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Preface

This volume contains the papers presented at the Fourth International Confer-
ence on Fun with Algorithms (FUN 2007), held June 3-5, 2007 in the beautiful
Tuscanian coastal town of Castiglioncello, Italy.

FUN is a three-yearly conference dedicated to the use, design, and analy-
sis of algorithms and data structures, focusing on results that provide amusing,
witty but nonetheless original and scientifically profound contributions to the
area. The previous three meetings were held on Elba Island, Italy, and special
issues of the journals Theoretical Computer Science (FUN 1998), Discrete Ap-
plied Mathematics (FUN 2001), and Theory of Computing Systems (FUN 2004)
feature extended versions of selected papers from the three conference programs.

In response to the Call for Papers for FUN 2007, we received 41 submissions
from 25 countries. Each submission was reviewed by at least three Program
Committee members. At the end of the selection process, the committee decided
to accept 20 papers. The program also includes three invited talks by Giuseppe
Di Battista (U. Rome III, Ttaly), Nicola Santoro (Carleton U., Canada), and
Luca Trevisan (U.C. Berkeley, USA).

We wish to thank all the authors who submitted their papers to FUN 2007
and thus contributed to the creation of a high-quality program and entertaining
meeting, as well as the colleagues who accepted to serve on the Program Com-
mittee and provided invaluable help with the reviewing process. We also wish to
thank the external reviewers (listed on the following pages) including those who
completed urgent reviews during the discussion phase. Paper submission, selec-
tion, and generation of the proceedings was greatly eased by the use of the public-
domain EasyChair Conference System (http://www.easychair.org). We wish
to thank the EasyChair creators and maintainers for their selfless committment
to the scientific community. Finally, special thanks go to Vincenzo Gervasi, whose
constant help and dedication was crucial in making FUN 2007 a successful event.

April 2007 Pierluigi Crescenzi
Giuseppe Prencipe
Geppino Pucci
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On Embedding a Graph in the Grid with the Maximum
Number of Bends and Other Bad Features

Giuseppe Di Battista, Fabrizio Frati, and Maurizio Patrignani

Dipartimento di Informatica e Automazione — Universita di Roma Tre
{gdb, frati,patrigna}@dia.uniroma3.it

Abstract. Graph Drawing is (usually) concerned with the production of readable
representations of graphs. In this paper, instead of investigating how to produce
“good” drawings, we tackle the opposite problem of producing “bad” drawings.
In particular, we study how to construct orthogonal drawings with many bends
along the edges and with large area. Our results show surprising contact points,
in Graph Drawing, between the computational cost of niceness and the one of
ugliness.

1 Breaking the Graph Drawing Rules

Up to now, bad diagrams have been produced manually or with the aid of a graphic
editor; in both cases placement of symbols and routing of connections are under re-
sponsibility of the designer. The goal of this work is to investigate how poor readability
of diagrams can be achieved by means of automatic tools.

Indeed, although the opposite problem of automatically producing good quality dra-
wings of graphs has been studied since, at least, three decades by a large research com-
munity, called Graph Drawing community, the problem of obtaining drawings where
the main quality is unreadability has been, as far as we know, neglected.

One of the most important reference points for the Graph Drawing community is the
seminal paper of Tamassia [13] devoted to the minimization of the number of bends in
orthogonal drawings. Such a paper can be considered as the milestone of the topology-
shape-metric approach (see also, [6,2,5]), in which the process of producing an orthog-
onal drawing is organized in three steps: in the Planarization step the topology of the
drawing, is determined. Such a topology is described by a planar embedding, i.e., the
order of the edges around each vertex. In this step the purpose is to minimize the num-
ber of crossings. The Orthogonalization step determines the drawing shape, in which
vertices do not have coordinates and each edge is equipped with a list of angles, de-
scribing the bends featured by the orthogonal line representing the edge in the final
drawing. The purpose of this step is the minimization of the total number of bends. The
Compaction step determines the final coordinates of the vertices and bends. The target
is to minimize the area and/or the total length of the edges.

