for Finite Range Rational Kernels

The previous section showed that PDS rational kernels with finite feature values
ensure a positive margin and thus learning with the margin-based guarantees
previously described.5 However, while it is natural and often straightforward to
come up with a transducer mapping input sequences to the features sequences,
that transducer often cannot be readily used for the definition of the kernel.
This is because it may contain multiple paths with the same output feature
sequence and the same input sequence. This typically generates unbounded path
multiplicity, and so the finiteness of the range does not hold.

For example, it is easy to come up with a transducer mapping each string
to the set of its subsequences. Figure 4(a) shows a simple one-state transducer
5 This section concentrates on kernels with just binary feature values but much of our

analysis generalizes to the more general case of finite feature value.
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doing that. But, when applied to the sequence x = aba, that transducer generates
two paths with input x and output a because a appears twice in x. Instead, we
need to construct a transducer that contains exactly one path with input x and
output a. Figure 4(b) shows a subsequence transducer with that property.

The construction of such a transducer is not trivial even for this simple case.
One may then ask if there exists a general procedure for constructing a trans-
ducer with multiplicity one from a given transducer. This section describes a
novel and general algorithm that serves precisely that purpose.

The algorithm takes as input an (unweighted) transducer T and outputs a
transducer T ′ that is unambiguous in the following way: for any pair of input
and output sequence (x, y) labeling a successful path of T , T ′ contains exactly
one successful path with that label. We will refer to our algorithm as the double-
tape disambiguation. Note that our algorithm is distinct from the standard dis-
ambiguation algorithm for transducers [2] which applies only to transducers that
represent a partial function mapping input sequences to output sequences and
which generates a transducer with unambiguous input.

To present the algorithm, we need to introduce some standard concepts of
word combinatorics [17]. To any x ∈ Σ∗, we associate a new element x′ denoted
by x−1 and extend string concatenation so that xx−1 = x−1x = ε. We denote
by (Σ∗)−1 the set of all these new elements. The free group generated by Σ
denoted by Σ(∗) is the set of all elements that can be written as a concatenation
of elements of Σ∗ and Σ∗−1. We say that an x ∈ Σ(∗) of the free group is pure
if x ∈ Σ∗ ∪ Σ∗−1 and we denote that set by Π = Σ∗ ∪ Σ∗−1.

The algorithm constructs a transducer T ′ whose states are pairs (p, m) where
p ∈ Q is a state of the original transducer and a m is a multiset of triplets
(q, x, y) with q ∈ Q and x, y ∈ Σ∗ ∪ (Σ∗)−1. Each triplet (q, x, y) indicates that
state q can be reached from the initial state by reading either the same input
string or the same output string as what was used to reach p. x and y serve to
keep track of the extra or missing suffix of the labels of the path leading to q
versus the current one used to reach p.

Let (u, v) denote the input and output label of the path followed to reach p,
and (u′, v′) the labels of the path reaching q. Then, x and y are defined by: x =
(u)−1u′ and y = (v)−1v′. We define a partial transition function δ for triplets.
For any (q, x, y) and (a, b) ∈ (Σ ∪ {ε})2 − {(ε, ε)}, δ((q, x, y), a, b) is a multiset
containing (q′, xa−1a′, yb−1b′), if (q, a′, b′, q′) ∈ E, xa−1a ∈ Π, and yb−1b′ ∈ Π ,
δ((q, x, y), a, b) = ∅ otherwise. We further extend δ to multisets by defining
δ(m, a, b) as the multiset of all δ((q, x, y), a, b) with (q, x, y) in m.

The set of initial states I ′ of T ′ are the states (i, (i, ε, ε)) with i ∈ I. Starting
from an initial state, the algorithm creates new transitions of T ′ as follows. When
(p, a, b, p′) ∈ E and when it does not generate ambiguities (as we shall see later),
it creates a transition from state (p, m) to (p′, δ(m)) with input a and output b.

At the price of splitting final states, without loss of generality, we can assume
that the transducer T does not admit two paths with the same label leading
to the same final state. When there are k paths in T with the same input and
output labels and leading to distinct final states p1, . . . , pk, the algorithm must
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0

1a:b

2

a:ε

3
b:ε

4
b:b

b:c

(0, (0, ε, ε))

(1, (1, ε, ε),
(2, ε, b  ))-1

a:b

(2, (2, ε, ε),
(1, ε, b))

a:ε

(3, (3, ε, ε),
(5, ε, ε))

b:ε

(5, (5, ε, ε)
(3, ε, ε))

b:b

(4, (4, ε, ε))

b:c

(a) (b)

Fig. 3. Illustration of the application of the double-tape disambiguation algorithm.
(a) Transducer T . (b) Equivalent double-tape unambiguous transducer T ′ obtained by
application of the algorithm. The destination state of the transition labeled with b : b
is made non-final by the algorithm, which makes the result unambiguous. That state
is non-coaccessible and can be later removed by a standard trimming algorithm.

disallow all but one in T ′. Observe that these paths correspond to paths in T ′

ending at the states (pi, m), i ∈ [1, k], with the same multiset m, which therefore
contains (ε, ε) with multiplicity k. To guarantee the result to be unambiguous,
the algorithm allows only one of the states (pi, m), i ∈ [1, k] to be final. This
preserves the mapping defined by T since it does not affect other paths leaving
(pi, m), i ∈ [1, k]. The choice of the particular state to keep final is arbitrary and
does not affect the result. Different choices lead to transducers with different
topologies that are all equivalent.

The algorithm described thus far, Double-Tape-Disambiguation, can be
applied to acyclic transducers since it creates at most a finite number of states in
that case and since it disallows ambiguities. Figure 3 illustrates the application
of the algorithm in a simple case. In the general case, the creation of infinitely
many states is avoided, after disambiguation, by using a more complex condition.
Due to lack of space, this case will be presented in a longer version of this paper.

Theorem 5. Let T be an arbitrary acyclic transducer. Then, running the al-
gorithm Double-Tape-Disambiguation with input T produces an equivalent
transducer T ′ that is double-tape unambiguous.

Proof. We give a sketch of the proof. By definition of the condition on the finality
of the states created, the output transducer T ′ is double-tape unambiguous. The
equivalence and termination of the algorithm are clear since the destination state
of e′ is (p′, m′) and that the number of possible multisets m′ is finite. 
�

The input transducer T can be determinized as an acceptor defined over pairs of
input-output symbols. When it is deterministic, then the transducer T ′ output by
the algorithm is also necessarily deterministic, by construction. The application
of the standard automata minimization can then help reduce the size of T ′.

Figures 4(a)-(b) and Figures 4(c)-(d) show examples of applications of our
algorithmto somekernels of interest afterminimization. Figure 4(b) shows the sub-
sequence transducer resulting from the application of our algorithm to the trans-
ducer of Figure 4(a) which counts subsequences with their multiplicity. Figure 4(b)



Learning Languages with Rational Kernels 363

0

a:a
b:b
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b:b
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a:ε
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b:b

a:ε

3

b:ε

a:a

b:ε
a:ε

a:ε
b:ε

0

a:ε
b:ε

1
a:a

b:b

a:ε
b:ε

0

1
a:ε

3
a:a
b:b

2

b:ε

a:ε

b:b
a:ε
b:ε

a:a

b:ε

(a) (b) (c) (d)

Fig. 4. Applications of the double-tape disambiguation algorithm. (a) Transducer T0

associating to each input string x ∈ Σ∗ the set of its subsequences (with multiplicity)
for Σ = {a, b}. (b) Subsequence transducer T associating to each string x ∈ Σ∗ the set
of its subsequences with multiplicity one regardless of the number of occurrences of the
subsequences in x. Unigram transducers for Σ = {a, b}. (c) Transducer T0 associating
to each input string x ∈ Σ∗ the set of its unigrams a and b (with multiplicity). (d)
Unigram transducer T associating to each string its unigrams with multiplicity one.

shows the subsequence transducer obtainedby applying our algorithmto the trans-
ducer of Figure 4(a) which counts unigrams with their multiplicity. In both cases,
the resulting transducers are not straightforward to define even for such relatively
simple examples. The double-tape disambiguation algorithm can be used as a tool
to define finite range rational kernels based on such transducers.

6 Conclusion

We presented a general study of learning and linear separability with rational
kernels, the sequence kernels commonly used in computational biology and nat-
ural language processing. We gave a characterization of the family of languages
linearly separable with rational kernels demonstrating the central role of stochas-
tic languages in this setting. We also pointed out several important properties
of languages separable with a fixed rational kernel in terms of finite Boolean
combination of languages.

Rational kernels with values in a finite set stand out as a particularly inter-
esting family of kernels since they verify this property and guarantee a positive
margin. The double-tape disambiguation algorithm we presented can be used to
create efficiently such kernels from a transducer defining the mapping to feature
sequences. The algorithm is of independent interest for a variety of applications
in text and speech processing where such a disambiguation is beneficial.
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Abstract. Sequential Minimal Optimization (SMO) [14] is a major tool
for solving convex quadratic optimization problems induced by Support
Vector Machines (SVMs). It is based on the idea to iterativley solve
subproblems of size two. In this work we will give a characterization
of convex quadratic optimization problems, which can be solved with
the SMO technique as well. In addition we will present an efficient 1/m-
rate-certifying pair selection algorithm [8,13] leading to polynomial-time
convergence rates for such problems.

1 Introduction

Throughout the paper, we will consider the following convex optimization prob-
lem with compact feasibility region:

inf
x

f(x) s.t. Ax = b, l ≤ x ≤ r, (1)

where f is a convex function, ∇f(x) ∈ R
m is available to us, and A ∈ R

k×m is
a linear mapping. A special instance of (1) will be denoted by P(f, A, b, l, r) or
simply P if the parameters are clear from the context. As the results we build on
are mostly given for quadratic convex functions, we will always have the special
case f(x) = 1

2x�Qx − w�x in mind, where Q ∈ R
m×m is positive semi-definite

and w ∈ R
m, but most proofs will be given for the general case. With

R
(
P(f, A, b, l, r)

)
:= {x | Ax = b, l ≤ x ≤ r}

we will denote the feasibility region of (1) and call any x ∈ R(P) feasible.
Given a feasible solution z ∈ R(P) and a working set I ⊆ {1, . . . , m} we will

use the notation PI,z for the following induced (sub-)problem of (1):

inf
x

f(x) s.t. Ax = b, l ≤ x ≤ r, xi = zi, i /∈ I.

Note, that this problem is again of the same form as (1). The decomposition
algorithm then proceeds iteratively by choosing a working set I, such that the
currently given point x(n) is not optimal in PI,x(n) and chooses the next solution

x(n+1) ← optPI,x(n)

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 365–377, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

nlist@lmi.rub.de
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to be the optimum of the subproblem induced by I and x(n). The algorithm
terminates if x(n) is optimal (or at least close enough). The crucial point is the
selection of the working set I, such that the induced problem is simple to solve,
the solution of the subproblem leads to a fast convergence to the global optimum
and the set I is efficiently computable.

To motivate the task we will pursue, consider the optimization problem in-
duced by C-SVM, which is a special case of (1):

inf
x

f(x) s.t. y�x = 0, 0 ≤ xi ≤ C, i = 1, . . . , m , (2)

where y ∈ {±1}m and C ∈ R
+. For this special setting an extreme variant of

the working-set selection sketched above has been proposed by [14], where sets
of size two are chosen.

Although larger working sets promise more progress in a single iteration there
are some reasons to use this technique: First of all, its simplicity makes it easy
to handle in practice and it is in fact implemented in many software packages
for SVM-optimization [2,6]. Second, empirical results show, that the working-set
size of two tends to have the overall smallest runtime for SVM-optimization
problems [5]. In addition the extension of the selection heuristics based on
second-order information [7,4] is easier for small working-sets. It is therefore an
interesting question under which conditions such a pairwise selection strategy is
possible.

This strategy is well analyzed in the special case of C-SVM [9,1,10,8], but
these analysis depend on the special structure of the equality constraint y�x = 0.
However there exist important learning problems with more than one equality
constraints. This includes popular SVM algorithms like the ν-SVM, which solves
a QP of the following form [16,3]:

inf
x

f(x) s.t. y�x = 0, e�x = ν, 0 ≤ xi ≤ 1
m

, i = 1, . . . , m. (3)

Another example is multiclass learning in a maximal margin regression frame-
work [18], which leads to equality constraints in the number of the dimension of
the output space.

In the last years there have been efforts to extend the selection strategies in
the framework of decomposition method to general quadratic problems (1) with
k equality constraints [12,11,13] but they either don’t give convergence rates or
give only selection strategies for working sets of size at least k + 1. In this paper
we will characterize when SMO-style selection of pairs is applicable. In addition,
building on the results in [8,13], we will propose a selection algorithm for a
working set I = {i, j} of size two which is efficient and leads to a polynomial-
time convergence rate.

1.1 Notational Conventions

Before we start let us introduce some notational conventions: First of all we will
use the short notation [ν]+ for any ν ∈ R to denote the maximum of 0 and ν:

[ν]+ := max {0, ν} .
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Given a subset I ⊆ {1, . . . , m} of size q = |I| and a vector d ∈ R
m we write

dI ∈ R
q to denote the vector consisting only of entries di for i ∈ I.

For any matrix A ∈ R
k×m, Ai ∈ R

k denotes the i-th column of A and, more
generally, AI ∈ R

k×q denotes the matrix, whose column vectors are the Ai with
i ∈ I.

2 Basic Theory

Let us start by giving a clear definition of the special class of problems, which
can be decomposed using working sets of size 2.

Definition 1. Given a problem instance P(f, A, b, l, r) of (1). P is called de-
composable by pairing iff for any suboptimal feasible x ∈ R(P) there exists a
working set I ⊆ {1, . . . , m} of size two, such that x is as well suboptimal for the
induced subproblem PI,x.

As guideline for the selection process and a technical tool in the proofs, we will
use the technique of q-sparse witnesses introduced in [12]:

Definition 2. Let (CI(x)), I ⊆ {1, . . . , m} be a family of functions and consider
the three following properties:

(C1) For each I ⊆ {1, . . . , m} such that |I| ≤ q, CI(x) is continuous on R(P).
(C2) If |I| ≤ q and x is an optimal solution for the subproblem PI,x then

CI(x) = 0.
(C3) If x is not an optimal solution for P, then there exists an I ⊆ {1, . . . , m}

such that |I| ≤ q and CI(x) > 0.

Any family of functions satisfying conditions (C2) and (C3) will be called a q-
sparse witness of sub-optimality. If (CI(x)) fulfills (C1) in addition we call it a
continuous q-sparse witness of sub-optimality.1

As shown in [12], continuous q-sparse witnesses give rise to a general selection
strategy, for which the authors could prove asymptotic convergence. Lately the
authors could prove, that approximate working-set selection based on continuous
q-sparse witnesses is in fact equivalent to the selection of rate certifying sets [13],
leading to polynomial convergence rates.

Using the properties (C2) and (C3) one can directly derive the following char-
acterization of problems decomposable by pairing:

Lemma 1. Given a problem instance P(f, A, b, l, r) of (1). P is decomposable
by pairing iff there exists a 2-sparse witness of suboptimality.

1 Note, that this definition differs slightly from the use in [12], where the continu-
ity property (C1) is crucial for the proof of asymptotic convergence. The authors
therefore only considered as sparse-witness what we call continuous sparse-witness
of suboptimality.
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Proof. The existence of a 2-sparse witness CI(x) implies, that given a suboptimal
x ∈ R(P), we can always find a I = {i, j} such that CI(x) > 0 and therefore
using (C2) x is not optimal for PI,x.

To prove the other direction, simply consider the following family of functions:

CI(x) := f(x) − optPI,x .

Obviously CI(x) fulfills condition (C2). As P is assumed to be pairable we con-
clude, that (C3) holds as well, and therefore CI(x) is a 2-sparse witness of sub-
optimality. ��

Remark 1. If there even exists a continuous 2-sparse witness of suboptimality
we will call P continuously decomposable by pairing.

The main aim of the paper will now be to show under which conditions such a
2-sparse witness of suboptimality exists. We will therefore be concerned with a
special witness, the σ(x|I) function:

σ(x|I) := sup
d∈Rm

{
∇f(x)�I dI

∣
∣ AIdI = 0, l ≤ x + d ≤ r

}

= inf
λ∈Rk

∑

i∈I

{
(xi − li)

[
∇f(x)i − A�

i λ
]+

+ (ri − xi)
[
A�

i λ − ∇f(x)i

]+}
(4)

Note, that the two representations of this function have been independently
motivated. The sup-representation can be used to guide the selection of 1/m-
rate certifying sets of size k+1 in each iteration leading to an ε-optimal solution
in O(m2(k+1)

ε ) iterations [13]. The inf-term has been used to prove, that this
function is a continuous k +1-sparse witness of suboptimality [12]. The equality
of the two simply follows from LP-duality as shown in [13]. In the following we
will use both representations given in (4) interchangeably.

It is crucial to note, that the special function σ : R(P) → R
+, defined by

σ(x) := σ(x|{1, . . . , m}) = sup
x′∈Rm

{
∇f(x)�(x − x′)

∣
∣ Ax′ = b, l ≤ x′ ≤ r

}
,

is an upper bound on the distance to optimum:2

f(x) − f(x∗) ≤ ∇f(x)�(x − x∗) ≤ σ(x) .

Using the first order optimality condition of convex optimization we can con-
clude, that x is optimal for P iff σ(x) = 0. For an arbitrary x ∈ R(P) we call
any I ⊆ {1, . . . , m}, such that |I| ≤ q and

σ(x|I) ≥ f(x) − f(x∗)

an (α, q)-rate certifying set for x ∈ R(P).3 If the stronger inequality

σ(x|I) ≥ ασ(x)

holds, we will call I a strong (α, q)-rate certifying set (see [13]).
2 This has been the usual way to introduce σ(x).
3 Note, that the set I depends on x.
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The σ-function given in (4) will play a two-fold role: First we will extend the
results given in [12] and show, that under special conditions (see Theorem 2)
σ(x|I) is even a 2-sparse witness of suboptimality. In addition we will show, that
under the same conditions a 1/m-rate certifying pair can be derived from (4)
and we will give an efficient algorithm which computes this pair in linear time.

The second use of this function is based on the observation that the σ(·|I)
function restricted to the feasibility region of PI,x

σ(·|I) : R(PI,x) → R
+ .

plays exactly the same role for PI,x as σ(x) for P . That means for any z ∈
R(PI,x): z is an optimal solution of PI,x iff σ(z|I) = 0. We will use this, to
show, that if ever we find a feasible but suboptimal point x, such that for all
possible pairwise selections I = {i, j} we have σ(x|i, j) = 0, we cannot hope
to advance any further with two-dimensional subproblems and the problem at
hand can’t be decomposable by pairing.

A main tool in the given analysis, introduced in [11], will be the following:
Given a problem instance P(f, A, b, l, r) the linear equality constraint matrix
induces the following equivalence relation on {1, . . . , m}:

i ∼ j ⇔ ∃ci,j �= 0 : Ai = ci,jAj .

We will denote the equivalence classes for a given i by [i] := {j | j ∼ i}. Given
a set of representatives {ir | r = 1, . . . , s} we choose the subset4

{ar := Air | r = 1, . . . , s} ⊆ {Ai | i = 1, . . . , m}

whose elements represent the columns of A up to scalar multiplication. For each
equivalence class we define ci := ci,ir , such that for any i ∈ [ir] ciAi = ar. In
addition we will use the distance to the borders defined as follows

μ+
i (x) =

{
xi − li if ci > 0
xi − ri otherwise

and μ−
i (x) =

{
ri − xi if ci > 0
li − xi otherwise

.

Note that with these definitions we have μ+
i (x)

ci
,

μ−
i (x)

ci
≥ 0 for all i = 1, . . . , m.

3 The Main Results

From the construction of the equivalence classes [ir], r = 1, . . . , s we easily see,
that rankA ≤ s. In the following we will show, that problems P(f, A, b, l, r) are
decomposable by pairing if they have an equality constraint matrix of maximal
rank, i.e. rankA = s.

We start by giving the following simplifications of the σ-function:
4 Note, that ar = Air ∈ R

k is as well a column of the equality constraint matrix A.
We will however use the notation ar with small a if ever we want to emphasize, that
we refer to ar as a representative of the columns for the equivalence class [ir].
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Lemma 2. Given a set of representatives {ir | r = 1, . . . , s}, then for any fea-
sible x ∈ R(P) the following properties hold:

1. If I ⊆ [ir] for an r ∈ {1, . . . , s}, then

σ(x|I) = inf
ν∈R

∑

i∈I

{
μ+

i (x)
ci

[ci∇f(x)i − ν]+ +
μ−

i (x)
ci

[ν − ci∇f(x)i]
+

}

2. If rankA = s, then for all I ⊆ {1, . . . , m}

σ(x|I) =
s∑

r=1

σ(x|I ∩ [ir]).

Proof. To prove the first claim let us rewrite σ(x|I) by replacing each Ai by
1
ci

ar:5

inf
λ∈Rk

∑

i∈I

{
(xi − li)

[
∇f(x)i − A�

i λ
]+

+ (ri − xi)
[
A�

i λ − ∇f(x)i

]+}

= inf
λ∈Rk

∑

i∈I

{
μ+

i (x)
ci

[
ci∇f(x)i − a�

r λ
]+

+
μ−

i (x)
ci

[
a�

r λ − ci∇f(x)i

]+
}

= inf
ν∈R

∑

i∈I

{
μ+

i (x)
ci

[ci∇f(x)i − ν]+ +
μ−

i (x)
ci

[ν − ci∇f(x)i]
+

}

.

The second claim is proven with a similar calculation:

σ(x|I) = inf
λ∈Rk

s∑

r=1

∑

i∈I∩[ir]

{
μ+

i (x)
ci

[
ci∇f(x)i − a�

r λ
]+

+
μ−

i (x)
ci

[
a�

r λ − ci∇f(x)i

]+
}

≥
s∑

r=1

inf
βr∈R

∑

i∈I∩[ir ]

{
μ+

i (x)
ci

[ci∇f(x)i − βr]
+ +

μ−
i (x)
ci

[βr − ci∇f(x)i]
+

}

=
s∑

r=1

σ(x|I ∩ [ir]).

By assumption rankA = s and therefore (a1, . . . , as)� ∈ R
s×k is surjective. This

implies, that for any β ∈ R
s we can find a λ ∈ R

k solving all equations a�
r λ = βr

simultaneously. We conclude that the inequality holds in the reverse direction
as well and the claim follows. ��

As already pointed out it is well known, that one can construct sets I of size q �
m for which the function σ(x|I) achieves at least a fraction of the overall forward
5 Note, that for the first equality the terms are effectively swapped if ci < 0.
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gap σ(x). List and Simon [13] could prove, that such sets can be constructed
with a size q ≥ k + 1 achieving the fraction 1

m of σ(x). For problems where
rankA = s this can be extended. Let us start with the special case I ⊆ [ir]:

Lemma 3. Given a problem instance P(f, A, b, l, r), where rankA = s and a
set of representatives {ir | r = 1, . . . , s}. For any feasible x ∈ R(P) and any
I ⊆ [ir], there exists a pair {i, j} ⊆ I, such that

σ(x|i, j) ≥ 1
q
σ(x|I),

where q := |I| is the size of the working set.

Proof. As already pointed out, σ(x|I) is the σ-function of the q-dimensional
subproblem PI,x. The assumption I ⊆ [ir] implies, that the equality constraints
of this problem have rank one and we conclude from [13, Theorem 4], that
there exists a strong 1/q-rate certificate of size 2 for problem PI,x and the claim
follows. ��

We are now in the position to give a central result of this section:

Theorem 1. Given a problem instance P(f, A, b, l, r), where rankA = s. Then
for any feasible x ∈ R(P) there exists a strong 1

m -rate certifying pair (i, j) such
that

σ(x|i, j) ≥ 1
m

σ(x).

Proof. For each r ∈ {1, . . . , s} consider the fractions 0 ≤ αr ≤ 1 of σ(x) which
can be achieved restricting the working set to [ir]:

αrσ(x) = σ(x|[ir ]) .

From Lemma 2 we conclude, that
∑s

r=1 αr = 1. In addition we know from
Lemma 3, that for each r ∈ {1, . . . , s} there exists a pair îr, ĵr ∈ [ir] such that

σ(x|[ir ]) ≤ qrσ
(
x

∣
∣
∣ îr, ĵr

)
,

where qr := |[ir]| denotes the size of the equivalence class [ir]. As
∑s

r=1 qr = m,
we see, that for each r we have

αr

qr
σ(x) ≤ σ

(
x

∣
∣
∣ îr, ĵr

)
.

For sake of contradiction let us then assume, that for each r ∈ {1, . . . , s} we have
αr

qr
< 1

m . This would imply mαr < qr and therefore

m =
s∑

r=1

mαr <

s∑

r=1

qr = m .
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Consequently, there exists at least one r such that

σ
(
x

∣
∣
∣ îr, ĵr

)
≥ αr

qr
σ(x) ≥ 1

m
σ(x).

��
With the help of Theorem 1 we can now answer the main question:

Theorem 2. For any problem P(f, A, b, l, r) such that rankA = s, where s is
the number of equivalence classes induced by A, the family (σ(x|I))I⊆{1,...,m} is
a (continuous) 2-sparse-witness of suboptimality. Any such problem therefore is
(continuously) decomposable by pairing.

Proof. The conditions (C1) and (C2) are obviously fulfilled. As σ(x) = 0 iff x is
an optimal solution of P , condition (C3) follows from Theorem 1. ��

The next theorem will show, that for quadratic optimization problems the rank
condition rankA = s is in some sense a necessary condition as well:

Theorem 3. Given an equality constraint matrix A, where rankA < s. Then
there exist choices of l, r ∈ R

m, such that for any strictly convex quadratic ob-
jective f(x) = 1

2x�Qx − w�x and any b ∈ R
k the instance P(f, A, b, l, r) is not

decomposable by pairing.

Proof. Consider the set

U := {g ∈ R
m | ∀i ∼ j : cigi = cjgj} ⊆ R

m ,

which we will call the set of unpairable points. From Lemma 2 we directly see,
that for any x, such that ∇f(x) ∈ U we have σ(x|i, j) = 0 for any pair {i, j} ⊆
{1, . . . , m}. We will now construct a suboptimal x, such that ∇f(x) ∈ U , which
will prove the claim.

Observe, that U is a linear subspace of R
m and dimU = s. By the construction

of the equivalence classes we can conclude, that img A� ⊆ U . rankA < s then
implies, that there exists a point g ∈ U \ img A� and as Q is of full-rank we can
therefore find x ∈ R

m, such that ∇f(x) = g.
Now choose arbitrary l, r ∈ R

m such that l < x < r. As therefore x is an
interior point of the box-constraints, x is optimal for P iff ∇f(x)⊥ kernA. As by
construction ∇f(x) /∈ img A� we conclude, that x cannot be optimal for P . ��

4 An Efficient Selection Algorithm

In the last section it was shown, that a pair chosen from one equivalence class
can constitute a rate certificate. We will now show, that such a pair can be
computed in linear time. To this purpose we extend the fast rate certifying pair
algorithm introduced by Simon for C-support vector optimization problems [17]
to the more general setting of problems decomposable by pairing. Let us therefore
assume throughout this section, that rankA = s. The following notion will be
helpful:
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Definition 3. Let {ir | r = 1, . . . , s} be a set of representatives. For any r =
1, . . . , s and any feasible x we define

Itop,r(x) :=

{

j ∈ [ir]

∣
∣
∣
∣
∣

μ+
j (x)
cj

> 0

}

,

Ibot,r(x) :=

{

j ∈ [ir]

∣
∣
∣
∣
∣

μ−
j (x)
cj

> 0

}

.

Such indexes are called (r)-top/bottom-candidates.6 Any pair (i, j) ∈ Itop,r(x)×
Ibot,r(x) such that ci∇f(x)i > cj∇f(x)j is called an (r)-violating pair.

Lemma 4. For any i, j ∈ {1, . . . , m}, i �= j, the following holds:
σ(x|i, j) > 0 iff (i, j) is a violating pair. If this is the case, we have

σ(x|i, j) = (ci∇f(x)i − cj∇f(x)j)min

{
μ+

i (x)
ci

,
μ−

j (x)
cj

}

.

Proof. From Lemma 2 we see, that

σ(x|i, j) = σ(x|i) + σ(x|j) = 0

if i �∼ j. Let us therefore assume, that i ∼ j and i, j ∈ [ir]. Again with Lemma 2
we have

σ(x|i, j) = inf
ν∈R

{
μ+

i (x)
ci

[ci∇f(x)i − ν]+ +
μ−

i (x)
ci

[ν − ci∇f(x)i]
+

+
μ+

j (x)
cj

[cj∇f(x)j − ν]+ + μ−
j (x) [ν − cj∇f(x)j ]

+

}

From this formulation we can see, that σ(x|i, j) = 0 if either7 μ+
i (x) = μ+

j (x) = 0
or μ−

i (x) = μ−
j (x) = 0 or ci∇f(x)i = cj∇f(x)j . In all other cases left, (i, j) is

a violating pair and we can assume wlg ci∇f(x)i > cj∇f(x)j . For any ν ∈
(cj∇f(x)j , ci∇f(x)i) the σ-function (depending on ν) reads

σν(x|i, j) =
μ+

i (x)
ci

[ci∇f(x)i − ν]+ +
μ−

j (x)
cj

[ν − cj∇f(x)j ]
+

.

It is therefore optimal to choose either ν = ci∇f(x)i if μ+
i (x)

ci
≥ μ−

j (x)

cj
or ν =

cj∇f(x)j otherwise. This proves the claim. ��
6 Using the definitions of μ

+/−
i (x) one can check, that this definition is a generalization

of the definition given in [10,11].
7 Note, that in the first two cases the variables are at the border, i.e. they are either

bottom-only or top-only-candidates and we can choose ν to be the maximum (or
minimum respectively) of ci∇f(x)i and cj∇f(x)j , which implies σ(x|i, j) = 0.
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In the following we will extend the fast rate-certifying pair algorithm from [17]
to the case of problems decomposable by pairing.

Corollary 1. Let [ir], r = 1, . . . , s be a set of representatives, then consider for

any r the set Mr :=
{

μ+
i (x)

ci
,

μ−
i (x)

ci

∣
∣
∣ i ∈ [ir]

}
and define

σμ,r(x) := max
i∈[ir ]:

μ
+
i

(x)
ci

≥μ

ci∇f(xi) − min
j∈[ir ]:

μ
−
j

(x)

cj
≥μ

cj∇f(xj) .

Then the following relation holds for each r = 1, . . . , s

max
μ∈Mr

σμ,r(x) · μ = max
(i,j)∈

Itop,r(x)×Ibot,r(x)

σ(x|i, j).

Proof. Let8 us first prove, that for each r = 1, . . . , s

max
μ∈Mr

σμ,r(x) · μ ≥ max
(i,j)∈

Itop,r(x)×Ibot,r(x)

σ(x|i, j).

We therefore choose i∗, j∗ ∈ [ir] such that

max
(i,j)∈

Itop,r(x)×Ibot,r(x)

σ(x|i, j) = (ci∗∇f(x)i∗ − cj∗∇f(x)j∗) μ∗.

where μ∗ := min
{

μ+
i∗ (x)

ci∗ ,
μ−

j∗ (x)

cj∗

}

. As μ∗, i∗, j∗ are possible choices in the max-

imization maxμ∈Mr σμ,r(x) · μ the first inequality follows. To prove the reverse
inequality

max
μ∈Mr

σμ,r(x) · μ ≤ max
(i,j)∈

Itop,r(x)×Ibot,r(x)

σ(x|i, j),

let us choose μ∗, i∗, j∗ such that μ+
i∗ (x)

ci∗ ≥ μ∗,
μ−

j∗ (x)

cj∗ ≥ μ∗ and

max
μ∈Mr

σμ,r(x) · μ = (ci∗∇f(x)i∗ − cj∗∇f(x)j∗)μ∗ .

We conclude

max
μ∈Mr

σμ,r(x) · μ ≤ (ci∗∇f(x)i∗ − cj∗∇f(x)j∗)min

{
μ+

i∗(x)
ci∗

,
μ−

j∗(x)
cj∗

}

≤ max
(i,j)∈

Itop,r(x)×Ibot,r(x)

σ(x|i, j),

8 The proof given here is similar to the proof of Claim 2 in [17].
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where the last inequality follows from the fact, that either μ∗ = 0 and the
inequality is trivial or μ∗ > 0 and therefore (i∗, j∗) ∈ Itop,r(x) × Ibot,r(x). This
proves the claim. ��

To compute a pair (
î, ĵ

)
= argmax

(i,j)
σ(x|i, j)

we can now proceed as follows (compare [17]): For each equivalence class consider
the μ ∈ Mr in decreasing order and keep track of the index ir(μ) that maximizes

ci∇f(x)i subject to i ∈ [ir] and μ+
i (x)

ci
≥ μ and jr(μ) minimizing cj∇f(x)j

subject to j ∈ [ir] and
μ−

j (x)

cj
≥ μ. Finally pick the μ∗ that maximizes σμr ,r · μr

for any μr ∈ Mr and r = 1, . . . , s . Following the arguments in [17] one can show,
that this can be done in O(m) steps provided, that we maintain two sorted lists(
i,

μ+
i (x)

ci

)
and

(
i,

μ−
i (x)

ci

)
for each equivalence class. Note, that the sorting can

be updated efficiently, as two subsequent solutions only differ in two components.

5 Conclusions

The selection algorithm presented above leads to a
(

1
m , 2

)
-certifying algorithm in

the sense of [13]. For any problem instance P(f, A, b, l, r) with quadratic objective
function and “maximal rank” equality constraint matrix, i.e. rankA = s. We can
therefore implement a decomposition method with polynomial runtime. This
result will be stated in the following theorem:

Theorem 4. Given an instance P(f, A, b, l, r) with quadratic objective equiva-
lent constraint matrix A such that rankA = s, where s is the number of equiva-
lence classes of the columns of A. Then an SMO-decomposition algorithm using
the working set

I(n) = arg max
(i,j)∈

Itop,r(x)×Ibot,r(x)

σ
(

x(n)
∣
∣
∣ i, j

)

in iteration n, is within ε of optimality after at most O
(

m3

ε

)
steps.9

Proof. As each update step in the SMO-technique can be done in constant time,
each iteration is dominated by the selection procedure taking O(m) steps. From
Theorem 1 and [13, Theorem 4] we conclude, that we need at most O

(
m2

ε

)

iterations and the claim follows. ��

The following two lemma show, that Theorem 4 applies to ν-support vector
classification (3) and regression:

9 This holds for a Random Access Machine model with unit cost for an arithmetic
operation over the reals.
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Lemma 5. The dual optimization problem induced by the ν-SVC (3) has max-
imal rank equality constraints rankA = s.

Proof. The equality constraint matrix of (3) is given by A = ( y1 ··· ym

1 ··· 1 ), where
yi = ±1. Thus either rankA = 1 if all labels are the same and we therefore have
s = 1 as well or rankA = 2 In this case the equivalence classes are given by [( 1

1 )]
and

[(−1
1

)]
and we conclude rankA = s = 2. ��

Lemma 6. For any ν ∈ [0, 1] there exists a dual formulation of the ν-support
vector regression problem10 of the general form (1) such that rankA = s.

Proof. Consider the dual optimization problem of ν-SVR which is given by

inf
x,x∗

f (x∗ − x) s.t. e� (x − x∗) = 0, e� (x + x∗) ≤ C · ν,

0 ≤ xi, x
∗
i ≤ C

m
, i = 1, . . . , m,

where x, x∗ ∈ R
m, f is quadratic and C > 0 is a regularization parameter. In the

following we will prove, that there exists an optimal solution where e�(x+x∗) =
C · ν and therefore we can as well solve a problem of the general form (1) with
b = ( 0

C·ν ) ∈ R
2 and A =

(
1 ··· 1 −1 ··· −1
1 ··· 1 1 ··· 1

)
∈ R

2×2m, where again rankA = 2 = s.
To show e�(x + x∗) = C · ν for at least one optimal (x, x∗) choose among all

optimal points one, that achieves the maximal value of e�(x+x∗). Let as denote
such a solution as (x̂, x̂∗). For sake of contradiction assume e� (x̂ + x̂∗) < C ·ν <
2C. Thus, there exists at least one j ∈ {1, . . . , m} such that x̂j ≤ x̂∗

j < C
m or

x̂j ≤ x̂∗
j < C

m . In both cases we are able to shift the solutions x̂j , x̂
∗
j without

changing their difference, but improve the value of e� (x + x∗). ��

The results given above therefore extend (or unify) known results in the fol-
lowing sense: It was known, that problems of the type above could be solved
by extended maximal-violating pair algorithms [3,11] but no convergence rate
could be guaranteed for such selection procedures. On the other hand the selec-
tion strategy proposed by [13] required larger working-set sizes (e.g. q = 3 for
ν-SVM). Let us note, that using the presented selection algorithm based on [17]
has the additional benefit, that extending the results from [7] should be straight
forward.

In addition we presented a simple algebraic criterion which is sufficient and
(to some extent) necessary for a given quadratic convex optimization problem
to be decomposable by pairing and showed, that under this condition a fast and
simple working set selection algorithm exists.

Acknowledgments. This work was supported in part by the IST Programme
of the European Community, under the PASCAL Network of Excellence, IST-
2002-506778. This publication only reflects the authors’ views.
10 See for example Chapter 9.3 in [15].
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Abstract. Predicting class probabilities and other real-valued quanti-
ties is often more useful than binary classification, but comparatively
little work in PAC-style learning addresses this issue. We show that two
rich classes of real-valued functions are learnable in the probabilistic-
concept framework of Kearns and Schapire.

Let X be a subset of Euclidean space and f be a real-valued function
on X. We say f is a nested halfspace function if, for each real threshold t,
the set {x ∈ X|f(x) ≤ t}, is a halfspace. This broad class of functions in-
cludes binary halfspaces with a margin (e.g., SVMs) as a special case. We
give an efficient algorithm that provably learns (Lipschitz-continuous)
nested halfspace functions on the unit ball. The sample complexity is
independent of the number of dimensions.

We also introduce the class of uphill decision trees, which are real-
valued decision trees (sometimes called regression trees) in which the
sequence of leaf values is non-decreasing. We give an efficient algorithm
for provably learning uphill decision trees whose sample complexity is
polynomial in the number of dimensions but independent of the size of
the tree (which may be exponential). Both of our algorithms employ a
real-valued extension of Mansour and McAllester’s boosting algorithm.

1 Introduction

Consider the problem of predicting whether a patient will develop diabetes (y ∈
{0, 1}) given n real valued attributes (x ∈ IRn). A real prediction of Pr[y = 1|x] is
much more informative than the binary prediction of whether Pr[y = 1|x] > 1/2
or not. Hence, learning probabilities and, more generally, real-valued functions
has become a central problem in machine learning.

This paper introduces algorithms for learning two classes of real-valued func-
tions. The first is the class of nested halfspace functions (NHFs), and the sec-
ond is that of uphill decision trees. These are real-valued classes of functions
which naturally generalize halfspaces and decision lists, respectively. We believe
that these classes of functions are much richer than their binary classification
counterparts.
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Kearns and Schapire give a rigorous definition of learning such probabilistic
concepts [5] in which there is a set X , and a distribution D over (x, y) ∈ X ×
{0, 1}. The learner’s goal is to predict f(x) = PrD[y = 1|x] as accurately as
possible. Roughly speaking, a learning algorithm learns a family C of concepts
c : X → [0, 1] if, for any distribution D such that f(x) = Pr(x,y)∼D[y = 1|x] ∈ C,
with high probability it outputs an hypothesis h : X → [0, 1] such that,

ED[(h(x) − f(x))2] ≤ ε. (1)

The algorithm should be computationally efficient and use only poly(1/ε) inde-
pendent samples from D.

Remark 1. Two remarks from [5] elucidate the power of their probabilistic
learning model. First of all, without loss of generality one can allow y ∈ [0, 1]
(the generalization to any interval [a, b] is straightforward) as long as f ∈ C where
now f(x) = E[y|x]. The reason is that, one can randomly round any example
in (x, y) ∈ X × [0, 1] to be in X × {0, 1} by choosing (x, 1) with probability y
and (x, 0) with probability 1 − y. This does not change E[y|x] and converts a
distribution over X×[0, 1] to be over X×{0, 1}. Such a setting models real-valued
prediction, e.g., estimating the value of a used car from attributes.1

Remark 2. In expanding E[(h(x) − f(x) + f(x) − y)2], for f(x) = E[y|x] and
any hypothesis h, the cross-term E[(h(x) − f(x))(f(x) − y)] = 0 cancels. So,

E(x,y)∼D[(h(x) − y)2] = E[(h(x) − f(x))2] + E[(f(x) − y)2]. (2)

Hence, a hypothesis meeting (1) not only makes predictions h(x) that are close
to the truth f(x), but also has expected squared error E[(h(x) − y)2] within ε of
the minimal squared error that could achieve knowing f .

1.1 Nested Halfspace Functions and Uphill Decision Trees

Let X ⊆ IRn and define a function f : X → IR to be an NHF if for every t ∈ IR,
the set of x such that f(x) ≤ t is a halfspace. More formally, for all t ∈ IR, there
must exist w ∈ IRn, θ ∈ IR such that

{x ∈ X | f(x) ≤ t} = {x ∈ X | x · w ≤ θ}.

We call this a nested halfspace function because for thresholds t < t′, the set
Ht = {x ∈ X | f(x) ≤ t} must be contained in Ht′ = {x ∈ X | f(x) ≤ t′} and
both must be halfspaces.

When X = IRn, the NHFs reduce2 to the class of generalized linear models
where it is required that f(x) = u(w · x) where w ∈ IRn and u : IR → IR is a
1 Note that the learner does not directly get samples (x, f(x)). If y = f(x) always was

the case (a special distribution), then learning nested halfspaces would be trivial, as
the learner could learn f(x) ≤ t for each t himself by thresholding the data to see
which y ≥ t and then running a standard halfspace learning algorithm.

2 Technically we need to also permit the set {x ∈ X | f(X) ≤ t} to be an open
halfspace {x ∈ X | x · w < θ}, but for simplicity, we consider only closed halfspaces.
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Fig. 1. a-d) Illustrations of NHFs. Whiter=larger function value. a) An NHF on a ball.
b) A generalized linear model, where all halfspaces must be parallel. c) An NHF with
a degree-2 polynomial kernel. The function can be a potpourri of ellipses, parabolas,
etc., at varying orientations. d) A generalized linear model with a degree-2 polynomial
kernel. The objects must be concentric, of the same type and same orientation. e) An
uphill decision tree.
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nondecreasing function. Generalized linear models include halfspaces as well as
linear and logistic regression as special cases.

For general X ⊆ IRn, the NHFs have much more flexibility. Figure 1 illustrates
NHFs overs the unit ball, and kernelized NHFs with a degree 2 polynomial
kernel. There are several additional characterizations of NHFs. For example, an
NHF has the property that the restriction of the function to any line is either
nondecreasing or nonincreasing.

In Section 3, we give an algorithm for learning continuous NHFs over the unit
ball B = {x ∈ IRn | ‖x‖ ≤ 1}. A function f : X → IR is said to be L-Lipschitz
continuous if,

∀x, x′ ∈ X |f(x) − f(x′)| ≤ L‖x − x′‖.

(For differentiable f and convex X , this is equivalent to requiring ‖∇f(x)‖ ≤ L
for all x ∈ X). Formally, the class of functions we learn is,

NHFL = {f : B → [0, 1] | f is L-Lipschitz and an NHF}.

Result 1. The class NHFL for any dimension n can be learned to error ≤ ε
using a computationally efficient algorithm and poly(1/ε, L) data.

Notice that the amount of data does not depend on n, and the algorithm can be
naturally Kernelized. In this sense, the parameter L plays the analogous role to
a margin parameter of 1/L.

1.2 Uphill Decision Trees

In this case, let X = {0, 1}n. A decision tree with real values at the leaves
(sometimes called a regression tree) is called an uphill decision tree if the values
on the leaves are nondecreasing in order from left to right. Formally, this means
that there should be some depth-first traversal of the tree in which the values
encountered at the leaves occur in nondecreasing order. An example of an uphill
decision tree is given in Figure 1e). Note that uphill (or downhill) decision trees
differ from the notion of monotonic decision trees (see, e.g., [10]), which require
that changing any single attribute from 0 to 1 can only increase (or decrease)
the function. The example in Figure 1e) demonstrates that an uphill decision
tree need not be monotonic: changing x[1] from 0 to 1 may increase or decrease
the value, depending on the other attributes.

Result 2. The class of uphill decision trees (of any size) in any dimension
n can be learned to error ≤ ε using a computationally efficient algorithm and
poly(n, 1/ε) data.

We note that the set of uphill decision trees with {0, 1} leaf values is exactly
the same as the set of binary decision lists. Similarly, thresholding an uphill
decision tree gives a binary decision list. Hence uphill decision trees are in fact
a special case of NHFs. However, we cannot use our result (or algorithm) from
the previous section here because it has incompatible conditions.
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It is also worth defining Kearns and Schapire’s notion of a Probabilistic deci-
sion list [5]. This is a decision list with real values in the leaves. However, there
is the additional restriction that the real values have to be an interleaving of two
sequences: one nonincreasing and the other nondecreasing up until some com-
mon value θ. This seemingly strange condition actually makes them a special
case of uphill decision trees.

2 Preliminaries: Real-Valued Learning

Concept class of real functions Binary {0, 1} special case

Monotonic functions of a single variable [5] 1-dimensional threshold functions
Functions of (const.) k relevant variables [5] Binary functions of k relevant variables
Probabilistic decision lists [5] Decision lists
(Lipschitz) Generalized Linear Models [3,8] Halfspaces(+margin)
(Lipschitz) Generalized Additive Models [3,2] Additive threshold functions(+margin)
(Lipschitz) NHFs Halfspaces(+margin)
Uphill decision trees Decision lists

Following Kearns and Schapire [5], we assume that we have a set X , a probability
distribution D over X × [0, 1], and a family C of concepts f : X → [0, 1] such that
f(x) = E(x,y)∼D[y|x] ∈ C.3 An example oracle EX = EXD is an oracle that, each
time called, returns an independent draw (x, y) from distribution D. That is, if
the algorithm calls the oracle m times, it receives samples (x1, y1), . . . , (xm, ym)
which are i.i.d. from D. In the case where X ⊆ IRn, we denote the ith attribute
x[i] ∈ IR.

Definition 1 (Polynomial learning in the real-valued setting). A (possi-
bly randomized) learning algorithm L takes as input ε, δ > 0 and EX and outputs
a function h : X → [0, 1]. L polynomially learns (X, C) if there exists a poly-
nomial p(·, ·) such that: for any ε, δ > 0 and any distribution D over X × [0, 1]
whose f(x) = E(x,y)∼D[y|x] ∈ C, with probability 1− δ over the samples returned
by EX (and its internal randomization), it outputs h : X → [0, 1] such that,
E(x,y)∼D[(h(x)−f(x))2] ≤ ε and with probability 1, the runtime of the algorithm
(hence number of calls to EX as well) and the runtime of h on any x ∈ X, are
at most p(1/ε, 1/δ).

Remark. Often times we are interested in the asymptotic behavior of an algo-
rithm on sequence of learning problems (Xn, Cn) for n = 1, 2, . . .. In this case, n
is an input to the learning algorithm as well, and the above requirement must
hold for any n ≥ 1 and learning problem (Xn, Cn), and the runtime may grow
with n but must be polynomial in n as well. In this case we say the algorithm
polynomially learns {(Xn, Cn)}.

3 This means f(z) = E[y|x = z] if we think of (x, y) as joint random variables drawn
according to D. For x not in the support of D, f(x) ∈ [0, 1] may be chosen arbitrarily
so that f ∈ C.
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2.1 Covariance and Correlation

While {0, 1} error rate is often the most useful metric in designing binary clas-
sification algorithms, in the real-valued setting notions of variance, covariance
and correlation often prove useful.

For random variables A, B ∈ IR, define the covariance to be,

cov(A, B) = E[AB] − E[A]E[B] = E[(A − μA)(B − μB)] = E[(A − μA)B],

where μA = E[A] denotes the expectation of random variable A. We note that
for any constant c ∈ IR, cov(A+c, B) = cov(A, B). Also, covariance is symmetric
(cov(A, B) = cov(B, A)) and bilinear (for any random variables A1, A2, B ∈ IR
and constants c1, c2 ∈ IR, cov(c1A1 + c2A2, B) = c1cov(A1, B) + c2cov(A2, B)).
Define the variance of A to be

var(A) = cov(A, A) = E[A2] − E[A]2 = E[(A − μA)2].

We assume that we have some distribution D over X × [0, 1]. For functions
g, h : X → IR, we define

cov(g(x), h(x)) = E(x,y)∼D[g(x)h(x)] − E[g(x)]E[h(x)] = E[(g(x) − μg)h(x)],

where μg = E[g(x)]. Similarly, define var(g(x)) = E[g2(x)] − E[g(x)]2. Note that
var(f(x)) = 0 has special meaning. It means that f(x) = E[y|x] is constant for
all x in the support of D, hence the most accurate hypothesis to output is this
constant function and no better learning is possible.

Note that for f and any h : X → IR we also have

cov(f(x), h(x)) = E[f(x)h(x)] − E[f(x)]E[h(x)] = E[yh(x)] − μfE[h(x)].

Hence we have the useful relation, for any h : X → IR:

cov(f(x), h(x)) = E[yh(x)] − E[y]E[h(x)] = cov(y, h(x)). (3)

We also refer to cov(y, h(x)) as the true covariance of h in analogy to the true
error (also called generalization error) of an algorithm outputting h : X → IR.
For such an algorithm, we refer to the expected covariance E[cov(y, h(x))], where
the expectation is over draws of the training set Zm = (x1, y1), . . . , (xm, ym)
drawn i.i.d. from D, and we are talking about the expectation, over datasets of
the true covariance. In particular, this is, EZm∼Dm [cov(y, h(x))] and is not to be
confused with the empirical covariance ĉov(y, h(x)) defined as follows.

ĉov(y, h(x)) =
1
m

m∑

i=1

yih(xi) − 1
m

m∑

i=1

yi
1
m

m∑

i=1

h(xi) =
1
m

m∑

i=1

(yi − μ̂f )h(xi),

where we define μ̂f = 1
m

∑m
i=1 yi.

Finally, for random variables A, B, we define the correlation coefficient,

cor(A, B) =
cov(A, B)

√
var(A)var(B)

∈ [−1, 1].

Note that cor(c1A+c2, B) = cor(A, B) for constants c1 > 0, c2 ∈ IR. Similarly for
g, h : X → IR, we define cor(g(x), h(x)) = cov(g(x), h(x))/

√
var(h(x))var(g(x)).
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2.2 Real Boosting

Classification boosting [11] is an extremely useful tool for designing provably
efficient learning algorithms. In order to learn real-valued functions, we need to
use the real-valued analog of boosting. In [3], it was shown that the boosting by
branching programs algorithm of Mansour and McAllester [7] (building on work
of Kearns and Mansour [4]) can be adapted to the real-valued setting.

In classification boosting, a weak learner was defined [6] to be an algorithm
whose output had error strictly less than 1/2 (≤ 1/2 − γ for γ > 0). In the
real-valued setting, this definition does not make sense. Instead, the definition
we use requires positive correlation rather than error less than 1/2. Note that
in the real-valued setting, our definition of a weak learner is complicated by the
fact that when var(f(x)) = 0, it is impossible to have positive covariance (or
positive correlation), i.e., cov(h(x), y) = 0 for all h : X → IR.

Definition 2 (Weak correlator [3]). Let ρ : [0, 1] → [0, 1] be a nondecreasing
function. A ρ-weak correlator for (X, C) is a learning algorithm that takes input
ε, δ > 0 and EX such that, for any ε, δ > 0, and any distribution D over X×[0, 1]
where f(x) = E[y|x] ∈ C and var(f(x)) ≥ ε, with probability 1 − δ, it outputs
h : X → IR such that cor(h(x), f(x)) ≥ ρ(ε).

A weak correlator is said to be efficient if its runtime (hence number of calls to
EX) and the runtime of evaluating h, are polynomial in 1/ε, 1/δ and if 1/ρ(ε) is
polynomial in 1/ε as well. In the case where we consider a sequence of learning
problems {(Xn, Cn)}, the runtime and 1/ρ must grow polynomially in n as well.

The following is shown:

Theorem 1 (Real-valued boosting [3]). There is a boosting algorithm that,
given any black-box efficient ρ-correlator for (X, C), polynomially learns (X, C)
in the real-valued setting.

A somewhat simpler notion of weak learner in the real-valued setting can be
given, making analysis simpler. We define a simplified weak learner as follows.

Definition 3 (Simplified real weak learner). Let σ : [0, 1] → [0, 1] be a
nondecreasing function such that 1/σ(ε) is polynomial in 1/ε and let q(·) be a
polynomial. The simplified real weak learner for (X, C) is a learning algorithm
that takes input m ≥ 1 and training set Zm = (x1, y1), . . . , (xm, ym) drawn
i.i.d. from D such that, for any ε > 0 and any m ≥ q(1/ε), and any distribution
D over X × [0, 1] where f(x) = E[y|x] ∈ C and var(f(x)) ≥ ε, it outputs h :
X → [−1, 1] such that EZm∼Dm

[
|cov(h(x), y)|

]
≥ σ(ε) and the runtime of the

weak learner and h on any inputs in (X × [0, 1])m must be polynomial in m.

We call this definition “simplified,” because it involves covariance rather than
correlation, and because it is arguably more natural to view a learning algorithm
as taking a training set as input rather than desired accuracy and confidence
parameters. In this way, we also avoid explicit dependence on 1/δ.

Again, in the case of a sequence of learning problems {(Xn, Cn)}, the above
guarantee must hold for any n ≥ 1, but 1/ρ, p, and the runtimes are allowed to
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be polynomial in n as well. Using standard techniques, given a simplified real
weak learner for {Xn, Cn}n≥1, we can construct a efficient ρ-weak learner and
hence polynomially learn the family.

Lemma 1. Given a simplified weak learner for (X, C), one can construct an
efficient weak correlator (and hence a polynomial learner) for (X, C).

Proof (Sketch). Notice that for any h : X → [−1, 1], var(h(x)) ≤ 1. Since f :
X → [0, 1], we have var(f(x)) ≤ 1/4. Hence,

cor(h(x), f(x)) =
cov(h(x), y)

√
var(h(x))var(f(x))

≥ 2cov(h(x), y).

Hence, to achieve ≥ ρ correlation, it suffices to output hypothesis h : X → [−1, 1]
with cov(h(x), y) ≥ ρ/2.

We take ρ(ε) = σ(ε). Given ε, δ > 0, we run the simplified weak learner T =
O(log(1/δ)/ε) times on fresh data. For each run t = 1, . . . , T , we have an output
ht : X → [0, 1]. We use O(log(1/δ)/σ2(ε)) fresh random samples to estimate the
covariance on a fresh set of held-out data set, and return h(x) = ht(x) or h(x) =
−ht(x) of maximal empirical covariance. Since cov(−ht(x)) = −cov(ht(x)) and
we are considering both possibilities for each t, WLOG we can assume that
cov(ht(x), y) ≥ 0.

Now, for each 1 ≤ t ≤ T , we have EZm [1 − cov(ht(x), y)] ≤ 1 − σ(ε) and
also cov(ht(x), y) ∈ [0, 1] since ht(x), f(x) ≤ 1. By Markov’s inequality on 1 −
cov(ht(x), y) ≥ 0, we have,

PrZm∼Dm [1 − cov(ht(x), y) ≥ 1 − (3/4)σ(ε)] ≤ 1 − σ(ε)
1 − (3/4)σ(ε)

≤ 1 − σ(ε)/4.

In other words, with probability ≥ σ(ε)/4, cov(ht(x), y) ≥ (3/4)σ(ε). Thus, after
T = O(log(1/δ)/σ(ε)) repetitions of the algorithm, with probability ≥ 1 − δ/2,
at least one of them will have cov(ht(x), y) = cov(ht(x), f(x)) ≥ (3/4)σ(ε). If
we measure the empirical covariance ĉov(ht(x), y) of each on a test set of size
O(log(1/δ)/σ2(ε)), with probability ≥ 1− δ/2, all of them (including both ht(x)
and −ht(x) will have empirical covariance within σ(ε)/8 of their true covariance.
Hence, by the union bound, with probability ≥ 1 − δ, we will output h : X →
[−1, 1] with cov(h(x), y) ≥ σ(ε)/2 = ρ(ε)/2. 
�

The same lemma holds for {(Xn, Cn)} as the polynomial dependence on n triv-
ially carries through the above reduction.

3 Learning Continuous NHFs

In this section we take X = B = {x ∈ IRn | ‖x‖ ≤ 1} to be the unit ball, and
we consider NHFs f : B → [0, 1] that are L-Lipschitz-continuous, for some value
L > 0.
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The idea is to use a linear h(x) = w · x weak learner that maximizes the
empirical covariance with y on the data. This is easy to compute, as follows.

Define μ̂f = 1
m

∑m
i=1 yi, and v, v̂ ∈ IRn by,

v = E(x,y)∼D[(y − μf )x]

v̂ =
1
m

m∑

i=1

(yi − μ̂f )xi.

For any w ∈ IRn, we have,

cov(y, w · x) = E[(y − μf )(w · x)] = w · E[(y − μf )x] = w · v. (4)

Similarly,

ĉov(y, w · x) =
1
m

m∑

i=1

(yi − μ̂f )(w · xi) = w · 1
m

m∑

i=1

(yi − μ̂f )xi = w · v̂. (5)

Thus the vectors u, û ∈ B that maximize cov(y, u·x) and ĉov(y, û·x) are u = v
‖v‖

and û = v̂
‖v̂‖ , respectively4.

The main result of this section is that the (trivially efficient) algorithm that
outputs hypothesis h(x) = û · x is a simplified real weak learner. This directly
implies Result 1, through Lemma 1.

Theorem 2. For any ε > 0 distribution D over B ×{0, 1} such that f ∈ NHFL

and var(f) ≥ ε, given m ≥ 100L2/ε4 examples, the vector û = v̂
‖v̂‖ defined by

v̂ = 1
m

∑m
i=1(yi − μ̂f )xi yields,

EZm [cov(y, u · x)] ≥ 1
5L

ε2.

To prove this, we begin by claiming that there is some vector w ∈ B such that
(w · x) has relatively large covariance with respect to y.

Lemma 2. Suppose f ∈ NHFL. Then there exists some vector w ∈ B such that,

cov(y, w · x) = cov(f(x), w · x) ≥ 4
5L

(
var(f(x))

)2
.

We will prove this lemma in Section 3.1. Finally, we also use the following gen-
eralization bound for covariance.

Lemma 3. For any distribution D over B × [0, 1], any ε, δ > 0, and m samples
iid from D,

E
[

sup
w∈B

|ĉov(y, w · x) − cov(y, w · x)|
]

≤ 3√
m

.

4 If v (or v̂) is 0, we take u = 0 (resp. û = 0).
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Proof. By equations (4) and (5), we have for any w ∈ B,

|ĉov(y, w · x) − cov(y, w · x)| = |w · (v̂ − v)| ≤ ‖v̂ − v‖.

Thus it suffices to show that E
[
‖v̂ − v‖2

]
≤ 9/m because E[|Z|] ≤

√
E[Z2] for

any random variable Z ∈ IR.
Note that E[v̂] = v. Also note that v̂, which is a function of the training

data (x1, y1), . . . , (xm, ym) is stable in the following sense. If we change only one
training example (xi, yi) ∈ B×[0, 1], this can move v̂ by a vector of magnitude at
most 3/m. To see this, note that (1/m)(yi−μ̂f)xi is a vector of magnitude ≤ 1/m
and hence changing (xi, yi) changes this by a vector of magnitude at most 2/m.
Also, changing (xi, yi) moves (1/m)(yj − μ̂f )xj (for j = i) by a vector of at most
1/m2 because μ̂f changes by at most 1/m and (xj , yj) ∈ B× [0, 1] do not change.
Hence the magnitude of the total change is at most 2/m + (m − 1)/m2 ≤ 3/m.
(For those who are familiar with McDiarmid’s inequality [9], we remark that we
do something similar for the vector v̂, though it is much simpler since we are
only looking for a bound in expectation and not with high probability.).

Define vector-valued random variables V1, V2, . . . , Vm ∈ IRn to be,

Vi = Vi(x1, y1, . . . , xi, yi) = E [v̂|x1, y1, . . . , xi, yi] − E [v̂|x1, y1, . . . , xi−1, yi−1] .

Hence, we have

v̂ − v =
m∑

i=1

Vi(x1, y1, . . . , xi, yi).

It is also not difficult to see that E[Vi] = 0 and even E[Vi|x1, y1, . . . , xi−1, yi−1] =
0, and hence E[Vi|Vj ] = 0 for i > j. Thus we also have E[Vi · Vj ] = 0 for i = j.
Also, note that ‖Vi‖ ≤ 3/m since changing (or fixing) (xi, yi) changes v̂ by a
vector of magnitude at most 3/m. Finally,

E
[
(v̂ − v)2

]
= E

[
(V1 + . . . + Vm)2

]
=

∑

i

E
[
V 2

i

]
+ 2

∑

i>j

E[Vi · Vj ].

The above is ≤ m
(

3
m

)2 = 9
m . 
�

We can now prove Theorem 2.

Proof (of Theorem 2). The proof is straightforward given what we have shown
already. We know by Lemma 2 that there is some vector w ∈ B of covariance at
least 4

5L ε2. If every vector has true covariance within δ of its empirical covariance,
then by outputting the vector of maximal empirical covariance, we achieve a
true covariance ≥ 4

5L ε2 −2δ. By Lemma 3, we have E[δ] ≤ 3√
m

. By our choice of
m = 100L2/ε4, the expected true covariance is ≥ 4

5L ε2 −2(3ε2/10L) = 1
5Lε2. 
�
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3.1 Proof of Lemma 2

In order to prove Lemma 2, the following geometric lemma is helpful:

Lemma 4. Suppose f : B → IR is an L-Lipschitz function, w ∈ IRn, ‖w‖ = 1,
t ∈ IR, and {x ∈ B | f(x) ≤ t} = {x ∈ B | w · x ≤ θ}. (a) If θ ≥ 0 then
|f(x) − t| ≤ L|w · x − θ| for all x ∈ B such that w · x > θ. (b) If θ ≤ 0 then
|f(x) − t| ≤ L|w · x − θ| for all x ∈ B such that w · x < θ.

In other words, we have a Lipschitz-bound on f(x) based on the projection onto
the vector w, but it only holds on side of the hyperplane w · x = θ (the side that
has the smaller intersection with the ball).

Proof. For any x ∈ B such that (w · x − θ)θ ≥ 0 (note that this includes both
cases θ ≥ 0 ∧ w · x − θ > 0 and θ < 0 ∧ w · x − θ < 0), consider the point
x′ = x−w(w ·x− θ). Note that we have chosen x′ so that w ·x′ = θ and x′ ∈ B.
To see that x′ ∈ B, notice that ‖w‖ = 1 implies,

‖x‖2 − ‖x′‖2 = 2x · w(w · x − θ) − w2(w · x − θ)2

= (w · x − θ) · (2w · x − (w · x − θ))
= (w · x − θ) · (w · x + θ)
= (w · x − θ)2 + 2(w · x − θ)θ ≥ 0

w

{ x | w·x }

x

x’

w

{ x | w·x }
x’

x

Fig. 2. On the left, we illustrate the case θ > 0 and, on the right, θ < 0. In either case,
the lemma only applies to the part of the ball that has less than 1/2 the volume. Not
shown are the cases θ ≥ 1 ({x ∈ B|w ·x ≤ θ} = B) and θ < −1 ({x ∈ B|w ·x ≤ θ} = ∅).

Hence ‖x′‖ ≤ ‖x‖, so x′ ∈ B. This is more easily seen geometrically from
Figure 2. Now, using the Lipschitz property with the points x, x′, we have

|f(x) − f(x′)| ≤ L‖x − x′‖ = L|w · x − θ|.

Case 1: |θ| ≥ 1. In this case, the lemma holds vacuously because there can be
no point x ∈ B meeting the conditions of the lemma. Case 2: θ ∈ (−1, 1). Since
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x ·w = θ, we have f(x′) ≤ t. On the other hand, the continuity of f and the fact
that {x ∈ B|w · x > θ} = {x ∈ B|f(x) > t} is non-empty implies that f(x′) = t.
This combined with the displayed equation above gives the lemma. 
�

We also use the following probabilistic lemma. It states that the variance of a
random variable can be broken into two parts, based on whether the variable
is greater or smaller than its mean, and both parts can be lower-bounded with
respect to the variance of the original variable.

Lemma 5. Let X ∈ [0, 1] be a random variable with expectation μ and vari-
ance V = E

[
(X − μ)2

]
. Then E

[
(X − μ)2I(X > μ)

]
≥ 4

5V 2 and similarly
E

[
(X − μ)2I(X < μ)

]
≥ 4

5V 2.

Here the indicator function I(P ) = 1 if predicate P holds and 0, otherwise. The
proof of this lemma is in the appendix.

Proof (of Lemma 2). Take w ∈ IRn, θ ∈ IR such that {x ∈ B | f(x) ≤ μf} =
{x ∈ B | w ·x ≤ θ}. WLOG we assume ‖w‖ = 1 (if w = 0 then var(f(x)) = 0 and
the lemma holds trivially). Note that (f(x) − μf )(w · x − θ) ≥ 0 for all x, be we
would like to lower-bound the expectation of this quantity, i.e., cov(f(x), w · x).
Case 1: θ ≥ 0. Lemma 5 implies that

E[(f(x) − μf )2I(w · x > θ)] ≥ 4
5
var2(f).

However, whenever I(w · x > θ) = 1, we have f(x) > μf and f(x) − μf ≤
L(w · x − θ). Hence, we have,

4
5
var2(f) ≤ E[(f(x) − μf )2I(w · x > θ)]

≤ E[(f(x) − μf )L(w · x − θ)I(w · x ≥ θ)]
≤ E[(f(x) − μf )L(w · x − θ)]
= cov(f(x), w · x)L.

The last equality holds by the definition of covariance and the fact that it remains
unchanged under additive shifts, i.e., cov(A, B) = cov(A, B+θ) for any constant
θ ∈ IR. Case 2: θ ≤ 0. This follows in an entirely similar manner to case 1. 
�

4 Learning Uphill Decision Trees

In this case X = {0, 1}n. Our algorithm here again uses boosting. The weak
learner here is quite similar to the (strong) learner used by Kearns and Schapire
for learning Probabilistic Decision Lists.

The following simple probabilistic lemma will be helpful.

Lemma 6. Let G be a finite family of binary functions g : X → {0, 1} and let
D be an arbitrary probability distribution over X × [0, 1]. Then, for any ε > 0
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1. Let dataset Z := Zm.
2. Let P := ∅, N := ∅.
3. If there is an attribute x[j] such that the number of examples in Z with x[j] = 0

is ≤ 6m7/8 ln(n + 3), then:
(a) Let P := P ∪ {j}.
(b) Remove all examples from Z such that x[j] = 0.
(c) Goto 3.

4. If there is an attribute x[j] such that the number of examples in Z with x[j] = 1
is ≤ 6m7/8 ln(n + 3), then:
(a) Let N := N ∪ {j}.
(b) Remove all examples from Z such that x[j] = 1.
(c) Goto 3.

5. OUTPUT h(x) := (x[j∗] = b∗)
∧

j∈P (x[j] = 1)
∧

j∈N (x[j] = 0) where j∗ ∈ [n], b∗ ∈
{0, 1} are chosen to maximize |ĉov(h(x), y)| (over the original Zm).

Fig. 3. A weak learner for uphill decision trees

and m ≥ 1, for a random dataset Zm of m examples,

PrZm∼Dm

[

max
g∈G

|μ̂g − μg| ≥
√

ln(2|G|/δ)
2m

]

≤ δ

PrZm∼Dm

[

max
g∈G

|ĉov(g(x), y) − cov(g(x), y)| ≥
√

2 ln(4|G|/δ)
m

]

≤ δ.

The proof of this lemma is in the appendix. The following lemma shows that the
algorithm of Figure 3 is a weak learner for Uphill decision trees. This implies
Result 2, through Lemma 1.

Lemma 7. For any ε > 0 and distribution μ over {0, 1}n×{0, 1} such var(f(x)) ≥
ε, given m ≥ (12n ln(n + 3)/ε)4 examples, the algorithm of Figure 3 returns h(x)
such that,

E
[
|cov(h(x), y)|

]
≥ ε4

250
.

The proof is available in the full version of the paper on the author’s web page.

5 Conclusions and Future Work

We have introduced NHFs, a natural generalization of generalized linear models,
halfspaces, and decision lists. We have given computationally and statistically
efficient learning algorithms for two classes of real valued functions that are spe-
cial cases of NHFs. Our algorithms are efficient in the sense that their runtime
and sample complexity are polynomial in the sizes of the problems. In one case
the size corresponds to the Lipschitz constant, analogous to a margin. In the sec-
ond, discrete case, the size corresponds to the number of variables (interestingly
with no dependence on the size of the tree).
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Our algorithms and analyses are almost certainly not the best possible. It
would be very interesting to improve on the present results. Also, it would be
interesting to generalize the types of NHFs that one can learn. It seems like a
difficult problem to remove the Lipschitz requirement for NHFs over a ball in n
dimensions. It does not seem that one can easily generalize the techniques used
by Blum et al. [1] for removing the margin constraint in learning halfspaces with
random classification noise, which are another special case of NHFs.

Lastly, classification Boosting has received much attention in the machine
learning community, and elegant characterizations are known about what is pos-
sible to learn theoretically via boosting. Real-valued boosting seems, at present,
much more complex. It would be interesting to come up with simpler models and
a deeper understanding of what is provably possible to learn using real-valued
boosting.
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A Additional Proofs

Proof (of Lemma 5). Let p = Pr[X ≥ μ] and q = Pr[X < μ] = 1 − p. Let
a = E[X −μ|X ≥ μ] and b = E[μ−X |X < μ]. Since μ = E[X ], pa = qb. Finally,
let V1 = E[(X − μ)2|X ≥ μ] and V2 = E[(X − μ)2|X < μ] so V = pV1 + qV2. We
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assume V ∈ (0, 1/4] (variance V ≤ 1/4 for any random variable X ∈ [0, 1] and
if V = 0 the lemma follows trivially) which implies that 0 < p, q, a, b, V1, V2 < 1.

Since E[Y 2] ≥ E[Y ]2 for any random variable Y , we have that that V1 ≥ a2

(by letting Y = X − μ conditioned on X ≥ μ). We can upper-bound V2 by
noting,

V2 = E[(μ − X)2|X < μ] ≤ E[μ − X |X < μ] = b.

In the above we have used the fact that x2 ≤ x for any real x ∈ [0, 1].
Now, since V ≤ 1/4, in our notation it suffices to show the stronger inequality

that E[(μ − X)2|X > μ] = pV1 ≥ V 2/(1 + V ) (the case X < μ follows by
symmetry). In order to complete the lemma, it thus suffices to show that,

pV1 ≥ V 2

1 + V
⇔

pV1 ≥ (V − pV1)V = qV2(pV1 + qV2) ⇔

pV1 ≥ (qV2)2

1 − qV2

However, we have already shown that V1 ≥ a2 and V2 ≤ b. This implies that
pV1 ≥ pa2 and (qV2)2 ≤ (qb)2 = (pa)2. We also have 1−qV2 ≥ 1−qb ≥ 1−q = p,
using b ∈ [0, 1] since X ∈ [0, 1]. Hence (qV2)2/(1 − qV2) ≤ (pa)2/p = pa2 ≤ pV1,
which is what we needed for the last displayed equation. 
�

Proof (of Lemma 6). For the first part of the lemma, we have by Hoeffding
bounds that for any single g, Pr[|μ̂g − μg| ≥ ε] ≤ 2e−2mε2. By the union bound,
this happens for any g ∈ G with probability ≤ 2e−2mε2|G|. For the stated value
of ε in the first part of the theorem, this probability is ≤ δ.

The second part follows from the fact that, for any g : X → reals,

|ĉov(g(x), y) − cov(g(x), y)| =

∣
∣
∣
∣
∣

1
m

m∑

i=1

(yi − μ̂f )g(xi) − E[(y − μf )g(x)]

∣
∣
∣
∣
∣
.

The above is at most

≤
∣
∣
∣
∣
∣

1
m

m∑

i=1

(yi − μf )g(xi) − E[(y − μf )g(x)]

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

1
m

m∑

i=1

(μf − μ̂f )g(xi)

∣
∣
∣
∣
∣
.

By Chernoff bounds, for any g : X → {0, 1}, the probability that the term on the
left is ≥ ε/2 is at most 2e−mε2/2. Similarly, Pr[|μf − μ̂f | ≥ ε] ≤ 2e−mε2/2. (Note
that 1

m |
∑

(μf − μ̂f )g(xi)| ≤ |μf − μ̂f |.) The probability any of these events
happen for any g ∈ G or f is ≤ 2e−mε2/2(|G| + 1) ≤ 4e−mε2/2|G|, which is ≤ δ
for the value of ε used in the second part of the lemma. If none of these events
happens, then we have that the left and right terms are at most ε/2 for all g ∈ G
and hence the empirical and true covariance differ by at most ε.
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Abstract. The classical perceptron algorithm is an elementary algo-
rithm for solving a homogeneous linear inequality system Ax > 0, with
many important applications in learning theory (e.g., [11,8]). A natu-
ral condition measure associated with this algorithm is the Euclidean
width τ of the cone of feasible solutions, and the iteration complexity
of the perceptron algorithm is bounded by 1/τ 2. Dunagan and Vempala
[5] have developed a re-scaled version of the perceptron algorithm with
an improved complexity of O(n ln(1/τ )) iterations (with high probabil-
ity), which is theoretically efficient in τ , and in particular is polynomial-
time in the bit-length model. We explore extensions of the concepts
of these perceptron methods to the general homogeneous conic system
Ax ∈ int K where K is a regular convex cone. We provide a conic ex-
tension of the re-scaled perceptron algorithm based on the notion of a
deep-separation oracle of a cone, which essentially computes a certifi-
cate of strong separation. We give a general condition under which the
re-scaled perceptron algorithm is theoretically efficient, i.e., polynomial-
time; this includes the cases when K is the cross-product of half-spaces,
second-order cones, and the positive semi-definite cone.

1 Introduction

We consider the problem of computing a solution of the following conic system
{

Ax ∈ int K
x ∈ X

(1)

where X and Y are n- and m-dimensional Euclidean subspaces, respectively,
A : X → Y is a linear operator and K ⊂ Y is a regular closed convex cone. We
refer to this problem as the “conic inclusion” problem, we call K the inclusion
cone and we call F := {x ∈ X : Ax ∈ K} the feasibility cone. The goal is to
compute an interior element of the feasibility cone F . Important special cases of
this format include feasibility problem instances for linear programming (LP),
second-order cone programming (SOCP) and positive semi-definite programming
(SDP). These problems are often encountered in learning theory, e.g., to learn
threshold functions and in support vector machines, to mention two well-known
examples.
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The ellipsoid method ([10]), the random walk method ([2]), and interior-
point methods (IPMs) ([9], [12]) are examples of methods which solve (1) in
polynomial-time. These methods differ substantially in their representation re-
quirement as well as in their practical performance. For example, a membership
oracle suffices for the ellipsoid method and the random walk method, while a
special barrier function for K is required to implement an IPM. The latter is
by far the most successful algorithm for conic programming in practice: for ex-
ample, applications of SDP range over several fields including optimal control,
eigenvalue optimization, combinatorial optimization and many others, see [18].

For the important special case of linear inequalities, when X = IRn and
K = IRm

+ , an alternative method is the perceptron algorithm [17,13], developed
primarily in learning theory. It is well-known that this simple method terminates
after a finite number of iterations which can be bounded by the square of the
inverse of the width τ of the feasibility cone F . Although attractive due to its
simplicity and its noise-tolerance [4,3], the perceptron algorithm is not consid-
ered theoretically efficient since the width τ can be exponentially small in the
size of the instance in the bit-length model. Dunagan and Vempala ([5]) com-
bined the perceptron algorithm with a sequence of re-scalings constructed from
near-feasible solutions. These re-scalings gradually increase τ on average and the
resulting re-scaled perceptron algorithm has complexity O(n ln(1/τ)) iterations
(with high probability), which is theoretically efficient.

Here we extend the re-scaled perceptron algorithm proposed in [5] to the conic
setting of (1). Although the probabilistic analysis is similar, this is not the case
for the remainder of the analysis. In particular, we observe that the improvement
obtained in [5] arises from a clever use of a deep-separation oracle (see Def. 3),
which is stronger than the usual separation oracle used in the classical perceptron
algorithm. In the case of a system of linear inequalities studied in [5], there is no
difference between the implementation of both oracles. However, this difference
is quite significant for more general cones.

We investigate, in detail, ways to construct a deep-separation oracle for sev-
eral classes of cones, since it is the driving force of the re-scaled perceptron
algorithm. We establish important properties of the deep-separation oracle and
its implementation for several classes. Our main technical result is a general
scheme that yields a polynomial-time deep-separation oracle using only a deep-
separation oracle for the dual cone of K (which is readily available for many
cones of interest such as the cone of positive semi-definite matrices). This im-
plies that the re-scaled perceptron algorithm runs in polynomial time for any
conic program, provided we have a suitable deep separation oracle. This captures
the important cases of linear programs, second-order cone programs and semi-
definite programs1 and thus conveys the benefits of the perceptron algorithm to
these problems.

We start in Section 2 with properties of convex cones, oracles, and the defi-
nition of a deep-separation oracle. Section 3 generalizes the classical perceptron

1 There have been earlier attempts to extend the algorithm of [5], to SDPs in partic-
ular, but unfortunately these have turned out to be erroneous.
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algorithm to the conic setting, and Section 4 extends the re-scaled perceptron
algorithm of [5] to the conic setting. Section 5 contains the probabilistic and
complexity analysis of the re-scaled perceptron algorithm, which reviews some
material from [5] for completeness. Section 6 is devoted to methods for construct-
ing a deep-separation oracle for both specific and general cones. We conclude the
introduction with an informal discussion of the main ideas and technical diffi-
culties encountered in obtaining our results.

The perceptron algorithm is a greedy procedure that updates the current
proposed solution by using any violated inequality. The number of iterations
is finite but can be exponential. The modified perceptron algorithm (proposed
in [3], used in [5]) is a similar updating procedure that only uses inequalities
that are violated by at least some fixed threshold. Although this procedure is
not guaranteed to find a feasible solution, it finds a near-feasible solution with
the guarantee that no constraint is violated by more than the threshold and
the number of steps to convergence is proportional to the inverse square of the
threshold, independent of the conditioning of the initial system. The key idea
in [5] is that such a near-feasible solution can be used to improve the width of
the original system by a multiplicative factor. As we show in this paper, this
analysis extends naturally to the full generality of conic systems.

