
The Ferry Cover Problem

Michael Lampis and Valia Mitsou

School of Electrical & Computer Engineering,
National Technical University of Athens, Greece
mlampis@cs.ntua.gr, valia@corelab.ntua.gr

Abstract. In the classical wolf-goat-cabbage puzzle, a ferry boat man
must ferry three items across a river using a boat that has room for only
one, without leaving two incompatible items on the same bank alone. In
this paper we define and study a family of optimization problems called
Ferry problems, which may be viewed as generalizations of this familiar
puzzle.

In all Ferry problems we are given a set of items and a graph with
edges connecting items that must not be left together unattended. We
present the Ferry Cover problem (FC), where the objective is to deter-
mine the minimum required boat size and demonstrate a close connec-
tion with Vertex Cover which leads to hardness and approximation
results. We also completely solve the problem on trees. Then we focus
on a variation of the same problem with the added constraint that only
1 round-trip is allowed (FC1). We present a reduction from MAX-NAE-

{3}-SAT which shows that this problem is NP-hard and APX-hard. We
also provide an approximation algorithm for trees with a factor asymp-
totically equal to 4

3
. Finally, we generalize the above problem to define

FCm, where at most m round-trips are allowed, and MFTk, which is the
problem of minimizing the number of round-trips when the boat capac-
ity is k. We present some preliminary lemmata for both, which provide
bounds on the value of the optimal solution, and relate them to FC.

Keywords: approximation algorithms, graph algorithms, vertex cover,
transportation problems, wolf-goat-cabbage puzzle.

1 Introduction

The first time algorithmic transportation problems appeared in western litera-
ture is probably in the form of Alcuin’s four “River Crossing Problems” in the
book Propositiones ad acuendos iuvenes. Alcuin of York, who lived in the 8th
century A.D. was one of the leading scholars of his time and a royal advisor in
Charlemagne’s court. One of Alcuin’s problems was the following:

A man has to take a wolf, a goat and a bunch of cabbages across a river, but
the only boat he can find has only enough room for him and one item. How can
he safely transport everything to the other side, without the wolf eating the goat
or the goat eating the cabbages?

This amusing problem is a very good example of a constraint satisfaction prob-
lem in operations research, and, quite surprisingly for a problem whose solution

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 227–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

228 M. Lampis and V. Mitsou

is trivial, it demonstrates many of the difficulties which are usually met when
trying to solve much larger and more complicated transportation problems ([2]).

In this paper we study generalizations of Alcuin’s problem which we call
Ferry problems. In these problems, which belong to a wide family of transporta-
tion problems, the goal is to ferry a set of items across a river, while making sure
that items that remain unattended on the same bank are safe from each other.
The relations between items are described by an incompatibility graph, and the
objective varies from minimizing the size of the boat needed to minimizing the
number of trips.

There are many reasons which make the study of Ferry problems interesting
and worthwhile. First, as they derive from a classical puzzle, they are amusing
and entertaining, while at the same time having algorithmic depth. This makes
them very valuable as a teaching tool because puzzles are very attractive to stu-
dents. Several other applications of these concepts are possible. For example in
cryptography, the items may represent parts of a key and the incompatibilities
may indicate parts that could be combined by an adversary to gain some infor-
mation. A player wishes to transfer a key to someone else, without allowing him
to gain any information before the whole transaction is complete.

The rest of this paper is structured as follows: basic definitions and prelimi-
nary notions are given in Section 2. In Section 3 we study the Ferry Cover

problem without constraints on the number of trips and present hardness and
approximation results, as well as results for several graph topologies. Section
4 consists of an analysis of the Trip-Constrained Ferry Cover problem
with the maximum number of trips being three, i.e. only one round-trip allowed.
We present a reduction from MAX-NAE-{3}-SAT which leads to hardness re-
sults for this variation. In Section 5 we analyze the general Trip-Constrained

Ferry Cover and Min Ferry Trips problems presenting several lemmata
that provide bounds on the value of the optimal solution and relate them to FC.
Finally, conclusions and directions to further work are given in Section 6.