We look at the topology-shape-metric approach from the opposite perspective. Na-
mely, our purpose is to study how a bad orthogonal drawing of a graph can be con-
structed by interpreting on the negative side the three mentioned steps. More precisely,
we concentrate on Orthogonalization and Compaction, leaving to further studies con-
tributions on the Planarization step.

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 1-13, 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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(b) ©

Fig. 1. A drawing of the 3 x 3 grid with 0 bends per edge (a), 5 bends per edge (b), and 30 bends
per edge (c)

In a planar orthogonal drawing I" of a plane graph G each edge is drawn as a polyg-
onal chain of alternating horizontal and vertical segments. There are two types of angles
in I" [5]. Angles formed by edges incident on a common vertex, called vertex-angles
and angles formed by bends (formed by consecutive segments on the same edge), called
bend-angles. The sum of the measures of the vertex-angles around a vertex is 2m. Let
f be an internal face. The sum of the measures of the vertex-angles and bend-angles
inside f is w(p —2), where p is the total number of such angles. If f is the external face,
then the above sum is 7(p + 2). A plane graph has a planar orthogonal drawing iff the
degree of its vertices is at most 4.

Consider any edge e of I" and an arbitrary direction for e. Try to add along e two
more bends: a 7/2 bend to the left and a consecutive 7/2 bend to the right (or vice-
versa). It is easy to see that there always exists an orthogonal drawing I of G with
the same shape of I" plus the two mentioned extra bends. Hence, we can arbitrarily
increase the ugliness of a drawing inserting consecutive pairs of left and right bends on
each edge. However, the aesthetic effect of those bends is not “that bad”, in the sense
that the human eye can easily “virtually stretch” such two consecutive bends still being
able to read the drawing. The effect of sequences of bends all to the left (right) is much
worse. Hence, in the following we do not consider drawings that have an edge with two
consecutive left-right or right-left bends.

Consider again edge e and try to add to e an arbitrary number of bends all to the
left (right). Even in this case it is easy to see that there always exists an orthogonal
drawing I’ of GG with the prescribed angles on e. This implies that, even if we neglect
consecutive left-right and right-left bends, it is possible to draw G with a number of
bends that is arbitrarily high. However, consider again I from the aesthetic perspective.
Even if e has now a large number of bends, we do not know anything on the remaining
part of the drawing, that, maybe, has in I"" still a nice sub-drawing. At this point it
would be easy for the human eye to neglect the bad shape of e, concentrating on the
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remaining part of the drawing and preserving a “side view” of the adjacency expressed
by e. Hence, to capture the notion of ugly drawing we need a more sophisticated model.

A k-bend drawing I" of GG is an orthogonal drawing where each edge e has exactly
k bends. Traveling on e in any direction such bends are either all to the left or all to
the right. We think that the notion of k-bend drawing captures very well the notion of
bad drawing. Of course the highest is k£ the worst is the drawing. Examples of 0-bend,
5-bend, and 30-bend drawings are in Figure 1.

In Section 3 we study if it is possible to construct k-bend drawings. We show that,
unfortunately, there are important classes of graphs that cannot be arbitrarily unpleasant
from this perspective. On the other hand there are classes that have this interesting
feature. Our results show surprising contact points between the computational cost of
niceness and the one of ugliness.

Once the shape has been determined, the topology-shape-metric approach computes
the final drawing. The area of a grid drawing I", where vertices and bends have integer
coordinates, is the number of grid points of a minimum size rectangle with sides parallel
to the axes that covers the drawing. Of course, a nice drawing is a drawing with limited
area. Conversely, a bad drawing is a drawing with large area. Even in this case, to cap-
ture the idea of bad drawing it is not enough to simply maximize instead of minimize. In
fact, it is easy to see that any grid drawing can be scaled-up to an arbitrarily large value
of area. However, the aesthetic effect of this is negligible, since for the human eye is
quite easy to re-scale down and to read the drawing. Hence, we adopt a different model.
We consider only drawings that do not have “empty strips”. Namely, in our drawings if
T, and xps are the minimum and maximum x-coordinate of a vertex or of a bend of
I, for each integer z; with x,,, < x; < x)s there is either a vertex or a bend in I" with
x-coordinate equal to x;. The same holds for y-coordinates.