The main difficulty is in identifying a constraint that is violated by more than
a fixed threshold by the current proposed solution, precisely what we call a deep-
separation oracle. This is not an issue in the linear setting (one simply checks
each constraint). For conic systems, the deep-separation itself is a conic feasibility
problem! It has the form: find w ∈ K∗, the dual of the original inclusion cone,
such that w satisfies a single second-order conic constraint. Our idea is to apply
the re-scaled percepron algorithm to this system which is considerably simpler
than F . For many interesting inclusion cones, including the cone of positive
semi-definite matrices, a suitable oracle is available.

2 Preliminaries

Let X and Y denote Euclidean spaces with finite dimension n and m, respec-
tively. Denote by ‖ · ‖ their Euclidean norms, and 〈·, ·〉 their Euclidean inner
products. For x̄ ∈ X , B(x̄, r) will denote the ball centered at x̄ with radius r,
and analogously for Y . Let A : X → Y denote a linear operator, and A∗ : Y → X
denote the adjoint operator associated with A.

2.1 Convex Cones

Let C be a convex cone. The dual cone of C is defined as

C∗ = {d : 〈x, d〉 ≥ 0, for all x ∈ C} (2)

and extC denote the set of extreme rays of C. A cone is pointed if it contains
no lines. We say that C is a regular cone if C is a pointed closed convex cone
with non-empty interior. It is elementary to show that C is regular if and only



396 A. Belloni, R.M. Freund, and S.S. Vempala

if C∗ is regular. Given a regular convex cone C, we use the following geometric
(condition) measure:

Definition 1. If C is a regular cone in X, the width of C is given by

τC � max
x,r

{
r

‖x‖ : B(x, r) ⊂ C

}

.

Furthermore the center of C is any vector z̄ that attains the above maximum,
normalized so that ‖z̄‖ = 1.

We will be particularly interested in the following three classes of cones: the
non-negative orthant IRm

+ := {x ∈ IRm : x ≥ 0}, the second order cone denoted
by Qn := {x ∈ IRn : ‖(x1, x2, . . . , xn−1)‖ ≤ xn}, and the cone of positive semi-
definite matrices Sp×p

+ := {X ∈ Sp×p : 〈v, Xv〉 ≥ 0 for all v ∈ IRp} where
Sp×p := {X ∈ IRp×p : X = XT }. These three cones are self-dual and their
widths are 1/

√
m, 1/

√
2, and 1/

√
p, respectively.

The following characterization will be used in our analysis.

Lemma 1. Let G = {x : Mx ∈ C} and Let T = {M∗λ : λ ∈ C∗}. Then G∗ =
cl (T ).

Proof. (⊆) Let λ ∈ C∗. Then for every x satisfying Mx ∈ C, 〈x, M∗λ〉 =
〈Mx, λ〉 ≥ 0, since Mx ∈ C and λ ∈ C∗. Thus, cl (T ) ⊆ G∗ since G∗ is closed.

(⊇) Assume that there exists y ∈ G∗\cl (T ). Thus there exists h = 0 satisfying
〈h, y〉 < 0 and 〈h, w〉 ≥ 0 for all w ∈ cl (T ). Notice that 〈h, M∗λ〉 ≥ 0 for all
λ ∈ C∗, which implies that Mh ∈ C and so h ∈ G. On the other hand, since
y ∈ G∗, it follows that 〈h, y〉 ≥ 0, contradicting 〈h, y〉 < 0.

The question of sets of the form T being closed has been recently studied by
Pataki [14]. Necessary and sufficient conditions for T to be a closed set are given
in [14] when C∗ belongs to a class called “nice cones,” a class which includes
polyhedra and self-scaled cones. Nonetheless, the set T may fail to be closed
even in simple cases.

The following property of convex cones is well-known.

Lemma 2. B(z, r) ⊆ C if and only if 〈d, z〉 ≥ r‖d‖ for all d ∈ C∗.

2.2 Oracles

In our algorithms and analysis we will distinguish two different types of oracles.

Definition 2. An interior separation oracle for a convex set S ⊂ IRn is a sub-
routine that given a point x ∈ IRn, identifies if x ∈ int S or returns a vector
d ∈ IRn, ‖d‖ = 1, such that

〈d, x〉 ≤ 〈d, y〉 for all y ∈ S .
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Definition 3. For a fixed positive scalar t, a deep-separation oracle for a cone
C ⊂ IRn is a subroutine that given a non-zero point x ∈ IRn, either

(I) correctly identifies that
〈d, x〉

‖d‖‖x‖ ≥ −t for all d ∈ extC∗ or

(II) returns a vector d ∈ C∗, ‖d‖ = 1 satisfying
〈d, x〉

‖d‖‖x‖ ≤ −t.

Definition 2 is standard in the literature, whereas Definition 3 is new as far
as we know. Our motivation for this definition arises from a relaxation of the
orthogonality characterization of a convex cone. For d, x = 0 let cos(d, x) denote
the cosine of the angle between d and x, i.e., cos(d, x) = 〈d,x〉

‖d‖‖x‖ . Notice that
x ∈ C if and only if cos(d, x) ≥ 0 for all d ∈ C∗ if and only if cos(d, x) ≥ 0 for all
d ∈ extC∗. The latter characterization states that 〈d,x〉

‖d‖‖x‖ ≥ 0 for all d ∈ extC∗.
Condition (I) of the deep-separation oracle relaxes the cosine condition from
0 to −t. The following example illustrates that the perceptron improvement
algorithm described in [5] corresponds to a deep-separation oracle for a linear
inequality system.

Example 1. Let C = {x ∈ IRn : Mx ≥ 0} where M is an m × n matrix none
of whose rows are zero. Notice that C∗ = {M∗λ : λ ≥ 0} is the conic hull
of the rows of M , and the extreme rays of C∗ are a subset of the rows of M .
Therefore a deep-separation oracle for C can be constructed by identifying for
a given x = 0 if there is an index i ∈ {1, . . . , m} for which Mi (the ith-row of
the matrix M) satisfies 〈Mi,x〉

‖Mi‖‖x‖ ≤ −t and returning Mi/‖Mi‖ in such a case.
Notice that we do not need to know which vectors Mi are extreme rays of C∗;
if m is not excessively large it is sufficient to simply check the aforementioned
inequality for every row index i.

3 Perceptron Algorithm for a Conic System

The classical perception algorithm was proposed to solve a homogeneous system
of linear inequalities (1) with K = IRm

+ . It is well-known that the algorithm has
finite termination in at most

⌊
1/τ2

F
⌋

iterations, see Rosenblatt 1962 [17]. This
complexity bound can be exponential in the bit-model.

Our starting point herein is to show that the classical perceptron algorithm
can be easily extended to the case of a conic system of the form (1).

Perceptron Algorithm for a Conic System
(a) Let x be the origin in X . Repeat:
(b) If Ax ∈ int K, Stop. Otherwise, call interior separation oracle for F
at x, returning d ∈ F∗, ‖d‖ = 1, such that 〈d, x〉 ≤ 0, and set x ← x + d.
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This algorithm presupposes the availability of a separation oracle for the fea-
sibility cone F . In the typical case when the inclusion cone K has an interior
separation oracle, this oracle can be used to construct an interior separation
oracle for F : if x /∈ int F , then Ax /∈ int K and there exists λ ∈ K∗ satis-
fying 〈λ, Ax〉 ≤ 0, whereby d = A∗λ/‖A∗λ‖ satisfies 〈d, x〉 ≤ 0, d ∈ F∗, and
‖d‖ = 1.

Exactly as in the case of linear inequalities, we have the following guarantee.
It’s proof is identical, via the potential function π(x) = 〈x, z̄〉 /‖x‖.

Lemma 3. The perceptron algorithm for a conic system will compute a solution
of (1) in at most

⌊
1/τ2

F
⌋

iterations.

4 Re-scaled Conic Perceptron Algorithm

In this section we construct a version of the perceptron algorithm whose com-
plexity depends only logarithmically on 1/τF . To accomplish this we will sys-
tematically re-scale the system (1) using a linear transformation related to a
suitably constructed random vector that approximates the center z̄ of F . The
linear transformation we use was first proposed in [5] for the case of linear in-
equality systems (i.e., K = IRm

+ ). Here we extend these ideas to the conic setting.
Table 1 contains a description of our algorithm, which is a structural extension
of the algorithm in [5].

Note that the perceptron improvement phase requires a deep-separation or-
acle for F instead of the interior separation oracle for F as required by the
perceptron algorithm. For the remainder of this section we presuppose that a
deep-separation for F is indeed available. In Section 6 we will show that for most
standard cones K a deep-separation oracle for F can be efficiently constructed.

We begin the analysis with the following lemma that quantifies the impact of
the re-scaling (Step 6) on the width of the feasibility cone F .

Lemma 4. Let z̄ denote the center of the feasibility cone F , normalized so that
‖z̄‖ = 1. Let A, Â denote the linear operators and τF , τF̂ denote the widths of
the feasibility cones F , F̂ of two consecutive iterations of the re-scaled perception
algorithm. Then

τF̂ ≥ (1 − σ)√
1 + 3σ2‖ẑ‖

τF

where ẑ = z̄ + 1
2

(
τF −

〈
x

‖x‖ , z̄
〉)

x
‖x‖ , and x is the output of the perceptron

improvement phase.

Proof. At the end of the perception improvement phase, we have a vector x
satisfying

〈d, x〉
‖d‖‖x‖ ≥ −σ for all d ∈ extF∗.
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Table 1. One iteration of the re-scaled perceptron algorithm is one pass of Steps 2-6

Re-scaled Perceptron Algorithm for a Conic System

Step 1 Initialization. Set B = I and σ = 1/(32n).

Step 2 Perceptron Algorithm for a Conic System.
(a) Let x be the origin in X. Repeat at most

⌊
(1/σ2)

⌋
times:

(b) If Ax ∈ int K, Stop. Otherwise, call interior separation oracle for F at x,
returning d ∈ F∗, ‖d‖ = 1, such that 〈d, x〉 ≤ 0, and set x ← x + d.

Step 3 Stopping Criteria. If Ax ∈ int K then output Bx and Stop.

Step 4 Perceptron Improvement Phase.
(a) Let x be a random unit vector in X. Repeat at most

⌊
(1/σ2) ln(n)

⌋
times:

(b) Call deep-separation oracle for F at x with t = σ.
If 〈d, x〉 ≥ −σ‖d‖‖x‖ for all d ∈ extF∗ (condition I), End Step 4.
Otherwise, oracle returns d ∈ F∗, ‖d‖ = 1, such that 〈d, x〉 ≤ −σ‖d‖‖x‖

(condition II), and set x ← x − 〈d, x〉 d.
If x = 0 restart at (a).

(c) Call deep-separation oracle for F at x with t = σ.
If oracle returns condition (II), restart at (a).

Step 5 Stopping Criteria. If Ax ∈ int K then output Bx and Stop.

Step 6 Re-scaling. A ← A ◦
(

I +
xxT

〈x, x〉

)

, B ← B ◦
(

I +
xxT

〈x, x〉

)

,

and Goto Step 2.

Let x̄ = x/‖x‖. Then 〈d, x̄〉 ≥ −σ‖d‖ for all d ∈ extF∗. From Lemma 2, it
holds that

〈d, z̄〉
‖d‖‖z̄‖ =

〈d, z̄〉
‖d‖ ≥ τF for all d ∈ F∗,

i.e. 〈d, z̄〉 ≥ τF‖d‖ for all d ∈ F∗.
From Lemma 1 it therefore holds that

〈λ, Az̄〉 = 〈A∗λ, z̄〉 ≥ τF‖A∗λ‖ for all λ ∈ K∗.

Note that ẑ = z̄ + 1
2 (τF −〈x̄, z̄〉)x̄, and let τ̂ := (1−σ)√

1+3σ2 τF . We want to show that

〈v, ẑ〉 ≥ τ̂‖v‖ for all v ∈ extF∗. (3)

If (3) is true, then by convexity of the function f(v) = τ̂‖v‖ − 〈v, ẑ〉 it will also
be true that 〈v, ẑ〉 ≥ τ̂‖v‖ for any v ∈ F∗. Then from Lemma 2 it would follow
that B(ẑ, τ̂ ) ⊂ F , whereby τF̂ ≥ τ̂

‖ẑ‖ as desired.
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Let v be an extreme ray of F∗. Using Lemma 1, there exist a sequence {λi}i≥1,
λi ∈ K∗, A∗λi → v as i → ∞. Since (3) is trivially true for v = 0, we can assume
that v = 0 and hence A∗λi = 0 for i large enough. Next note that

‖Â∗λi‖2 = ‖A∗λi‖2 + 2
〈
A∗λi, x̄

〉2 + 〈x̄, x̄〉
〈
A∗λi, x̄

〉2

= ‖A∗λi‖2

(

1 + 3
(

〈A∗λi,x̄〉
‖A∗λi‖

)2
)

and
〈
Â∗λi, ẑ

〉
=

〈
A∗λi, ẑ

〉
+ 〈x̄, ẑ〉

〈
A∗λi, x̄

〉

=
〈
A∗λi, z̄

〉
+ (τF − 〈x̄, z̄〉)

〈
A∗λi, x̄

〉
+ 〈x̄, z̄〉

〈
A∗λi, x̄

〉

≥ τF‖A∗λi‖ + τF
〈
A∗λi, x̄

〉

= τF

(

1 +

〈
A∗λi, x̄

〉

‖A∗λi‖

)

‖A∗λi‖.

(4)

Therefore

〈
Â∗λi, ẑ

〉

‖Â∗λi‖
≥ τF

1 + ti√
1 + 3t2i

where ti = 〈A∗λi,x̄〉
‖A∗λi‖ . Note that ti ≤ 1 and

〈v, x̄〉 ≥ −σ‖v‖ since v ∈ extF∗, and so
〈v, x̄〉
‖v‖ ≥ −σ. By continuity, for any

ε > 0 it holds that ti ≥ −σ − ε for i sufficiently large. Thus, ti ∈ [−σ − ε, 1] for
i large enough.

For t ∈ [0, 1], we have 1+t√
1+3t2

≥ 1+t√
1+2t+t2

= 1, and for t ∈ [−σ − ε, 0],

the function g(t) = 1+t√
1+3t2

≥ 1−σ−ε√
1+3(σ+ε)2

since dg(t)
dt = 1−3t

(1+3t2)3/2 ≥ 0 for t ∈
[−σ − ε, 0], that is, g(t) is increasing on [−σ − ε, 0]. Therefore, for i large enough
we have 〈

Âλi, ẑ
〉

‖Â∗λi‖
≥ τF

(1 − σ − ε)
√

1 + 3(σ + ε)2
.

Passing to the limit as λi → v obtain

〈v, ẑ〉
‖v‖ ≥ τF

(1 − σ − ε)
√

1 + 3(σ + ε)2
whereby

〈v, ẑ〉
‖v‖ ≥ τF

(1 − σ)√
1 + 3σ2

= τ̂ .

5 Probabilistic Analysis

As mentioned before, the probabilistic analysis of our conic framework is similar
to the analysis with linear inequalities in [5]. We state the main lemmas of the
analysis without proof. Our exposition intentionally separates the probabilistic
analysis from the remaining sections.

The first lemma of this section was established in [3] for the case of linear
inequalities, and here is generalized to the conic framework. Roughly speaking,
it shows that the perceptron improvement phase generates near-feasible solutions
if started at a good initial point, which happens with at least a fixed probability
p = 1/8.
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Lemma 5. Let z be a feasible solution of (1) of unit norm. With probability at
least 1

8 , the perception improvement phase returns a vector x satisfying:

(i) 〈d, x〉 ≥ −σ‖x‖ for every d ∈ extF∗, ‖d‖ = 1, and
(ii) 〈z, x/‖x‖〉 ≥ 1√

n
.

Lemma 5 establishes that points obtained after the perceptron improvement
phase are near-feasible for the current conic system. The next lemma clarifies
the implications of using these near-feasible points to re-scale the conic system.

Lemma 6. Suppose that n ≥ 2, τF , σ ≤ 1/32n and A is the linear operator of
the current iteration. Let Â be the linear operator obtained after one iteration
of the perceptron improvement phase. Let τF̂ denote the width of the cone of
feasible solutions F̂ of the updated conic system associated with Â. Then

(i) τF̂ ≥
(

1 − 1
32n

− 1
512n2

)

τF ;

(ii) With probability at least 1
8 , τF̂ ≥

(

1 +
1

3.02n

)

τF .

Finally, the following theorem bounds the number of overall iterations and the
number of oracle calls made by the algorithm.

Theorem 1. Suppose that n ≥ 2. If (1) has a solution, the re-scaled perceptron
algorithm will compute a solution in at most

T = max
{

4096 ln
(

1
δ

)

, 139n ln
(

1
32nτF

)}

= O

(

n ln
(

1
τF

)

+ ln
(

1
δ

))

iterations, with probability at least 1− δ. Moreover, the algorithm makes at most
O(T n2 ln(n)) calls of a deep-separation oracle for F and at most O(T n2) calls
of a separation oracle for F with probability at least 1 − δ.

It will useful to amend Definition 3 of the deep-separation oracle as follows:

Definition 4. For a fixed positive scalar σ, a half-deep-separation oracle for a
cone C ⊂ IRn is a subroutine that given a non-zero point x ∈ IRn, either

(I) correctly identifies that
〈d, x〉

‖d‖‖x‖ ≥ −σ for all d ∈ extC∗ or

(II) returns a vector d ∈ C∗, ‖d‖ = 1 satisfying
〈d, x〉

‖d‖‖x‖ ≤ −σ/2.

Remark 1. Definition 4 only differs from Definition 3 in the inequality in condi-
tion (II), where now σ/2 is used instead of σ. This minor change only affects the
iteration bound in Step 4 of the re-scaled perceptron algorithm, which needs to
be changed to

⌊
(4/σ2) ln(n)

⌋
; all other analysis in this Section remains valid.
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6 Deep-Separation Oracles

The re-scaled perceptron algorithm needs a deep-separation oracle for the feasi-
bility cone F . Herein we show that such a deep-separation oracle is fairly easy
to construct when (1) has the format:

⎧
⎨

⎩

ALx ∈ int IRm
+

Aix ∈ int Qni i = 1, . . . , q

xs ∈ int Sp×p
+ ,

(5)

where x is composed as the cartesian product x = (xs, xp). Note that (5) is an
instance of (1) for K = IRm

+ ×Qn1×· · ·×Qnq ×Sp×p
+ and the only special structure

on A is that the semi-definite inclusion is of the simple format “Ixs ∈ Sp×p
+ .” In

Section 6.4 we show how to construct a deep-separation oracle for more general
problems that also include the semi-definite inclusion “Asx ∈ Sp×p

+ ,” but this
construction takes more work.

The starting point of our analysis is a simple observation about intersections
of feasibility cones. Suppose we have available deep-separation oracles for each
of the feasibility cones F1 and F2 of instances:

{
A1x ∈ int K1

x ∈ X
and

{
A2x ∈ int K2

x ∈ X
(6)

and consider the problem of finding a point that simultaneously satisfies both
conic inclusions:

⎧
⎨

⎩

A1x ∈ int K1

A2x ∈ int K2

x ∈ X .
(7)

Let F = {x : A1x ∈ K1, A2x ∈ K2} = {x : Ax ∈ K} where K = K1 × K2 and
A is defined analogously. Then F = F1 ∩ F2 where Fi = {x : Aix ∈ Ki} for
i = 1, 2. It follows from the calculus of convex cones that F∗ = F∗

1 + F∗
2 , and

therefore
extF∗ ⊂ (extF∗

1 ∪ extF∗
2 ) . (8)

This observation leads to an easy construction of a deep-separation oracle for
F1 ∩ F2 if one has available deep-separation oracles for F1 and F2:

Deep-separation Oracle for F1 ∩ F2

Given: scalar t > 0 and x = 0, call deep-separation oracles for F1 and F2 at x.
If both oracles report Condition I, return Condition I.
Otherwise at least one oracle reports Condition II and provides
d ∈ F∗

i ⊂ F∗, ‖d‖ = 1, such that 〈d, x〉 ≤ −t‖d‖‖x‖; return d and Stop.

Remark 2. If deep-separation oracles for Fi are available and their efficiency is
O(Ti) operations for i = 1, 2, then the deep-separation oracle for F1 ∩ F2 given
above is valid and its efficiency is O(T1 + T2) operations.
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Utilizing Remark 2, in order to construct a deep-separation oracle for the feasi-
bility cone of (5) it will suffice to construct deep-separation oracles for each of
the conic inclusions therein, which is what we now examine.

6.1 Deep-Separation Oracle for F When K = IRm
+

We consider F = {x : Ax ∈ IRm
+}. Example 1 has already described a deep-

separation oracle for F when the inclusion cone is IRm
+ . It is easy to see that this

oracle can be implemented in O(mn) operations.

6.2 Deep-Separation Oracle for F When K = Qk

In this section we develop the deep-separation oracle for the second-order cone
case which allows this method to be used to solve support vector machines
problems. For convenience we amend our notation so that F = {x : ‖Mx‖ ≤
gT x} for a given real (k − 1) × n matrix M and a real n-vector g, so that

F = {x : Ax ∈ Qk} where the linear operator A is specified by Ax :=
[

Mx
gT x

]

.

We will construct an efficient half-deep-separation oracle (Definition 4) by
considering the following optimization problem:

t∗ := mind dT x

s.t. ‖d‖ = 1
d ∈ F∗ .

(9)

If x ∈ F , then t∗ ≥ 0 and clearly condition I of Definition 4 is satisfied. If x /∈ F ,
then t∗ < 0 and we can replace the equality constraint in (9) with an inequality
constraint. We obtain the following primal/dual pair of convex problems with
common optimal objective function value t∗:

t∗ := mind xT d = maxy −‖y − x‖

s.t. ‖d‖ ≤ 1 s.t. y ∈ F
d ∈ F∗

(10)

Now consider the following half-deep-separation oracle for F when K = Qk.

Half-Deep-Separation Oracle for F
when K = Qk, for x = 0 and relaxation parameter σ > 0
If ‖Mx‖ ≤ gT x, return Condition I, and Stop.
Solve (10) for feasible primal and dual solutions d̄, ȳ with duality gap ḡ
satisfying ḡ/‖x‖ ≤ σ/2

If xT d̄/‖x‖ ≥ −σ/2, report Condition (I), and Stop.
If xT d̄/‖x‖ ≤ −σ/2, then return d = d̄, report Condition (II), and Stop.

To see the validity of this method, note that if ‖Mx‖ ≤ gT x, then x ∈ F and
clearly Condition (I) of Definition 4 is satisfied. Next, suppose that xT d̄/‖x‖ ≥
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−σ/2, then t∗ ≥ −‖ȳ − x‖ = xT d̄ − ḡ ≥ −‖x‖σ/2−‖x‖σ/2 = −‖x‖σ. Therefore
xT d

‖x‖‖d‖ ≥ −σ for all d ∈ F∗, and it follows that Condition (I) of Definition 4 is

satisfied. Finally, if xT d̄/‖x‖ ≤ −σ/2, then d̄T x
‖d̄‖‖x‖ ≤ −σ/2 and d̄ ∈ F∗, whereby

Condition (II) of Definition 4 is satisfied using d̄.
The computational efficiency of this deep-separation oracle depends on the

ability to efficiently solve (10) for feasible primal/dual solutions with duality
gap ḡ ≤ σ‖x‖/2. For the case when K = Qk, it is shown in [1] that (10)
can be solved very efficiently to this desired duality gap, namely in O(n3 +
n ln ln(1/σ) + n ln ln(1/ min{τF , τF∗})) operations in practice, using a combina-
tion of Newton’s method and binary search. Using σ = 1/(32n) this is O(n3 +
n ln ln(1/ min{τF , τF∗})) operations for the relaxation parameter σ needed by
the re-scaled perceptron algorithm.

6.3 Deep-Separation Oracle for Sp×p
+

Let C = Sp×p
+ , and for convenience we alter our notation herein so that X ∈ Sp×p

is a point under consideration. A deep-separation oracle for C at X = 0 for the
scalar t > 0 is constructed by simply checking the condition “X + t‖X‖I � 0.” If
X + t‖X‖I � 0, then condition I of the deep-separation oracle is satisfied. This
is true because the extreme rays of C are the collection of rank-1 matrices vvT ,
and 〈

vvT , X
〉

‖X‖‖vvT‖ =
vT Xv

‖X‖‖vvT ‖ ≥ −t‖X‖vTv

‖X‖‖vvT‖ = −t

for any v = 0. On the other hand, if X + t‖X‖I � 0, then compute any nonzero
v satisfying vT Xv + t‖X‖vT v ≤ 0, and return D = vvT /vT v, which will satisfy

〈D, X〉
‖X‖‖D‖ =

vT Xv

‖X‖vT v
≤ −t ,

thus satisfying condition II. Notice that the work per oracle call is simply to check
the eigenvalue condition X � −t‖X‖I and possibly to compute an appropriate
vector v, which is typically O(p3) operations in practice.

6.4 Deep-Separation Oracle for F When K = Sp×p
+

We know from the results in Section 6.3 and the self-duality of Sp×p
+ ((Sp×p

+ )∗ =
Sp×p

+ ) that K∗ has an efficiently computable maximum violation separation or-
acle when K = Sp×p

+ . Furthermore, we have τK = τK∗ = 1/
√

p.
The complexity analysis that we develop in this subsection uses the data-

perturbation condition measure model of Renegar [15], which we now briefly
review. Considering (1) as a system with fixed cone K and fixed spaces X and
Y , let M denote those operators A : X → Y for which (1) has a solution. For
A ∈ M, let ρ(A) denote the “distance to infeasibility” for (1), namely:

ρ(A) := min
ΔA

{‖ΔA‖ : A + ΔA /∈ M} .
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Then ρ(A) denotes the smallest perturbation of our given operator A which
would render the system (1) infeasible. Next let C(A) denote the condition mea-
sure of (1), namely C(A) = ‖A‖/ρ(A), which is a scale-invariant reciprocal of
the distance to infeasibility. ln(C(A)) is tied to the complexity of interior-point
methods and the ellipsoid method for computing a solution of (1), see [16] and
[6].

Given the inclusion cone K = Sp×p
+ , the feasibility cone for (1) is F = {x :

Ax ∈ K}. Given the relaxation parameter t > 0 and a non-zero vector x ∈ IRn,
consider the following conic feasibility system in the variable d:

(St,x) :

⎧
⎨

⎩

〈x,d〉
‖x‖‖d‖ < −t

d ∈ F∗
(11)

It follows from Definition 3 that if d is feasible for (St,x), then Condition II of
Definition 3 is satisfied; however, if (St,x) has no solution, then Condition I is
satisfied. Utilizing Lemma 1 and rearranging terms yields the equivalent system
in variables w:

(St,x) :

⎧
⎨

⎩

t‖x‖‖A∗w‖ + 〈w, Ax〉 < 0

w ∈ intK∗
(12)

Note that if w̃ solves (12), then d̃ = A∗w̃ solves (11) from Lemma 1. This leads
to the following approach to constructing a deep-separation oracle for F :

given x = 0 and t := σ, compute a solution w̃ of (12) or certify that no
solution exists. If (12) has no solution, report Condition I and Stop; oth-
erwise (12) has a solution w̃, return d := A∗w̃/‖A∗w̃‖, report Condition
II, and Stop.

In order to implement this deep-separation oracle we need to be able to compute
a solution w̃ of (12) if such a solution exists, or be able to provide a certificate
of infeasibility of (12) if no solution exists. Now notice that (12) is a homoge-
neous conic feasibility problem of the form (5), as it is comprised of a single
second-order cone inclusion constraint ( Mw := (t‖x‖A∗w, 〈w, −Ax〉) ∈ Qn+1 )
plus a constraint that the variable w must lie in K∗. This suggests that we at-
tempt to solve (12) itself using the re-scaled perceptron algorithm. Using this
strategy, let w̄1, w̄2, . . . , w̄k+1 denote the sequence of normalized (‖wi‖ = 1) out-
put vectors w at the end of Step 4 of Table 1, yielding the re-scaling matrices
B0 = I, B1, B2, . . . , Bk, where Bi = (I + w1w

′
1) ◦ (I + w2w

′
2) ◦ · · · ◦ (I + wiw

′
i).

After the kth update the current system is:

(St,x) :

⎧
⎨

⎩

MBkw ∈ Qn+1

Bkw ∈ intK∗
(13)

In the case when (12) (and hence (13)) has a solution, we develop a slight
modification of the re-scaled perceptron algorithm for solving (13) in Section
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6.5. However, in the case when (12) does not have a solution, it will be necessary
to develop a means to certify this infeasibility. To do so, we first analyze its
feasibility cone, denoted as F̃(t,x) := {w : t‖x‖‖A∗w‖ + 〈w, Ax〉 ≤ 0, w ∈ K∗}.
We have:

Proposition 1. For a given σ ∈ (0, 1/2) and x = 0, suppose that S(σ,x) has a
solution and let t ∈ (0, σ). Then

τF̃(t,x)
≥ τK∗(σ − t)

3C(A)
.

Now consider the following half-deep-separation oracle for F (recall Definition 4)
which takes as input an estimate L of C(A):

Probabilistic Half-deep-separation Oracle for F , for x = 0,
relaxation parameter σ, failure probability δ, and estimate L
Set t := σ/2, and run the re-scaled perceptron algorithm to compute a solu-
tion w̃ of (12) for at most T̂ := max

{
4096 ln

(
1
δ

)
, 139n ln

(
6L

τK∗

)}
iterations.

If a solution w̃ of (12) is computed, return d := A∗w̃/‖A∗w̃‖,
report Condition II, and Stop.

If no solution is computed within T̂ iterations, report
“either Condition I is satisfied, or L < C(A),” and Stop.

The following states the correctness of the above oracle:

Theorem 2. Using the iteration count T̂ above, with probability at least 1 − δ
the output of the probabilistic oracle is correct.

We note that the above-outlined method for constructing a deep-separation or-
acle is inelegant in many respects. Nevertheless, it is theoretically efficient, i.e.,
it is polynomial-time in n, ln(1/τK∗), ln(L), and ln(1/δ). It is an interesting and
open question whether, in the case of K = Sp×p

+ , a more straightforward and
more efficient deep-separation oracle for F can be constructed.

Finally, it follows from Theorem 7 of [7] that the width of F can be lower-
bounded by Renegar’s condition measure:

τF ≥ τK

C(A)
. (14)

This can be used in combination with binary search (for bounding C(A))
and the half-deep-separation oracle above to produce a complexity bound for
computing a solution of (1) in time polynomial in n, ln(C(A)), ln(1/δ), ln(1/τK),
and ln(1/τK∗).

6.5 Solving (13) Via a Modified Re-scaled Perceptron Algorithm

Herein we show how the re-scaled perceptron algorithm can be slightly modi-
fied to efficiently solve (13) when a solution exists. To motivate our approach,
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let w̄1, w̄2, . . . , w̄k+1 denote the sequence of normalized (‖wi‖ = 1) output vec-
tors w at the end of Step 4 of Table 1, yielding the re-scaling matrices B0 =
I, B1, B2, . . . , Bk, where Bi = (I+w1w

′
1)◦(I+w2w

′
2)◦· · ·◦(I+wiw

′
i), i = 1, . . . , k.

Here wk+1 is the output based on the re-scaling matrix Bk. From the perceptron
improvement phase, we have no guarantee that Bkwk+1 ∈ K∗. However, if such
is the case, we have the following result which will be useful algorithmically:

Lemma 7. Suppose that K is self-dual, and that Biwi+1 ∈ K∗ and ‖wi‖ = 1
for i = 0, . . . , k. Then BiB

∗
i d ∈ K∗ for all d ∈ K and i = 0, . . . , k + 1.

Proof. We proceed by induction on i. Since B0 = B∗
0 = I the statement trivially

holds for i = 0 due to the self-duality of K. Next assume it holds for an arbitrary
i ≤ k. Therefore we have

Bi+1B
∗
i+1d = Bi(I + wi+1w

′
i+1)(I + wi+1w

′
i+1)B

∗
i d

= BiB
∗
i d + 3Biwi+1w

′
i+1B

∗
i d ∈ K∗

by the induction assumption and the hypothesis that Biwi+1 ∈ K∗.

In order to take advantage of Lemma 7, we now show how to modify the
perceptron improvement methodology of Step 4 of Table 1 to guarantee that
Biwi+1 ∈ K∗ for all i. With probability at least 1/8 the starting vector w of
Step 4 satisfies

〈
zk, w

〉
/‖w‖ ≥ 1/8 > 0, where zk is the center of the feasibility

cone of (13). Now suppose that w is an iterate of the Step 4. If Bkw /∈ K∗, and
specifying to the case when K = K∗ = Sp×p

+ , we let d = vv′ ∈ K where v is an
eigenvector of a negative eigenvalue of Bkw, and replace

w+ ← w + θB∗
kd (15)

for θ := − 〈d, Bkw〉 /‖B∗
kd‖2. It then follows that

〈
w+, zk

〉
=

〈
w, zk

〉
+ θ

〈
B∗

kd, zk
〉

≥
〈
w, zk

〉

since
〈
d, Bkzk

〉
≥ 0. Furthermore, from the particular choice of θ we have

‖w+‖2 = ‖w‖2 + 2θ 〈w, B∗
kd〉 + θ2‖B∗

kd‖2 ≤ ‖w‖2 ,

and hence the potential function
〈
zk, w

〉
/‖w‖ is non-decreasing if we replace w

by w+. If all previous iterates satisfied Biwi+1 ∈ K∗ we have from Lemma 7 that

Bkw+ − Bkw = BkB∗
kd ∈ K∗

and furthermore from the choice of θ we have
v′(Bkw+)v = v′(Bkw + θBkB∗

kd)v = 〈Bkw + θBkB∗
kd, vv′〉

= 〈Bkw + θBkB∗
kd, d〉 = 0 .

Therefore Bkw+ � Bkw and Bkw+ has at least one fewer negative eigenvalue
than Bkw. Therefore after repeating the replacement at most p times we ensure
that the final replacement iterate satisfies Bkw+ ∈ K∗. Inductively this shows
that the process yields replacement iterates that satisfy Bkw+ ∈ K∗ whose po-
tential function value for the perceptron improvement methodology is improved.
Therefore the iteration bound on the perceptron improvement methodology is
left unchanged.
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Abstract. We prove that the concept class of disjunctions cannot be pointwise
approximated by linear combinations of any small set of arbitrary real-valued
functions. That is, suppose there exist functions φ1, . . . ,φr : {−1,1}n → R with
the property that every disjunction f on n variables has ‖ f − ∑r

i=1 αiφi‖∞ � 1/3
for some reals α1, . . . ,αr. We prove that then r � 2Ω(

√
n). This lower bound is

tight. We prove an incomparable lower bound for the concept class of linear-size
DNF formulas. For the concept class of majority functions, we obtain a lower
bound of Ω(2n/n), which almost meets the trivial upper bound of 2n for any
concept class.

These lower bounds substantially strengthen and generalize the polynomial
approximation lower bounds of Paturi and show that the regression-based ag-
nostic learning algorithm of Kalai et al. is optimal. Our techniques involve a
careful application of results in communication complexity due to Razborov and
Buhrman et al.

1 Introduction

Approximating Boolean functions by linear combinations of small sets of features is a
fundamental area of study in machine learning. Well-known algorithms such as linear
regression, support vector machines, and boosting attempt to learn concepts as linear
functions or thresholds over a fixed set of real-valued features.

In particular, much work in learning theory has centered around approximating var-
ious concept classes, with respect to a variety of distributions and metrics, by low-
degree polynomials [21, 26, 18, 17, 28, 3, 10, 19]. In this case, the features mentioned
above are simply monomials. For example, Linial et al. [21] gave a celebrated uniform-
distribution algorithm for learning constant-depth circuits by proving that any such
circuit can be approximated by a low-degree Fourier polynomial, with respect to the
uniform distribution and �2 norm.

A more recent application of this polynomial technique is due to Kalai et al. [11],
who considered the well-studied problem of agnostically learning disjunctions [27, 6,
14, 34]. Kalai et al. recalled a result of Paturi [29] that a disjunction on n variables
can be approximated pointwise by a degree-Õ(

√
n) polynomial. They then used linear

regression to obtain the first subexponential (2Õ(
√

n)-time) algorithm for agnostically
learning disjunctions with respect to any distribution [11, Thm. 2]. More generally,
Kalai et al. used �∞-norm approximation to formulate the first, and so far only, approach

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 409–423, 2007.
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to distribution-free agnostic learning. One goal of this paper is to show the fundamental
limits of this approximation-based paradigm.

1.1 Key Definitions

Before stating our results formally, we briefly describe our notation. A Boolean function
is a mapping f : {−1,1}n → {−1,1}, where −1 corresponds to “true.” A feature is any
function φ : {−1,1}n → R. We say that φ approximates f pointwise within ε, denoted

‖ f − φ‖∞ � ε,

if | f (x) − φ(x)| � ε for all x. We say that a linear combination of features φ1, . . . ,φr

approximates f pointwise within ε if ‖ f − ∑r
i=1 αiφi‖∞ � ε for some reals α1, . . . ,αr .

1.2 Our Results

Let C be a concept class. Suppose that φ1, . . . ,φr are features whose linear combinations
can pointwise approximate every function in C . We first observe that the algorithm of
Kalai et al.—assuming that φ1, . . . ,φr can be evaluated efficiently—learns C agnosti-
cally under any distribution in time poly(n,r). As far as we are aware, this is the only
known method for developing provably efficient, distribution-free agnostic learning al-
gorithms. To determine the limits of this paradigm, our paper focuses on lower bounds
on r for an arbitrary choice of features.

We start with the concept class of disjunctions.

Theorem 1 (Disjunctions). Let C = {∨
i∈S xi : S ⊆ [n]} be the concept class of disjunc-

tions. Let φ1, . . . ,φr : {−1,1}n → R be arbitrary functions whose linear combinations
can pointwise approximate every f ∈ C within ε = 1/3. Then r � 2Ω(

√
n).

Theorem 1 obviously also holds for the concept class of conjunctions.
Theorem 1 shows the optimality of using monomials as features for approximating

disjunctions. In particular, it rules out the possibility of using the algorithm of Kalai
et al. with other, cleverly constructed features to obtain an improved agnostic learning
result for disjunctions.

We obtain an incomparable result against linear-size DNF formulas.

Theorem 2 (DNF formulas). Let C be the concept class of DNF formulas of linear
size. Let φ1, . . . ,φr : {−1,1}n → R be arbitrary functions whose linear combinations

can pointwise approximate every f ∈ C within ε = 1 − 2−cn1/3
, where c > 0 is a suffi-

ciently small absolute constant. Then r � 2Ω(n1/3).

Theorems 1 and 2 both give exponential lower bounds on r. Comparing the two, we
see that Theorem 1 gives a better bound on r against a simpler concept class. On the
other hand, Theorem 2 remains valid for a particularly weak success criterion: when the
approximation quality is exponentially close to trivial (ε = 1).

The last concept class we study is that of majority functions. Here we prove our best
lower bound, r = Ω(2n/n), that essentially meets the trivial upper bound of 2n for any
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concept class. Put differently, we show that the concept class of majorities is essentially
as hard to approximate as any concept class at all. In particular, this shows that the Kalai
et al. paradigm cannot yield any nontrivial (2o(n)-time) distribution-free algorithm for
agnostically learning majority functions.

Theorem 3 (Majority functions). Let C = {MAJ(±x1, . . . ,±xn)} be the concept class
of majority functions. Let φ1, . . . ,φr : {−1,1}n → R be arbitrary functions whose linear
combinations can pointwise approximate every f ∈ C within ε = c/

√
n, where c is a

sufficiently small absolute constant. Then r � Ω(2n/n). For approximation to within
ε = 1/3, we obtain r � 2Ω(n/ logn).

We also relate our inapproximability results to the fundamental notions of dimension
complexity and SQ dimension (Sections 5–7). Among other things, we show that the
types of approximation lower bounds we study are prerequisites for lower bounds on
dimension complexity and the SQ dimension. It is a hard open problem [32] to prove ex-
ponential lower bounds on the dimension complexity and SQ dimension of polynomial-
size DNF formulas, or even AC0 circuits.

Optimality of polynomial-based approximation. The preceding discussion has empha-
sized the implications of Theorems 1–3 in learning theory. Our results also have in-
teresting consequences in approximation theory. Paturi [29] constructs polynomials of
degree Θ̃(

√
n) and Θ(n) that pointwise approximate disjunctions and majority func-

tions, respectively. He also shows that these degree results are optimal for polynomials.
This, of course, does not exclude polynomials that are sparse, i.e., contain few mono-
mials. Our lower bounds strengthen Paturi’s result by showing that the approximating
polynomials cannot be sparse. In addition, our analysis remains valid when monomials
are replaced by arbitrary features. As anticipated, our techniques differ significantly
from Paturi’s.

1.3 Our Techniques

To prove our approximation lower bounds, we need to use various techniques from ma-
trix analysis, communication complexity, and Fourier analysis. We obtain our main the-
orems in two steps. First, we show how to place a lower bound on the quantity of interest
(the size of feature sets that pointwise approximate a concept class C ) using the discrep-
ancy and the ε-approximate trace norm of the characteristic matrix of C . The latter two
quantities have been extensively studied. In particular, the discrepancy estimate that we
need is a recent result of Buhrman et al. [5]. For estimates of the ε-approximate trace
norm, we turn to the pioneering work of Razborov [30] on quantum communication
complexity, as well as a recent construction of Linial and Shraibman [24].

2 Preliminaries

The notation [n] stands for the set {1,2, . . . ,n}, and
([n]

k

)
stands for the family of all

k-element subsets of [n] = {1,2, . . . ,n}. The symbol R
n×m refers to the family of all

m × n matrices with real entries. The (i, j)th entry of a matrix A is denoted by Ai j or
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A(i, j). We frequently use “generic-entry” notation to specify a matrix succinctly: we
write A = [F(i, j)]i, j to mean that that the (i, j)th entry of A is given by the expression
F(i, j).

A concept class C is any set of Boolean functions f : {−1,1}n → {−1,1}. The
characteristic matrix of C is the matrix M = [ f (x)] f∈C , x∈{−1,1}n . In words, the rows
of M are indexed by functions f ∈ C , the columns are indexed by inputs x ∈ {−1,1}n,
and the entries are given by Mf ,x = f (x).

2.1 Agnostic Learning

The agnostic learning model was defined by Kearns et al. [15]. It gives the learner access
to arbitrary example-label pairs with the requirement that the learner output a hypothesis
competitive with the best hypothesis from some fixed concept class. Specifically, let D
be a distribution on {−1,1}n ×{−1,1} and let C be a concept class. For a Boolean
function f , define its error as err( f ) = Pr(x,y)∼D[ f (x) �= y]. Define the optimal error of
C as opt = min f∈C err( f ).

A concept class C is agnostically learnable if there exists an algorithm which takes
as input δ ,ε , and access to an example oracle EX(D), and outputs with probability at
least 1 − δ a hypothesis h : {−1,1}n → {−1,1} such that err(h) � opt+ε. We say C
is agnostically learnable in time t if its running time (including calls to the example
oracle) is bounded by t(ε,δ ,n).

The following proposition relates pointwise approximation by linear combinations
of features to efficient agnostic learning.

Proposition 1. Fix ε > 0 and a concept class C . Assume there are functions φ1, . . . ,φr :
{−1,1}n → R whose linear combinations can pointwise approximate every f ∈ C .
Assume further that each φi(x) is computable in polynomial time. Then C is agnostically
learnable to accuracy ε in time poly(r,n).

We defer a proof of Proposition 1 to the full version. The needed simulation is a straight-
forward generalization of the �1 polynomial regression algorithm from Kalai et al. [11].

2.2 Fourier Transform

Consider the vector space of functions {−1,1}n → R, equipped with the inner product
〈 f ,g〉 = 2−n ∑x∈{−1,1}n f (x)g(x). The parity functions χS(x) = ∏i∈S xi, where S ⊆ [n],
form an orthonormal basis for this inner product space. As a result, every Boolean
function f can be uniquely written as

f = ∑
S⊆[n]

f̂ (S)χS,

where f̂ (S) = 〈 f ,χS〉. The f -specific reals f̂ (S) are called the Fourier coefficients of f .
We denote

‖ f̂‖1 = ∑
S⊆[n]

| f̂ (S)|.
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2.3 Matrix Analysis

We draw freely on basic notions from matrix analysis; a standard reference on the sub-
ject is [9]. This section only reviews the notation and the more substantial results.

Let A ∈ R
m×n. We let ‖A‖∞

def= maxi j |Ai j|, the largest absolute value of an entry of
A. We denote the singular values of A by σ1(A) � σ2(A) � . . . � σmin{m,n}(A) � 0.

Recall that ‖A‖Σ = ∑min{m,n}
i=1 σi(A) and ‖A‖F =

√
∑m

i=1 ∑n
j=1 A2

i j are the trace norm and

Frobenius norm of A. We will also need the ε-approximate trace norm, defined as

‖A‖ε
Σ = min{‖B‖Σ : ‖A − B‖∞ � ε}.

The well-known Hoffman-Wielandt inequality plays an important role in our analy-
sis. In words, it states that small perturbations to the entries of a matrix result in small
perturbations to its singular values. This inequality has seen numerous uses in the liter-
ature [12, 25, 8].

Theorem 4 (Hoffman-Wielandt inequality [9, Thm. 8.6.4]). Let A,B ∈ R
m×n.

Then ∑min{m,n}
i=1 (σi(A) − σi(B))2 � ‖A − B‖2

F . In particular, if rank(B) = k then
∑i�k+1 σi(A)2 � ‖A − B‖2

F.

The Hoffman-Wielandt inequality is central to the following lemma, which allows us to
easily construct matrices with high ‖ · ‖ε

Σ norm.

Lemma 1 (Linial and Shraibman [24], implicit). Let M = [ f (x ⊕ y)]x,y, where f :
{−1,1}n → {−1,1} is arbitrary. Then for all ε � 0,

‖M‖ε
Σ � 2n(‖ f̂ ‖1 − ε2n/2).

Proof (adapted from Linial and Shraibman [24]). Let N = 2n be the order of M. Con-
sider an arbitrary matrix A with ‖A − M‖∞ � ε. We have:

N2ε2 � ‖A − M‖2
F

Thm. 4
�

N

∑
i=1

(σi(A)− σi(M))2 � 1
N

(‖A‖Σ −‖M‖Σ)2,

so that ‖A‖Σ � ‖M‖Σ − N3/2ε. Since the choice of A was arbitrary, we conclude that

‖M‖ε
Σ � ‖M‖Σ − N3/2ε. (1)

It remains to analyze ‖M‖Σ . Let Q = N−1/2[χS(x)]x,S. It is easy to check that Q is
orthogonal. On the other hand,

M = [ f (x ⊕ y)]x,y =

[

∑
S⊆[n]

f̂ (S)χS(x)χS(y)

]

x,y

= Q

⎡

⎢
⎣

N f̂ ( /0)
. . .

N f̂ ([n])

⎤

⎥
⎦QT.

The last equation reveals the singular values of M. In particular, ‖M‖Σ = N‖ f̂‖1. To-
gether with (1), this completes the proof.

A sign matrix is any matrix with ±1 entries.
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2.4 Communication Complexity

We consider functions f : X ×Y → {−1,1}. Typically X = Y = {−1,1}n, but we also
allow X and Y to be arbitrary sets, possibly of unequal cardinality. A rectangle of X ×Y
is any set R = A × B with A ⊆ X and B ⊆ Y. For a fixed distribution μ over X ×Y , the
discrepancy of f is defined as

discμ( f ) = max
R

∣
∣
∣
∣
∣ ∑
(x,y)∈R

μ(x,y) f (x,y)

∣
∣
∣
∣
∣
,

where the maximum is taken over all rectangles R. We define disc( f ) =
minμ{discμ( f )}. We identify the function f with its communication matrix M =
[ f (x,y)]x,y and define discμ(M) = discμ( f ).

Discrepancy is a powerful quantity with various applications. In particular, it imme-
diately yields lower bounds in various models of communication complexity, as well
as circuit lower bounds for depth-2 majority circuits [20, 33, 24]. This paper shows yet
another application of discrepancy. A definitive resource for further details on commu-
nication complexity is the book of Kushilevitz and Nisan [20].

2.5 SQ Dimension

The statistical query (SQ) model of learning, due to Kearns [13], is a restriction of
Valiant’s PAC model. See [16] for a comprehensive treatment. The SQ model is recog-
nized as a powerful abstraction of learning and plays a major role in learning theory.
The SQ dimension of C under μ , denoted sqdimμ(C ), is the largest d for which there
are d functions f1, . . . , fd ∈ C with

∣
∣
∣
∣ E
x∼μ

[ fi(x) · f j(x)]
∣
∣
∣
∣ � 1

d

for all i �= j. We denote

sqdim(C ) = max
μ

{sqdimμ(C )}.

The SQ dimension is a tight measure [13] of the learning complexity of a given concept
class C in the SQ model. In addition, the SQ dimension is strongly related to complexity
theory [32].

3 Approximation Rank: Definition and Properties

For a real matrix A, its ε-approximation rank is defined as

rankε(A) = min
B

{rank(B) : B real, ‖A − B‖∞ � ε}.

This notion is a natural one and has been studied before. In particular, Buhrman and
de Wolf [4] show that the approximation rank of a matrix implies lower bounds on
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its quantum communication complexity (in the bounded-error model without entangle-
ment). In Section 6, we survey two other related concepts: matrix rigidity and dimension
complexity.

We define the ε-approximation rank of a concept class C as

rankε(C ) = rankε(M),

where M is the characteristic matrix of C . For example, rank0(C ) = rank(M) and
rank1(C ) = 0. It is thus the behavior of rankε(C ) for intermediate values of ε that
is of primary interest. The following proposition follows trivially from our definitions.

Proposition 2 (Approximation rank reinterpreted). Let C be a concept class. Then
rankε (C ) is the smallest integer r such that there exist real functions φ1, . . . ,φr :
{−1,1}n → R with the property that each f ∈ C has ‖ f − ∑r

i=1 αiφi‖∞ � ε for some
reals α1, . . . ,αr.

3.1 Improving the Quality of the Approximation

We now take a closer look at rankε (M) as a function of ε. Suppose we have an estimate
of rankE(M) for some 0 < E < 1. Can we use this information to obtain a nontrivial
upper bound on rankε (M), where 0 < ε < E? It turns out that we can. We first recall
that the sign function can be approximated well by a real polynomial:

Fact 1. Let 0 < E < 1 be given. Then for each integer d � 1, there exists a degree-d
real univariate polynomial p(t) such that

|p(t)− sign(t)| � 8
√

d

(

1 − (1 − E)2

16

)d

(1 − E � |t| � 1 + E).

Fact 1 can be extracted with little effort from Rudin’s proof [31, Thm. 7.26] of the
Weierstrass approximation theorem. Subtler, improved versions of Fact 1 can be readily
found in the approximation literature.

Theorem 5. Let M be a sign matrix, and let 0 < ε < E < 1. Then

rankε (M) � rankE(M)d ,

where d is any positive integer with 8
√

d(1 − (1 − E)2/16)d � ε.

Proof. Let d be as stated. By Fact 1, there is a degree-d polynomial p(t) with

|p(t)− sign(t)| � ε (1 − E � |t| � 1 + E).

Let A be a real matrix with ‖A − M‖∞ � E and rank(A) = rankE(M). Then the matrix
B = [p(Ai j)]i, j approximates M to the desired accuracy: ‖B − M‖∞ � ε. Since p is a
polynomial of degree d, elementary linear algebra shows that rank(B) � rank(A)d .
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Note. The key idea in the proof of Theorem 5 is to improve the quality of the approxi-
mating matrix by applying a suitable polynomial to its entries. This idea is not new. For
example, Alon [1] uses the same method in the simpler setting of one-sided errors.

We will mainly need the following immediate consequences of Theorem 5.

Corollary 1. Let M be a sign matrix. Let ε,E be constants with 0 < ε < E < 1. Then
rankε (M) � rankE(M)c, where c = c(ε,E) is a constant.

Corollary 2. Let M be a sign matrix. Let ε be a constant with 0 < ε < 1. Then
rank1/nc(M) � rankε(M)O(log n) for every constant c > 0.

By Corollary 1, the choice of the constant ε affects rankε(M) by at most a polynomial
factor. When such factors are unimportant, we will adopt ε = 1/3 as a canonical setting.

3.2 Estimating the Approximation Rank

We will use two methods to estimate the approximation rank. The first uses the ε-
approximate trace norm of the same matrix, and the second uses its discrepancy.

Lemma 2 (Lower bound via approximate trace norm). Let M ∈ {−1,1}N×N. Then

rankε(M) �
(

‖M‖ε
Σ

(1 + ε)N

)2

.

Proof. Let A be an arbitrary matrix with ‖M − A‖∞ � ε. We have:

(‖M‖ε
Σ )2 � (‖A‖Σ )2 =

(
rank(A)

∑
i=1

σi(A)

)2

�
(

rank(A)

∑
i=1

σi(A)2

)

rank(A)

= (‖A‖F)2 rank(A) � (1+ ε)2N2 rank(A).

Our second method is as follows.

Lemma 3 (Lower bound via discrepancy). Let M be a sign matrix and 0 � ε < 1.
Then

rankε(M) � 1 − ε
1 + ε

· 1
64disc(M)2 .

The proof of Lemma 3 requires several definitions and facts that we do not use else-
where in this paper. For this reason, we defer it to Appendix A.

4 Approximation Rank of Specific Concept Classes

We proceed to prove our main results (Theorems 1–3), restated here as Theorems 7, 9,
and 10.
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4.1 Disjunctions

We recall a breakthrough result of Razborov [30] on the quantum communication com-
plexity of disjointness. The crux of that work is the following theorem.

Theorem 6 (Razborov [30, Sec. 5.3]). Let M be the
( n

n/4

)
×

( n
n/4

)
matrix whose rows

and columns are indexed by sets in
( [n]

n/4

)
and entries given by

MS,T =
{

1 if S ∩T = /0,
0 otherwise.

Then ‖M‖1/4
Σ = 2Ω(

√
n)( n

n/4

)
.

We can now prove an exponential lower bound on the approximation rank of disjunc-
tions, a particularly simple concept class.

Theorem 7 (Approximation rank of disjunctions). Let C = {∨
i∈S xi : S ⊆ [n]} be the

concept class of disjunctions. Then rank1/3(C ) = 2Ω(
√

n).

Proof. One easily verifies that the characteristic matrix of C is MC = [
∨n

i=1(xi ∧yi)]x,y.
We can equivalently view MC as the 2n × 2n sign matrix whose rows and columns
indexed by sets in [n] and entries given by:

MC (S,T ) =
{

1 if S ∩T = /0,
−1 otherwise.

Now let A be a real matrix with ‖MC − A‖∞ � 1/3. Let ZC = 1
2 (MC + J), where J is

the all-ones matrix. We immediately have ‖ZC − 1
2 (A + J)‖∞ � 1/6, and thus

rank1/6(ZC ) � rank
( 1

2(A + J)
)
� rank(A)+ 1. (2)

However, ZC contains as a submatrix the matrix M from Theorem 6. Therefore,

rank1/6(ZC ) � rank1/6(M)
Lem. 2

�
(

‖M‖1/4
Σ

(1 + 1/4)
( n

n/4

)

)2
Thm. 6

� 2Ω(
√

n). (3)

The theorem follows immediately from (2) and (3).

4.2 DNF Formulas

The centerpiece of our proof is the following recent result of Buhrman et al. [5].

Theorem 8 (Buhrman, Vereshchagin, and de Wolf [5, Sec. 3]). There is a function

f : {−1,1}n ×{−1,1}n → {−1,1} in AC0,3 such that disc( f ) = 2−Ω(n1/3). Moreover,
for each fixed y, the function fy(x) = f (x,y) is a DNF formula of linear size.

We can now analyze the approximation rank of linear-size DNF formulas.
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Theorem 9 (Approximation rank of DNF). Let C denote the concept class of func-
tions f : {−1,1}n → {−1,1} computable by DNF formulas of linear size. Then

rankε (C ) = 2Ω(n1/3) for 0 � ε � 1 − 2−cn1/3
, where c > 0 is a sufficiently small ab-

solute constant.

Proof. Let M be the characteristic matrix of C , and let f (x,y) be the function from The-
orem 8. Since [ f (x,y)]y,x is a submatrix of M, we have rankε (M) � rankε ([ f (x,y)]y,x).
The claim is now immediate from Lemma 3.

Comparing the results of Theorems 7 and 9 for small constant ε, we see that Theorem 7
is stronger in that it gives a better lower bound against a simpler concept class. On the
other hand, Theorem 9 is stronger in that it remains valid for the broad range 0 � ε �
1 − 2−Θ (n1/3), whereas the ε-approximation rank in Theorem 7 is easily seen to be at
most n for all ε � 1 − 1

2n .

4.3 Majority Functions

As a final application, we consider the concept class C of majority functions. Here we
prove a lower bound of Ω(2n/n) on the approximation rank, which is the best of our
three constructions.

Theorem 10 (Approximation rank of majority functions). Let C denote the concept
class of majority functions, C = {MAJ(±x1, . . . ,±xn)}. Then rankc/

√
n(C ) � Ω(2n/n)

for a sufficiently small absolute constant c > 0. Also, rank1/3(C ) = 2Ω(n/ logn).

Proof. The characteristic matrix of C is M = [MAJ(x⊕ y)]x,y. The Fourier spectrum of
the majority function has been extensively studied by various authors. In particular, it
is well known that

‖M̂AJ‖1 = Ω

(
2n/2
√

n

)

. (4)

(See, e.g., [22, Sec. 7] for a self-contained calculation.) Taking ε = c/
√

n for a suitably
small constant c > 0, we obtain:

rankc/
√

n(M)
Lem. 2

�
(

‖M‖c/
√

n
Σ

(1 + c/
√

n)2n

)2
Lem. 1

� 1
4

(

‖M̂AJ‖1 − c2n/2
√

n

)2
(4)
� Ω

(
2n

n

)

.

Finally, rank1/3(C ) � [rankc/
√

n(C )]1/O(logn) � 2Ω(n/ logn) by Corollary 2.

5 Approximation Rank vs. SQ Dimension

This section relates the approximation rank of a concept class C to its SQ dimension,
a fundamental quantity in learning theory. In short, we prove that (1) the SQ dimen-
sion is a lower bound on the approximation rank, and that (2) the gap between the two
quantities can be exponential. A starting point in our analysis is the relationship be-
tween the SQ dimension of C and �2-norm approximation of C , which is also of some
independent interest.
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Theorem 11 (SQ dimension and �2 approximation). Let C be a concept class,
and let μ be a distribution over {−1,1}n. Suppose there exist functions φ1, . . . ,φr :

{−1,1}n → R such that each f ∈ C has Ex∼μ

[
( f (x)− ∑r

i=1 αiφi(x))
2
]

� ε for some

reals α1, . . . ,αr. Then
r � (1 − ε)d −

√
d,

where d = sqdimμ(C ).

Proof. By the definition of the SQ dimension, there exist functions f1, . . . , fd ∈ C with
|Eμ [ fi · f j] | � 1/d for all i �= j. For simplicity, assume that μ is a distribution with
rational weights (extension to the general case is straightforward). Then there is an
integer k � 1 such that each μ(x) is an integral multiple of 1/k. Construct the d ×k sign
matrix

M = [ fi(x)]i,x ,

whose rows are indexed by the functions f1, . . . , fd and whose columns are indexed by
inputs x ∈ {−1,1}n (a given input x indexes exactly kμ(x) columns). It is easy to verify
that MMT = [kEμ [ fi · f j]]i, j, and thus

‖MMT − k · I‖F < k. (5)

The existence of φ1, . . . ,φr implies the existence of a rank-r real matrix A with
‖M − A‖2

F � εkd. On the other hand, the Hoffman-Wielandt inequality (Theorem 4)
guarantees that ‖M − A‖2

F � ∑d
i=r+1 σi(M)2. Combining these two inequalities yields:

εkd �
d

∑
i=r+1

σi(M)2 =
d

∑
i=r+1

σi(MMT)

� k(d − r)−
d

∑
i=r+1

|σi(MMT)− k|

� k(d − r)−

√
√
√
√

d

∑
i=r+1

(σi(MMT)− k)2
√

d − r by Cauchy-Swartz

� k(d − r)−‖MMT − k · I‖F
√

d − r by Hoffman-Wielandt

� k(d − r)− k
√

d by (5).

We have shown that εd � (d − r)−
√

d, which is precisely what the theorem claims.
To extend the proof to irrational distributions μ , one considers a rational distribution μ̃
suitably close to μ and repeats the above analysis. We omit these simple details.

We are now in a position to relate the SQ dimension to the approximation rank.

Theorem 12 (SQ dimension vs. approximation rank). Let C be a concept class.
Then for 0 � ε < 1,

rankε(C ) � (1 − ε2)sqdim(C )−
√

sqdim(C ). (6)
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Moreover, there exists a concept class A with

sqdim(A ) � O(n2) and rank1/3(A ) � 2Ω(n/ logn).

Proof. Let r = rankε(C ). Then there are functions φ1, . . . ,φr such that each f ∈ C has
‖ f − ∑r

i=1 αiφi‖∞ � ε for some reals α1, . . . ,αr. As a result,

Eμ
[
( f − ∑r

i=1 αiφi)2
]
� ε2

for every distribution μ . By Theorem 11, r � (1 − ε2)sqdimμ(C ) −
√

sqdimμ(C ).
Maximizing this over μ establishes (6).

To prove the second part, let A = {MAJ(±x1, . . . ,±xn)}. Theorem 10 shows that A
has the stated approximation rank. To bound its SQ dimension, note that each function
in A can be pointwise approximated within error 1 − 1/n by a linear combination of
the functions x1, . . . ,xn. Therefore, (6) implies that sqdim(A ) � O(n2).

6 Related Work

Approximation rank and dimension complexity. Dimension complexity is a fundamen-
tal and well-studied notion [7, 8, 22]. It is defined for a sign matrix M as

dc(M) = min
A

{rank(A) : A real, Ai jMi j > 0 for all i, j}.

In words, the dimension complexity of M is the smallest rank of a real matrix A that
has the same sign pattern as M. Thus, rankε (M) � dc(M) for each sign matrix M and
0 � ε < 1.

Ben-David et al. [2] showed that almost all concept classes with constant VC dimen-
sion have dimension complexity 2Ω(n); recall that dc(C ) � 2n always. Forster [7] later
developed a powerful tool for lower-bounding the dimension complexity of explicit
concept classes. His method has since seen several refinements.

However, this rich body of work is not readily applicable to our problem. Two of the
three matrices we study have trivial dimension complexity, and we derive lower bounds
on the approximation rank that are exponentially larger. Furthermore, in Theorem 3
we are able to exhibit an explicit concept class with approximation rank Ω(2n/n),
whereas the highest dimension complexity proved for any explicit concept class is
Forster’s lower bound of 2n/2. The key to our results is to bring out, through a vari-
ety of techniques, the additional structure in approximation that is not present in sign-
representation.

Approximation rank and rigidity. Approximation rank is also closely related to ε-
rigidity, a variant of matrix rigidity introduced by Lokam [25]. For a fixed real matrix
A, its ε-rigidity function is defined as

RA(r,ε) = min
B

{weight(A − B) : rank(B) � r, ‖A − B‖∞ � ε},



A Lower Bound for Agnostically Learning Disjunctions 421

where weight(A − B) stands for the number of nonzero entries in A − B. In words,
RA(r,ε) is the minimum number of entries of A that must be perturbed to reduce its
rank to r, provided that the perturbation to any single entry is at most ε. We immediately
have:

rankε(A) = min{r : RA(r,ε) � mn} (A ∈ R
m×n).

As a result, lower bounds on ε-rigidity translate into lower bounds on approximation
rank. In particular, ε-rigidity is a more complicated and nuanced quantity. Nontrivial
lower bounds on ε-rigidity are known for some special matrix families, most notably
the Hadamard matrices [25, 12]. Unfortunately, these results are not applicable to the
matrices in our work (see Section 4). To obtain near-optimal lower bounds on approx-
imation rank, we use specialized techniques that target approximation rank without
attacking the harder problem of ε-rigidity.

7 Conclusions and Open Problems

This paper studies the ε-approximation rank of a concept class C , defined as the min-
imum size of a set of features whose linear combinations can pointwise approximate
each f ∈ C within ε. Our main results give exponential lower bounds on rankε(C )
even for the simplest concept classes. These in turn establish exponential lower bounds
on the running time of the known algorithms for distribution-free agnostic learning. An
obvious open problem is to develop an approach to agnostic learning that does not rely
on pointwise approximation by a small set of features.

Another major open problem is to prove strong lower bounds on the dimension com-
plexity and SQ dimension of natural concept classes. We have shown that

rank1/3(C ) � 1
2

sqdim(C )− O(1) and rankε(C ) � dc(C ),

for each concept class C . In this sense, lower bounds on approximation rank are prereq-
uisites for lower bounds on dimension complexity and the SQ dimension. Of particular
interest in this respect are polynomial-size DNF formulas and, more broadly, AC0 cir-
cuits. While this paper obtains strong lower bounds on their approximation rank, it
remains a hard open problem to prove an exponential lower bound on their dimension
complexity and SQ dimension.
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A Discrepancy and Approximation Rank

The purpose of this section is to prove the relationship between discrepancy and ap-
proximation rank needed in Section 4. We start with several definitions and auxiliary
results due to Linial et al. [22, 24, 23].

For a real matrix A, let ‖A‖1→2 denote the largest Euclidean norm of a column of A,
and let ‖A‖2→∞ denote the largest Euclidean norm of a row of A. Define

γ2(A) = min
XY=A

‖X‖2→∞‖Y‖1→2.

For a sign matrix M, its margin complexity is defined as

mc(M) = min{γ2(A) : A real, Ai jMi j � 1 for all i, j}.

Lemma 4 (Linial et al. [22, Lem. 9]). Let A be a real matrix. Then γ2(A) �√
rank(A) · ‖A‖∞.

Theorem 13 (Linial and Shraibman [23]). Let M be a sign matrix. Then mc(M) �
1/(8disc(M)).

Putting these pieces together yields our desired result:

Lemma 3 (Restated from Sec. 3.2). Let M be a sign matrix and 0 � ε < 1. Then

rankε(M) � 1 − ε
1 + ε

· 1
64disc(M)2 .

Proof. Let A be any real matrix with ‖A − M‖∞ � ε. Put B = 1
1−ε A. We have:

rank(A) = rank(B)
Lem. 4

� γ2(B)2

‖B‖∞
� mc(M)2

‖B‖∞

Thm. 13
� 1

‖B‖∞
· 1

64disc(M)2

� 1− ε
1+ ε

· 1
64disc(M)2 .
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Abstract. When comparing discrete probability distributions, natural
measures of similarity are not �p distances but rather are information-
divergences such as Kullback-Leibler and Hellinger. This paper consid-
ers some of the issues related to constructing small-space sketches of
distributions, a concept related to dimensionality-reduction, such that
these measures can be approximately computed from the sketches. Re-
lated problems for �p distances are reasonably well understood via a
series of results including Johnson, Lindenstrauss [27,18], Alon, Matias,
Szegedy [1], Indyk [24], and Brinkman, Charikar [8]. In contrast, almost
no analogous results are known to date about constructing sketches for
the information-divergences used in statistics and learning theory.

1 Introduction

Which distances can be sketched in sub-linear space? In recent years, streaming
algorithms have received significant attention in an attempt to cope with mas-
sive datasets [23,1,20]. A streaming computation is a sublinear space algorithm
that reads the input in sequential order and any item not explicitly remembered
is inaccessible. A fundamental problem in the model is the estimation of dis-
tances between two objects that are determined by the stream, e.g., the network
traffic matrices at two routers. Estimation of distances allows us to construct
approximate representations, e.g., histograms, wavelets, Fourier summaries, or
equivalently, find models of the input stream, since this problem reduces to find-
ing the “closest” representation in a suitable class. In this paper, the objects of
interest are probability distributions defined by a stream of updates as follows.

Definition 1. Given a data stream S = 〈a1, . . . , am〉 with each data item ai ∈
{p, q} × [n] we define S(p) = 〈ap

1, . . . , a
p
m(p)〉 to be the sub-stream consisting

of data items of the form 〈p, ·〉. S(p) defines a distribution (p1, . . . , pn) where
pi = m(p)i/m(p) and m(p)i = |{j : ap

j = 〈p, i〉}|. Similarly define S(q) and qi.
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One of the cornerstones in the theory of data stream algorithms has been the
result of Alon, Matias, and Szegedy [1]. They showed that it is possible to com-
pute a (1 + ε)-approximation of �2(p, q) using only poly(ε−1, log n) space. The
algorithm can be viewed as a partial de-randomization of the famous embedding
result of Johnson and Lindenstrauss [27,18]. This result implies that for any two
vectors p and q and an n × k matrix A whose entries are independent N(0, 1)
random variables, then, with constant probability,

(1 − ε)�2(p, q) ≤ nk−1�2(Ap, Aq) ≤ (1 + ε)�2(p, q)

for some k = poly(ε−1, log n). Alon, Matias, and Szegedy demonstrated that
an “effective” A can be stored in small space and can be used to maintain
a small-space, update-able summary, or sketch, of p and q. The �2 distance
between p and q can then be estimated using only the sketches of p and q. While
Brinkman and Charikar [8] proved that there was no analogy of the Johnson-
Lindenstrauss result for �1, Indyk [24] demonstrated that �1(p, q) could also be
estimated in poly(ε−1, log n) space using Cauchy(0, 1) random variables rather
than N(0, 1) random variables. The results extended to all �p-measures with
0 < p ≤ 2 using stable distributions. Over a sequence of papers [36,11,25,4,14],
�p and Hamming distances have become well understood. In parallel, several
methods of creating summary representations of streams have been proposed for
a variety of applications [9,12,15]; in terms of distances they can be adapted to
compute the Jaccard coefficient (symmetric difference over union) for two sets.
One of the principal motivations of this work is to characterize the distances
that can be sketched.

The Information Divergences. Applications in pattern matching, image analysis,
statistical learning, etc., use distances which are not �p norms. Several distances1

such as the Kullback-Leibler and Hellinger divergences are central to estimating
the distances between distributions, and have had a long history of study in
statistics and information theory literature. We will discuss two broad classes
of distance measures (1) f -divergences, which are central to statistical tests and
(2) Bregman Divergences which are central to finding optimal models using
mathematical programming.

Definition 2 (f-Divergences). Given two distributions p = (p1, . . . , pn) and
q = (q1, . . . , qn) these distances are given by, Df (p, q) =

∑
i pif(qi/pi), for any

function f that is convex over (0, ∞) and satisfies f(1) = 0. We define 0f(0/0) =
0, and 0f(a/0) = limt→0 tf(a/t) = a limu→∞ f(u)/u.

The quantity qi/pi is the “likelihood ratio” and a fundamental aspect of these
measures is that these divergences are tied to “ratio tests” in Neyman-Pearson
style hypothesis testing [16]. Several of these divergences appear as exponents
of error probabilities for optimal classifiers, e.g., in Stein’s Lemma. Results of
Csiszár [17], Liese and Vajda [31], and Amari [2,3] show that f -divergences are
1 Several of the “distances” used are not metric, and a more appropriate reference is

divergence; we will refer to them as divergences for the rest of the paper.
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the unique class of distances on distributions that arise from a fairly simple set
of axioms, e.g., permutation invariance, non-decreasing local projections, and
certain direct sum theorems. In many ways these divergences are “natural” to
distributions and statistics, in much the same way that �2 is a natural measure
for points in R

n. Given streams S(p) and S(q), it is natural to ask whether these
streams are alike or given a prior model of the data, how well does either conform
to the prior? These are scenarios where estimation of f -divergences is the most
natural problem at hand. Notably, �1 distance is an f -divergence, f(u) = |u−1|,
referred to as the Variational distance. However, �1 distances do not capture
the “marginal” utilities of evidence and in innumerable cases Kullback–Leibler
(f(u) = − log(u)), Hellinger (f(u) = (

√
u − 1)2), and Jensen–Shannon diver-

gences (f(u) = −(u+1) log 1+u
2 +u log u) are preferred. An important “smooth”

subclass of the f -divergences are the α-divergences where f(u) = 1 − u(1+α)/2.
A major reason for investigating these f -divergences lies in loss functions used

in statistical learning. The �1 distance captures the “hinge loss” and the other
divergences are geared towards non-linear losses. To understand the connection
better, we need to also discuss the connections between f -divergences and Breg-
man divergences. The general family of “arcing” [7] and “AnyBoost” [32] family
of algorithms fall into a constrained convex programming framework introduced
earlier by Bregman [6]. Friedman, Hastie and Tibshirani [26] established the con-
nection between boosting algorithms and logistic loss, and subsequently over a
series of papers [30,29,28,13], the study of Bregman divergences and information
geometry has become the method of choice for studying exponential loss func-
tions. The connection between loss functions and f -divergences are investigated
more recently by Nguyen, Wainright, and Jordan [34].

Definition 3 (Decomposable Bregman Divergences). Given two distribu-
tions p = (p1, . . . , pn) and q = (q1, . . . , qn), the Bregman divergence between p
and q is BF (p, q) =

∑
i [F (pi) − F (qi) − (pi − qi)F ′(qi)] for any strictly convex

function F .

Perhaps the most familiar Bregman divergence is �2
2 with F (z) = z2. The

Kullback–Leibler divergence is also a Bregman divergence with F (z) = z log z,
and the Itakura–Saito divergence F (z) = − log z. Lafferty et al. [30] suggest
F (z) = −zα + αz − α + 1 for α ∈ (0, 1), F (z) = zα − αz + α − 1 for α < 0.

The fundamental use of Bregman divergences is in finding optimal models.
Given a distribution q we are interested in finding a p that best matches the
data, and this is posed as a convex optimization problem minp BF (p, q). It is
easy to verify that any positive linear combination of Bregman divergences is a
Bregman divergence and that the Bregman balls are convex in the first argument
but often not in the second. This is the particular appeal of the technique,
that the divergence depends on the data naturally and the divergences have
come to be known as Information Geometry techniques. Furthermore there is
a natural convex duality between the optimum representation p∗ under BF ,
and the divergence BF . This connection to convex optimization is one of the
many reasons for the emerging heavy use of Bregman divergences in the learning
literature.
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Given that we can estimate �1 and �2 distances between two streams in small
space, it is natural to ask which other f -divergences and Bregman-divergences
are sketchable?

Our Contributions: In this paper we take several steps towards a characterization
of the distances that can be sketched. Our first results are negative and help us
understand why the �1 and �2 distances are special among the f and Bregman
divergences.

– We prove the Shift Invariant Theorem that characterizes a large family of
distances that are not estimable in the streaming model. This theorem per-
tains to decomposable distances, i.e., distances d : R

n × R
n → R

+ for which
there exists a φ : R × R → R

+ such that d(x, y) =
∑

i∈[n] φ(xi, yi). The the-
orem suggest that unless φ(xi, yi) is a function of xi − yi then the measure
d cannot be sketched.

– For all f -divergence where f is twice differentiable and f ′′ is strictly posi-
tive, no polynomial factor approximation of Df (p, q) is possible in sub-linear
space. Note that for �1, which can be sketched, the function f(ζ) = |ζ − 1|
and therefore f ′′ is not defined at 1.

– For all Bregman divergences BF where F is twice differentiable and there
exists ρ, z0 > 0 such that,

∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)
F ′′(z2)

≥
(

z1

z2

)ρ

or ∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)
F ′′(z2)

≤
(

z2

z1

)ρ

then no polynomial factor approximation of BF is possible in sub-linear
space. This condition effectively states that F ′′(z) vanishes or diverges mono-
tonically, and polynomially fast, as z approaches zero. Note that for �2

2, which
can be sketched, the function F (z) = z2 and F ′′ is constant everywhere.

Given the lower bounds, we ask the question of finding additive bounds in
sublinear space. We say an algorithm returns an (ε, δ)-additive-approximation
for a real number Q if it outputs a value Q̂ such that |Q̂−Q| ≤ ε with probability
at least (1− δ) over its internal coin tosses. Some results for two pass algorithms
were presented in [22]. In this paper we show sharp characterizations about what
can be achieved in a single pass.

– Any (ε, 1/4)-additive-approximation of an unbounded Df requires Ω(n)-
space for any constant ε. Alternatively if Df is bounded then we can (ε, δ)-
additive-approximate Df in Oε(

√
n log n log δ−1) space2. The space bound

can be improved for the Jensen-Shannon divergence. Also, for all bounded
symmetric f -divergences, we can approximate Df (p, q) up to an additive ε
in O(ε−2 log δ−1 log n) space if one of p or q is known in advance.

– If F (0) or F ′(0) is unbounded, then any (ε, 1/4)-additive-approximation of
BF requires Ω(n) space for any constant ε. Alternatively, if F (0), F ′(0) and
F ′(1) exist, we can approximate BF (p, q) in Oε(log n log δ−1) space.

2 The notation Oε(·) treats ε as if constant
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2 Geometry of Df and BF

In this section we first present some simple geometric results that will allow us
to make certain useful assumptions about an f or F defining an f–divergence
or Bregman divergence.

We start by defining a conjugate f∗(u) = uf( 1
u ). We can then write any

f -Divergence as,

Df (p, q) =
∑

i:pi>qi

pif(qi/pi) +
∑

i:qi>pi

qif
∗(pi/qi) .

The following lemma that demonstrates that we may assume that f(u) ∈ [0, f(0)]
and f∗(u) ∈ [0, f∗(0)] for u ∈ [0, 1] where both f(0) = limu→0 f(u) and f∗(0) =
limu→0 f∗(u) exist if f is bounded.

Lemma 1. Let f be a real-valued function that is convex on (0, ∞) and satisfies
f(1) = 0. Then there exists a real-valued function g that is convex on (0, ∞) and
satisfies g(1) = 0 such that

1. Df (p, q) = Dg(p, q) for all distributions p and q.
2. g is decreasing in the range (0, 1] and increasing in the range [1, ∞). In

particular, if f is differentiable at 1 then g′(1) = 0.

Furthermore, if Df is bounded then

3. g(0) = limu→0 g(u) and g∗(0) = limu→0 g∗(u) exists.

For example, the Hellinger divergence can be realized by either f(u) = (
√

u−
1)2 or f(u) = 2 − 2

√
u. The next lemma will be important when bounding the

error terms in our algorithms.

Lemma 2. For any function f that is positive and convex on (0, 1] with f(1) =
0, for all 0 < a < b < c ≤ 1, |f(c) − f(b)| ≤ c−b

c−af(a) .

Similar to Lemma 1, the following lemma demonstrates that, without loss of gen-
erality, we may make various assumptions about the F that defines a Bregman
divergence.

Lemma 3. Let F be a differentiable, real valued function that is strictly convex
on (0, 1] such that limu→0+ F (u) and limu→0+ F ′(u) exist. Then there exists a
differentiable, real valued function G that is strictly convex on (0, 1] and,

1. BF (p, q) = BG(p, q) for all distributions p and q.
2. G(z) ≥ 0 for x ∈ (0, 1] and G is increasing in the range (0, 1].
3. limu→0+ G′(u) = 0 and limu→0+ G(u) = 0.