2 Definitions – Preliminaries

The rules of the Ferry games can be roughly described as follows: we are
given a set of n items, some of which are incompatible with each other. These
incompatibilities are described by a graph with vertices representing items, and
edges connecting incompatible items. We need to take all n items across a river
using a boat of fixed capacity k without at any point leaving two incompatible
items on the same bank when the boat is not there. We seek to minimize the
boat size in conjunction with the number of required trips to transfer all items.

Let us now formally define the Ferry problems we will focus on. To do
this we need to define the concept of a legal configuration. Given an incompat-
ibility graph G(V, E), a legal configuration is a triple (VL, VR, b), VL ∪ VR =
V, VL ∩ VR = ∅, b ∈ {L, R} s.t. if b = L then VR induces an independent set on
G else VL induces an independent set on G. Informally, this means that when
the boat is on one bank all items on the opposite bank must be compatible.

The Ferry Cover Problem 229

Given a boat capacity k a legal left-to-right trip is a pair of legal configurations
((VL1 , VR1 , L), (VL2 , VR2 , R)) s.t. VL2 ⊆ VL1 and |VL1 | − |VL2 | ≤ k. Similarly a
right-to-left trip is a pair of legal configurations ((VL1 , VR1 , R), (VL2 , VR2 , L)) s.t.
VR2 ⊆ VR1 and |VR1 | − |VR2 | ≤ k. A ferry plan is a sequence of legal configura-
tions starting with (V, ∅, L) and ending with (∅, V, R) s.t. successive configura-
tions constitute left-to-right or right-to-left trips. We will informally refer to a
succession of a left-to-right and a right-to-left trip as a round-trip.

Definition 1.The FerryCover (FC) problem is, given an incompatibility graph
G, compute the minimum required boat size k s.t. there is a ferry plan for G.

We will denote by OPTFC(G) the optimal solution to the Ferry Cover problem
for a graph G.

We can also define the following interesting variation of FC.

Definition 2. The Trip-Constrained Ferry Cover problem is, given a
graph G and an integer trip constraint m compute the minimum boat size k
s.t. there is a ferry plan for G consisting of at most 2m + 2 configurations, i.e.
at most 2m + 1 trips, or equivalently m round-trips plus the final trip.

We will denote by OPTFCm(G) the optimal solution of Trip-Constrained

Ferry Cover for a graph G given a constraint on trips m.
The problem of minimizing the number of trips when the boat capacity is

fixed can be defined as follows:

Definition 3. The Min Ferry Trips problem is, given a graph G and a boat
size k determine the number of round-trips of the shortest possible ferry-plan for
G with capacity k.

We will denote by OPTMFTk
(G) the optimal solution of Min Ferry Trips for

a graph G given a boat capacity k. It should be noted that for some values of k
there is no valid ferry-plan. In these cases we define OPTMFTk

= ∞.
For the sake of completeness let us also give the definition of the well-studied

NP-hard Vertex Cover and MAX-NAE-{3}-SAT problems ([3]).

Definition 4. The Vertex Cover problem is, given a graph G(V, E) find a
minimum cardinality subset V ′ of V s.t. all edges in E have at least one endpoint
in V ′ (such subsets are called vertex covers of G).

We denote by OPTVC(G) the cardinality of a minimum vertex cover of G.

Definition 5. The MAX-NAE-{3}-SAT problem is, given a CNF formula
where each clause contains exactly 3 literals, find the maximum number of clauses
that can be satisfied simultaneously by any truth assignment. In the context of
MAX-NAE-{3}-SAT, we say that a clause is satisfied when it contains two
literals with different values.

Finally, let us give the definition of the H-Coloring problem, which will be
useful in the study of FC1.

230 M. Lampis and V. Mitsou

Definition 6. For a fixed graph H(VH , EH) possibly with loops but without mul-
tiple edges, the H-Coloring problem is the following: given a graph G(VG, EG),
find a homomorphism θ from G to H, i.e. a map θ : VG → VH with the property
that (u, v) ∈ EG ⇒ (θ(u), θ(v)) ∈ EH .

The above problem was defined in [4]. Informally, we will refer to the vertices of
H as colors.