In Section 4 we study the problem of maximizing the area in an orthogonal draw-
ing of a graph. Since in the topology-shape-metric approach the final coordinates are
computed after the Orthogonalization step, we will assume that the orthogonal shape
to draw has been already fixed. In this setting we will also consider the problem of
maximizing the total edge length of an orthogonal drawing of a given shape.

Finally, in Section 5 we propose alternative models that can be studied in order to
construct bad drawings of graphs and we suggest several open problems that we believe
are worth of interest in a hypothetical Bad Graph Drawing community.

2 Orthogonal Representations and Flow Networks

To continue our discussion we need some definitions from Graph Drawing.

Let f be a face of a plane graph G of maximum degree four, and let /" be an orthog-
onal drawing of (. Each pair of consecutive (possibly coinciding) segments of f can
be associated with a value o, where 1 < « < 4, such that « - 7w/2 is the angle formed
by the two segments into f.

An orthogonal representation or orthogonal shape H of G is the equivalence class
of planar orthogonal drawings of G with the “same shape”, that is, with the same «
values associated with the angles of its faces.
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Fig. 2. An example of orthogonal shape and the corresponding flow network, where only non-null
flows are represented. Vertices (circles) are labeled with the flow they produce. Faces (rectangles)
are labeled with the flow they consume.

In [17,13] it is shown that an orthogonal representation of GG corresponds to an as-
signment of «v values to the angles such that 1 < o < 4 and the sum of « values around
an internal (external) face f is 4 (—4, respectively).

In [13,5] it is shown that any orthogonal shape H of a degree four plane graph G
is associated with a flow into a suitable flow network /N defined as follows. N has a
node n,, for each vertex v of GG and a node ny for each face f. Also, N has a directed
arc (n,,ny) for each vertex v incident to a face f. Finally, for any pair of adjacent
faces f and g, N has two arcs (f,¢g) and (g, f). In N each unit of flow is meant to
represent a 7/2 angle. Hence, each vertex is a producer of four units of flow and each
face f of degree a(f) consumes 2a(f) — 4 units of flow, if f is internal, or 2a(f) + 4
units of flow, if f is external. Each bend in H corresponds to one unit of flow across its
incident faces. Therefore, by giving unit cost to the flow exchanged between adjacent
faces, we have that a drawing with the minimum number of bends corresponds to a flow
of minimum cost. This yields a polynomial-time algorithm for bend minimization. This
technique was first presented in [13], with variations, refinements, and extensions given
in [6,12,14,16]. Linear-time algorithms for constructing planar orthogonal drawings
with O(1) bends per edge, but that do not guarantee the minimum number of bends, are
given in [15]. Note that it is NP-hard to minimize bends over all possible embeddings of
a planar graph [7]. Polynomial-time algorithms exist only for special classes of planar
graphs [1,9,11].

3 Maximizing the Number of Bends

In this section we deal with the maximization of the number of bends in orthogonal
drawings. First, we show that, for all bipartite graphs that admit a straight-line orthog-
onal drawing, arbitrarily bad drawings can be constructed.
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Theorem 1. A bipartite graph admitting a 0-bend drawing admits a k-bend drawing,
for any positive integer k.

Proof: Let V' be the vertex set of G, with V' = V; U V4 such that G contains only edges
from vertices in V; to vertices in V5. Suppose G = (V, E') admits a 0-bend orthogonal
representation H. Consider |V4| cuts such that each cut ¢; consists of the edges incident
to a distinct vertex in V7. Since V is bipartite each edge belongs to exactly one cut.
Cut ¢; corresponds, in the flow network associated with H, to a cycle C;, which can be
assumed arbitrarily oriented. Increase the flow in each C; of k units. It’s easy to see that
the obtained flow corresponds to an orthogonal representation H’ with exactly & bends
on each edge. ([

For example, Figure 1 shows a 3 x 3 grid drawn with 0, 5, and 30 bends per edge.
Next, we show that when dealing with general planar graphs, the ugliness of the
drawings cannot be arbitrarily high:

Theorem 2. Let G be a non-bipartite plane graph. There exists an integer ko > 0 such
that, for every integer k > ko, G does not admit a k-bend drawing.