3 Techniques

In this section we summarize some of the sketching and sampling techniques
that we will use in the algorithms in the subsequent sections. We then review
the general approach for proving lower bounds in the data stream model.
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AMS-Sketches: A size-k AMS-Sketch of the stream S(p) = 〈ap
1, . . . , a

p
m(p)〉 con-

sists of k independent, identically distributed random variables X1, . . . , Xk. Each
Xi is determined by Xi = |{j : ap

j = ap
J , J ≤ j ≤ m(p)}| where J is chosen

uniformly at random from [m(p)]. This sketch is useful for estimating quantities
of the form m(p)−1

∑
i∈[n] f(m(p)i) because, if f(0) = 0 then

E [f(Xi) − f(Xi − 1)] = m(p)−1
∑

i∈[n]

f(m(p)i) .

It can be constructed by a streaming computation using only O(k) counters [1].

MG-Sketches: A size-k MG-Sketch of the stream S(p) is a deterministic construc-
tion that consists of estimates (p̃i)i∈[n] for the probability distribution (pi)i∈[n].
These estimates satisfy pi−1/k ≤ p̃i ≤ pi for all i ∈ [n]. Also, at most k values of
p̃i are non-zero and hence a size k MG-Sketch can be stored with O(k) counters.
Furthermore, the sketch can be constructed by a streaming computation using
only O(k) counters [33,5,19].

Universe-Sampling: A size-k Universe-Sample of S(p) consists of the exact values
of pi for k randomly chosen i ∈ [n]. It can be trivially constructed by a streaming
computation using only O(k) counters.

Lower Bounds: A component of the lower bounds we prove in this paper is a
reduction from the communication complexity of Set-Disjointness. An in-
stance of this problem consists of two binary strings, x, y ∈ F

n
2 such that∑

i xi =
∑

i yi = n/4. Alice knows the string x and Bob knows the string y.
Alice and Bob take turns to send messages to each other with the goal of de-
termining if x and y are disjoint, i.e. x.y = 0. Determining if x.y = 0 with
probability at least 3/4 requires Ω(n) bits to be communicated [35].

Our lower bound proofs use the following template. We suppose that there
exists a streaming algorithm A that takes P passes over a stream and uses
W working memory to approximate some quantity. We then show how Alice
and Bob can construct a set of stream elements SA(x) and SB(y) such that
the value returned by A on the stream containing SA(x) ∪ SB(y) determines
whether x.y = 0. Alice and Bob can then emulate A: Alice runs A on SA(x),
communicates the memory state of A, Bob runs A initiated with this memory
state on SB(x) and communicates the memory state of A to Alice and so on.
This protocol transmits (2P − 1)W bits and hence if P = O(1), we deduce that
W = Ω(n).

It should be noted that such a style of proof has been used widely. The novelty
of our lower bound proofs is in using the geometry of Df and BF to construct
suitable SA(x) and SB(y).

4 Multiplicative Approximations

We start with the central theorem of this section, the Shift Invariance Theorem.
This theorem characterizes a large class of divergences that are not sketchable.
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Theorem 1 (Shift Invariance Theorem). Let φ : [0, 1] × [0, 1] → R
+ satisfy

φ(x, x) = 0 for all x ∈ [0, 1] and there exists n0, a, b, c ∈ N such that for all
n ≥ n0,

max
(

φ

(
a

m
,
a + c

m

)

, φ

(
a + c

m
,

a

m

))

>
α2n

4

(

φ

(
b + c

m
,

b

m

)

+ φ

(
b

m
,
b + c

m

))

where m = an/4+bn+cn/2. Then any algorithm that returns an α approximation
of d(p, q) =

∑
i∈[5n/4] φ(pi, qi) with probability at least 3/4 where p and q are

defined by a stream of length O((a + b + c)n) over [5n/4] requires Ω(n) space.

Proof. We refer the reader to the lower bounds template discussed in Section 3.
Assume that n is divisible by 4 and n > n0. Let (x, y) ∈ F

n
2 × F

n
2 be an instance

of Set-Disjointness where
∑

i xi =
∑

i yi = n/4. Alice and Bob determine the
prefix of a stream SA(x) and the suffix SB(y) respectively. We first assume that
φ(a/m, (a + c)/m) ≥ φ((a + c)/m, a/m).

SA(x) =
⋃

i∈[n]

{axi + b(1 − xi) copies of 〈p, i〉 and 〈q, i}

∪
⋃

i∈[n/4]

{b copies of 〈p, i + n〉 and 〈q, i + n〉}

SB(y) =
⋃

i∈[n]

{cyi copies of 〈q, i〉} ∪
⋃

i∈[n/4]

{c copies of 〈p, i + n〉}

Observe that m(p) = m(q) = an/4 + bn + cn/2 and

Df (p, q) = (x.y)φ
(

a

m
,
a + c

m

)

+(n/4−x.y)φ
(

b

m
,
b + c

m

)

+(n/4)φ
(

b + c

m
,

b

m

)

.

Therefore,

x.y = 0 ⇔ Df (p, q) = (n/4)(φ(b/m, (b + c)/m) + φ((b + c)/m, b/m))
x.y = 1 ⇔ Df (p, q) ≥ α2(n/4)(φ(b/m, (b + c)/m) + φ((b + c)/m, b/m))

Therefore any α-approximation would determine the value of x.y and hence an α-
approximation requires Ω(n) space [35]. If φ(a/m, (a+c)/m) ≤ φ((a+c)/m, a/m)
then the proof follows by reversing the roles of p and q.

The above theorem suggests that unless φ(xi, yi) is some function of xi −yi then
the distance is not sketchable. The result holds even if the algorithm may take a
constant number of passes over the data. We also mention a simpler result that
can be proved using similar ideas to those employed above. This states that if
there exist a, b, c ∈ N such that

max
(

φ(a + c, a)
φ(b + c, b)

,
φ(a, a + c)
φ(b, b + c)

)

> α2 ,
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then any single-pass α-approximation of
∑

i∈[n] φ(m(p)i, m(q)i) requires Ω(n)
space.

We next present two corollaries of Theorem 1. These characterize the f -
divergences and Bregman divergences that can be not be sketched. Note that �1

and �2
2, which can be sketched, are the only commonly used divergences that do

not satisfy the relevant conditions.

Corollary 1 (f-Divergences). Given an f -divergence Df , if f is twice differ-
entiable and f ′′ is strictly positive, then no polynomial factor approximation of
Df is possible in sub-linear space.

Proof. We first note that by Lemma 1 we may assume f(1) = f ′(1) = 0. Let
a = c = 1 and b = α2n(f ′′(1) + 1)/(8f(2)) where α is an arbitrary polynomial
in n. Note that f(2) > 0 because f is strictly convex.

We start by observing that,

φ(b/m, (b + c)/m) = (b/m)f(1 + 1/b) = (b/m)
[

f(1) +
1
b
f ′(1) +

1
2!b2

f ′′(1 + γ)
]

for some γ ∈ [0, 1/b] by Taylor’s Theorem. Since f(1) = f ′(1) = 0 and f ′′(t) is
continuous at t = 1 this implies that for sufficiently large n, f ′′(1+γ) ≤ f ′′(1)+1
and so,

φ(b/m, (b+c)/m) ≤ f ′′(1) + 1
2mb

=
f ′′(1) + 1
2f(2)b

m−1f(2) ≤ 8
α2n

φ(a/m, (a+c)/m) .

Similarly we can show that for sufficiently large n,

φ((b + c)/m, b/m) ≤ 8
α2n

φ(a/m, (a + c)/m) .

Then appealing to Theorem 1 we get the required result.

Corollary 2 (Bregman Divergences). Given a Bregman divergences BF , if
F is twice differentiable and there exists ρ, z0 > 0 such that,

∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)
F ′′(z2)

≥
(

z1

z2

)ρ

or ∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)
F ′′(z2)

≤
(

z2

z1

)ρ

then no polynomial factor approximation of BF is possible in sub-linear space.

This condition effectively states that F ′′(z) vanishes or diverges monotonically,
and polynomially fast, as z → 0.

Proof. By the Mean-Value Theorem, for any m, r ∈ N, there exists γ(r) ∈ [0, 1]
such that, φ(r/m, (r + 1)/m) + φ((r + 1)/m, r/m) = m−2F ′′((r + γ(r))/m).
Therefore, for any a, b ∈ N, c = 1 and m = an/4 + bn + n/2,

max
(
φ

(
a
m , a+c

m

)
, φ

(
a+c
m , a

m

))

φ
(

b+c
m , b

m

)
+ φ

(
b
m , b+c

m

) ≥ 1
2

F ′′((a + γ(a))/m)
F ′′((b + γ(b))/m)

.
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If ∀ 0 ≤ z2 ≤ z1 ≤ z0, F ′′(z1)/F ′′(z2) ≥ (z1/z2)ρ then set a = (α2n)1/ρ

and b = 1 where α is an arbitrary polynomial in n. If ∀ 0 ≤ z2 ≤ z1 ≤
z0, F ′′(z1)/F ′′(z2) ≥ (z2/z1)ρ then set a = 1 and b = (αn)1/ρ. In both cases
we deduce that the RHS of Eqn. 1 is greater than α2n/4. Hence, appealing to
Theorem 1, we get the required result.

5 Additive Approximations

In this section we focus on additive approximations. As mentioned earlier, the
probability of misclassification using ratio tests is often bounded by 2−Df , for
certain Df . Hence, an additive ε approximation translates to a multiplicative 2ε

factor for computing the error probability. Our goal is the characterization of
divergences that can be approximated additively.

5.1 Lower Bound for f-Divergences

In this section we show that to additively approximate Df (p, q) up to any addi-
tive ε > 0, Df must be bounded.

Theorem 2. Any (ε, 1/4)-additive-approximation of an unbounded Df requires
Ω(n) space. This applies even if one of the distributions is known to be uniform.

Proof. We refer the reader to the template for lower bounds discussed in Sec-
tion 3. Let (x, y) ∈ F

n
2 × F

n
2 be an instance of Set-Disjointness. Then define

q be the following stream elements.

SA(x) = {1 − xi copies of 〈q, i〉 for i ∈ [n]}
SB(y) = {1 − yi copies of 〈q, i〉 for i ∈ [n]}

Let p be the uniform distribution. If limu→0 f(u) is unbounded then Df (p, q)
is finite iff x.y = 0. If limu→∞ 1

uf(u) is unbounded then Df (q, p) is finite iff
x.y = 0.

5.2 Upper Bounds for f-Divergences

In this section we show an additive approximation that complements the lower
bound in the previous section. Note that since for any f–divergence, a func-
tion af(·) for a > 0 gives another f–divergence, the best we can hope for is
an approximation which is dependent on max{limu→0 f(u), limu→∞ 1

uf(u)}. In
what follows we assume that this value is 1. The idea behind the algorithm is
a combination of Universe-Sampling and MG-Sketching. With MG-Sketches we
can identify all i ∈ [n] such that either pi or qi is larger than some threshold.
For the remaining i it is possible to show that pif(qi/pi) is small enough such
that estimating the contribution of these terms by Universe-Sampling yields the
required result. See Figure 1 for a detailed description of the algorithm.
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The algorithm f-Est(p,q): Let ε be a user-specified value in the range (0, 1).
Let γ(ε) < ε/16 be such that

∀u ≤ γ, |f(u) − lim
u→0

f(u)| ≤ ε/16 and ∀u ≥ 1

γ
,

∣
∣
∣
∣
1

u
f(u) − lim

u→∞

1

u
f(u)

∣
∣
∣
∣ ≤ ε/16 .

1. Use Universe-Sampling to compute pi, qi for i ∈ S where S is a random
subset of [n] of size 3ε−2n(ρ + γ2ρ) ln(2δ−1) where ρ = 1/

√
n.

2. Use MG-Sketches to compute (p̃i)i∈[n] and (q̃i)i∈[n] such that

pi − γ2ρ ≤ p̃i ≤ pi and qi − γ2ρ ≤ q̃i ≤ qi .

3. Return, ∑

i∈T

p̃if(q̃i/p̃i) +
n

|S|
∑

i∈S\T

pif(qi/pi)

where T = {i : max{p̃i, q̃i} ≥ ρ}.

Fig. 1. Additive Approximation of Some f -Divergences

Lemma 4. max{pi, qi} ≤ ρ + γ2ρ for i ∈ T and max{pi, qi} ≥ ρ for i ∈ T .
Furthermore, ∣

∣
∣
∣
∣

∑

i∈T

pif(qi/pi) −
∑

i∈T

p̃if(q̃i/p̃i)

∣
∣
∣
∣
∣
≥ ε/2.

Proof. The first part of the lemma follows from the properties of the MG-Sketch
discussed in Section 3. Let Δ(pi), Δ(qi/pi), Δ(f(qi/pi)), and Δ(qi) be the abso-
lute errors in pi, qi/pi, f(qi/pi), qi respectively and note that,

|p̃if(q̃i/p̃i) − pif(qi/pi)| ≤ f(qi/pi)Δ(pi) + piΔ(f(qi/pi)) + Δ(pi)Δ(f(qi/pi)) .

There are four cases to consider.

1. pi ≥ ρ and qi ≤ γρ/2. Then Δ(f(qi/pi)) ≤ ε/8 since qi/pi, q̃i/p̃i ≤ γ and f
is non-increasing in the range (0, 1). Therefore,

|p̃if(q̃i/p̃i) − pif(qi/pi)| ≤ γ2ρf(qi/pi) + εpi/16 + γ2ρε/16+ ≤ εpi/8 .

2. qi ≥ ρ and pi ≤ γρ/2. Similar to case 1.
3. pi ≥ ρ, qi ≥ γρ/2 and pi > qi. First note that Δ(qi/pi) ≤ (2γ + γ2)qi/pi.

|p̃if(q̃i/p̃i) − pif(qi/pi)| ≤ γ2pi + pi(2γ + γ2)qi/pi + γ2pi(2γ + γ2)qi/pi

≤ εpi/16 + εqi/8 .

4. qi ≥ ρ, p ≥ γρ/2, and pi < qi. Similar to case 3.

Therefore summarizing all cases, the additive error per-term is at most ε(qi +
pi)/4. Summing over all i ∈ T establishes the second part of the lemma.
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Theorem 3. There exists an (ε, δ)-additive-approximation for any bounded f -
divergence using Oε(

√
n log n log δ−1) space.

Proof. The space use is immediate from the algorithm. The main observation to
prove correctness is that for each i ∈ T , pi, qi ≤ ρ + γ2ρ, and hence pif(qi/pi) ≤
ρ + 2γ2ρ. Hence, by an application of the Chernoff bound,

Pr

⎡

⎣

∣
∣
∣
∣
∣
∣

n

|S|
∑

i∈S\T

pif

(
qi

pi

)

−
∑

i∈[n]\T

pif

(
qi

pi

)
∣
∣
∣
∣
∣
∣
≥ ε/2

⎤

⎦ ≤ 2 exp
(

− |S|ε2
3n(ρ + 2γ2ρ)

)

.

This is at most δ for our value of |S|. Appealing to Lemma 4 yields the result.

Some f -divergences can be additively approximated in significantly smaller
space. For example, the Jensen–Shannon divergence can be rewritten as

JS(p, q) = ln 2
(

2H

(
p + q

2

)

− H(p) − H(q)
)

,

where H is the entropy. There exists a single-pass (ε, δ)-additive-approximation
of entropy in the streaming model [10]. This yields the following theorem.

Theorem 4. There exists a single-pass (ε, δ)-additive-approximation of the JS-
divergence using O(ε−2 log2 n log2 m log δ−1) space.

Finally in this section we show that the space bound of Oε(
√

n log n log δ−1)
can be improved if we knew one of the distributions, e.g., if we had a prior
distribution and were trying to estimate a fit.

Theorem 5. We can (ε, δ)-additively-approximate any f–divergence Df (p, q) in
space O(ε−2 log n log δ−1) if Df is bounded and one of p or q is known in advance.

Proof. Let p be the known distribution and let q be defined by the stream. We
may assume that f(1) = f ′(1) = 0. Therefore,

Df (p, q) =
∑

qi<pi

pif

(
qi

pi

)

+
∑

qi>pi

qif
∗
(

pi

qi

)

.

We consider each term separately. To approximate the first term the algorithm
picks i with respect to the known distribution p and then computes qi. The basic
estimator is

g(i) =
{

0 if qi > pi

f(qi/pi) if qi ≤ pi
.

Note that E [g(i)] =
∑

i:qi<pi
pif(qi/pi) and 0 ≤ g(i) ≤ f(0). Hence, ap-

plying Chernoff bounds we can (ε/2, δ/2)-additively-approximate E [g(i)] with
O(ε−2 log δ−1) basic estimators.
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To approximate the second term we use an AMS-Sketch. Specifically, the
algorithm picks a random i in the stream q and computes, ri, the number of
times i occurs after it was picked. The basic estimator is,

h(ri) =

⎧
⎨

⎩

0 if pi ≥ ri/m
f∗(0) if pi = 0
rif

∗(mpi

ri
) − (ri − 1)f∗( mpi

ri−1 ) otherwise
.

Note that E [h(ri)] =
∑

i:qi>pi
qif(pi

qi
) and 0 ≤ h(i) ≤ f∗(0) by Lemma 2. Hence,

applying Chernoff bounds we can (ε/2, δ/2)-additively-approximate E [g(i)] with
O(ε−2 log δ−1) basic estimators.

5.3 Lower Bound for Bregman Divergences

Theorem 6. If max{limu→0 F (u), limu→0 F ′(u)} is unbounded then (ε, 1/4)-
additive-approximation of BF requires Ω(n) space. This applies even if one of
the distributions is known to be uniform.

Proof. We refer the reader to the lower bounds template discussed in Section 3.
Let (x, y) ∈ F

n
2 × F

n
2 be an instance of Set-Disjointness. Let q be determined

by Alice and Bob as in Theorem 2. and let p be the uniform distribution. If
limu→0 F (u) is unbounded then BF (q, p) is finite iff x.y = 0. If limu→0 F (u) is
bounded but limu→0 F ′(u) is unbounded then BF (p, q) is finite iff x.y = 0.

5.4 Upper Bound for Bregman Divergences

In this section we show the matching upper bounds to Theorem 6. In the section
we assume that F (0), F ′(0) and F ′(1) are defined. Recall from Lemma 3 that
we may assume that F (0) = F ′(0) = 0. This makes F monotone increasing over
[0, 1]. Note that this transformation preserves F ′(1) to be a constant. As with
the f–divergences, any multiple of an Bregman divergence is another Bregman
divergence and hence the best we can hope for is an approximation which is
dependent on F ′(1). In what follows we assume that this value is 1.

Theorem 7. Assuming F (0), F ′(0), F ′(1) exist we can approximate BF (p, q) for
any two unknown streams p, q upto additive ε in Oε(log n log δ−1) space.

Proof. Write BF as BF (p, q) =
∑

i F (pi)−
∑

i F (qi)−
∑

i piF
′(qi)+

∑
i qiF

′(qi).
We show how to estimate each term with probability at least 1 − δ/4 up to
an additive ε/4 term. Because 0 ≤ m(p)[F (Xj/m(p)) − F ((Xj − 1)/m(p))] ≤
F ′(1) = 1,

Pr

[∣
∣
∣
∣
∣

∑̃

i

F (pi) −
∑

i

F (pi)

∣
∣
∣
∣
∣
> ε/4

]

≤ 2 exp(−|S|ε2/48) ≤ δ/4 .
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Algorithm B-Est(p,q): Let ε2 = ε/12. Let γ(ε2) ≤ ε2 be such that, ∀u ∈
(0, 1], |F ′(u + γ) − F ′(u)| ≤ ε2 and let ε1 = γε2.
1. Use AMS-Sketches to estimate

∑
i F (pi): Choose a random subset of S ⊂

[m(p)] of size 48ε−2 ln(4δ−1). For each j ∈ S,
(a) Let e(j) = i where ap

j = 〈p, i〉.
(b) Let Xj = |{k : ak = aj , k ≥ j}|
Let

∑̃

i

F (pi) =
m(p)

|S|
∑

j

[F

(
Xj

m(p)

)

− F

(
Xj − 1

m(p)

)

]

and define
∑̃

i F (qi) analogously.
2. Use MG-Sketches to compute (p̃i)i∈[n] and (q̃i)i∈[n] such that

pi − ε1 ≤ p̃i ≤ pi and qi − ε2 ≤ q̃i ≤ qi .

3. Return,
∑̃

i

F (pi) −
∑̃

i

F (qi) −
∑

i

(p̃i − q̃i)F
′(q̃i) .

Fig. 2. Additive Approximation of Some Bregman Divergences

The calculation for the second term is similar. To bound the remaining terms,
since pi ≥ p̃i ≥ max{pi − ε1, 0} and qi ≥ q̃i ≥ max{qi − ε1, 0}, we get that
F ′(qi) ≥ F ′(q̃i) ≥ max{F ′(qi) − ε2, 0} and

∑
i piF

′(qi) ≥
∑

i p̃iF
′(q̃i). Hence,

∑

i

p̃iF
′(q̃i) ≥

∑

i

max{pi − ε1, 0} max{F ′(qi) − ε2, 0}

≥
∑

i

piF
′(qi) −

∑

i:ε1<pi,qi<γ

ε1F
′(qi) −

∑

i:ε1<pi,qi≥γ

ε1F
′(qi) − ε2

≥
∑

i

piF
′(qi) − ε2 − ε1

γ
− ε2

≥
∑

i

piF
′(qi) − 3ε2 ≥

∑

i

piF
′(qi) − ε/4 .

The calculation for the fourth term is entirely similar.

6 Conclusions and Open Questions

We presented a partial characterization of the information divergences that can
be multiplicatively approximated in the data stream model. This characteri-
zation was based on a general result that suggests that any distance that is
sketchable has certain “norm-like” properties.

We then considered additive-approximation of f -divergences and Bregman
divergences. In particular, we showed that all bounded f -divergences can be
approximated up to an additive ε term in a single pass using Oε(

√
n polylog n)
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space. In two passes, O(polylog n)-space is known to be sufficient [22]. As was
noted, there does exists a single-pass, Oε(polylog n)-space additive approxima-
tion for the Jensen-Shannon divergence. This begs the question whether there
exist single-pass Oε(polylog n)-space algorithms for all bounded f -divergences?

A final open question relates to multiplicative approximation of information
divergences in the aggregate data stream model in which all elements of the
form 〈p, ·〉 appear consecutively. It is easy to (1 + ε) multiplicatively approx-
imate the Hellinger divergence in this aggregate model using O(ε−2 polylog n)
space by exploiting the connection between the Hellinger divergence and the L2

distance. The Jensen-Shannon divergence is constant factor related to Hellinger
and therefore there exists a constant factor approximation to Jensen-Shannon in
O(polylog n) space. How much space is required to find an (1+ε)-approximation?
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Abstract. This paper introduces the class of stationary prediction strate-
gies and constructs a prediction algorithm that asymptotically performs
as well as the best continuous stationary strategy. We make mild com-
pactness assumptions but no stochastic assumptions about the environ-
ment. In particular, no assumption of stationarity is made about the en-
vironment, and the stationarity of the considered strategies only means
that they do not depend explicitly on time; it is natural to consider only
stationary strategies for many non-stationary environments.

1 Introduction

In universal prediction of individual sequences, one starts with a benchmark class
of prediction strategies and tries to design a prediction algorithm competitive
with the strategies in the class. One noticeable trend in this area has been an
increase in the size and flexibility of the considered benchmark classes.

In Hannan’s and Blackwell’s pioneering papers [1,2] the benchmark class con-
sisted of the constant prediction strategies, i.e., strategies always recommending
the same prediction. In later work (see, e.g., [3,4,5], or the recent review [6])
attention shifted to competing with classes of arbitrary prediction strategies.

An important class of prediction strategies consists of “prediction rules”, i.e.,
prediction strategies whose prediction for the next observation yn is only based
on the environment’s signal xn (see the next section for the precise prediction
protocol). Standard methods developed in this area allow one to construct a pre-
diction algorithm competitive with the continuous prediction rules (such meth-
ods were developed in, e.g., [7], [8], and, especially, [9], Section 3.2; for an explicit
statement see [10]). This paper constructs a prediction algorithm competitive
with a much wider class of prediction strategies, namely, with the continuous
strategies not depending on the choice of the origin of time.

The main technical tool used in the paper is Kalnishkan and Vyugin’s Weak
Aggregating Algorithm (WAA) [11]; it is, however, possible that some of the
other known techniques could be used instead. The WAA provides strong loss
bounds for non-negative loss functions, but our main results will be stated in an
asymptotic fashion without giving explicit loss bounds; this is discussed further
in Section 7.

In Section 2 we give the main definitions and state our main results, Proposi-
tions 1–2 and Theorems 1–2; their proofs are given in Sections 3–6. The proofs

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 439–453, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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of Propositions 1–2 are rather routine, essentially combining well-known ideas.
For further details and discussions, see [12].

2 Main Results

The game of prediction between Predictor and Environment is played according
to the following protocol (of perfect information, in the sense that either player
can see the other player’s moves made so far).

Game of prediction

Environment announces (. . . , x−1, y−1, x0, y0) ∈ (X × Y)∞.
FOR n = 1, 2, . . . :

Environment announces xn ∈ X.
Predictor announces γn ∈ Γ .
Environment announces yn ∈ Y.

END FOR.

After Environment’s first move the game proceeds in rounds numbered by the
positive integers n. At the beginning of each round n = 1, 2, . . . Predictor is given
some signal xn relevant to predicting the following observation yn. The signal is
taken from the signal space X and the observation from the observation space
Y. Predictor then announces his prediction γn, taken from the prediction space
Γ , and the prediction’s quality in light of the actual observation is measured by
a loss function λ : Γ × Y → IR. At the beginning of the game Environment
chooses the infinite past, (xn, yn) for all n ≤ 0.

In the games of prediction traditionally considered in machine learning there
is no infinite past. This situation is modeled in our framework by extending
the signal space and observation space by new elements ? ∈ X and ? ∈ Y,
defining λ(γ, ?) arbitrarily, and making Environment announce the infinite past
(. . . , x−1, y−1, x0, y0) = (. . . , ?, ?, ?, ?) and refrain from announcing xn = ? or
yn = ? afterwards (intuitively, ? corresponds to “no feedback from
Environment”).

We will always assume that the signal space X, the prediction space Γ , and the
observation space Y are non-empty topological spaces and that the loss function
λ is continuous. Moreover, we are mainly interested in the case where X, Γ , and
Y are locally compact metric spaces, the prime examples being Euclidean spaces
and their open and closed subsets. Our first results will be stated for the case
where all three spaces X, Γ , and Y are compact.

Remark. Our results can be easily extended to the case where the loss on
the nth round is allowed to depend, in addition to γn and yn, on the past
. . . , xn−1, yn−1, xn. This would, however, complicate the notation.

Predictor’s strategies in the game of prediction will be called prediction strategies
(or prediction algorithms, when they are defined explicitly and we want to em-
phasize this). Mathematically such a strategy is a function D : (X×Y)∞ ×X×
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{1, 2, . . .} → Γ ; it maps each history (. . . , xn−1, yn−1, xn) and the current time
n to the chosen prediction. In this paper we will only be interested in continuous
prediction strategies D. An especially natural class of strategies is formed by the
stationary prediction strategies D : (X×Y)∞ ×X → Γ , which do not depend on
time explicitly; since the origin of time is usually chosen arbitrarily, this appears
a reasonable restriction.

Universal Prediction Strategies: Compact Deterministic Case

In this and next subsections we will assume that the spaces X, Γ,Y are all com-
pact. A prediction strategy is CS universal for a loss function λ if its predictions
γn satisfy

lim sup
N→∞

(
1
N

N∑

n=1

λ(γn, yn) − 1
N

N∑

n=1

λ
(
D(. . . , xn−1, yn−1, xn), yn

)
)

≤ 0 (1)

for any continuous stationary prediction strategy D and any biinfinite sequence
. . . , x−1, y−1, x0, y0, x1, y1, . . . . (“CS” refers to the continuity and stationarity of
the prediction strategies we are competing with).

Proposition 1. Suppose X and Y are compact metric spaces, Γ is a compact
convex subset of a Banach space, and the loss function λ(γ, y) is continuous in
(γ, y) and convex in the variable γ ∈ Γ . There exists a CS universal prediction
algorithm.

Remark. Simplest examples show that it is impossible to compete, in the
sense of (1), with the class of all continuous prediction strategies: we can set
D(. . . , xn−1, yn−1, xn) := fn(xn), and there need not be any connection whatso-
ever between fn for different n. Our solution was to restrict attention to station-
ary prediction strategies, which, in the absence of stochastic assumptions about
the environment, required the unusual feature of having an infinite past.

Universal Prediction Strategies: Compact Randomized Case

When the loss function λ(γ, y) is not convex in γ, two difficulties appear:

– the conclusion of Proposition 1 becomes false if the convexity requirement
is removed ([11], Theorem 2);

– in some cases the notion of a continuous prediction strategy becomes vacu-
ous: e.g., there are no non-constant continuous stationary prediction strate-
gies when Γ = {0, 1} and (X × Y)∞ × X is connected (the latter condition
is equivalent to X and Y being connected—see [13], Theorem 6.1.15).

To overcome these difficulties, we follow the standard practice and consider ran-
domized prediction strategies. The proof of Proposition 1 will give a universal,
in a natural sense, randomized prediction algorithm; on the other hand, there
will be a vast supply of continuous stationary prediction strategies.
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Remark. In fact, the second difficulty is more apparent than real: for example,
in the binary case (Y = {0, 1}) there are many non-trivial continuous prediction
strategies in the canonical form (as defined in [5]) of the prediction game with
the prediction space redefined as the boundary of the set of superpredictions (as
defined in [11]).

A randomized prediction strategy is a function D : (X×Y)∞ ×X×{1, 2, . . .} →
P(Γ ) mapping the past complemented by the current time to the probability
measures on the prediction space; P(Γ ) is always equipped with the topology
of weak convergence ([14], Appendix III). In other words, this is a prediction
strategy in the extended game of prediction with the prediction space P(Γ ).
Analogously, a stationary randomized prediction strategy is a function D : (X ×
Y)∞ × X → P(Γ ).

Let us say that a randomized prediction strategy outputting γn is CS universal
for a loss function λ if, for any continuous stationary randomized prediction
strategy D and any biinfinite . . . , x−1, y−1, x0, y0, x1, y1, . . .,

lim sup
N→∞

(
1
N

N∑

n=1

λ(gn, yn) − 1
N

N∑

n=1

λ(dn, yn)

)

≤ 0 a.s., (2)

where g1, g2, . . . , d1, d2, . . . are independent random variables distributed as

gn ∼ γn, (3)
dn ∼ D(. . . , xn−1, yn−1, xn), (4)

n = 1, 2, . . . . Intuitively, the “a.s.” in (2) refers to the prediction strategies’
internal randomization; the environment is not modeled stochastically.

Proposition 2. Let X, Γ , and Y be compact metric spaces and λ be a continu-
ous loss function. There exists a CS universal randomized prediction algorithm.

Universal Prediction Strategies: Deterministic Case

Let us say that a set in a topological space is precompact if its closure is com-
pact. In Euclidean spaces, precompactness means boundedness. In this and next
subsections we drop the assumption of compactness of X, Γ , and Y, and so we
have to redefine the notion of CS universality.

A prediction strategy outputting γn ∈ Γ is CS universal for a loss function
λ if, for any continuous stationary prediction strategy D and for any biinfinite
. . . , x−1, y−1, x0, y0, x1, y1, . . .,

(
{. . . , x−1, x0, x1, . . .} and {. . . , y−1, y0, y1, . . .} are precompact

)

=⇒ lim sup
N→∞

(
1
N

N∑

n=1

λ(γn, yn) − 1
N

N∑

n=1

λ
(
D(. . . , xn−1, yn−1, xn), yn

)
)

≤ 0.

(5)
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The intuition behind the antecedent of (5), in the Euclidean case, is that the
predictor knows that ‖xn‖ and ‖yn‖ are bounded but does not know an upper
bound in advance.

Let us say that the loss function λ is large at infinity if, for all y∗ ∈ Y,

lim
y→y∗
γ→∞

λ(γ, y) = ∞

(in the sense that for each constant M there exists a neighborhood Oy∗ 	 y∗ and
compact C ⊆ Γ such that λ (Γ \ C, Oy∗) ⊆ (M, ∞)). Intuitively, we require that
faraway γ ∈ Γ should be poor predictions for nearby y ∈ Y. This assumption is
satisfied for most of the usual loss functions used in universal prediction.

Theorem 1. Suppose X and Y are locally compact metric spaces, Γ is a convex
subset of a Banach space, and the loss function λ(γ, y) is continuous, large at
infinity, and convex in the variable γ ∈ Γ . There exists a CS universal prediction
algorithm.

To have a specific example in mind, the reader might check that X = IRK ,
Γ = Y = IRL, and λ(γ, y) := ‖y − γ‖ satisfy the conditions of the theorem.

Universal Prediction Strategies: Randomized Case

We say that a randomized prediction strategy outputting randomized predic-
tions γn ∈ P(Γ ) is CS universal if, for any continuous stationary randomized
prediction strategy D and for any biinfinite . . . , x−1, y−1, x0, y0, x1, y1, . . .,

(
{. . . , x−1, x0, x1, . . .} and {. . . , y−1, y0, y1, . . .} are precompact

)

=⇒
(

lim sup
N→∞

(
1
N

N∑

n=1

λ(gn, yn) − 1
N

N∑

n=1

λ(dn, yn)

)

≤ 0 a.s.

)

, (6)

where g1, g2, . . . , d1, d2, . . . are independent random variables distributed accord-
ing to (3)–(4).

Theorem 2. Let X and Y be locally compact metric spaces, Γ be a metric
space, and λ be a continuous and large at infinity loss function. There exists a
CS universal randomized prediction algorithm.

It is clear that Theorems 1 and 2 contain Propositions 1 and 2, respectively, as
special cases: in the compact case the condition that the loss function should be
large at infinity is satisfied automatically.

3 Proof of Proposition 1

In the rest of the paper we will be using the notation Σ for (X × Y)∞ × X. By
the Tikhonov theorem ([13], Theorem 3.2.4) this is a compact space; it is also
metrizable ([13], Theorem 4.2.2). Another standard piece of notation throughout



444 V. Vovk

the rest of the paper will be σn := (. . . , xn−1, yn−1, xn) ∈ Σ. Remember that λ,
as a continuous function on a compact set, is bounded below and above ([13],
Theorem 3.10.6).

Let Γ Σ be the set of all continuous functions from Σ to Γ with the topology
of uniform convergence, generated by the metric

ρ̂(D1, D2) := sup
σ∈Σ

ρ
(
D1(σ), D2(σ)

)
,

ρ being the metric in Γ (induced by the norm in the containing Banach space).
Since the topological space Γ Σ is separable ([13], Corollary 4.2.18 in combination
with Theorem 4.2.8), we can choose a dense sequence D1, D2, . . . in Γ Σ .

Remark. The topology in Γ Σ is defined via a metric, and this is one of the
very few places in this paper where we need a specific metric (for brevity we of-
ten talk about “metric spaces”, but this can always be replaced by “metrizable
topological spaces”). Without using the metric, we could say that the topology
in Γ Σ is the compact-open topology ([13], Section 3.4). Since Σ is compact,
the compact-open topology on Γ Σ coincides with the topology of uniform con-
vergence ([13], Theorem 4.2.17). The separability of Γ Σ now follows from [13],
Theorem 3.4.16 in combination with Theorem 4.2.8.

The next step is to apply Kalnishkan and Vyugin’s [11] Weak Aggregating Algo-
rithm (WAA) to this sequence. (The WAA is similar to Kivinen and Warmuth’s
[15] Weighted Average Algorithm but has variable learning rate and is cou-
pled with a novel and ingenious performance analysis.) We cannot just refer to
[11] and will have to redo their derivation of the WAA’s main property since
Kalnishkan and Vyugin only consider the case of finitely many “experts” Dk

and finite Y. (Although in other respects we will not need their algorithm in full
generality and so slightly simplify it.).

Let q1, q2, . . . be a sequence of positive numbers summing to 1,
∑∞

k=1 qk = 1.
Define

�(k)
n := λ (Dk(σn), yn) , L

(k)
N :=

N∑

n=1

�(k)
n

to be the instantaneous loss of the kth expert Dk on the nth round and his
cumulative loss over the first N rounds. For all n, k = 1, 2, . . . define

w(k)
n := qkβ

L
(k)
n−1

n , βn := exp
(

− 1√
n

)

(w(k)
n are the weights of the experts to use on round n) and

p(k)
n :=

w
(k)
n

∑∞
k=1 w

(k)
n

(the normalized weights; it is obvious that the denominator is positive and finite).
The WAA’s prediction on round n is

γn :=
∞∑

k=1

p(k)
n Dk(σn) (7)
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(the series is convergent in the Banach space since the compactness of Γ implies
supγ∈Γ ‖γ‖ < ∞; and γn ∈ Γ since Γ is convex and

γn −
K∑

k=1

p
(k)
n

∑K
k=1 p

(k)
n

Dk(σn)

=
K∑

k=1

(

1 − 1
∑K

k=1 p
(k)
n

)

p(k)
n Dk(σn) +

∞∑

k=K+1

p(k)
n Dk(σn) → 0 (8)

as K → ∞).
Let �n := λ(γn, yn) be the WAA’s loss on round n and LN :=

∑N
n=1 �n be its

cumulative loss over the first N rounds.

Lemma 1 (cf. [11], Lemma 3). The WAA guarantees that, for all N ,

LN ≤
N∑

n=1

∞∑

k=1

p(k)
n �(k)

n −
N∑

n=1

logβn

∞∑

k=1

p(k)
n β

�(k)
n

n + logβN

∞∑

k=1

qkβ
L

(k)
N

N . (9)

The first two terms on the right-hand side of (9) are sums over the first N
rounds of different kinds of mean of the experts’ losses (see, e.g., [16], Chapter
III, for a general definition of the mean); we will see later that they nearly
cancel each other out. If those two terms are ignored, the remaining part of
(9) is identical (except that β now depends on n) to the main property of the
“Aggregating Algorithm” (see, e.g., [17], Lemma 1). All infinite series in (9) are
trivially convergent.

Proof of Lemma 1. Inequality (9) can be obtained from the conjunction of

LN ≤
N∑

n=1

∞∑

k=1

p(k)
n �(k)

n (10)

and
N∑

n=1

logβn

∞∑

k=1

p(k)
n β

�(k)
n

n ≤ logβN

∞∑

k=1

qkβ
L

(k)
N

N . (11)

The first of these inequalities, (10), follows from the “countable convexity” �n ≤
∑∞

k=1 p
(k)
n �

(k)
n , which in turn follows from (8), the continuity of λ, and

λ

(
K∑

k=1

p
(k)
n

∑K
k=1 p

(k)
n

Dk(σn), yn

)

≤
K∑

k=1

p
(k)
n

∑K
k=1 p

(k)
n

λ (Dk(σn), yn)

if we let K → ∞. The second inequality, (11), is obtained by summing

logβn

∞∑

k=1

p(k)
n β

�(k)
n

n ≤ logβn

∞∑

k=1

qkβ
L(k)

n
n − logβn−1

∞∑

k=1

qkβ
L

(k)
n−1

n−1 (12)
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over n = 1, . . . , N (the subtrahend on the right-hand side of (12) is interpreted
as 0 when n = 1). Since (12) is trivial for n = 1, we will prove it assuming n ≥ 2.
By the definition of p

(k)
n , (12) can be rewritten as

logβn

∑∞
k=1 qkβ

L
(k)
n−1

n β
�(k)

n
n

∑∞
k=1 qkβ

L
(k)
n−1

n

≤ logβn

∞∑

k=1

qkβ
L(k)

n
n − logβn−1

∞∑

k=1

qkβ
L

(k)
n−1

n−1 ,

which after cancellation becomes

logβn−1

∞∑

k=1

qkβ
L

(k)
n−1

n−1 ≤ logβn

∞∑

k=1

qkβ
L

(k)
n−1

n . (13)

The last inequality follows from a general result about comparison of different
means ([16], Theorem 85), but we can also check it directly (following [11]). Let
βn = βa

n−1, where 0 < a < 1. Then (13) can be rewritten as
( ∞∑

k=1

qkβ
L

(k)
n−1

n−1

)a

≥
∞∑

k=1

qkβ
aL

(k)
n−1

n−1 ,

and the last inequality follows from the concavity of the function t → ta.

Lemma 2 (cf. [11], Lemma 1). Let L be an upper bound on |λ|. The WAA
guarantees that, for all N and K,

LN ≤ L
(K)
N +

(

L2eL + ln
1

qK

) √
N. (14)

(There is no term eL in [11] since it only considers non-negative loss functions.)

Proof. From (9), we obtain:

LN ≤
N∑

n=1

∞∑

k=1

p(k)
n �(k)

n +
N∑

n=1

√
n ln

∞∑

k=1

p(k)
n exp

(

− �
(k)
n√
n

)

+ logβN
qK + L

(K)
N

≤
N∑

n=1

∞∑

k=1

p(k)
n �(k)

n +
N∑

n=1

√
n

⎛

⎜
⎝

∞∑

k=1

p(k)
n

⎛

⎜
⎝1 − �

(k)
n√
n

+

(
�
(k)
n

)2

2n
eL

⎞

⎟
⎠ − 1

⎞

⎟
⎠

+ logβN
qK + L

(K)
N

= L
(K)
N +

1
2

N∑

n=1

1√
n

∞∑

k=1

p(k)
n

(
�(k)
n

)2

eL +
√

N ln
1

qK

≤ L
(K)
N +

L2eL

2

N∑

n=1

1√
n

+
√

N ln
1

qK
≤ L

(K)
N +

L2eL

2

∫ N

0

dt√
t

+
√

N ln
1

qK

= L
(K)
N + L2eL

√
N +

√
N ln

1
qK

(in the second “≤” we used the inequalities et ≤ 1+t+ t2

2 e|t| and ln t ≤ t−1).
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Now it is easy to prove Proposition 1. Let γn be the predictions output by the
WAA. Consider any continuous stationary prediction strategy D. Since every
continuous function on a metric compact is uniformly continuous ([13], Theorem
4.3.32), for any ε > 0 we can find δ > 0 such that |λ(γ1, y) − λ(γ2, y)| < ε
whenever ρ(γ1, γ2) < δ. We can further find K such that ρ̂(DK , D) < δ, and
(14) then gives, for all biinfinite . . . , x−1, y−1, x0, y0, x1, y1, . . .,

lim sup
N→∞

(
1
N

N∑

n=1

λ(γn, yn) − 1
N

N∑

n=1

λ(D(σn), yn)

)

≤ lim sup
N→∞

(
1
N

N∑

n=1

λ(γn, yn) − 1
N

N∑

n=1

λ(DK(σn), yn)

)

+ ε

≤ lim sup
N→∞

(

L2eL + ln
1

qK

)
1√
N

+ ε = ε;

since ε can be arbitrarily small, the WAA is CS universal.

4 Proof of Proposition 2

Since Γ is compact, P(Γ ) is also compact (this is a special case of Prokhorov’s
theorem, [14], Appendix III, Theorem 6). Since Γ is a metric compact, P(Γ )
is metrizable (e.g., by the well-known Prokhorov metric: [14], Appendix III,
Theorem 6).

Define
λ(γ, y) :=

∫

Γ

λ(g, y)γ(dg), (15)

where γ is a probability measure on Γ . This is the loss function in the new game
of prediction with the prediction space P(Γ ); it is convex in γ.

Let us check that the loss function (15) is continuous. If γn → γ and yn → y
for some (γ, y) ∈ P(Γ ) × Y,

|λ(γn, yn) − λ(γ, y)| ≤ |λ(γn, yn) − λ(γn, y)| + |λ(γn, y) − λ(γ, y)| → 0

(the first addend tends to zero because of the uniform continuity of λ : Γ ×Y →
IR and the second addend by the definition of the topology of weak convergence).

Unfortunately, Proposition 1 cannot be applied to the new game of prediction
directly since it assumes that the prediction space is a subset of a Banach space.
(It is true that P(Γ ) is a subspace of the dual, equipped with the weak∗ topology,
to the space C(Γ ) of continuous functions on Γ with the topology of uniform
convergence. However, since C(Γ ) is typically infinite-dimensional, the dual may
fail to be even metrizable: see [18], 3.16.) The proof of Proposition 1, however,
still works for the new game.

Since (P(Γ ))Σ is separable (for the same reasons as Γ Σ in the previous sec-
tion), we can choose a dense sequence D1, D2, . . . in it. It is clear that the mixture
(7) is a probability measure. The result of the previous section is still true, and
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the randomized prediction strategy (7) produces γn ∈ P(Γ ) that are guaranteed
to satisfy

lim sup
N→∞

(
1
N

N∑

n=1

λ(γn, yn) − 1
N

N∑

n=1

λ(D(σn), yn)

)

≤ 0, (16)

for any continuous stationary randomized prediction strategy D. The loss func-
tion is bounded in absolute value by a constant L, and so the law of the iterated
logarithm (see, e.g., [19], (5.8)) implies that

lim sup
N→∞

∣
∣
∣
∑N

n=1

(
λ(gn, yn) − λ(γn, yn)

)∣∣
∣

√
2L2N ln lnN

≤ 1,

lim sup
N→∞

∣
∣
∣
∑N

n=1

(
λ(dn, yn) − λ(D(σn), yn)

)∣∣
∣

√
2L2N ln lnN

≤ 1

with probability one. Combining the last two inequalities with (16) gives

lim sup
N→∞

(
1
N

N∑

n=1

λ(gn, yn) − 1
N

N∑

n=1

λ(dn, yn)

)

≤ 0 a.s.

Therefore, the WAA (applied to D1, D2, . . .) is a CS universal continuous ran-
domized prediction strategy.

5 Proof of Theorem 1

In view of Proposition 1, we only need to get rid of the assumption of compact-
ness of X, Γ , and Y.

Game of Removal

The proofs of Theorems 1 and 2 will be based on the following game (an abstract
version of the “doubling trick”, [6]) played in a topological space X :

Game of removal G(X)

FOR n = 1, 2, . . . :
Remover announces compact Kn ⊆ X .
Evader announces pn /∈ Kn.

END FOR.

Winner: Evader if the set {p1, p2, . . .} is precompact; Remover otherwise.

Intuitively, the goal of Evader is to avoid being removed to the infinity. With-
out loss of generality we will assume that Remover always announces a non-
decreasing sequence of compact sets: K1 ⊆ K2 ⊆ · · · .
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Lemma 3 (Gruenhage). Remover has a winning strategy in G(X) if X is a
locally compact and paracompact space.

Proof. We will follow the proof of Theorem 4.1 in [20] (the easy direction). If
X is locally compact and σ-compact, there exists a non-decreasing sequence
K1 ⊆ K2 ⊆ · · · of compact sets covering X , and each Kn can be extended to
compact K∗

n so that IntK∗
n ⊇ Kn ([13], Theorem 3.3.2). Remover will obviously

win G(X) choosing K∗
1 , K∗

2 , . . . as his moves.
If X is the sum of locally compact σ-compact spaces Xs, s ∈ S, Remover

plays, for each s ∈ S, the strategy described in the previous paragraph on the
subsequence of Evader’s moves belonging to Xs. If Evader chooses pn ∈ Xs for
infinitely many Xs, those Xs will form an open cover of the closure of {p1, p2, . . .}
without a finite subcover. If xn are chosen from only finitely many Xs, there will
be infinitely many xn chosen from some Xs, and the result of the previous
paragraph can be applied. It remains to remember that each locally compact
paracompact space can be represented as the sum of its locally compact σ-
compact subsets ([13], the proof of Theorem 5.1.27).

Large at Infinity Loss Functions

We will need the following useful property of large at infinity loss functions.

Lemma 4. Let λ be a loss function that is large at infinity. For each compact
set B ⊆ Y and each constant M there exists a compact set C ⊆ Γ such that

∀γ /∈ C, y ∈ B : λ(γ, y) > M. (17)

Proof. For each point y∗ ∈ B fix an open neighborhood Oy∗ 	 y∗ and a compact
set C(y∗) ⊆ Γ such that λ (Γ \ C(y∗), Oy∗) ⊆ (M, ∞). Since the sets Oy∗ form
an open cover of B, we can find this cover’s finite subcover {Oy∗

1
, . . . , Oy∗

n
}. It is

clear that C :=
⋃

j=1,...,n C
(
y∗

j

)
satisfies (17).

In fact, the only property of large at infinity loss functions that we will be using is
that in the conclusion of Lemma 4. In particular, it implies the following lemma.

Lemma 5. Under the conditions of Theorem 1, for each compact set B ⊆ Y
there exists a compact convex set C = C(B) ⊆ Γ such that for each continuous
stationary prediction strategy D : Σ → Γ there exists a continuous stationary
prediction strategy D′ : Σ → C that dominates D in the sense

∀σ ∈ Σ, y ∈ B : λ(D′(σ), y) ≤ λ(D(σ), y). (18)

Proof. Without loss of generality B is assumed non-empty. Fix any γ0 ∈ Γ . Let

M1 := sup
y∈B

λ(γ0, y),

let C1 ⊆ Γ be a compact set such that

∀γ /∈ C1, y ∈ B : λ(γ, y) > M1 + 1,
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let
M2 := sup

(γ,y)∈C1×B

λ(γ, y),

and let C2 ⊆ Γ be a compact set such that

∀γ /∈ C2, y ∈ B : λ(γ, y) > M2 + 1.

It is obvious that M1 ≤ M2 and γ0 ∈ C1 ⊆ C2. We can and will assume C2

convex (see [18], Theorem 3.20(c)).
Let us now check that C1 lies inside the interior of C2. Indeed, for any fixed

y ∈ B and γ ∈ C1, we have λ(γ, y) ≤ M2; since λ(γ′, y) > M2 +1 for all γ′ /∈ C2,
some neighborhood of γ will lie completely in C2.

Let D : Σ → Γ be a continuous stationary prediction strategy. We will show
that (18) holds for some continuous stationary prediction strategy D′ taking
values in the compact convex set C(B) := C2. Namely, we define

D′(σ) :=
⎧
⎪⎨

⎪⎩

D(σ) if D(σ) ∈ C1
ρ(D(σ),Γ\C2)

ρ(D(σ),C1)+ρ(D(σ),Γ\C2)D(σ) + ρ(D(σ),C1)
ρ(D(σ),C1)+ρ(D(σ),Γ\C2)γ0 if D(σ) ∈ C2 \ C1

γ0 if D(σ) ∈ Γ \ C2

where ρ is the metric in Γ ; the denominator ρ(D(σ), C1) + ρ(D(σ), Γ \ C2) is
positive since already ρ(D(σ), C1) is positive. Since C2 is convex, we can see that
D′ indeed takes values in C2. The only points σ at which the continuity of D′ is
not obvious are those for which D(σ) lies on the boundary of C1 or C2: in this
case one has to use the fact that C1 is covered by the interior of C2.

It remains to check (18); the only non-trivial case is D(σ) ∈ C2 \ C1. By the
convexity of λ(γ, y) in γ, the inequality in (18) will follow from

ρ(D(σ), Γ \ C2)
ρ(D(σ), C1) + ρ(D(σ), Γ \ C2)

λ(D(σ), y)

+
ρ(D(σ), C1)

ρ(D(σ), C1) + ρ(D(σ), Γ \ C2)
λ(γ0, y) ≤ λ(D(σ), y),

i.e.,
λ(γ0, y) ≤ λ(D(σ), y).

Since the left-hand side of the last inequality is at most M1 and its right-hand
side exceeds M1 + 1, it holds true.

The Proof

For each compact B ⊆ Y fix a compact convex C(B) ⊆ Γ as in Lemma 5. Pre-
dictor’s strategy ensuring (5) is constructed from Remover’s winning strategy
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in G(X × Y) (see Lemma 3; metric spaces are paracompact by the Stone the-
orem, [13], Theorem 5.1.3) and from Predictor’s strategies S(A, B) outputting
predictions

γn ∈ C(B) (19)

and ensuring the consequent of (5) for all continuous

D : (A × B)∞ × A → C(B) (20)

under the assumption that (xn, yn) ∈ A × B for given compact A ⊆ X and
B ⊆ Y (the existence of such S(A, B) is asserted in Proposition 1). Remover’s
moves are assumed to be of the form A × B for compact A ⊆ X and B ⊆ Y.
Predictor is simultaneously playing the game of removal G(X × Y) as Evader.

At the beginning of the game of prediction Predictor asks Remover to make
his first move A1 × B1 in the game of removal; without loss of generality we
assume that A1 × B1 contains all (xn, yn), n ≤ 0 (there is nothing to prove if
{(xn, yn) |n ≤ 0} is not precompact). Predictor then plays the game of prediction
using the strategy S(A1, B1) until Environment chooses (xn, yn) /∈ A1 × B1

(forever if Environment never chooses such (xn, yn)). As soon as such (xn, yn) is
chosen, Predictor announces (xn, yn) in the game of removal and notes Remover’s
response (A2, B2). He then continues playing the game of prediction using the
strategy S(A2, B2) until Environment chooses (xn, yn) /∈ A2 × B2, etc.

Let us check that this strategy for Predictor will always ensure (5). If Envi-
ronment chooses (xn, yn) outside Predictor’s current Ak × Bk finitely often, the
consequent of (5) will be satisfied for all continuous stationary D : Σ → C(BK)
(BK being the second component of Remover’s last move (AK , BK)) and so,
by Lemma 5, for all continuous stationary D : Σ → Γ . If Environment chooses
(xn, yn) outside Predictor’s current Ak × Bk infinitely often, the set of (xn, yn),
n = 1, 2, . . ., will not be precompact, and so the antecedent of (5) will be violated.

6 Proof of Theorem 2

We will prove that the prediction strategy of the previous section with (19)
replaced by γn ∈ P(C(B)), (20) replaced by

D : (A × B)∞ × A → P(C(B)),

and Proposition 1 replaced by Proposition 2 is CS universal. Let D : Σ → P(Γ )
be a continuous stationary randomized prediction strategy, i.e., a continuous
stationary prediction strategy in the new game of prediction with loss function
(15), and let (AK , BK) be Remover’s last move (if Remover makes infinitely
many moves, the antecedent of (6) is false, and there is nothing to prove).

Define a continuous stationary randomized prediction strategy D′ : Σ →
P(C(BK)) as follows. First define γ0, M1, C1, M2, and C2 as in the proof of
Lemma 5, with B := BK . Fix a continuous function f : Γ → [0, 1] such that
f = 0 on C1 and f = 1 on Γ \ C2 (such an f exists by the Tietze–Uryson
theorem, [13], Theorem 2.1.8, and the fact that C1 lies in the interior of C2). The
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randomized prediction D′(σn) ∈ P(Γ ) generates the actual prediction d′n ∈ Γ
in two steps: first dn is generated from D(σn), and then it is replaced by γ0

with probability f(dn) (independently of everything else). Notice that when a
replacement is made, the loss decreases:

λ(d′n, y) ≤ M1 < M1 + 1 < λ(dn, y),

assuming y ∈ B. It is clear that the stationary randomized prediction strategy
D′ defined in this way is continuous (in the topology of weak convergence, as
usual) and takes values in P(C2). Remembering that γn were chosen to satisfy
the condition of universality in Proposition 2, we now obtain

lim sup
N→∞

(
1
N

N∑

n=1

λ(gn, yn) − 1
N

N∑

n=1

λ(dn, yn)

)

≤ lim sup
N→∞

(
1
N

N∑

n=1

λ(gn, yn) − 1
N

N∑

n=1

λ(d′n, yn)

)

≤ 0 a.s.;

it remains to compare this with (6).

7 Conclusion

An interesting direction of further research is to obtain non-asymptotic versions
of our results. If the benchmark class of continuous stationary prediction strate-
gies is compact, loss bounds can be given in terms of ε-entropy. In general, one
can give loss bounds in terms of a nested family of compact sets whose union is
dense in the set of continuous stationary prediction strategies (in analogy with
Vapnik and Chervonenkis’s principle of structural risk minimization [21]).
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Abstract. Considering one-dimensional continuum-armed bandit prob-
lems, we propose an improvement of an algorithm of Kleinberg and a
new set of conditions which give rise to improved rates. In particular,
we introduce a novel assumption that is complementary to the previ-
ous smoothness conditions, while at the same time smoothness of the
mean payoff function is required only at the maxima. Under these new
assumptions new bounds on the expected regret are derived. In partic-
ular, we show that apart from logarithmic factors, the expected regret
scales with the square-root of the number of trials, provided that the
mean payoff function has finitely many maxima and its second deriva-
tives are continuous and non-vanishing at the maxima. This improves a
previous result of Cope by weakening the assumptions on the function.
We also derive matching lower bounds. To complement the bounds on
the expected regret, we provide high probability bounds which exhibit
similar scaling.

1 Introduction

We consider continuum-armed bandit problems defined by some unknown distri-
bution-family P (·|x), indexed by x ∈ [0, 1]. In each trial t = 1, 2, . . . the learner
chooses Xt ∈ [0, 1] and receives return Yt ∼ P (·|Xt). We assume that Yt is
independent of Ft−1 = σ(X1, Y1, . . . , Xt−1, Yt−1) given Xt. Furthermore, the
returns are assumed to be uniformly bounded, say Yt ∈ [0, 1].

The goal of the learner is to maximize her expected return. Let the mean
return at x be

b(x) � E [Y1 | X1 = x] ,

where we assume that b : [0, 1] → [0, 1] is measurable. Let b∗ � supx∈[0,1] b(x) be
the best possible return. Since P is unknown, in every trial the learner suffers a
loss of b∗ − Yt, so that after T trials the learner’s regret is

RT � T b∗ −
T∑

t=1

Yt.

With this, return-maximization is the same as regret minimization.
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In general, the domain of the decision or action variable Xt can be multi-
dimensional. Here we restrict our attention to the one-dimensional case as this
shares many of the difficulties of the full multi-dimensional problem, while it
allows a simplified presentation of the main ideas.

The continuum-armed bandit problem has many applications (for references
see e.g. [1]) and has been studied by a number of authors (e.g., [2,1,3]). It turns
out that the continuum-armed bandit problem is much harder than finite-armed
bandit problems. For the latter, it is known that logarithmic regret is achievable
(see e.g. [4] and the references therein), while for the continuum-armed bandit the
regret in typical cases will be polynomial. Concerning results on one-dimensional
decision spaces, Kleinberg has derived upper and lower bounds on the regret un-
der the assumption that the mean payoff function is uniformly locally Lipschitz
with some exponent 0 < α ≤ 1. Functions in this class satisfy the requirement
that there exists some neighborhood size δ > 0 and constant L ≥ 0 such that for
any x, x′ ∈ [0, 1] which are δ-close to each other, |b(x)−b(x′)| ≤ L|x−x′|α holds.
Kleinberg proposed a natural discretization-based algorithm that divides the do-
main into subintervals of equal lengths and plays a finite-armed bandit problem
over the discretized problem. When choosing an interval, Kleinberg’s algorithm
samples its midpoint. He proves that this algorithm achieves an expected regret
of Õ

(
T 2/3

)
over T steps, along with a lower bound of Ω(T 2/3) that matches the

upper bound apart from a logarithmic factor. If the exponent α is known, the
algorithm is shown to achieve expected regret of size Õ

(
T (1+α)/(1+2α)

)
.

In another recent work Cope [3] studies a modified Kiefer-Wolfowitz algorithm
(the modification concerns the learning rates). He shows an expected regret
bound of size O(T 1/2) if b is unimodal, three times continuously differentiable,
and its derivative is well behaved at its maxima x∗ in the sense that c1|x−x∗|2 ≤
(x − x∗)b′(x) and |b′(x)| ≤ c2|x − x∗| hold for some c1, c2 > 0.

In this paper, we provide a refined performance characterization for the fol-
lowing modification of Kleinberg’s algorithm: While Kleinberg suggested to pick
the midpoints of the intervals, we propose to sample actions uniformly at ran-
dom within the interval. The key underlying idea is the following. There are two
sources of the loss in the algorithm: the loss coming from the discretization of
the continuous action space (the approximation loss) and the loss for selecting
suboptimal arms (cost of learning). A bound on the approximation loss is con-
trolled by the smoothness of the function at its maxima. The cost of learning,
on the other hand, is controlled by the gap between the payoffs of suboptimal
intervals and the optimal payoff. These gaps are easier to control if one samples
uniformly from an interval than if one samples only the midpoint of the inter-
val. Our analysis overcomes another limitation of Kleinberg’s analysis which is
incapable of capturing higher order smoothness: If b is uniformly locally Lip-
schitz with coefficient α > 1 then it must be constant. We avoid this problem
by demanding continuity only at the maxima of the mean payoff function.

A careful analysis then leads to a number of improved bounds. In particular,
the modified algorithm achieves expected regret of Õ

(
T 1/2

)
if b has finitely

many maxima and non-vanishing, continuous second derivatives at all maxima.
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Compared with the result of Cope, the regret is within a logarithmic factor,
while our conditions on the payoff function are much weaker. Our upper bounds
on the expected regret are complemented by a matching lower bound and a
high-probability bound.

2 Problem Setup and Algorithm

In this section we state our assumptions on the mean payoff function, give our
algorithm and an outline of the rest of the paper.

Our first assumption is a continuity condition. Without such a condition the
regret may grow linearly with T , as it is hard to find maxima of a function,
which are obtained at a sharp peak. We propose to capture this difficulty by the
degree of continuity at the maxima:

Assumption 1. There exist constants L ≥ 0, α > 0 such that for any point
x∗ ∈ [0, 1] with lim supx→x∗ b(x) = b∗ � supx∈[0,1] b(x), and all x ∈ [0, 1]

b(x∗) − b(x) ≤ L|x∗ − x|α.

Define the loss function dx∗(x) � b(x∗)−b(x). Under Assumption 1, 0 ≤ dx∗(x) ≤
L|x∗ − x|α. Hence dx∗ is Hölder continuous at x∗ with exponent α, and so is
b. In particular, dx∗(x∗) = 0 and thus b(x∗) = b∗. Note that since we do not
require this condition to hold at all points in the domain of b, we may allow
α > 1 without restricting the set of admissible functions to the set of constant
functions.

Finding the maximum is also hard, if there are many candidates for the max-
imum, i.e., if for many x the value of b is close to b∗. This difficulty is captured
by the measure of points with value close to the maximum:

Assumption 2. There exist constants M ≥ 0, β > 0 such that for all ε > 0,

m ({ x : b∗ − ε < b(x) ≤ b∗ }) ≤ Mεβ

holds, where m denotes the Lebesgue measure.

In terms of the loss function d(x) � b∗ − b(x) the condition states that m({ x :
d(x) ≥ ε }) ≥ 1−Mεβ. For large β and ε > 0, m({ x : d(x) ≥ ε }) ≈ 1. Hence the
maxima of the function do not have strong competitors. In fact, Assumptions
1 and 2 are complementary to each other in the sense that αβ ≤ 1 holds for
most functions. In particular, an elementary argument shows that under these
assumptions αβ ≤ 1 holds if b is measurable, all maxima of b are in (0, 1) and b
is not constant in the vicinity of any of its maxima.

Assumptions 1 and 2 put global constraints on the function. We will also
consider the following assumption which relaxes this requirement:

Assumption 3. Let X∗ be the set of maxima of b. Then X∗ ⊂ (0, 1) and there
exist ρ > 0, ν > 0, α > 0, β > 0, L ≥ 0, M ≥ 0 such that for any maximum x∗ ∈
X∗, Assumptions 1 and 2 hold when x is restricted to the intervals (x∗−2ρ, x∗+
2ρ) ⊂ [0, 1]. Further, it holds that whenever x ∈ [0, 1] \

⋃
x∗∈X∗(x∗ − ρ, x∗ + ρ)

then b(x) ≤ b∗ − ν.
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Parameter: n
Initialization: Divide [0, 1] into n subintervals Ik with Ik = [k−1

n
, k

n
) (1 ≤ k < n)

and In = [n−1
n

, 1].
Execute UCB on the set of intervals:

– Initialization: Choose from each interval Ik a point uniformly at random.
– Loop:

• Choose the interval Ik that maximizes b̂k+
√

2 ln t
tk

, where b̂k is the average

return obtained from points in interval Ik, tk is the number of times
interval Ik was chosen, and t is the overall number of steps taken so far.

• Choose a point uniformly at random from the chosen interval Ik.

Fig. 1. The UCBC algorithm with the number of intervals as parameter

This assumption requires that the function is well behaved in the vicinity of its
well separated maxima.

As discussed before, we use a discretization-based algorithm that divides the
domain into subintervals of equal lengths. Within each subinterval the algorithm
chooses the actions uniformly at random. The problem is then to set the number
of intervals n and to decide which interval to sample from. While we leave the
choice of n open at the moment (n is a parameter of the algorithm, and a central
theme of the paper is to find the “right” value of n), for the latter part, just like
Kleinberg, we use the UCB algorithm (i.e. UCB1 from [4]). UCB is a finite-armed
bandit algorithm that uses upper confidence bounds on the arms’ sample-means
and achieves optimal logarithmic regret-rates [4]. A more formal description of
our UCBC (UCB for continuous bandits) algorithm is given in Figure 1.

Under Assumptions 1 and 2, in Section 3.1 we prove a generic result that gives
a bound on the expected regret in terms of the number of subintervals n and
the length T of the trial. As will be shown in Section 3.2, this result also holds
under Assumption 3. We then give a high probability bound in Section 4. In
Section 5, we show that without any knowledge of β, we get the same bounds as
Kleinberg. However, for known β we get an improved bound of Õ

(
T

1+α−αβ
1+2α−αβ

)
. In

particular, if b has finitely many maxima and a non-vanishing, continuous second
derivative at all maxima, then we prove E [RT ] = Õ(

√
T ). We also present lower

bounds on the regret under Assumptions 1 and 2 in Section 6. These lower
bounds essentially match our upper bound, hence showing that the algorithm’s
performance is optimal if α, β are known.

3 Bounds on the Expected Regret

3.1 Bounds Under Assumptions 1 and 2

In this section we analyze the regret of UCBC under Assumptions 1 and 2. We
use the following result that can be extracted from the analysis of UCB (in
particular, from the proof of Theorem 1 in [4]):
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Lemma 1. Consider UCB applied to a multi-armed bandit problem with payoffs
in [0, 1]. Let τi(T ) denote number of times an arm is chosen up to (and including)
time step T , and let di be the expected loss when playing arm i instead of an
optimal arm. If i is the index of a suboptimal arm then

E [τi(T )] ≤ A ln(T )
d2

i

+ B (1)

for some constants A, B. In particular, one may select A = 8 and B = 1+π2/3.

Analysis of the Regret of UCBC: Our analysis will follow the idea de-
scribed earlier, bounding separately the loss resulting from the discretization,
and the cost of learning which interval is the best. According to Lemma 1, for
the latter we need to lower bound the gap between the best arm’s payoff and
the suboptimal arms’ payoffs. This is the critical part of the proof.

For k = 1, 2, . . . , n let Ik denote the k-th interval, i.e. Ik � [(k − 1)/n, k/n) if
1 ≤ k < n and In � [(n − 1)/n, 1]. Let the choice of UCB be Ut ∈ {1, . . . , n},
the choice of UCBC be Xt and the received payoff Yt. Let τi(T ) �

∑T
t=1 I{Ut=i}

be the number of times UCBC selects arm i in the first T trials.
Denote by bk � n

∫
Ik

b(x)dx the expected payoff when the algorithm selects
to sample from the k-th subinterval. Let b1 ≤ b2 ≤ . . . ≤ bn be the ordering of
(bk)k, and let π be the permutation that gives this ordering, i.e. bπ(k) = bk. Set
τ ′
i(T ) � τπ−1(i)(T ). Finally, let d∗i � b∗ − bi, and di � bn − bi.

By Wald’s identity, the expected regret of UCBC can be expressed via the
sampling times τk(T ), alternatively using τ ′

k(T ), as follows:

E [RT ] =
n∑

k=1

(b∗ − bk)E [τk(T )] =
n∑

i=1

d∗i E [τ ′
i(T )] .

In what follows, we analyze R̃T �
∑n

i=1 d∗i τ
′
i(T ), where τ ′

i(T ) � E [τ ′
i(T )]. We

start with a simple observation that follows immediately from Assumption 1:

d∗n � b∗ − bn ≤ Ln−α. (2)

To see that this holds pick any maximum x∗ of b and let k∗ be the index of the
interval containing x∗: x∗ ∈ Ik∗ . Let i∗ � π(k∗). Then b∗−bn ≤ b∗−bi∗ = b(x∗)−
n

∫
Ii∗ b(x)dx = n

∫
Ii∗ (b(x∗) − b(x))dx ≤ nL

∫ 1/n

0 zαdz ≤ nL(1/n)α+1/(α + 1) ≤
Ln−α as promised.

We split the set of arms into two parts. Let γ ≥ 1 be a real-valued number to
be selected later and define

S � { i : d∗i > γLn−α }.

By design, S contains the indices of “strongly” suboptimal intervals.
We split the regret based on if the payoff in an interval is “strongly”

suboptimal:
n∑

i=1

d∗i τ
′
i(T ) ≤

∑

i�∈S

d∗i τ
′
i(T ) +

∑

i∈S

d∗i τ
′
i(T ) � R̃T,1 + R̃T,2.
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Bounding R̃T,1: R̃T,1 is controlled by the resolution of the discretization: By
the choice of S, d∗i ≤ γLn−α whenever i 
∈ S. Hence

R̃T,1 ≤ γLn−α
∑

i�∈S

τ ′
i(T ) ≤ γLn−αT. (3)

Bounding R̃T,2: The idea here is to “sort” intervals with index in S according
to the size of the “gaps” di into different buckets and then argue that the number
of indices in a bucket with small gaps cannot be too large. Within each bucket
we use Lemma 1 to bound the regret.

First, let us note that when nα ≤ γL then S = ∅, hence R̃T,2 = 0. Thus, in
what follows we assume that nα > γL or γLn−α < 1.

Observe that S does not contain any interval with an optimal response: if
bi = bn, then i 
∈ S. Indeed, by (2) d∗n ≤ Ln−α ≤ γLn−α. Therefore, we may use
Lemma 1 to bound τ ′

i(T ) for i ∈ S. By (2), d∗i = b∗ − bi ≤ bn − bi + Ln−α =
di + Ln−α and hence using (1) we get

R̃T,2 ≤ A ln(T )
∑

i∈S

(
1
di

+
Ln−α

d2
i

)

+ B|S|. (4)

Let Δk � 2−k, k = 0, 1, 2, . . . so that 1 = Δ0 > Δ1 > Δ2 > . . .. Let

Sk � { i ∈ S : Δk ≤ d∗i < Δk−1 }, k = 0, 1, 2, . . . .

Note that if Δk−1 ≤ γLn−α then Sk = ∅. Hence, if we define K to be the unique
index such that γLn−α ∈ [ΔK , ΔK−1), then S =

⋃K
k=0Sk. (The existence of K

is guaranteed since by assumption γLn−α < 1.) Note that K = �ln2(nα/(γL)),
and if k ≤ K, then Δk−1 > γLn−α. Now set γ � 4. By (2), di � bn − bi ≥
b∗ − Ln−α − bi = d∗i − Ln−α, hence for i ∈ Sk, k = 0, 1, . . . , K,

di ≥ Δk − Ln−α = Δk(1 − Ln−α/Δk) > Δk/2. (5)

Here in the last step we used that Δk = (1/2)Δk−1 > (1/2) γLn−α = 2Ln−α.
Using (5) we get

∑

i∈S

(
1
di

+
Ln−α

d2
i

)

=
K∑

k=0

∑

i∈Sk

(
1
di

+
Ln−α

d2
i

)

≤
K∑

k=0

(
2

Δk
+

4Ln−α

Δ2
k

)

|Sk|.(6)

A Bound on |Sk|: Let Ui(ε) � { x ∈ Ii : b∗−b(x) ≥ ε } with some ε > 0. Note
that b∗ − b(x) ≥ 0 and hence by Markov’s inequality, m(Ui(ε)) ≤ (1/ε)

∫
Ii

(b∗ −
b(x))dx = (b∗ − bi)m(Ii)/ε = d∗i m(Ii)/ε and thus for U i(ε) = Ii \ Ui(ε),
m(U i(ε)) ≥ (1 − d∗i /ε)m(Ii). Assume that i ∈ Sk. By the definition of Sk,
Δk−1 > d∗i and hence m(U i(ε)) ≥ (1 − Δk−1/ε)m(Ii). Set ε = 2Δk−1 so that
m(U i(2Δk−1)) ≥ 1/2 m(Ii). Therefore,

|Sk|m(I1) =
∑

i∈Sk

m(Ii) ≤ 2
∑

i∈Sk

m(U i(2Δk−1)) = 2 m(∪∗
i∈Sk

U i(2Δk−1)), (7)
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where the disjointness follows since U i(2Δk−1) ⊂ Ii. Since U i(2Δk−1) = { x ∈
Ii : b∗ − b(x) ≤ 2Δk−1 } = { x ∈ Ii : b(x) ≥ b∗ − Δk−2 }, the union of
these sets is contained in { x ∈ [0, 1] : b(x) ≥ b∗ − Δk−2 } and therefore by
Assumption 2, m(

⋃∗
i∈Sk

U i(2Δk−1)) ≤ M (4 Δk)β . Combined with (7), this gives
|Sk|m(I1) ≤ 2M (4 Δk)β and hence |Sk| ≤ 2 Mn (4 Δk)β .

Putting Things Together: The bound on |Sk| together with (6) and (4) yields

R̃T,2 ≤ 2AMn ln(T )

(
K∑

k=0

(4 Δk)β

(
2

Δk
+

4Ln−α

Δ2
k

))

+ B n

= 4β+1AMn ln(T )

(
K∑

k=0

2(1−β)k + 2Ln−α
K∑

k=0

2(2−β)k

)

+ B n. (8)

Assuming that β 
∈ {0, 1, 2} and exploiting that 2K+1 ≤ nα/L (this follows from
K − 1 ≤ ln2(1/(γLn−α)) and γ = 4), we get

R̃T,2 ≤ 4β+1AMn ln(T )
(

(nα/L)1−β − 1
21−β − 1

+ 2Ln−α (nα/L)2−β − 1
22−β − 1

)

+ Bn. (9)

Considering β:

• If β < 1, from (9) we get via some tedious calculations,

R̃T,2 ≤ 3 · 4β+1 AMLβ−1

21−β − 1
n1+α−αβ ln(T ) + Bn.

• β = 1: Since by our earlier remark we assume that nα > γL = 4L, working
directly from (8) gives

R̃T,2 ≤ 4β+1AMα

ln 2
n ln n ln T + 4β+1AM(3 + ln2(2/L))n ln(T ) + Bn.

• 1 < β < 2: Using (9) and nα > γL > L we get

R̃T,2 ≤ 4β+1AM

1 − 21−β
n ln T +

2 4β+1AMLβ−1

22−β − 1
n1+α−αβ ln T + Bn.

• If β = 2, from (8) using lnx/x ≤ 1/e we get

R̃T,2 ≤ 2 4β+1

(

1 +
1

4e ln 2

)

AMn ln T + 2 4β+1AMLn1−α ln T + Bn.

• If β > 2, using again (9),

R̃T,2 ≤ 4β+1AM

1 − 21−β
n lnT +

2 4β+1AML

1 − 22−β
n1−α ln T + Bn.
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Combining these inequalities with the bound (3) on R̃T,1, we get:

Lemma 2. Consider UCBC with n intervals in a continuum-armed bandit prob-
lem where the payoffs are in the range [0, 1] and the mean payoff function satisfies
Assumptions 1 and 2 with some constants L, α, M, β. Then

E [RT ] ≤ 4Ln−α T + 4β+1AMnR′
T ln T + B n,

where

R′
T =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3 Lβ−1

21−β−1 nα−αβ , 0 ≤ β < 1;
α

ln 2 ln n + 3 + ln2(2/L), β = 1;
1

1−21−β + 2Lβ−1

22−β−1
nα−αβ, 1 < β < 2;

2
(
1 + 2

4e ln 2

)
+ 2L, β = 2;

2 + 2L
1−22−β , β > 2.

Here A, B are as in Lemma 1 and can be selected as A = 8, B = 1 + π2/3.

3.2 Bounds Under the Localized Assumption (Assumption 3)

The previous analysis can be repeated, except that we split S into two disjoint
parts: S′ � { i ∈ S : Ii∩(xs−ρ, xs+ρ) 
= ∅ }, S′′ � { i ∈ S : Ii∩(xs−ρ, xs+ρ) =
∅ }. If n is big enough so that 1/n < ρ, we can use the argument of the previous
section for S′, since then Assumptions 1 and 2 hold for any interval in S′. For
i ∈ S′′, by Assumption 3, di ≥ ν. Hence, d∗i d

−2
i ≤ 1/ν + Ln−α/ν2, so that

∑

i∈S′′

d∗i d
−2
i ≤ n

ν
+

Ln1−α

ν2
≤ n

ν

(

1 +
L

ν

)

.

Let c � 1
ν

(
1 + L

ν

)
. Then we get the following result:

Lemma 3. Under Assumption 3, the expected regret satisfies

E [RT ] ≤ 4Ln−α T + 4β+1AMnR′
T ln T + (B + c)n.

4 A High Probability Bound

The next lemma follows from a version of Bernstein’s inequality due to Cesa-
Bianchi et al. [5]:

Lemma 4. Let Js ∈ Fs−1, Js ∈ {0, 1}, Zs ∈ Fs, |Zs| ≤ K, and assume that
E [JsZs|Fs−1] = 0. Let Mt �

∑t
s=1 JsZs, Tt �

∑t
s=1 Js. Then for all δ > 0,

t > 0,
P (Mt > Kφ(t, Tt, δ)) ≤ δ,

where
φ(t, T, δ) �

√
2(Tt + 1) ln(t/δ) +

√
2

3 ln(t/δ).
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Proof. Let Xs = JsZs. Then Xs is a bounded martingale difference series. Ob-
serve that E

[
X2

s | Fs−1

]
≤ K2Js and hence Vt =

∑t
s=1 E

[
X2

s | Fs−1

]
≤ K2Tt.

Hence,

P

(
Mt ≥

√
2(K2Tt + K2) ln(t/δ) +

√
2

3 K ln(t/δ)
)

≤

P

(
Mt ≥

√
2(Vt + K2) ln(t/δ) +

√
2

3 K ln(t/δ)
)

≤ δ,

where the last inequality follows by Corollary 16 of [5]. ��

Now consider UCBC on a bandit problem defined by P , but let us now change the
protocol of interaction. In particular, let (Xk,t, Yk,t)k,t be a sequence of random
variables generated independently of the choice of the algorithm such that Xk,t

is uniformly distributed in the interval Ik and Yk,t ∼ P (·|Xk,t). We assume that
these samples are generated independently of each other and from the past.
Remember that Yt is the payoff received at time step t, and let Ut again denote
the index of the interval chosen at time step t, Y ′

t = YUt,t, X ′
t = XUt,t. It should

be clear, that the distributions of
∑T

t=1 Yt and
∑T

t=1 Y ′
t are identical. Hence, it

suffices to analyze the properties of the regret of UCBC when it is used under
this new protocol. For simplicity, in what follows we will use Yt instead of Y ′

t

and Xt instead of X ′
t.