3 The Ferry Cover Problem

In this section we present several results for the Ferry Cover problem which
indicate that it is very closely connected to Vertex Cover. We will show that
Ferry Cover is NP-hard and that it has a constant factor approximation.

Lemma 1. For any graph G, OPTVC(G) ≤ OPTFC(G) ≤ OPTVC(G) + 1.

Proof. For the first inequality note that if we have boat capacity k and OPTVC(G)
> k, then no trip is possible because any selection of k vertices to be transported
on the initial trip fails to leave an independent set on the left bank.

For the second inequality, if we have boat capacity OPTVC + 1 then we can
use the following ferry plan: load the boat with an optimal vertex cover and
keep it on the boat for all the trips. Use the extra space to ferry the remaining
independent set vertex by vertex to the other bank. Unload the vertex cover
together with the last vertex of the independent set. �

Theorem 1. There are constants εF , n0 > 0 s.t. there is no (1+εF)-approxima-
tion algorithm for Ferry Cover with instance size greater than n0 vertices
unless P=NP.

Proof. It is known that there is a constant εS > 0 such that there is no
(1−εS)-approximation for MAX-3SAT unless P=NP([1]) and that there is a gap
preserving reduction from MAX-3SAT to Vertex Cover. We will show that
there is also a gap-preserving reduction from MAX-3SAT to Ferry Cover.

The gap-preserving reduction to Vertex Cover in [3] and [6] implies that
there is a constant εV > 0 s.t. for any 3CNF formula φ with m clauses we
produce a graph G(V, E) s.t.

OPTMAX−3SAT(φ) = m ⇒ OPTVC(G) ≤ 2
3
|V |

OPTMAX−3SAT(φ) < (1 − εS)m ⇒ OPTVC(G) > (1 + εV)
2
3
|V |

In the first case it follows from Lemma 1 that

OPTVC(G) ≤ 2
3
|V | ⇒ OPTFC(G) ≤ 2

3
|V | + 1.

In the second case,

OPTVC(G) > (1 + εV)
2
3
|V | ⇒ OPTFC(G) > (1 + εV − 1 + εV

2
3 |V | + 1

)(
2
3
|V | + 1).

The Ferry Cover Problem 231

For |V | > 3
2

1
εv

there is a constant εF > 0 s.t. εV − 1+εV
2
3 |V |+1

> εF . Setting n0 =

� 3
2

1
εv
� completes the proof. �

Corollary 1. Ferry Cover is NP-hard

Proof. It follows from Theorem 1 that an algorithm which exactly solves large
enough instances of Ferry Cover in polynomial time, and therefore achieves
an approximation ratio better than (1 + εF), implies that P=NP. �
It should be noted that the constant εF in Theorem 1 is much smaller than
εV . However, this is a consequence of using the smallest possible value for n0.
Using larger values would lead to a proof of hardness of approximation results
asymptotically equivalent to those we know for Vertex Cover. This is hardly
surprising, since Lemma 1 indicates that the two problems have almost equal
optimum values. Lemma 1 also leads to the following approximation result for
Ferry Cover.

Theorem 2. A ρ-approximation algorithm for Vertex Cover implies a (ρ +
1

OPTFC
)-approximation algorithm for Ferry Cover.

Proof. Consider the following algorithm: use the ρ-approximation algorithm for
Vertex Cover to obtain a vertex cover of cardinality SOLVC, then set boat
capacity equal to SOLFC = SOLVC + 1. This provides a feasible solution since
loading the boat with the approximate vertex cover leaves enough room to trans-
port the remaining independent set one by one as in Lemma 1. Observe that
SOLFC = SOLVC + 1 ≤ ρOPTVC + 1 ≤ ρOPTFC + 1 (the first inequality from
the approximation guarantee and the second from Lemma 1). �
We now present some examples for specific graph topologies.

Example 1. If G is a clique, i.e. G = Kn, then OPTFC(G) = OPTVC(G) = n−1.

Example 2. If G is a ring, i.e. G = Cn then OPTFC(G) = OPTVC(G) = �n
2 �.