Proof: Suppose that G is biconnected: the proof for the connected case is analogous. If
G is not bipartite, then GG has at least one face of odd degree. Consider the odd-degree
face f that has the smallest number 2m + 1 of vertices. Let kg = 2m + 6. Suppose,
as a contradiction, that G admits a ko-bend orthogonal representation H. Consider the
network flow associated with H and node ny associated with f, which is a sink of
2(2m + 1) — 4 = 4m — 2 units of flow if f is an internal face, or is a sink of
2(2m + 1) + 4 = 4m + 6 units of flow if f is the external face. Each edge ¢ of f
corresponds to one arc a, entering ny and one arc a_ exiting ny. Since H is a ky-bend
orthogonal representation of a k-bend drawing, one between o and a carries k¢ units
of flow, while the other carries none. Since f has an odd number of edges, the sum of
such flows yields at least kg units either entering (Case 1) or exiting (Case 2) ny. Also,
the 2m 41 vertices of G incident to f inject into n ¢ at least 2m + 1 and at most 6m + 3
units of flow. In Case 1 we have at least (2m + 6) + (2m + 1) = 4m + 7 units entering
ny that needs at most 4m + 6 units of flow. In Case 2 we have at most 6m -+ 3 units
injected by the vertices of f, while we need at least (2m + 6) 4+ (4m — 2) = 6m + 4
units of flow to balance the flow in ns. Since there is not a network flow associated with
H that satisfies the above constraints, we have a contradiction. |

In the next theorem we show that for all planar bipartite graphs the possibility of ob-
taining bad drawings determines also the possibility of obtaining good drawings.

Theorem 3. Ler G be a bipartite plane graph. There exists an integer k(G) > 0 such
that if G admits a k(G)-bend drawing, then G admits a 0-bend drawing.

Proof: Suppose that G is biconnected: the proof for the connected case is analogous.
Let k(G) = M + 3, where 2M is the greatest number of vertices incident to a face of
G. Suppose G admits a k(G)-bend orthogonal representation H. Consider the network
flow IV associated with H and the node ny associated with a face f with 2m < 2M
edges, which, hence, is a sink of 2(2m) — 4 = 4m — 4 units of flow if f is an internal
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face, oris a sink of 2(2m)+4 = 4m+4 units of flow if f is the external face. Each edge
e of f corresponds to one arc a} entering ns and one arc a_ exiting ns. Since H is a
k(G)-bend orthogonal representation of a k(G)-bend drawing, one between a and a_°
carries k(G units of flow, while the other carries none. Since f has an even number of
edges, the sum of such flows yields at least 2k(G) = 20/ 46 units entering n s (Case 1),
at least 2k(G) = 2M + 6 units exiting ny (Case 2), or exactly zero units entering 7
(Case 3). Also, the 2m vertices of G incident to f inject into 2 at least 2m and at most
6m units of flow. In Case 1 we have at least (2M + 6) + (2m) > 4m + 6 units entering
ny that needs at most 4m + 4 units of flow. In Case 2 we have at most 6/m units injected
by the vertices of f, while we need at least (2M + 6) + (4m — 4) > 6m + 2 units of
flow to balance the flow in n . Hence, Case 3 is the only possible for each face of H,
which implies that the 4m — 4 units of flow needed by each internal face and the 4m 44
units of flow needed by the external face are balanced by the flow coming from their
incident vertices. Therefore, we can obtain a network flow N’ from N where, for each
edge e, the flow on the arcs a and a is equal to zero. The orthogonal representation
associated with N’ has zero bends. O

Notice that if the integer k(G) of the above theorem exists such that G admits a k(G)-
bend drawing, then Theorem 1 applies and GG admits a k-bend drawing, for every k£ > 0.