Fix any index i ∈ {1, 2, . . . , n}. Remember that d∗i � b∗ − bi is the expected
loss when playing interval i, where bi is the expected payoff for interval i and
bi ≤ bi+1, i = 1, . . . , n − 1. Let Fs = σ(X1, Xi,1, Y1, Yi,1, . . . , Xs, Xi,s, Ys, Yi,s),
Zs = b∗ −Yi,s −d∗i , Js = I{Us=i}. It can be readily verified that the conditions of
Lemma 4 are satisfied with K = 1. Hence, with probability at least 1 − δ/(2n)
simultaneously for all i, φ(T, τi(T ), δ/(2n)) ≥

∑T
s=1 JsZs =

∑T
s=1 I{Ut=i}(b∗ −

Yi,s − d∗i ), i.e.,

T∑

s=1

I{Ut=i}(b∗ − Yi,s) ≤ d∗i
T∑

s=1

I{Ut=i} + φ(T, τi(T ), δ/(2n)). (10)

Summing (10) over i, followed by some calculations gives RT ≤
∑n

i=1 d∗i τi(T ) +
HT (δ), where

HT (δ) �
(√

Tn + n
)√

2 ln(2Tn/δ) + 2(
√

2/3)n ln(2Tn/δ).

Our aim now is to obtain a high probability upper bound on τi(T ) for the
suboptimal arms. For this we change the confidence intervals of the algorithm

to ct,s(δ0) =
√

2 ln(t/δ0)
s , i.e. the modified UCBC algorithm (called UCBC(δ0))

chooses the interval that maximizes b̂k + ct,tk
(δ0) for an appropriately selected

δ0. Consider inequality (6) in the proof of Theorem 1 in [4]. Using the notation
of [4], the expectation over the triple sum in inequality (6) is O(δ0), and thus
the probability that Ti > �i + Ω(1), �i � 8 ln(n/δ0)/Δ2

i , is O(δ0) by Markov’s
inequality. Hence, the following result holds:
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Lemma 5. Under the assumptions of Lemma 1, with probability at least 1−nδ0,
simultaneously for all suboptimal arms i,

τi(T ) ≤ A′ ln(T/δ0)
d2

i

+ B′

for some constants A′, B′.

Setting δ0 � δ/(2n) in UCBC(δ0), we get that τi(T ) ≤ A′ ln(2Tn/δ)/d2
i + B′

holds for all suboptimal arms simultaneously with probability at least 1 − δ/2.
Hence, with probability at least 1 − δ,

RT ≤ 4Ln−αT +
∑

i∈S

d∗i τi(T ) + HT (δ/2)

≤ 4Ln−αT + A′ ln(2Tn/δ)
(∑

i∈S

d∗i d
−2
i

)
+ nB′ + HT (δ/2).

Continuing as in Section 3, we obtain the following result:

Lemma 6. Let δ > 0. Consider UCBC with n intervals and confidence se-
quence ct,s(δ/(2n)) applied to a continuum-armed bandit problem, where the
payoffs are in the range [0, 1] and the mean payoff function satisfies Assump-
tions 1 and 2 with some constants L, α, M, β. If nα ≤ 4L, then the regret satisfies
RT ≤ 4Ln−αT + HT (δ/2) with probability 1− δ, while for nα > 4L it holds with
probability at least 1 − δ that

RT ≤ 4Ln−α T + 4β+1A′MnR′
T ln(2Tn/δ) + B′ n + HT (δ/2).

Using the reasoning of Section 3.2, this result can be extended to the localized
version of Assumptions 1 and 2 (Assumption 3). We omit the details.

5 Choice of the Parameters

First note that according to Lemma 2 we have for 0 ≤ β < 1 and a suitable
constant c

E [RT ] ≤ 4L
T

nα
+

c 4β MLβ−1

21−β − 1
n1+α−αβ ln T. (11)

5.1 Results Without Assumption 2

With β = 0 and M = 1 Assumption 2 trivially holds true. From (11) we get

E [RT ] ≤ 4L
T

nα
+

c

L
n1+α ln T.
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Corollary 1. If α is known, setting n �
(

T
ln T

) 1
1+2α gives

E [RT ] ≤
(
4L +

c

L

)
T

1+α
1+2α (ln T )

α
1+2α , (12)

while if α is unknown, setting n �
(

T
ln T

) 1
3 gives for sufficiently large T

E [RT ] ≤ 4L · T max{1−α
3 , 23}(ln T )

1
3 +

c

L
· T 2

3 (ln T )
2
3 . (13)

Proof. (12) is straightforward. Concerning (13), first note that for our choice of
n and α ≤ 1 we have

E [RT ] ≤ 4L · T 1−α
3 (ln T )

1
3 +

c

L
· T

2
3 (ln T )

2−α
3 . (14)

On the other hand, if α > 1, then Ln−α ≤ L
√

nT−1 ln T for n =
(

T
ln T

)1/3
. Then

E [RT ] ≤
(
4L + c

L

)
T

2
3 (ln T )

1
3 . Combining this with (14) gives (13). ��

5.2 Results Using Assumption 2

The most interesting case is β < 1. For known α and β, we set n �
(

T
ln T

) 1
1+2α−αβ

and get from (11), E [RT ] ≤
(
4L + 4cMLβ−1

21−β−1

)
· T

1+α−αβ
1+2α−αβ (ln T )

α
1+2α−αβ .

As noted before, comparing Assumptions 1 and 2 we find that for most func-
tions b we have αβ ≤ 1, the only exception being when b is constant in the
vicinity of the maximum. Making the optimistic assumption that αβ = 1, we
may set n �

(
T

ln T

) 1
2α and get

E [RT ] ≤
(

4L +
4cMLβ−1

21−β − 1

)

·
√

T ln T . (15)

If the function b has continuous second derivatives, then Assumptions 1 and 2
are satisfied with α = 2 and β = 1/2:

Theorem 1. If b has a finite number of maxima x∗ with lim supx→x∗ b(x) = b∗,
and continuous second derivatives 
= 0 at all these x∗, then our algorithm with
n �

(
T

ln T

) 1
4 achieves

E [RT ] ≤ O
(√

T ln T
)

.

Proof. By assumption, b′(x∗) = 0 and b′′(x∗) 
= 0 for any maximum x∗. Using
Taylor series expansion we find

b(x∗) − L1(x∗ − x)2 ≤ b(x) ≤ b(x∗) − L2(x∗ − x)2 + L3|x∗ − x|3

for suitable constants L1, L2, L3 > 0, any maximum x∗, and any x ∈ [0, 1].
Hence, Assumption 1 is satisfied with α = 2.
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Furthermore, there are ε0 > 0 and 0 < δ0 < L2/(2L3) such that b(x) ≤ b∗−ε0

for all x with minx∗ |x − x∗| ≥ δ0. Thus b(x) > b(x∗) − ε for ε < ε0 implies
minx∗ |x − x∗| < δ0 and b(x∗) − ε < b(x) ≤ b(x∗) − L2(x∗ − x)2 + L3|x∗ −
x|3 = b(x∗) − (x∗ − x)2(L2 − L3|x∗ − x|) ≤ b(x∗) − L2(x∗ − x)2/2 such that
|x − x∗| <

√
2ε/L2 for some maximum x∗ (out of the finitely many). For ε ≥ ε0

we have |x − x∗| ≤ 1 ≤
√

ε/ε0. Hence, Assumption 2 is satisfied with β = 1/2.
The theorem follows from (15). ��

5.3 When the Number of Steps T Is Unknown

If unlike in the previous sections the total number of steps T is unknown,
then a simple application of the doubling trick gives the same bounds with
somewhat worse constants. That is, UCBC is executed for 2k steps in rounds
k = 1, 2, . . .. Then after T steps at most K = 1 + �ln2 T  rounds have been
played. Thus the total regret can be obtained by summing up over all rounds∑K

k=1(2
k)a(ln(2k))b = O

(
(2K)a(ln(2K))b

)
= O

(
T a(ln T )b

)
.

6 Lower Bounds on the Regret

In this section we extend the lower bound result of Kleinberg [1] and show that
our upper bounds on the regret are tight (apart from a logarithmic factor).

Theorem 2. For any α > 0, β ≥ 0, αβ ≤ 1, and any learning algorithm, there
is a function b satisfying Assumptions 1 and 2 such that for any γ < 1+α−αβ

1+2α−αβ ,

lim sup
T→∞

E [RT ]
T γ

→ ∞.

In [1] this theorem was proven for β = 0. We extend the construction of [1] to
consider also β > 0.

Proof. We define function b as

b(x) �
∞∑

k=k0

[φk(x) + ψk(x)]

for an appropriate k0 and functions φk and ψk. We set ck0−1 = 0 and dk0−1 = 1
and iteratively define intervals [ck, dk] at random. The functions φk and ψk are
defined in respect to these random intervals. As such, the function b is con-
structed by a random process. We will argue, that for any learning algorithm
the average regret in respect to this random process is large, which will imply
the theorem.

The functions φk and ψk are continuous, non-negative, and positive only
within a part of the interval [ck−1, dk−1]. The main part of these functions is a
plateau where they remain constant, and they rise to and fall from this plateau
governed by a function f : [0, 1] �→ [0, 1] where f(x) � 1 − (1 − x)α, such
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that f(0) = 0 and f(1) = 1. The lengths δk of the intervals [ck, dk] are very
rapidly decreasing. We are also using sub-intervals [c′k, d′k] with the property
[ck, dk] ⊂ [c′k−1, d

′
k−1] ⊂ [ck−1, dk−1]. Let

δk � 2−k!, Δk � 1
5
δ
1/(αβ)
k−1 , Lk � max

{
2,

⌊
1
5δαβ−1

k δk−1

⌋}
,

c′k−1 � ck−1 + Δk, and d′k−1 � ck−1 + Δk + 3Lkδk,

and

φk(x) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for x ≤ ck−1

Δα
k f(x−ck−1

Δk
) for ck−1 ≤ x ≤ c′k−1

Δα
k for c′k−1 ≤ x ≤ d′k−1

Δα
kf(1 − x−d′

k−1
Δk

) for d′k−1 ≤ x ≤ d′k−1 + Δk

0 for d′k−1 + Δk ≤ x .

Observe that

d′k−1 + Δk ≤ ck−1 + 2Δk + 3Lkδk ≤ ck−1 +
2
5
δ
1/(αβ)
k−1 + max

{
6δk,

3
5
δαβ
k δk−1

}

≤ ck−1 +
2
5
δk−1 +

3
5
δk−1 ≤ ck−1 + δk−1 .

Let �k ∈ {0, . . . , Lk − 1} be chosen uniformly at random and set

ck � c′k−1 + (Lk + �k)δk, dk � ck + δk,

and

ψk(x) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x ≤ ck − δk

δα
k f(x−ck+δk

δk
) for ck − δk ≤ x ≤ ck

δα
k for ck ≤ x ≤ dk

δα
k f(1 − x−dk

δk
) for dk ≤ x ≤ dk + δk

0 for dk + δk ≤ x .

Then any fixed b has a unique maximum at x∗ = limk ck = limk dk. The intuition
of the construction is the following: the slope of function f is responsible for
matching Assumption 1 tightly (this is rather obvious), whereas the length 3Lkδk

of [c′k−1, d
′
k−1] is responsible for matching Assumption 2 tightly. This can be

seen from the fact that the peak of function b on top of the plateau [c′k, d′k] is
approximately of size ε = δα

k , such that Lkδk ≈ δαβ
k δk−1 ≈ εβ. (δk−1 is very

large compared to δk and can be ignored.).
The heights of functions φk and ψk are chosen such that Assumptions 1 and 2

are satisfied. We first check that function b satisfies Assumption 1. For any
x ∈ [0, 1], x 
= x∗, there is a k ≥ 1 such that x ∈ [ck−1, dk−1] \ [ck, dk]. We
assume without loss of generality that x < ck < x∗. Then b(x∗)− b(x) = b(x∗)−
b(ck) + b(ck) − b(x) and

b(x∗) − b(ck) ≤
∞∑

i=k+1

(Δα
i + δα

i ) ≤ 2(Δα
k+1 + δα

k+1) ≤ 4(x∗ − ck)α,
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since x∗ − ck > Δk+1 + δk+1. To bound b(ck)− b(x) consider the following cases:

a) If ck − δk ≤ x < ck, then b(ck) − b(x) = δα
k − δα

k f
(

x−ck+δk

δk

)
= δα

k − δα
k

(
1 −

(
1 − x−ck+δk

δk

)α)
= (ck − x)α.

b) If c′k−1 ≤ x ≤ ck − δk, then b(ck) − b(x) ≤ δα
k ≤ (ck − x)α.

c) If ck−1 ≤ x ≤ c′k−1, then b(ck)−b(x) = δα
k +Δα

k [1−f(x−ck−1
Δk

] = δα
k +Δα

k [1−
x−ck−1

Δk
]α = δα

k + Δα
k [ c′

k−1−x

Δk
]α ≤ 2(ck − x)α.

Since 4(x∗ − ck)α + 2(ck − x)α ≤ 6(x∗ − x)α, Assumption 1 is satisfied.
For checking Assumption 2, let x ∈ [0, 1] be such that b(x∗) − b(x) < ε. We

distinguish two cases, δα
k ≤ ε < Δα

k and Δα
k ≤ ε < δα

k−1 for some k ≥ k0.

a) If δα
k ≤ ε < Δα

k , then φk(x) ≥ Δα
k + δα

k − ε, which by definition of φk and f
holds if x ∈ [c′k−1−(ε−δα

k )1/α, d′k−1+(ε−δα
k )1/α]. As (ε−δα

k )1/α < ε1/α ≤ εβ

and d′k−1 −c′k−1 = 3Lkδk ≤ 3
5δαβ

k δk−1 ≤ δαβ
k ≤ εβ, the length of this interval

does not exceed 3εβ.
b) On the other hand, if Δα

k ≤ ε < δα
k−1, then ψk−1(x) ≥ Δα

k +δα
k−1−ε, which by

definition of ψk−1 and f holds, if x ∈ [ck−1−(ε−Δα
k )1/α, dk−1+(ε−Δα

k )1/α].
The length of this interval is smaller than 7εβ, since (ε − Δα

k )1/α < εβ and
dk−1 − ck−1 = δk−1 = 5Δαβ

k ≤ 5εβ.

Thus Assumption 2 is satisfied, too.
Finally we show that for Tk �

⌊
1
2Lkδ−2α

k

⌋
= Θ

(
δαβ−1−2α
k δk−1

)
, and any

γ < 1+α−αβ
1+2α−αβ

lim
k→∞

E [RTk
]

T γ
k

→ ∞ .

For any x1, x2 ∈ [c′k−1, d
′
k−1], the Kullback-Leibler distance between the bandits

x1 and x2 is O(δ2α
k ) and it is 0 if both x1, x2 
∈ [ck, dk]. Therefore, to iden-

tify [ck, dk] with probability Ω(1), at least half of the intervals [c′k−1 + (Lk +
�k)δk, c′k−1 + (Lk + �k + 1)δk], �k ∈ 0, . . . , Lk − 1, need to be probed �δ−2α

k 
times. Since b(x∗) − b(x) ≥ δα

k for x 
∈ [ck, dk], we find

E [RTk
] = Ω (Tkδα

k ) = Ω
(
δαβ−1−α
k δk−1

)

= Ω

(

T
αβ−1−α

αβ−1−2α

k δ
1− αβ−1−α

αβ−1−2α

k−1

)

= Ω

(

T
1+α−αβ
1+2α−αβ

k δ
α

1+2α−αβ

k−1

)

.

Since limk→∞ δγ1
k−1/δγ2

k → ∞ for any γ1, γ2 > 0, this proves the theorem. ��

7 Conclusions and Future Work

We have shown that by changing the algorithm of Kleinberg, it is possible to
get improved regret bounds under a wide range of conditions. In particular,
the uniform local Lipschitz condition is replaced with a smoothness condition
that is localized to the set of maxima of the payoff function. A complementary



468 P. Auer, R. Ortner, and C. Szepesvári

condition ensures that the maxima do not have many strong competitors. These
two conditions allow us to get improved bounds compared to the bounds of
Kleinberg [1]. Moreover, the new algorithm is shown to match the performance
of the Kiefer-Wolfowitz algorithm [3], but under substantially weaker conditions.

One limitation of the presented results is that in order to get the best possible
rates, the user must know the exponents α, β of Assumptions 1 and 2. It is an
open question, if it is possible to achieve the optimal rates when this knowledge is
not available, possibly by restricting the payoff function in some other reasonable
way. In connection to this, we could recently show that a two-phase algorithm
achieves regret of Õ

(
T 1/2

)
for functions with well separated maxima, provided

that in a small neighborhood of the maxima the functions are unimodal and
satisfy a not too strong rate-condition (which holds e.g. for locally strictly convex
functions). There is also room for improvement regarding the high probability
bounds. Thus, a better bound on the inferior sampling time for UCB would
immediately lead to better bounds for our algorithm.

We have not considered d-dimensional action spaces in this paper, though we
believe that our results can be extended to this case. Previous lower bounds show
that in the worst-case, the regret would scale exponentially with the dimension d.
An interesting open question is if there exists an algorithm that scales better when
the mean payoff function depends only on some unknown subset of the variables.

Finally, let us remark that if UCB is replaced with UCB-tuned [4] and there is
no observation noise, i.e. Yt = b(Xt), then the analysis presented can be used to
prove the improved rate Õ

(
T 1/(1+α)

)
, i.e. Õ

(
T 1/2

)
for α = 1. Hence, the cost of

control-learning is substantially less when there is no observation noise present.
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Abstract. We give an algorithm for learning a permutation on-line.
The algorithm maintains its uncertainty about the target permutation
as a doubly stochastic matrix. This matrix is updated by multiplying
the current matrix entries by exponential factors. These factors destroy
the doubly stochastic property of the matrix and an iterative procedure
is needed to re-normalize the rows and columns. Even though the result
of the normalization procedure does not have a closed form, we can
still bound the additional loss of our algorithm over the loss of the best
permutation chosen in hindsight.

1 Introduction

Finding a good permutation is a key aspect of many problems such as the rank-
ing of search results or matching workers to tasks. In this paper we present an
efficient and effective algorithm for learning permutations in the on-line setting
called PermELearn. In each trial, the algorithm probabilistically chooses a per-
mutation and incurs a loss based on how appropriate the permutation was for
that trial. The goal of the algorithm is to have low total expected loss compared
to the best permutation chosen in hindsight for the whole sequence of trials.

Since there are n! permutations on n elements, it is infeasible to simply treat
each permutation as an expert and apply Weighted Majority or another expert
algorithm. Our solution is to implicitly represent the weights of the n! permu-
tations with a more concise representation. This approach has been successful
before where exponentially many experts have a suitable combinatorial structure
(see e.g. [HS97, TW03, WK06] for examples).

We encode a permutation of n elements as an n × n permutation matrix Π :
Πi,j = 1 if the permutation maps i to j and Πi,j = 0 otherwise. The uncertainty
of the algorithm about which permutation is the target is represented as a mix-
ture of permutation matrices, i.e. a doubly stochastic weight matrix1 W . The
entry Wi,j represents the algorithm’s belief that the target permutation maps

� Manfred K. Warmuth acknowledges the support of NSF grant CCR 9821087.
1 Recall that a doubly stochastic matrix has non-negative entries and the property

that every row and column sums to 1.

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 469–483, 2007.
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element i to position j. Every doubly stochastic matrix is the convex combina-
tion of at most n2 − 2n+2 permutations (see e.g. [Bha97]). We present a simple
matching-based algorithm that efficiently decomposes the weight matrix into a
slightly larger than necessary convex combination. Our algorithm PermELearn
samples a permutation from this convex combination to produce its prediction.

As the algorithm is randomly selecting its permutation, an adversary simulta-
neously selects a loss matrix L ∈ [0, 1]n×n for the trial. The adversary is allowed
to see the algorithm’s doubly stochastic matrix, but not its random choice of
permutation. The loss matrix has the interpretation that Li,j is the loss for
mapping element i to j and the loss of a whole permutation is the sum of the
losses of the permutation’s mappings. This linear decomposition of the loss is
necessary to make the algorithm efficient and fits nicely with the algorithm’s
weight matrix representation. Section 3 shows how a variety of intuitive loss
motifs can be expressed in this matrix form.

Before the next trial, algorithm PermELearn makes a weighted-majority style
update to its weight matrix: each entry Wi,j is multiplied by e−ηLi,j where η is
a learning rate in [0, 1]. After this update, the weight matrix no longer has the
doubly stochastic property, and the weight matrix must be projected back into
the space of doubly stochastic matrices (called “Sinkhorn Balancing”, see Sec-
tion 4) before the next prediction can be made. Our method based on Sinkhorn
Balancing bypasses a potential issue: if the probability of each permutation Π
is proportional to

∏
i Wi,Π(i) then the normalization constant is the permanent

of W , and calculating the permanent is a known #P-complete problem.
We bound (Theorem 1) the expected loss of PermELearn over any sequence

of trials by
n ln n + ηLbest

1 − e−η
, (1)

where η is the learning rate and Lbest is the loss of the best permutation on the
entire sequence. If an upper bound Lest ≥ Lbest is known, then η can be tuned
(as in [FS97]) and the bound becomes

Lbest +
√

2Lestn lnn + n lnn. (2)

Since lnn! ≈ n ln n − n, this is close to the loss bound when Weighted Majority
is run over the n! permutations. We also can show (omitted) a lower bound of
Lbest + Ω(

√
Lbestn ln n + n ln n).

The Exponentiated Gradient family of learning algorithms uses probability
vectors as their weight vectors. In this case the normalization is straightforward
and is folded directly into the update. PermELearn’s hypothesis is a doubly
stochastic matrix. Its update step first multiplies the entries of the matrix by ex-
ponential factors and then uses Sinkhorn re-balancing to iteratively re-normalize
the rows and columns. We are able to prove bounds for our algorithm despite
the fact the re-normalization does not have a closed form solution. We show that
the multiplicative update minimizes a tradeoff between the loss and a relative
entropy between non-negative matrices. This multiplicative update takes the ma-
trix outside of the set of doubly stochastic matrices. Luckily this un-normalized
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update already makes enough progress (towards the best permutation) for the
loss bound quoted above. We interpret the iterations of Sinkhorn balancing as
projections w.r.t. the same relative entropy. Finally, using Bregman projection
methods one can show these projections only increase the progress and thus
don’t hurt the analysis.

Our new insight of splitting the update into an un-normalized step followed
by a normalization step also leads to a streamlined proof of the loss bound of
the randomized weighted majority algorithm that is interesting in its own right.
On the other hand, the bounds for the expert algorithms can be proven in many
different ways, including potential based methods (see e.g. [KW99, CBL06]).
We were not able to find a potential based proof for learning permutations with
doubly stochastic matrices, since there is no closed form solution for Sinkhorn
Balancing. Finally, Kalai and Vempala’s “Follow the Perturbed Leader” [KV05]
approach can easily be applied to our problem, but it leads to worse bounds.

We introduce our notation in the next section. Section 3 presents the per-
mutation learning model and gives several intuitive examples of appropriate
loss motifs. Section 4 describes the details of the PermELearn algorithm, while
Section 5 contains the proof of its relative mistake bound and uses the same
methodology in an alternate analysis of the Weighted Majority algorithm. In
Section 6, we apply the “Follow the Perturbed Leader” algorithm to learning
permutations. The concluding section describes extensions and further work.

2 Notation

All matrices will be n×n, and 1 and 0 denote the all all ones and all zero matrices.
For a matrix A, Ai,j is the element of A in row i, and column j. We use A • B
to denote the dot product between matrices A and B, i.e.

∑
i,j Ai,jBi,j . We use

single subscripts (e.g. Ak) to identify matrices/permutations from a sequence.
Permutations on n elements are frequently represented in two ways: as a vec-

tor, and as a matrix. We use the notation Π (and Π̂) to represent a permutation
of elements {1, . . . , n} into positions {1, . . . , n} in either format, using the context
to indicate the appropriate representation. Thus, for each i ∈ {1, . . . , n}, we use
Π(i) to denote the position that the ith element is mapped to by permutation
Π , and matrix element Πi,j = 1 if Π(i) = j and 0 otherwise.

If L is a matrix with n rows then the product ΠL permutes the rows of L:

Π =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞

⎟
⎟
⎠ L =

⎛

⎜
⎜
⎝

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

⎞

⎟
⎟
⎠ ΠL =

⎛

⎜
⎜
⎝

21 22 23 24
41 42 43 44
31 32 33 34
11 12 13 14

⎞

⎟
⎟
⎠

Matrix for Π = (2, 4, 3, 1) An arbitrary matrix Permuting the rows

Our algorithm will have some uncertainty about which permutation to predict
with. Therefore it maintains a probability distribution over permutations in the
form of a n × n doubly stochastic matrix W as its data structure.
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3 The On-Line Protocol

We are interested in learning permutations in the on-line setting, where learn-
ing proceeds in a series of trials. We assume the losses are generated by an
(adversarial) process that we will call “nature”. In each trial:

– The learner (probabilistically) chooses a permutation Π̂ .
– Nature simultaneously chooses a loss matrix L ∈ [0..1]n×n for the trial with

the interpretation that Li,j is the loss for mapping element i to position j,
and the loss of a permutation is the sum of the losses of its mappings, i.e.∑

i Li,Π̂(i) = Π̂ • L.
– At the end of the trial the algorithm is given L so that it can adjust its

future predictions.

The expected loss incurred by the algorithm on the trial is E[Π̂ • L], where the
expectation is over the algorithm’s random choice of Π̂ .

Since the dot product is linear, E[Π̂ • L] = W • L, where W = E(Π̂). The
entry Wi,j is the probability that the learner chooses a permutation Π̂ such
that Π̂(i) = j. Since permutation matrices are doubly stochastic, the convex
combination W is so as well.

It is worth emphasizing that the W matrix is a convenient summary of the
distribution over permutations used by any algorithm (it doesn’t indicate which
permutations have non-zero probability, for example). However, this summary
is sufficient to determine the algorithm’s expected loss.

Although our algorithm is capable of handling arbitrary sequences of loss
matrices L, nature is usually significantly more restricted. Most applications
have a loss motif M that is known to the algorithm and nature is constrained
to choose (row) permutations of M as its loss matrix L. In effect, at each trial
nature chooses a “correct” permutation Π and uses the loss matrix L = ΠM .
Note that the permutation left-multiplies the loss motif, and thus permutes the
rows of M . If nature chooses the identity permutation then the loss matrix L is
the motif M itself. When M is known to the algorithm, it suffices to give the
algorithm only the permutation Π at the end of the trial, rather than L itself.

Figure 1 gives examples of loss motifs. The last loss in the table is associated
with the competitive analysis of adaptive list structures where the cost is the
number of links traversed to find the desired element2. Blum, Chawla, and Kalai
[BCK03] give very efficient algorithms for this special case. In our notation,
their bound has the same form as ours (1) but with the n ln n replaced by O(n).
However, our lower bound shows that the lnn factors in (2) are necessary in the
general permutation setting.

Note that many compositions of loss motifs are possible. For example, given
two motifs with their associated losses, any convex combination of the motifs
creates a new motif for the (same) convex combination of the associated losses.
Other component-wise combinations of two motifs (such as product or max) can
2 In the adaptive list problem the searched element can be moved forward in the list

for free, but other reorderings of the elements incur a cost not modeled here.
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loss L(Π̂, Π) motif M

the number of elements i where Π̂(i) �= Π

⎛

⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎠

1
n−1

∑n
i=1 |Π̂(i)−Π(i)|, how far the elements are from

there ”correct” positions (division by n−1 ensures that
the entries of M are in [0, 1].)

1
3

⎛

⎜
⎝

0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

⎞

⎟
⎠

1
n−1

∑n
i=1

|Π̂(i)−Π(i)|
Π(i) , a position weighted version of

the above emphasizing the early positions in Π
1
3

⎛

⎜
⎝

0 1 2 3
1/2 0 1/2 1
2/3 1/3 0 1/3
3/4 1/2 1/4 0

⎞

⎟
⎠

the number of elements mapped to the first half by Π
but the second half by Π̂, or vice versa

⎛

⎜
⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞

⎟
⎠

the number of elements mapped to the first two posi-
tions by Π that fail to appear in the top three position
of Π̂

⎛

⎜
⎜
⎜
⎝

0 0 0 1 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎠

the number of links traversed to find the first element
of Π in a list ordered by Π̂

1
3

⎛

⎜
⎝

0 1 2 3
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠

Fig. 1. Loss motifs

also produce interesting loss motifs, but the combination usually cannot be dis-
tributed across the matrix dot-product calculation, and so cannot be expressed
as a simple function of the original losses.

4 Algorithm

Our permutation learning algorithm uses exponenential weights and we call it
PermELearn. It maintains an n×n dimensional doubly stochastic W as its main
data structure, where Wi,j is the probability that PermELearn predicts with a
permutation mapping element i to position j. In the absence of prior information
it is natural to start with the uniform prior, i.e. the matrix 1

n in each entry.
In each iteration PermELearn must do two things:

1. Choose a permutation Π̂ from some distribution s.t. E[Π̂ ] = W .
2. Create a new doubly stochastic matrix W̃ for use in the next trial based on

the current W and the loss matrix L.

The first step is described in Algorithm 1. The algorithm greedily decomposes
W into a convex combination of at most n2 − n + 1 permutations, and then
randomly selects one of these permutations for the prediction.3 By Birkhoff’s
theorem (see [Bha97]), every doubly stochastic matrix A is a convex combination

3 The decomposition is not unique and the implementation may have a bias as to
exactly which convex combination is chosen.
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Algorithm 1. PermELearn: Selecting a permutation
Require: a doubly stochastic n × n matrix W

A := W ;
for � = 1 to n2 − n + 1 do

Find permutation Π� such that each Ai,Π�(i) is positive
α� := mini Ai,Π(i)

A := A − α�Π�

Exit loop if all entries of A are zero
end for {at end of loop W =

∑�
k=1 αkΠk}

Randomly select Πk ∈ {Π1, . . . , Π�} using probabilities αk and return it.

Algorithm 2. PermELearn: Weight Matrix Update
Require: learning rate η, non-negative loss matrix L, and doubly stochastic weight

matrix W
for each entry i, j of W do

Create W ′ where each W ′
i,j = Wi,je

−ηLi,j

end for
Create doubly stochastic W̃ by re-scaling the rows and columns of W ′ (Sinkhorn

balancing) and update W to W̃ .

of permutation matrices. In addition, one can find a permutation Π where each
Ai,Π(i) > 0 by finding a perfect matching on the n×n bipartite graph containing
the edge (i, j) whenever Ai,j > 0. Given a permutation Π where each Ai,Π(i) > 0
we form the new matrix A′ = A − αΠ where α = mini Ai,Π(i). Matrix A′ has
non-negative entries and A′ has more zeros than A. Furthermore, each row and
column of A′ sum to 1 −α, so A′ is 1− α times a doubly stochastic matrix (and
thus 1 − α times a convex combination of permutations).

After at most n2 − n iterations we arrive at a matrix A′ with exactly n non-
zero entries. Since the row and column sums of A′ are the same, A′ is just
a constant times a permutation matrix. Therefore, we have found a way to
express the original doubly stochastic matrix as the convex combination of (at
most) n2 − n + 1 permutation matrices (see Algorithm 1).

There are several improvements possible. In particular, we need not compute
each perfect matching from scratch. If only q entries are zeroed by a permutation,
then that permutation still represents a matching of size n − q in the graph for
the new matrix. Thus we need to find only q augmenting paths to complete the
perfect matching. The whole process requires finding O(n2) augmenting paths
at a cost of O(n2) each, for a total cost of O(n4) to decompose W into a convex
combination of permutations.

The second step first multiplies the Wi,j entries of the loss matrix by the
factors e−ηLi,j . These factors destroy the row and column normalization, so
the matrix must be re-normalized to restore the doubly-stochastic property.
There is no closed form for the normalization step. The standard iterative re-
normalization method for non-negative matrices is called Sinkhorn Balancing.
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This method first normalizes the rows of the matrix to sum to one, and then
normalizes the columns. Since normalizing the columns typically destroys the
row normalization, the process must be iterated until convergence [Sin64].

Normalizing the rows corresponds to pre-multiplying by a diagonal matrix.
The product of these diagonal matrices thus represents the combined effect of the
multiple row normalization steps. Similarly, the combined effect of the column
normalization steps can be represented by post-multiplying the matrix by a
diagonal matrix. Therefore Sinkhorn balancing a matrix A results in a doubly
stochastic matrix RAC where R and C are diagonal matrices. Each entry Ri,i

is the positive multiplier applied to row i, and each entry Cj,j is the positive
multiplier of column j in order to convert A into a doubly stochastic matrix.

Convergence: There has been much written on the scaling of matrices, and
we briefly describe only a few of the results here. Sinkhorn showed that this
procedure converges and that the RAC conversion of any matrix A is unique if
it exists4 (up to canceling multiples of R and C) [Sin64].

A number of authors consider scaling a matrix A so that the row and column
sums are 1 ± ε. Franklin and Lorenz [FL89] show that O(length(A)/ε) Sinkhorn
iterations suffice, where length(A) is the bit-length of matrix A’s binary rep-
resentation. Kalantari and Khachiyan [KK96] show that O(n4 ln n

ε ln 1
minAi,j

)
operations suffice using an interior point method. Linial, Samorodnitsky, and
Widgerson [LSW00] give a preprocessing step after which only O((n/ε)2) Sinkhorn
iterations suffice. They also present a strongly polynomial time iterative procedure
requiring Õ(n7 log(1/ε)) iterations. Balakrishan, Hwang, and Tomlin [BHT04]
give an interior point method with complexity O(n6 log(n/ε)). Finally, Fürer
[Fur04] shows that if the row and column sums of A are 1 ± ε then every matrix
entry changes by at most ±nε when A is scaled to a doubly stochastic matrix.

We defer further analysis of the imprecision in W̃ to the full paper, and
continue assuming that the algorithm produces a doubly stochastic W̃ .

5 Bounds for PermELearn

Our analysis of PermELearn follows the entropy-based analysis of the exponen-
tiated gradient family of algorithms [KW97]. This style of analysis first shows
a per-trial progress bound using relative entropy to a comparator as a measure
of progress, and then sums this invariant over the trials to obtain an expected
total loss of the algorithm. As with the exponentiated gradient family of algo-
rithms, we show that PermELearn’s weight update is the solution to a relative
entropy-regularized minimization problem.

Recall that the expected loss of PermELearn on a trial is a linear function
of its W weight matrix. Therefore the gradient of the loss is independent of

4 Some non-negative matrices, like
⎛

⎝
1 1 0
0 1 0
0 1 1

⎞

⎠ , cannot be converted into doubly stochastic

matrices because of their pattern of zeros. The weight matrices we deal with have
strictly positive entries, and thus can always be made doubly stochastic with an
RAC conversion.
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the current value of W . This property of the loss greatly simplifies the analysis.
Our analysis for this relatively simple setting provides a good foundation for
learning permutation matrices and lays the groundwork for the future study of
more complicated permutation loss functions.

We start our analysis with an attempt to mimic the standard analysis [KW97]
for the exponentiated gradient family updates which multiply by exponential
factors and re-normalize. Unfortunately, the lack of a closed form for the nor-
malization causes difficulties. Our solution is to break PermELearn’s update
(Algorithm 2) into two steps, and use only the progress made to the interme-
diate un-normalized matrix in our per-trial bound (7). After showing that the
normalization to a doubly stochastic matrix only increases the progress, we can
sum the per-trial bound to obtain our main theorem.

The per-trial invariant used to analyze the exponentiated gradient family
bounds (for every weight vector U) the decrease in relative entropy from a (nor-
malized) U to the algorithm’s weight vector by a linear combination of the
algorithm’s loss and the loss of U on the trial. In our case the weight vectors
are matrices and we use the following (un-normalized) relative entropy between
matrices A and B with non-negative entries:

Δ(A, B) =
∑

i,j

Ai,j ln
Ai,j

Bi,j
+ Bi,j − Ai,j .

Note that this is just the sum of the relative entropies between the corresponding
rows (or equivalently, between the corresponding columns):

Δ(A, B) =
∑

i

Δ(Ai,�, Bi,�) =
∑

j

Δ(A�,j , B�,j) .

A Dead End: In each trial, PermELearn multiplies each entry of its weight
matrix by an exponential factor, and the rows and columns are normalized using
one additional factor per row and column (Algorithm 2):

W̃i,j :=
Wi,je

−ηLi,j

ricj
, (3)

where ri, cj are chosen so that row i and column j of the matrix W̃ sum to one.
PermELearn’s update (3) solves the the following minimization problem:

argmin
∀i :

∑
j Ai,j = 1

∀j :
∑

i Ai,j = 1

(Δ(A, W ) + η (A • L)) . (4)

Lemma 1. PermELearn’s updated weight matrix W̃ (3) is the solution of (4).

Proof. We form a Lagrangian for the optimization problem:

l(A, ρ, γ) = Δ(A, W ) + η (A • L) +
∑

i

ρi(1 −
∑

j

Ai,j) +
∑

j

γj(1 −
∑

i

Ai,j).
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Setting the derivative with respect to Ai,j to 0 yields Ai,j = Wi,je
−ηLi,j eρieγj

and shows that the normalization factors ri and cj are exponentials of the La-
grange multipliers. ��

Since the linear constraints are feasible and the divergence is strictly convex,
there always is a unique solution, even though the solution does not have a
closed form.

We now examine the progressΔ(U, W )−Δ(U, W̃ ) towards an arbitrary stochas-
tic matrix U . Using Equation (3) and noting that all three matrices are doubly
stochastic (so their entries sum to n), we see that

Δ(U, W ) − Δ(U, W̃ ) = −η U • L +
∑

i

ln ri +
∑

j

ln cj .

Making this a useful invariant requires lower bounding the sums on the rhs by
a constant times W • L, the loss of the algorithm. Unfortunately we are stuck
because the normalization factors don’t even have a closed form.

Successful Analysis: We split the update (3) into two steps:

W ′
i,j := Wi,je

−ηLi,j and W̃i,j :=
W ′

i,j

ricj
, (5)

where ri and cj are chosen so that row i and column j of the matrix W̃ sum to
one, respectively. Using the Lagrangian (as in the proof of Lemma 1), it is easy
to see that these steps solve the following minimization problems:

W ′ = argmin
A

(Δ(A, W ) + η (A • L)) and W̃ := argmin
∀i :

∑
j Ai,j = 1

∀j :
∑

i Ai,j = 1

Δ(A, W ′). (6)

The second problem shows that the doubly stochastic matrix W̃ is the projection
of W ′ onto to the linear row and column sum constraints. The strict convexity
of the relative entropy between non-negative matrices and the feasibility of the
linear constraints ensure that the solutions for both steps are unique.

We now lower bound the progress Δ(U, W )−Δ(U, W ′) in the following lemma
to get our per-trial invariant.

Lemma 2. For any η, any doubly stochastic matrices U and W and any trial
with loss matrix L,

Δ(U, W ) − Δ(U, W ′) ≥ (1 − eη)(W • L) − η(U • L),

where W ′ is the intermediate matrix (6) constructed by PermELearn from W .
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Proof. The proof manipulates the difference of relative entropies and applies the
inequality e−ηx ≤ 1 − (1 − e−η)x, which holds for any x ∈ [0, 1] any η:

Δ(U, W ) − Δ(U, W ′) =
∑

i,j

(

Ui,j ln
W ′

i,j

Wi,j
+ Wi,j − W ′

i,j

)

=
∑

i,j

(
Ui,j ln(e−ηLi,j ) + Wi,j − Wi,je

−ηLi,j
)

≥
∑

i,j

(
−ηLi,jUi,j + Wi,j − Wi,j(1 − (1 − e−η)Li,j)

)

= −η(U • L) + (1 − e−η)(W • L). �

The relative entropy is a Bregman divergence and W̃ is the relative entropy
projection of W ′ w.r.t. linear constraints. Therefore, since U satisfies the con-
straints, we have by the Generalized Pythagorean Theorem (see e.g. [HW01])

Δ(U, W ′) − Δ(U, W̃ ) = Δ(W̃ , W ′) ≥ 0.

Combining this with the inequality of Lemma 2 gives the critical per-trial
invariant:

Δ(U, W ) − Δ(U, W̃ ) ≥ (1 − e−η)(W • L) − η(U • L) . (7)

Before presenting our main theorem we introduce some notation to deal with
sequences of trials. With respect to a sequence of T trials, define Wt and W̃t to
be the initial and updated weight matrices at each trial t ∈ {1, . . . , T} so that
W̃t = Wt+1 for 1 ≤ t ≤ T . We now bound

∑T
t=1 Wt • Lt, the total expected loss

of PermELearn over the entire sequence of trials.

Theorem 1. For any learning rate η, any doubly stochastic matrices U and
initial W1, and any sequence of T trials with loss matrices Lt ∈ [0, 1]n×n (for
1 ≤ t ≤ T ), the loss of PermELearn is bounded by:

T∑

t=1

Wt • Lt ≤ Δ(U, W1) − Δ(U, WT+1) + η
∑T

t=1 U • Lt

1 − e−η
.

Proof. Summing Equation (7) over the trials gives

Δ(U, W1) − Δ(U, WT+1) ≥ (1 − e−η)
T∑

t=1

Wt • Lt − η

T∑

t=1

U • Lt.

The bound then follows by solving for the loss of the algorithm. ��
When the entries of W1 are all initialized to 1

n and U is a permutation then
Δ(U, W1) ≤ n ln n. Note that the loss

∑T
t=1 U • L is minimized when U is a

single permutation. If Lbest denotes the loss of such a permutation, then the
bound of Theorem 1 implies that the total loss of the algorithm is bounded by

n ln n + ηLbest
1 − e−η

.
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If an upper Lest ≥ Lbest is known, then η can be tuned as done by Freund and
Schapire [FS97] and the above bound becomes

Lbest +
√

2Lestn lnn + n lnn.

Splitting the Analysis of Weighted Majority: Perhaps the simplest case
where the loss is linear in the parameter vector is the “decision theoretic” setting
of [FS97]. There are N experts and the algorithm keeps a probability distribution
w over the experts. In each trial the algorithm picks expert i with probability
wi and then gets a loss vector � ∈ [0, 1]N . Each expert i incurs loss 
i and the
algorithm’s expected loss is w · �. Finally w is updated to w̃ for the next trial.

The (Randomized) Weighted Majority algorithm [LW94] or Hedge algorithm
[FS97] in this setting updates w̃i = wie

−η�i
∑

j wje−η�j
. This update is motivated by a

tradeoff between the un-normalized relative entropy and expected loss [KW99] :

w̃ := argmin
∑

i ŵi=1

(Δ(ŵ, w) + η ŵ · �) .

As in the permutation case, we can split this update (and motivation) into two
steps: setting each w′

i = wie
−η�i then w̃ = w′/

∑
i w′

i. These correspond to:

w′ := argmin
ŵ

(Δ(ŵ, w) + η ŵ · �) and w̃ := argmin
∑

i ŵi=1

Δ(ŵ, w′).

The following lower bound has been shown on the progress towards any proba-
bility vector u serving as a comparator [LW94, FS97, KW99]:

Δ(u, w) − Δ(u, w̃) ≥ w · � (1 − e−η) − η u · � . (8)

Surprisingly the same inequality already holds for the un-normalized update5:

Δ(u, w) − Δ(u, w′) = −η u · � +
∑

i

wi(1 − e−η�i) ≥ w · � (1 − e−η) − η u · �,

where the last inequality uses e−ηx ≤ 1− (1− e−η)x, for any x ∈ [0, 1]. Since the
normalization is a projection w.r.t. a Bregman divergence onto a linear constraint
satisfied by the comparator u, Δ(u, w′) − Δ(u, w̃) ≥ 0 by the Generalized
Pythagorean Theorem [HW01]. The total progress for both steps is again (8).

When to Normalize? Probably the most surprising aspect about the proof
methodology is the flexibility about how and when to project onto the con-
straints. Instead of projecting a nonnegative matrix onto all 2n constraints at
once (as in optimization problem (6)), we could mimic the Sinkhorn balancing
algorithm and iteratively project onto the n row and n column constraints un-
til convergence. The Generalized Pythagorean Theorem shows that projecting
5 Note that if the algorithm does not normalize the weights then w is no longer a

distribution. When
∑

i wi < 1, the loss w · L amounts to abstaining (incurring 0
loss) with probability 1 −

∑
i wi, and predicting as expert i with probability wi.
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onto any convex constraint that is satisfied by the comparator class of doubly
stochastic matrices brings the weight matrix closer to every doubly stochastic
matrix6. Therefore our bound on

∑
t Wt • Lt (Theorem 1) holds if the exponen-

tial updates are interleaved with any sequence of projections to some subsets of
the constraints. However, if the normalization constraint are not enforced then
W is no longer a convex combination of permutations, and W can approach 0
(so W • L ≈ 0 for all L).

There is a direct argument that shows that the same final doubly stochastic
matrix is reached if we interleave the exponential updates with projections to
any of the constraints as long as all 2n hold at the end. To see this we partition
the class of matrices with positive entries into equivalence classes. Call two such
matrices A and B equivalent if there are diagonal matrices R and C with positive
diagonal entries such that B = RAC. Note that [RAC]i,j = Ri,iAi,jCj,j so B is
just a rescaled version of A. Projecting onto any row (and/or column) sum con-
straints amounts to pre- (and/or post-) multiplying the matrix by some positive
diagonal matrix R (and/or C). Therefore if matrices A and B are equivalent then
either projecting one onto a set of row/column sum constraints or multiplying
their corresponding entries by the same factor results in matrices that are still
equivalent. This means that any two runs from equivalent initial matrices that
involve the same exponential updates end with equivalent final matrices even if
they use different projections at different times. Finally, for any two equivalent
matrices A and RAC, where the entries of A and the diagonal entries of R and
C are positive, we have (from the Lagrangians):

argmin
∀i :

∑
j Âi,j = 1

∀j :
∑

i Âi,j = 1

Δ(Â, A) = argmin
∀i :

∑
j Âi,j = 1

∀j :
∑

i Âi,j = 1

Δ(Â, RAC).

Since the relative entropy is strictly convex, both minimization problems have the
same unique minimum. Curiously enough the same phenomenon already happens
in the weighted majority case: Two non-negative vectors a and b are equivalent
if a = cb, where c is any nonnegative scalar, and again each equivalence class
has exactly one normalized weight vector.

6 Follow the Perturbed Leader

Kalai and Vempala [KV05] describe and bound “follow the perturbed leader”
(FPL) algorithms for on-line prediction in a very general setting. Their FPL∗

algorithm has bounds closely related to WM and other multiplicative weight
algorithms. However, despite the apparent similarity between our representations
and the general formulation of FPL∗, the bounds we were able to obtain for FPL∗

are weaker than the bounds derived using the relative entropies.

6 There is a large body of work on finding a solution subject to constraints via iterated
Bregman projections (See e.g. [CL81]).
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The FPL setting has an abstract k-dimensional decision space used to encode
predictors as well as a k-dimensional state space used to represent the losses of
the predictors. At any trial, the current loss of a particular predictor is the dot
product between that predictor’s representation in the decision space and the
state-space vector for the trial. This general setting can explicitly represent each
permutation and its loss when k = n!. The FPL setting also easily handles the
encodings of permutations and losses used by PermELearn by representing each
permutation matrix Π and loss matrix L as n2-dimensional vectors.

The FPL∗ algorithm [KV05] takes a parameter ε and maintains a cumulative
loss matrix C (initially C is the zero matrix) At each trial, FPL∗:

1. Generates a random perturbation matrix P where each Pi,j is proportional
to ±ri,j where ri,j is drawn from the standard exponential distribution.

2. Predicts with a permutation Π minimizing Π • (C + P ).
3. After getting the loss matrix L, updates C to C + L.

Note that FPL∗ is more computationally efficient that PermELearn. It takes
only O(n3) time to make its prediction (the time to compute a minimum weight
bipartite matching) and only O(n2) time to update C. Unfortunately the generic
FPL∗ loss bounds are not as good as the bounds on PermELearn. In particular,
they show that the loss of FPL∗ on any sequence of trials is at most7

(1 + ε)Lbest +
8n3(1 + lnn)

ε

where ε is a parameter of the algorithm. When the loss of the best expert is
known ahead of time, ε can be tuned and the bound becomes

Lbest + 4
√

2Lbestn
3(1 + lnn) + 8n3(1 + lnn) .

Although FPL∗ gets the same Lbest leading term, the excess loss over the best
permutation grows as n3 ln n rather the n ln n growth of PermELearn’s bound.
Of course, PermELearn pays for the improved bound by requiring more time.

It is important to note that Kalai and Vempala also present a refined analysis
of FPL∗ when the perturbed leader changes only rarely. This analysis leads
to bounds on weighted majority that are similar to the bounds given by the
entropic analysis (although the constant on the square-root term is not quite as
good). However, this refined analysis cannot be directly applied with the efficient
representations of permutations because the total perturbations associated with
different permutations are no longer independent exponentials. We leave the
adaptation of the refined analysis to the permutation case as an open problem.

7 Conclusions and Further Work

The main technical insight in our analysis of PermELearn is that the per-
trial progress bound already holds for the un-normalized update and that the
7 The n3 terms in the bounds for FPL are n times the sum of the entries in the loss

motif. So if the loss motif’s entries sum to only n, then the n3 factors become n2.
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normalization step only helps. This finesses the difficulty of accounting for the
normalization (which does not have a closed form) in the analysis. The same
thing already happens in the Weighted Majority setting.

As our main contribution we showed that the problem of learning a permuta-
tion is amenable to the same techniques as learning in the expert setting. This
means that all techniques from that line of research are likely to carry over: lower
bounding the weights when the comparator is shifting, long-term memory when
shifting between a small set of comparators [BW02], capping the weights from
the top if the goal is to be close to the best set of comparators [WK06], adapting
the updates to the multi-armed bandit setting when less feedback is provided
[ACBFS02], PAC Bayes analysis of the exponential updates [McA03].

Our analysis techniques rely on Bregman projection methods. This means that
the bounds remain unchanged if we add convex side constraints on the parameter
matrix because as long as the comparator satisfies the side constraints, we can
always project onto these constraints without hurting the analysis [HW01]. With
the side constraints we can enforce relationships between the parameters, such
as Wi,j ≥ Wi,k (i is more likely mapped to j than k).

We also applied the “Follow the Perturbed Leader” techniques to our permu-
tation problem. This algorithm adds randomness to the total losses and then
predicts with a minimum weighted matching which costs O(n3) whereas our
more complicated algorithm is at least O(n4) and has precision issues. However
the bounds provable for FPL are much worse than for the WM style analysis used
here. The key open problem is whether we can have the best of both worlds: add
randomness to the loss matrix so that the expected minimum weighted matching
is the stochastic matrix produced by the PermELearn update (3). This would
mean that we could use the faster algorithm together with our tighter analysis. In
the simpler weighted majority setting this has been done already [KW05, Kal05].
However we do not yet know how to simulate the PermELearn update this way.

Acknowledgments. We thank David DesJardins, Jake Abernethy, Dimitris
Achlioptas, Dima Kuzmin, and the anonymous referees for helpful feedback.
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Abstract. We consider the problem of prediction with expert advice in
the setting where a forecaster is presented with several online prediction
tasks. Instead of competing against the best expert separately on each
task, we assume the tasks are related, and thus we expect that a few
experts will perform well on the entire set of tasks. That is, our forecaster
would like, on each task, to compete against the best expert chosen
from a small set of experts. While we describe the “ideal” algorithm and
its performance bound, we show that the computation required for this
algorithm is as hard as computation of a matrix permanent. We present
an efficient algorithm based on mixing priors, and prove a bound that is
nearly as good for the sequential task presentation case. We also consider
a harder case where the task may change arbitrarily from round to round,
and we develop an efficient approximate randomized algorithm based on
Markov chain Monte Carlo techniques.

1 Introduction

A general model of sequential prediction with expert advice is the following. A
forecaster is given the following task: make a sequence of predictions given access
to a number of experts, where each expert makes its own prediction at every
round. The forecaster combines the predictions of the experts to form its own
prediction, taking into account each expert’s past performance. He then learns
the true outcome and suffers some loss based on the difference between the true
outcome and its prediction. The goal of the forecaster, in the cumulative sense, is
to predict not much worse than the single best expert. This sequence prediction
problem has been widely studied in recent years. We refer the reader to the
excellent book of Cesa-Bianchi and Lugosi [1] for a comprehensive treatment of
the subject.

We consider an extension of this framework where a forecaster is presented
with several prediction tasks. The most basic formulation, which we call the
sequential multitask problem is the following: the forecaster is asked to make a
sequence of predictions for task one, then another sequence of predictions for
task two, and so on, and receives predictions from a constant set of experts on
every round. A more general formulation, which we consider later in the paper,
is the shifting multitask problem: on every round, the forecaster is asked to make
a prediction for some task, and while the task is known to the forecaster, it may
change arbitrarily from round to round.

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 484–498, 2007.
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The multitask learning problem is fundamentally a sequence prediction prob-
lem, yet we provide the forecaster with extra information for each prediction,
namely the task to which this round belongs. This extra knowledge could be
quite valuable. In particular, the forecaster may have observed that certain ex-
perts have performed well on this task while poorly on others. Consider, for
example, an investor that, on each day, would like to make a sequence of trades
for a particular stock, and has a selection of trading strategies available to him.
We may consider each day a separate prediction task. The behavior of the stock
will be quite related from one day to the next, even though the optimal trading
strategy may change. How can the investor perform as well as possible on each
day, while still leveraging information from previous days?

As the above example suggests, we would like to take advantage of task relat-
edness. This idea is quite general and in the literature several such frameworks
have been explored [2,3,4,5,6,7]. In this paper, we attempt to capture the fol-
lowing intuitive notion of relatedness: experts that perform well on one task are
more likely to perform well on others. Of course, if the same best expert is shared
across several tasks, then we should not expect to find so many best experts.
We thus consider the following problem: given a “small” m, design a multitask
forecaster that performs well relative to the best m-sized subset of experts.

The contribution of this paper is the following. We first introduce a novel
multitask learning framework within the “prediction with expert advice” model.
We then show how techniques developed by Bousquet and Warmuth [8] can
be applied in this new setting. Finally, we develop a randomized prediction
algorithm, based on an approximate Markov chain Monte Carlo method, that
overcomes the hardness of the corresponding exact problem, and demonstrate
empirically that the Markov chain mixes rapidly.

We begin in Section 2 by defining the online multitask prediction problem
and notation. In Section 3 we provide a reduction from the multitask setting
to the single task setting, yet we also show that computing the prediction is as
hard as computing a matrix permanent. In Section 4, however, we provide an
efficient solution for the sequential multitask problem. We attack the more general
shifting multitask problem in Section 5, and we present the MCMC algorithm
and its analysis.

2 Formal Setting

First, we describe the “prediction with expert advice” setting. A forecaster must
make a sequence of predictions for every round t = 1, 2, 3, . . . , T . This forecaster
is given access to a set of N “experts”. At every round t, expert i makes pre-
diction f t

i ∈ [0, 1]. The forecaster is given access to f t := (f t
1, . . . , f

t
N) and then

makes a prediction p̂t ∈ [0, 1]. Finally, the outcome yt ∈ {0, 1} is revealed, ex-
pert i suffers �t

i := �(f t
i , y

t), and the forecaster suffers �(p̂t, yt), where � is a loss
function that is convex in its first argument. We consider the cumulative loss
of the forecaster, L̂T :=

∑
t≤T �(p̂t, yt), relative to the cumulative loss of each

expert, LT
i :=

∑
t≤T �(f t

i , y
t).
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In the multitask setting we have additional structure on the order of the
sequence. We now assume that the set of rounds is partitioned into K “tasks”
and the forecaster knows K in advance. On round t, in addition to learning
the predictions f t, the forecaster also learns the task number κ(t) ∈ [K] :=
{1, 2, . . . , K}. For convenience, we also define τ(k) = {t ∈ [T ] : κ(t) = k},
the set of rounds where the task number is k. After T rounds we record the
cumulative loss, LT

k,i of expert i for task k, defined as LT
k,i :=

∑
t∈τ(k) �t

i.
As described in the introduction, we are interested in the sequential multitask

problem, where we assume that the subsequences τ(k) are contiguous. We also
consider the more general case, the shifting multitask problem, where the task
may change arbitrarily from round to round. For the remainder of Section 2 and
section 3, however, we need not make any assumptions about the sequence of
tasks presented.

2.1 The Multitask Comparator Class

We now pose the following question: what should be the goal of the forecaster in
this multitask setting? Typically, in the single task expert setting, we compare
the performance of the forecaster relative to that of the best expert in our class.
This is quite natural: we should expect the forecaster to predict only as well as
the best information available. Thus, the forecaster’s goal is to minimize regret,
L̂T − minN

i=1 LT
i . We will call the quantity LT

∗ := mini LT
i the comparator, since

it is with respect to this that we measure the performance of the forecaster.
Following this, we might propose the following as a multitask comparator,

which we will call the unrelated comparator: LT
∗ :=

∑K
k=1 mini LT

k,i. Here, the
forecaster’s goal is to minimize loss relative to the best expert on task one, plus
loss relative to the best expert on task two, and so on. However, by minimizing
the sum over tasks, the forecaster may as well minimize each separately, thus
considering every task as independent of the rest.

Alternatively, we might propose another comparator, which we will call fully
related: LT

∗ := mini

∑K
k=1 LT

k,i. Here, the forecaster competes against the best
expert on all tasks, that is, the single best expert. The forecaster can simply
ignore the task number and predict as though there were only one task.

These two potential definitions represent ends of a spectrum. By employing
the unrelated comparator, we are inherently expecting that each task will have
a different best expert. With the fully related comparator, we expect that one
expert should perform well on all tasks. In this paper, we would like to choose
a comparator which captures the more general notion of “partial relatedness”
across tasks. We propose the following: the goal of the forecaster is to perform
as well as the best choice of experts from a small set. More precisely, given a
positive integer m ≤ N as a parameter, letting Sm := {S ⊂ [N ] : |S| = m} be
the set of m-sized subsets of experts, we define our comparator as

LT
∗ := min

S∈Sm

K∑

k=1

min
i∈S

LT
k,i. (1)
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Notice that, for the choice m = N , we obtain the unrelated comparator as
described above; for the choice m = 1, we obtain the fully related comparator.

2.2 Taking Advantage of Task Relatedness

There is a benefit in competing against the constrained comparator described in
(1). We are interested in the case when m is substantially smaller than K. By
searching for only the m best experts, rather than K, the forecaster may learn
faster by leveraging information from other tasks. For example, even when the
forecaster arrives at a task for which it has seen no examples, it already has
some knowledge about which experts are likely to be amongst the best S ∈ Sm.

In this paper, we are interested in designing forecasters whose performance
bound has the following form,

L̂T ≤ c1

(

min
S∈Sm

K∑

k=1

min
i∈S

LT
k,i

)

+ c2

(

K log m + m log
N

m

)

, (2)

where c1 and c2 are constants. This bound has two parts, the loss term on the
left and the complexity term on the right, and there is an inherent trade-off
between these two terms given a choice of m. Notice, for m = 1, the complexity
term is only c2 log N , although there may not be a single good expert. On the
other hand, when m = N , the loss term will be as small as possible, while we pay
c2K log N to find the best expert separately for each task. Intermediate choices
of m result in a better trade-off between the two terms whenever the tasks are
related, which implies a smaller bound.

3 A Reduction to the Single Task Setting

Perhaps the most well-known prediction algorithm in the single-task experts set-
ting, as described at the beginning of Section 2, is the (Exponentially) Weighted
Average Forecaster, also known as Randomized Weighted Majority. On round
t, the forecaster has a table of cumulative losses of the experts, Lt

1, . . . , L
t
N , a

learning parameter η, and receives the predictions f t. The forecaster computes
a weight wt

i := e−ηLt
i for each i, and predicts p̂t :=

∑
i wt

ift
i∑

i wt
i

. He receives the

outcome yt, suffers loss �(p̂t, yt), and updates Lt+1
i ← Lt

i + �(f t
i , y

t) for each i.
This simple yet elegant algorithm has the following bound,

L̂T ≤ cη

(
min

i
LT

i + η−1 log N
)

, (3)

where1 cη = η
1−e−η tends to 1 as η → 0. The curious reader can find more

details of the Weighted Average Forecaster and relative loss bounds in [1]. We
will appeal to this algorithm and its loss bound throughout the paper.

1 Depending on the loss function, tighter bounds can be obtained.



488 J. Abernethy, P. Bartlett, and A. Rakhlin

3.1 Weighted Average Forecaster on “Hyperexperts”

We now define a reduction from the multitask experts problem to the single task
setting and we immediately get an algorithm and a bound. Unfortunately, as we
will see, this reduction gives rise to a computationally infeasible algorithm, and
in later sections we will discuss ways of overcoming this difficulty.

We will now be more precise about how we define our comparator class. In
Section 2.1, we described our comparator by choosing the best subset S ∈ Sm

and then, for each task, choosing the best expert in this subset. However, this is
equivalent to assigning the set of tasks to the set of experts such that at most
m experts are used. In particular, we are interested in maps π : [K] → [N ] such
that img(π) := {π(k) : k ∈ [K]} has size ≤ m. Define

Hm := {π : [K] → [N ] s.t. img(π) ≤ m}.

Given this new definition, we can now rewrite our comparator,

LT
∗ = min

S∈Sm

K∑

k=1

min
i∈S

LT
k,i = min

π∈Hm

K∑

k=1

LT
k,π(k). (4)

More importantly, this new set Hm can now be realized as itself a set of
experts. For each π ∈ Hm, we can associate a “hyperexpert” to π. So as not to
be confused, we now also use the term “base expert” for our original class of
experts. On round t, we define the prediction of hyperexpert π to be f t

π(κ(t)), and
thus the loss of this hyperexpert is exactly �t

π(κ(t)). We can define the cumulative
loss of this hyperexpert in the natural way,

LT
π :=

T∑

t=1

�t
π(κ(t)) =

K∑

k=1

LT
k,π(k).

We may now apply the Weighted Average Forecaster using, as our set of
experts, the class Hm. Assume we are given a learning parameter η > 0. We
maintain a K × N matrix of weights [wt

k,i] for each base expert and each task.
For i ∈ [N ] and k ∈ [K], let wt

k,i := exp(−ηLt
k,i). We now define weight vt

π of a
hyperexpert π at time t to be vt

π := exp(−ηLt
π) =

∏K
k=1 wt

k,π(k) . This gives an
explicit formula for the prediction of the algorithm at time t,

p̂t =

∑
π∈Hm

vt
πf t

π(κ(t))
∑

π∈Hm
vt

π

=

∑
π∈Hm

(∏K
k=1 wt

k,π(k)

)
f t

π(κ(t))
∑

π∈Hm

∏K
k′=1 wt

k′,π(k′)

. (5)

The prediction f t
i will be repeated many times, and thus we can factor out

the terms where π(κ(t)) = i. Let Hk,i
m ⊂ Hm be the assignments π such that

π(k) = i, and note that, for any k,
⋃N

i=1 Hk,i
m = Hm. Letting

ut
k,i :=

∑
π∈Hk,i

m

∏K
k′=1 wt

k′,π(k′)
∑

π∈Hm

∏K
k′=1 wt

k′,π(k′)

gives p̂t =
N∑

i=1

uκ(t),i · f t
i .
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We now have an exponentially weighted average forecaster that predicts given
the set of hyperexperts Hm. In order to obtain a bound on this algorithm we
still need to determine the size of Hm. The proof of the next lemma is omitted.

Lemma 1. Given m < K, it holds that
(
N
m

)
mK−mm! ≤ |Hm| ≤

(
N
m

)
mK , and

therefore log|Hm| = Θ
(
log

(
N
m

)
+ K log m

)
= Θ

(
m log N

m + K log m
)
.

We now have the following bound for our forecaster, which follows from (3).

Theorem 1. Given a convex loss function �, for any sequence of predictions f t

and outcomes yt, where t = 1, 2, . . . , T ,

L̂T

cη
≤ min

π∈Hm

LT
π +

log |Hm|
η

≤ min
S∈Sm

K∑

k=1

min
i∈S

LT
k,i +

m log N
m + K log m

η
.

3.2 An Alternative Set of Hyperexperts

We now consider a slightly different description of a hyperexpert. This alternative
representation, while not as natural as that described above, will be useful in
Section 5. Formally, we define the class

H̄m := {(S, φ) for every S ∈ Sm and φ : [K] → [m]}.

Notice, the pair (S, φ) induces a map π ∈ Hm in the natural way: if S =
{i1, . . . , im}, with i1 < . . . < im, then π is defined as the mapping k �→ iφ(k).
For convenience, write Ψ(S, φ, k) := iφ(k) = π(k). Then the prediction of the
hyperexpert (S, φ) on round t is exactly the prediction of π, that is f t

i where
i = Ψ(S, φ, κ(t)). Similarly, we define the weight of a hyperexpert (S, φ) ∈ H̄m

simply as vt
S,φ :=

∏K
k=1 wt

k,Ψ(S,φ,k) = vt
π. Thus, the prediction of the Weighted

Average Forecaster with access to the set of hyperexperts H̄m is

q̂t =

∑
(S,φ)∈H̄m

vt
S,φf t

Ψ(S,φ,κ(t))
∑

(S′,φ′)∈H̄m
vt

S′,φ′
. (6)

We note that any π ∈ Hm can be described by some (S, φ), and so we have
a surjection H̄m → Hm, yet this is not an injection. Indeed, maps π for which
img(π) < m will be represented by more than one pair (S, φ). In other words, we
have “overcounted” our comparators a bit, and so the prediction q̂t will differ
from p̂t. However, Theorem 1 will also hold for the weighted average forecaster
given access to the expert class H̄m. Notice, the set H̄m has size exactly

(
N
m

)
mK ,

and thus Lemma 1 tells us that log |Hm| and log |H̄m| are of the same order.

3.3 Hardness Results

Unfortunately, the algorithm for computing either p̂t or q̂t described above re-
quires performing a computation in which we sum over an exponentially large
number of subsets. One might hope for a simplification but, as the following
lemmas suggest, we cannot hope for such a result. For this section, we let W t :=
[wt

k,i]k,i, an arbitrary nonnegative matrix, and φm(W t) :=
∑

π∈Hm

∏K
k=1 wt

k,π(k).
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Lemma 2. Computing p̂t as in (5) for an arbitrary nonnegative matrix W t and
arbitrary prediction vector f t is as hard as computing φm(W t).

Proof. Because f t is arbitrary, computing p̂t is equivalent to computing the
weights uk,i = 1

φm(W t)

∑
π∈Hk,i

m

∏K
k′=1 wt

k′,π(k′). However, this also implies that

we could compute φm−1(W
t)

φm(W t) . To see this, augment W t as follows. Let Ŵ t :=
[

W t 0
1 ··· 1

]
. If we could compute the weights uk,i for this larger matrix Ŵ t then,

in particular, we could compute uK+1,N+1. However, it can be checked that
uK+1,N+1 = φm−1(W

t)
φm(W t) given the construction of Ŵ t.

Furthermore, if we compute φm−1(W
t)

φm(W t) for each m, then we could compute
∏m−1

l=1
φl(W

t)
φl+1(W t) = φ1(W

t)
φm(W t) . But the quantity φ1(W t) =

∑N
i=1

∏K
k=1 wt

k,i can be

computed efficiently, giving us φm(W t) = φ1(W t)
(

φ1(W
t)

φm(W t)

)−1

.

Lemma 3. Assuming K = N , computing φm(W t) for any nonnegative W t and
any m is as hard as computing Perm(W t), the permanent of a nonnegative
matrix W t.

Proof. The permanent Perm(W ) is defined as
∑

π∈SymN

∏
wt

k,π(k). This ex-
pression is similar to φN (W ), yet this sum is taken over only permutations
π ∈ SymN , the symmetric group on N , rather than all functions from [N ] → [N ].
However, the set of permutations on [N ] is exactly the set of all functions on
[N ] minus those functions π for which |img(π)| ≤ N − 1. Thus, we see that
Perm(W ) = φN (W ) − φN−1(W ).

Theorem 2. Computing either p̂t or q̂t, as in (5) or (6) respectively, is hard.

Proof. Combining Lemmas 2 and 3, we see that computing the prediction p̂t is
at least as hard as computing the permanent of any matrix with positive entries,
which is known to be a hard problem. While we omit it, the same analysis can
be used for computing q̂t, i.e. when our expert class is H̄m.

As an aside, it is tempting to consider utilizing the Follow the Perturbed Leader
algorithm of Kalai and Vempala [9]. However, the curious reader can also check
that not only is it hard to compute the prediction, it is even hard to find the
best hyperexpert and thus the perturbed leader.

4 Deterministic Mixing Algorithm

While the reduction to a single-task setting, discussed in the previous section,
is natural, computing the predictions p̂t or q̂t directly proves to be infeasible.
Somewhat surprisingly, we can solve the sequential multitask problem without
computing these quantities.

The problem of multitask learning, as presented in this paper, can be viewed
as a problem of competing against comparators which shift within a pool of
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size m, a problem analyzed extensively in Bousquet and Warmuth [8]. However,
there are a few important differences. On the positive side, we have the extra
information that no shifting of comparators occurs when staying within the same
task. First, this allows us to design a truly online algorithm which has to keep
only K weight vectors, instead of a complete history (or its approximation) as
for the Decaying Past scheme in [8]. Second, the extra information allows us to
obtain a bound which is independent of time: it only depends on the number
of switches between the tasks. On the down side, in the case of the shifting
multitask problem, tasks and comparators can change at every time step.

In this section, we show how the mixing algorithm of [8] can be adapted to
our setting. We design the mixing scheme to obtain the bounds of Theorem 1 for
the sequential multitask problem, and prove a bound for the shifting multitask
problem in terms of the number of shifts, but independent of the time horizon.

Algorithm 1. Multitask Mixing Algorithm
1: Input: η
2: Initialize w̃0

k = 1
N

1 for all k ∈ [K]
3: for t = 1 to T do
4: Let k = κ(t), the current task
5: Choose a distribution βt over tasks
6: Set z̃t =

∑K
k′=1 βt(k

′)w̃t−1
k′

7: Predict p̂t = z̃t · f t

8: Update w̃t
k,i =

(
z̃t

ie
−η�t

i

)
/

(∑N
i=1 z̃t

ie
−η�t

i

)
for all i ∈ [N ]

9: Set w̃t
k′ = w̃t−1

k′ for any k′ �= k.
10: end for

The above algorithm keeps normalized weights w̃t
k ∈ R

N over experts for each
task k ∈ [K] and mixes w̃t

k’s together with an appropriate mixing distribution
βt over tasks to form a prediction. It is precisely by choosing βt correctly that
one can pass information from one task to another through sharing of weights.
The mixture of weights across tasks is then updated according to the usual
exponential weighted average update. The new normalized distribution becomes
the new weight vector for the current task. It is important to note that w̃t

k

is updated only when k = κ(t). 2 The following per-step bound holds for our
algorithm, similarly to Lemma 4 in [8]. For any ũt and k′ ∈ [K],

�̂t ≤ cη

(

ũt · �t +
1
η
�

(
ũt, w̃t−1

k′

)
− 1

η
�

(
ũt, w̃t

κ(t)

)
+

1
η

ln
1

βt(k′)

)

(7)

where the relative entropy is � (u, v) =
∑N

i=1 ui ln ui

vi
for normalized u, v ∈ R

N

(see Appendix A for the proof). If the loss function � is η-exp-concave (see [1]),
the constant cη disappears from the bound.
2 Referring to w̃q

k, where q is the last time the task k was performed, is somewhat
cumbersome. Hence, we set w̃t

k′ = w̃t−1
k′ for any k′ �= k and avoid referring to time

steps before t − 1.
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We first show that a simple choice of βt leads to the trivial case of unrelated
tasks. Intuitively, if no mixing occurs, i.e. βt puts all the weight on the current
task at the previous step, the tasks are uncoupled. This is exhibited by the next
proposition, whose proof is straightforward, and is omitted.

Proposition 1. If we choose βt(k) = 1 if k = κ(t) and 0 otherwise, then Algo-
rithm 1 yields

L̂T ≤ cη min
S∈Sm

K∑

k=1

min
i∈S

LT
k,i +

cη

η
K ln N.

Of course, if we are to gain information from the other tasks, we should mix
the weights instead of concentrating on the current task. The next definition is
needed to quantify which tasks appeared more recently: they will be given more
weight by our algorithm.

Definition 1. If, at time t, tasks are ordered according to the most recent ap-
pearance, we let the rank ρt(k) ∈ [K] ∪ {∞} be the position of task k in this
ordered list. If k has not appeared yet, set ρt(k) = ∞.

Theorem 3. Suppose the tasks are presented in an arbitrary order, but nec-
essarily switching at every time step. If we choose βt(κ(t)) = α and for any
k �= κ(t) set βt(k) = (1 − α) · 1

ρt(k)2
1

Zt
then Algorithm 1 yields

L̂T ≤ cη min
S∈Sm

K∑

k=1

min
i∈S

LT
k,i +

cη

η

(

m ln
N

m − 2
+ 3T ln m

)

.

Here, Zt =
∑

k∈[K],k �=κ(t)
1

ρt(k)2 < 2, α = 1 − 2
m , and m > 2. It is understood

that we set βt(k) = 0 when ρt(k) = ∞.

In the theorem above, the number of switches n between the tasks is T − 1.
Now, consider an arbitrary sequence of task presentations. The proof of the
above theorem, given in the appendix, reveals that the complexity term in the
bound only depends on the number n of switches between the tasks, and not
on the time horizon T . Indeed, when continuously performing the same task,
we exploit the information that the comparator does not change and put all
the weight βt on the current task, losing nothing in the complexity term. This
improves the bound of [8] by removing the lnT term, as the next corollary shows.

Corollary 1. Let βt(k) be defined as in Theorem 3 whenever a switch between
tasks occurs and let βt(κ(t)) = 1 whenever no switch occurs. Then for the shifting
multitask problem, Algorithm 1 yields

L̂T ≤ cη min
S∈Sm

K∑

k=1

min
i∈S

LT
k,i +

cη

η

(

m ln
N

m − 2
+ 3n lnm

)

.

where n is the number of switches between the tasks.
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Corollary 2. With the same choice of βt as in Corollary 1, for the sequential
multitask problem, Algorithm 1 yields

L̂T ≤ cη min
S∈Sm

K∑

k=1

min
i∈S

LT
k,i +

cη

η

(

m ln
N

m − 2
+ 3K ln m

)

.

Up to a constant factor, this is the bound of Theorem 1. Additionally to removing
the ln T term, we obtained a space and time-efficient algorithm. Indeed, the
storage requirement is only KN , which does not depend on T .

5 Predicting with a Random Walk

In the previous section we exhibited an efficient algorithm which attains the
bound of Theorem 1 for the sequential multitask problem. Unfortunately, for the
more general case of the shifting multitask problem, the bound degrades with the
number of switches between the tasks. Encouraged by the fact that it is possible
to design online algorithms even if the prediction is provably hard to compute,
we look for a different algorithm for the shifting multitask problem.

Fortunately, the hardness of computing the weights exactly, as shown in Sec-
tion 3.3, does not immediately imply that sampling according to these weights
is necessarily difficult. In this section we provide a randomized algorithm based
on a Markov chain Monte Carlo method. In particular, we show how to sample
a random variable Xt ∈ [0, 1] such that EXt = q̂t, where q̂t is the prediction
defined in (6).

Algorithm 2. Randomized prediction
1: Input: Round t; Number R1 of iterations; Parameter m < N ; K × N matrix [wt

k,i]
2: for j = 1 to R1 do

3: Sample S ∈ Sm according to P (S) =

(
K∏

k=1

∑

i∈S

wt
k,i

)
/

⎛

⎝
∑

S′∈Sm

K∏

k=1

∑

i∈S′

wt
k,i

⎞

⎠

4: Order S = {i1, . . . , im}

5: Sample φ : [K] → [m] according to P (φ|S) =

(
K∏

k=1

wt
k,iφ(k)

)
/

(
K∏

k=1

∑

i∈S

wt
k,i

)

6: Set Xt
j = f t

Ψ(S,φ,κ(t))
7: end for
8: Predict with X̄t = 1

R1

∑R1
j=1 Xt

j

Algorithm 2 samples a subset of m experts S = {i1, . . . , im}, and then samples
a map φ from the set of tasks to this subset of experts. If the current task is k,
the algorithm returns the prediction of expert iφ(k) = Ψ(S, φ, k). We have,

P (S, φ) = P (S)P (φ|S) =

∏K
k=1 wt

k,Ψ(S,φ,k)
∑

S′∈Sm

∏K
k=1

∑
i∈S′ wt

k,i

=
vS,φ∑

(S′,φ′) vS′,φ′
.

Note that q̂t =
∑

(S,φ)∈H̄m
P (S, φ)f t

Ψ(S,φ,k), and it follows that EXt = q̂t.
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Notice that, in the above algorithm, every step can be computed efficiently
except for step 2. Indeed, sampling φ given a set S can be done by independently
sampling assignments φ(k) for all k. In step 2, however, we must sample a sub-
set S whose weight we define as

∏K
k=1

∑
i∈S wt

k,i. Computing the weights for all
subsets is implausible, but it turns out that we can apply a Markov Chain Monte
Carlo technique known as the Metropolis-Hastings algorithm. This process be-
gins with subset S of size m and swaps experts in and out of S according to a
random process. At the end of R2 rounds, we will have an induced distribution
QR2 on the collection of m-subsets Sm which will approximate the distribution
P defined in step 3 of Algorithm 2.

More formally, the process of sampling S is as follows.

Algorithm 3. Sampling a set of m experts
1: Input: Matrix of wt

k,i, i ∈ [N ], k ∈ [K], and number of rounds R2

2: Start with some S0 ∈ Sm, an initial set of m experts
3: for r = 0 to R2 − 1 do
4: Uniformly at random, choose i ∈ [N ] \ Sr and j ∈ Sr. Let S′

r = Sr ∪ i \ j.
5: Calculate ω(Sr) =

∏K
k=1

∑
i∈Sr

wt
k,i and ω(S′

r) =
∏K

k=1

∑
i∈S′

r
wt

k,i

6: With probability min
{
1,

ω(S′
r)

ω(Sr)

}
, set Sr+1 ← S′

r, otherwise Sr+1 ← Sr

7: end for
8: Output: SR2

Definition 2. Given two probability distributions P1 and P2 on a space X, we
define the total variation distance ||P1 − P2|| = 1

2

∑
x∈X |P1(x) − P2(x)|.

It can be shown that the distance ||QR2 − P || → 0 as R2 → ∞. While we omit
the details of this argument, it follows from the fact that P is the stationary
distribution of the Markov chain described in Algorithm 3. More information
can be found in any introduction to the Metropolis-Hastings algorithm.

Theorem 4. If a forecaster predicts according to algorithm 2 with the sampling
step 2 approximated by Algorithm 3, then with probability at least 1 − δ,

L̂T ≤ cη min
π∈Hm

K∑

k=1

LT
k,π(k) +

cη

η

(

m log
N

m
+ K log m

)

+ CTε + CT

√
ln 2T

δ

2R1
,

where R1 is the number of times we sample the predictions, C is the Lipschitz
constant of �, and R2 is chosen such that ‖QR2 − P‖ ≤ ε/2. The last two terms
can be made arbitrarily small by choosing large enough R1 and R2.