Example 3. Consider a graph G(V, E), |V | ≥ n + 3 s.t. G contains a clique Kn

and the remaining vertices form an independent set. In addition every vertex
outside the clique is connected with every vertex of the clique. For example see
Figure 1.

We will show that OPTFC(G) = OPTVC(G) + 1. Assume that OPTFC(G) =
OPTVC(G). The optimal vertex cover of G is the set of vertices of Kn. A ferry
plan for G should begin by transferring the clique to the opposite bank and
then leaving a vertex there. On return the only choice is to load a vertex from
the independent set, because leaving any number of vertices from the clique is
impossible. On arrival to the destination bank we are forced to unload the vertex
from the independent set and reload the vertex from the clique. We are now at
a deadlock, because none of the vertices on the boat can be unloaded on the left
bank.

The graph G described in this example is a generalization of the star, where
the central vertex is replaced by a clique. The star is the simplest topology where
OPTFC(G) = OPTVC(G) + 1.

232 M. Lampis and V. Mitsou

Fig. 1. An example of the graph described in Example 3

The following theorem, together with the observation of Example 3 about stars,
completely solves the Ferry Cover problem on trees.

Theorem 3. If G is a tree and OPTVC(G) ≥ 2 ⇒ OPTFC(G) = OPTVC(G).

Proof. Let v1, v2 be two vertices of an optimal vertex cover of G. Then v1 and
v2 have at most one common neighbor, because if they had two then G would
contain a cycle. We denote by u the common neighbor of v1 and v2, if such a
vertex exists.

Then a ferry plan for G is the following: load the vertex cover in the boat
and unload v1 in the opposite bank. Then transfer all the neighbors of v2 vertex
by vertex, leaving vertex u last to be ferried. When u is the only remaining
neighbor of v2 on the left bank, unload v2 and load u on the boat. On arrival
to the destination bank unload u and load v1. The remaining vertices of the
independent set are now transported one by one to the destination bank and
finally v2 is loaded on the boat on the last trip and transported across together
with the rest of the vertex cover. �

Remark 1. If OPTVC(G) for a tree G is 1 (i.e. the tree is a star) then
OPTFC(G) = 2 unless the star has no more than 2 leaves, in which case
OPTFC(G) = 1.

Corollary 2. The Ferry Cover problem can be solved in polynomial time in
trees.

Proof. The Vertex Cover problem can be solved in polynomial time in trees.
Theorem 3 and Remark 1 imply that determining OPTVC is equivalent to
determining OPTFC.

4 The Trip-Constrained Ferry Cover Problem with Trip
Constraint 1

An interesting variation of FC is the Trip-Constrained Ferry Cover prob-
lem where there is a limit on the number of trips allowed. In this section we study

The Ferry Cover Problem 233

Trip-Constrained Ferry Cover in the case of a very tight trip constraint,
i.e. when only one round-trip is allowed (recall that we denote this variation by
FC1). We will show that even in this case the problem is NP-hard, by obtaining
a reduction from MAX-NAE-{3}-SAT. Our reduction is gap-preserving, and
therefore we will also show that FC1 is APX-hard.

We will use the H-Coloring problem to obtain an equivalent definition for
FC1.

Lemma 2. A ferry plan of a graph G for FC1 is equivalent to an F1-coloring
of graph G, where F1 is the graph of Figure 2.

Fig. 2. Graph F1 of Lemma 2

Proof. Given a ferry plan we can define the following homomorphism θ from G
to F1:

– θ(u) = 1, for all vertices u of G remaining on the boat only during the first
trip,

– θ(u) = 2, for all vertices u of G remaining on the boat throughout the
execution of the plan,

– θ(u) = 3, for all vertices u of G remaining on the boat only during the final
trip.

Given an F1-coloring we can devise a ferry plan from the above in the obvious
way. �

Corollary 3. For any graph G(V, E) OPTFC1(G) = min{|V2|+max{|V1|, |V3|}},
where the minimum is taken among all proper F1-colorings of G and V1, V2, V3

are the subsets of V that have taken the colors 1, 2 and 3 respectively.

Proof. From Lemma 2 we obtain a ferry plan for FC1: load the subsets V1 and
V2 in the first trip and unload the subset V1 in the opposite bank while keeping
V2 on the boat. Then return to the first bank and load V3 together with V2 and
transport them to the destination bank.

This implies that the boat should have room for V2 together with the larger
of the sets V1 and V3. �

From now on we will refer to the value |V2| + max{|V1|, |V3|} as the cost of
an F1-coloring. Thus, FC1 can be reformulated as the problem of finding the
minimum cost over all possible F1-colorings. This reformulation leads to the
following theorem:

234 M. Lampis and V. Mitsou

Theorem 4. FC1 is NP-hard. Furthermore, there is a constant εF > 0 s.t. there
is no polynomial-time (1 + εF)-approximation algorithm for FC1, unless P=NP.

Proof. We present a gap-preserving reduction from MAX-NAE-{3}-SAT. Our
first step in the reduction is, given a formula φ with m clauses, to construct a
formula φ′ with 2m clauses by adding to φ for every clause (l1∨ l2∨ l3) the clause
(l1∨l2∨l3). Observe that if a formula contains the clause (l1∨l2∨l3), we can add
the clause (l1∨ l2∨ l3) without affecting the formula’s satisfiability, since a truth
assignment satisfies the first clause (in the NAESAT sense) iff it satisfies both.
Note that this also has no effect on the ratio of satisfied over unsatisfied clauses
for any truth assignment. In addition, for any i, literals li and li appear in φ′ the
same number of times. Note that, since this is the version of NAESAT where
every clause has exactly three literals, the sum of the numbers of appearances
of all variables in φ′ is equal to 6m.

Next, we construct a graph G from φ′. Every variable xi must appear an
even number of times in φ′, half of them as xi and half as ¬xi. Let 2fi denote
the total number of appearances of the variable xi. Then, for every variable xi

we construct a complete bipartite graph Kfi,fi . One half of the bipartite graph
represents the appearances of the literal xi and the other half the appearances
of the literal ¬xi.

For every clause (l1 ∨ l2 ∨ l3), we construct a triangle. We connect each vertex
of the triangle to a vertex of the bipartite graph that corresponds to its literal,
and has not already been connected to a triangle vertex. This is possible, since
the vertices in the bipartite graphs that correspond to a literal li are as many
as the appearances of the literal li in φ′, and therefore as many as the vertices
of triangles that correspond to li. This completes the construction, and we now
have a graph where every vertex of a triangle has degree 3 and every vertex of
a Kfi,fi has degree fi + 1.

Suppose that our original MAX-NAE-{3}-SAT formula φ had m clauses,
and we are given a truth assignment which satisfies t of them. Let us produce an
F1-coloring of G with cost 8m− t. The given truth assignment satisfies 2t of the
2m clauses of φ′. Assign colors 1 and 3 to the vertices of the bipartite graphs,
depending on the truth value assigned to the corresponding literal (1 for false
and 3 for true). Every triangle corresponding to a satisfied clause can be colored
using all three colors, by assigning 1 to a true literal, 3 to a false literal and
2 to the remaining literal. Triangles corresponding to clauses with all literals
true are colored with two vertices receiving 2 and one receiving 1. Similarly,
triangles corresponding to clauses with all literals false are colored with two
vertices receiving 2 and one receiving 3. Note that, due to the construction of φ′,
the number of clauses with all literals true, is the same as the number of clauses
with all literals false. Therefore, |V1| = |V3| =

∑
i fi +2t+ 2m−2t

2 = 4m+ t, while
|V2| = 2t + 2(2m− 2t) = 4m− 2t making the total cost of our coloring equal to
8m − t.

Conversely, suppose we are given an F1-coloring of G with cost at most 8m−t,
we will produce a truth assignment that satisfies at least 2t clauses of φ′ and
therefore at least t clauses of φ. We will first show that this can be done when

The Ferry Cover Problem 235

the color 2 is not used for the vertices of the bipartite graphs, and then show
that any coloring which does not meet this requirement can be transformed to
one of at most equal cost that does.