A key ingredient of this theorem is our ability to choose R2 such that ‖QR2 −
P‖ < ε. In general, since ε must depend on T , we would hope that R2 =
poly(1/ε). In other words, we would like to show that our Markov chain has
a fast mixing time. In some special cases, one can prove a useful bound on the
mixing time, yet such results are scarce and typically quite difficult to prove. On
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the other hand, this does not imply that the mixing time is prohibitively large. In
the next section, we provide empirical evidence that, in fact, our Markov chain
mixes extremely quickly.

5.1 Experiments

For small K and N and some matrix [wt
k,i]k,i we can compute the true distri-

bution P on Sm, and we can compare that to the distribution QR2 induced by
the random walk described in Algorithm 3. The graphs in Figure 1 show that,
in fact, QR2 approaches P very quickly even after only a few rounds R2.

Fig. 1. We generate a random K × N matrix [wt
k,i]k,i, where K = 5, N = 10, and

we consider the distribution on Sm described in algorithm 2. In the first graph we
compare this “true distribution” P , sorted by P (S), to the induced distribution QR2

for the values R2 = 1, 2, 5. In the second graph we see how quickly the total variation
distance ‖P − QR2‖ shrinks relative to the number of steps R2.
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Fig. 2. The performance of Algorithm 2 on a toy example. Large values of m have
good long-term performance yet are “slow” to find the best expert. On the other hand,
the algorithm learns very quickly with small values of m, but pays a price in the long
run. In this example, m = 10 appears to be a good choice.

Figure 2 demonstrates the performance of Algorithm 2, for various choices of
m, on the following problem. We used R1 = 5 and we employ Algorithm 3 to
sample S ∈ Sm with R2 = 700. On each round, we draw a random xt ∈ X = Rd,
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where in this case d = 4, and this xt is used to generate the outcome and the
predictions of the experts. We have K = 60 tasks, where each task fk is a
linear classifier on X . If k = κ(t), the outcome for round t is I(fk · xt > 0).
We choose 70 “bad” experts, who predict randomly, and 30 “good” experts
which are, themselves, randomly chosen linear classifiers ei on X : on round t
expert i predicts I(ei · xt > 0) with 30% label noise. In the plots below, we
compare the performance of the algorithm for all values of m to the comparator∑

k mini Lt
k,i. It is quite interesting to see the tradeoff between short and long-

term performance for various values of m.

6 Conclusion

We conclude by stating some open problems.
Recall that in Section 3.3 we show a crucial relationship between computing

the forecaster’s prediction and a matrix permanent. Interestingly, in very recent
work, Jerrum et al [10] exhibit a Markov chain, and a bound on the mixing time,
that can be used to efficiently approximate the permanent of an arbitrary square
matrix with nonnegative entries. Could such techniques be employed to provide
a randomized prediction algorithm with provably fast convergence?

Is it possible to develop a version of the Multitask Mixing Algorithm for the
shifting multitask problem and prove that performance does not degrade with
the number of shifts between the tasks? Are there reasonable assumptions under
which Φ in the proof of Theorem 3 depends sublinearly on the number of shifts?

Acknowledgments. We would like to thank Manfred Warmuth for his knowl-
edge of prediction algorithms and helpful discussions on mixing priors. We would
like to thank Alistair Sinclair for his expertise on the MCMC methods. Thanks
to Madhur Tulsiani for helpful suggestions on the hardness proof. We gratefully
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A Proofs

Proof (of Inequality (7)). The details of this proof can be found in [8,1].

�̂t/cη ≤ �(z̃t · f t, yt)/cη ≤ c−1
η

N∑

i=1

z̃t
i�

t
i ≤ −1

η
ln

N∑

i=1

z̃t
ie

−η
t
i

= ũt · �t +
1
η

N∑

i=1

ut,i ln e−η
t
i − 1

η
ln

N∑

i=1

z̃t
ie

−η
t
i

= ũt · �t +
1
η
�

(
ũt, z̃

t
)

− 1
η
�

(
ũt, w̃t

κ(t)

)

≤ ũt · �t +
1
η
�

(
ũt, w̃t−1

k′

)
− 1

η
�

(
ũt, w̃t

κ(t)

)
+

1
η

ln
1

βt(k′)

Proof (of Theorem 3). The proof is an adaptation of the proof of Corollary 9
in [8], taking into account the task information. Let ũ1, . . . , ũm be m arbitrary
comparators. For any π : [K] �→ [m], ũπ(k) is the comparator used by the
environment for task k (known only in the hindsight). For any t,

�̂t/cη ≤ ũπ(k) · �t +
1
η

(
�

(
ũπ(k), z̃

t
)

− �
(
ũπ(k), w̃

t
k

))
,

where k = κ(t). There are m time points when a task k begins and it is the first
task being compared to the comparator ũπ(k). For these m time steps,

�̂t/cη ≤ ũπ(k) · �t +
1
η

(

�
(
ũπ(k), w̃

t−1
k

)
− �

(
ũπ(k), w̃t

k

)
+ ln

1
α

)

,

where w̃t−1
k = w̃0

k, as it has not been modified yet. Otherwise,

�̂t/cη ≤ ũπ(k) · �t +
1
η

(

�
(
ũπ(k), w̃

t−1
k′

)
− �

(
ũπ(k), w̃t

k

)
+ ln

ρt(k′)2Zt

1 − α

)

,

where k′ is the most recent task played against the comparator ũπ(k) (this is still
true in the case k is the only task for the comparator ũπ(k) because α > 1−α

ρt(k)2Zt

with the choice of α below). We upper bound

�̂t/cη ≤ ũπ(k)·�t+
1
η

(

�
(
ũπ(k), w̃

t−1
k′

)
− �

(
ũπ(k), w̃t

k

)
+ ln ρt(k′)2 + ln

2
1 − α

)

.



498 J. Abernethy, P. Bartlett, and A. Rakhlin

We note that for each comparator ũj , the relative entropy terms telescope.
Recall that w̃0

k = 1
N 1 and �

(
ũj ,

1
N 1

)
≤ ln N . Summing over t = 1, . . . , T ,

L̂T /cη ≤
K∑

k=1

∑

t∈τ(k)

ũπ(k) · �t +
1
η

(

m ln N + m ln
1
α

+ (T − m) ln
2

1 − α
+ 2Φ

)

,

where Φ =
∑T

t=1 ln ρt(k′) and k′ is the task previous to κ(t) which used the
same comparator. We now upper-bound Φ by noting that ρt(k′) is smaller than
the number of time steps δt that elapsed since task k′ was performed. Note
that

∑T
t=1 δt ≤ mT as there are m subsequences summing to at most T each.

Hence, ln
∏T

t=1 δt is maximized when all the terms δt are equal (i.e. at most m),
resulting in Φ ≤ T ln m. Note that Φ, which depends on the sequence of task
presentations, is potentially much smaller than T ln m.

Choosing, for instance, α = 1 − 2
m whenever m > 2,

L̂T /cη ≤
K∑

k=1

∑

t∈τ(k)

ũπ(k) · �t +
1
η

(

m ln
N

m − 2
+ 3T ln m

)

.

The constant 3 can be optimized by choosing a non-quadratic power decay
for βt at the expense of having an extra T ln K term. Setting the compara-
tors ũ1, . . . , ũm to be unit vectors amounts to finding the best m-subset of N
experts. The minimum over the assignment π of tasks to experts then amounts
to choosing the best expert out of m possibilities for each task.

Proof (of Theorem 4). Let P̃ (S, φ) = QR2(S)P (φ|S), the induced distribution
on the (S, φ) pairs when the MCMC Algorithm 3 is used for sampling. Let Xt

now stand for the random choices f t
i according to this induced distribution P̃ ,

which is close to P . Then EXt =
∑

(S,φ)∈H̄m
f t

Ψ(S,φ,k)P̃ (S, φ). Hence,

|q̂t − EXt| =

∣
∣
∣
∣
∣
∣

∑

(S,φ)∈H̄m

f t
Ψ(S,φ,k)

(
P (φ, S) − P̃ (φ, S)

)
∣
∣
∣
∣
∣
∣

≤
∑

(S,φ)∈H̄m

f t
Ψ(S,φ,k)P (φ|S) |P (S) − QR2(S)| ≤ 2‖QR2 − P‖ ≤ ε.

Since we sample Xt independently R1 times, standard concentration inequal-

ities ensure that P
(∣
∣X̄t − EXt

∣
∣ ≥

√(
ln 2T

δ

)
/(2R1)

)
≤ δ

T . Combining with the

above result, P
(∣
∣X̄t − q̂t

∣
∣ ≥ ε +

√(
ln 2T

δ

)
/ (2R1)

)
≤ δ

T . Since � is Lipschitz,
∣
∣�(X̄t, yt) − �(q̂t, yt)

∣
∣ ≤ Cε+C

√(
ln 2T

δ

)
/(2R1) with probability at least 1−δ/T .

By the union-bound, with probability at least 1 − δ,
∣
∣
∣
∣
∣

T∑

t=1

�(X̄t, yt) −
T∑

t=1

�(q̂t, yt)

∣
∣
∣
∣
∣
≤ T · Cε + T · C

√
ln 2T

δ

2R1
.

Combining with the bound of Theorem 1 (for H̄m), we obtain the desired result.
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Abstract. The standard so-called experts algorithms are methods for
utilizing a given set of “experts” to make good choices in a sequential
decision-making problem. In the standard setting of experts algorithms,
the decision maker chooses repeatedly in the same “state” based on infor-
mation about how the different experts would have performed if chosen
to be followed. In this paper we seek to extend this framework by intro-
ducing state information. More precisely, we extend the framework by
allowing an experts algorithm to rely on state information, namely, par-
tial information about the cost function, which is revealed to the decision
maker before the latter chooses an action. This extension is very natural
in prediction problems. For illustration, an experts algorithm, which is
supposed to predict whether the next day will be rainy, can be extended
to predicting the same given the current temperature.

We introduce new algorithms, which attain optimal performance in
the new framework, and apply to more general settings than variants of
regression that have been considered in the statistics literature.

1 Introduction

Consider the following standard “experts problem”: an online player attempts
to predict whether it will rain or not the next day, given advices of various
experts. Numerous “experts algorithms” are known, which make predictions
based on previous observations and expert advice. These algorithms guarantee
that after many iterations the number of mistakes that the algorithm makes is
approximately at least as good as that of the best expert in retrospect.

In this paper we address the question of how to utilize prior “state infor-
mation” in online learning. In the prediction example, suppose that the online
predictor has access to various measurements, e.g., temperature and cloud lo-
cation. Intuitively, this information can potentially improve the performance of
the online predictor.

It is not clear a priori how to model prior information in the online learning
framework. The information (e.g., temperature) may or may not be correlated
with the actual observations (e.g., whether or not it later rains). Even more so,
it is conceivable that the state information may be strongly correlated with the
observations, but this correlation is very hard to extract. For example, the prior
knowledge could be encoded as a solution to a computationally hard problem or
even an uncomputable one.
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Various previous approaches attempted to learn the correlation between the
given information and the observable data. By the above argument, we think
such an approach is not robust.

Another approach could be to associate different experts with different deci-
sion states and then use standard expert algorithms. The problem here is that
the number of states grows exponentially with the dimension of the state space.
Therefore, this approach quickly becomes infeasible even for a modest amount
of prior information. Other difficulties with this approach arise when the domain
of the attributes is infinite.

Perhaps the previous work that is most similar to our approach is the model
for portfolio management with side information by Cover and Ordentlich [CO96].
Their approach handles discrete side information, and amounts to handling dif-
ferent side information values as separate problem instances. The measure of
performance in their model is standard regret, which must increase in propor-
tion to the available side information.

We propose a framework which does not assume anything about the distribu-
tion of the data, prior information, or correlation between the two. The measure
of performance is comparative, i.e., based on an extension of the concept of
regret. However, unlike [CO96], our model allows the learner to correlate be-
tween different states. Our model takes into account the geometric structure
of the available information space. As such, it is more similar to the statistical
framework of nonparametric regression.

We propose and analyze algorithms which achieve near optimal performance
in this framework. Our performance guarantees are valid in both adversarial and
stochastic scenarios, and apply to the most general prediction setting, as opposed
to previous methods such as nonparametric regression, which apply only to the
stochastic scenario and to a more restrictive prediction setting.

We begin with an example of an instance of online learning with state in-
formation, in which the information need not be correlated with the observed
outcomes. We prove, however, a surprising gain in performance (measured by
the standard measure of regret) of algorithms that exploit the state information,
compared to those that ignore it.

Following this proof of concept, in section 4 we precisely define our model and
the measure of performance. We give algorithms and analyze them according to
the new performance measure. In section 5 we prove nearly tight lower bounds
on the performance of the algorithms, and compare our framework to the well-
studied statistical problem of nonparametric regression.

2 Preliminaries

The online convex optimization (OCO) problem is defined as follows. The feasible
domain of the problem is a given convex compact set P ⊂ R

n. An adversary picks
a sequence of T convex functions ft : P → R, t = 1, 2, . . . , T . The adversary is
not restricted otherwise. At time t, (t = 1, 2, . . .), the decision maker knows only
the functions f1, . . . , ft−1 and has to pick a point xt ∈ P . The decision maker
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also recalls his previous choices x1 . . . ,xt−1. The decision maker is subsequently
informed in full about the function ft, and incurs a cost of ft(xt).

We denote the gradient (resp., Hessian) of a mapping f : P �→ R at x ∈
P by ∇f(x) (resp., ∇2f(x)). For a family of loss functions {ft(·) : t ∈ [T ]}
(henceforth we denote [n] � {1, ..., n}) and an underlying convex set P , we
denote by G = max{‖∇ft(x)‖2 : t ∈ [T ], x ∈ P} an upper bound on the
�2-norm of the gradients, and by G∞ an upper bound on the �∞-norm.

Minimizing Regret. The regret of the decision maker after T steps is defined as the
difference between the total cost that the decision maker has actually incurred
and the minimum cost that the decision maker could have incurred by choosing a
certain point repeatedly throughout. More precisely, the regret is equal to

R = R(x1, . . . ,xT ; f1, . . . , fT ) �
T∑

t=1

ft(xt) − min
x∈P

T∑

t=1

ft(x) .

Denote by A the algorithm that is used by the decision maker to make the
sequential choices. Thus, A is sequence of mappings (At : t = 1, 2, . . .) so that
xt = At(f1, . . . , ft−1). For brevity, denote xT = (x1, . . . ,xT ), fT = (f1, . . . , fT )
and xT = A(fT−1). The worst-case regret from an algorithm A at time T can
be defined as

RegretT (A) � sup
fT

R(A(fT−1), fT ) .

In other words,

RegretT (A) = sup
f1,...,fT

{
T∑

t=1

ft(xt) − min
x∈P

T∑

t=1

ft(x)

}

The traditional approach to the OCO problem seeks algorithms that minimize
the worst-case regret.

Online convex optimization with state information. In this paper we extend
the common OCO problem to situations where the decision maker has some
information about the “state” prior to his choosing of xt. We consider specific
situations where some state information is revealed to the decision maker. A
precise definition is given in section 4.

3 A “Proof of Concept”

In this section we consider the basic online convex optimization setting over the
Euclidean ball Bn = {x ∈ R

n : ‖x‖2 ≤ 1}. We assume that each payoff function
ft is linear, i.e., ft(x) = c�t x for some c ∈ R

n (see see [Zin03] for a reduction from
the general OCO problem to the case of linear cost functions). Furthermore, we
consider here the case where ct ∈ [−1, 1]n, and assume that only ct1, the first
coordinate of ct, is revealed to the decision maker as state information prior to
the choosing of xt ∈ Bn.
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The following lower bound is well known for the case where ct1 is not re-
vealed to the decision maker prior to choosing xt (a similar bound was given in
[CBFH+93]; see Appendix for proof):

Lemma 1 (Folk). For the Online Convex Optimization problem over the Eu-
clidean ball with ct ∈ [−1, 1]n (or even ct ∈ {−1, 1}n) with no state information,
every algorithm has a worst-case regret of at least Ω(

√
nT ).

We first prove a surprising result that the decision maker can do much better
when ct1 is known, even if there is no dependency between ct1 and the rest of
the coordinates of ct.

Theorem 2. For the OCO problem over the Euclidean ball with ct ∈ [−1, 1]n,
in which ct1 is bounded away from zero and is revealed to the decision maker as
state information prior to the choosing of xt, there exists an algorithm with a
worst-case regret of O(n2 log T ).

The condition that ct1 is bounded away from zero is intuitively necessary in
order to have non-vanishing state information. It is also easy to show that for
state information that is identically zero, the lower bound of Lemma 1 holds.

We now analyze the case with prior information, specifically where the decision
maker is informed of ct1 prior to choosing xt. The basic idea is to reformulate the
OCO problem with state information as an equivalent OCO problem without
state information. In our particular case, this can be done by modifying the
convex cost function as follows. Suppose the coordinates of yt ≡ (xt2, . . . , xt,n)�

have been fixed so that ‖yt‖2 ≤ 1. Then, the optimal choice of xt1, subject to
the constraint ‖xt‖2 ≤ 1, is

xt1 =

{ √
1 − ‖yt‖2 if ct1 < 0

−
√

1 − ‖yt‖2 if ct1 ≥ 0 .

In other words,
xt1 = − sgn(ct1) ·

√
1 − ‖yt‖2 .

It turns out that the cost of choosing yt and completing it with an optimal choice
of xt1 is

gt(yt) = ct2xt2 + · · · + ctnxtn − |ct1|
√

1 − ‖yt‖2 = u�
t yt − |ct1|

√
1 − ‖yt‖2 ,

where
ut ≡ (ct2, . . . , ctn)� .

Thus, our problem is equivalent to an OCO problem where the decision maker
has to choose vector yt, and the adversary picks cost functions of the form of gt

where ct1 is known to the decision maker.
The following algorithm chooses vectors based on weights, which are updated

in a multiplicative fashion. Let

wt(y) = exp
{
−α

∑t−1
τ=1gτ (y)

}
.
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Thus,
wt(y) = wt−1(y) · exp {−αgt−1(y)} .

The weight function wt(·) determines the choice of yt as follows, where P =
Bn−1.

yt =

∫
P y · wt(y) dy
∫
P wt(y) dy

∈ P .

Note that yt is a convex combination of points in P and hence yt ∈ P . The
corresponding vector xt in the OCO problem with state information is the
following:

(xt2, . . . , xtn)� = yt

xt1 =

{ √
1 − ‖yt‖2 if ct1 < 0

−
√

1 − ‖yt‖2 if ct1 ≥ 0

We refer to the above-stated algorithm as Alg1. Denote ρ = min{|ct1| : t =
1, . . . , T}.

Lemma 3. The worst-case regret of Alg1 is at most (4n2/ρ) · log T .

The proof of this Lemma is given in the appendix. Briefly, Alg1 belongs to a
family of well studied “exponential weighting” algorithms, which can exploit the
curvature of the functions g(y), and hence obtain a logarithmic regret. Theorem
2 follows.

Algorithm Alg1 can be implemented in time polynomial in n and T , in a
way similar to the implementation of Cover’s algorithm [Cov91] by Blum and
Kalai [BK97].

4 The General Case

To capture state information, we revise the online convex optimization frame-
work as defined in section 2 as follows. We model state information by a vector
in a metric space I, which we also call the information space. In iteration t, an
online algorithm A accepts besides f t−1 and xt−1 also a state vector kt ∈ I as
well as all previous state vector k1, . . . ,kt−1.

Henceforth we consider the information space I as a subset of d-dimensional
Euclidean space, even though it makes sense to consider general metric spaces
so as to allow the representation of both scalar quantities (e.g., temperature)
and problem-specific quanta (e.g., board configurations in the game of chess).
The space should at least be metric since the main point of our algorithms
is to take advantage of similarity between consecutive state vectors, which is
measured according to some distance function. Note that ignoring the similarity
between states is equivalent to employing disjoint sets of experts in different
states. We also refer to the intrinsic dimensionality of the space, denoted d. For
Euclidean space this is the standard dimension, but more generally the notion
of box dimension [Cla06] is suitable for our applications.

The new performance measure we propose is a strict generalization of the
game-theoretic concept of regret as follows.
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Definition 1. For L > 0,

(i) Denote by XL the family of mappings x : I �→ P, from the information
space to the underlying convex set P, with Lipschitz-constant L, i.e., for all
k1,k2 ∈ I,

‖x(k1) − x(k2)‖ ≤ L · ‖k1 − k2‖ .

(ii) The L-regret from a sequence of choices x1, ...,xT is defined as

T∑

t=1

ft(xt) − min
x∈XL

T∑

t=1

ft(x(kt))

When L and k1, . . . ,kT have been fixed, we denote by x∗(·) a minimizer of
∑T

t=1 ft(x(kt)) over XL.

Thus, the actual costs are compared with the costs that could be incurred by
the best experts in a family of experts with Lipschitz-constant L. Note that this
definition reduces to the standard regret when L = 0. If L = ∞, then L-regret
is the “competitive ratio” studied in competitive analysis of online algorithms.
Our model for prior information allows for algorithms which attain sublinear
L-regret for 0 < L < ∞.

4.1 An Algorithm for Minimizing L-Regret

To describe the first algorithm which attains a non-trivial worst-case L-regret,
we recall the geometric notion of an ε-net.

Definition 2. A subset N ⊆ I of points in a metric space I with distance
function Δ is called an ε-net for the set S ⊆ I if for every x ∈ S, Δ(x, N ) ≡
inf{Δ(x, y)|y ∈ N} ≤ ε, and in addition ∀x, y ∈ N . Δ(x, y) ≥ ε.

The first algorithm, Alg2, which attains a non-trivial worst-case L-regret, con-
structs an ε-net of the observed data points, denoted N , according to the online
greedy algorithm (see [Cla06, KL04]). We also maintain a mapping, denoted M,
from all points in N to the decision space P . Let D denote the diameter of P
and W denote the diameter of the information space I. The algorithm relies on
the Lipschitz-constant L and the number of time periods T .

Algorithm Alg2 (L,T)
Set ε = W (D/L)2/(d+2) T−1/(d+2) and N = ∅.

– Given kt ∈ [0, 1]d, let k̃t be the state that is closest to kt among all state
vectors in N , i.e., k̃t = arg min{‖k − kt‖ : k ∈ N}.

– Set xt ← M(k̃t) or, if t = 0, then set x0 arbitrarily.
– Denote by

∏
P the projection operator into the convex set P . Set

y ←
∏

P
(
M(k̃t) − 1√

T
∇ft(M(k̃t))

)
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– If ‖k̃t − kt‖ ≤ ε, then update M(k̃t) ← y (the size of N does not increase);
else, add kt to N and set M(kt) ← y.

Theorem 4. Given L, P, and T ,

L-regret(Alg2) = O
(
W GL1− 2

d+2 D
2

d+2 · T 1− 1
d+2

)

The theorem is proved by independently summing up the L-regret over the “rep-
resentative” points in the set N . For each such representative point, the optimal
strategy in hindsight is almost fixed by diameter considerations. In addition, the
total number of such representatives is not too large because the set N is an
ε-net of the observed set of state vectors.

Proof. Summing up the L-regret over the “representative” points in the set N :

L-regret(Alg2) =
T∑

t=1

[ft(xt) − ft(x∗(kt))] =
∑

k∈N

∑

t:k̃t=k

[ft(xt) − ft(x∗(kt))] .

Let Tk = |{t ∈ [ T ] | k̃t = k}| be the number of iterations during which the prior
knowledge kt is equal to the representative vector k ∈ N . By the properties
of the gradient-descent algorithm (Theorem 1 in [Zin03]), for each set of time
periods Tk, the 0-regret can be bounded as follows.

∑

t∈Tk

ft(xt) − min
x∈P

∑

t∈Tk

ft(x) =
∑

t∈Tk

[ft(xt) − ft(x∗
k)] ≤ 2GD

√
Tk , (1)

where x∗
k = arg min

∑
t∈Tk

ft(x). Also, since for each time period during which
k̃t = k the distance between state vectors is bounded by (using the triangle
inequality for the norm),

‖x∗(k1) − x∗(k2)‖ ≤ L · ‖k1 − k2‖ ≤ L · (‖k1 − k‖ + ‖k2 − k‖) ≤ 2Lε , (2)

combining (1) and (2) we get for every k,
∑

t∈Tk [ft(xt) − ft(x∗(kt))]

=
∑

t∈Tk

[ft(xt) − ft(x∗
k)] +

∑

t∈Tk

[ft(x∗
k) − ft(x∗(kt))]

≤ 2GD
√

Tk +
∑

t∈Tk

∇ft(x∗(kt))(x∗
k − x∗(kt))

≤ 2GD
√

Tk +
∑

t∈Tk

‖∇ft(x∗(kt))‖ · ‖x∗(k1) − x∗(kt)‖

≤ 2GD
√

Tk + GTk · εL .

Thus, the total regret is bounded by (using concavity of the square root function)

T∑

t=1

[ft(xt)−ft(x∗(kt))] ≤
∑

k∈N
[2GD

√
Tk+GεLTk] ≤ |N |·2GD

√
T/|N |+GεLT .
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It remains to bound the size of N , which is standard for a greedy construction
of an ε-net. Since the distance between every two distinct vectors k1,k2 ∈ N is
at least ε, by volume arguments and the fact that the information space I has
(box) dimension d, we have |N | ≤ (W/ε)d. Thus,

L-regret(Alg2) = O
(
(W/ε)d/2

GD
√

T + GεLT
)

By choosing ε = W (D/L)2/(d+2)T−1/(d+2), we obtain the result.

Remark 1. Algorithm Alg2 receives as input the number of iterations T . This
dependence can be removed by the standard “doubling trick” as follows. Apply
the algorithm with t1 = 100. Recursively, if the number of iterations exceeds
tj−1, then apply Alg2 with tj = 2tj−1 from iteration tj onwards. The overall
regret is

log T∑

j=1

WGL1− 2
d+2 D

2
d+2 · t1−

1
d+2

j ≤ log T · WGL1− 2
d+2 D

2
d+2 · T 1− 1

d+2 .

The same remark shall apply to all consequent variants. For simplicity, we assume
henceforth that T is known in advance.

Implementation and running time. It is straightforward to implement Alg2 in
time linear in T , n, and d, apart from the projection operator onto the convex
set P . This projection is a convex program and can be computed in polynomial
time (for various special cases faster algorithms are known).

The performance guarantee of Alg2 decreases exponentially with the dimen-
sion of the information space, denoted d. As we show in the next section, this
“curse of dimensionality” is inherent in the model, and the bounds are asymp-
totically tight. Next, we describe an approach to deal with this difficulty.

4.2 Extensions to the Basic Algorithm

Exploiting Low Dimensionality of Data. If the state vectors originate from
a lower-dimensional subspace of the information space, the algorithm of the
preceding section can be adapted to attain bounds that are proportional to the
dimension of the subspace rather than the dimension of the entire information
space.

Corollary 5. Suppose that the prior knowledge vectors kt originate from an r-
dimensional subspace of I. Then setting ε = W (D

L )2/(r+2) T−1/(r+2) in Alg2

we obtain
L-regret(Alg2) = O(WGL1− 2

r+2 D
2

r+2 · T 1− 1
r+2 )

This corollary follows from the fact that the constructed ε-net in an r-dimensional
subspace has size (W/ε)r rather than (W/ε)d.
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Specialization to Other Online Convex Optimization Variants. It is
possible to modify Alg2 by replacing the online gradient descent step inside
the main loop by any other online convex optimization algorithm update. In
certain cases this may lead to more efficient algorithms. For example, if the
underlying convex set P is the n-dimensional simplex, then using the ubiquitous
Multiplicative-Weights online algorithm (introduced to the learning community
by Littlestone and Warmuth [LW94]; see survey [AHK05]) we can obtain the
following regret bound

L-regret(MW-Alg2) = O(WG∞L1− 2
d+2 D

2
d+2 · T 1− 1

d+2
√

log n) .

Another possible variant applies a Newton-type update rather than a gradient
update. Such second-order algorithms are known to achieve substantial lower
regret when the cost functions are exp-convex [HKKA06]. It is also possible to
plug in “bandit” algorithms such as [FKM05].

Better ε-Nets. The metric embedding literature is rich with sophisticated data
structures for constructing ε-nets and computing nearest neighbors over these
nets - exactly the geometrical tasks performed by algorithm Alg2. Specifically,
it is possible to use the techniques in [KL04] and related papers to obtain algo-
rithms with much better running times.

5 Limitations of Learning with Prior Knowledge

In this section we discuss the limitations of our model for learning with prior
knowledge. As a first step, we give lower bounds on the achievable L-regret,
which are asymptotically tight up to constant factors.

Following that, we discuss a well-studied statistical methodology, called non-
parametric regression, and show that our model generalizes that methodology.
As a consequence, the lower bounds proved in the statistics literature apply to
our framework and imply lower bounds on the achievable L-regret. These lower
bounds are tight in the sense that the algorithms we described in the previous
sections attain these bounds up to constant factors.

5.1 Simple Lower Bounds for L-Regret

We begin with a simple lower bound, which shows that the L-regret of any online
algorithm with prior information deteriorates exponentially as the dimension
grows. Compared to Theorem 4 the bounds are tight up to constant factors.

Lemma 6. For P = [−1, 1], d > 1, and every L ≥ 0, the L-regret of any online
algorithm is at least Ω(GLT 1− 1

d ).

Proof. Partition the hypercube [0, 1]d into T = δ−d small cubes of edge-length
δ. Consider loss functions ft(x) and prior knowledge vectors kt as follows. The
sequence of prior knowledge vectors (k1, . . . ,kT ) consists of all centers of the



508 E. Hazan and N. Megiddo

small cubes. Note that for every i �= j, ‖ki − kj‖ ≥ δ. For each t, indepen-
dently, pick ft = ft(x) to be either Gx or −Gx with equal probability. Note that
‖∇f(x)‖ = |f ′(x)| = G. Obviously, the expected loss of any algorithm that picks
xt without knowing ft(x) is zero; thus,

Ef1,...,ft

[∑T
t=1 ft(xt)

]
= 0.

Now, define the following function:

x∗(kt) �
{

− 1
2Lδ if ft(x) ≡ Gx

+ 1
2Lδ if ft(x) ≡ −Gx .

The function x∗(·) is in XL because for every k1 and k2,

|x∗(k1) − x∗(k2)| ≤ Lδ ≤ L · ‖k1 − k2‖ .

Also, the minimum possible total cost using an optimal strategy x∗ is
∑T

t=1 − 1
2 Lδ · G = −T · 1

2 LδG = − 1
2 GLT 1− 1

d

where the last equality follows since T = δ−d and hence δ = T− 1
d . Therefore,

the expected regret of any online algorithm is as claimed.

The previous Lemma does not cover the case of d = 1, so for completeness we
prove the following lemma.

Lemma 7. For d = 1, prior knowledge space K = [0, 1], P = [−1, 1], and any
L ≥ 0, the L-regret of any online algorithm is at least Ω(G

√
T (�L� + 1))

Proof (sketch). Without loss of generality, assume L is an integer. If L ≤ 1, then
this lemma follows from Lemma 1; otherwise, divide the real line [0, 1] into L
segments, each of length 1

L .
The online sequence is as follows. The prior knowledge vectors will be all L+1

points {k1, . . . , kL+1} which divide the segment [0, 1] into L smaller segments.
For each such point we have a sequence of T/(L + 1) loss functions ft(x), each
chosen at random, independently, to be either Gx or −Gx.

Obviously, the expected payoff of any online algorithm is zero. Now, to define
the optimal strategy in hindsight, for each sequence of random functions cor-
responding to one of the points {k1, . . . , kL+1}, with very high probability, the
standard deviation is O(

√
T/(L + 1)). Let x∗(ki) be either 1

4 or − 1
4 according

to the direction of the deviation. We claim x∗ ∈ XL since |k1 − k2| ≥ 1/L and
for all k1 and k2,

|x∗(k1) − x∗(k2)| ≤ 1
2

≤ L · |k1 − k2| .

The loss obtained by x∗ is

(L + 1) · 1
4

√
T

L + 1
=

1
4

√
T (L + 1) .

This completes the proof.
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5.2 The Relation to Nonparametric Regression

Nonparametric regression is the following well-studied problem which can be de-
scribed as follows. There exists a distribution Ψ on K × X , where that K ⊆ R

d

and X ⊆ R. We are given t samples, {(k1, x1), . . . , (kt, xt)}, from this distribu-
tion, which we denote by zt = {z1, . . . , zt} (zi = (ki, xi)). The problem is to
come up with an estimator for x, given k ∈ R

d. An estimator for X which has
seen t samples zt from the distribution Ψ is denoted by θt : K �→ X . The goal
is to come up with an estimator which is as close as possible to the “optimal”
Bayes estimator θ(k) = E[x |k].

Various distance metrics are considered in the literature for measuring the
distance of an estimator from the Bayes estimator. For our purposes it is most
convenient to use the L2-error given by

Perf (θt) � E(k,x)

[
(θt(k) − θ(k))2

]
.

The online framework we consider is more general than nonparametric re-
gression in the following sense: an algorithm for online convex optimization with
prior information is also an estimator for non-parametric regression, as we show
below.

Recall that an algorithm for online optimization A takes as input the his-
tory of cost functions f1, . . . , ft−1 as well as historical and current state in-
formation k1, . . . ,kt−1,kt, and produces a point in the underlying convex set
xt = A(f1, . . . , ft−1 ; k1, . . . ,kt). Given an instance of nonparametric regression
(K, X), and t samples {(ki, xi)}, define t cost functions as

fi(x) � (x − θ(ki))2 .

Note that these cost functions are continuous and convex (although not differ-
entiable). Motivated by results on online-to-batch algorithm conversion, let the
hypothesis of online algorithm A at iteration t be

hA
t (k) � A(f1, . . . , ft−1 ; k1, . . . ,kt−1,k) .

Now, define the estimator corresponding to A by

θAt (k) � 1
t

∑t
τ=1 hA

τ .

Standard techniques imply a bound on the performance of this estimator as a
function of the L-regret achievable by A:

Lemma 8. Let L be the Lipschitz constant of the function θ : K �→ X. Then,

lim
T 	→∞

Pr
zT ∼ΨT

[

Perf (θAT ) ≤ 1
T

L-regretT (A) + O

(
log T√

T

)]

= 1 .

Proof. Standard results of converting online algorithms to batch algorithms, in
particular Theorem 2 from [CBCG04], rephrased in our notation, reduces to:

Pr
zt∼Ψ

[

E(k,x)∼Ψ [f(θAt (k))] ≤ 1
t

t−1∑

τ=1

fτ (hA
τ (kτ )) + O

(
1√
t
log

1
δ

)]

≥ 1 − δ .



510 E. Hazan and N. Megiddo

Since for every τ , fτ (θ(kτ )) = 0, we obtain

1 − δ ≤ Pr
zt∼Ψ

[

E(k,x)∼Ψ [f(θAt (k))] ≤ 1
t

t−1∑

τ=1

fτ (hA
τ (kτ )) + O

(
1√
t
log

1
δ

)]

= Pr
zt∼Ψ

[

Perf (θAt ) ≤ 1
t

[
t−1∑

τ=1

fτ (hA
τ (kτ )) − fτ (θ(kτ ))

]

+ O

(
1√
t
log

1
δ

)]

≤ Pr
zt∼Ψ

[

Perf (θAt ) ≤ 1
t

[L-regretT (A)] + O

(
1√
t
log

1
δ

)]

where the equality follows from the definition of Perf (θt), and in the last in-
equality we use the fact that θ ∈ XL by our assumption on the Lipschitz constant
of θ.

By choosing δ = 1
t , with probability approaching 1 we have

Perf (θAt ) ≤ 1
t

[L-regretT (A)] + O

(
log t√

t

)

.

Hence, online algorithm with non-trivial L-regret guarantee automatically
give a method for producing estimators for nonparameteric regression. In addi-
tion, the numerous lower bounds for nonparametric regression that appear in
the literature apply to online learning with prior information. In particular, the
lower bounds of [Sto82] and [AGK00] show that the exponential dependence of
the L-regret is inherent and necessary even for the easier problem of nonpara-
metric regression. It appears that Stone’s lower bound [Sto82] has exactly the
same asymptotic behavior as achieved in Theorem 4. Closing the gap between
the convergence rate 1 − 1

d+2 and our lower bound of 1 − 1
d is left as an open

question.
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A Proof of Lemma 1

Proof. Suppose the adversary picks each of the coordinates of c1, . . . , cT indepen-
dently at random from {−1, 1}. Then, for every algorithm, the expected cost to
the decision maker is zero. Given (c1, . . . , cT ), consider the vector v ≡

∑T
t=1 ct.

The best vector x∗ ∈ Bn with respect to v is obtained by minimizing v�x over
all x ∈ Bn. Obviously, x∗ = −v/‖v‖ and v�x∗ = −v�v/‖v‖ = −‖v‖. Thus,
the expected regret is E[‖v‖]. By the central limit theorem, each coordinate vj is
distributed approximately as normal with expectation 0 and variance T . It fol-
lows that the expected regret is E[‖v‖] = Ω(

√
nT ) and hence also the worst-case

regret is Ω(
√

nT ).
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B Proof of Lemma 3

Proof. Recall that by definition of gt(·) and the construction of xt,

c�t xt = gt(yt) . (3)

Let x∗ be the minimizer of
∑T

t=1 c�t x over x ∈ Bn. Recall that

v = c1 + · · · + cT

and x∗ = −v/‖v‖. Denote y∗ = (x∗
2, . . . , x

∗
n)� . It follows that

x∗
1 =

{ √
1 − ‖y∗‖2 if v1 < 0

−
√

1 − ‖y∗‖2 if v1 ≥ 0

i.e.,
x∗

1 = − sgn(v1)
√

1 − ‖y∗‖2 .

Recall that for every y,

gt(y) =
n∑

j=1

ctjyj − |ct1|
√

1 − ‖y‖2 = uT y − |ct1|
√

1 − ‖y‖2 .

Therefore, for every t,

c�t x∗ = ct1x
∗
1 + u�y∗ = −ct1 · sgn(v1)

√
1 − ‖y∗‖2 + u�y∗ ≥ gt(y∗) . (4)

From (3) and (4) we have

RegretT (Alg1) =
T∑

t=1

c�t xt −
T∑

t=1

c�t x∗

=
T∑

t=1

c�t xt − v�x∗ ≤
T∑

t=1

gt(yt) −
T∑

t=1

gt(y∗).

Therefore, we proceed to bound the latter difference. The following notion of
convexity called “α-exp-concavity” was introduced by Kivinen and Warmuth
[KW99] (see also [CBL06])

Definition 3. (i) For square matrices of the same order P and Q, the notation
P � Q means that P − Q is positive semidefinite. In other words, for every
vector x, x�Px ≥ x�Qx.

(ii) For α > 0, a twice-differentiable mapping f : P → R is said to be α-exp-
concave if the mapping h(x) � e−α·f(x) is concave.

Proposition 1. For f : R
n �→ R, e : R �→ R, and h = e ◦ f , it holds that

∇h(x) = e′(f(x))∇f(x) and hence

∇2h(x) = e′′(f(x))∇f(x)(∇f(x))� + e′(f(x))∇2f(x) .
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The following proposition is proved in [HKKA06].

Proposition 2. A mapping f : P → R is α-exp-concave if and only if for all
x ∈ P,

∇2f(x) � α · ∇f(x)(∇f(x))� .

Proposition 3. The mapping gt(y) = u�
t y−|ct1|

√
1 − ‖y‖2 is ρ

2n -exp-concave.

Proof. Assume ρ > 0 (else the statement is trivially correct). The gradient of gt

is

∇gt(y) = ut +
|ct1|√

1 − ‖y‖2)
y ,

hence the Hessian is

∇2gt(y) =
|ct1|

(1 − ‖y‖2)3/2
yy� +

|ct1|
√

1 − ‖y‖2
In−1 .

For the proof we rely on the following relation:

(a + b)(a + b)� � 2(aa� + bb�) , (5)

which is true because for every vector w,

w�(a + b)(a + b)�w = (w�a + w�b)2

≤ 2[(w�a)2 + (w�b)2] = w�[2aa� + 2bb�]w

since (x + y)2 ≤ 2 (x2 + y2) for all real x and y. Denoting ∇t = ∇gt(y), and
ut = (ct2, . . . , ctn)�, it follows from (5) that

∇t∇�
t � 2utu�

t +
2c2

t1

1 − ‖y‖2
yy� .

Since ‖ut‖2 ≤ n − 1, it follows that

utu�
t � (n − 1) In−1 � n − 1

|ct1|
∇2gt(y) .

Also, since
√

1 − ‖y‖2 ≤ 1 and |ct1| ≤ 1,

c2
t1 · yy�

1 − ‖y‖2
� |ct1| · yy�

(1 − ‖y‖2)3/2
� ∇2gt(y) .

Combining the above relations,

∇t∇�
t � 2

(

1 +
n − 1
|c1|

)

∇2gt(y) � 2n

ρ
∇2gt(y) .

The remainder of the proof follows from the analysis of regret bounds of the
EWOO algorithm of [HKKA06], following Blum and Kalai [BK97].
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Abstract. For dimension reduction in l1, one can multiply a data ma-
trix A ∈ R

n×D by R ∈ R
D×k (k � D) whose entries are i.i.d. samples

of Cauchy. The impossibility result says one can not recover the pairwise
l1 distances in A from B = AR ∈ R

n×k, using linear estimators. How-
ever, nonlinear estimators are still useful for certain applications in data
stream computations, information retrieval, learning, and data mining.

We propose three types of nonlinear estimators: the bias-corrected
sample median estimator, the bias-corrected geometric mean estimator,
and the bias-corrected maximum likelihood estimator. We derive tail
bounds for the geometric mean estimator and establish that k = O

( log n
ε2

)

suffices with the constants explicitly given. Asymptotically (as k → ∞),
both the sample median estimator and the geometric mean estimator
are about 80% efficient compared to the maximum likelihood estimator
(MLE). We analyze the moments of the MLE and propose approximating
the distribution of the MLE by an inverse Gaussian.

1 Introduction

There has been considerable interest in the l1 norm in machine learning, as the
l1 distance is far more robust than the l2 distance against “outliers.” Success
stories include Lasso, 1-norm SVM [1], and Laplacian basis kernel [2].

This paper focuses on dimension reduction in l1 using Cauchy random pro-
jections, a special case of linear (stable) random projections. The idea is to mul-
tiply a data matrix A ∈ R

n×D by a random matrix R ∈ R
D×k, resulting in

B = AR ∈ R
n×k. If k � D, then it should be much more efficient to compute

certain summary statistics (e.g., pairwise distances) from B as opposed to A.
Moreover, B may be small enough to reside in physical memory while A is often
too large to fit in the main memory.

For dimension reduction in lp (0 < p ≤ 2), one could construct R from i.i.d.
samples of p-stable distributions[3,4]. In the stable distribution family[5], normal
is 2-stable and Cauchy is 1-stable. Thus, we will call random projections for l2
and l1, normal random projections and Cauchy random projections, respectively.

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 514–529, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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For normal random projections [6], we can estimate the original pairwise l2
distances in A directly using the corresponding l2 distances in B. Furthermore,
the Johnson-Lindenstrauss (JL) Lemma [7] provides the performance guarantees.

For Cauchy random projections, however, one shall not use the l1 distance in B
to approximate the l1 distance in A, as Cauchy does not have a finite expectation.
The impossibility result [8,9] says one can not recover the l1 distance using linear
projections and linear estimators, without incurring large errors.

We provide three types of nonlinear estimators: the bias-corrected sample
median estimator, the bias-corrected geometric mean estimator, and the bias-
corrected maximum likelihood estimator (MLE). The sample median and the
geometric mean estimators are asymptotically equivalent (i.e., both are about
80% efficient as the MLE), but the latter is more accurate at small sample size
k. Furthermore, we derive explicit tail bounds for the bias-corrected geometric
mean estimator and establish an analog of the JL Lemma for l1, which is weaker
than the classical JL Lemma for l2, because the geometric mean is not convex.

Nonlinear estimators may be useful in the following important scenarios:

– Estimating l1 distances online. The data matrix A ∈ R
n×D requires

O(nD) storage and all pairwise distances in A requires O(n2) storage; both
may be too large for physical memory. To avoid page faults, it is more efficient
to estimate the distances on the fly from the projected data B in the memory.

– Computing all pairwise l1 distances. In distance-based clustering,
classification, and kernels, we need to compute all pairwise distances in A,
at the cost O(n2D). Using Cauchy random projections, the cost is reduced
to O(nDk + n2k).

– Linear scan nearest neighbor searching. Nearest neighbor searching
is notorious for being inefficient, especially when the data matrix A is too
large for the memory. Searching for the nearest neighbors from the projected
data matrix B becomes much more efficient, even by linear scans.

– Data stream computations. See [3,10].

We briefly comment on random coordinate sampling. One can randomly sam-
ple k columns from A ∈ R

n×D and estimate the summary statistics (including
l1 and l2 distances). Despite its simplicity, this strategy has two major disadvan-
tages. First, in heavy-tailed data, we may have to choose k very large in order to
achieve a sufficient accuracy. Second, large datasets are often highly sparse. For
sparse data, [11,12,13] provide an alternative coordinate sampling strategy, called
Conditional Random Sampling (CRS). For non-sparse data, however, methods
based on linear (stable) random projections are superior.

2 Introduction to Linear (Stable) Random Projections

Assume a data matrix A ∈ R
n×D. Let {uT

i }n
i=1 ∈ R

D be the ith row of A. Let
R ∈ R

D×k be a random matrix and denote the entries of R by {rij}D
i=1

k
j=1. The

projected data matrix B = AR ∈ R
n×k. Let {vT

i }n
i=1 ∈ R

k be the ith row of B,
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i.e., vi = RTui. For simplicity, we focus on the leading two rows, u1 and u2, in
A, and the leading two rows, v1 and v2, in B. Define {xj}k

j=1 to be

xj = v1,j − v2,j =
D∑

i=1

rij (u1,i − u2,i) , j = 1, 2, ..., k. (1)

2.1 Normal Random Projections

When rij is sampled from the standard normal, i.e., rij ∼ N(0, 1), i.i.d., then

xj =
D∑

i=1

rij (u1,i − u2,i) ∼ N

(

0,

D∑

i=1

|u1,i − u2,i|2
)

, j = 1, 2, ..., k. (2)

The squared l2 distance, dl2 =
∑D

i=1 |u1,i − u2,i|2, can be estimated from the
sample squared l2 distance: d̂l2 = 1

k

∑k
j=1 x2

j . It is easy to show that [6,14,15,16]

E
(
d̂l2

)
= dl2 , Var

(
d̂l2

)
=

2
k
d2

l2 , (3)

Pr
(∣
∣
∣d̂l2 − dl2

∣
∣
∣ ≥ εdl2

)
≤ 2 exp

(

−k

4
ε2 +

k

6
ε3

)

, 0 < ε < 1 (4)

We need to bound the error probability Pr
(∣
∣
∣d̂l2 − dl2

∣
∣
∣ ≥ εdl2

)
by δ, simulta-

neously for all n(n−1)
2 pairs of distances among n data points. By the Bonferroni

union bound, it suffices if

k ≥ 2 log n − log δ

ε2/4 − ε3/6
, (5)

from which one version of the Johnson-Lindenstrauss (JL) Lemma follows:
If k ≥ 2 log n−log δ

ε2/4−ε3/6 , then with probability at least 1 − δ, the squared l2 distance
between any pair of data points (among n points) can be approximated within a
1 ± ε factor, using the squared l2 distance of the projected data.

2.2 Cauchy Random Projections

For Cauchy random projections, we sample rij i.i.d. from the standard Cauchy
distribution, i.e., rij ∼ C(0, 1). By the 1-stability of Cauchy [5], we know that

xj = v1,j − v2,j ∼ C

(

0,

D∑

i=1

|u1,i − u2,i|
)

. (6)

That is, the projected differences xj = v1,j − v2,j are also Cauchy with the scale
parameter being the original l1 distance, d =

∑D
i=1 |u1,i−u2,i|. The problem boils

down to estimating the Cauchy scale parameter of C(0, d) from k i.i.d. samples
xj ∼ C(0, d). Unfortunately, unlike in normal random projections, we can no
longer estimate d from the sample mean ( 1

k

∑k
j=1 |xj |) because E (xj) = ∞.
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3 Main Results

Three types of nonlinear estimators are summarized as follows.

3.1 The Bias-Corrected Sample Median Estimator

Denoted by d̂me,c, the bias-corrected sample median estimator is

d̂me,c =
median(|xj |, j = 1, 2, ..., k)

bme
, (7)

bme =
∫ 1

0

(2m + 1)!
(m!)2

tan
(π

2
t
) (

t − t2
)m

dt, k = 2m + 1 (8)

Here, for convenience, we only consider k = 2m + 1, m = 1, 2, 3, ...

– E
(
d̂me,c

)
= d, i.e, d̂me,c is unbiased.

– When k ≥ 5, the variance of d̂me,c is

Var
(
d̂me,c

)
= d2

⎛

⎜
⎝

(m!)2

(2m + 1)!

∫ 1

0
tan2

(
π
2 t

) (
t − t2

)m
dt

(∫ 1

0 tan
(

π
2 t

)
(t − t2)m

dt
)2 − 1

⎞

⎟
⎠ . (9)

– As k → ∞, d̂me,c converges to a normal in distribution

√
k

(
d̂me,c − d

)
D=⇒ N

(

0,
π2

4
d2

)

. (10)

3.2 The Bias-Corrected Geometric Mean Estimator

Denoted by d̂gm,c, the bias-corrected geometric mean estimator is

d̂gm,c = cosk
( π

2k

) k∏

j=1

|xj |1/k, k > 1 (11)

– It is unbiased, i.e., E
(
d̂gm,c

)
= d.

– Its variance is (for k > 2)

Var
(
d̂gm,c

)
= d2

(
cos2k

(
π
2k

)

cosk
(

π
k

) − 1

)

=
π2

4
d2

k
+

π4

32
d2

k2
+ O

(
1
k3

)

. (12)

– For 0 ≤ ε ≤ 1, its tail bounds can be represented in exponential forms

Pr
(∣
∣
∣d̂gm,c − d

∣
∣
∣ > εd

)
≤ 2 exp

(

−k

(
ε2

8(1 + ε)

))

, k ≥ π2

1.5ε
(13)

– An analog of the JL Lemma for dimension reduction in l1:
If k ≥ 8(2 log n−log δ)

ε2/(1+ε) ≥ π2

1.5ε , then with probability at least 1 − δ, one can
recover the original l1 distance between any pair of data points (among all n

data points) within 1 ± ε (0 ≤ ε ≤ 1) fraction of the truth, using d̂gm,c.
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3.3 The Bias-Corrected Maximum Likelihood Estimator

Denoted by d̂MLE,c, the bias-corrected maximum likelihood estimator (MLE) is

d̂MLE,c = d̂MLE

(

1 − 1
k

)

, (14)

where d̂MLE solves a nonlinear MLE equation

− k

d̂MLE

+
k∑

j=1

2d̂MLE

x2
j + d̂2

MLE

= 0. (15)

– It is nearly unbiased, E
(
d̂MLE,c

)
= d + O

(
1
k2

)
.

– Its asymptotic variance is

Var
(
d̂MLE,c

)
=

2d2

k
+

3d2

k2
+ O

(
1
k3

)

, (16)

i.e.,
Var(d̂MLE,c)
Var(d̂me,c) → 8

π2 ,
Var(d̂MLE,c)
Var(d̂gm,c) → 8

π2 , as k → ∞. ( 8
π2 ≈ 80%)

– Its distribution can be accurately approximated by an inverse Gaussian, from
which the following approximate tail bound follows

Pr
(∣
∣
∣d̂MLE,c − d

∣
∣
∣ ≥ εd

) ∼
≤ 2 exp

(

− ε2/(1 + ε)
2

(
2
k + 3

k2

)

)

, 0 ≤ ε ≤ 1. (17)

4 The Sample Median Estimators

Recall in Cauchy random projections, the problem boils down to estimating the
l1 distance d =

∑D
i=1 |u1,i − u2,i| from {xj}k

j=1, xj = v1,j − v2,j ∼ C(0, d), i.i.d.
The sample median estimator, suggested in [3],

d̂me = median{|xj |, j = 1, 2, ..., k}, (18)

is a special case of sample quantile estimators [17].
Lemma 1 follows from known statistical properties of the sample quantiles.

Lemma 1. The sample median estimator, d̂me, is asymptotically (as k → ∞)
unbiased and normal

√
k

(
d̂me − d

)
D=⇒ N

(

0,
π2

4
d2

)

(19)

When k = 2m + 1, m = 1, 2, 3, ..., the rth moment of d̂me would be

E
(
d̂me

)r

= dr

(∫ 1

0

(2m + 1)!
(m!)2

tanr
(π

2
t
) (

t − t2
)m

dt

)

, m ≥ r (20)

If m < r, then E
(
d̂me

)r

= ∞.
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For simplicity, we only consider k = 2m+1 when evaluating E
(
d̂me

)r

. Once we

know E
(
d̂me

)
, we can remove the bias of d̂me using

d̂me,c =
d̂me

bme
, (21)

where bme, which can be numerically evaluated and tabulated, is

bme =
E

(
d̂me

)

d
=

∫ 1

0

(2m + 1)!
(m!)2

tan
(π

2
t
) (

t − t2
)m

dt. (22)

Therefore, d̂me,c is unbiased, i.e., E
(
d̂me,c

)
= d. Its variance would be

Var
(
d̂me,c

)
= d2

⎛

⎜
⎝

(m!)2

(2m + 1)!

∫ 1

0
tan2

(
π
2 t

) (
t − t2

)m
dt

(∫ 1

0
tan

(
π
2 t

)
(t − t2)m

dt
)2 − 1

⎞

⎟
⎠ . (23)

5 The Geometric Mean Estimators

The estimators based on the geometric mean are more accurate than the sample
median estimators and allow us to derive tail bounds in explicit forms.

Lemma 2. Assume x ∼ C(0, d). Then

E
(
|x|λ

)
=

dλ

cos(λπ/2)
, |λ| < 1. (24)

Proof. Assume x ∼ C(0, d). Using the integral tables [18, 3.221.1, page 337],

E
(
|x|λ

)
=

2d

π

∫ ∞

0

yλ

y2 + d2
dy =

dλ

π

∫ ∞

0

y
λ−1
2

y + 1
dy =

dλ

cos(λπ/2)
. (25)

From Lemma 2, by taking λ = 1
k , we obtain an unbiased estimator based on the

geometric mean in the next Lemma, proved in Appendix A.

Lemma 3

d̂gm,c = cosk
( π

2k

) k∏

j=1

|xj |1/k, k > 1 (26)

is unbiased, with the variance (valid when k > 2)

Var
(
d̂gm,c

)
= d2

(
cos2k

(
π
2k

)

cosk
(

π
k

) − 1

)

=
d2

k

π2

4
+

π4

32
d2

k2
+ O

(
1
k3

)

. (27)
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The third and fourth central moments are (for k > 3 and k > 4, respectively)

E
(
d̂gm,c − E

(
d̂gm,c

))3

=
3π4

16
d3

k2
+ O

(
1
k3

)

(28)

E
(
d̂gm,c − E

(
d̂gm,c

))4

=
3π4

16
d4

k2
+ O

(
1
k3

)

. (29)

The higher (third or fourth) moments may be useful for approximating the distri-
bution of d̂gm,c. In Section 6, we approximate the distribution of the maximum
likelihood estimator by matching the first four moments. We could apply the
similar technique to approximate d̂gm,c. Fortunately, we are able to derive the
tail bounds of d̂gm,c in Lemma 4, proved in Appendix B.

Lemma 4

Pr
(
d̂gm,c ≥ (1 + ε)d

)
≤

coskt∗
1
(

π
2k

)

cosk
(

πt∗
1

2k

)
(1 + ε)t∗

1

, ε ≥ 0 (30)

t∗1 =
2k

π
tan−1

((
log(1 + ε) − k log cos

( π

2k

)) 2
π

)

. (31)

Pr
(
d̂gm,c ≤ (1 − ε)d

)
≤ (1 − ε)t∗

2

cosk
(

πt∗
2

2k

)
coskt∗

2
(

π
2k

) , 0 ≤ ε ≤ 1, k ≥ π2

8ε
(32)

t∗2 =
2k

π
tan−1

((
− log(1 − ε) + k log cos

( π

2k

)) 2
π

)

. (33)

By restricting 0 ≤ ε ≤ 1, the tail bounds can be written in exponential forms:

Pr
(
d̂gm,c ≥ (1 + ε)d

)
≤ exp

(

−k
ε2

8(1 + ε)

)

(34)

Pr
(
d̂gm,c ≤ (1 − ε)d

)
≤ exp

(

−k
ε2

8(1 + ε)

)

, k ≥ π2

1.5ε
(35)

An analog of the JL bound for l1 follows directly from (34)(35).

Lemma 5. Using d̂gm,c with k ≥ 8(2 log n−log δ)
ε2/(1+ε) ≥ π2

1.5ε , then with probability at
least 1 − δ, the l1 distance, d, between any pair of data points (among n data
points), can be estimated with errors bounded by ±εd, i.e., |d̂gm,c − d| ≤ εd.

Figure 1 compares d̂gm,c with the sample median estimators d̂me and d̂me,c, in
terms of the mean square errors (MSE). d̂gm,c is considerably more accurate
than d̂me at small k. The bias correction significantly reduces the mean square
errors of d̂me.

6 The Maximum Likelihood Estimators

The maximum likelihood estimators (MLE) are asymptotically optimum (in
term of the variance), while the sample median and geometric mean estimators
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,

demonstrate that the bias-corrected geometric mean estimator d̂gm,c is considerably
more accurate than the sample median estimator d̂me. The bias correction on d̂me

considerably reduces the MSE.

are not. The method of maximum likelihood is widely used. For example, [15]
applied the maximum likelihood method to improve normal random projections.

Given k i.i.d. samples xj ∼ C(0, d), j = 1, 2, ..., k, it is easy to show that the
maximum likelihood estimator of d, denoted by d̂MLE , is the solution to

− k

d̂MLE

+
k∑

j=1

2d̂MLE

x2
j + d̂2

MLE

= 0. (36)

For better accuracy, we recommend the following bias-corrected estimator:

d̂MLE,c = d̂MLE

(

1 − 1
k

)

. (37)

Lemma 6 concerns the asymptotic moments d̂MLE,c, proved in Appendix C.

Lemma 6. The first four moments of d̂MLE,c are

E
(
d̂MLE,c − d

)
= O

(
1
k2

)

(38)

Var
(
d̂MLE,c

)
=

2d2

k
+

3d2

k2
+ O

(
1
k3

)

(39)

E
(
d̂MLE,c − E(d̂MLE,c)

)3

=
12d3

k2
+ O

(
1
k3

)

(40)

E
(
d̂MLE,c − E(d̂MLE,c)

)4

=
12d4

k2
+

186d4

k3
+ O

(
1
k4

)

. (41)

6.1 The Inverse Gaussian Approximation

Theoretical analysis on the exact distribution of the MLE is difficult. The stan-
dard approach is to assume normality, which, of course, is quite inaccurate. The
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Edgeworth expansion improves the normal approximation by matching higher
moments, which, however, is sophisticated and not accurate at the tails. The ap-
proximate probability may have values below zero. Also, Edgeworth expansions
consider the support to be (−∞, ∞), while d̂MLE,c is non-negative.

We propose approximating the distributions of d̂MLE,c by a generalized gamma
distribution, which allows us to match the support [0, ∞) and the first three
(asymptotic) moments of d̂MLE,c. Interestingly, in this case, the generalized
gamma approximation turns out to be an inverse Gaussian, which also (almost)
matches the fourth central moment of d̂MLE,c. By simulations, the inverse Gaus-
sian approximation is highly accurate.As the relatedwork, [19] applied generalized
gamma approximations to model the performance measure distribution in some
wireless communication channels.

The generalized gamma distribution [19] is denoted by GG(α, β, η). (The usual
gamma distribution is a special case with η = 1.) If z ∼ GG(α, β, η), then

E(z) = αβ, Var(z) = αβ2, E (z − E(z))3 = αβ3(1 + η). (42)

We approximate the distribution of d̂MLE,c by matching the first three
moments,

αβ = d, αβ2 =
2d2

k
+

3d2

k2
, αβ3(1 + η) =

12d3

k2
, (43)

from which we obtain

α =
1

2
k + 3

k2

, β =
2d

k
+

3d

k2
, η = 2 + O

(
1
k

)

. (44)

Taking the leading term, the generalized gamma approximation GG(α, β, η = 2)
is an inverse Gaussian (IG) distribution. Assuming d̂MLE,c ∼ IG(α, β), with
parameters α and β defined in (44), the moment generating function (MGF)
and cumulative density function (CDF) would be [20, Chapter 2] [19]

E
(
exp(d̂MLE,ct)

)
∼
= exp

(
α

(
1 − (1 − 2βt)1/2

))
, (45)

Pr
(
d̂MLE,c ≤ y

)
∼
= Φ

(√
αd

y

( y

d
− 1

)
)

+ e2αΦ

(

−

√
αd

y

( y

d
+ 1

)
)

, (46)

where Φ(.) is the standard normal CDF. Here we use ∼= to indicate that these
equalities are based on an approximate distribution.

Assuming d̂MLE,c ∼ IG(α, β), the fourth central moment should be

E
(
d̂MLE,c − E

(
d̂MLE,c

))4 ∼
= 15αβ4 + 3

(
αβ2)2

=
12d4

k2 +
156d4

k3 + O

(
1

k4

)

, (47)
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which matches not only the leading term, 12d4

k2 , but also almost the higher order
term, 186d4

k3 , of the true asymptotic fourth moment of d̂MLE,c in Lemma 6.
Assuming d̂MLE,c ∼ IG(α, β), the tail probability of d̂MLE,c would be

Pr
(
d̂MLE,c ≥ (1 + ε)d

)
∼
= Φ

(

−ε

√
α

1 + ε

)

− e2αΦ

(

−(2 + ε)

√
α

1 + ε

)

, ε ≥ 0 (48)

Pr
(
d̂MLE,c ≤ (1 − ε)d

)
∼
= Φ

(

−ε

√
α

1 − ε

)

+ e2αΦ

(

−(2 − ε)

√
α

1 − ε

)

, 0 ≤ ε < 1.

(49)

Assuming d̂MLE,c ∼ IG(α, β), it is easy to show the Chernoff bounds:

Pr
(
d̂MLE,c ≥ (1 + ε)d

) ∼
≤ exp

(

− αε2

2(1 + ε)

)

, ε ≥ 0 (50)

Pr
(
d̂MLE,c ≤ (1 − ε)d

) ∼
≤ exp

(

− αε2

2(1 − ε)

)

, 0 ≤ ε < 1. (51)

Combining (50) and (51) yields a symmetric bound

Pr
(
|d̂MLE,c − d| ≥ εd

) ∼
≤ 2 exp

(

− ε2/(1 + ε)

2
( 2

k
+ 3

k2

)

)

, 0 ≤ ε ≤ 1 (52)

Figure 2 compares the inverse Gaussian approximation with simulations, indi-
cating that the approximation is highly accurate. The upper bounds (50) + (51)
are always reliable in our simulation range (the tail probability ≥ 10−10).
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Fig. 2. Verify the inverse Gaussian approximation by simulations. The left panel
compares the empirical tail probabilities with the inverse Gaussian tail probabilities,
indicating that the approximation is highly accurate. The right panel compares the em-
pirical tail probabilities with the inverse Gaussian upper bound (50)+(51). The upper
bounds are all above the corresponding empirical curves, indicating that our proposed
bounds are reliable at least in our simulation range.
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7 Conclusion

Dimension reduction in the l1 norm has been proved impossible if we use linear
projections and linear estimators. We propose three types of nonlinear estimators
for Cauchy random projections. The bias-corrected sample median estimator and
the bias-corrected geometric mean estimator are asymptotically equivalent but
the latter is more accurate at small sample size. We have derived explicit tail
bounds for the bias-corrected geometric mean estimator in exponential forms
and have established an analog of the Johnson-Lindenstrauss (JL) Lemma for
dimension reduction in l1, which is weaker than the classical JL Lemma for
dimension reduction in l2.

Both the sample median estimator and the geometric mean estimator are
about 80% efficient as the bias-corrected maximum likelihood estimator (MLE).
We propose approximating the distribution of the MLE by an inverse Gaussian,
which has the same support and matches the leading terms of the first four
moments of the MLE. Approximate tail bounds have been provided, which, as
verified by simulations, hold at least in the ≥ 10−10 tail probability range.

Although these nonlinear estimators are not metrics, they are useful for certain
applications in (e.g.,) data stream computation, information retrieval, learning
and data mining, whenever the goal is to compute the l1 distances efficiently
using a small space.

Recently, [4] extended the geometric mean estimator to the stable distribution
family, for dimension reduction in lp (0 < p ≤ 2). [4] also proposed a harmonic
mean estimator for p → 0+, useful for approximating the Hamming distances.
In addition, [4] suggested very sparse stable random projections to considerably
simplify sampling from R and to significantly speed up computing A × R.
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A Proof of Lemma 3

Assume that x1, x2, ..., xk, are i.i.d. C(0, d). The estimator, d̂gm,c, expressed as

d̂gm,c = cosk
( π

2k

) k∏

j=1

|xj |1/k,

is unbiased, because, from Lemma 2,

E
(
d̂gm,c

)
= cosk

( π

2k

) k∏

j=1

E
(
|xj |1/k

)
= cosk

( π

2k

) k∏

j=1

(
d1/k

cos
(

π
2k

)

)

= d.
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The variance is

Var
(
d̂gm,c

)
= cos2k

( π

2k

) k∏

j=1

E
(
|xj |2/k

)
− d2

= d2

(
cos2k

(
π
2k

)

cosk
(

π
k

) − 1

)

=
π2

4

d2

k
+

π4

32

d2

k2 + O

(
1

k3

)

,

because
cos2k

(
π
2k

)

cosk
(

π
k

) =

(
1

2
+

1

2

(
1

cos(π/k)

))k

=

(

1 +
1

4

π2

k2 +
5

48

π4

k4 + O

(
1

k6

))k

= 1 + k

(
1

4

π2

k2 +
5

48

π4

k4

)

+
k(k − 1)

2

(
1

4

π2

k2 +
5

48

π4

k4

)2

+ ...

= 1 +
π2

4

1

k
+

π4

32

1

k2 + O

(
1

k3

)

.

Some more algebra can similarly show the third and fourth central moments:

E
(
d̂gm,c − E

(
d̂gm,c

))3
=

3π4

16

d3

k2 + O

(
1

k3

)

E
(
d̂gm,c − E

(
d̂gm,c

))4
=

3π4

16

d4

k2 + O

(
1

k3

)

.

B Proof of Lemma 4

As d̂gm,c does not have a bounded moment generating function, we will use the
Markov moment bound.1 For ε ≥ 0 and 0 ≤ t < k, the Markov inequality says

Pr
(
d̂gm,c ≥ (1 + ε)d

)
≤

E
(
d̂gm,c

)t

(1 + ε)tdt
=

coskt
(

π
2k

)

cosk
(

πt
2k

)
(1 + ε)t

,

which can be minimized by choosing the optimum t = t∗1, where

t∗
1 =

2k

π
tan−1

((
log(1 + ε) − k log cos

( π

2k

)) 2

π

)

.

By Taylor expansions, t∗1 can be well approximated by t∗1 ≈ 4kε
π2 + 1

2 ≈ 4kε
π2 = t∗∗1 ,

at small ε. Therefore, for 0 ≤ ε ≤ 1, taking t = t∗∗1 = 4kε
π2 , the tail bound becomes

Pr
(
d̂gm,c ≥ (1 + ε)d

)

≤
coskt∗∗

1
(

π
2k

)

cosk
(

πt∗∗
1

2k

)
(1 + ε)t∗∗

1

=

(
cost∗∗

1
(

π
2k

)

cos
( 2ε

π

)
(1 + ε)4ε/π2

)k

≤
(

1

cos
( 2ε

π

)
(1 + ε)4ε/π2

)k

= exp

(

−k

(

log

(

cos

(
2ε

π

))

+
4ε

π2 log(1 + ε)

))

≤ exp

(

−k
ε2

8(1 + ε)

)

. (53)

1 When the moment generating function does exist, for any positive random variable,
the Markov moment bound is always sharper than the Chernoff bound. See [21,22].
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The last step in (53) needs some explanations. First, by the Taylor expansion,

log

(

cos

(
2ε

π

))

+
4ε

π2 log(1 + ε)

=

(

−2ε2

π2 − 4

3

ε4

π4 + ...

)

+
4ε

π2

(

ε − 1

2
ε2 + ...

)

=
2ε2

π2 (1 − ε + ...)

Therefore, we can seek the smallest constant γ1 so that

log

(

cos

(
2ε

π

))

+
4ε

π2 log(1 + ε) ≥ ε2

γ1(1 + ε)
=

ε2

γ1
(1 − ε + ...)

Figure 3(a) illustrates that γ1 = 8 suffices, which can be numerically verified.
Now we need to show the other tail bound Pr

(
d̂gm,c ≤ (1 − ε)d

)
:

Pr
(
d̂gm,c ≤ (1 − ε)d

)
= Pr

(

cos
( π

2k

)k
k∏

j=1

|xj |1/k ≤ (1 − ε)d

)

=Pr

(
k∑

j=1

log
(
|xj |1/k

)
≤ log

(
(1 − ε)d

cosk
(

π
2k

)

))

=Pr

(

exp

(
k∑

j=1

log
(
|xj |−t/k

)
)

≥ exp

(

−t log

(
(1 − ε)d

cosk
(

π
2k

)

)))

, 0 ≤ t < k

≤
(

(1 − ε)

cosk
(

π
2k

)

)t
1

cosk
(

πt
2k

) ,

which is minimized at t = t∗2 (provided k ≥ π2

8ε )

t∗
2 =

2k

π
tan−1

((
− log(1 − ε) + k log cos

( π

2k

)) 2

π

)

.

Again, t∗2 can be replaced by its approximation t∗2 ≈ t∗∗2 = 4kε
π2 . Thus,

Pr
(
d̂gm,c ≤ (1 − ε)d

)
≤

(
(1 − ε)

cosk
(

π
2k

)

)t∗∗
2

1

cosk
(

πt∗∗
2

2k

)

=exp

(

−k

(

log

(

cos
2ε

π

)

− 4ε

π2 log(1 − ε) +
4kε

π2 log
(
cos

π

2k

)))

.

We bound 4kε
π2 log

(
cos π

2k

)
by restricting k. To attain Pr

(
d̂gm,c ≤ (1 − ε)d

)
≤

exp
(
−k

(
ε2

8(1+ε)

))
, we have to restrict k to be larger than a certain value. We

find k ≥ π2

1.5ε suffices. If k ≥ π2

1.5ε , then 4kε
π2 log

(
cos π

2k

)
≥ 8

3 log
(
cos ε

3π

)
. Thus,

Pr
(
d̂gm,c ≤ (1 − ε)d

)
≤ exp

(

−k

(

log

(

cos
2ε

π

)

− 4ε

π2 log(1 − ε) +
8

3
log

(
cos

ε

3π

)))

≤ exp

(

−k
ε2

8(1 + ε)

)

, (k ≥ π2

1.5ε
) (54)
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v.s. ε. It suffices to use a constant 8 in (53) and (54). The optimal constant will be
different for different ε. For example, if ε = 0.2, we could replace the constant 8 by 5.

C Proof of Lemma 6

Assume x ∼ C(0, d). The log likelihood l(x; d) and its first three derivatives are

l(x;d) = log(d) − log(π) − log(x2 + d2), l′(d) =
1

d
− 2d

x2 + d2

l′′(d) = − 1

d2 − 2x2 − 2d2

(x2 + d2)2
, l′′′(d) =

2

d3 +
4d

(x2 + d2)2
+

8d(x2 − d2)

(x2 + d2)3
.

For the bias and higher moments of the MLE, we need to evaluate [23, 16a-16d]:

E
(
d̂MLE

)
= d − [12]

2kI2
+ O

(
1

k2

)

Var
(
d̂MLE

)
=

1

kI
+

1

k2

(

−1

I
+

[14] − [122] − [13]

I3
+

3.5[12]2 − [13]2

I4

)

+ O

(
1

k3

)

E
(
d̂MLE − E

(
d̂MLE

))3
=

[13] − 3[12]

k2I2
+ O

(
1

k3

)

E
(
d̂MLE − E

(
d̂MLE

))4
=

3

k2I2
+

1

k3

(

− 9

I2
+

7[14] − 6[122] − 10[13]

I4

)

+
1

k3

(
−6[13]2 − 12[13][12] + 45[12]2

I5

)

+ O

(
1

k4

)

,

where
[12] = E(l′)3 + E(l′l′′), [14] = E(l′)4, [122] = E(l′′(l′)2) + E(l′)4,

[13] = E(l′)4 + 3E(l′′(l′)2) + E(l′l′′′), [13] = E(l′)3.

Without giving the detail, we report

E
(
l′
)3

= 0, E
(
l′l′′

)
= −1

2

1

d3 , E
(
l′
)4

=
3

8

1

d4 ,

E(l′′(l′)2) = −1

8

1

d4 , E
(
l′l′′′

)
=

3

4

1

d4 .

[12] = −1

2

1

d3 , [14] =
3

8

1

d4 , [122] =
1

4

1

d4 , [13] =
3

4

1

d4 , [13] = 0.
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Thus, we obtain

E
(
d̂MLE

)
= d +

d

k
+ O

(
1

k2

)

Var
(
d̂MLE

)
=

2d2

k
+

7d2

k2 + O

(
1

k3

)

E
(
d̂MLE − E

(
d̂MLE

))3
=

12d3

k2 + O

(
1

k3

)

E
(
d̂MLE − E

(
d̂MLE

))4
=

12d4

k2 +
222d4

k3 + O

(
1

k4

)

.

Because d̂MLE has O
(

1
k

)
bias, we recommend d̂MLE,c = d̂MLE

(
1 − 1

k

)
, whose

first four moments are, after some algebra,

E
(
d̂MLE,c

)
= d + O

(
1

k2

)

Var
(
d̂MLE,c

)
=

2d2

k
+

3d2

k2 + O

(
1

k3

)

E
(
d̂MLE,c − E

(
d̂MLE,c

))3
=

12d3

k2 + O

(
1

k3

)

E
(
d̂MLE,c − E

(
d̂MLE,c

))4
=

12d4

k2 +
186d4

k3 + O

(
1

k4

)

.



Sparse Density Estimation with �1 Penalties�

Florentina Bunea1, Alexandre B. Tsybakov2, and Marten H. Wegkamp1

1 Florida State University, Tallahassee FL 32306, USA
flori@stat.fsu.edu, wegkamp@stat.fsu.edu
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Abstract. This paper studies oracle properties of �1-penalized estima-
tors of a probability density. We show that the penalized least squares
estimator satisfies sparsity oracle inequalities, i.e., bounds in terms of
the number of non-zero components of the oracle vector. The results are
valid even when the dimension of the model is (much) larger than the
sample size. They are applied to estimation in sparse high-dimensional
mixture models, to nonparametric adaptive density estimation and to
the problem of aggregation of density estimators.

1 Introduction

Let X1, . . . , Xn be independent random variables with common unknown density
f in R

d. Let {f1, . . . , fM} be a finite set of functions with fj ∈ L2(Rd), j =
1, . . . , M, called a dictionary. We consider estimators of f that belong to the
linear span of {f1, . . . , fM}. We will be particularly interested in the case where
M � n, where n is the sample size. Denote by fλ the linear combinations

fλ(x) =
M∑

j=1

λjfj(x), λ = (λ1, . . . , λM ) ∈ R
M .

We provide below a number of examples where such estimates are of importance.

– Estimation in sparse mixture models. Assume that the density f can be
represented as a finite mixture f = fλ∗ where fj are known probability
densities and λ∗ is a vector of mixture probabilities. The number M can
be very large, much larger than the sample size n, but we believe that the
representation is sparse, i.e., that very few coordinates of λ∗ are non-zero.
Our goal is to estimate λ∗ by a vector λ̂ that adapts to this unknown sparsity.

– Adaptive nonparametric density estimation. Assume that the density f is a
smooth function, and {f1, . . . , fM} are the first M functions from a basis
in L2(Rd). If the basis is orthonormal, a natural idea is to estimate f by
an orthogonal series estimator which has the form fλ̃ with λ̃ having the
coordinates λ̃j = n−1

∑n
i=1 fj(Xi). However, it is well known that such
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estimators are very sensitive to the choice of M , and a data-driven selection
of M or thresholding is needed to achieve adaptivity (cf., e.g., [25,17,3,15]);
moreover these methods have been applied with M ≤ n. We would like
to cover more general problems where the system {fj} is not necessarily
orthonormal, even not necessarily a basis, M is not necessarily smaller than
n, but an estimate of the form fλ̂ still achieves, adaptively, the optimal rates
of convergence.

– Aggregation of density estimators. Assume now that f1, . . . , fM are some
preliminary estimators of f constructed from a training sample independent
of (X1, . . . , Xn), and we would like to aggregate f1, . . . , fM . This means
that we would like to construct a new estimator, the aggregate, which is
approximately as good as the best among f1, . . . , fM or approximately as
good as the best linear or convex combination of f1, . . . , fM . Our aggregates
will be of the form fλ̂ with suitably chosen weights λ̂ = λ̂(X1, . . . , Xn) ∈ R

M .

In this paper, we suggest a data-driven choice of λ̂ that can be used in all the
examples mentioned above and also more generally. We define λ̂ as a minimizer
of an �1-penalized criterion, that we call SPADES (SPArse Density EStimation).
The idea of �1-penalized estimation is widely used in the statistical literature,
mainly in linear regression where it is usually referred to as the Lasso criterion
[26,7,11,10,14,21]. For Gaussian sequence models or for regression with orthog-
onal design matrix the Lasso is equivalent to soft thresholding [9,20]. Recently,
Lasso methods have been extended to nonparametric regression with general
fixed or random design [4,5,6], as well as to some classification and other more
general prediction type models [18,19,29].

We prove below oracle inequalities for the L2-risk of the proposed SPADES
estimator, and we obtain as corollaries some sparsity or optimality properties of
this estimator for the three above mentioned examples.

2 Definition of SPADES

Consider the L2(Rd) norm

‖g‖ =
(∫

Rd

g2(x) dx

)1/2

associated with the inner product

< g, h >=
∫

Rd

g(x)h(x) dx

for g, h ∈ L2(Rd). Note that if the density f belongs to L2(Rd) and X has the
same distribution as Xi, we have, for any g ∈ L2,

< g, f >= Eg(X),
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where the expectation is taken under f . Moreover

‖f − g‖2 = ‖f‖2 + ‖g‖2 − 2 < g, f >= ‖f‖2 + ‖g‖2 − 2Eg(X). (1)

In view of identity (1), minimizing ‖fλ − f‖2 in λ is the same as minimizing

γ(λ) = −2Efλ(X) + ‖fλ‖2.