If color 2 is not used in the bipartite graphs, then the cost for these vertices
is

∑
i fi = 3m. Therefore, the cost for the 2m triangles is at most 5m − t. No

triangle can have cost less than 2, therefore there are at most m − t triangles
with cost 3, or equivalently at least m + t triangles of cost 2. Suppose that no
triangle uses color 2 three times (if not, pick one of its vertices arbitrarily and
color it with 1 or 3, without increasing the total cost). Also, wlog suppose that
|V3| ≥ |V1| (if not, colors 1 and 3 can be swapped without altering the cost).

Now, triangles can be divided in the following categories:

1. Triangles that use color 2 once. These triangles also use colors 1 and 3 once
and their cost is 2.

2. Triangles that use color 2 twice and color 1 once. These triangles have a cost
of 2.

3. Triangles that use color 2 twice and color 3 once. The cost of these triangles
is 3.

Suppose that the first category has k triangles (these correspond to clauses
that will be satisfied by the produced truth assignment). Now, |V3| ≤

∑
i fi +

m − t + k, but |V3| ≥ |V1| ≥
∑

i fi + m + t, thus, m + t ≤ m − t + k ⇒ k ≥ 2t.
Produce a truth assignment according to the coloring of the bipartite graphs
(1 → false and 3 → true). The assignment described above satisfies at least k
clauses.

If color 2 is used in the bipartite graphs, we distinguish between two separate
cases: first, suppose that the same side of a bipartite graph does not contain both
colors 1 and 3. In other words, one side is colored with 1 and 2, and the other
with 2 and 3. On the first side, pick a vertex with color 2. If its only neighbor
from a triangle has received colors 2 or 3, change its color to 1. If its neighbor
has received color 1 exchange their colors. Repeat, until no vertices on that side
have color 2 and proceed similarly for the other side, thus eliminating color 2
from the bipartite graphs without increasing the total cost.

Finally, suppose that the same side of a bipartite graph contains both colors
1 and 3 (let A denote the set of vertices of this side). Then, the other side (the
set of its vertices is denoted by B) must contain only color 2. We will reduce this
case to the previous one. Let A1 be the subset of A consisting of vertices colored
with 1 and A3 the subset of vertices colored with 3 (|A1| + |A3| ≤ |A|). Let B1

be the subset of B consisting of vertices connected with triangle vertices colored
with 2 or 3, and let B3 be the subset of B consisting of vertices connected with
triangle vertices colored with 2 or 1 (|B1| + |B3| ≥ |B|). Since |A| = |B| then
|A1| ≤ |B1| or |A3| ≤ |B3|. If |A1| ≤ |B1| then assign color 2 to all vertices of
A1 and color 1 to all vertices of B1 (this does not increase the total cost), thus
eliminating color 1 from side A. If |A3| ≤ |B3| similarly assign color 2 to the
vertices of A3 and color 3 to the vertices of B3.

236 M. Lampis and V. Mitsou

The above reduction shows that given a MAX-NAE-{3}-SAT formula φ with
m clauses we can construct a graph G s.t.

OPTMAX−NAE−{3}−SAT(φ) = m ⇒ OPTFC1(G) = 7m

OPTMAX−NAE−{3}−SAT(φ) < (1 − ε)m ⇒ OPTFC1(G) > (1 + εF)7m

where εF = ε
7 . In other words we have constructed a gap-preserving reduction

from MAX-NAE-{3}-SAT to FC1, by making use of the reformulation with
H-colorings. Well-known hardness results for MAX-NAE-{3}-SAT (see for ex-
ample [5]) complete the proof of this theorem. �

Theorem 5. There is a 3
2 -approximation algorithm for FC1 on trees.

Proof. First observe that OPTFC1(G) ≥ n
2 , since the boat only arrives to the

destination bank twice, and therefore it must be able to carry at least half of the
vertices of G. Next, it can be shown that OPTVC(G) ≤ n

2 , since on trees there is
always an independent set of size at least n

2 . This can be trivially shown, since
trees are bipartite graphs.