The function γ(λ) depends on f but can be approximated by its empirical coun-
terpart

γ̂(λ) = − 2
n

n∑

i=1

fλ(Xi) + ‖fλ‖2.

This motivates the use of γ̂ = γ̂(λ) as the empirical criterion, see, for instance,
[3,25,30].

Let 0 < δ < 1/2 be a small tuning parameter. We define the penalty

pen(λ) = 2
M∑

j=1

ωj |λj | with ωj = 2 sup
x∈Rd

|fj(x)|
√

2 log(M/δ)
n

(2)

and we propose the following data-driven choice of λ:

λ̂ = arg min
λ∈RM

{γ̂(λ) + pen(λ)}

= arg min
λ∈RM

⎧
⎨

⎩
− 2

n

n∑

i=1

fλ(Xi) + ‖fλ‖2 + 2
M∑

j=1

ωj |λj |

⎫
⎬

⎭
.

The estimator of the density f , henceforth called the SPADES estimator, is
defined by

f♠(x) = fλ̂(x), ∀x ∈ R
d.

Our estimate can be computed easily even if M � n and retains the desirable
theoretical properties of other density estimators the computation of which may
become problematic in such case. We refer to [30] for optimal bandwidth selection
for kernel density estimators using the same empirical criterion as ours, to [8]
for a thorough overview on combinatorial methods in density estimation, and to
[2,28] for density estimation using penalization by the dimension over a sequence
of models.

3 Oracle Inequalities for SPADES

For any λ ∈ R
M , let

J(λ) = {j ∈ {1, . . . , M} : λj �= 0}

be the set of non-zero indices of λ and

M(λ) = |J(λ)| =
M∑

j=1

I{λj �= 0}
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its cardinality. Here I{·} denotes the indicator function. Set Lj = ‖fj‖∞ for
1 ≤ j ≤ M where ‖ · ‖∞ is the L∞ norm on R

d. We begin with following
preliminary lemma.

Lemma 1. Assume that Lj < ∞ for j = 1, . . . , M . For all n ≥ 1 and λ ∈ R
M

we have

‖f♠ − f‖2 +
M∑

j=1

ωj |λ̂j − λj | ≤ ‖fλ − f‖2 + 4
∑

j∈J(λ)

ωj |λ̂j − λj | (3)

with probability at least 1 − 2δ, for any 0 < δ < 1/2.

Proof. By the definition of λ̂,

− 2
n

n∑

i=1

fλ̂(Xi) + ‖fλ̂‖2 + 2
M∑

j=1

ωj |λ̂j | ≤ − 2
n

n∑

i=1

fλ(Xi) + ‖fλ‖2 + 2
M∑

j=1

ωj |λj |

for all λ ∈ R
M . We rewrite this inequality as

‖f♠ − f‖2 ≤ ‖fλ − f‖2 + 2
M∑

j=1

(
1
n

n∑

i=1

fj(Xi) − Efj(Xi)

)

(λ̂j − λj)

+ 2
M∑

j=1

ωj |λj | − 2
M∑

j=1

ωj|λ̂j |.

Define the random variables

Vj =
1
n

n∑

i=1

{fj(Xi) − Efj(Xi)} .

By Hoeffding’s inequality, it follows that the probability of the event

A =
M⋂

j=1

{2|Vj | ≤ ωj}

exceeds

1 − 2
M∑

j=1

exp

(

−
nω2

j

8L2
j

)

= 1 − 2δ.

Then, on the event A,

‖f♠ − f‖2 ≤ ‖fλ − f‖2 +
M∑

j=1

ωj|λ̂j − λj | + 2
M∑

j=1

ωj |λj | − 2
M∑

j=1

ωj |λ̂j |.
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Add
∑

j ωj|λ̂j − λj | to both sides of the inequality to obtain

‖f♠ − f‖2 +
M∑

j=1

ωj|λ̂j − λj |

≤ ‖fλ − f‖2 + 2
M∑

j=1

ωj|λ̂j − λj | + 2
M∑

j=1

ωj |λj | − 2
M∑

j=1

ωj |λ̂j |

≤ ‖fλ − f‖2 + 2
∑

j∈J(λ)

ωj |λ̂j − λj | + 2
M∑

j=1

ωj|λj | − 2
∑

j∈J(λ)

ωj|λ̂j |

≤ ‖fλ − f‖2 + 4
∑

j∈J(λ)

ωj |λ̂j − λj |

where we used that λj = 0 for j �∈ J(λ) and the triangle inequality. �

For any fixed integer M ≥ 2 we introduce the following notation. We denote
by ΨM = (< fi, fj >)1≤i,j≤M the Gram matrix associated with f1, . . . , fM and
by IM the M × M identity matrix. The next theorem will be shown under the
following assumption.

Assumption (I). There exists κM > 0 such that ΨM − κMIM is positive semi-
definite.

Theorem 1. Let Assumption (I) hold and let Lj < ∞ for 1 ≤ j ≤ M . Then,
for all n ≥ 1, α > 1 and all λ ∈ R

M , we have with probability at least 1 − 2δ,

‖f♠ − f‖2 +
α

α − 1

M∑

j=1

ωj |λ̂j − λj | ≤ α + 1
α − 1

‖fλ − f‖2 +
64α2

α − 1
G(λ) log M

δ

n κM
(4)

where G(λ) �
∑

j∈J(λ) L2
j .

Proof. By Assumption (I) we have

‖fλ‖2 =
∑ ∑

1≤i,j≤M

λiλj

∫

Rd

fi(x)fj(x) dx ≥ κM

∑

j∈J(λ)

λ2
j .

By the definition of ωj and the Cauchy-Schwarz inequality, we find

4
∑

j∈J(λ)

ωj |λ̂j − λj | ≤ 4

√
8 log(M/δ)

n

∑

j∈J(λ)

Lj |λ̂j − λj |

≤ 8

√
2G(λ) log(M/δ)

nκM
‖f♠ − fλ‖.
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Combination with Lemma 1 yields that with probability greater than 1 − 2δ,

‖f♠ − f‖2 +
M∑

j=1

ωj |λ̂j − λj | ≤ ‖fλ − f‖2 + 8

√
2G(λ) log(M/δ)

nκM
‖f♠ − fλ‖ (5)

≤ ‖fλ − f‖2 + b
(
‖f♠ − f‖ + ‖fλ − f‖

)

where b = 8
√

2G(λ) log(M/δ)/
√

nκM . This inequality is of the form v2 + d ≤
c2 + vb + cb with

v = ‖f♠ − f‖, c = ‖fλ − f‖, d =
M∑

j=1

ωj |λ̂j − λj |.

After applying the inequality 2xy ≤ x2/α + αy2 (x, y ∈ R, α > 1) twice, we
easily find

v2 + d ≤ v2/(2α) + α b2 + (2α + 1)/(2α) c2,

whence

v2 + d{α/(α − 1)} ≤ α/(α − 1){b2(α/2) + c2(α + 1)/α}. (6)

The claim of the theorem follows from (5) and (6).

4 Oracle Inequalities for SPADES: The Local Mutual
Coherence Assumption

When the dictionary {f1, . . . , fM} is over-complete (see, e.g., discussion in [10])
Assumption (I) may not be satisfied. Nevertheless, as discussed in [10], for many
interesting dictionaries the Gram matrices satisfy the mutual coherence property,
that is the correlations

ρM (i, j) =
< fi, fj >

‖fi‖‖fj‖
, i, j = 1, . . . , M,

admit a uniform (small) upper bound for all i �= j. It can be shown that if this
bound, called coherence, is relatively small, namely of the order O(1/M(λ)) for
some λ, then the oracle inequalities of the previous section remain valid for such
λ. The assumption that the correlations are small for all i �= j may still be too
stringent a requirement in many situations. We relax this here by only imposing
bounds on ρM (i, j) with j ∈ J(λ) and i �= j. In our setting the correlations
ρM (i, j) with i, j �∈ J(λ) can be arbitrarily close to 1 or to −1. Note that such
ρM (i, j) constitute the overwhelming majority of the elements of the correlation
matrix if J(λ) is a set of small cardinality: M(λ) � M .

For λ ∈ R
M , we define our first local coherence number (called maximal local

coherence) by
ρ(λ) = max

i∈J(λ)
max
j �=i

|ρM (i, j)|,
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and we also define

F (λ) = max
j∈J(λ)

‖fj‖∞
‖fj‖

.

Theorem 2. Assume that Lj < ∞ for 1 ≤ j ≤ M . Then, with probability at
least 1 − 2δ, for all n ≥ 1, α > 1 and λ ∈ R

M that satisfy

32F (λ)ρ(λ)M(λ) ≤ 1, (7)

we have the following oracle inequality:

‖f♠ − f‖2 +
1
2

α

α − 1

M∑

j=1

ωj|λ̂j − λj |

≤ α + 1
α − 1

‖fλ − f‖2 +
α2

α − 1
{8F (λ)}2M(λ)

log(M/δ)
n

.

Proof. In view of Lemma 1, we need to bound
∑

j∈J(λ) ωj |λ̂j − λj |. Set

uj = λ̂j − λj , U(λ) =
∑

j∈J(λ)

|uj|‖fj‖, U =
M∑

j=1

|uj |‖fj‖.

Then, by the definition of ωj and F (λ) we obtain

∑

j∈J(λ)

ωj |λ̂j − λj | ≤ 2

√
2 log(M/δ)

n
F (λ)U(λ).

Clearly ∑ ∑

i,j �∈J(λ)

< fi, fj > uiuj ≥ 0

and so we obtain
∑

j∈J(λ)

u2
j‖fj‖2 = ‖f♠ − fλ‖2 −

∑ ∑

i,j �∈J(λ)

uiuj < fi, fj >

−2
∑

i�∈J(λ)

∑

j∈J(λ)

uiuj < fi, fj > −
∑∑

i,j∈J(λ), i�=j

uiuj < fi, fj >

≤ ‖f♠ − fλ‖2 + 2ρ(λ)
∑

i�∈J(λ)

|ui|‖fi‖
∑

j∈J(λ)

|uj |‖fj‖

+ρ(λ)
∑ ∑

i,j∈J(λ)

|ui||uj |‖fi‖‖fj‖

= ‖f♠ − fλ‖2 + 2ρ(λ)U(λ)U − ρ(λ)U2(λ). (8)

The left-hand side can be bounded by
∑

j∈J(λ) u2
j‖fj‖2 ≥ U2(λ)/M(λ) using the

Cauchy-Schwarz inequality, and we obtain that

U2(λ) ≤ ‖f♠ − fλ‖2M(λ) + 2ρ(λ)M(λ)U(λ)U
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and, using the properties of a function of degree two in U(λ), we further obtain

U(λ) ≤ 2ρ(λ)M(λ)U +
√

M(λ)‖f♠ − fλ‖. (9)

Hence, by Lemma 1, we have with probability at least 1 − 2δ,

‖f♠ − f‖2 +
M∑

j=1

ωj|λ̂j − λj |

≤ ‖fλ − f‖2 + 4
∑

j∈J(λ)

ωj |λ̂j − λj |

≤ ‖fλ − f‖2 + 8

√
2 log(M/δ)

n
F (λ)U(λ)

≤ ‖fλ − f‖2 + 8

√
2 log(M/δ)

n
F (λ)

{
2ρ(λ)M(λ)U +

√
M(λ)‖f♠ − fλ‖

}

≤ ‖fλ − f‖2 + 16F (λ)ρ(λ)M(λ)
M∑

j=1

ωj |λ̂j − λj |

+8F (λ)

√
2 log(M/δ)

n

√
M(λ)‖f♠ − fλ‖.

For all λ ∈ R
M that satisfy relation (7), we find that with probability exceeding

1 − 2δ,

‖f♠ − f‖2 +
1
2

M∑

j=1

ωj |λ̂j − λj |

≤ ‖fλ − f‖2 + 8F (λ)

√
2 log(M/δ)

n

√
M(λ)‖f♠ − fλ‖.

This inequality is of the same form as (5), and we use (6) to conclude the proof.

Note that only a condition on the local coherence (7) is required to obtain
the result of Theorem 2. However, even this weak condition can be too strong,
because the bound on correlations is uniform over j ∈ J(λ), i �= j, cf. definition
of ρ(λ). This excludes, for instance, the cases where the correlations can be
relatively large for a small number of pairs (i, j) and almost zero otherwise. A
possible solution is to require that the cumulative local coherence, rather than
the maximal local coherence, be bounded, where the cumulative local coherence
is defined as

ρ∗(λ) =
∑

i∈J(λ)

∑

j>i

|ρM (i, j)|.

Theorem 3. Assume that Lj < ∞ for 1 ≤ j ≤ M . Then, with probability at
least 1 − 2δ, for all n ≥ 1, α > 1 and λ ∈ R

M that satisfy

32F (λ)ρ∗(λ)
√

M(λ) ≤ 1, (10)
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we have the following oracle inequality:

‖f♠ − f‖2 +
1
2

α

α − 1

M∑

j=1

ωj|λ̂j − λj |

≤ α + 1
α − 1

‖fλ − f‖2 +
α2

α − 1
{8F (λ)}2M(λ)

log(M/δ)
n

.

Proof. The proof is similar to that of Theorem 2. With

U∗(λ) =
√ ∑

j∈J(λ)

u2
j‖fj‖2

we obtain now the following analogue of (8):

U2
∗ (λ) ≤ ‖f♠ − fλ‖2 + 2ρ∗(λ) max

i∈J(λ),j>i
|ui|‖fi‖|uj|‖fj‖

≤ ‖f♠ − fλ‖2 + 2ρ∗(λ)U∗(λ)
M∑

j=1

|uj|‖fj‖

= ‖f♠ − fλ‖2 + 2ρ∗(λ)U∗(λ)U.

Hence, as in the proof of Theorem 2, we have

U∗(λ) ≤ 2ρ∗(λ)U + ‖f♠ − fλ‖,

and using the inequality U∗(λ) ≥ U(λ)/
√

M(λ) we find

U(λ) ≤ 2ρ∗(λ)
√

M(λ)U +
√

M(λ)‖f♠ − fλ‖. (11)

Note that (11) differs from (9) only in the fact that the factor 2ρ(λ)M(λ) on
the right hand side is now replaced by 2ρ∗(λ)

√
M(λ). The rest of the proof is

identical to that of Theorem 2.

Theorem 3 is useful when we deal with sparse Gram matrices ΨM , i.e., matrices
having only a small number N of non-zero off-diagonal entries. This number will
be called a sparsity index of matrix ΨM , and is formally defined as

N = |{(i, j) : i, j ∈ {1, . . . , M}, i > j and ψM (i, j) �= 0}|,

where ψM (i, j) is the (i, j)th entry of ΨM and |A| denotes the cardinality of a
set A. Clearly, N < M(M +1)/2. We get then the following immediate corollary
of Theorem 3.

Corollary 1. Let ΨM be a sparse matrix with sparsity index N . Then Theorem
3 continues to hold with condition (10) replaced by

32F (λ)N
√

M(λ) ≤ 1. (12)
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5 Sparse Estimation in Mixture Models

In this section we assume that the true density f can be represented as a finite
mixture

f(x) =
M∑

j=1

λ∗
jfj(x), (13)

for some λ∗ ∈ ΛM where ΛM is a simplex in R
M :

ΛM = {λ ∈ R
M : λj ≥ 0,

M∑

j=1

λj = 1}

and fj are known probability densities. The number M can be very large,
much larger than the sample size n, but we believe that the representation
(13) is sparse, i.e., there are very few non-zero coefficients λ∗

j , in other words
M(λ∗) � M . If the representation (13) is not unique, we consider λ∗ cor-
responding to the most parsimonious representation, i.e., such that M(λ∗) =
min

{∑M
j=1 I{λj �=0} : f =

∑M
j=1 λjfj

}
.

From Theorems 1 and 2, using that minα>1 α2/(α − 1) = 4, we easily get the
following result.

Theorem 4. (i) Let (13) and Assumption (I) hold and let Lj < ∞ for 1 ≤ j ≤
M . Then, for all n ≥ 1, we have with probability at least 1 − 2δ,

‖f♠ − f‖2 ≤ 256 G(λ∗) log(M/δ)
n κM

. (14)

(ii) Let (13) hold, Lj < ∞ for 1 ≤ j ≤ M , and let λ∗ ∈ R
M satisfy

32F (λ∗)ρ(λ∗)M(λ∗) ≤ 1. (15)

Then, for all n ≥ 1, we have with probability at least 1 − 2δ,

‖f♠ − f‖2 ≤ 256 F 2(λ∗)M(λ∗)
log(M/δ)

n
. (16)

Example. Let fj ’s be Gaussian densities in R
d with means μj and unit co-

variance matrices, such that |μj − μk| ≥ τ > 0, k �= j, where | · | stands for
the Euclidean distance. Then, for all λ, the mutual coherence satisfies ρ(λ) ≤
exp(−τ2/4), and also F (λ) ≡ 2−d/2π−d/4. So, for τ large enough (15) is satisfied,
and we can apply Theorem 4. It is interesting that the dimension “helps” here:
the larger is d, the smaller is F (λ). The large constant 256 in (16) is compensated
by the small value of F (λ) when the dimension is sufficiently high, say d ≥ 8.
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6 SPADES for Adaptive Nonparametric Density
Estimation

We assume in this section that the density f is defined on [0, 1]. Let f1, . . . , fM

be the first M functions of of the Fourier basis {fj}∞j=0 in L2[0, 1] defined by
f1(x) ≡ 1, f2k(x) =

√
2 cos(2πkx), f2k+1(x) =

√
2 sin(2πkx) for k = 1, 2, . . . ,

x ∈ [0, 1]. Then f♠ is a nonparametric estimator of density f . The following
oracle inequality is a direct consequence of Theorem 1.

Theorem 5. Let f1, . . . , fM be as defined above, and set ωj ≡ 4
√

log(M/δ)
n for

some 0 < δ < 1/2. Then for all n ≥ 1, ε > 0 and all λ ∈ R
M , we have with

probability at least 1 − 2δ,

‖f♠ − f‖2 ≤ (1 + ε)‖fλ − f‖2 + C(ε)
M(λ) log(M/δ)

n
(17)

where C(ε) > 0 is a constant depending only on ε.

This is a very general inequality that allows one to show that the estimator f♠

attains minimax rates of convergence, up to a logarithmic factor simultaneously
on various functional classes. In fact, since (17) holds with arbitrary λ, we may
use (17) with λ such that λj = 0 if j ≥ n1/(2β+1), for some β > 0, and thus
show in a standard way that f♠ attains the minimax rate, up to logarithms,
on usual smoothness classes of densities, such as Sobolev or Hölder classes with
smoothness index β. Since the rates are attained on one and the same estimator
f♠ which does not depend on β, this means adaptivity of f♠ on the correspond-
ing scales of classes. Results of such type, and even more pointed (without extra
logarithmic factors in the rate and sometimes with exact asymptotic minimax
constants) are known for various other adaptive density estimators, see, e.g.,
[3,12,15,16,17,23,24] and the references therein.

Although Theorem 5 is somewhat less precise than the benchmarks for these
standard classes of densities, it can be used to show adaptivity of f♠ on a wider
scale of classes than those traditionally considered. In particular, Theorem 5
holds for unbounded densities f , and even for densities f �∈ L2[0, 1].

For example, let f belong to a subset of L2[0, 1] containing possibly un-
bounded densities and such that ‖fλ∗(k) − f‖ ≤ ak, ∀k ≤ M , for some se-
quence ak tending to 0 very slowly, where λ∗(k) is the vector with components
λ1 =< f, f1 >, . . . , λk =< f, fk >, λj = 0, j > k. Then choosing k∗ as a solution
of ak ∼ (k log M)/n and using (17) with λ = λ∗(k∗) we get that our estima-
tor f♠ achieves some (slow) convergence rates even for such “bad” classes of
unbounded densities.

Another example is given by the L0-classes. Assume that f belongs to one of
the classes

L0(k)

=
{
f : [0, 1] → R : f is a probability density and |{j : < f, fj > �= 0}| ≤ k

}
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where k ≤ M is an unknown integer and |A| denotes the cardinality of a set A.
We have the following minimax adaptive result.

Corollary 2. Let the assumptions of Theorem 5 hold with δ = n−2 and M ≤ ns

for some s > 0. Then

sup
f∈L0(k)

P

{

‖f♠ − f‖2 ≥ b(s)
(

k log n

n

)}

≤ 2n−2, ∀ k ≤ M, (18)

where b(s) > 0 is a constant depending on s only.

This can be viewed as an extension to density estimation problem of the adaptive
minimax results for L0-classes obtained in the Gaussian sequence space model
[1,13] and in random design regression model [6].

7 SPADES for Aggregation of Density Estimators

In this section we assume that f1, . . . , fM are density estimators constructed from
a preliminary sample that will be considered as frozen in further discussion.

The aim of aggregation is to construct a new estimator, called aggregate,
which is approximately as good as the best among f1, . . . , fM (model selec-
tion, or MS-aggregation) or approximately as good as the best linear or convex
combination of f1, . . . , fM (L-aggregation and C-aggregation respectively) or ap-
proximately as good as the best linear combination of D ≤ M estimators among
f1, . . . , fM (subset selection, or S-aggregation). We refer to [4,22,23,24,27] for
discussion of aggregation methods. Each type of aggregation corresponds to a
particular set HM where the weights λ are allowed to lie. The set HM is either
the whole R

M (for L-aggregation), or the simplex ΛM (for C-aggregation), or the
set of all vertices of ΛM , except the vertex (0, . . . , 0) ∈ R

M (for MS-aggregation).
For subset selection, or S-aggregation we put HM = ΛM,D, where ΛM,D denotes
the set of all λ ∈ R

M having at most D non-zero coordinates. The corresponding
oracles are the values of λ minimizing the risk on these sets.

Using Theorem 1 we obtain the following oracle inequalities for these four
types of aggregation.

Theorem 6. Let Assumption (I) be satisfied and Lj ≤ L < ∞ for 1 ≤ j ≤ M .
Let f♠ be the SPADES estimator with δ = (Mn)−1. Then for all ε > 0 there
exists a constant Cε = C(ε, L, κM ) > 0 such that for all integers n ≥ 1, M ≥ 2
and 1 ≤ D ≤ M we have, with probability greater than 1 − 2δ ,

‖f♠ − f‖2 ≤ (1 + ε) inf
1≤j≤M

‖fj − f‖2 + Cε
log(Mn)

n
. (19)

‖f♠ − f‖2 ≤ (1 + ε) inf
λ∈ΛM,D

‖fλ − f‖2 + Cε
D log(Mn)

n
. (20)

‖f♠ − f‖2 ≤ (1 + ε) inf
λ∈RM

‖fλ − f‖2 + Cε
M log(Mn)

n
. (21)

‖f♠ − f‖2 ≤ (1 + ε) inf
λ∈ΛM

‖fλ − f‖2 + Cεψ
C

n (M), (22)
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where

ψ
C

n (M) =

{
(M log n)/n if M ≤

√
n,

√
(log M)/n if M >

√
n.

This theorem follows from Theorem 1 via arguments analogous to those used in
the regression estimation context in [4], proof of Corollary 3.2. For brevity we
do not repeat the proof here.

The remainder terms on the right hand side of inequalities (19), (21) and
(22) in Theorem 6 are optimal up to logarithmic factors. This follows from the
corresponding lower bounds and the expressions optimal rates of aggregation
[24,23]. We conjecture that the remainder term in (21) is optimal as well, and
that this can be shown by a technique similar to that of [4].

In conclusion, SPADES is obtained via one procedure and achieves near opti-
mal aggregation of all four types: model selection, subset selection, convex and
linear aggregation.
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Abstract. In this paper we discuss the problem of fitting �1 regularized predic-
tion models in infinite (possibly non-countable) dimensional feature spaces. Our
main contributions are: a. Deriving a generalization of �1 regularization based on
measures which can be applied in non-countable feature spaces; b. Proving that
the sparsity property of �1 regularization is maintained in infinite dimensions; c.
Devising a path-following algorithm that can generate the set of regularized so-
lutions in “nice” feature spaces; and d. Presenting an example of penalized spline
models where this path following algorithm is computationally feasible, and gives
encouraging empirical results.

1 Introduction

Given a data sample (xi, yi)n
i=1 (with xi ∈ R

p and yi ∈ R for regression, yi ∈ {±1}
for classification), the “non-linear” regularized optimization problem calls for fitting
models to the data, embedded into a high dimensional feature space, while controlling
complexity, by solving a penalized fitting problem:

β̂(λ) = arg min
β

∑

i

L(yi, β
Tφ(xi)) + λJ(β) (1)

where L is a convex loss function; J is a convex model complexity penalty (typically
taken to be the �q norm of β, with q ≥ 1); φ(xi) ∈ R

Ω is an embedding of xi into the
feature space indexed by Ω; and β ∈ R

Ω is the parameter vector describing model fit.
This formulation is at the heart of many successful modern data analysis tools.

Kernel Support Vector Machines (Schöelkopf and Smola 12) and other kernel meth-
ods, fit �2 regularized models in high (often infinite) dimensional reproducing kernel
Hilbert spaces (RKHS). The key observation which allows us to solve these problems
is that the optimal solution in fact lies in an n-dimensional sub-space spanned by the
embedded data. When we move away from �2 regularization, the nice algebra of kernel
methods no longer applies, and the prevalent view is that exact very high dimensional
fitting becomes practically impossible.

Boosting (Freund and Schapire 4), is a popular and successful committee
method, which builds prediction models as linear combinations of weak learners
(usually small decision trees), which we can think of as features in a high dimensional

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 544–558, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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feature space. As shown in Rosset et al. (9) and references therein, boosting approx-
imately and incrementally fits �1 regularized models in high dimensional spaces —
typically the space of all trees with a given number of terminal nodes.

Fitting �1-regularized models in very high (finite) dimension is known to be attrac-
tive because of their “primal” sparsity property:

Every �1 regularized problem has an optimal solution with at most n non-zero
coefficients, no matter how high the dimension of the feature space used. Under
mild conditions, this solution is unique.

This result is a simple consequence of Caratheodory’s convex hull theorem. It is proven,
for example, in Rosset et al. (9).

Thus, the success of boosting (approximate �1 regularization under embedding) and
the attractiveness of the �1 sparsity property, lead us to the two main questions we
address in this paper:

1. Can we generalize �1 regularization to infinite dimension in a consistent way, and
will the sparsity property still hold?

2. Can we solve the resulting regularized problems despite the fact that they are infi-
nite dimensional?

We answer the first question in Sections 2 and 3. In Section 2 we offer a formulation
of �1 regularization based on measure rather than norm, which naturally generalized to
infinite non-countable dimension. We then show (Section 3) that the sparsity property
extends to infinite dimensional fitting, and even to non-countable dimensions, when us-
ing this definition. However, this property is contingent on the existence of the solution
(which is not guaranteed in non-countable dimension), and we present sufficient condi-
tions for this existence. We also formulate a simple, testable criterion for optimality of
finite-dimensional solutions to infinite dimensional problems.

Armed with these results, in Section 4 we offer an answer to our second question,
and present an algorithm that can provably generate these solutions, if they exist, which
is based on a generalization of path-following algorithms previously devised for the
Lasso and its extensions (Efron et al. 3, Zhu et al. 16).

We then describe in Section 5 an embedding problem — of fitting penalized splines
to low dimensional data — where our algorithm is practical, and demonstrate its appli-
cation on several datasets.

Throughout this paper we denote the index set of the functions in our feature space
by Ω. The notation we use in this feature space is: φ(x) ∈ R

Ω is the embedding of
x, φA(x) ∈ R

A with A ⊂ Ω is the subset of coordinates of this embedding indexed
by A (in particular, φω(x) ∈ R is the “ω coordinate” of φ(x) for ω ∈ Ω), while
φA(X) ∈ R

n×A is a matrix of the empirical partial embedding of all observations. We
also assume throughout that supω,x |φω(x)| < ∞, i.e., that embedded coordinates are
uniformly bounded.

Remark: Throughout the first part of this paper we also assume no intercept (or bias),
i.e., that all features in Ω participate in the norm being penalized. This is done for
simplicity of exposition, but we note that all our results hold and are easily generalized
to the case that contains intercept (or even multi-dimensional intercept, like the spline
basis in Section 5).
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2 �1 Regularization in Finite and Infinite Dimensions

The standard �1-penalized problem in Eq. (1) has J(β) = ‖β‖1 =
∑

ω∈Ω |βω|. The
alternative “constrained” formulation, which is equivalent under convexity of L , is:

β̂(C) = arg min
β

∑

i

L(yi, β
Tφ(xi)) s.t. ‖β‖1 ≤ C (2)

This definition works fine when |Ω| ≤ ℵ0, i.e., when the feature space is finite or
countably infinite. We now generalize it to the non-countable case. First, we replace the
�1 norm by a sum with a positivity constraint, by the well known trick of “doubling”
the dimension of the feature space. We define Ω̃ = Ω × {−1, 1} and for every ω̃ ∈ Ω̃,
ω̃ = {ω, s} define φ̃ω̃(x) = sφω(x). Our new feature space is: φ̃(x) ∈ R

|Ω̃|. It is well
known and very easy to prove that any optimal solution β̂ of Eq. (2) corresponds to one
(or more) optimal solutions of a positive constrained problem

ˆ̃
β(C) = argmin

β̃

∑

i

L(yi, β̃
Tφ̃(xi)) s.t. ‖β̃‖1 ≤ C , β̃ 	 0. (3)

Through the transformation,

β̂ω = ˆ̃
βω,1 − ˆ̃

βω,−1.

Thus without loss of generality we can limit ourselves to only formulation Eq. (3) with
positive coefficients and drop ∼ from our notation.

Given the positivity constraint, we next replace the coefficient vector β by a positive
measure on Ω. Let (Ω, Σ) be a measurable space, where we require Σ ⊃ {{ω} : ω ∈
Ω}, i.e., the sigma algebra Σ contains all singletons (this is a very mild assumption,
which holds for example for the “standard” Borel sigma algebra). Let P be the set of
positive measures on this space. Then we generalize (3) as:

P̂C = arg min
P∈P

∑

i

L(yi,

∫

Ω

φω(xi)dP (ω)) s.t. P (Ω) ≤ C (4)

For finite or infinite countable Ω we will always get Σ = 2Ω (which is the only possible
choice given our singleton-containment requirement above), and recover exactly the
formulation of (3) since P (Ω) = ‖β‖1, but the problem definition in (4) also covers the
non-countable case.

3 Existence and Sparsity of �1 Regularized Solutions in Infinite
Dimensions

In this section we show that using the formulation (4), we can generalize the sparsity
property of �1 regularized solutions to infinite dimensions, assuming an optimal solution
exists. We then formulate a sufficient condition for existence of optimal solutions, and
a testable criterion for optimality of a sparse solution.
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3.1 Sparsity Result

Theorem 1. Assume that an optimal solution of the problem (4) exists, then there exists
an optimal solution P̂C supported on at most n + 1 features in Ω.

To understand this result and its proof let us define the set D = {φω(X) : ω ∈ Ω} ⊂
R

n as the collection of feature columns in R
n. Then the sparsity property simply states

that any (scaled) convex combination of points in D can be described as an (identically
scaled) convex combination of no more than n + 1 points in D. For this finite case,
this is simply Caratheodory’s convex hull theorem. For the infinite case, we need to
generalize this result, as follows:

Theorem 2. Let μ be a positive measure supported on a bounded subset D of R
n. Then

there exists a measure ν whose support is a finite subset of D, {z1, . . . , zk}, k ≤ n + 1,
such that

∫

D

zdμ(z) =
k∑

i=1

zidν(zi).

We postpone the proof of Theorem 2 to Appendix A, and use it to prove Theorem (1).
For simplicity we assume that μ(D) = C, or equivalently, that PC(Ω) = C in (4). If
this is not the case and P̂C(Ω) = C′ < C then we can simply apply Theorem 1 to
P̂C′ for which equality holds, and the resulting sparse solution will also be optimal for
constraint value C, i.e. P̂C = P̂C′ .

Proof (of Theorem 1). Let P̂C be an optimal solution of (4). We define a measure μ on
R

n as a push–forward of P̂ , i.e. μ(B) = P ({ω : φω(X) ∈ B}). Let D (as previously
defined) be the image of Ω under mapping φ.(X). The measure μ is supported on D,
and by our assumption from Section 1, D is bounded. We apply Theorem 2 to set D and
measure μ. Each zi ∈ D, so the preimage of zi under the mapping φ.(X) is nonempty.
For each i we pick any ωi such that φωi(X) = zi. Then

∑k
i=1 ν(zi) · φωi(·) is an

optimal solution of (4) supported on at most n + 1 features.

3.2 Sufficient Conditions for Existence of Solution of (4)

Theorem 3. If the set D = {φω(X) : ω ∈ Ω} ⊂ R
n is compact, then the problem (4)

has an optimal solution

Proof of Theorem 3 uses the following result:

Proposition 1. The convex hull of a compact set in R
n is compact

Proof of Proposition 1 is provided in Appendix A.

Proof (of Theorem 3). We consider the set C · D = {C · φω(X) : ω ∈ Ω} ⊂ R
n,

where C is the (scalar) constraint from (4). By Proposition 1, the convex hull co(C ·D)
is also a compact set. By Weierstraß Theorem the continuous function

∑
i L(yi, zi),

(z1, . . . , zn)T ∈ R
n obtains its minimum at some point ẑ = (ẑ1, . . . , ẑn)T ∈ co(C ·D).

By Caratheodory’s Convex Hull Theorem 6 there exist points z1, . . . , zk ∈ D, k ≤ n+1
and bi > 0,

∑k
i=1 biz

i = z. For each zi we pick any ωi such that C ·φωi(X) = zi. The
measure μ = C

∑
i biδωi on Ω solves the problem (4).
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The condition for existence of an optimal solution of the problem (4) provided in The-
orem 3 can be difficult to check in practice. The following corollary provides us with
much simpler and elegant criterion

Corollary 1. If the set Ω is compact and the mapping φ.(X) : Ω → R
n is continuous,

then the problem (4) has an optimal solution.

Proof. It is an immediate consequence of the fact that the continuous image of a com-
pact set is compact.

3.3 Simple Criterion for Optimality

Given our results here, we can now devise a simple criterion for optimality of a finite
solution to an infinite dimensional problem:

Theorem 4. If an optimal solution to the regularized problem exists, and we are pre-
sented with a finite-support candidate solution of (3) P̃ such that ∃A ⊂ Ω, |A| <
∞, supp(P̃ ) = A, we can test its optimality using the following criterion:
P̃ is optimal solution of (3) ⇔ ∀B s.t. A ⊆ B, |B| < ∞, P̃ is optimal solution for:

min
P∈PB

∑

i

C(yi,

∫

B

φw(xi)dP (ω)) s.t. P (B) ≤ C

Proof
⇒:P̃ is the optimal solution in the whole (infinite) space, so it is the optimal solution
in any subspace containing its support.

⇐: Assume by contradiction that P̃ is not optimal. We know a finite-support optimal
solution exists from Theorem 1, mark this by P̂ . Set B = supp(P̃ ) ∪ supp(P̂ ). Then
|B| < ∞ and A ⊆ B obviously, and P̂ is also better than P̃ in B.

This theorem implies that in order to prove that a finite solution is optimal for the infinite
problem, it is sufficient to show that it is optimal for any finite sub-problem containing
it. We will use it in the next section to prove that our proposed algorithm does indeed
generate the optimal solutions to the infinite problem, if they exist.

4 Algorithms to Generate the Full Solution Paths

In this section, we are assuming that the optimal solution to the problem (4) exists
for every C (possibly because the feature space complies with the required sufficient
conditions of Theorem 3 or Corollary 1).

We now show how we can devise and implement a “path-following” algorithm,
which generates this full solution path at a manageable computational cost. We de-
scribe this construction for the case of Lasso, i.e., when the loss is quadratic, and note
that a similar algorithm can be devised for �1 regularized hinge loss (AKA �1-SVM)
(Zhu et al. 16).

Efron et al. (3) have shown how an incremental homotopy algorithm can be used
to generate the full regularized path at the cost of approximately one least square
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calculation on the full data set, for a finite feature set. Their algorithm is geometrically
motivated and derived. For our purposes, we prefer to derive and analyze it from an
optimization perspective, through the Karush-Kuhn-Tucker (KKT) conditions for opti-
mality of solutions to (3). See Rosset and Zhu (10) for details of the KKT conditions
and their implications. The resulting algorithm, in our parameterized basis notation, and
with our space-doubling, non-negativity trick of Section 2:

Algorithm 1. LAR-Lasso with parameterized feature space 4

1. Initialize:
Set β = 0 (Starting from empty model)
A = arg minω φω(X)Ty (initial set of active variables)
r = y (residual vector)
γA =−(φA(X)TφA(X))−1sgn(φA(X)Ty), γAC = 0 (direction of model change)

2. While (minωφω(X)Tr < 0)
(a) d1 =min{d > 0 : φω(X)T(r−dφA(X)γA) = φω′(X)T(r−dφA(X)γA), ω /∈

A, ω′ ∈ A}
(b) d2 = min{d > 0 : βω + dγω = 0, ω ∈ A} (hit 0)
(c) d = min(d1, d2)
(d) Update:

β ← β + dγ
r = y − φA(X)βA
If d = d1 then add feature attaining equality at d to A.
If d = d2 then remove feature attaining 0 at d from A.
γA = −(φA(X)TφA(X))−1sgn(φA(X)Tr)
γAC = 0

This algorithm generates the full regularized solution path for (3), i.e., for a

Theorem 5. At any iteration of Algorithm 1, assume we are after step 2(c), and let
l ≤ d, where d is given by step 2(c). Then the finitely-supported measure Pl with atoms
at A of size βA + lγA is an optimal solution to (3) with C = ‖βA‖1 + l.

Proof. For finite Ω this algorithm is equivalent to LARS-Lasso of Efron et al.(3), and
hence is known to generate the solution path.

For infinite Ω, Theorem 4 and the finite Ω result combined complete the proof, since
for any finite B such that A ⊆ B ⊂ Ω, the finite feature set result implies optimality of
the finite-support measure P̂ (C), generated by the algorithm, in the feature set B.

The key computational observation regarding Algorithm 1 is that the only step where
the size of the feature space comes into play is step 2(a). All other steps only consider
the set of (at most n+1) features included in the current solution. So the key to applying
this algorithm in very high dimension lies in being able to do the search in step 2(a)
efficiently over the whole non active feature space. Denote:

λ(β) = −φω′(X)Tr
4 For simplicity, our description does not include a non-penalized constant. Including the

constant (or constants, as we do in Section 5) complicates the notation but does not cause
any difficulty.
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where r, β , and ω′ ∈ A are as in step 2(a). We can then re-write 2(a) as:

d1 = min{d > 0 : −φω(X)T(r − dφA(X)γA) = λ(β) − d, for some ω /∈ A}

If we fix ω /∈ A, we can find the value l(ω) at which we would attain equality. Denote:

l(ω) =
φω(X)Tr + λ(β)

φω(X)TφA(X)γA + 1
(5)

and let:

d(ω) =
{

l(ω) if l(ω)) ≥ 0
∞ if l(ω)) < 0 (6)

then our search problem in 2(a) becomes one of finding:

ω∗ = arg min
ω/∈A

d(ω) (7)

Now, feature spaces in which our algorithm would be applicable are ones that allow a
minimization of d(ω) over the infinite feature space, e.g., by analytically solving the
problem (7) using a parametrization of Ω.

4.1 Computational Cost

Efron et al. (3) argue that for the algorithm we present, the number of pieces of the
regularized path, and hence the number of iterations is “typically” O(n), with a finite
number of features. The switch to infinite dimension does not change the fundamental
setting: the sparsity property we prove in Section 3 implies that, once we have n + 1
features included in our solution, we do not have to consider other features anymore
(except if a “drop” event happens, which reduces the number of active features).

Assuming O(n) iterations, the cost hinges on the complexity of the step length /
next feature search. For the lasso spline example below, the step length calculation for
each iteration is O(n2p) (where p, the dimension of the original data, is typically very
small), and the direction calculation is O(n2) (using an updating formula) for an overall
iteration complexity of O(n2p). The total complexity thus comes to O(n3p) under the
assumption on the number of iterations. In our experiments, this assumption seemed to
hold.

5 Example: Additive Splines with Total Variation Penalty

In this Section, we illustrate the power of infinite-dimensional �1-regularized learning
by considering a regression problem on functions in [0, 1] → R. We will suggest a spe-
cific (infinite) feature space, and show that �1-regularization under this feature space
corresponds closely to bounding the kth total variation for the predictor function, re-
covering at the optimum a kth order polynomial spline (i.e., a piecewise degree k − 1
polynomial function with k − 2 continuous derivatives). We focus here on quadratic
loss, but our results can be easily generalized to other loss functions.
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For a given order k, let Ω = {(a, s)|a ∈ [0, 1], s ∈ ±1} and consider the features:

φa,s(x) = s(x − a)k−1
+

We also allow k additional unregularized features (“intercepts”):

φr(x) = xr

for r = 0, . . . , k − 1. For observations (xi, yi), i = 1, . . . , n, our optimization problem
is then given by:

minimize
n∑

i=1

(yi − fP,β(xi))2 s.t. P (Ω) ≤ C (8)

where P is a measure over Ω, β ∈ R
k and

fP,β(x) =
∫

(a,s)

φa,s(x)dP (a, s) +
∑

r

βrφr(x) (9)

is the fitted function corresponding to (P, β). From Theorem 1 and Corollary 1 we know
that a sparse optimal solution to problem (8) exists. This will be a k-th order spline.

We note that with the above features we can approximate any function arbitrary well,
and can exactly match any finite number of (consistent) observations. The key to this
specific choice of basis for functions is the regularization cost (i.e. P (Ω)) that applies
to some predictor fP,β . This is a familiar situation in learning with infinite-dimensional
feature spaces, which we are used to encountering in kernel-based methods, where the
choice of kernel (implicitly specifying a feature space) defines the regularization cost
of predictor, rather than the space of available predictors.

In our case the �1 regularization cost, P (Ω), using our feature space, corresponds to
the kth total variation (the total variation of the (k−1)th derivative). We can demonstrate
that on our sparse spline solution

Proposition 2. For an optimal solution that is a polynomial spline fP̂ ,β̂ with m knots

at (a1, s1), ...(am, sm), and for which P̂ (Ω) = C (i.e., the constraint in (8) is tight) we
have:

TV (f (k−1)

P̂ ,β̂
) = (k − 1)!P̂ (Ω)

Proof. We first observe:

f
(k−1)

P̂ ,β̂
(x) = (k − 1)!

∑

ai<x

siP̂ (ai, si)

Assume we have some i, j such that ai = aj and si �= sj , and assume wlog that si = 1
and P̂ (ai, 1) > P̂ (ai, −1). We can now define P̃ by P̃ (ai, 1) = P̂ (ai, 1) − P̂ (ai, −1),
P̂ (ai, −1) = 0 and P̃ = P̂ everywhere else. Then P̃ (Ω) < P̂ (Ω) and fP̃ ,β̂ = fP̂ ,β̂
and we get a contradiction to optimality

Thus we have no knot with both positive and negative coefficient, and it follows that:

TV (f (k−1)

P̂ ,β̂
) = (k − 1)!

∑

i

|siP̂ (ai, si)| = (k − 1)!P̂ (Ω)
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For motivation and discussion of total variation penalties, we refer the reader to Mam-
men and van de Geer (7) and refrences therein. Intuitively, by imposing a total variation
constraint on a (very) large family of functions, we are forcing the resulting solution to
be smooth (by limiting wiggliness of the (k − 1)th derivative).

It has previously been shown that minimizing a quadratic loss subject to a constraint
on the kth total variation yields a kth order spline (Mammen and van de Geer 7). It fol-
lows immediately that our sparse spline solution is indeed the optimal solution, not only
of our �1 regularized problem, but also of the fully non-parametric regression problem,
where a total-variation penalty is applied.

5.1 Practical Implementation and the Feature Search Problem

Looking back at Algorithm 1 and the next feature search problem, we observe that at
each iteration of the path following algorithm we have a set A of indices of active func-
tions with indexes in Ωpen, characterized by their knots:

ω ∈ A ⇒ (x − ω)k−1
+ has non-0 coefficient in the solution.

In the search criterion for the next basis function in (5), l(ω) comprises a ratio of poly-
nomials of degree k − 1 in ω. The coefficients of these polynomials are fixed as long as
ω does not cross a data point or a current knot in A (since both of these events change
the parametric form of φω, due to the positive-part function (·)+).

Investigating these polynomials we observe that for k ∈ {1, 2} we get in (5) ratios
of constant or linear functions, respectively. It is easy to show that the extrema of such
functions on closed intervals are always at the end points. Thus, the chosen knots will
always be at the data points (this was first observed by Mammen and van de Geer
7). Interestingly, we get here a situation that is analogous to the RKHS case: we have
identified an n + k dimensional sub-space of the feature space such that the solution
path lies fully within this sub-space. If k ≥ 3, however, then we get ratios of higher
degree polynomials in (5), and their extrema are not guaranteed to be at the ends of
the intervals. Hence, knots can fall outside data points and we are really facing an
optimization problem in infinite dimensional space.

As a concrete example, we now concentrate on the case k = 3 and the lasso modeling
problem. The ratio of quadratics we get in (5) can be optimized analytically within each
segment (flanked by two points which are either existing knots or data points), and once
we do this for all such segments (there are at most 2n per dimension, or a maximum of
2np for the additive model), we can find ω∗ — the global minimizer of d(ω) in (6) —
which will be the next knot.

We demonstrate this on a 2-dimensional simulation example. For x ∈ [0, 1], let:

g(x) = 0.125 − 0.125x − x2 + 2(x − 0.25)2+ − 2(x − 0.5)2+ + 2(x − 0.75)2+.

a quadratic spline with knots at 0.25, 0.5, 0.75. Our target function, drawn in the upper
left box of Figure 1, is f(x1, x2) = g(x1) + g(x2).

We draw 100 training samples uniformly in [0, 1] × [0, 1] with gaussian noise:

yi = f(xi1, xi2) + εi, εi
i.i.d∼ N(0, 0.03)
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Fig. 1. True model (top left) and models generated in 15,40 and 65 steps of Algorithm 1

We then apply our quadratic spline algorithm. The results can be seen in Figure 1.
Initially the data is clearly under-fitted, but in about 40 iterations of Algorithm 1 we get
a reasonable estimate of the true surface. After that, the fit deteriorates as over-fitting
occurs and we are mostly fitting the noise.

5.2 Real Data Examples: Boston and California Housing Datasets

We briefly describe application of our additive spline algorithm with k = 3 to the
Boston Housing dataset (Blake and Merz 2) (13 features, 506 observations, of them
455 used for fitting, the rest held out for evaluation) and the California Housing dataset
(Pace and Barry 8) (8 features, 20640 observations, of them 1000 used for fitting). Fig-
ure 2 shows the performance on holdout data, as a function of the number of iterations
of the path following algorithm (an indication of model complexity). We observe that
for both datasets, increased complexity through additive spline fitting does seem to sig-
nificantly improve the predictive performance (although the small size of the holdout
set for the Boston Housing dataset implies we should take these results with some cau-
tion). For both datasets, the performance still seems to be improving after about 200
iterations, when the additive spline model already contains 10 knots across all origi-
nal variables for the Boston Housing dataset and 15 knots for the California Housing
dataset. Overall performance improvement due to the use of splines was 10% (Califor-
nia) and 15% (Boston) in MSE compared to quadratic regression and 17% (California)
and 45% (Boston) compared to simple linear regression.

Remark 1. We were not able to run the algorithm beyond about 200 iterations for
Boston Housing and about 250 iterations for California Housing due to accumulation
of numerical inaccuracies in our R implementation (caused by operations like squared
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Fig. 2. Results of running additive spline algorithm on Boston (left) and California (right) Hous-
ing datasets. For comparison, both plots show the holdout MSE of regular linear regression
(dashed) and quadratic regression (solid), compared to the improved performance from the addi-
tive splines. See text for details.

root performed in finding ω∗). So the knots selected are not exactly where they should
be and these tiny errors accumulate as the algorithm proceeds, eventually leading it
astray.

6 Discussion

In this paper we have addressed some of the theoretical and practical aspects of fitting
�1 regularized models in infinite dimensional embedding feature spaces. In Section 3
we described some of the important mathematical and statistical properties of the solu-
tions: existence, sparsity, and optimality testing. In Section 4 we developed an algorithm
which can practically find the solutions, if the feature spaces facilitate the next feature
search problem we defined in Eq. (7). We demonstrated in Section 5 that this indeed
leads to a practical and useful modeling tool in the case of penalized regression splines.

While our results combine together to give a coherent picture of a theoretically attrac-
tive and practically applicable methodology, there are clearly a few additional questions
that should be addressed to fully understand the potential of �1 regularization in infinite
dimensions.

First and foremost is the question of learning performance, both practical and theo-
retical — can �1 regularized embeddings really offer a useful learning tool? From the
practical side, we have evidence in the success of boosting, basis pursuit and other �1-
type methods in high dimension. We can also add our spline example and the promising
performance it demonstrates.

From the learning theory perspective, learning with �2 regularization in infinite-
dimensional spaces enjoys strong learning guarantees which depend only on the �2

norm of the classifier and the �2 norm of the feature vector (i.e. the the kernel values).
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Unfortunately, the situation is not as favorable in the case of �1 regularized learning in
infinite dimensional spaces. Learning guarantees based on the �1-norm of the classifier
and on supω,x |φω(x)| (i.e. the �∞-norm of the feature vectors) also depend logarith-
mically on the dimensionality (Zhang 15). In fact, it can easily be seen that bounding
supω,x |φω(x)| alone is not enough to guarantee learning in infinite dimensional spaces:
consider a space with a feature wB for each finite set B ⊂ Ω such that φB(x) = 1 iff
x ∈ B. Any finite sample can be perfectly fitted with a classifier of �1-norm 1 without
attaining any generalization.

However, learning can be assured if the space of feature mappings {φw : x →
R|w ∈ Ω} is of low-complexity, e.g. low VC-dimension, low Rademacher complexity,
or having a low covering numbers. In this case, we can view a bounded �1-classifier
as a convex combination of (scaled) base-predictors, and apply results for combined
classifiers (Koltchinski and Panchenko 6).

It is interesting whether more general learning guarantees can also be obtained based
on analytic properties of the features φω(x). Zhang (15) has already provided guaran-
tees on infinite-dimensional learning with a bound on supω,x |φω(x)| and on the �1-
norm of the classifier, by also requiring the entropy of the classifier to be high. This
requirement precludes sparse classifiers and so is disappointing from our perspective.
However, perhaps it is possible to require some sort of “dual” constraint on the features
instead, precluding them from being overly sparse or disjoint. Another possibility is
obtaining guarantees in terms of smoothness or topological proprieties of the features,
especially when there is a natural parametrization of the features, as in spline example
of Section 5.

A second important question relates to deriving a general characterization of the “in-
teresting” feature spaces where the feature search problem can be solved. We have seen
in Section 5 that for the spline example, for k < 2 the problem is trivial, and for k > 3 it
cannot easily be solved analytically. The case where the full power of our methodology
was deployed was when k = 3 (quadratic splines): on the one hand, solving the truly
infinite dimensional problem would not be possible without Algorithm 1, and on the
other the feature search problem admits an analytic solution. We have some prelimi-
nary results about the properties of the feature spaces and their parametrization through
Ω that facilitate such analytic solutions, but that is a topic for future work.

Our spline regression example has interesting connections to recent work on use
of the �1 penalty for multiple kernel and multiple component learning (Bach et al.
1, Zhang and Lin 14). These works employ the �1 penalty between components or
kernels to get sparsity in these objects (note that if they have less than n objects no
sparsity is guaranteed). Within kernels or components the �2 penalty is still used. Our
approach gives sparsity in the original feature space, and when it has several compo-
nents (like the two dimensions x1, x2 in the simulated multivariate spline example),
our methods control the total number of features used across all components com-
bined. Another important difference is that our approach leads to simple, efficient, al-
gorithms for generating the full regularized path, while Bach et al. (1) and Zhang and
Lin (14) require complex optimization approaches to solve for a single regularization
setting.
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A Proofs of Convexity and Measure Results

Appendix A is organized as follows. First we present necessary definitions and facts
about measures and convex sets. Then we prove Theorem 2.

Definition 1. We define co(A) as the intersection of all convex sets B containing A,

co(A) =
⋂

A ⊂ B
B − convex

B.

Analogously co(A) will denote the closure of co(A).

Another natural way to define a co(A) is to define it as the set of all convex combinations
of finite subsets of A. Next lemma states that both those definitions are equivalent.

Lemma 1. For a set A let co′(A) = {x : x =
n∑

i=1

aixi, xi ∈ A,
n∑

i=1

ai = 1, ai > 0}.

Then co(A) = co′(A).

http://www.ics.uci.edu/~mlearn/MLRepository.html
www-stat.stanford.edu/~saharon/papers/piecewise-revised.pdf
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This is a very well known fact, but the proof is easy so we provide it.

Proof (of Lemma 1). The inclusion co′(A) ⊂ co(A) is obvious, as every convex set
containing A contains all convex combinations of points of A.

It remains to prove that co′(A) ⊃ co(A). We shall show that co′(A) is a convex

set. Indeed, let x, y ∈ co′(A). By definition x =
n∑

i=1

αixi, y =
k∑

i=1

βiyi, xi, yi ∈

A,
n∑

i=1

αi = 1,
k∑

i=1

βi = 1, αi, βi > 0. Then for every t ∈ [0, 1]

tx + (1 − t)y = t

n∑

i=1

αixi + (1 − t)
k∑

i=1

βiyi

is a convex combination of points x1, . . . , xn, y1, . . . , yk, so it is an element of co′(A).
Trivially A ⊂ co′(A), so co′(A) is a convex set containing A, and thus it contains
co(A).

We are going to need the following classical result:

Theorem 6 (Caratheodory’s Convex Hull Theorem). Let A be a finite set of points
in R

n. Then every x ∈ co(A) can be expressed as a convex combination of at most
n + 1 points of A.

A corollary of Caratheodory’s Convex Hull Theorem is Proposition 1, the classical fact
which is essential for our considerations (see also Rudin (11), Theorem 3.20.).

Proof (of Proposition 1 from Section 3.2)
By Caratheodory’s Convex Hull Theorem and Lemma 1 co(A) is the image of a map-
ping {a1, . . . , an+1, z1, . . . , zn+1} �→

∑n+1
i=1 aizi. This is a continuous mapping on a

compact domain {
∑n+1

i=1 ai, ai ≥ 0} × An, so its image is compact.

Now we need to connect the theory of convex sets with measures on bounded subsets
of R

n. Lemma 2 provides such a link.

Lemma 2. Let A be a bounded subset of R
n. Then for any probability measure μ with

supp(μ) ⊂ A there holds ∫

A

xdμ(x) ∈ co(A).

Remark 2. This result does not generalize to the non-Euclidean case .
If A is a subset of a topological vector space V such that V ∗ 5 separates the points

of V and if co(A) is a compact set then it is always true that
∫

A
xdμ(x) ∈ co(A).

Compare (Rudin 11, Theorem 3.27).
However, even if A is a bounded subset of a a Hilbert space and coA is not closed,∫

A
xdμ(x) might not be contained in coA.

5 For a topological space V we are using a V ∗ symbol to denote a dual space of V –the space of
all continuous linear functionals on V . In case of R

n this space is of course isometric to R
n

itself. In particular ϕ ∈ (Rn)∗, ‖ϕ‖ = 1 can be identified with a set of all vectors of length 1.
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For every bounded subset A of R
n and C ∈ R we define DC(A) to be a set of all

ϕ ∈ (Rn)∗, ‖ϕ‖ = 1 such that ϕ(x) ≤ C for every x ∈ A.
For the proof of Lemma 2 we shall need the following two propositions. Proposition

3 states that co(A) is an intersection of all halfspaces containing A.

Proposition 3. Let A be a bounded subset of R
n. Then coA is an intersection of all

sets of the form {x : ϕ(x) ≤ C, ϕ ∈ DC(A)}.

Proof. This is an immediate corollary of a much stronger results - the Separation The-
orem for topological vector space, see Rudin (11, Theorem 3.21).

The next proposition states that every point on a boundary of a convex hull of A has a
“supporting plane”.

Proposition 4. For every z ∈ co(A) \ co(A) there exist C ∈ R and Λ ∈ DC(A) such
that Λ(z) − C = 0.

Proof. Let z ∈ co(A)\ co(A). Then there exists a convex set W containing A such that
z /∈ W and z ∈ W . Let c = sup

C∈R,Λ∈DC(W )

Λ(z)−C. As z ∈ W , for every Λ ∈ DC(ω)

there holds Λ(z)−c ≤ 0. By continuity of linear operators in R
n there holds c ≤ 0. Due

to compactness arguments there exist C0 and Λ0 ∈ DC0(W ) such that c = Λ0(z)−C0.
Thus for every point z′ ∈ B(z, −c) and every Λ ∈ DC(W ) for some C there holds
Λ(z′) − C = Λ(z′ − z)+ Λ(z)−C ≤ Λ(z′ − z)− c ≤ 0 as |Λ(z′ − z)| < −c because
‖Λ‖ = 1. Thus B(z, −c) ⊂ W . Let us suppose that c �= 0. Let I be any diameter of
B(z, −c). The intersection I ∩ W is a convex set, it is a subinterval of I . Moreover, as
W ∩ I = W ∩ I , only the endpoints of I can be not contained in W . As z is a midpoint
of I , this is a contradiction with an assumption z /∈ W , so there must be c = 0. Thus
Λ0(z) − C0 = 0. As DC(W ) ⊂ DC(A), the proposition follows.

Proof (of Lemma 2). The proof is by induction on n, the dimension of the space. For
n = 0, R

n consists of a single point and the theorem is trivially true.
Let us assume that the assertion holds for n and let A be a bounded subset of R

n+1. We
will denote y =

∫

A

xdμ(x). Let Λ be a linear functional on R
n+1. We have (by linearity

of an integral)

Λ(y) =
∫

A

Λ(x)dμ(x)

and therefore if Λ ∈ DC(A), then Λ(y) ≤ C. By Proposition 3 y ∈ co(A). By Propo-
sition 4 either y ∈ co(A) and our assertion is true, or there exist C and Λ ∈ DC(A)
such that Λ(y) = C. In the second case μ(A \ {x : Λ(x) = C}) = 0, and therefore
supp(μ) ⊂ μ(A ∩ {x : Λ(x) = C}). The later set is a convex subset of n-dimensional
hyperplane, and by inductive assumption y ∈ A ∩ {x : Λ(x) = C} ⊂ A.

Now we are ready to prove Theorem 2.

Proof (of Theorem 2 from Section 3.1). Is is an immediate consequence of Lemma 2
and Caratheodory’s convex hull theorem .



Prediction by Categorical Features: Generalization
Properties and Application to Feature Ranking

Sivan Sabato1 and Shai Shalev-Shwartz1,2

1 IBM Research Laboratory in Haifa, Haifa 31905, Israel
2 School of Computer Sci. & Eng., The Hebrew University, Jerusalem 91904, Israel

Abstract. We describe and analyze a new approach for feature ranking in the
presence of categorical features with a large number of possible values. It is
shown that popular ranking criteria, such as the Gini index and the misclassifica-
tion error, can be interpreted as the training error of a predictor that is deduced
from the training set. It is then argued that using the generalization error is a more
adequate ranking criterion. We propose a modification of the Gini index criterion,
based on a robust estimation of the generalization error of a predictor associated
with the Gini index. The properties of this new estimator are analyzed, showing
that for most training sets, it produces an accurate estimation of the true general-
ization error. We then address the question of finding the optimal predictor that
is based on a single categorical feature. It is shown that the predictor associated
with the misclassification error criterion has the minimal expected generalization
error. We bound the bias of this predictor with respect to the generalization error
of the Bayes optimal predictor, and analyze its concentration properties.

1 Introduction

Filter methods for supervised feature selection rank a given set of features according
to their relevance for predicting the label. As in other supervised learning methods, the
ranking of the features is generated based on an input training set. Examples of widely
used filter ranking criteria are the Gini index, the misclassification error, and the cross-
entropy [6]. In this paper we address the problem of feature ranking in the presence of
categorical features. We show that a direct application of existing ranking criteria might
lead to poor results in the presence of categorical features that can take many values.
We propose an adaptation of existing filter criteria that copes with these difficulties.

Many feature ranking methods can be viewed as a two-phase process: First, each
individual feature is used to construct a predictor of the label. Then, the features are
ranked based on the errors of these predictors. The training set is used both for con-
structing each predictor and for evaluating its error. Most current filters use the error
over the training set as the ranking criterion. In contrast, we argue that the generaliza-
tion error of each predictor is a more adequate ranking criterion. When dealing with
binary features, the training error is likely to be close to the generalization error, and
therefore the ranking generated by current filters works rather well. However, this is
not the case when dealing with categorical features that can take a large number of
values. To illustrate this fact, consider the problem of predicting whether someone is
unemployed, based on their social security number (SSN). A predictor constructed using
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any finite training set would have zero error on the training set but a large generalization
error. The first contribution of this paper is an estimator for the generalization error of
the predictor associated with the Gini index. This estimator can be calculated from the
training set and we propose to use it instead of the original Gini index criterion in the
presence of categorical features. We prove that regardless of the underlying distribution,
our estimation is close to the true value of the generalization error for most training sets.

Based on our perspective of ranking criteria as estimators of the generalization error
of a certain predictor, a natural question that arises is which predictor to use. Among
all predictors that are based on a single feature, we ultimately would like to use the one
whose generalization error is minimal. We prove that the best predictor in this sense is
the predictor associated with the misclassification error criterion. We analyze the dif-
ference between the expected generalization error of this predictor and the error of the
Bayes optimal hypothesis. Finally, we show a concentration result for the generalization
error of this predictor.

Filter methods have been extensively studied in the context of decision
trees [10,7,12]. The failure of existing filter ranking criteria in the presence of cate-
gorical features with a large number of possible values has been previously discussed
in [12,11]. Quinlan suggested the Information Gain Ratio as a correction to the cross-
entropy (a.k.a. Information Gain) criterion. In a broader context, information-theoretic
measures are commonly used for feature ranking (see for example [14] and the refer-
ences therein). One justification for their use is the existence of bounds on the Bayes
optimal error that are based on these measures [14]. However, obtaining estimators for
the entropy or mutual information seems to be difficult in the general case [2]. Another
ranking criterion designed to address the above difficulty is a distance-based measure
introduced by [3].

The problem we address shares some similarities with the problem of estimating
the missing mass of a sample, typically encountered in language modeling [5,8,4]. The
missing mass of a sample is the total probability mass of the values not occurring in
the sample. Indeed, in the aforementioned example of the SSN feature, the value of the
missing mass will be close to one. In some of our proofs we borrow ideas from [8,4].
However, our problem is more involved, as even for a value that we do observe in the
sample, if it appears only a small number of times then the training error is likely to
diverge from the generalization error. Finally, we would like to note that classical VC
theory for bounding the difference between the training error and the generalization
error is not applicable here. This is because the VC dimension grows with the number of
values a categorical feature may take, and in our framework this number is unbounded.

2 Problem Setting

In this section we establish the notation used throughout the paper and formally describe
our problem setting. In the supervised feature selection setting we are provided with k
categorical features and with a label. Each categorical feature is a random variable that
takes values from a finite set. We denote by Xi the i’th feature and by Vi the set of
values Xi can take. We make no assumptions on the identity of Vi nor on its size. The
label is a binary random variable, denoted Y , that takes values from {0, 1}.
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Generally speaking, the goal of supervised feature selection is to find a subset of the
features that can be used later for constructing an accurate classification rule. We focus
on the filter approach in which we rank individual features according to their “rele-
vance” to the label. Different filters employ different criteria for assessing the relevance
of a feature to the label. Since we are dealing with individual features, let us ignore the
fact that we have k features and from now on focus on defining a relevance measure
for a single feature X (and denote by V the set of values X can take). To simplify our

notation we denote pv
Δ= Pr[X = v] and qv

Δ= Pr[Y = 1|X = v].
In practice, the probabilities {pv} and {qv} are unknown. Instead, it is assumed that

we have a training set S = {(xi, yi)}m
i=1, which is sampled i.i.d. according to the

joint probability distribution Pr[X, Y ]. Based on S, the probabilities {pv} and {qv} are
usually estimated as follows. Let cv = |{i : xi = v}| be the number of examples in S
for which the feature takes the value v and let c+

v = |{i : xi = v ∧ yi = 1}| be the
number of examples in which the value of the feature is v and the label is 1. Then {pv}
and {qv} are estimated as follows:

p̂v
Δ=

cv

m
and q̂v

Δ=

{
c+

v

cv
cv > 0

1
2 cv = 0

(1)

Note that p̂v and q̂v are implicit functions of the training set S.
Two popular filters used for feature selection [6] are the misclassification error

∑
v∈V p̂v min{q̂v, (1 − q̂v)} , (2)

and the Gini index
2

∑
v∈V p̂v q̂v(1 − q̂v) . (3)

In these filters, smaller values indicate more relevant features.
Both the misclassification error and the Gini index were found to work rather well

in practice when |V | is small. However, for categorical features with a large number of
possible values, we might end up with a poor feature ranking criterion. As an example
(see also [11]), suppose that Y indicates whether a person is unemployed and we have
two features: X1 is the person’s SSN and X2 is 1 if the person has a mortgage and 0
otherwise. For the first feature, V is the set of all the SSNs. Because the SSN alone
determines the target label, we have that q̂v is either 0 or 1 for any v such that p̂v > 0.
Thus, both the misclassification error and the Gini index are zero for this feature. For the
second feature, it can be shown that with high probability over the choice of the training
set, the two criteria mentioned above take positive values. Therefore, both criteria prefer
the first feature over the second. In contrast, for our purposes X2 is much better than
X1. This is because X2 can be used later for learning a reasonable classification rule
based on a finite training set, while X1 will suffer from over-fitting.

It would have been natural to attribute the failure of the filter criteria to the fact that
we use estimated probabilities instead of the true (unknown) probabilities. However,
note that in the above example, the same problem would arise even if we used {pv} and
{qv} in Eq. (2) and Eq. (3). The aforementioned problem was previously underscored
in the context of the Information Gain filter [12,3,11]. In that context, Quinlan [12]
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suggested an adaptation of the Information Gain, called Information Gain Ratio, which
was found rather effective in practice.

In this paper, we take a different approach, and propose to interpret a filter’s criterion
as the generalization error of a classification rule that can be inferred from the training
set. To do so, let us first introduce some additional notation. A probabilistic hypothesis
is a function h : V → [0, 1], where h(v) is the probability to predict the label 1 given
the value v. The generalization error of h is the probability to wrongly predict the label,

�(h) Δ=
∑

v∈V pv (qv (1 − h(v)) + (1 − qv)h(v)) . (4)

We now define two hypotheses based on the training set S. The first one is

hGini
S (v) = q̂v . (5)

As its name indicates, hGini
S is closely related to the Gini index filter given in Eq. (3). To

see this, we note that the generalization error of hGini
S is

�(hGini
S ) =

∑
v∈V pv (qv (1 − q̂v) + (1 − qv) q̂v) . (6)

If the estimated probabilities {p̂v} and {q̂v} coincide with the true probabilities {pv}
and {qv}, then �(hGini

S ) is identical to the Gini index defined in Eq. (3). This will be
approximately true, for example, when m � |V |. In contrast, when the training set
is small, using �(hGini

S ) is preferable to using the Gini index given in Eq. (3), because
�(hGini

S ) takes into account the fact that the estimated probabilities might be skewed.
The second hypothesis we define is

hBayes

S (v) =

⎧
⎪⎨

⎪⎩

1 q̂v > 1
2

0 q̂v < 1
2

1
2 q̂v = 1

2

. (7)

Note that if {q̂v} coincide with {qv} then hBayes

S is the Bayes optimal classifier, which
we denote by hBayes∞ . If in addition {p̂v} and {pv} are the same, then �(hBayes

S ) is identical
to the misclassification error defined in Eq. (2). Here again, the misclassification error
might differ from �(hBayes

S ) for small training sets.
To illustrate the advantage of �(hGini

S ) and �(hBayes

S ) over their counterparts given in
Eq. (3) and Eq. (2), we return to the example mentioned above. For the SSN feature we

have �(hGini
S ) = �(hBayes

S ) = 1
2M0, where M0

Δ=
∑

v:cv=0 pv. In general, we denote

Mk
Δ=

∑
v:cv=k pv . (8)

The quantity M0 is known as the missing mass [5,8] and for the SSN feature, M0 ≥
(|V |−m)/|V |. Therefore, the generalization error of both hGini

S and hBayes

S would be close
to 1 for a reasonable m. On the other hand, for the second feature (having a mortgage),
it can be verified that both �(hBayes

S ) and �(hGini
S ) are likely to be small. Therefore, using

�(hGini
S ) or �(hBayes

S ) yields a correct ranking for this naive example.
We have proposed a modification of the Gini index and the misclassification error

that uses the generalization error and therefore is suitable even when m is smaller than
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|V |. In practice, however, we cannot directly use the generalization error criterion since
it depends on the unknown probabilities {pv} and {qv}. To overcome this obstacle,
we must derive estimators for the generalization error that can be calculated from the
training set. In the next section we discuss the problem of estimating �(hGini

S ) and �(hBayes

S )
based on the training set. Additionally, we analyze the difference between �(hBayes

S ) and
the error of the Bayes optimal hypothesis.

3 Main Results

We start this section with a derivation of an estimator for �(hGini
S ), which can serve as a

new feature ranking criterion. We show that for most training sets, this estimator will be
close to the true value of �(hGini

S ). We then shift our attention to �(hBayes

S ). First, we prove
that among all predictors with no prior knowledge on the distribution Pr[X, Y ], the
generalization error of hBayes

S is smallest in expectation. Next, we bound the difference
between the generalization error of hBayes

S and the error of the Bayes optimal hypothesis.
Finally, we prove a concentration bound for �(hBayes

S ). Regretfully, we could not find a
good estimator for �(hBayes

S ). Nevertheless, we believe that our concentration results can
be utilized for finding such an estimator. This task is left for future research.

We propose the following estimator for the generalization error of hGini
S :

�̂
Δ=

|{v : cv = 1}|
2m

+
∑

v:cv>1

2cv

cv − 1
p̂v q̂v(1 − q̂v) . (9)

In the next section, we derive this estimator based on a conditional cross-validation
technique. We suggest to use the estimation of �(hGini

S ) given in Eq. (9) rather than the
original Gini index given in Eq. (3) as a feature ranking criterion. Let us compare these
two criteria: First, for values v that appear many times in the training set we have that

cv

cv−1 ≈ 1. If for all v ∈ V we have that the size of the training set is much larger than
1/pv, then all values in V are likely to appear many times in the training set and thus the
definitions in Eq. (9) and Eq. (3) consolidate. The two definitions differ when there are
values that appear rarely in the training set. For such values, the correction term is larger
than 1. Special consideration is given to values that appear exactly once in the training
set. For such values we estimate the generalization error to be 1

2 , which is the highest
possible error. Intuitively, since one example provides us with no information as to the
variance of the label Y given X = v, we cannot have a more accurate estimation for
the contribution of this value to the total generalization error. Furthermore, the fraction
of values that appear exactly once in the training set is an estimator for the probability
mass of those values that do not appear at all in the training set (see also [5,8]).

We now turn to analyze the quality of the proposed estimator. We first show (Thm. 1
below) that the bias of this estimator is small. Then, in Thm. 2, we prove a concentration
bound for the estimator, which holds for any joint distribution of Pr[X, Y ] and does not
depend on the size of V . Specifically, we show that for any δ ∈ (0, 1), in a fraction of
at least 1 − δ of the training sets the error of the estimator is O( ln(m/δ)√

m
).

Theorem 1. Let S be a set of m examples sampled i.i.d. according to the probability
measure Pr[X, Y ]. Let hGini

S be the Gini hypothesis given in Eq. (5) and let �(hGini
S ) be



564 S. Sabato and S. Shalev-Shwartz

the generalization error of hGini
S , where � is as defined in Eq. (4). Let �̂ be the estimation

of �(hGini
S ) as given in Eq. (9). Then,

∣
∣
∣E[�(hGini

S )] − E[�̂]
∣
∣
∣ ≤ 1

2m , where expectation is

taken over all sets S of m examples.

The next theorem shows that for most training sets, our estimator is close to the true
generalization error of hGini

S .

Theorem 2. Under the same assumptions as in Thm. 1, let δ be an arbitrary scalar in
(0, 1). Then, with probability of at least 1 − δ over the choice of S, we have

∣
∣
∣�(hGini

S ) − �̂
∣
∣
∣ ≤ O

(
ln(m/δ)

√
ln(1/δ)√

m

)

.

Based on the above theorem, �̂ can be used as a filter criterion. The convergence rate
shown can be used to establish confidence intervals on the true Gini generalization error.
The proofs of Thm. 1 and Thm. 2 are given in the next section.

So far we have derived an estimator for the generalization error of the Gini hypothesis
and shown that it is close to the true Gini error. The Gini hypothesis has the advantage
of being highly concentrated around its mean. This is important especially when the
sample size is fairly small. However, the Gini hypothesis does not produce the lowest
generalization error in expectation. We now turn to show that the hypothesis hBayes

S de-
fined in Eq. (7) is optimal in this respect, but that its concentration is weaker. These
two facts are characteristic of the well known bias-variance tradeoff commonly found
in estimation and prediction tasks.

Had we known the underlying distribution of our data, we could have used the
Bayes optimal hypothesis, hBayes∞ , that achieves the smallest possible generalization er-
ror. When the underlying distribution is unknown, the training set is used to construct
the hypothesis. Thm. 3 below shows that among all hypotheses that can be learned
from a finite training set, hBayes

S achieves the smallest generalization error in expec-
tation. More precisely, hBayes

S is optimal among all the hypotheses that are symmetric
with respect to both |V | and the label values. This symmetry requirement limits the
examined hypotheses to those that do not exploit prior knowledge on the underlying
distribution Pr[X, Y ]. Formally, let HS be the set of all hypotheses that can be writ-
ten as h(v) = fh(cv(S), c+

v (S)) where fh : N × N → [0, 1] is a function such that
fh(n1, n2) = 1 − fh(n1, n1 − n2) for all n1, n2 ∈ N. The following theorem estab-
lishes the optimality of hBayes

S and bounds the difference between the Bayes optimal error
and the error achieved by hBayes

S .

Theorem 3. Let S be a set of m examples sampled i.i.d. according to the probabil-
ity measure Pr[X, Y ]. For any hypothesis h, let �(h) be the generalization error of
h, as defined in Eq. (4). Let hBayes

S be the hypothesis given in Eq. (7) and let hBayes∞
be the Bayes optimal hypothesis. Let HS be the set of symmetric hypotheses. Then
E[�(hBayes

S )] = minh∈HS E[�(h)], and

E[�(hBayes

S )] − �(hBayes∞ ) ≤ 1
2 E[M0] + 1

8 E[M1] + 1
8 E[M2] +

∑m
k=3

1√
ek

E[Mk],

where Mk is as defined in Eq. (8).
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Note that the first term in the difference between E[�(hBayes

S )] and �(hBayes
∞ ) is exactly

half the expectation of the missing mass. This is expected, because we cannot improve
our prediction over the baseline error of 1

2 for values not seen in the training set, as
exemplified in the SSN example described in the previous section. Subsequent terms in
the bound can be attributed to the fact that even for values observed in the training set,
a wrong prediction might be generated if there is a small number of examples.

We have shown that hBayes

S has the smallest generalization error in expectation, but
this does not guarantee a small generalization error on a given sample. Thm. 4 below
bounds the concentration of �(hBayes

S ). This concentration along with Thm. 3 provides us
with a bound on the difference between hBayes

S and the Bayes optimal error that is true
for most samples.

Theorem 4. Under the same assumptions of Thm. 3, assume that m ≥ 8 and let δ be
an arbitrary scalar in (0, 1). Then, with probability of at least 1 − δ over the choice of
S, we have

|�(hBayes

S ) − E[�(hBayes

S )]| ≤ O

(
ln (m/δ)

√
ln(1/δ)

m1/6

)

.

The concentration bound for �(hBayes

S ) is worse than the concentration bound for �(hGini
S ),

suggesting that indeed the choice between hGini
S and hBayes

S is not trivial. To use �(hBayes

S )
as a filter criterion, an estimator for this quantity is needed. However, at this point we
cannot provide such an estimator. We conjecture that based on Thm. 4 an estimator with
a small bias but a weak concentration can be constructed. We leave this task to further
work. Finally, we would like to note that Antos et al. [1] have shown that the Bayes
optimal error cannot be estimated based on a finite training set. Finding an estimator
for �(hBayes

S ) would allow us to approximate the Bayes optimal error up to the bias term
quantified in Thm. 3.

4 Proofs of Main Results

In this section the results presented in the previous section are proved. Due to the lack
of space, some of the proofs are omitted and can be found in [13].

In the previous section, an estimator for the generalization error of the Gini hypoth-
esis was presented. We stated that for most training sets this estimation is reliable. In
this section, we first derive the estimator �̂ given in Eq. (9) using a conditional cross-
validation technique, and then utilize this interpretation of �̂ to prove Thm. 1 and Thm. 2.

To derive the estimator given in Eq. (9), let us first rewrite �(hGini
S ) as the sum∑

v �v(hGini
S ), where �v(hGini

S ) is the amount of error due to value v and is formally de-
fined as

�v(h) Δ= Pr[X = v] Pr[h(X) 
= Y | X = v] = pv (qv (1 − h(v)) + (1 − qv)h(v)) .

We now estimate the two factors Pr[X = v] and Pr[hGini
S (X) 
= Y | X = v] indepen-

dently. Later on we multiply the two estimations. The resulting local estimator of �v(h)
is denoted �̂v and our global estimator is �̂

Δ=
∑

v �̂v.
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To estimate Pr[X = v], we use the straightforward estimator p̂v. Turning to the
estimation of Pr[hGini

S (X) 
= Y | X = v], recall that hGini
S , defined in Eq. (5), is a

probabilistic hypothesis where q̂v is the probability to return the label 1 given that the
value of X is v. Equivalently, we can think of the label that hGini

S (v) returns as being
generated based on the following process: Let S(v) be the set of those indices in the
training set in which the feature takes the value v, namely, S(v) = {i : xi = v}. Then,
to set the label hGini

S (v) we randomly choose an index i ∈ S(v) and return the label yi.
Based on this interpretation, a natural path for estimating Pr[hGini

S (X) 
= Y | X = v]
is through cross-validation: Select an i ∈ S(v) to determine hGini

S (v), and estimate the
generalization error to be the fraction of the examples whose label is different from
the label of the selected example. That is, the estimation is 1

cv−1

∑
j∈S(v):j �=i 1yi �=yj .

Obviously, this procedure cannot be used if cv = 1. We handle this case separately later
on. To reduce the variance of this estimation, this process can be repeated, selecting
each single example from S(v) in turn and validating each time using the rest of the
examples in S(v). It is then possible to average over all the choices of the examples.
The resulting estimation therefore becomes

∑

i∈S(v)

1
cv

⎛

⎝ 1
cv − 1

∑

j∈S(v):j �=i

1yi �=yj

⎞

⎠ =
1

cv(cv − 1)

∑

i,j∈S(v):i�=j

1yi �=yj .

Thus, we estimate Pr[hGini
S (X) 
= Y | X = v] based on the fraction of differently-

labeled pairs of examples in S(v). Multiplying this estimator by p̂v we obtain the fol-
lowing estimator for �v(hGini

S ),

�̂v = p̂v
1

cv(cv − 1)

∑

i,j∈S(v),i�=j

1yi �=yj (10)

= p̂v
2c+

v (cv − c+
v )

cv(cv − 1)
= p̂v

2c2
vq̂v(1 − q̂v)
cv(cv − 1)

= p̂v · 2cv

cv − 1
q̂v(1 − q̂v).

Finally, for values v that appear only once in the training set, the above cross-validation
procedure cannot be applied, and we therefore estimate their generalization error to be
1
2 , the highest possible error. The full definition of �̂v is thus:

�̂v =

{
p̂v · 1

2 cv ≤ 1
p̂v · 2cv

cv−1 q̂v(1 − q̂v) cv ≥ 2
(11)

The resulting estimator �̂ defined in Eq. (9) is exactly the sum
∑

v �̂v.
Based on the above derivation of �̂v, we now turn to prove Thm. 1, in which it is

shown that the expectations of our estimator and of the true generalization error of
the Gini hypothesis are close. To do so, we first inspect each of these expectations
separately, starting with E[�̂v]. The following lemma calculates the expectation of �̂v

over those training sets with exactly k appearances of the value v.

Lemma 1. For k such that 1 < k ≤ m, E[�̂v | cv(S) = k] = k
m · 2qv(1 − qv).
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Proof. If cv = k, then p̂v = k
m . Therefore, based on Eq. (10), we have

E[�̂v | cv(S) = k] =
k

m

1
k(k − 1)

E
[ ∑

i,j∈S(v),i�=j

1yi �=yj | cv(S) = k
]

. (12)

Let Z1, . . . , Zk be independent binary random variables with Pr[Zi = 1] = qv for all
i ∈ [k]. The conditional expectation on the right-hand side of Eq. (12) equals to

E[
∑

i�=j

1Zi �=Zj ] =
∑

i�=j

E[1Zi �=Zj ] =
∑

i�=j

2 qv (1− qv) = k(k − 1) · 2 qv (1− qv) .

Combining the above with Eq. (12) concludes the proof. ��

Based on the above lemma, we are now ready to calculate E[�̂v]. We have

E[�̂v] =
∑

S

Pr[S] E[�̂v] =
m∑

k=0

∑

S:cv(S)=k

Pr[S] · E[�̂v | cv(S) = k]. (13)

From the definition of �̂, we have E[�̂v | cv(S) = 1] = 1
2m and E[�̂v | cv(S)=0] = 0.

Combining this with Lemma 1 and Eq. (13), we get

E[�̂v] = Pr[cv = 1] · 1
2m

+
m∑

k=2

Pr[cv = k] · k

m
· 2qv(1 − qv)

=
1
m

(
1
2

− 2qv(1 − qv)) Pr[cv = 1] + 2qv(1 − qv)
m∑

k=0

Pr[cv = k] · k

m

=
1
m

(
1
2

− 2qv(1 − qv)) Pr[cv = 1] + pv · 2qv(1 − qv) , (14)

where the last equality follows from the fact that
∑m

k=0 Pr[cv = k] k
m = E[p̂v] = pv.

Having calculated the expectation of �̂v we now calculate the expectation of �v(hGini
S ).

The proof of the following lemma can be found in [13].

Lemma 2. E[�v(hGini
S )] = pv(1

2 − 2qv(1 − qv)) Pr[cv = 0] + pv · 2qv(1 − qv).

Equipped with the expectation of �̂v given in Eq. (14) and the expectation of �v(hGini
S )

given in Lemma 2, we are now ready to prove Thm. 1.

Proof (of Thm. 1). Using the definitions of �(hGini
S ) and �̂ we have that

E[�̂]− E[�(hGini
S )] = E[

∑

v

�̂v]− E[
∑

v

�v(hGini
S )] =

∑

v

(E[�̂v]− E[�v(hGini
S )]) . (15)

Fix some v ∈ V . From Eq. (14) and Lemma 2 we have

E[�̂v] − E[�v(hGini
S )] = (

1
2

− 2qv(1 − qv))(
1
m

Pr[cv = 1] − pv Pr[cv = 0]) . (16)
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Also, it is easy to see that 1
m Pr[cv = 1] − pv Pr[cv = 0] = pv

m Pr[cv = 1]. Plugging

this into Eq. (16) we obtain: E[�̂v] − E[�v(hGini
S )] = (1

2 − 2qv(1 − qv)) 1
mpv Pr[cv = 1].

For any qv we have that 0 ≤ 2qv(1 − qv) ≤ 1
2 , which implies the following inequality:

0 ≤ E[�̂v] − E[�v(hGini
S )] ≤ 1

2m pv Pr[cv = 1] ≤ pv

2m . Summing this over v and using

Eq. (15) we conclude that 0 ≤ E[�̂] − E[�(hGini
S )] ≤

∑
v

pv

2m = 1
2m . ��

We now turn to prove Thm. 2 in which we argue that with high confidence on the
choice of S, the value of our estimator is close to the actual generalization error of hGini

S .
To do this, we show that both our estimator and the true generalization error of hGini

S are
concentrated around their mean. Then, based on Thm. 1, we can easily prove Thm. 2.

We start by showing that our estimator �̂ is concentrated around its expectation. The
concentration of �̂ follows relatively easily by application of McDiarmid’s Theorem [9].
To simplify our notation, we will henceforth use the shorthand ∀δS π[S, δ] to indicate
that the predicate π[S, δ] holds with probability of at least 1 − δ over the choice of S.

Lemma 3. Let δ ∈ (0, 1). Then, ∀δS
∣
∣
∣�̂ − E[�̂]

∣
∣
∣ ≤ 12

√
ln( 2

δ )

2m .

The proof of this lemma can be found in [13]. We now turn to show a concentration
bound on the true generalization error �(hGini

S ). Here we cannot directly use McDiarmid’s
Theorem since the bounded differences property does not hold for �(hGini

S ). To see this,
suppose that V = {0, 1}, p0 = p1 = 1

2 , q0 = 0.99 and q1 = 1. Assume in addition
that |S(0)| = 1; namely, there is only a single example in S for which the feature takes
the value 0, an unlikely but possible scenario. In this case, if the single example in S(0)
is labeled 1, then �(hGini

S ) = 0.01, but if this example is labeled 0, then �(hGini
S ) = 0.99.

That is, a change of a single example might have a dramatic effect on �(hGini
S ). This

problem can intuitively be attributed to the fact that S is an atypical sample of the
underlying distribution {pv}. To circumvent this obstacle, we define a new hypothesis
hδ

S that depends both on the sample S and on the desired confidence parameter δ. This
hypothesis would ‘compensate’ for atypical samples. For hδ

S we show that the following
properties hold:

∀δS �(hδ
S) = �(hGini

S ) (17)
∣
∣E[�(hδ

S)] − E[�(hGini
S )]

∣
∣ ≤ 1/m (18)

∀δS
∣
∣�(hδ

S) − E[�(hδ
S)]

∣
∣ ≤ O

(
ln(m/δ)/

√
m

)
. (19)

Eq. (17) states that with high confidence, the generalization error of the new hypothe-
sis hδ

S is exactly equal to the error of hGini
S . Eq. (18) states that the expectations of the

generalization errors of the two hypotheses are close. Finally, Eq. (19) states that the
generalization error of hδ

S is concentrated around its expectation. Combining these three
properties and using the triangle inequality, we will be able to bound |�(hGini

S )−E[�(hGini
S )]|

with high confidence.
We construct a hypothesishδ

S that satisfies the three requirements given in Eqs. (17-19)
based on Lemma 4 below. This lemma states that except for values with small probabil-
ities, we can assure that with high confidence, cv(S) grows with pv . This means that as
long as pv is not too small, a change of a single example in cv(S) does not change hδ

S(v)
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too much. On the other hand, if pv is small then the value v has little effect on the er-
ror to begin with. Therefore, regardless of the probability pv, the error �(hδ

S) cannot be
changed too much by a single change of example in S. This would allow us to prove a
concentration bound on �(hδ

S) using McDiardmid’s theorem. Let us first introduce a new
notation. Given a confidence parameter δ > 0, a probability p ∈ [0, 1], and a sample
size m, we define

ρ(δ, p, m) Δ= mp −
√

mp · 3 ln(2/δ). (20)

Lemma 4 below states that cv(S) is likely to be at least ρ(δ/m, pv, m) for all values
with non-negligible probabilities.

Lemma 4. Let δ ∈ (0, 1) be a confidence parameter. Then,

∀δS ∀v ∈ V : pv ≥ 6 ln( 2m
δ )

m ⇒ cv(S) ≥ ρ(δ/m, pv, m) > 1.

The proof is based on lemma 44 from [4] and can be found in [13]. Based on the bound
given in the above lemma, we define hδ

S to be

hδ
S(v) Δ=

⎧
⎨

⎩

hGini
S (v) pv <

6 ln( 2m
δ )

m or cv ≥ ρ( δ
m , pv, m)

c+
v +qv(�ρ( δ

m ,pv ,m)�−cv)

�ρ( δ
m ,pv ,m)� otherwise

That is, hδ
S(v) is equal to hGini

S (v) if either pv is negligible or if there are enough repre-
sentatives of v in the sample. If this is not the case, then S is not a typical sample and
thus we “force” it to be typical by adding �ρ( δ

m , pv, m)� − cv ‘pseudo-examples’ to S
with the value v and with labels that are distributed according to qv. Therefore, except
for values with negligible probability pv, the hypothesis hδ

S(v) is determined by at least
�ρ( δ

m , pv, m)� ‘examples’. As a direct result of this construction we obtain that a single
example from S has a small effect on the value of �(hδ

S).
We can now show that each of the properties in (17-19) hold. From the definition of

hδ
S and Lemma 4 it is clear that Eq. (17) holds. Lemma 5 and Lemma 6 below state that

Eq. (18) and Eq. (19) hold. Lemma 7 that follows bounds the concentration of �(hGini
S )

using the three properties. The proofs of these three lemmas can be found in [13].

Lemma 5.
∣
∣E[�(hGini

S )] − E[�(hδ
S)]

∣
∣ ≤ 1

m .

Lemma 6. ∀δ > 0 ∀δS
∣
∣�(hδ

S) − E[�(hδ
S)]

∣
∣ ≤

12 ln( 2m
δ )

√
ln( 2

δ )√
2m

.

Lemma 7. For all δ > 0 we have ∀δS |�(hGini
S ) − E[�(hGini

S )]| ≤ 1
m+

12 ln( 4m
δ )

√
ln( 4

δ )√
2m

.

Thm. 2 states that with high confidence, the estimator �̂ is close to the true generalization
error of the Gini hypothesis, �(hGini

S ). We conclude the analysis of the Gini estimator by
proving this theorem.

Proof (of Thm. 2). Substituting δ
2 for δ and applying a union bound, we have that all

three properties stated in Lemma 7, Thm. 1 and Lemma 3 hold with probability of at
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least 1 − δ. We therefore conclude that with probability of at least 1 − δ,
∣
∣
∣�(hGini

S ) − �̂
∣
∣
∣ ≤ |�(hGini

S ) − E[�(hGini
S )]| +

∣
∣
∣E[�(hGini

S )] − E[�̂]
∣
∣
∣ +

∣
∣
∣E[�̂] − �̂

∣
∣
∣

≤ 2
m

+
12 ln

(
8m
δ

) √
ln

(
8
δ

)

√
2m

+ 12

√

ln(4
δ )

2m
= O

⎛

⎝
ln(m

δ )
√

ln(1
δ )

√
m

⎞

⎠ .

��

Due to lack of space, we omit the proof of Thm. 3 and refer the reader to [13]. To prove
Thm. 4, we first introduce some additional notation. Let δ ∈ (0, 1) be a confidence
parameter. Let V δ

1 , V δ
2 , and V δ

3 be three sets that partition V according to the values of
the probabilities pv:

V δ
1 = {v | pv ≤ 6 ln (2m/δ)m− 2

3 }
V δ

2 = {v | 6 ln (2m/δ)m− 2
3 < pv ≤ 6 ln (2m/δ)m− 1

2 }
V δ

3 = {v | 6 ln (2m/δ)m− 1
2 < pv}

We denote the contribution of each set to �(hBayes

S ) by �δ
i (S) Δ=

∑
v∈V δ

i
�v(hBayes

S ). Addi-
tionally, given two samples S and S′, let κ(S, S′) be the predicate that gets the value
“true” if for all v ∈ V we have cv(S) = cv(S′).

Using the above definitions and the triangle inequality, we can bound
|�(hBayes

S ) − E[�(hBayes

S )]| as follows:

|�(hBayes

S ) − E[�(hBayes

S )]| = |
3∑

i=1

(
�δ
i (S) − E[�δ

i ]
)

| ≤ A1 + A2 + A3 + A4 , where

A1 =
∣
∣ �δ

1(S) − E[�δ
1]

∣
∣

A2 =
∣
∣ �δ

2(S) − E[�δ
2(S

′) | κ(S, S′)]
∣
∣ (21)

A3 =
∣
∣ �δ

3(S) − E[�δ
3(S

′) | κ(S, S′)]
∣
∣

A4 =
∣
∣ E[�δ

2(S
′) + �δ

3(S
′) | κ(S, S′)] − E[�δ

2 + �δ
3]

∣
∣ .

To prove Thm. 4 we bound each of the above terms as follows: First, to bound A1

(Lemma 8 below), we use the fact that for each v ∈ V δ
1 the probability pv is small.

Thus, a single change of an example in S has a moderate effect on the error and we can
use McDiarmid’s theorem. To bound A2 (Lemma 9 below) we note that the expectation
is taken with respect to those samples S′ in which cv(S′) = cv(S) for all v. Therefore,
the variables �v(hBayes

S ) are independent. We show in addition that each of these variables
is bounded in [0, pv] and thus we can apply Hoeffding’s bound. Next, to bound A3

(Lemma 12 below), we use the fact that in a typical sample, cv(S) is large for all v ∈
V δ

3 . Thus, we bound the difference between �v(hBayes

S ) and E[�v(S′) | κ(S, S′)] for each
value in V δ

3 separately. Then, we apply a union bound to show that for all of these
values the above difference is small. Finally, we use the same technique to bound A4

(Lemma 13 below). The proof of the first lemma, stated below, is omitted.
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Lemma 8. ∀δ > 0 ∀δS |�δ
1(S) − E[�δ

1]| ≤ 12 ln( 2m
δ )

m1/6

√
1
2 ln

(
2
δ

)
.

Lemma 9. ∀δ > 0 ∀δS |�δ
2(S) − E[�δ

2(S
′) | κ(S, S′)]| ≤

√
3 ln(2m/δ) ln(2/δ)

m1/4 .

Proof. Since the expectation is taken over samples S′ for which cv(S′) = cv(S), for
each v ∈ V we get that �δ

2(S) =
∑

v∈V δ
2

�v(hBayes

S ) is a sum of independent random

variables and the expectation of this sum is E[�δ
2(S

′) | κ(S, S′)]. In addition, it is trivial
to show that �v(hBayes

S ) ∈ [0, pv] for all v. Thus, by Hoeffding’s inequality,

Pr[|�δ
2(S) − E[�δ

2(S
′) | κ(S, S′)]| ≥ t] ≤ 2e

−2t2/
∑

v∈V δ
2

p2
v . (22)

Using the fact that for v in V δ
2 , pv ≤ 6 ln (2m/δ) /

√
m we obtain that

∑

v∈V δ
2

p2
v ≤ max

v∈V δ
2

{pv} ·
∑

v∈V δ
2

pv ≤ 6 ln (2m/δ) /
√

m .

Plugging the above into Eq. (22) we get that

Pr[|�δ
2(S) − E[�δ

2(S
′) | κ(S, S′)]| ≥ t] ≤ 2e−2t2

√
m/(6 ln(2m/δ)) .

Setting the right-hand side to δ and solving for t, we conclude our proof. ��

So far, we have bounded the terms A1 and A2. In both of these cases, we utilized the fact
that pv is small for all v ∈ V δ

1 ∪ V δ
2 . We now turn to bound the term A3. In this case,

the probabilities pv are no longer negligible. Therefore, we use a different technique
whereby we analyze the probability of hBayes

S (v) to be ‘wrong’, i.e. to return the less
probable label. Since pv is no longer small, we expect cv to be relatively large. The
following key lemma bounds the probability of hBayes

S (v) to be wrong given that cv is
large. The resulting bound depends on the difference between qv and 1/2 and becomes
vacuous whenever qv is close to 1/2. On the other hand, if qv is close to 1/2, the price
we pay for a wrong prediction is small. In the second part of this lemma, we balance
these two terms and end up with a bound that does not depend on qv.

Lemma 10. Let Z̄ = (Z1, . . . , Zk) be a sequence of i.i.d. binary random variables
where Pr[Zi = 1] = q for all i, and assume that q ≥ 1

2 . Then,

Pr[
∑

i

Zi ≤ k/2] ≤ e−2(q− 1
2 )2 k and (2q − 1) Pr[

∑

i

Zi ≤ k/2] ≤ 1√
e k

.

Proof. The first inequality is a direct application of Hoeffding’s inequality. Multiply-
ing both sides by 2q − 1 we get that the left-hand side of the second inequality is
bounded above by (2q −1)e−2(q− 1

2 )2k. We now let x = q − 1
2 and utilize the inequality

2xe−2x2k ≤ 1/
√

e k, which holds for all x ≥ 0 and k > 0. ��

Based on the above lemma, we now bound A3. First, we show that if cv(S) is large then
�v(S) is likely to be close to the expectation of �v over samples S′ in which cv(S) =
cv(S′). This is equivalent to the claim of the following lemma.
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Lemma 11. Under the same assumptions of Lemma 10. Let f(Z̄) be the function

f(Z̄) =

⎧
⎪⎨

⎪⎩

(1 − q) if
∑

i Zi > k/2
q if

∑
i Zi < k/2

1
2 if

∑
i Zi = k/2

.

Then, for all δ ∈ (0, e−1/2] we have ∀δZ̄ |f(Z̄) − E[f ]| ≤
√

2 ln(1/δ)
ek .

Proof. To simplify our notation, denote α = Pr[
∑

i Zi > k/2], β = Pr[
∑

i Zi < k/2],
and γ = Pr[

∑
i Zi = k/2]. A straightforward calculation shows that

|f(Z̄) − E[f(Z̄)]| =

⎧
⎪⎨

⎪⎩

(2q − 1) (β + γ/2) with probability α

(2q − 1) (α + γ/2) with probability β

(2q − 1) (α − β) with probability γ

.

Using the fact that (α, β, γ) is in the probability simplex we immediately obtain that
|f(z̄)−E[f(Z̄)]| ≤ (2 q−1). If 2 q−1 ≤

√
2 ln (1/δ) /k then the bound in the lemma

clearly holds. Therefore, from now on we assume that 2 q−1 >
√

2 ln (1/δ) /k. In this

case, using the first inequality of Lemma 10 we have that β + γ ≤ e−2(q− 1
2 )2k ≤ δ.

Therefore, 1 − δ < α, and so with probability of at least 1 − δ we have that

|f(Z̄) − E[f(Z̄)]| = (2q − 1) (β + γ/2) ≤ (2q − 1) (β + γ) .

Applying the second inequality of Lemma 10 on the right-hand side of the above in-
equality we get that |f(Z̄) − E[f(Z̄)]| ≤

√
1/ek ≤

√
2 ln(1/δ)/ek, where the last

inequality holds since we assume that δ ≤ e−1/2. ��

Equipped with the above lemma we are now ready to bound A3.

Lemma 12. If m ≥ 4 then ∀(2δ)S |�δ
3(S) − E[�δ

3(S
′) | κ(S, S′)]| ≤ 1/m

1
4 .

Proof. Recall that �δ
3(S) =

∑
v∈V δ

3
�v(S). m ≥ 4, hence δ/m ≤ 1/m ≤ e−1/2.

Choose v ∈ V δ
3 and without loss of generality assume that qv ≥ 1/2. Thus, from

Lemma 11 and the definition of �v(S) we get that with probability of at least 1 − δ/m

over the choice of the labels in S(v): |�v(S) − E[�v(S′)|κ(S, S′)]| ≤ pv

√
2 ln(m/δ)
e·cv(S) .

By the definition of V δ
3 and Lemma 4, ∀δS, ∀v ∈ V δ

3 , cv(S) ≥ ρ(δ/m, pv, m). Us-
ing the fact that ρ is monotonically increasing with respect to pv it is possible to show
(see [13]) that ρ(δ/m, pv, m) ≥ 2 ln (m/δ)m1/2 for all v ∈ V δ

3 for m ≥ 4. There-
fore, |�v(S) − E[�v(S′)|κ(S, S′)]| ≤ pv m−1/4. Using a union bound, we obtain
that ∀(2δ)S ∀v ∈ V δ

3 |�v(S) − E[�v(S′)|κ(S, S′)]| ≤ pv m−1/4 . Summing over
v ∈ V δ

3 , using the triangle inequality, and using the fact that
∑

v pv = 1 we conclude
the proof. ��

Lastly, we bound A4 in the next lemma. See [13] for the proof.

Lemma 13. For m ≥ 8,

∀δS | E[�δ
2(S

′) + �δ
3(S

′) | κ(S, S′)] − E[�δ
2(S

′) + �δ
3(S

′)]| ≤ 1
m + 1

m1/6 .
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5 Discussion

In this paper, a new approach for feature ranking is proposed, based on a direct esti-
mation of the true generalization error of predictors that are deduced from the training
set. We focused on two specific predictors, namely hGini

S and hBayes

S . An estimator for the
generalization error of hGini

S was proposed and its convergence was analyzed. We showed
that the expected error of hBayes

S is optimal and that its concentration is weaker than that
of hGini

S . Constructing an estimator for hBayes

S is left for future work.
There are various extensions for this work that we did not pursue. First, it is interest-

ing to analyze the number of categorical features one can rank while avoiding overfit-
ting. This is especially important when ranking groups of categorical features. Second,
our view of a ranking criterion as an estimator for the generalization error of a predictor
can be used for constructing new ranking criteria by defining other predictors. Finally,
understanding the relationship between this view and information theoretic measures is
also an interesting future direction.
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Abstract. In the standard model of observational learning, n agents se-
quentially decide between two alternatives a or b, one of which is objec-
tively superior. Their choice is based on a stochastic private signal and
the decisions of others. Assuming a rational behavior, it is known that in-
formational cascades arise, which cause an overwhelming fraction of the
population to make the same choice, either correct or false. Assuming that
each agent is able to observe the actions of all predecessors, it was shown
by Bikhchandani, Hirshleifer, and Welch [1,2] that, independently of the
population size, false informational cascades are quite likely.

In a more realistic setting, agents observe just a subset of their pre-
decessors, modeled by a random network of acquaintanceships. We show
that the probability of false informational cascades depends on the edge
probability p of the underlying network. As in the standard model, the
emergence of false cascades is quite likely if p does not depend on n. In
contrast to that, false cascades are very unlikely if p = p(n) is a sequence
that decreases with n. Provided the decay of p is not too fast, correct
cascades emerge almost surely, benefiting the entire population.

1 Introduction

In recent years, there has been growing interest in modeling and analyzing
processes of observational learning, first introduced by Banerjee [3] and Bikhchan-
dani, Hirshleifer, and Welch [1,2]. In the model of [1,2], individuals make a once-in-
a-lifetime choice between two alternatives sequentially. Each individual has access
to private information, which is hidden to other individuals, and also observes the
choices made by his predecessors. Since each action taken provides an information
externality, individuals may start to imitate their predecessors so as to maximize
their objective. Although such herding behavior is a locally optimal strategy for
each individual, it might not be beneficial for the population as a whole. In the
models of [3] and [1,2], imitation may cause an informational cascade such that
all subsequent individuals make the same decision, regardless of their private in-
formation. One of the main results in [3] and [1,2] states that the probability of a
cascade that leads most members of the population into the false decision is con-
stant, independently of the population size.

This result seems counterintuitive to our every day experience since at many
occasions taking the choice of others into account is wise and beneficial for the

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 574–588, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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entire society. In fact, imitation has been recognized as an important manifes-
tation of intelligence and social learning. For instance, in his popular bestseller
“The Wisdom of Crowds” [4], Surowiecki praises the superior judgment of large
groups of people over an elite few. This became evident, for example, when
Google launched their web search engine, at that time offering a superior ser-
vice quality. Encouraged by their acquaintances, more and more users adopted
Google as their primary index to the web. Moreover, the Google search engine
itself leverages the wisdom of crowds by ranking their search results with the
PageRank algorithm [5].

The reason that herding could be rather harmful in the model studied in [1,2]
is that each individual has unlimited observational power over the actions taken
by all predecessors. In a more realistic model, information disseminates not per-
fectly so that individuals typically observe merely a small subset of their predeces-
sors. In this paper, we propose a generalization of the sequential learning model
of [1,2]. Suppose the population has size n. For each individual i ∈ {1, . . . , n},
a set of acquaintances Γ (i) among all predecessors j < i is selected, where each
member of Γ (i) is chosen with probability p = p(n), 0 ≤ p ≤ 1, independently
of all other members. Only the actions taken by members of Γ (i) are revealed
to the individual i, all other actions remain unknown to i. Thus, the underlying
social network is a random graph according to the model of Erdős and Rényi [6].
Setting p = 1 resembles the model of [1,2].

Extending the result of [1,2], we show that if p is a constant, the probability that
a false informational cascade occurs during the decision process is constant, i.e.,
independent of the population size n. On the other hand, if p = p(n) is a function
that decays with n arbitrarily slowly, the probability of a false informational cas-
cade tends to 0 as n tends to infinity. Informally speaking, almost all members of
fairly large, moderately linked social networks make the correct choice with prob-
ability very close to 1, which is in accordance with our every day experience.

1.1 Model of Sequential Observational Learning in Networks

We consider the following framework of sequential learning in social networks
that naturally generalizes the setting in [1,2]. There are n individuals (or equiv-
alently, agents or decision-makers in the following), V = {v1, . . . , vn}, facing a
once-in-a-lifetime decision between two alternatives a and b. Decisions are made
sequentially in the order of the labeling of V . One of the two choices is objectively
superior, but which one that is remains unknown to all individuals throughout.
Let θ ∈ {a, b} denote that superior choice. The a-priori probabilities of being
the superior choice are

P [θ = a] = P [θ = b] =
1
2

.

Each agent vi ∈ V makes his choice ch(vi) ∈ {a, b} based on two sources of infor-
mation: a private signal s(vi) ∈ {a, b} and public information. The private signal
s(vi) is only observed by the individual vi. All private signals are
identically and independently distributed, satisfying P [s(vi) = θ] = α. That is, α
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is the probability that a private signal correctly recommends the superior choice.
The value of α remains unchanged throughout the entire process and is known to
all agents. We assume that 1/2 < α < 1, excluding the trivial case α = 1.

The actions {ch(vi) | 1 ≤ i ≤ n} are public information, but an individual vi

can only observe the actions of a subset Γi ⊆ Vi−1 = {v1, . . . , vi−1} of acquain-
tances. For all agents vi, 2 ≤ i ≤ n, each of the possible acquaintances vj ∈ Vi−1

is included with probability 0 ≤ p = p(n) ≤ 1 into Γi, independently of all other
elements in Vi−1. Equivalently, the underlying social network can be represented
as a labeled, undirected random graph G = Gn,p on the vertex set V , where
each possible edge is included with probability p, independently of all other
edges. Then the set of acquaintances Γi of agent vi is given by ΓG(vi) ∩ Vi−1,
where ΓG(vi) denotes the neighborhood of vi in G. It is easily seen that both
representations are equivalent [7,8] and yield a random graph in the classical
model of Erdős and Rényi [6]. We shall assume throughout this paper that the
social network is exogenously determined before all decisions take place and
represented in form of a random graph G = Gn,p.

Various models of social networks were proposed in the literature (see e.g. [9]).
The classical random graph model of Erdős and Rényi is analytically well under-
stood and, despite its idealistic assumptions, powerful enough to explain essential
features of sequential social learning well. Moreover, it naturally generalizes the
model proposed in [1,2], which is captured in the case p = 1.

1.2 Main Result

All agents employ the following deterministic rule for making decisions, which
is a slight variation of the decision rule in [1,2].

Definition 1 (Decision rule). Suppose individual vi has received the private
signal s(vi), and, among his acquaintances Γ (i), ma chose option a and mb

chose option b. Then we have

ch(vi) =

⎧
⎪⎨

⎪⎩

a if ma − mb ≥ 2 ,

b if mb − ma ≥ 2 ,

s(vi) otherwise .

One can show that on a complete graph this strategy is locally optimal for each
individual assuming that the actions of acquaintances are given in an aggregated
form, that is, agent vi merely observes how many times either of the options a
and b was chosen before.

For any two sequences an and bn, n ∈ N, we write an � bn if

lim
n→∞

an

bn
= 0 .

Then our result reads as follows.
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Theorem 1. Suppose a social network with n agents V = {v1, . . . , vn} is given
as a random graph G = Gn,p with vertex set V and edge probability p = p(n).
Assume that private signals are correct with probability 1/2 < α < 1 and each
agent applies the decision rule in Definition 1. Let cα,p(n) be a random variable
counting the number of agents that make the correct choice.

(i) If n−1 � p � 1, we have

lim
n→∞ P [cα,p(n) = (1 − o(1))n] = 1 . (1)

(ii) If 0 ≤ p ≤ 1 is a constant, then there exists a constant � = �(α, p) > 0
such that

lim
n→∞ P [cα,p(n) = o(n)] ≥ � . (2)

In moderately linked social networks as in (i), the entire society benefits from
learning. Note that if agents ignored the actions of others completely, typically
a (1 −α)-fraction of the population would make the false decision. On the other
hand, if each individual has very many acquaintances on average as in (ii),
incorrect informational cascades that lead almost the entire population into the
false decision are quite likely.

In very sparse random networks with p ≤ c/n for some constant c > 0, no
significant herding will arise since those networks typically contain γn isolated
vertices for some constant γ = γ(c) > 0 [7,8]. These agents make their decision
independently of all other agents and, hence, we expect that both groups of
agents, choosing a and b respectively, contain a linear fraction of the population.

The crucial difference between the model of [1,2], which assumes that the under-
lying graph of the social network is complete, and our model is that in the former
the probability of a false informational cascade primarily depends on the decision
of very few agents at the beginning of the process. For instance, with constant
probability the first three agents make the false decision, no matter which deci-
sion rule they apply. Since in a complete graph each subsequent agent observes
these actions, locally optimal imitation will trick the entire population into the
false decision. In contrast to that, information accumulates locally in the begin-
ning if the underlying network is sparse as in (i). During a relatively long phase
of the process, individuals make an independent decision because none of their
acquaintances has decided yet. Hence, after that phase typically a fraction very
close to α of these agents made the correct choice, creating a bias towards it. In
later phases of the process, agents observe this bias among their acquaintances
and, trusting the majority, make the correct decision, thereby increasing the bias
even more. In the end, almost all agents are on the correct side.

Before presenting the proof of Theorem 1, let us make these ideas more precise.
For any j, 1 ≤ j ≤ n, let Vj = {v1, . . . , vj} denote the set of the first j agents.
Recall that θ ∈ {a, b} denotes the objectively superior choice between a and b.
For any set of agents V ′ ⊆ V , let

C(V ′) = {v ∈ V ′ : ch(v) = θ}
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be the subset of agents in V ′ who made the correct decision. We denote the cardi-
nality of C(V ′) by c(V ′). Suppose that in the first group of j ≥ 1 agents approx-
imately an α-fraction made the correct decision. The first important observation
is that the subsequent agent vj+1 makes the correct choice with probability at
least α if vj+1 obeys the decision rule in Definition 1.

Lemma 1. Suppose the underlying social network is a random graph Gn,p with
edge probability 0 ≤ p ≤ 1. Let 1/2 < α < 1 be fixed. Then there exists ε > 0
such that setting ᾱ = (1 − ε)α, for all 1 ≤ j ≤ n − 1, we have

P
[
ch(vj+1) = θ

∣
∣ c(Vj) ≥ ᾱj

]
≥ α ,

provided agent vj+1 obeys the decision rule in Definition 1.

So basically, following the majority and using the private signal only to break
ties does not decrease the chances of any agent even if his acquaintances are
randomly selected, provided that there is a bias among all predecessors towards
the right direction. This enables us to show that, throughout the first stage,
a bias of ᾱ > 1/2 remains stable in the group of decided agents. Once this
group has reached a critical mass, new agents adopt the correct choice with very
high probability since the bias among their acquaintances is so evident. More
specifically, we can show the following “herding” lemma .

Lemma 2. Suppose the underlying social network is a random graph Gn,p with
edge probability 1 � p ≤ 1. Let 1/2 < ᾱ < 1 be fixed. Then there exists a
constant δ > 0 and j0 ≥ 1 satisfying j0 = O

(
p−1

)
such that for all j0 ≤ j ≤ n−1,

we have
P

[
ch(vj+1) = θ

∣
∣ c(Vj) ≥ ᾱj

]
≥ 1 − e−δpj ,

provided agent vj+1 obeys the decision rule in Definition 1.

Thus, most agents opt for θ with probability very close to 1 in the second stage.
What makes the crucial difference between parts (i) and (ii) of Theorem 1 is that
if p is a constant, the assumption c(Vj) ≥ ᾱj in Lemmas 1 and 2 is met in the
process only with probability bounded away from 1. Then it is quite likely that
agents experience a bias towards the false direction among their acquaintances,
and the same herding behavior as before evokes a false informational cascade.

1.3 Related Results

As already mentioned, Bikhchandani, Hirshleifer, and Welch [1,2] consider the
case when the social network is a complete graph. Here informational cascades
arise quickly, and it is quite likely that they are false. The authors of [1,2] consider
a decision rule that is slightly different from the one in Definition 1. Both rules
are locally optimal. However, one can show that false informational cascades are
more likely with the rule in [1,2] (proof omitted due to space restrictions).

Models of observational learning processes were investigated in several pa-
pers. Banerjee [3] analyzes a model of sequential decision making that pro-
vokes herding behavior; as before, each decision-maker can observe the actions



Observational Learning in Random Networks 579

taken by all of his predecessors. In the model of Çelen and Kariv [10], decision-
makers can only observe the action of their immediate predecessor. Banerjee and
Fudenberg [11] consider the model in which each agent can observe the actions of
a sample of his predecessors. This is comparable to our model with an underlying
random network Gn,p. However, their model of making decisions is different; at
each point in time, a proportion of the entire population leaves and is replaced by
newcomers, who simultaneously make their decision. Similarly to our result, the
authors of [11] show that, under certain assumptions, informational cascade are
correct in the long run. In the learning process studied by Gale and Kariv [12],
agents make decisions simultaneously rather than in a sequential order, but they
may repeatedly revise their choice. Watts [13] studies random social networks, in
which agents can either adopt or not. Starting with no adopters, in each round
all agents update their state according to some rule depending on the state of
their neighbors. In this model, the emergence of global informational cascades
also depends on the density of the underlying random network.

1.4 Organization of the Paper

The paper is organized as follows. In Sect. 2 we present the proof of Theorem 1(i).
An outline of this proof is contained in Sect. 2.1, where we also state a series of
technical lemmas, which are proved in Sect. 2.2. The proof of Theorem 1(ii) is
omitted due to space restrictions and will appear elsewhere. We conclude with
experimental results in Sect. 3.

2 Proof of Theorem 1(i)

Suppose n−1 � p � 1 is given as in the theorem, and consider a random
graph G = Gn,p on the vertex set V with edge set E. For any set V ′ ⊆ V ,
let E(V ′) denote the set of edges induced by V ′ in G. Recall that C(V ′) denotes
the subset of agents in V ′ who made the correct decision. Let C̄(V ′) = V ′\C(V ′)
be its complement and set c(V ′) = |C(V ′)| and c̄(V ′) = |C̄(V ′)|. The binomial
distribution with mean np is denoted by Bin(n, p).

2.1 Outline of the Proof

The proof of of Theorem 1(i) is based on a series of lemmas that we state here.
The proofs are deferred to Sect. 2.2. We will distinguish three phases as follows:

Phase I: Agents VI = {v1, . . . , vk0}.
Phase II: Agents VII = {vk0+1, . . . , vk1}.

Phase III: Agents VIII = {vk1+1, . . . , vn}.

We will specify 1 ≤ k0 < k1 ≤ n below as functions of n. In Phase I, the phase of
the early adopters, most decision-makers have no more than one neighbor who
already decided, and will follow their private signal according to the decision rule
in Definition 1. Therefore, almost all agents make their decisions based solely
on their private signal, which yields approximately an α-fraction of individuals
who opted for θ. More specifically, we can establish the following lemma.
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Lemma 3. Let ω = ω(n) be a sequence satisfying 1 � ω � n. Let 1/2 < α < 1,
0 < p ≤ 1/ω and k0 = p−1ω−1/2 be given. Then we have

P

[
c(Vk0) ≥

(
1 − k

−1/9
0

)
αk0

]
= 1 − o(1) .

Note that if 0 < p ≤ 1 is a constant independent of n, Phase I breaks down;
there is no k0 ≥ 1 such that the number of correctly decided agents in Vk0 is
roughly k0 with probability 1 − o(1). That is exactly what makes the situation
in part (ii) of Theorem 1 different.

In Phase II, more and more agents face decisions of their acquaintances. As
stated in Lemma 1, everybody makes a correct choice with probability at least α
assuming that roughly an α-fraction of the preceding agents took the right action.
The following lemma asserts that approximately this fraction of correct decisions
is maintained throughout the second phase.

Lemma 4. Let ω = ω(n) be a sequence satisfying 1 � ω � n. Let 1/2 < α < 1,
0 < p ≤ 1/ω and k0 = p−1ω−1/2 and k1 = p−1ω1/2 be given. Then we have

P

[
c(Vk1) ≥

(
1 − k

−1/18
0

)
αk1

∣
∣
∣ c(Vk0) ≥

(
1 − k

−1/9
0

)
αk0

]
= 1 − o(1) .

At the beginning of Phase III, every agent vi has E [|Γi|] ≥ pk1 � 1 decided
neighbors on average. With high probability vi disregards the private signal and
follows the majority vote among its acquaintances, thereby making the correct
choice.

Lemma 5. Let p > 0, ᾱ > 1/2 and k ≥ 1 be given. Then, for all i > k, we have

P

[

c(Γi ∩ Vk) − c̄(Γi ∩ Vk) ≥ 2ᾱ − 1
3

pk
∣
∣
∣ c(Vk) ≥ ᾱk

]

≥ 1 − 2 exp (−pkC) .

where C = (2ᾱ − 1)2/(18ᾱ). Furthermore, if p ≥ ω/n and k ≥ k1 = p−1ω1/2

hold for some sequence ω = ω(n) with 1 � ω � n, then for all i > k we have

P

[
c(Γi ∩ Vk) − c̄(Γi ∩ Vk) ≥ ω1/3

∣
∣
∣ c(Vk) ≥ ᾱk

]
≥ 1 − e−ω1/3

. (3)

Using this strong probability bound, we can prove that with high probability
actually almost all agents make the correct choice in Phase III.

Lemma 6. Let ω = ω(n) be a sequence satisfying 1 � ω � n. Let 1/2 < α < 1,
ω/n ≤ p ≤ 1/ω, k0 = p−1ω−1/2 and k1 = p−1ω1/2 be given. Then we have

P

[
c(Vn) ≥

(
1 − ω−1/20

)
n

∣
∣
∣ c(Vk1 ) ≥

(
1 − k

−1/18
0

)
αk1

]
= 1 − o(1) .

Combining Lemmas 3, 4 and 6, Theorem 1 follows immediately.

Proof (of Theorem 1 (i)). We consider the following three events

E1 : c(Vk0) ≥
(
1 − k

−1/9
0

)
αk0 ,

E2 : c(Vk1) ≥
(
1 − k

−1/18
0

)
αk1 ,

E3 : c(Vn) ≥
(
1 − ω−1/20

)
n .
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By Lemmas 3, 4 and 6, we have

P
[
E3

]
≤ P

[
E3

∣
∣ E2

]
+ P

[
E2

∣
∣ E1

]
+ P

[
E1

]
= o(1) . 	


2.2 Proofs of Auxiliary Lemmas

Here we present the proofs of Lemmas 3, 4, 5, and 6 that were stated in the
previous section. We will frequently make use of the following Chernoff tail
bounds. The reader is referred to standard textbooks, e.g. [7,8], for proofs.

Lemma 7. Let X1, . . . , Xn be independent Bernoulli trials with P [Xi = 1] = pi.
Let X =

∑n
i=1 Xi and μ = E [X ] =

∑n
i=1 pi. Then we have

(a) P [X ≥ (1 + δ)μ] ≤ e−μδ2/3 for all 0 < δ ≤ 1 ,
(b) P [X ≤ (1 − δ)μ] ≤ e−μδ2/2 for all 0 < δ ≤ 1 ,
(c) P [X ≥ t] ≤ e−t for all t ≥ 7μ and

(d) P [X ≥ μ + t] ≤ e−
t2

2(μ+t/3) for all t ≥ 0 .

We first give the proof of Lemma 3, which makes an assertion on the number of
correct decision-makers in Phase I.

Proof (of Lemma 3). For all 2 ≤ i < k0, we have

P [|Γi+1| ≥ 2] =
i∑

j=2

(
i

j

)

pj(1 − p)j ≤
i∑

j=2

(ip)j (4)

≤ k0p
2

∞∑

j=0

(k0p)j ≤ k2
0p

2

1 − k0p
.

Let A = {vi : |Γi| ≤ 1, 2 ≤ i ≤ k0}, and B = Vk0 \A its complement. Note that all
individuals in the setAmake their decision solely based on their private signals. For
individuals in B we don’t know whether they have observed an imbalance |Δ| ≥ 2
in the actions of their neighbors and chosen to follow the majority, disregarding
their private signals. But because of (4) and the definition of k0 we have

E [|B|] =
k0∑

i=1

P [|Γi+1| ≥ 2] ≤ k3
0p

2

1 − k0p
= k0

3p2 · (1 + o(1)) .

Let E denote the event that |B| < k0
3p2ω2/3 = k0ω

−1/3. As ω → ∞ we can
apply Lemma 7 (c) and deduce that

P
[

E
]

= P

[
|B| ≥ k0

3p2ω2/3
]

≤ e−k0
3p2ω2/3

= e−k0ω−1/3
= o(1) (5)

by definition of k0. Since by the decision rule in Definition 1 all individuals
vi ∈ Ak0 follow their private signals, we have E [c̄(A)] = (1 − α) |A|. Clearly, we
have |A| ≤ k0, and conditional on E , we have |A| ≥ k0

(
1 − ω−1/3

)
. Therefore,

(1 − α) k0

(
1 − ω−1/3

)
≤ E

[
c̄(A)

∣
∣
∣ E

]
≤ (1 − α) k0 .
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Using k0 ≥ ω1/2, Chernoff bounds imply

P

[
c(A) ≤

(
1 − k

−1/9
0

)
αk0

∣
∣
∣ E

]
= P

[
c̄(A) ≥ |A| −

(
1 − k

−1/9
0

)
αk0

∣
∣
∣ E

]

≤ P

[

c̄(A) ≥
(

1 +
α k

−1/9
0

1 − α

)

E [c̄(A)|E ]

∣
∣
∣
∣
∣
E
]

≤ e−
α2k

−2/9
0

3(1−α)2
E[c̄(A)|E] = e−Θ

(
k
7/9
0

)

= o(1) .

Thus, we have

P

[
c(Vk0) ≥

(
1 − k

−1/9
0

)
αk0

∣
∣
∣ E

]
≥ P

[
c(A) ≥

(
1 − k

−1/9
0

)
αk0

∣
∣
∣ E

]
= 1−o(1) .

Since

P

[
c(Vk0 ) ≥

(
1 − k

−1/9
0

)
αk0

]
≥ P

[
c(Vk0 ) ≥

(
1 − k

−1/9
0

)
αk0

∣
∣
∣ E

]
· P [E ] ,

we conclude with (5) P

[
c(Vk0 ) ≥

(
1 − k

−1/9
0

)
αk0

]
= 1 − o(1) . 	


Before we proceed with the proof of Lemma 4, we need to state and prove a
slightly stronger version of Lemma 1 in Sect. 1.2.

Lemma 8. For every 1/2 < α < 1 there exists an ε > 0 such that if we have
c(Vk) ≥ (1 − ε)αk for k ≥ 1, then for all i > k with Γi ⊆ Vk we have

P [ch(vi) = θ] ≥ α .

Proof (of Lemma 8). Let c(Vk) = ᾱk for some constant ᾱ > 0. Furthermore, let

Δ = c(Vk ∩ Γi) − c̄(Vk ∩ Γi)

be the difference in the number of neighbors of agent i in C(Vk) and in C(Vk),
and let pj = P [Δ = j] denote the probability that this difference is exactly j. Let
�1 = min{ᾱk, (1 − ᾱ)k + j} and �2 = (1 − ᾱ)k ≤ �1. Then for all j ≥ 2, we have

pj =
�1∑

s=j

(
ᾱk

s

)(
(1 − ᾱ)k

s − j

)

p2s−j(1 − p)k−(2s−j)

and

p−j =
�2∑

s=j

(
(1 − ᾱ)k

s

)(
ᾱk

s − j

)

p2s−j(1 − p)k−(2s−j) .

For r ≥ s ≥ 1, let rs = r (r − 1) . . . (r − s + 1) be the falling factorial. For all
j ≥ 1 and j ≤ s ≤ �2, we have

(
ᾱk

s

)(
(1 − ᾱ)k

s − j

)

=
(ᾱk)s((1 − ᾱ)k)s−j

s!(s − j)!

=
(ᾱk)s−j((1 − ᾱ)k)s

s!(s − j)!
·

j−1∏

t=0

ᾱk − s + j − t

(1 − ᾱ)k − s + j − t

≥
(

(1 − ᾱ)k
s

)(
ᾱk

s − j

)

·
(

ᾱ

1 − ᾱ

)j

.
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Therefore we have

pj ≥
(

ᾱ

1 − ᾱ

)2

p−j ∀ j ≥ 2 ,

and

P [Δ ≥ 2] ≥
(

ᾱ

1 − ᾱ

)2

P [Δ ≤ −2]

=
(

ᾱ

1 − ᾱ

)2 (
1 − P [−1 ≤ Δ ≤ 1] − P [Δ ≥ 2]

)
.

Thus, we have

P [Δ ≥ 2] ≥ 1

1 +
(

1−ᾱ
ᾱ

)2

(
1 − P [−1 ≤ Δ ≤ 1]

)
. (6)

Let ε < 2(α−1)+
√

α−1−1
2α−1 . A straightforward calculation shows that

1

1 +
(

1−ᾱ
ᾱ

)2 ≥ α ∀ ᾱ ≥ (1 − ε)α . (7)

Because of the decision rule given in Definition 1, using (6) and (7) we have

P [ch(vi) = θ] = αP [−1 ≤ Δ ≤ 1] + P [Δ ≥ 2] ≥ α

for all ᾱ ≥ (1 − ε)α. 	


Note that Lemma 1 follows immediately from Lemma 8. Using Lemma 8, we
now present the proof of Lemma 4, which asserts that roughly an α-fraction of
correct decision-makers is maintained throughout Phase II.

Proof (of Lemma 4). We consider groups Wi of m = p−1/3ω−1/4 ≥ ω1/12 in-
dividuals, resulting in � = (k1 − k0)/m ≤ k1/m ≤ k1p

1/3ω1/4 groups between
individuals k0 and k1. Let Ei be the event that there is at most one individual
in Wi that has a neighbor in Wi, i.e. |E(Wi)| ≤ 1. Let E = E1 ∧ · · · ∧ E�. Since
m2p = o(1), for n sufficiently large, we have

P
[

E i

]
≤

(m
2 )∑

j=2

((
m
2

)

j

)

pj ≤
(m

2 )∑

j=2

m2jpj ≤ m4p2
∞∑

j=0

m2jpj

≤ m4p2

1 − m2p
≤ 2m4p2 , (8)

and
P

[
E

]
≤ � · P

[
E i

]
≤ 2m4p2� ≤ 2 pk1ω

−3/4 = 2 ω−1/4 . (9)

We have

P

[
c(Vk1) <

(
1 − k

−1/18
0

)
αk1

]
≤ P

[
c(Vk1 ) <

(
1 − k

−1/18
0

)
αk1

∣
∣
∣ E

]
+ P

[
E

]
,
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and defining Ai as the event that c(Wi) ≥ α
(
1 − k

−1/18
0

)
m,

P

[
c(Vk1) <

(
1 − k

−1/18
0

)
αk1

∣
∣
∣ E

]
≤

P

[
c(Vk1 ) <

(
1 − k

−1/18
0

)
αk1

∣
∣
∣ E ∧ A1 ∧ · · · ∧ A�

]
+

�−1∑

j=0

P
[
Aj | E ∧ A1 ∧ · · · ∧ Aj

]
.

Since E ∧ A1 ∧ · · · ∧ A� implies c(Vk1) ≥
(
1 − k

−1/18
0

)
αk1, we conclude

P

[
c(Vk1 ) <

(
1 − k

−1/18
0

)
αk1

]
≤

�−1∑

j=0

P
[

Aj | E ∧ A1 ∧ · · · ∧ Aj

]
+P

[
E

]
. (10)

Let ᾱ =
(
1 − k

−1/18
0

)
α. The event E ∧ A1 ∧ · · · ∧ Aj−1 means that before the

individuals in group Wj have to make a decision, we have

c(Vk0+(j−1)m) ≥ ᾱ(k0 + (j − 1)m) ,

and there is at most one individual wj ∈ Wj with a neighbor in Wj that made
his decision before wj . Let Ŵj = Wj \ wj and m̂ = m − 1. Lemma 8 asserts,
that there is an ε > 0 and k̄ ≥ 1 (which both depend only on α), such that for
all k ≥ k̄ we have P [ch(v) = θ] ≥ α for all v ∈ Ŵj , if 1 − k

−1/18
0 < ε. But since

k0 ≥ ω, for n sufficiently large we certainly have k0 ≥ k̄ and ᾱ ≥ (1−ε)α. Hence,
we have E

[
c(Ŵj)

]
≥ α m̂. Chernoff bounds imply

P

[
c(Ŵj) ≤

(
1 − 2 k

−1/18
0

)
αm̂

]
≤ e−2 αm̂k

−1/9
0 ≤ e−αmk

−1/9
0 .

Since for n sufficiently large we have

P
[
Aj | E ∧ A1 ∧ · · · ∧ Aj−1

]
= P

[
c(Wj) ≤

(
1 − k

−1/18
0

)
αm

]

≤ P

[
c(Ŵj) ≤

(
1 − 2 k

−1/18
0

)
αm̂

]
,

we also have

P
[
Aj | E ∧ A1 ∧ · · · ∧ Aj−1

]
≤ e−αmk

−1/9
0 = e−αp−2/9ω−7/36

.

Furthermore, since � ≤ p−2/3ω3/4, we have

�∑

j=1

P
[
Aj | G ∧ A1 ∧ · · · ∧ Aj−1

]
≤ � e−αp− 2

9 ω− 7
36 = o(1) . (11)

Thus, because of (9), (10) and (11) we can conclude

P

[
c(Vk1 ) ≥

(
1 − k

− 1
18

0

)
αk1

]
= 1−o(1) . 	
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We continue with the proof of Lemma 5, which is a slightly stronger version than
Lemma 2 in Sect. 1.2.

Proof (of Lemma 5). Let Ng = C(Γi ∩Vk) and Nb = C(Γi ∩Vk) be the neighbors
of i in Vk who made the correct (respectively false) decision, and ng = |Ng|. Let
nb = |Nb|. We have ng ∼ Bin(c(Vk), p) and nb ∼ Bin(k−c(Vk), p). Let μg = p ᾱ k
and μb = p (1 − ᾱ) k. Then we have E [ng] ≥ μg and E [nb] ≤ μb. Define

δ =
1
3

− μb

3μg
=

2 ᾱ − 1
3 ᾱ

. (12)

We have

P [ng − nb < δμg] = P [ng − (1 − δ)μg < nb − (1 − 2δ)μg]

≤ P

[
ng − (1 − δ)μg < nb − (1 − 2δ)μg

∣
∣
∣ ng ≥ (1 − δ)μg

]
+

P

[
ng < (1 − δ)μg

]
,

and thus

P [ng − nb < δμg] ≤ P [nb > (1 − 2δ)μg] + P [ng < (1 − δ)μg] . (13)

The Chernoff bound in Lemma 7 (b) implies that

P [ng < (1 − δ)μg] ≤ P [ng < (1 − δ)E [ng]] ≤ e−E[ng]δ2/2 ≤ e−μgδ2/2 , (14)

and since 1 − 2δ − μb/μg = δ by (12), we have

P [nb > (1 − 2δ)μg] = P [nb > E [nb] + (1 − 2δ − E [nb]/μg)μg]
≤ P [nb > E [nb] + (1 − 2δ − μb/μg)μg]
= P [nb > E [nb] + δμg] .

Thus, using the Chernoff bound in Lemma 7 (d), we obtain

P [nb > (1 − 2δ)μg] ≤ exp

(

−
δ2μ2

g

2(E [nb] + δμg/3)

)

≤ exp

(

−
δ2μ2

g

2(μb + δμg/3)

)

.

Because of (12) we have μb + δμg/3 ≤ μg, and thus

P [nb > (1 − 2δ)μg] ≤ e−μgδ2/2 . (15)

Because of (13) - (15) and δμg = (2ᾱ − 1)pk/3, we conclude

P

[

|C(Γi ∩ Vk)| − |C(Γi ∩ Vk)| <
2ᾱ − 1

3
pk

]

≤ 2 exp
(

−pk
(2ᾱ − 1)2

18ᾱ

)

,

and since pk ≥ ω1/2, for n sufficiently large we have

P

[
|C(Γi ∩ Vk)| − |C(Γi ∩ Vk)| ≥ ω1/3

]
≥ 1−e−ω1/3

. 	
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Note that Lemma 2 is a straightforward corollary of Lemma 5; we omit the
proof due to space restrictions. It remains to prove Lemma 6, which relies on
the following lemma.

Lemma 9. Let ω = ω(n) be a sequence satisfying 1 � ω � n. Let 1
2 < ᾱ < 1,

ω/n ≤ p ≤ 1/ω and k ≥ k1 = p−1ω1/2. Suppose we have

c(Vk) ≥ ᾱk . (16)

Then we have

P

[
c(V2k \ Vk) =

(
1 − ω−1/19

)
k
]

≥ 1 − e−kp .

The proof of Lemma 9 is omitted due to space restrictions and will appear
elsewhere. Now we are ready to prove Lemma 6.

Proof (of Lemma 6). We consider subphases of increasing length. More precisely,
the first subphase lasts to individual 2k1. The second subphase then lasts until
individual 4k1. Thus, in general subphase j lasts from individual k1 2j−1 until
k1 2j . We will have at most log(n − k1) ≤ log n such subphases.

Inductively, for n sufficiently large we can employ Lemma 9 for each subphase,
as assumption (16) iteratively holds. We obtain

P

[
c(Vn \ Vk1)

n − k1
< 1 − ω−1/19

]

≤
log n∑

j=0

e−pk12
j

= e−pk1

log n∑

j=0

e−pk1(2j−1)

≤ e−pk1

∞∑

j=0

e−pk1j =
e−pk1

1 − e−pk1
= o(1) .

Since k1 ≤ nω−1/2, note that c(Vn \ Vk1) ≥ (n − k1)
(
1 − ω−1/19

)
implies

c(Vn) ≥
(
1 − k1/n

)(
1 − ω−1/19

)
n ≥

(
1 − ω−1/20

)
n

for n sufficiently large. Thus, we conclude

P

[
c(Vn) ≥

(
1 − ω−1/20

)
n
]

= 1−o(1) . 	


3 Numerical Experiments

The statements in Theorem 1 are asymptotic, asserting the emergence of in-
formational cascades in the limit. As our numerical experiments show, these
phenomena can be observed even with moderately small populations.

We conducted experiments with varying population size n and edge probabil-
ity p = p(n). For each value of n and p, we sampled N = 2000 instances of random
graphs G = Gn,p and of private signals s(vi), vi ∈ V (G). The sequential decision
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Fig. 1. Simulation results for α = 0.75. The plot shows the relative frequencies of
correct cascades for different values of the edge probability p as a function of n: p = 0.5
(solid line), p = 1/ log n (dashed line), and p = n−1/2 (dash-dotted line). The dotted
line represents the relative frequency of incorrect cascades for p = 0.5.

process was evaluated on each of those instances following the decision rule in
Definition 1. We identified an informational cascade in such an experiment if at
least 95% of all agents opted for the same choice. We computed the relative fre-
quency of informational cascades among the N samples for each value of n and p.

We ran the simulation for α = 0.75, n ∈ {100 · i : 1 ≤ i ≤ 20}, and three
distinct sequences p. The results are plotted in Fig. 1. The solid and the dotted
line represent the relative frequencies of correct and false cascades, respectively,
for constant p = 0.5. In accordance with Theorem 1(ii), both events occur with
constant frequency independent of the population size. The dashed and the dash-
dotted line represent the relative frequencies of correct cascades for p = 1/ logn
and p = n−1/2, respectively. Confirming Theorem 1(i) those plots approach 1
as n grows.
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Abstract. A key issue in statistics and machine learning is to automati-
cally select the “right” model complexity, e.g. the number of neighbors to
be averaged over in k nearest neighbor (kNN) regression or the polyno-
mial degree in regression with polynomials. We suggest a novel principle
(LoRP) for model selection in regression and classification. It is based
on the loss rank, which counts how many other (fictitious) data would
be fitted better. LoRP selects the model that has minimal loss rank.
Unlike most penalized maximum likelihood variants (AIC,BIC,MDL),
LoRP only depends on the regression functions and the loss function. It
works without a stochastic noise model, and is directly applicable to any
non-parametric regressor, like kNN.

1 Introduction

Regression. Consider a regression or classification problem in which we
want to determine the functional relationship yi ≈ ftrue(xi) from data D =
{(x1,y1),...,(xn,yn)} ∈ D, i.e. we seek a function fD such that fD(x) is close to
the unknown ftrue(x) for all x. One may define regressor fD directly, e.g. ‘average
the y values of the k nearest neighbors (kNN) of x in D’, or select the f from a
class of functions F that has smallest (training) error on D. If the class F is not
too large, e.g. the polynomials of fixed reasonable degree d, this often works well.

Model selection. What remains is to select the right model complexity c, like
k or d. This selection cannot be based on the training error, since the more
complex the model (large d, small k) the better the fit on D (perfect for d=n
and k = 1). This problem is called overfitting, for which various remedies have
been suggested:

We will not discuss empirical test set methods like cross-validation, but only
training set based methods. See e.g. [Mac92] for a comparison of cross-validation
with Bayesian model selection. Training set based model selection methods allow
using all data D for regression. The most popular ones can be regarded as penal-
ized versions of Maximum Likelihood (ML). In addition to the function class F ,
one has to specify a sampling model P(D|f), e.g. that the yi have independent
Gaussian distribution with mean f(xi). ML chooses f̂ c

D = argmaxf∈FcP(D|f),
Penalized ML (PML) then chooses ĉ = argminc{−logP(D|f̂ c

D)+Penalty(c)},
where the penalty depends on the used approach (MDL [Ris78], BIC [Sch78],

N. Bshouty and C. Gentile (Eds.): COLT 2007, LNAI 4539, pp. 589–603, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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AIC [Aka73]). In particular, modern MDL [Grü04] has sound exact foundations
and works very well in practice. All PML variants rely on a proper sampling
model (which may be difficult to establish), ignore (or at least do not tell how
to incorporate) a potentially given loss function, and are typically limited to
(semi)parametric models.

Main idea. The main goal of the paper is to establish a criterion for selecting
the “best” model complexity c based on regressors f̂ c

D given as a black box
without insight into the origin or inner structure of f̂ c

D, that does not depend on
things often not given (like a stochastic noise model), and that exploits what is
given (like the loss function). The key observation we exploit is that large classes
Fc or more flexible regressors f̂ c

D can fit more data D′∈D well than more rigid
ones, e.g. many D′ can be fit well with high order polynomials. We define the
loss rank of f̂ c

D as the number of other (fictitious) data D′ ∈ D that are fitted
better by f c

D′ than D is fitted by f̂ c
D, as measured by some loss function. The

loss rank is large for regressors fitting D not well and for too flexible regressors
(in both cases the regressor fits many other D′ better). The loss rank has a
minimum for not too flexible regressors which fit D not too bad. We claim that
minimizing the loss rank is a suitable model selection criterion, since it trades
off the quality of fit with the flexibility of the model. Unlike PML, our new Loss
Rank Principle (LoRP) works without a noise (stochastic sampling) model, and
is directly applicable to any non-parametric regressor, like kNN.

Contents. In Section 2, after giving a brief introduction to regression, we for-
mally state LoRP for model selection. To make it applicable to real problems,
we have to generalize it to continuous spaces and regularize infinite loss ranks.
In Section 3 we derive explicit expressions for the loss rank for the important
class of linear regressors, which includes kNN, polynomial, linear basis func-
tion (LBFR), Kernel, and projective regression. In Section 4 we compare linear
LoRP to Bayesian model selection for linear regression with Gaussian noise and
prior, and in Section 5 to PML, in particular MDL, BIC, AIC, and MacKay’s
[Mac92] and Hastie’s et al. [HTF01] trace formulas for the effective dimension.
In this paper we just scratch at the surface of LoRP. Section 6 contains further
considerations, to be elaborated on in the future.

2 The Loss Rank Principle (LoRP)

After giving a brief introduction to regression, classification, model selection,
overfitting, and some reoccurring examples (polynomial regression Example 1
and kNN Example 2), we state our novel Loss Rank Principle for model selection.
We first state it for classification (Principle 3 for discrete values), and then
generalize it for regression (Principle 5 for continuous values), and exemplify it
on two (over-simplistic) artificial Examples 4 and 6. Thereafter we show how to
regularize LoRP for realistic regression problems.

Setup. We assume data D=(x,y):={(x1,y1),...,(xn,yn)}∈(X×Y)n=:D has been
observed. We think of the y as having an approximate functional dependence on
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x, i.e. yi≈ftrue(xi), where ≈ means that the yi are distorted by noise or otherwise
from the unknown “true” values ftrue(xi).
Regression and classification. In regression problems Y is typically (a subset
of) the real numbers IR or some more general measurable space like IRm. In
classification, Y is a finite set or at least discrete. We impose no restrictions on
X . Indeed, x will essentially be fixed and plays only a spectator role, so we will
often notationally suppress dependencies on x. The goal of regression is to find
a function fD ∈F ⊂ X →Y “close” to ftrue based on the past observations D.
Or phrased in another way: we are interested in a regression function r :D→F
such that ŷ :=r(x|D)≡r(D)(x)≡fD (x)≈ftrue(x) for all x∈X .

Notation. We will write (x,y) or (x0,y0) for generic data points, use vector no-
tation x=(x1,...,xn)� and y=(y1,...,yn)�, and D′=(x′,y′) for generic (fictitious)
data of size n.

Example 1 (polynomial regression). For X =Y=IR, consider the set Fd :=
{fw(x) = wdx

d−1+...w2x+w1 : w ∈ IRd} of polynomials of degree d−1. Fitting
the polynomial to data D, e.g. by least squares regression, we estimate w with
ŵD. The regression function ŷ=rd(x|D)=fŵD

(x) can be written down in closed
form (see Example 9). ♦
Example 2 (k nearest neighbors, kNN). Let Y be some vector space like
IR and X be a metric space like IRm with some (e.g. Euclidian) metric d(·,·). kNN
estimates ftrue(x) by averaging the y values of the k nearest neighbors Nk(x) of
x in D, i.e. rk(x|D)= 1

k

∑
i∈Nk(x)yi with |Nk(x)|=k such that d(x,xi)≤d(x,xj)

for all i∈Nk(x) and j 	∈Nk(x). ♦
Parametric versus non-parametric regression. Polynomial regression is an
example of parametric regression in the sense that rd(D) is the optimal function
from a family of functions Fd indexed by d<∞ real parameters (w). In contrast,
the kNN regressor rk is directly given and is not based on a finite-dimensional
family of functions. In general, r may be given either directly or be the result of
an optimization process.

Loss function. The quality of fit to the data is usually measured by a loss
function Loss(y,ŷ), where ŷi = f̂D(xi) is an estimate of yi. Often the loss is
additive: Loss(y,ŷ)=

∑n
i=1Loss(yi,ŷi). If the class F is not too large, good re-

gressors r can be found by minimizing the loss w.r.t. all f ∈ F . For instance,
rd(D)=argminf∈Fd

∑n
i=1(yi−f(xi))2 and ŷ=rd(x|D) in Example 1.

Regression class and loss. In the following we assume a (typically countable)
class of regressors R (whatever their origin), e.g. the kNN regressors {rk :k∈IN}
or the least squares polynomial regressors {rd :d∈IN0}. Note that unlike f ∈F ,
regressors r∈R are not functions of x alone but depend on all observations D,
in particular on y. Like for functions f , we can compute the empirical loss of
each regressor r∈R:

Lossr(D) ≡ Lossr(y|x) := Loss(y, ŷ) =
n∑

i=1

Loss(yi, r(xi|x, y))
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where ŷi =r(xi|D) in the third expression, and the last expression holds in case
of additive loss.

Overfitting. Unfortunately, minimizing Lossr w.r.t. r will typically not select
the “best” overall regressor. This is the well-known overfitting problem. In case
of polynomials, the classes Fd ⊂ Fd+1 are nested, hence Lossrd

is monotone
decreasing in d with Lossrn ≡0 perfectly fitting the data. In case of kNN, Lossrk

is more or less an increasing function in k with perfect regression on D for k=1,
since no averaging takes place. In general, R is often indexed by a “flexibility”
or smoothness or complexity parameter, which has to be properly determined.
More flexible r can closer fit the data and hence have smaller empirical loss, but
are not necessarily better, since they have higher variance. Clearly, too inflexible
r also lead to a bad fit (“high bias”).

Main goal. The main goal of the paper is to establish a selection criterion for
the “best” regressor r∈R

– based on r given as a black box that does not require insight into the origin
or inner structure of r,

– that does not depend on things often not given (like a stochastic noise
model),

– that exploits what is given (like the loss function).

While for parametric (e.g. polynomial) regression, MDL and Bayesian methods
work well (effectively the number of parameters serve as complexity penalty), their
use is seriously limited for non-parametric black box r like kNN or if a stochas-
tic/coding model is hard to establish (see Section 4 for a detailed comparison).

Main idea: loss rank. The key observation we exploit is that a more flexible
r can fit more data D′ ∈ D well than a more rigid one. For instance, rd can
perfectly fit all D′ for d = n, all D′ that lie on a parabola for d = 3, but only
linear D′ for d=2. We consider discrete Y i.e. classification first, and fix x. y is
the observed data and y′ are fictitious others.

Instead of minimizing the unsuitable Lossr(y|x) w.r.t. r, we could ask how
many y′∈Yn lead to smaller Lossr than y. Many y′ have small loss for flexible
r, and so smallness of Lossr is less significant than if y is among very few other
y′ with small Lossr. We claim that the loss rank of y among all y′ ∈ Yn is a
suitable measure of fit. We define the rank of y under r as the number of y′∈Yn

with smaller or equal empirical loss than y:

Rankr(y|x)≡Rankr(L):=#{y′∈Yn:Lossr(y′|x)≤L} with L := Lossr(y|x) (1)

For this to make sense, we have to assume (and will later assure) that Rankr(L)<
∞, i.e. there are only finitely many y′ ∈ Yn having loss smaller than L. In a
sense, ρ=Rankr(y|x) measures how compatible y is with r; y is the ρth most
compatible with r.

Since the logarithm is a strictly monotone increasing function, we can also
consider the logarithmic rank LRr(y|x) := logRankr(y|x), which will be more
convenient.
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Principle 3 (loss rank principle (LoRP) for classification). For discrete
Y, the best classifier/regressor r :D×X →Y in some class R for data D=(x,y)
is the one of smallest loss rank:

rbest = argmin
r∈R

LRr(y|x) ≡ arg min
r∈R

Rankr(y|x) (2)

where Rankr is defined in (1).

We give a simple example for which we can compute all ranks by hand to help
better grasping how the principle works, but the example is too simplistic to
allow any conclusion on whether the principle is appropriate.
Example 4 (simple discrete). Consider X = {1,2}, Y = {0,1,2}, and two
points D = {(1,1),(2,2)} lying on the diagonal x = y, with polynomial (zero,
constant, linear) least squares regression R={r0,r1,r2} (see Ex.1). r0 is simply 0,
r1 the y-average, and r2 the line through points (1,y1) and (2,y2). This, together
with the quadratic Loss for generic y′ and observed y=(1,2) (and fixed x=(1,2)),
is summarized in the following table

d rd(x|x, y′) Lossd(y′|x) Lossd(D)
0 0 y′

1
2 + y′

2
2 5

1 1
2 (y′

1 + y′
2)

1
2 (y′

2 − y′
1)

2 1
2

2 (y′
2 − y′

1)(x − 1) + y′
1 0 0

From the Loss we can easily compute the Rank for all nine y′∈{0,1,2}2. Equal
rank due to equal loss is indicated by a = in the table below. Whole equality
groups are actually assigned the rank of their right-most member, e.g. for d=1
the ranks of (y′

1,y
′
2)=(0,1),(1,0),(2,1),(1,2) are all 7 (and not 4,5,6,7).

Rankrd
(y′

1y
′
2|12)

d 1 2 3 4 5 6 7 8 9 Rankrd
(D)

0 y′
1y

′
2 = 00 < 01 = 10 < 11 < 02 = 20 < 21 = 12 < 22 8

1 y′
1y

′
2 = 00 = 11 = 22 < 01 = 10 = 21 = 12 < 02 = 20 7

2 y′
1y

′
2 = 00 = 01 = 02 = 10 = 11 = 20 = 21 = 22 = 12 9

So LoRP selects r1 as best regressor, since it has minimal rank on D. r0 fits D
too badly and r2 is too flexible (perfectly fits all D′). ♦

LoRP for continuous Y. We now consider the case of continuous or mea-
surable spaces Y, i.e. normal regression problems. We assume Y = IR in the
following exposition, but the idea and resulting principle hold for more general
measurable spaces like IRm. We simply reduce the model selection problem to
the discrete case by considering the discretized space Yε=εZZ for small ε>0 and
discretize y � yε ∈ εZZn. Then Rankε

r(L) := #{y′
ε ∈ Yn

ε : Lossr(y′
ε|x) ≤ L} with

L=Lossr(yε|x) counts the number of ε-grid points in the set

Vr(L) := {y′ ∈ Yn : Lossr(y′|x) ≤ L} (3)

which we assume (and later assure) to be finite, analogous to the discrete case.
Hence Rankε

r(L)·εn is an approximation of the loss volume |Vr(L)| of set Vr(L),
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and typically Rankε
r(L)·εn = |Vr(L)|·(1+O(ε)) → |Vr(L)| for ε→ 0. Taking the

logarithm we get LRε
r(y|x)=logRankε

r(L)=log|Vr(L)|−nlogε+O(ε). Since nlogε
is independent of r, we can drop it in comparisons like (2). So for ε→0 we can
define the log-loss “rank” simply as the log-volume

LRr(y|x) := log |Vr(L)|, where L := Lossr(y|x) (4)

Principle 5 (loss rank principle for regression). For measurable Y, the
best regressor r : D×X → Y in some class R for data D = (x,y) is the one of
smallest loss volume:

rbest = arg min
r∈R

LRr(y|x) ≡ arg min
r∈R

|Vr(L)|

where LR, Vr, and L are defined in (3) and (4), and |Vr(L)| is the volume of
Vr(L)⊆Yn.

For discrete Y with counting measure we recover the discrete Loss Rank
Principle 3.

Example 6 (simple continuous). Consider Example 4 but with interval Y=
[0,2]. The first table remains unchanged, while the second table becomes

d Vd(L) = {y′ ∈ [0, 2]2 : ...} |Vd(L)| |Vd(Lossd(D))|
0 y′

1
2 + y′

2
2 ≤ L

2
√

max{L−4,0}+

L( π
4 −cos−1(min{ 2√

L
,1})) ≈ 3.6

1 1
2 (y′

2 − y′
1)

2 ≤ L 4
√

2L − 2L 3
2 0 ≤ L 4 4

So LoRP again selects r1 as best regressor, since it has smallest loss volume
on D. ♦
Infinite rank or volume. Often the loss rank/volume will be infinite, e.g. if
we had chosen Y =ZZ in Ex.4 or Y =IR in Ex.6. We will encounter such infinities
in Section 3. There are various potential remedies. We could modify (a) the
regressor r or (b) the Loss to make LRr finite, (c) the Loss Rank Principle itself,
or (d) find problem-specific solutions. Regressors r with infinite rank might be
rejected for philosophical or pragmatic reasons. We will briefly consider (a) for
linear regression later, but to fiddle around with r in a generic (blackbox way)
seems difficult. We have no good idea how to tinker with LoRP (c), and also a
patched LoRP may be less attractive. For kNN on a grid we later use remedy (d).
While in (decision) theory, the application’s goal determines the loss, in practice
the loss is often more determined by convenience or rules of thumb. So the Loss
(b) seems the most inviting place to tinker with. A very simple modification is
to add a small penalty term to the loss.

Lossr(y|x) � Lossα
r (y|x) := Lossr(y|x) + α||y||2, α > 0 “small” (5)

The Euclidian norm ||y||2 :=
∑n

i=1y
2
i is default, but other (non)norm regularizes

are possible. The regularized LRα
r (y|x) based on Lossα

r is always finite, since
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{y : ||y||2 ≤L} has finite volume. An alternative penalty αŷ�ŷ, quadratic in the
regression estimates ŷi =r(xi|x,y) is possible if r is unbounded in every y→∞
direction.

A scheme trying to determine a single (flexibility) parameter (like d and k in
the above examples) would be of no use if it depended on one (or more) other
unknown parameters (α), since varying through the unknown parameter leads
to any (non)desired result. Since LoRP seeks the r of smallest rank, it is natural
to also determine α by minimizing LRα

r w.r.t. α. The good news is that this
leads to meaningful results.

3 LoRP for Linear Models

In this section we consider the important class of linear regressors with quadratic
loss function. Since linearity is only assumed in y and the dependence on x can
be arbitrary, this class is richer than it may appear. It includes kNN (Example
7), kernel (Example 8), and many other regressors. For linear regression and
Y = IR, the loss rank is the volume of an n-dimensional ellipsoid, which can
efficiently be computed in time O(n3) (Theorem 10). For the special case of
projective regression, e.g. linear basis function regression (Example 9), we can
even determine the regularization parameter α analytically (Theorem 11).

Linear regression. We assume Y =IR in this section; generalization to IRm is
straightforward. A linear regressor r can be written in the form

ŷ = r(x|x,y) =
∑n

j=1 mj(x,x)yj ∀x ∈ X and some mj : X ×X n → IR (6)

Particularly interesting is r for x=x1,...,xn.

ŷi = r(xi|x, y) =
∑

j Mij(x)yj with M : X n → IRn×n (7)

where matrix Mij(x)=mj(xi,x). Since LoRP needs r only on the training data
x, we only need M .

Example 7 (kNN ctd.). For kNN of Ex.2 we have mj(x,x)= 1
k if j ∈Nk(x)

and 0 else, and Mij(x)= 1
k if j∈Nk(xi) and 0 else. ♦

Example 8 (kernel regression). Kernel regression takes a weighted average
over y, where the weight of yj to y is proportional to the similarity of xj to
x, measured by a kernel K(x,xj), i.e. mj(x,x) = K(x,xj)/

∑n
j=1K(x,xj). For

example the Gaussian kernel for X =IRm is K(x,xj)=e−||x−xj||22/2σ2
. The width

σ controls the smoothness of the kernel regressor, and LoRP selects the real-
valued “complexity” parameter σ. ♦
Example 9 (linear basis function regression, LBFR). Let φ1(x),...,φd(x)
be a set or vector of “basis” functions often called “features”. We place no
restrictions on X or φ :X →IRd. Consider the class of functions linear in φ:

Fd = {fw(x) =
∑d

a=1waφa(x) = w�φ(x) : w ∈ IRd}
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For instance, for X = IR and φa(x) = xa−1 we would recover the polynomial
regression Example 1. For quadratic loss function Loss(yi,ŷi)=(yi−ŷi)2 we have

Lossw(y|φ) :=
∑n

i=1(yi − fw(xi))2 = y�y − 2y�Φw + w�Bw

where matrix Φ is defined by Φia = φa(xi) and B is a symmetric matrix with
Bab =

∑n
i=1φa(xi)φb(xi)=[Φ�Φ]ab. The loss is quadratic in w with minimum at

w=B−1Φ�y. So the least squares regressor is ŷ=y�ΦB−1φ(x), hence mj(x,x)=
(ΦB−1φ(x))j and M(x)=ΦB−1Φ�. ♦

Consider now a general linear regressor M with quadratic loss and quadratic
penalty

Lossα
M (y|x) =

∑n
i=1

(
yi −

∑n
j=1Mijyj

)2 + α||y||2 = y�Sαy,

where1 Sα = (11 − M)�(11 − M) + α11 (8)

(11 is the identity matrix). Sα is a symmetric matrix. For α > 0 it is positive
definite and for α=0 positive semidefinite. If λ1,...λn ≥0 are the eigenvalues of
S0, then λi+α are the eigenvalues of Sα. V (L)= {y′ ∈ IRn :y′�Sαy′ ≤L} is an
ellipsoid with the eigenvectors of Sα being the main axes and

√
L/(λi+α) being

their length. Hence the volume is

|V (L)| = vn

n∏

i=1

√
L

λi + α
=

vnLn/2

√
detSα

where vn=πn/2/n
2 ! is the volume of the n-dimensional unit sphere, z! :=Γ (z+1),

and det is the determinant. Taking the logarithm we get

LRα
M (y|x) = log |V (Lossα

M (y|x))| = n
2 log(y�Sαy) − 1

2 log detSα + log vn (9)

Consider now a class of linear regressors M = {M}, e.g. the kNN regressors
{Mk :k∈IN} or the d-dimensional linear basis function regressors {Md :d∈IN0}.

Theorem 10 (LoRP for linear regression). For Y = IR, the best linear re-
gressor M :X n →IRn×n in some class M for data D=(x,y) is

M best = argmin
M∈M,α≥0

{n
2 log(y�Sαy) − 1

2 log det Sα} = arg min
M∈M α≥0

{ y�Sαy

(detSα)1/n

}

(10)
where Sα is defined in (8).

Since vn is independent of α and M it was possible to drop vn. The last expression
shows that linear LoRP minimizes the Loss times the geometric average of the
squared axes lengths of ellipsoid V (1). Note that M best depends on y unlike the
M ∈M.