A ferry plan for a tree is the following: compute an optimal vertex cover (its
size is at most n

2) and place all its vertices on the boat. Fill the boat with enough
of the remaining vertices so that it contains �n

2 � vertices. Move to the other side,
compute an optimal vertex cover of the graph induced on the original graph by
the vertices on the boat (its size is at most �n

2 �
2) and keep only those vertices

on the boat. Return to transfer the remaining vertices to the destination bank.
Clearly, a boat capacity of at most �n

2 �
2 + �n

2 � ≤ 3n
4 is sufficient to execute this

plan, and this is at most 3
2 times the optimal. �

The ideas of the previous theorem can be further refined to produce the following
result:

Theorem 6. There is an approximation algorithm for FC1 on trees with ap-
proximation guarantee asymptotically equal to 4

3 .

Proof. Suppose now that instead of transporting n
2 vertices on the first trip we

wish to transport n
k vertices for some k > 1. Upon arrival to the destination

bank we unload at least half of them and return with at most n
2k vertices. Now

we need to take all the remaining vertices to the other side.
This plan requires a boat capacity of max{n

k , n
2k + n − n

k }. It is not hard to
see that this is minimized for k = 3

2 . Thus, by taking two thirds of the vertices
on the initial trip we devise a ferry plan that requires a capacity of 2n

3 vertices.
Clearly, this is at most 4

3 times the optimal.
Unfortunately, the preceding analysis requires that n is a multiple of 3. If this

is not the case we would be required to take � 2n
3 � ≤ 2n

3 +1 vertices. This results
to an approximation ratio bounded by 4

3 + 2
n which tends to 4

3 as n tends to
infinity. �

The Ferry Cover Problem 237

5 The Trip-Constrained Ferry Cover and Min Ferry Trips
Problems

In this section we study Trip-Constrained Ferry Cover for general values
of the trip constraint and present several lemmata which provide bounds on the
optimal solution and relate FCm to FC. We extend the reasoning behind those
lemmata to prove a set of similar results for Min Ferry Trips.

First note that a very loose constraint on the number of trips makes the
problem equivalent to the Ferry Cover problem.

Lemma 3. For any graph G(V, E), |V | = n, OPTFC2n−1(G) = OPTFC(G).

Proof. Any solution to FC2n−1(G) allows a ferry plan with at most 2n+1 con-
figurations. There are at most 2n partitions of the vertices of G into two sets,
therefore there are at most 2n+1 possible legal configurations. No optimal ferry
plan repeats the same configuration twice, since the configurations found be-
tween two successive appearances of the same configuration in a ferry plan can
be omitted to produce a shorter plan. Therefore, any optimal ferry plan for the
unconstrained version has at most 2n+1 configurations and can be realized within
the limits of the trip constraint. �

Loosening the trip constraint can only improve the value of the optimal solution.

Lemma 4.For any graph Gand any integer i ≥ 0, OPTFCi
(G) ≥ OPTFCi+1(G).

Proof. Observe that a ferry plan with trip constraint i can also be executed with
trip constraint i + 1. �

A different lower bound is given by the following Lemma.

Lemma 5. For any graph G(V, E), OPTFCm(G) ≥ |V |
m+1

Proof. Observe that a trip constraint of m implies that for any ferry plan the
boat will arrive at the destination bank at most m + 1 times. Therefore, at least
one of them it must carry at least |V |

m+1 vertices. �

Corollary 4. There is an (m + 1)-approximation algorithm for FCm.

Proof. A boat of capacity |V | can trivially solve the problem. From Lemma 5 it
follows that this solution is at most m + 1 times the optimal. �

Setting the trip constraint greater or equal to the number of vertices makes the
constrained version of the problem similar to the unconstrained version.

Lemma 6. For any graph G(V, E), with |V | = n, OPTVC(G) ≤ OPTFCn(G) ≤
OPTVC(G) + 1.

Proof. For the first inequality, a boat capacity smaller than the minimum vertex
cover allows no trips. For the second inequality it suffices to observe that the
ferry plan of Lemma 1 can be realized within the trip constraint. �

238 M. Lampis and V. Mitsou

Corollary 5. Determining OPTFCm
is NP-hard for all m ≥ n. Furthermore,

there are constants εF , n0 > 0 s.t. there is no (1 + εF)-approximation algorithm
for OPTFCm with instance size greater than n0 vertices unless P=NP.