Nullspace of S0. If M has an eigenvalue 1, then S0 =(11−M)�(11−M) has a
zero eigenvalue and α>0 is necessary, since detS0 =0. Actually this is true for
1 The mentioned alternative penalty α||ŷ||2 would lead to Sα = (11−M)�(11−M)+

αM�M . For LBFR, penalty α||ŵ||2 is popular (ridge regression). Apart from being
limited to parametric regression, it has the disadvantage of not being reparametriza-
tion invariant. For instance, scaling φa(x) � γaφa(x) doesn’t change the class Fd,
but changes the ridge regressor.
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most practical M . Nearly all linear regressors are invariant under a constant shift
of y, i.e. r(yi+c|D)=r(yi|D)+c, which implies that M has eigenvector (1,...,1)�

with eigenvalue 1. This can easily be checked for kNN (Ex.2), Kernel (Ex.8),
and LBFR (Ex.9). Such a generic 1-eigenvector effecting all M ∈M could easily
and maybe should be filtered out by considering only the orthogonal space or
dropping these λi = 0 when computing detS0. The 1-eigenvectors that depend
on M are the ones where we really need a regularizer α>0 for. For instance, Md

in LBFR has d eigenvalues 1, and MkNN has as many eigenvalues 1 as there are
disjoint components in the graph determined by the edges Mij > 0. In general
we need to find the optimal α numerically. If M is a projection we can find αmin

analytically.

Projective regression. Consider a projection matrix M =P =P 2 with d=trP
eigenvalues 1, and n−d zero eigenvalues. For instance, M =ΦB−1Φ� of LBFR
Ex.9 is such a matrix, since MΦ=Φ and MΨ =0 for Ψ such that Φ�Ψ =0. This
implies that Sα has d eigenvalues α and n−d eigenvalues 1+α. Hence

detSα = αd(1 + α)n−d, where Sα = S0 + α11 = 11 − P + α11

y�Sαy = (ρ + α)y�y, where ρ := y�S0y
y�y

= 1 − y�Py
y�y

⇒ LRα
P = n

2 log y�y + n
2 log(ρ + α) − d

2 log α − n−d
2 log(1 + α) (11)

The first term is independent of α. Consider 1−ρ > d
n , the reasonable region

in practice. Solving ∂LRα
P /∂α = 0 w.r.t. α we get a minimum at α = αmin :=

ρd
(1−ρ)n−d . After some algebra we get

LRαmin

P = n
2 logy�y− n

2 KL( d
n ||1−ρ), where KL(p||q) = plog p

q +(1−p)log 1−p
1−q

(12)
is the relative entropy or Kullback-Leibler divergence. Minimizing LRαmin

P w.r.t.
M is equivalent to maximizing KL( d

n ||1−ρ). This is an unusual task, since one
mostly encounters KL minimizations. For fixed d, LRαmin

P is monotone increas-
ing in ρ. Since Lossα

P ∝ ρ+α, LoRP suggests to minimize Loss for fixed model
dimension d. For fixed ρ, LRαmin

P is monotone increasing in d, i.e. LoRP sug-
gests to minimize model dimension d for fixed Loss. Normally there is a tradeoff
between minimizing d and ρ, and LoRP suggests that the optimal choice is the
one that maximizes KL.

Theorem 11 (LoRP for projective regression). The best projective regres-
sor P :X n → IRn×n with P =P 2 in some projective class P for data D =(x,y)
is

P best = argmax
P∈P

KL( trP (x)
n ||y�P (x)y

y�y ), provided trP
n < y�Py

y�y

4 Comparison to Gaussian Bayesian Linear Regression

We now consider linear basis function regression (LBFR) from a Bayesian per-
spective with Gaussian noise and prior, and compare it to LoRP. In addition
to the noise model as in PML, one also has to specify a prior. Bayesian model
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selection (BMS) proceeds by selecting the model that has largest evidence. In
the special case of LBFR with Gaussian noise and prior and an ML-II estimate
for the noise variance, the expression for the evidence has a similar structure as
the expression of the loss rank.
Gaussian Bayesian LBFR / MAP. Recall from Sec.3 Ex.9 that Fd is the
class of functions fw(x)=w�φ(x) (w∈IRd) that are linear in feature vector φ.
Let

GaussN (z|μ, Σ) :=
exp(− 1

2 (z − μ)�Σ−1(z − μ))

(2π)N/2
√

det Σ
(13)

denote a general N -dimensional Gaussian distribution with mean μ and co-
variance matrix Σ. We assume that observations y are perturbed from fw(x)
by independent additive Gaussian noise with variance β−1 and zero mean, i.e.
the likelihood of y under model w is P(y|w) = Gaussn(y|Φw,β−111), where
Φia =φa(xi). A Bayesian assumes a prior (before seeing y) distribution on w.
We assume a centered Gaussian with covariance matrix (αC)−1, i.e. P(w) =
Gaussd(w|0,α−1C−1). From the prior and the likelihood one can compute the
evidence and the posterior

Evidence: P(y) =
∫
P(y|w)P(w)dw = Gaussn(y|0, β−1S−1) (14)

Posterior: P(w|y) = P(y|w)P(w)/P (y) = Gaussd(w|ŵ, A−1)
B := Φ�Φ, A := αC + βB, M := βΦA−1Φ�, (15)
S := 11 − M, ŵ := βA−1Φ�y, ŷ := Φŵ = My

A standard Bayesian point estimate for w for fixed d is the one that maximizes
the posterior (MAP) (which in the Gaussian case coincides with the mean) ŵ=
argmaxwP(w|y)=βA−1Φ�y. For α→0, MAP reduces to Maximum Likelihood
(ML), which in the Gaussian case coincides with the least squares regression of
Ex.9. For α>0, the regression matrix M is not a projection anymore.
Bayesian model selection. Consider now a family of models {F1,F2,...}. Here
the Fd are the linear regressors with d basis functions, but in general they could
be completely different model classes. All quantities in the previous paragraph
implicitly depend on the choice of F , which we now explicate with an index. In
particular, the evidence for model class F is PF(y). Bayesian Model Selection
(BMS) chooses the model class (here d) F of highest evidence:

FBMS = argmax
F

PF(y)

Once the model class FBMS is determined, the MAP (or other) regression func-
tion fwFBMS or MFBMS are chosen. The data variance β−1 may be known or
estimated from the data, C is often chosen 11, and α has to be chosen somehow.
Note that while α→0 leads to a reasonable MAP=ML regressor for fixed d, this
limit cannot be used for BMS.

Comparison to LoRP. Inserting (13) into (14) and taking the logarithm we
see that BMS minimizes

− logPF(y) = β
2 y�Sy − 1

2 log detS − n
2 log β

2π (16)
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w.r.t. F . Let us estimate β by ML: We assume a broad prior α � β so that
β ∂S

∂β = O(α
β ) can be neglected. Then ∂logPF (y)

∂β = 1
2y�Sy− n

2β +O(α
β n) = 0 ⇔

β ≈ β̂ :=n/(y�Sy). Inserting β̂ into (16) we get

− log PF(y) = n
2 log y�Sy − 1

2 log detS − n
2 log n

2πe (17)

Taking an improper prior P(β)∝β−1 and integrating out β leads for small α to
a similar result. The last term in (17) is a constant independent of F and can
be ignored. The first two terms have the same structure as in linear LoRP (10),
but the matrix S is different. In both cases, α act as regularizers, so we may
minimize over α in BMS like in LoRP. For α=0 (which neither makes sense in
BMS nor in LoRP), M in BMS coincides with M of Ex.9, but still the S0 in
LoRP is the square of the S in BMS. For α>0, M of BMS may be regarded as
a regularized regressor as suggested in Sec.2 (a), rather than a regularized loss
function (b) used in LoRP. Note also that BMS is limited to (semi)parametric
regression, i.e. does not cover the non-parametric kNN Ex.2 and Kernel Ex.8,
unlike LoRP.

Since B only depends on x (and not on y), and all P are implicitly conditioned
on x, one could choose C =B. In this case, M =γΦB−1Φ�, with γ= β

α+β <1 for
α>0, is a simple multiplicative regularization of projection ΦB−1Φ�, and (17)
coincides with (11) for suitable α, apart from an irrelevant additive constant,
hence minimizing (17) over α also leads to (12).

5 Comparison to Other Model Selection Schemes

In this section we give a brief introduction to Penalized Maximum Likelihood
(PML) for (semi)parametric regression, and its major instantiations, the Akaike
and the Bayesian Information Criterion (AIC and BIC), and the Minimum De-
scription Length (MDL) principle, whose penalty terms are all proportional to
the number of parameters d. The effective number of parameters is often much
smaller than d, e.g. if there are soft constraints like in ridge regression. We com-
pare MacKay’s [Mac92] trace formula for Gaussian Bayesian LBFR and Hastie’s
et al. [HTF01] trace formula for general linear regression with LoRP.

Penalized ML (AIC, BIC, MDL). Consider a d-dimensional stochastic
model class like the Gaussian Bayesian linear regression example of Section 4.
Let Pd(y|w) be the data likelihood under d-dimensional model w ∈ IRd. The
maximum likelihood (ML) estimator for fixed d is

ŵ = arg max
w

Pd(y|w) = arg min
w

{− logPd(y|w)}

Since −logPd(y|w) decreases with d, we cannot find the model dimension by
simply minimizing over d (overfitting). Penalized ML adds a complexity term to
get reasonable results

d̂ = argmin
d

{− logPd(y|ŵ) + Penalty(d)}
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The penalty introduces a tradeoff between the first and second term with a
minimum at d̂<∞. Various penalties have been suggested: The Akaike Informa-
tion Criterion (AIC) [Aka73] uses d, the Bayesian Information Criterion (BIC)
[Sch78] and the (crude) Minimum Description Length (MDL) principle use d

2 logn
[Ris78, Grü04] for Penalty(d). There are at least three important conceptual dif-
ferences to LoRP:

– In order to apply PML one needs to specify not only a class of regression
functions, but a full probabilistic model Pd(y|w),

– PML ignores or at least does not tell how to incorporate a potentially given
loss-function,

– PML (AIC,BIC,MDL) is mostly limited to (semi)parametric models (with d
“true” parameters).

We discuss two approaches to the last item in the remainder of this section:
AIC, BIC, and MDL are not directly applicable (a) for non-parametric models
like kNN or Kernel regression, or (b) if d does not reflect the “true” complexity
of the model. For instance, ridge regression can work even for d larger than
n, because a penalty pulls most parameters towards (but not exactly to) zero.
MacKay [Mac92] suggests an expression for the effective number of parameters
deff as a substitute for d in case of (b), and Hastie et al. [HTF01] more generally
also for (a).

The trace penalty for parametric Gaussian LBFR. We continue with
the Gaussian Bayesian linear regression example (see Section 4 for details and
notation). Performing the integration in (14), MacKay [Mac92, Eq.(21)] derives
the following expression for the Bayesian evidence for C =11

− log P(y) = (αÊW + βÊD) + (1
2 log detA − d

2 log α) − n
2 log β

2π (18)

ÊD = 1
2 ||Φŵ − y||22, ÊW = 1

2 ||ŵ||22
(the first bracket in (18) equals β

2 y�Sy and the second equals − 1
2 logdetS, cf.

(16)). Minimizing (18) w.r.t. α leads to the following relation:

0 = −∂ log P(y)
∂α = ÊW + 1

2 trA−1 − d
2α ( ∂

∂α log detA = trA−1)

He argues that α||ŵ||22 corresponds to the effective number of parameters, hence

dMcK
eff := α||ŵ||22 = 2αÊW = d − αtrA−1 (19)

The trace penalty for general linear models. We now return to general
linear regression ŷ =M(x)y (7). LBFR is a special case of a projection matrix
M = M2 with rank d = trM being the number of basis functions. M leaves d
directions untouched and projects all other n−d directions to zero. For general
M , Hastie et al. [HTF01, Sec.5.4.1] argue to regard a direction that is only
somewhat shrunken, say by a factor of 0 < β < 1, as a fractional parameter
(β degrees of freedom). If β1,...,βn are the shrinkages = eigenvalues of M , the
effective number of parameters could be defined as [HTF01, Sec.7.6]

dHTF
eff :=

∑n
i=1 βi = trM
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which generalizes the relation d = trM beyond projections. For MacKay’s M
(15), trM =d−trA−1, i.e. dHTF

eff is consistent with and generalizes dMcK
eff .

Problems. Though nicely motivated, the trace formula is not without problems.
First, since for projections, M = M2, one could equally well have argued for
dHTF

eff =trM2. Second, for kNN we have trM = n
k (since M is 1

k on the diagonal),
which does not look unreasonable. Consider now kNN’ where we average over
the k nearest neighbors excluding the closest neighbor. For sufficiently smooth
functions, kNN’ for suitable k is still a reasonable regressor, but trM =0 (since
M is zero on the diagonal). So dHTF

eff = 0 for kNN’, which makes no sense and
would lead one to always select the k=1 model.

Relation to LoRP. In the case of kNN’, trM2 would be a better estimate
for the effective dimension. In linear LoRP, −logdetSα serves as complexity
penalty. Ignoring the nullspace of S0=(11−M)�(11−M) (8), we can Taylor expand
− 1

2 logdetS0 in M

− 1
2 log detS0 = −tr log(11−M) =

∞∑

s=1

1
s tr(M s) = trM + 1

2 trM2 + ...

For BMS (17) with S=11−M (15) we get half of this value. So the trace penalty
may be regarded as a leading order approximation to LoRP. The higher order
terms prevent peculiarities like in kNN’.

Coding/MDL interpretation of LoRP. If all loss values are different, i.e. if
Lossr(y′|x) 	=Lossr(y′′|x) for y′ 	=y′′ (adding infinitesimal random noise to Lossr

easily ensures this), then Rankr(·|x) :Yn → IN is an order preserving bijection,
i.e. Rankr(y′|x) < Rankr(y′′|x) iff Lossr(y′|x) < Lossr(y′′|x) with no gaps in
the range of Rankr(·|x). Phrased differently, Rankr(·|x) codes each y′∈Yn as a
natural number m in increasing loss-order. The natural number m can itself be
coded in log2m=LRr(y′|x) bits. Among all codes this is the shortest loss-order
preserving code. From this perspective, LoRP is just a different (non-stochastic,
non-parametric, loss-based) incarnation of MDL: both select the model/regressor
with the shortest code. The MDL philosophy provides a justification of LoRP (2),
its regularization (5), and loss function selection (Section 6). This identification
should also allow to apply or adapt the various consistency results of MDL,
implying that LoRP is consistent under some mild conditions.

6 Outlook

So far we have only scratched at the surface of the Loss Rank Principle. LoRP
seems to be a promising principle with a lot of potential, leading to a rich field. In
the following we briefly summarize miscellaneous considerations, some of them
are elaborated on in the extended version of the paper: Experiments, Monte
Carlo estimates for non-linear LoRP, numerical approximation of detSα, LoRP
for classification, self-consistent regression, explicit expressions for kNN on a
grid, loss function selection, and others.

Experiments. Preliminary experiments on selecting k in kNN regression con-
firm that LoRP selects a “good” k. (Even on artificial data we cannot determine
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whether the “right” k is selected, since kNN is not a generative model). LoRP
for LBFR seems to be consistent with rapid convergence.
Monte Carlo estimates for non-linear LoRP. For non-linear regression
we did not present an efficient algorithm for the loss rank/volume LRr(y|x).
The high-dimensional volume |Vr(L)| (3) may be computed by Monte Carlo
algorithms. Normally Vr(L) constitutes a small part of Yn, and uniform sampling
over Yn is not feasible. Instead one should consider two competing regressors r
and r′ and compute |V ∩V ′|/|V | and |V ∩V ′|/|V ′| by uniformly sampling from
V and V ′ respectively e.g. with a Metropolis-type algorithm. Taking the ratio
we get |V ′|/|V | and hence the loss rank difference LRr−LRr′ , which is sufficient
for LoRP. The usual tricks and problems with sampling apply here too.

Numerical approximation of detSα. Even for linear regression, a Monte
Carlo algorithm may be faster than the naive O(n3) algorithm [BFG96]. Often
M is a very sparse matrix (like in kNN) or can be well approximated by a
sparse matrix (like for Kernel regression), which allows to approximate detSα,
sometimes in linear time [Reu02].

LoRP for classification. A classification problem is or can be regarded as a
regression problem in which Y is finite. This implies that we need to compute
(count) LRr for non-linear r somehow, e.g. approximately by Monte Carlo.

Self-consistent regression. So far we have considered only “on-data” regres-
sion. LoRP only depends on the regressor r on data D and not on x 	∈{x1,...,xn}.
One can construct canonical regressors for off-data x from regressors given only
on-data in the following way: We add a virtual data point (x,y) to D, where x is
the off-data point of interest. If we knew y we could estimate ŷ=r(x|{(x,y)}∪D),
but we don’t know y. But if we require consistency, namely that ŷ = y, we get
a canonical estimate for ŷ. First, this bootstrap may ease the specification of
the regression models, second, it is a canonical way for interpolation (LoRP
can’t distinguish between r that are identical on D), and third, many standard
regressors (kNN, Kernel, LBFR) are self-consistent in the sense that they are
canonical.

Explicit expressions for kNN on a grid. In order to get more insight into
LoRP, a case that allows an analytic solution is useful. For k nearest neighbors
classification with x lying on a hypercube of the regular grid X =ZZd one can
derive explicit expressions for the loss rank as a function of k, n, and d. For
n�k�3d, the penalty − 1

2 logdetS is proportional to trM with proportionality
constant decreasing from about 3.2 for d=1 to 1.5 for d→∞.

LoRP for hybrid model classes. LoRP is not restricted to model classes
indexed by a single integral “complexity” parameter, but may be applied more
generally to selecting among some (typically discrete) class of models/regressors.
For instance, the class could contain kNN and polynomial regressors, and LoRP
selects the complexity and type of regressor (non-parametric kNN versus para-
metric polynomials).

General additive loss. Linear LoRP ŷ = M(x)y of Section 3 can easily be
generalized from quadratic to ρ-norm LossM (y|x)= ||y−ŷ||pρ (any p). For α=0,
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y�S0y in (9) becomes ||y− ŷ||2ρ and vρ the volume of the unit d-dimensional
ρ-norm “ball”. Useful expressions for general additive LossN =

∑
ih(yi−ŷi) can

also be derived. Regularization may be performed by M �γM with optimization
over γ <1.

Loss-function selection. In principle, the loss function should be part of the
problem specification, since it characterizes the ultimate goal. In reality, though,
having to specify the loss function can be a nuisance. We could interpret the reg-
ularized loss (5) as a class of loss functions parameterized by α, and argminαLRa

r

as a loss function optimization or selection. This suggests to choose in general
the loss function that has minimal loss rank. This leads to sensible results if the
considered class of loss functions is not too large (e.g. all ρ-norm losses in the
previous paragraph). So LoRP can be used not only for model selection, but also
for loss function selection.

Other ideas that count. There are various other ideas in machine learning
that somehow count fictitious data y′. In normalized maximum likelihood (NML)
[Grü04], the complexity of a stochastic model class is defined as the log sum
over all y′ of all maximum likelihood probabilities. In the luckiness framework
for classification, the loss rank is related to the level of a hypothesis, if the
empirical loss is used as an unluckiness function. The empirical Rademacher
complexity averages over all possible data labels. Finally, instead of considering
all y′∈Yn one could consider only the set of all permutations of {y1,...,yn}, like
in permutation tests. The test statistic would here be the empirical loss.
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Abstract. We reduce ranking, as measured by the Area Under the Re-
ceiver Operating Characteristic Curve (AUC), to binary classification.
The core theorem shows that a binary classification regret of r on the
induced binary problem implies an AUC regret of at most 2r. This is
a large improvement over approaches such as ordering according to re-
gressed scores, which have a regret transform of r �→ nr where n is the
number of elements.

1 Introduction

We consider the problem of ranking a set of instances. In the most basic version,
we are given a set of unlabeled instances belonging to two classes, 0 and 1, and
the goal is to rank all instances from class 0 before any instance from class 1. A
common measure of success for a ranking algorithm is the area under the ROC
curve (AUC). The associated loss, 1 − AUC, measures how many pairs of neigh-
boring instances would have to be swapped to repair the ranking, normalized
by the number of 0s times the number of 1s. The loss is zero precisely when all
0s precede all 1s; one when all 1s precede all 0s. It is greater for mistakes at
the beginning and the end of an ordering, which satisfies the intuition that an
unwanted item placed at the top of a recommendation list should have a higher
associated loss than when placed in the middle.

The classification problem is simply predicting whether a label is 0 or 1 with suc-
cess measured according to the error rate, i.e., the probability of a misprediction.

These two problems appear quite different. For the classification loss function,
a misclassified instance incurs the same loss independently of how other instances
are classified. The AUC loss, on the other hand, depends on the whole (ranked)
sequence of instances. It is natural to ask whether we need fundamentally differ-
ent algorithms to optimize these two loss functions. This paper shows that, in
some precise sense, the answer is no. We prove that the problem of optimizing
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the AUC can be reduced to classification in such a way that good performance
on the classification problem implies good performance on the AUC problem.
We call a pair of instances mixed if they have different labels. The classifica-
tion problem is to predict, given a random mixed pair of instances in the test
set, whether the first instance should be ordered before the second. We show
that there is a robust mechanism for translating any binary classifier learning
algorithm into a ranking algorithm.

Several observations should help understand the setting and the result better.

Relation to Regression and Classification: A common way to generate a
ranking is to order examples according to a regressed score or estimated condi-
tional class probability. The problem with this approach is that it is not robust
(see, however, a discussion in Section 6). The fundamental difficulty is exhibited
by highly unbalanced test sets. If we have one 1 and many 0s, a pointwise (i.e.,
regression or classification) loss on the 1 with a perfect prediction for the 0s
can greatly harm the AUC while only slightly affecting the pointwise loss with
respect to the induced distribution. This observation implies that such schemes
transform pointwise loss l to AUC loss nl, where n is the number of elements in
the test set. (In the example above, classification loss of 1/n induces AUC loss
of 1 if ties are broken against us.).

A similar observation holds for regrets in place of losses: pointwise regret r
translates into AUC regret nr. Regret is the difference between the incurred loss
and the lowest achievable loss on the problem. The motivation for regret analysis
is to separate avoidable loss from noise intrinsic to the problem, to give bounds
that apply nontrivially even for problems with large intrinsic noise.

Our core theorem (Theorem 1) shows that a pairwise classifier with regret r
implies an AUC regret of at most 2r, for arbitrary distributions over instances.
Thus, for example, if the binary error rate is 20% due to inherent noise and 5%
due to errors made by the classifier, then AUC regret is at most 10%, i.e., only
the 5% would be at most doubled.

Section 5 shows that this is the best possible. The theorem is a large improve-
ment over the approaches discussed above, which have a dependence on n. For
comparison, the relationship of ranking to classification is functionally tighter
than has been proven for regression to binary classification (r �→

√
r) [?].

Relation to the Feedback Arc Set Problem: Let U be the set of unlabeled
examples we want to rank. There is a hidden bipartition of U into a set of 0s
(called “winners”) and a set of 1s (called “losers”), drawn from the underlying
conditional distribution of label sequences given U .

Consider running a tournament on U . Every element (or “player” or “in-
stance”) of U plays all other elements, and the outcome of each play is deter-
mined by a classifier c trained to predict which of the two given elements should
be ordered first. What is the best way to rank the players in U so that all winners
are ordered before all losers?

The tournament induced by c on U does not have to be consistent with
any linear ordering, while a ranking algorithm must predict an ordering. A
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natural objective, dating back to Slater [Sla61], is to find an ordering which
agrees with the tournament on as many player pairs as possible, i.e., minimizes
the number of inconsistent pairs where a higher-ranked player (one ordered closer
to the beginning of the list) lost to a lower-ranked player. This is the NP-hard
“minimum feedback arc set problem in tournaments”. (Although the hardness
was conjectured for a long time, it was proved only recently; see [A06].).

A mistake is defined as a winner–loser pair where the loser beats (i.e., is
preferred to) the winner. Section 4 proves that a solution to the feedback arc set
problem satisfies a basic guarantee: If the classifier c makes at most k mistakes
on U , then the algorithm minimizing the number of inconsistent pairs produces
an ordering, or equivalently a transitive tournament, with at most 2k mistakes
on U . Section 5 exhibits a tournament matching this bound.

Instead of solving feedback arc set, another natural way to break cycles is to
rank instances according to their number of wins in the tournament produced
by c. The way ties are broken is inessential; for definiteness, let us say they
are broken against us. Coppersmith, Fleischer, and Rudra [CFR06] proved that
this algorithm provides a 5-approximation for the feedback arc set problem. An
approximation, however, does not generally imply any finite regret transform
for the AUC problem. For example, c may make no mistakes (i.e., make correct
predictions on all winner–loser pairs) while inducing a non-transitive tournament
on the winners or the losers, so an approximation that does not know the labeling
can incur a non-zero number of mistakes.

We prove, however, that the algorithm that simply orders the elements by their
number of wins, transforms classification regret k into AUC regret at most 2k.
That is, ordering by the number of wins has the same regret and loss transform as
an optimal solution to the (NP-hard) feedback arc set problem. (Again, Section 5
shows that solving feedback arc set does no better.).

Relation to Generalization Bounds: A number of papers analyze general-
ization properties of ranking algorithms (see, e.g., [FIS+03,AHR05,AN05,RCM
+05]). These results analyze ranking directly by estimating the rate of conver-
gence of empirical estimates of the ranking loss to its expectation. The bounds
typically involve some complexity parameter of the class of functions searched
by the algorithms (which serves as a regularizer), and some additional quanti-
ties considered relevant for the analysis. The examples are assumed to be drawn
independently from some fixed distribution.

The type of results in this paper is different. We bound the realized AUC
performance in terms of the realized classification performance. Since the analysis
is relative, it does not have to rely on any assumptions about the way the world
produces data. In particular, the bounds apply when there are arbitrary high-
order dependencies between examples. This seems important in a number of
applications where ranking is of interest.

By itself, our analysis does not say anything about the number of samples
needed to achieve a certain level of performance. Instead it says that achieved
performance can be robustly transferred from classification to ranking. Thus
any generalization result for the induced classification problem implies, via the
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reduction, a generalization result for the AUC problem. For example, Clémençon,
Lugosi, and Vayatis [CLV05] derive bounds on the performance of empirical
risk minimization for the classification problem of ranking two instances (under
the assumption that instances are independent and identically distributed). By
composing these bounds with our result, one can derive bounds for ranking n
independent instances (instead of just two), without introducing a dependence
on n.

2 Preliminaries

Classification: A binary classification problem is defined by a distribution P
over X × {0, 1}, where X is some observable feature space and {0, 1} is the
binary label space. The goal is to find a classifier c : X → {0, 1} minimizing the
classification loss on P given by

e(c, P ) = Pr(x,y)∼P [c(x) �= y].

The classification regret of c on P is defined as

r(c, P ) = e(c, P ) − min
c∗

e(c∗, P ),

where the minimum is taken over all classifiers c∗ : X → {0, 1}. The results
clearly hold for any constrained class of functions that contains a Bayes optimal
classifier for the induced binary problem.1

Ranking: Where X(2) denotes the set of ordered pairs of distinct elements
of X , let π : X(2) → {0, 1} be a preference function (called a ranking rule
in [CLV05]): π(x, x′) = 1 if π “prefers” x to x′, and 0 otherwise (so π(x, x′) =
1 − π(x′, x)). If π is consistent with some linear ordering of a set of examples,
we call π itself an ordering on this set. The AUC loss of an ordering π on a set
S = (x1, y1), . . . , (xn, yn) is defined as

l(π, S) =

∑
i�=j 1(yi > yj)π(xi, xj)

∑
i<j 1(yi �= yj)

.

(Indices i and j in the summations range from 1 to n, and 1(·) is the indicator
function which is 1 if its argument is true, and 0 otherwise.) By convention,
0s should be ordered ahead of 1s, so any pair where a 1 is ordered before a 0
contributes to the loss.

A pair of examples (x1, y1), (x2, y2) is called mixed if y1 �= y2.
An AUC problem is defined by a distribution D over (X ×{0, 1})∗. The goal is

to find an ordering π : X(2) → {0, 1} minimizing the expected AUC loss on D,
given by

l(π, D) = ES∼Dl(π, S).
1 Any such optimal classifier can be represented in the form c(x, x′) = 1(s(x) ≥ s(x′))

for some scoring function s : X → R. Thus the results hold for any class of functions
that contains all classifiers defined by scoring functions.
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Algorithm 1. Auc-Train (labeled set S, binary learning algorithm A)
1. Let S′ = {〈(x1, x2),1(y1 < y2)〉 : (x1, y1), (x2, y2) ∈ S and y1 �= y2}
2. return c = A(S′).

Algorithm 2. Degree (unlabeled set U , pairwise classifier c)
1. For x ∈ U , let deg(x) = |{x′ : c(x, x′) = 1, x′ ∈ U}|.
2. Sort U in descending order of deg(x), breaking ties arbitrarily.

As an example, consider the internet search problem, where there is some under-
lying distribution of queries, each yielding a set of search results. This process
generates a distribution over subsets; whether or not the subsets have the same
size is inessential for the analysis. Note that D is allowed to encode arbitrary
dependencies between examples.

The AUC regret of π on D is given by rauc(π, D) = l(π, D)−minπ∗ l(π∗, D),
where the minimum is taken over all preference functions π∗ (transitive on any
subset in the support of D). Since our goal is to upper bound the AUC regret,
the fact that the minimum is taken over all such functions makes the result only
stronger.

Tournaments: A tournament is a complete graph with no self-loops, in which
each edge is directed one way or the other, so that for every pair of vertices i �= j,
either i → j is an edge or j → i is an edge, but not both. The edge i → j says
that i beats j (“i is preferred to j”); edges point from winners to losers. Since
we adopt the convention that 0s should be ordered ahead of 1s, ideally 0s should
beat 1s. We write deg(i) for the outdegree of vertex i, so deg(i) =

∑
j 1(i → j),

where the indicator function 1(i → j) is 1 if i → j is an edge and 0 otherwise.
Thus we generally expect 0s to have large outdegree and 1s small outdegree;
however, we allow and analyze arbitrary tournaments.

3 Ordering by the Number of Wins

In this section, we describe the reduction and prove the main result.
The reduction consists of two components. The training part, Auc-Train

(Algorithm 1), takes a set S of labeled examples of type X×{0, 1} and transforms
all mixed pairs in S into binary examples for the oracle learning algorithm. The
binary classification problem induced by the reduction is to predict, given a
random mixed pair of examples in S, whether the first example should be ordered
before the second. For any process D generating datasets S, we can define the
induced distribution over (X × X) × {0, 1} by first drawing S from D, and then
drawing a random mixed pair from S. We denote this induced distribution by
Auc-Train(D), admittedly overloading the notation.
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The test part, Degree (Algorithm 2), uses the pairwise classifier c learned in
Algorithm 1 to run a tournament on a test set U , and then ranks the elements of
U in decreasing order of their number of wins in the tournament, breaking ties
arbitrarily. Recall that we expect 0s to beat 1s, and thus have larger outdegree.

For the analysis, it is best to think of the classifier c as an adversary play-
ing against the ranking algorithm Degree. The goal of c is to pay little in
classification regret while making Degree(·, c) pay a lot in AUC regret.

The regret problem can be reduced to the following combinatorial problem.
Given a set U with each element labeled either 0 or 1, the adversary c starts
with a tournament of its choice where every 0 beats every 1. Then c can choose
to invert the outcome of any game between a 0 and a 1, and she is charged
for each such “mistake”. Again, c can choose any (not necessarily transitive)
subtournaments on the 0s and on the 1s for free. The resulting tournament is
shown to the algorithm.

Without seeing the labels, the algorithm needs to approximate c’s tournament
with a transitive tournament (or equivalently, a linear order). The goal of the
algorithm is to minimize the number of mistakes it makes (i.e., pairs where
a 1 precedes a 0 in the order). If c were itself consistent with a linear order,
the algorithm could simply output that, at a cost in mistakes identical to the
adversary’s. In general it is not, and we would expect the cost of the more-
constrained linear order to be higher. Our goal is to show that the reduction is
robust in the sense that c cannot cause Degree to make many mistakes without
making many mistakes itself. More precisely, Degree never makes more than
twice as many mistakes as c. This combinatorial result (Theorem 2) is invoked
(n − 1) times in the proof of the main theorem below.

Theorem 1. For all distributions D and all pairwise classifiers c,

rauc(Degree(·, c), D) ≤ 2r(c,Auc-Train(D)). (1)

Note the quantification in the above theorem: it applies to all settings where
Algorithms 1 and 2 are used; in particular, D may encode arbitrary dependences
between examples.

Proof. Given an unlabeled test set U ∈ Xn, the joint distribution D induces a
conditional distribution D(Y1, . . . , Yn | U) over the set of label sequences {0, 1}n.
In the remainder of the paper, let Q denote this conditional distribution. We
identify U with {1, . . . , n}. We prove the theorem by fixing U , taking the expec-
tation over the draw of U at the end.

Our goal is to rewrite both sides of (1) as sums of pairwise regrets. A pairwise
loss is defined by

lQ(i, j) = Eyn∼Q
1(yi > yj)∑

u<v 1(yu �= yv)
.

It is the loss of ordering i before j. If lQ(i, j) < lQ(j, i), the regret rQ(i, j) of
ordering i before j is 0; otherwise, rQ(i, j) = lQ(i, j) − lQ(j, i).

We can assume without loss of generality that the ordering minimizing the
AUC loss (thus having zero AUC regret) is 〈1, 2, . . . , n〉. Lemma 2 in Section A
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shows that all regret-zero pairwise predictions must be consistent with the or-
dering: rQ(i, j) = 0 for all i < j.

Lemma 1 in Appendix A establishes a basic property of pairwise regrets.
Applied repeatedly, the lemma says that for any pair i < j, the regret rQ(j, i)
can be decomposed as

rQ(j, i) =
j−1∑

k=i

rQ(k + 1, k).

This allows us to decompose the AUC regret of π on Q as a sum of pairwise
regrets (where 〈U, yn〉 denotes the unlabeled sample U labeled with yn):

rauc(π, Q) = l(π, Q) − min
π∗

l(π∗, Q)

= Eyn∼Q[l(π, 〈U, yn〉)] − min
π∗

Eyn∼Q[l(π∗, 〈U, yn〉)]

= Eyn∼Q

∑
i,j 1(yi > yj)π(i, j)
∑

u<v 1(yu �= yv)
− min

π∗
Eyn∼Q

∑
i,j 1(yi > yj)π∗(i, j)
∑

u<v 1(yu �= yv)

= max
π∗

Eyn∼Q

∑
i,j [1(yi > yj)π(i, j) − 1(yi > yj)π∗(i, j)]

∑
u<v 1(yu �= yv)

=
∑

i<j:π(j,i)=1

rQ(j, i) =
n−1∑

k=1

|{i ≤ k < j : π(j, i) = 1}| · rQ(k + 1, k).

The last equality follows by repeated application of Lemma 1.
The classification regret can also be written in terms of pairwise regrets:

r(c,Auc-Train(Q)) = e(c,Auc-Train(Q)) − min
c∗

e(c∗,Auc-Train(Q))

= max
c∗

Eyn∼Q

[∑
i,j [1(yi > yj)c(i, j) − 1(yi > yj)c∗(i, j)]

∑
u<v 1(yu �= yv)

]

=
∑

i<j:c(j,i)=1

rQ(j, i) =
n−1∑

k=1

|{i ≤ k < j : c(j, i) = 1}| · rQ(k + 1, k).

Let gk and fk denote the coefficients with which the term rQ(k + 1, k) appears in
the above decompositions of rauc(π, Q) and r(c,Auc-Train(Q)) respectively.
To complete the proof it suffices to show that gk ≤ 2fk for each k.

Fix k and consider a bipartition of U into a set {1, . . . , k} of “winners” and a set
{k + 1, . . . , n} of “losers”. In this terminology, gk is the number of winner–loser
pairs where the loser has at least as many wins as the winner, and fk is the number
of winner–loser pairs where the loser beats the winner (in the tournament induced
by c on U). Theorem 2 below shows that gk ≤ 2fk, completing this proof.

Let T be a tournament and let the vertices of T be arbitrarily partitioned into
a set W of “winners” and a set L of “losers”. Call the triple (T, W, L) a winner–
loser partitioned tournament, and denote it by T. We will show that for any T,
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the number of winner–loser pairs where the loser’s degree is larger than or equal
to the winner’s, is at most twice the number of winner–loser pairs where the
loser beats the winner. Formally, define two measures:

g(T) =
∑

�∈L

∑

w∈W

1(deg(�) ≥ deg(w)),

f(T) =
∑

�∈L

∑

w∈W

1(� → w).

Theorem 2. For any winner–loser partitioned tournament T, g(T) ≤ 2f(T).

Since the number of edges from L to W is equal to the total number of edges
out of L minus the number of edges from L to L, we can rewrite

f(T) =
∑

�∈L

∑

w∈W

1(� → w) =
∑

�∈L

deg(�) −
(

|L|
2

)

.

Both f(T) and g(T) depend only on the degrees of the vertices of T , so rather
than working with a (labeled) tournament, a relatively complex object, we can
work with a (labeled) degree sequence.

Landau’s theorem [Lan53] says that there exists a tournament with outdegree
sequence d1 ≤ d2 ≤ · · · ≤ dn if and only if, for all 1 ≤ i ≤ n,

∑i
j=1 dj ≥

∑i
j=1(j − 1), with equality for i = n.
Recall that a sequence 〈a1, . . . , an〉 is majorized by 〈b1, . . . , bn〉 if the two sums

are equal and if, when each sequence is sorted in non-increasing order, the prefix
sums of the b sequence are at least as large as (dominate) those of the a sequence.
(For a comprehensive treatment of majorization, see [?].) Landau’s condition is
precisely that 〈d1, . . . , dn〉 is majorized by 〈0, . . . , n − 1〉. (With the sequences
sorted in increasing order, Landau’s condition is that prefix sums of the degree
sequence dominate those of the progression, which is the same as saying that
the suffix sums of the degree sequence are dominated by the suffix sums of
the progression.) This allows us to take advantage of well-known properties of
majorization, notably that if A′ is obtained by averaging together any elements
of A, then A majorizes A′.

This allows us to restate Theorem 2 in terms of a sequence and majorization,
rather than a tournament, but first we relax the constraints. First, where the
original statement requires elements of the degree sequence to be non-negative
integers, we allow them to be non-negative reals. Second, the original statement
requires that we attach a winner/loser label to each element of the degree se-
quence. Instead, we aggregate equal elements of the degree sequence, and for a
degree di of (integral) multiplicity mi, assign arbitrary non-negative (but not
necessarily integral) portions to winners and losers: wi + �i = mi.

Let D = (D, W, L) be such a generalized “winner–loser labeled compressed se-
quence”. Note that the majorization condition applies only to the values {di, mi},
not the labeling. The definitions of f and g above are easily extended to this
broader domain: g(D) =

∑
i

∑
j≤i liwj , f(D) =

∑
i lidi −

(∑
i li
2

)
, where we de-

fine
(
x
2

)
= x(x − 1)/2 for all x (not just integers). If we prove g ≤ 2f over this
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larger domain, the inequality holds in particular for plain winner–loser labeled
degree sequences (the case where all weights happen to be integral). That is,
Theorem 3, below, implies Theorem 2.

Theorem 3. For any winner–loser labeled compressed sequence D = (D, W, L)
where D is majorized by 〈0, . . . , n − 1〉, g(D) ≤ 2f(D).

Proof. We begin with an outline of the proof. Define a compressed sequence D
as being canonical if it consists of at most three degrees: a smallest degree d1

having only losers (w1 = 0), a middle degree d2 potentially with both winners
and losers (w2, �2 ≥ 0), and a largest degree d3 having only winners (�3 = 0).
We first establish that any canonical sequence has g(D) − 2f(D) ≤ 0. We then
show how to transform any degree sequence to a canonical one with a larger (or
equal) value of g − 2f , which completes the argument.

We first show that a canonical sequence D has g − 2f ≤ 0. For the canonical
configuration, g = w2�2 and f = �1d1 + �2d2 −

(
�1+�2

2

)
, and hence our goal is to

show that
�1d1 + �2d2 ≥ (�1 + �2)(�1 + �2 − 1)/2 + w2�2/2 (2)

By Landau’s condition applied to �1 and �1 + w2 + �2, we have the following
two relations:

�1d1 ≥
(

�1

2

)

(3)

and

�1d1 + (�2 + w2)d2 ≥
(

�1 + w2 + �2

2

)

. (4)

Multiplying (3) by w2/(�2 + w2) and (4) by �2/(�2 + w2) and adding them,
we obtain that

�1d1 + �2d2 ≥ 1
�2 + w2

(

w2

(
�1

2

)

+ �2

(
�1 + �2 + w2

2

))

. (5)

A simple calculation shows that the right side of inequality (5) is exactly equal
to the right hand side of (2). This proves that g ≤ 2f for a canonical sequence.

If a sequence is not canonical then there are two consecutive degrees di and
dj (j = i + 1) such that one of the cases 1a, 1b, or 2 (described below) holds.
In each case we apply a transformation producing from the degree sequence D
a new degree sequence D′, where:

– the total weight of winners in D′ is equal to that of D; similarly for losers,
and thus for the total weight; furthermore, the total weight on each degree
remains integral;

– D′ maintains the majorization needed for Landau’s theorem;
– the value of g − 2f is at least as large for D′ as for D; and
– either the number of nonzero values wi and �i or the number of distinct

degrees di is strictly smaller for D′ than for D, and the other is no larger
for D′ than for D.

We first sketch the cases and then detail the transformations.
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Case 1a di has only winners (li = 0).
Apply Transformation 1a, combining the two degrees into one.

Case 1b dj has only losers (wj = 0).
Apply Transformation 1b, combining the two degrees into one.

Case 2 All of wi, li, wj and lj are nonzero.
Apply Transformation 2, leaving the degrees the same but transforming the
weights so that one of them is equal to 0 and one of the preceding cases
applies, or the weights obey an equality allowing application of Transforma-
tion 3, which combines the two degrees into one.

Either there is some pair i, j to which one of the cases applies, or the sequence
is canonical. We argue this by showing that if there is no pair i, j for which Cases
1a or 1b apply, then either the sequence is canonical, or there is a pair to which
Case 2 applies. First, note that for any i �= n, li > 0 (else Case 1a applies to
i, i+ 1) and for any i �= 1, wi > 0 (else Case 1b applies to i − 1, i). In particular,
for any 1 < i < n, both li, wi > 0. If n ≥ 4 this implies immediately that Case 2
applies to the pair 2, 3. If n = 1, D is automatically canonical. If n = 2 and l2 = 0
or w1 = 0 then D is canonical, while if both l2, w1 > 0 we may apply Case 2
(since, as we first argued, l1, w2 > 0). Finally, if n = 3, we know l1, l2, w2, w3 > 0.
If w1 = l3 = 0 then D is canonical, and otherwise Case 2 applies.
Transformation 1a: In Case 1a, where di has only winners, change D to a new
sequence D′ by replacing the pair (di, wi, 0), (dj , wj , lj) by their “average”: the
single degree (d′, w′, l′), where

w′ = wi + wj , l′ = lj , d′ =
widi + (wj + lj)dj

wi + wj + lj
.

The stated conditions on a transformation are easily checked. The total weight
of winners is clearly preserved, as is the total weight of losers and the total de-
gree (out-edges). Summing weights preserves integrality. The number of distinct
degrees is reduced by one, and the number of nonzero weights may be decreased
by one or may remain unchanged. The Landau majorization condition holds
because D′, as an averaging of D, is majorized by it, and majorization is tran-
sitive. The only non-trivial condition is the non-decrease in g − 2f . The number
of loser–winner pairs where the loser outranks the winner remains the same,
so g(D) = g(D′). Also, f depends only on the total weight of losers (which is
unchanged) and on the average degree of losers. This average degree would be
unchanged if wi were 0; since wi ≥ 0, the average degree may decrease. Thus
f(D) ≥ f(D′), and (g − 2f)(D) ≤ (g − 2f)(D′), as desired.
Transformation 1b: Symmetrically to Transformation 1a, obtain D′ by replac-
ing the pair of labeled weighted degrees (di, wi, li) and (dj , 0, lj) with a single one
(d′, w′, l′), where w′ = wi, l′ = li + lj , and d′ = [(li + wi)di + ljdj ]/(li + wi + lj).
Transformation 2: Where wi, li, wj and lj are all nonzero, we begin with
one case, which leads to one other. In the usual case, we transform D to D′ by
replacing the pair (di, wi, li), (dj , wj , lj) with (di, wi+x, li−x), (dj , wj −x, lj+x),
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for some value of x (positive or negative) to be determined. This affects only the
labeling, not the weighted degree sequence itself, and is therefore legitimate as
long as the four quantities wi + x, li − x, wj − x and lj + x are all non-negative.

Defining Δ = (g−2f)(D′)− (g−2f)(D), we wish to choose x to make Δ > 0.

Δ =
{[

(lj + x)(wi + x + wj − x) + (li − x)(wi + x)
]
−

[
lj(wi + wj) + liwi

]}

− 2
{[

(li − x)di + (lj + x)dj

]
−

[
lidi + ljdj

]}

= x(wj + li − 2(dj − di) − x) = x(a − x),

where a = wj +li−2(dj −di). This is a simple quadratic expression with negative
coefficient on x2, so its value increases monotonically as x is varied from 0 to a/2,
where the maximum is obtained. (Note that a may be negative.) If a = 0 then
we do not use this transformation but Transformation 3, below. Otherwise, vary
x from 0 to a/2 stopping when x reaches a/2 or when any of wi +x, li −x, wj −x
and lj +x becomes 0. Call this value x�, and use it to define the transformation.

If any of wi +x, li −x, wj −x and lj +x is 0 then the number of nonzero weights
is decreased (while the number of distinct degees is unchanged). Otherwise,
x� = a/2. In that case, the new D′ has a = 0 (the optimal “weight shift” has
already been performed). With a = 0 we apply Transformation 3, which reduces
the number of nonzero weights.
Transformation 3: Similar to Cases 1a and 1b, transform D to D′ by replac-
ing the pair (di, wi, li), (dj , wj , lj) with a single degree (d′, w′, l′) that is their
weighted average,

w′ = wi + wj , l′ = li + lj , d′ =
(wi + li)di + (wj + lj)dj

wi + li + wj + lj
.

This gives

Δ = (g − 2f)(D′) − (g − 2f)(D)
= (liwj) − 2(lid′ + ljd

′ − lidi − ljdj)

= liwj +
2(dj − di)(wilj − wj li)

wi + li + wj + lj
.

We apply this transformation only in the case where Transformation 2 fails to
give any improvement because its “a” expression is equal to 0, i.e., dj − di =
(wj + li)/2. Making the corresponding substitution gives

Δ = liwj +
(wj + li)(wilj − wj li)

wi + li + wj + lj

=
(liwj)(lj + wi) + (ljwi)(li + wj)

wi + li + wj + lj
> 0.

This reduces the number of distinct degrees by one, without increasing the
number of nonzero weights.
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Concluding the argument, we have shown that any non-canonical configura-
tion D can be replaced by a configuration with a strictly smaller total of distinct
degrees and nonzero weights, and at least as large a value of g−2f . Since D had
at most n distinct degrees and 2n nonzero weights originally, a canonical configu-
ration D� is reached after at most 3n−1 transformations. (All that is important
is that the number of transformations is finite: that a canonical configuration is
eventually reached.) Then, (g − 2f)(D) ≤ (g − 2f)(D�) ≤ 0.

A further generalization of Theorem 3 may be found in [BCS06].

4 An Upper Bound for Minimum Feedback Arc Set

This section shows an analog of Theorem 2 for an optimal solution to the feed-
back arc set problem. (The decomposition argument in Theorem 1 is algorithm-
independent and applies here as well.) For a tournament T and an ordering π,
a back edge is an edge i → j in T such that j is ordered before i in π. Let
back(T, π) denote the number of back edges induced by π in T .

For a winner–loser partitioned tournament T = (T, W, L) and any minimum
feedback arc set ordering π of T , let g′(T, π) be the number of winner–loser pairs
where the loser comes before the winner in π, and as before let

f(T) =
∑

�∈L

∑

w∈W

1(� → w)

be the number of winner–loser pairs where the loser beats the winner.

Theorem 4. For any winner–loser partitioned tournament T = (T, W, L) and
any minimum feedback arc set ordering π of T , g′(T, π) ≤ 2f(T).

Proof. Let kw be the smallest possible number of back edges in the subtourna-
ment induced by W . Define kl similarly for the subtournament induced by L.
Let kπ

w and kπ
l be the number of back edges in π that go from W to W and

from L to L, respectively. Denote the number of remaining (i.e., winner–loser or
loser–winner) back edges in π by kπ

o .
Consider another ordering σ where all winners are ordered before all losers,

and both the winners and the losers are ordered optimally among themselves,
i.e., with kw and kl back edges respectively. The number of back edges in σ is
back(T, σ) = kw + kl + f(T). But we also have back(T, σ) ≥ back(T, π) since π
minimizes the number of back edges, and thus kw + kl + f(T) ≥ kπ

w + kπ
l + kπ

o .
Since kw ≤ kπ

w and kl ≤ kπ
l by definition of kw and kl, we have f(T) ≥ kπ

o .
Consider any winner–loser pair with the loser ordered before the winner. If

w → l is the edge, it is a back edge in π and thus is counted by kπ
o . If l → w is the

edge instead, it is counted by f(T). Thus g′(T, π) is at most kπ
o + f(T). Since

f(T) ≥ kπ
o , this number is never more than 2f(T), which implies g′(T, π) ≤

2f(T).
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5 Lower Bounds

We first show that Theorem 2 is best possible: the Degree ranking really can
make twice as many mistakes as the adversary. Recall that f denotes the number
of winner–loser pairs where the loser beats the winner, and g the number of
winner–loser pairs where the loser outranks the winner. The example below
generates an infinite family of tournaments with g = 2f .

Example 1. With n odd, let every vertex have degree (n − 1)/2; note that
the degree sequence 〈n−1

2 , . . . , n−1
2 〉 does indeed respect Landau’s condition, so

it is realizable as a tournament. Label (n − 1)/2 of the vertices as winners and
(n + 1)/2 as losers. With ties broken against us, all winners are ordered after
all losers. This gives f = n+1

2 · n−1
2 −

(
(n+1)/2

2

)
= (n + 1)(n − 1)/8, while g =

n+1
2 · n−1

2 = (n + 1)(n − 1)/4 = 2f . (A similar example gives a lower bound of
2 − O(1/n) with ties broken optimally.)

Theorem 4 is also essentially best possible. The next construction gives an
infinite family of tournaments for which an optimal solution to the feedback arc
set problem has g ≥ (2 − ε)f , for any ε > 0.

Example 2. Set δ = ε
1−ε , and let the set of vertices be partitioned into three

components, V1, V2, and V3, with |V1| = δn2, |V2| = 2n2, and |V3| = n, for a
sufficiently large n. The vertices in V1 ∪ V2 are the winners, the vertices in V3

are the losers.
The edges within each of the three components form acyclic tournaments. The

cross-component edges are defined as follows: All edges between V3 and V1 point
from V3 to V1, and all edges between V1 and V2 point from V1 to V2. To define
the edges between V2 and V3, divide V2 into 2n consecutive blocks B1, . . . , B2n

of n vertices each, such that edges point from Bi to Bj where 1 ≤ i < j ≤ 2n. If
i is odd, all edges from Bi point to V3; otherwise all edges from V3 point to Bi.

We have f = (1 + δ)n3. What is the value of g induced by an ordering
minimizing the number of back edges? Any such ordering must put V1 before
V2; otherwise we would have Ω(n4) back edges while an optimal ordering does
not need to have more than O(n3) such edges. Now, the tournament induced
by V2 ∪ V3 has n3 edge-disjoint cycles of length 3 since there are n2 such cycles
for every pair of blocks in V2 (and there are n disjoint pairs). There has to be
at least one back edge for every such cycle, so any ordering must have at least
n3 back edges. The ordering that puts V3 before V2 is thus optimal since it has
exactly n3 back edges. Thus the ordering {V3, V1, V2} minimizes the number of
back edges. This ordering has (2 + δ)n3 pairs where the loser is ordered before
the winner, implying the bound g ≥ (2 − δ

1+δ )f = (2 − ε)f .

6 Practicality and Relation to Other Work

The reduction analysis is representation independent, which means that it works
for any representation. Naturally, some representations are more computation-
ally efficient than others. If, for example, c(xi, xj) = 1(s(xi) ≥ s(xj)) for some
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learned scoring function s : X → [0, 1], the complexity of test-time evaluation is
linear rather than quadratic in the number of elements. Note that s is not trained
as a simple regressor, because what we want to optimize is the pairwise ordering
of elements. If c is a scoring function, the tournament it labels is transitive and
the reduction just outputs the linear ordering consistent with the tournament,
so the corresponding regret transform is r �→ r.

It would be interesting to consider other efficient representations describing
more general classes of preference functions, as well as extend the results to
partial tournaments and other ranking loss functions.

Cohen, Schapire, and Singer [CSS99], similarly, use a two-stage approach to
ranking: They first learn a preference function that takes a pair of instances
and returns a score predicting how certain it is that the first instance should be
ranked before the second. The learned function is then evaluated on all pairs of
instances in the test set and an ordering approximating the largest possible l1
agreement with the predictions is created, using a variant of the degree-based
algorithm. One of the results they show is that the agreement achieved by an
optimal feedback arc set ordering is at most twice the agreement obtained by
their algorithm. To translate this result into the language of losses, let Mfa

be the AUC loss of the minimum feedback arc set ordering and Approx be
the AUC loss of the approximation. Then the result says that 1 − Approx ≥
1
2 (1−Mfa) or Approx ≤ 1

2 +Mfa/2. The result is difficult to compare with the
results given here, as the settings are different. A very rough comparison requires
specializations and yields a bound that is weaker than ours: As we have seen
in Section 4, Mfa ≤ 2Bin, where Bin is the loss of the pairwise predictor, so
the result of [CSS99] roughly says that Approx ≤ 1

2 + Bin, while we show that
Approx ≤ 2Bin (modulo the slight differences in the approximation algorithm
and the binary problem).

Cortes and Mohri [CM04] analyzed the relationship between the AUC and
the error rate on the same classification problem, treating the two as different
loss functions. They derived expressions for the expected value and the standard
deviation of the AUC over all classifications with a fixed number of errors, under
the assumption that all such classifications are equiprobable (i.e., the classifier is
as likely to err on any one example as on any other). There is no direct connection
with the present work.

Acknowledgement. We would like to thank the reviewers for their helpful
comments and suggestions.
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A Supporting Lemmas

The proof of Theorem 1 used two simple lemmas which we prove here.
Recall that Q denotes the distribution of label sequences {0, 1}n of an unla-

beled set {1, . . . , n}. Call regret rQ(i, j) proper if lQ(i, j) − lQ(j, i) ≥ 0. Notice
that if rQ(i, j) is proper, then rQ(j, i) = 0.

Lemma 1. For any i, j, and k in {1, . . . , n}, if rQ(i, j) and rQ(j, k) are proper,

rQ(i, k) = rQ(i, j) + rQ(j, k).

Proof. Let p be a shorthand for the restriction of Q to indices {i, j, k} (so p is a
distribution over {0, 1}3 obtained by summing over all label indices other than
i, j, and k). A simple algebraic manipulation verifies the claim.

rQ(i, j) + rQ(j, k) =
p(100) + p(101) − p(010) − p(011)+ p(010) + p(110)− p(001) − p(101) =
p(100) + p(110) − p(001) − p(011) = rQ(i, k).

Notice that all label assignments above have exactly two mixed pairs, so the
factor of 1/2 is cancelled throughout.
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Lemma 2. If with respect to Q, the ordering 〈1, 2, . . . , n〉 has zero AUC regret,
then all regret-zero pairwise predictions must be consistent with the ordering:
rQ(i, j) = 0 for all 1 ≤ i < j ≤ n.

Proof. All regrets rQ(i, i+1) must be 0, since swapping i and i+1 does not affect
other pairwise regrets and would thus decrease the overall regret, contradicting the
assumption that 〈1, 2, . . . , n〉 is regret minimizing. Consequently, all rQ(i + 1, i)
are proper. Repeated application of Lemma 1 implies that, for any j > i, rQ(j, i)
is proper, which in turn implies that rQ(i, j) = 0, concluding the proof.
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The Rademacher complexity [1] of a function class F is defined as

Rn(F ) = E
x1,...xn
σ1,...σn

[

sup
f∈F

∣
∣
∣
∣
∣

1
n

n∑

i=1

σif(xi)

∣
∣
∣
∣
∣

]

where σ1, ...σn are iid Rademacher random variables. Rn(F ) characterizes the
extent to which the functions in F can be best correlated with a Rademacher
noise sequence. A number of generalization error bounds have been proposed
based on Rademacher complexity [1,2].

In this open problem, we introduce a new complexity measure for function
classes. We focus on function classes F that is the convex hull of a base function
class H , which consists of indicator functions. Hence each f ∈ F is a voting
classifier of the form

f(x) =
∑

αihi(x),
∑

αi = 1, αi ≥ 0, hi ∈ H.

Since hi(x) ∈ {−1, 1}, then f(x) ∈ [−1, 1]. We assume that H is symmetric:
if h ∈ H , then −h ∈ H . The measure presented is referred to as Rademacher
margin complexity, defined as:

RMn(F, θ) = E
x1,...xn
σ1,...σn

[

sup
f∈F

1
n

n∑

i=1

sgn [σif(xi) − θ]

]

, 0 < θ ≤ 1

Rademacher margin complexity quantifies the extent to which the functions in F
can be best correlated, at least at margin θ, with a Rademacher noise sequence.
Intuitively, Rademacher margin complexity is more suitable for characterizing
the function class on its ability of producing large margin classifiers.

Our first open problem is a conjecture on a margin bound of voting classifiers
in terms of the Rademacher margin complexity.

Conjecture: With probabiltiy at least 1 − δ, for all f ∈ F satisfies

PD(y · f(x) ≤ 0) ≤ PS(y · f(x) ≤ θ) + k · RMn(F, θ) + ε(n, δ) (1)

where PD is the probability when the example is chosen according to the
underlying distribution D of the problem. PS is the probability with respect
to the empirical distribution on the training examples. k is some universal con-
stant. ε depends on n and δ, and is typically of the form O(( 1

n ln(1/δ))1/2).
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We next consider the properties of the Rademacher margin complexity. It is
easy to check that if H is symmetric, then:

1. RMn(H, θ) = Rn(H), 0 ≤ θ ≤ 1.

That is, the Rademacher margin complexity of an indicator function class
reduces to its Rademacher complexity.

2. RMn(F, θ) is monotonic decreasing with respect to θ for 0 ≤ θ ≤ 1 and

RMn(F, 1) = RMn(H, 1) = Rn(H).

Now our second problem. Is there a upper bound of RMn(F, θ) in terms of
Rn(H) and θ ? In particular, whether the following inequality holds:

RMn(F, θ) ≤ k · Rn(H) · θ−1, 0 < θ ≤ 1 (2)

where k is a constant.
Note that if Eq.(1) and Eq.(2) are both true, we recover a margin bound given

in [2].

Monetary Rewards:
RMB 250 for each problem. Either prove it or give a counter example.
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Open Problems in Efficient Semi-supervised

PAC Learning

Avrim Blum� and Maria-Florina Balcan∗
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1 Introduction

The standard PAC model focuses on learning a class of functions from labeled
examples, where the two critical resources are the number of examples needed
and running time. In many natural learning problems, however, unlabeled data
can be obtained much more cheaply than labeled data. This has motivated the
notion of semi-supervised learning, in which algorithms attempt to use this cheap
unlabeled data in a way that (hopefully) reduces the number of labeled examples
needed for learning [4]. For instance, semi-supervised and transductive SVM [2,5]
and co-training [3] are two examples of semi-supervised learning algorithms.
In [1], a semi-supervised PAC model is introduced that provides a common
framework for the kinds of assumptions these algorithms make; however, most
of the results in [1] deal with sample complexity rather than computational
efficiency, or are only computationally efficient under strong assumptions on the
underlying distribution. This note poses several questions related to developing
computationally efficient algorithms in this semi-supervised PAC model.

2 The Model

The high-level idea of the semi-supervised PAC model of [1] is that rather than
talking of learning a concept class C, one talks of learning a class C under
a compatibility notion χ. Given a hypothesis h and distribution D, χ(h, D)
is a score in [0, 1] indicating how compatible h is with D. For example, if we
believe data should be separable by a large margin, then χ would give a low
score to separators that slice through dense regions under D and high score
to those that do not. Or, if data has two “views” and one believes that either
view should be sufficient for classification (as in co-training) then χ can give
a low score to hypothesis pairs that disagree on a large probability mass of
examples and a high score to those that tend to agree. Formally, in order to
ensure that compatibility can be estimated from a finite sample, one requires
that (overloading notation) χ(h, D) ≡ Ex∼D[χ(h, x)] where χ(h, x) ∈ [0, 1]. The
quantity 1 − χ(h, D) can be viewed as a notion of unlabeled error rate. For
example, if we define χ(h, x) = 0 if x is within distance γ of hyperplane h and

� Supported in part by National Science Foundation grant CCF-0514922 and a Google
Research Grant.
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χ(h, x) = 1 otherwise, then the unlabeled error rate 1−χ(h, D) is the probability
mass within distance γ of h. The analog to the standard PAC “realizable case”
assumption that the target function lies in C is an assumption that furthermore
the target is perfectly compatible (i.e., it has both zero true error and zero
unlabeled error). In such a case, unlabeled data from D can allow one to reduce
the space of plausible functions from the set of all functions in C (which are all
potential candidates before any unlabeled data is seen) to just those that happen
to be highly compatible with the distribution D (once enough unlabeled data
has been seen to uniformly estimate compatibilities of all functions in C).

3 The Question

For a given class C, compatibility notion χ, and distribution D, define CD,χ(ε) =
{h ∈ C : 1−χ(h, D) ≤ ε}. Under the assumption that the target belongs to C and
is fully compatible, then given enough unlabeled data we can in principle reduce
our search space from C down to CD,χ(ε). Thus, we should in principle need at
most O(1

ε (log |CD,χ(ε)| + log 1
δ )) labeled examples to learn well.1 Furthermore, if

the distribution D is helpful, then |CD,χ(ε)| may be much smaller than |C|. The
high-level question is whether for interesting classes C and notions of compati-
bility χ, one can learn with this many (or polynomial in this many) labeled ex-
amples by efficient algorithms. If so, we say that such an algorithm is an efficient
semi-supervised learning algorithm for the pair (C, χ). We now instantiate this
high-level question with a few specific classes and compatibility notions.

3.1 A Simple Non-open Problem

Before presenting open problems, here is a simple example from [1] of a (C, χ)
pair for which efficient semi-supervised learning is easy. Let C be the class of
monotone disjunctions over {0, 1}n. Now, suppose we say an example x is com-
patible with function h if either all variables set to 1 in x are relevant variables
of h or none of them are. This is a very strong notion of “margin”: it says, in
essence, that every variable is either a positive indicator or a negative indicator,
and no example should contain both positive and negative indicators.

In this case efficient semi-supervised learning is easy. Just draw a large set of
unlabeled examples and create a graph with n vertices, one for each variable. Put
an edge between two vertices if any example has both variables set to 1. Under
the compatibility assumption, all variables in the same connected component of
this graph must either all be positive indicators or all be negative indicators.
So, if we have k components, we only need O(1

ε [k + log 1
δ ]) labeled examples to

achieve a PAC guarantee. Furthermore, as long as we created the graph using
enough unlabeled data we can be confident that k ≤ lg |CD,χ(ε)|. Note that in
this context, a “helpful” distribution is one that produces a small number of
components.
1 Or even less depending on the structure of C. For example, we would ideally use an

ε-cover bound here. Note that we have overloaded “ε” for both labeled and unlabeled
error bounds for simplicity.
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3.2 Specific Open Problems

Two-sided disjunctions: This is a generalization of the example above where
we now allow variables to be positive indicators, negative indicators, or irrel-
evant. Specifically, define a “two-sided disjunction” h to be a pair of disjunc-
tions (h+, h−) where only h+ is used for classification, but h is compatible
with D iff for all examples x, h+(x) = −h−(x). That is, D is such that both
the positive and negative classes can be described by OR-functions.

Two-sided majority with margins: As a different generalization of the
problem from Section 3.1, suppose that again every variable is either a
positive or negative indicator, but we relax the margin condition a bit. In
particular, say we require that x either contain at least 60% of the positive
indicators and at most 40% of the negative indicators (for positive examples)
or vice versa (for negative examples).

Co-training with disjunctions: This is the “inverse” of the two-sided dis-
junction problem. Let C be the class of disjunctions, but an example x is
a pair of points (x1, x2) in {0, 1}n. Define h(x) = h(x1) but say that h is
compatible with x iff h(x1) = h(x2). That is, under our compatibility as-
sumption, each unlabeled example is either a pair of positive examples or a
pair of negative examples. Note that D is now a distribution over pairs.

Co-training with linear separators: A generalization of the above problem
is the case that h is a linear separator. It is known that the consistency
problem is NP-hard [A. Flaxman, personal communication], however efficient
algorithms are known for the special case that the elements x1 and x2 of the
pair are drawn independently given their label [3,1]. Even if one cannot solve
the problem efficiently in general, a natural question is whether one can at
least weaken the independence-given-the-label assumption in a nontrivial
way and still get an efficient algorithm for this class.

Monetary rewards: $300 for a positive solution to any of the above questions.
More generally, it would be interesting to consider other classes and notions of
compatibility as well.
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Resource-Bounded Information Gathering

for Correlation Clustering

Pallika Kanani and Andrew McCallum
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Abstract. We present a new class of problems, called resource-bounded
information gathering for correlation clustering. Our goal is to perform
correlation clustering under circumstances in which accuracy may be im-
proved by augmenting the given graph with additional information. This
information is obtained by querying an external source under resource
constraints. The problem is to develop the most effective query selection
strategy to minimize some loss function on the resulting partitioning. We
motivate the problem using an entity resolution task.

1 Problem Definition

The standard correlation clustering problem on a graph with real-valued edge
weights is as follows: there exists a fully connected graph G(V, E) with n nodes
and edge weights, wij ∈ [−1, +1]. The goal is to partition the vertices in V by
minimizing the inconsistencies with the edge weights [1]. That is, we want to
find a partitioning that maximizes the objective function F =

∑
ij wijf(i, j),

where f(i, j) = 1 when vi and vj are in the same partition and −1 otherwise.
Now consider a case in which there exists some “true” partitioning P , and

the edge weights wij ∈ [−∞, +∞] are drawn from a random distribution (noise
model) that is correlated with whether or not edge eij ∈ E is cut by a partition
boundary. The goal is to find an approximate partitioning, Pa, of V into an
unknown number of k partitions, such that Pa is as ‘close’ to P as possible. There
are many different possible measures of closeness to choose from. Let L(P , Pa)
be some arbitrary loss function. If no additional information is available, then
we could simply find a partitioning that optimizes F on the given weights.

In this paper, we consider settings in which we may issue queries for additional
information to help us reduce loss L. Let G0(V0, E0) be the original graph. Let
F0 be the objective function defined over G0. Our goal is to perform correlation
clustering and optimize F0 with respect to the true partitioning of G0. We can
augment the graph with additional information using two alternative methods:
(1) updating the weight on an existing edge, (2) adding a new vertex and edges
connecting it to existing vertices. We can obtain this additional information by
querying a (possibly adversarial) oracle using two different types of queries. In
the first method, we use query of type Q1, which takes as input edge eij and
returns a new edge weight w′

ij , where w′
ij is drawn from a different distribution

that has higher correlation with the true partitioning P .
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In the second method, we can expand the graph G0, by adding a new set
of vertices, V1 and the corresponding new set of edges, E1 to create a larger,
fully connected graph, G′. Although we are not interested in partitioning V1, we
hypothesize that partitioning G′ would improve the optimization of F′ on G0 due
to transitivity of partition membership. In this case, given resource constraints,
we must select V ′

s ⊂ V1 to add to the graph. These can be obtained by second
type of query, Q2, which takes as input (V0, E0) and returns a subset V ′

s ⊂ V1.
Note that the additional nodes obtained as a result of the queries of type Q2 help
by inducing a new, and presumably more accurate partitioning on the nodes of
G0. Fig. 1 illustrates the result of these queries.

However, there exist many possible queries of type Q1 and Q2, each with an
associated cost. There is also a cost for performing computation on the additional
information. Hence, we need an efficient way to select and order queries under
the given resource constraints.

Formally, we define the problem of resource-bounded information gathering
for correlation clustering as follows. Let c(q) be the cost associated with a query
q ∈ Q1∪Q2. Let b be the total budget on queries and computation. Find distinct
queries q1, q2, .....qm ∈ Q1∪Q2 and Pa, to minimize L(P , Pa), s.t.

∑
qi

c(qi) ≤ b.

(a) G0 (b) Result of Q1 (c) Result of Q2

Fig. 1. Results of the two kinds of queries. (a) The adjacency matrix of G0 where
darker circles represent edges with higher weight. (b) The new edge weights w′

ij after
issuing the queries from Q1. (c) The graph expanded after issuing queries from Q2.
The upper left corner of the matrix corresponds to G0 and the remaining rows and
columns correspond to the nodes in V1.

2 Example Application and Related Work

The problem described above is inspired by our work in author coreference.
Here we are given a set of citations that mention similar author names, and
must partition them by the true identity of the author. As in our previous
work [2], we build a graph in which nodes represent author mentions. The edge
weights indicate the strength of our belief that two mentions refer to the same
real author, and are estimated by a binary logistic regression classifier that uses
features such as title, co-author overlap, etc. Note that, each partition should
represent the set of mentions that correspond to the same real author.

Experimentally, we have shown significant accuracy improvement by making
queries of type Q1 and Q2. In our case, we issue the queries to the web. We
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incorporate the results of the queries either as additional features or as additional
nodes in the graph. For example, we can form a query by joining the titles of two
citations and issuing it to a search engine API. A hit indicates the presence of a
document on the web that contains both of these citations and hence provides
some evidence that they are authored by the same person. The result of the
query is translated into a binary input feature to our classifier and is used to
update the weight on the corresponding edge. The problem is resource bounded
because for a fully connected graph, obtaining additional feature value for every
pair of mentions is prohibitively expensive.

Similarly, we can add nodes corresponding to documents obtained by web
queries. Note that these web documents represent author mentions and help
improve accuracy by transitivity. For example, the additional node could be the
list of publications or CV of one of the authors and would show strong affinity
towards several nodes in the original graph. Hence, by transitivity, applying
graph partitioning on this expanded graph leads to improvement in accuracy.
However, since the web is too large to incorporate all its data, we need an efficient
procedure for selecting a subset of web queries and resulting documents.

In [2], we propose an approach to resource bounded information gathering
based on expected entropy, in which we use web information as an additional
feature. We also propose centroid-based methods in which we add nodes to the
graph.

Learning and inference under resource limitations has been studied in various
forms, including resource-bounded reasoning and the value of information [5],
budgeted learning, [4], and active learning, for example, [3].
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Consider the problem of estimating the centers μ = (μ1, . . . , μk) of a uniform
mixture of unit-variance spherical Gaussians in R

d,

f(μ1,μ2,...,μk)(x) =
k∑

i=1

1
k

1
(2π)d/2

e|x−μi|2/2, (1)

from i.i.d. samples x1, . . . , xm drawn from this distribution. This can be done
by maximizing the (average log) likelihood L(x1,...,xm)(μ) = 1

m

∑
i log fµ(xi).

Maximizing the likelihood is guaranteed to recover the correct centers, in the
large-sample limit, for any mixture model of the form (1). Unfortunately, max-
imizing the likelihood is hard in the worst case, and we usually revert to local
search heuristics such as Expectation Maximization (EM) which can get trapped
in the many local minima the likelihood function might have.

Despite this, a string of results establishes that the centers can be tractably
recovered, given enough data sampled from a well-separated mixture, using
projection-based methods [1,2,3], and even using EM [4].

These results require a large separation between centers. In practice, even
with a much smaller separation, given enough data and proper initialization,
EM converges to the global ML solution and allows recovery of the centers [5].
It seems that when data is plentiful, the local minima disappear.

Although the likelihood function for finite data sets may admit many lo-
cal minima, the conjecture proposed here is that in the infinite sample limit,
for data sampled from a distribution of the form (1), with any true centers
μ0 = (μ0

1, . . . , μ
0
k), the only local maxima are the global maxima, given by per-

mutations of the true centers μ0
1, . . . , μ

0
k.

At the infinite sample limit, the likelihood is given by the KL-divergence be-
tween mixture models: L(μ) m→∞−→ EX∼fµ0 [log fµ(X)] = −D

(
μ0‖μ

)
− H(μ0),

where the entropy H(μ0) of fµ0 is constant. Maxima of the infinite-sample likeli-

hood are thus exactly minima of the KL-divergence D
(
μ0‖μ

)
= Efµ0

[
log

fµ0

fµ

]
.

The KL-divergence is non-negative and zero only when fµ = fµ0 . This happens iff
μ1, . . . , μk are a permutation of μ0

1, . . . , μ
0
k, and so these are the only global min-

ima of the KL-divergence. Our conjecture can therefore be equivalently stated as:
for any set of centers μ0, the only local minima of D

(
μ0‖μ

)
, with respect

to μ, are the global minima obtained at permutations of μ0.
The KL-divergence has many stable points which are not local minima, but

rather saddle points. For example, such a saddle point arises when two centers
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coincide in μ (but not in μ0). There are also several different basins, one for each
permutation of the centers, separated by non-convex ridges and near-plateaus.
When only a finite data set is considered, local minima easily arise in these near-
plateaus. Even in the infinite-sample limit, EM, or other local-search methods,
might take a very large number of steps to traverse these near-plateaus and
converge. For this reason the conjecture does not directly imply tractability.

The conjecture does imply that no minimum separation is required in order
to establish convergence to the global minimum at the infinite sample limit—
if it is true, what remains is to study the relationship between the speed of
convergence, the sample size and the separation. Moreover, the conjecture implies
that local search (e.g. EM) will converge to the correct model regardless of
initialization (except for a measure zero set of “ridge manifolds” between the
attraction basins of different permutations of the correct centers). Empirical
simulations with “infinite sample” EM (working directly on the KL-divergence)
on three centers in two dimensions confirm this by showing eventual convergence
to the global likelihood, even when initialized with two nearby centers. Current
large-separation results require careful initialization ensuring at least one initial
center from the vicinity of each true center [4,6].

Of course, the real quantity of interest is the probability Pm, under some
specific random initialization scheme, of being in the basin of attraction of the
global maximum of the likelihood given a random sample of finite size m. In fact,
our interest in the problem stemmed from study of the probability Pm for some
reasonable initialization schemes. The conjecture can be equivalently stated as
Pm → 1 for any initialization scheme, and can thus be seen as a prerequisite to
understanding Pm.

Clarification: The KL-divergence D (p‖μ) between a fixed arbitrary distribu-
tion p and mixture models (1), may have non-global local minima. The conjecture
only applies when p itself is a mixture model of the form (1). In particular, if p
is a mixture of more than k Gaussians, and we are trying to fit it with a mixture
of only k Gaussians, non-global local minima can arise.
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When Is There a Free Matrix Lunch?
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The “no-free lunch theorems” essentially say that for any two algorithms A
and B, there are “as many” targets (or priors over targets) for which A has
lower expected loss than B as vice-versa. This can be made precise for certain
loss functions [WM97]. This note concerns itself with cases where seemingly
harder matrix versions of the algorithms have the same on-line loss bounds as
the corresponding vector versions. So it seems that you get a free “matrix lunch”
(Our title is however not meant to imply that we have a technical refutation of
the no-free lunch theorems).

The simplest case of this phenomenon occurs in the so-called expert setting.
We have n experts. In each trial the algorithm proposes a probability vector wt

over the n experts, receives a loss vector �t ∈ [0, 1]n for the experts and incurs an
expected loss wt·�t. The Weighted Majority or Hedge algorithm uses exponential
weights wt

i ∼ w1
i e−η

∑ t−1
t=1 �t

i and has the following expected loss bound [FS97]:
T∑

t=1

wt · �t ≤ �∗ +
√

2�∗ ln n + lnn,

when η is tuned as a function of n and the best loss �∗ = infi

∑T
t=1 �t

i.
Recently a matrix version of this algorithm has been developed in parallel by

a number of researchers [WK06b, AK07]. Now the experts are outer products
or dyads uu�, where u is a unit vector in R

n, and there are continuously many
such dyads (one for each pair ±u). The uncertainty of the algorithm about which
dyad is good is expressed as a mixture of dyads (or density matrix) Wt.

The loss vector �t at trial t is replaced by a covariance matrix Lt whose
eigenvalues must lie in the interval [0,1]. The symmetric matrix Lt specifies the
loss for all dyads uu� at trial t via the formula (uu�) • Lt = u�Ltu which is
the variance at trial t in direction u. The algorithm is charged by the expected
variance Wt • Lt =

∑
i,j W t

i,jL
t
i,j and its total expected variance is bounded as

T∑

t=1

Wt • Lt ≤ L∗ +
√

2L∗ ln n + lnn,

when η is tuned as a function of n and L∗ = infu
∑T

t=1 u�Ltu. The algorithm
that achieves this is a matrix generalization of the weighted majority algorithm
defined using the matrix exponential (See [WK06b, AK07] for details).

Curiously enough, if the initial density matrix is uniform and we let Lt =
diag(�t), then the matrix version of the algorithm and bound specialize to the
original vector version. That is, the original Weighted Majority algorithm is
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retained as a special case when all instance/loss matrices Lt have the identity
matrix as an eigensystem. The same phenomenon happens for linear regression
w.r.t. square loss: The bounds proven for matrix version of the exponentiated
gradient algorithm [TRW05] are identical to the original bounds [KW97] when
the instances are diagonal matrices. The same happens for Boosting [TRW05]
and the matrix version of the Winnow algorithm [War07]. There is even a Bayes
rule for density matrices that has the standard Bayes rule and its bounds as a
special case when the priors and data likelihoods are diagonal matrices [WK06a].

Note that this phenomenon is also really puzzling from an information the-
oretic point of view. It takes lnn nats to encode the identity of one of the n
experts. However it should take more than ln n nats to encode an arbitrary di-
rection/dyad in n dimensions. What properties are required for an on-line
algorithm and its bound for solving a problem with symmetric matrix
instances so that the worst-case of the bound is attained when the in-
stances are diagonal (i.e. have the identity matrix as an eigensystem),
thus allowing us to get the matrix case for free? So far, all cases where
this has been shown is for algorithms that are motivated by some kind of rela-
tive entropy regularized optimization problem. Does this phenomenon occur for
other families of updates as well that are motivated by different divergences?

Ideally, we would like the characterization be defined i.t.o. some spectral in-
variance of the regularization and loss function (see e.g. [WV05] for an example
where a family of updates is characterized by a notion of rotation invariance).

Acknowledgement. Thanks to Dima Kuzmin for helpful discussions.
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