Proof. By using Lemmata 6 and 4 we can show that OPTVC(G) ≤ OPTFCm
≤

OPTVC(G) + 1. The rest of the proof is similar to that of Theorem 1. �

It is unknown whether there are graphs where OPTFCn
(G) > OPTFC(G). We

conjecture that there is a threshold f(n) s.t. for any graph G, OPTFCf(n)(G) =
OPTFC(G) and that f(n) is much closer to n than 2n − 1 which was proven in
Lemma 3.

Following similar reasoning as in Lemmata 3 - 6 we reach the following results
for MFTk:

Lemma 7. For any graph G(V, E), |V | = n

1. If k = OPTVC(G) then OPTMFTk
(G) ≤ 2n − 1 or OPTMFTk

(G) = ∞
2. For any integer k, OPTMFTk

(G) ≥ OPTMFTk+1(G)
3. OPTMFTk

≥ n
k − 1

4. If k ≥ OPTVC(G) + 1 then OPTMFTk
(G) ≤ n

Proof. Similar to proofs of Lemmata 3,4,5,6 respectively.

MFTk is at least as hard as FC since determining the optimal number of trips
involves deciding whether a ferry-plan is possible with the given boat capacity,
which is exactly the decision version of FC. However, it would be interesting to
investigate whether MFTk remains NP-hard even for k ≥ OPTVC + 1, in which
case there is always a valid ferry plan. We conjecture that the problem remains
NP-hard in that case.

6 Conclusions and Further Work

In this paper we have investigated the algorithmic complexity of several vari-
ations of Ferry problems. For the unconstrained Ferry Cover problem we
have presented results that show it is very closely related to Vertex Cover,
which is a consequence of the fact that the optimal values for the two problems
are almost equal.

For FC1 we have presented hardness results, but the question of how the
problem can be efficiently approximated is open. It would be interesting to see
an approximation algorithm which achieves a ratio better than 2, which can be
achieved trivially by setting boat size n.

For the Trip-Constrained Ferry Cover and Min Ferry Trips prob-
lems, we have presented several lemmata that point out their relation to FC. We
believe that these variations are more interesting because they appear to be less
related to Vertex Cover than FC. It remains an open problem to determine
at which value of the trip constraint FCm becomes equivalent to FC (however,
an upper bound on this value is 2n−1, as shown in Lemma 3). This is a particu-
larly interesting question since so far it remains open whether FC is in NPO, or

The Ferry Cover Problem 239

there exist graphs where every optimal ferry plan is of exponential length. How-
ever, we believe it is highly unlikely that FC is not in NPO. Finally, it would be
interesting to investigate whether there are values of m for which FCm can be
solved in polynomial time, but we believe that hardness results similar to those
for m = 1 and m ≥ n hold for all values of m.

Acknowledgements. This paper is based on work done at the Computation
and Reasoning Lab at NTUA. The authors would like to thank Aris Pagourtzis
and Georgia Kaouri for the original inspiration of the algorithms exercise from
which this paper began, Stathis Zachos for useful discussion and the anonymous
referees for their comments which helped to clarify the presentation of some of
our results.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
intractability of approximation problems. In: Proc. 33rd IEEE annual Symposium
on Foundations of Computer Science (FOCS), pp. 13–22 (1992)

2. Borndörfer, R., Grötschel, M., Löbel, A.: Alcuin’s transportation problems and in-
teger programming (1995)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory
of NP-completeness. W. H. Freeman and Co., New York, NY (1979)

4. Hell, P., Nešetřil, J.: On the complexity of h-coloring. J. Comb. Theory Ser. B. 48(1),
92–110 (1990)

5. Petrank, E.: The hardness of approximation: Gap location. In: Computational Com-
plexity, vol. 4, Springer, Heidelberg (1994)

6. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

	Introduction
	Definitions -- Preliminaries
	The Ferry Cover Problem
	The Trip-Constrained Ferry Cover Problem with Trip Constraint 1
	The Trip-Constrained Ferry Cover and Min Ferry Trips Problems
	Conclusions and Further Work