4 Maximizing the Area of an Orthogonal Shape

In this section we deal with the problem of obtaining orthogonal drawings of a shape
with maximum area. First, we show that both for biconnected and for simply-connected
orthogonal shapes the area requirement cannot be arbitrarily high.

Theorem 4. The maximum area of an orthogonal drawing of a connected graph with
n vertices and b bends such that every vertex has degree at least 2 is L”;rbj . f";b].

Proof: Consider any orthogonal drawing I" of a graph G. Replace each bend with a
dummy vertex, obtaining an orthogonal drawing I"" with n’ = n + b vertices and no
bend. For every vertex u that has only two incident edges (u, u1) and (u,uz) that are
both vertical, remove u, insert an edge (u1, u2), and, if there is no other vertex on the
same horizontal grid line R of u, delete R (all the edges cutting R will be shortened
consequently). Analogously, for every vertex u that has only two incident edges (u, u1)
and (u,us) that are both horizontal, remove u, insert an edge (u1, uz), and, if there is
no other vertex on the same vertical grid line C' of u, then delete C (all the edges cutting
C will be shortened consequently). Let - and ¢ be the number of horizontal and vertical
deleted grid lines, respectively. The resulting n'/-vertex orthogonal drawing I, with
n” < n/,is still such that every vertex has degree at least 2. Moreover, there are at least
two vertices for each horizontal and for each vertical grid line of the drawing. Hence,
the maximum area of I'” is (|n”/2]) x (|n”/2]). Observe that the area of I is at
most (¢ + [n”/2]) x (r+ [n”/2]) = (re+ (r + ¢)[n"/2] + (|[n"/2])?) and recall
that n” = n”’ + r + c. For every n”’ the area of I is maximized when rc is maximal,

n'—n'"

that is: (i) whenr = ¢ = 5" s in the case in which r + ¢ is even; in this case the

2
n

. . /_ " . ’ .
maximum area of I is (" 5" + |, |)?, thatis equal to (" )? if n”" and n/ are even
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7 7 1 7
n' —1 n' —n n'—n"" +1

and is equal to (™ ;" )? if n" and n’ are odd; (i) when r = v~ landc=
or vice versa in the case in which r + ¢ is odd; in this case the maximum area of I
is (7L | )T | ]), that is equal to ™2™ if n” is odd and 7’
is even and is equal to ™' ™1 if n” is even and 7’ is odd. From these bounds the
claimed lower bound follows by replacing n’ with n + b. Finally, observe that the bound
L";bj - [""2"1’] is tight, since there exist shapes that have such an area drawing (see e.g.

the shapes in Figs. 3.a and 3.b). (I

(a) (b) (c) (d)

Fig. 3. The bounds in Theorem 4 and 5 are tight: (a) If n + b is even, then there exist connected
shapes with all the vertices of degree at least two that admit orthogonal drawings in (";rb )? area.
(b) If n+0b is odd, then there exist connected shapes with all the vertices of degree at least two that
admit orthogonal drawings in "*2=1 "+4+1 area. () If n + b is odd, then there exist connected
shapes that admit orthogonal drawings in ("*3“ )2 area. (d) If n 4 b is even, then there exist

connected shapes that admit orthogonal drawings in "J° " 22 area.

2

Observe that Theorem 4 offers a bound for the maximum area covered by a biconnected
graph.

Theorem 5. The maximum area of an orthogonal drawing of a connected graph with
n vertices and b bends is | "5 | x ["HIHL],

Proof: Consider any orthogonal drawing I" of a graph G. Replace each bend with a
dummy vertex, obtaining an orthogonal drawing I"” with n’ = n + b vertices and no
bend. Till there are vertices of degree 1, remove one of them, say w, and its incident
edge. If there is no other vertex on the same horizontal grid line R of u, delete R
(all the edges cutting R will be shortened consequently). Analogously, if there is no
other vertex on the vertical grid line C' of u, delete C' (all the edges cutting C' will be
shortened consequently). Let 7 and ¢ be the number of deleted horizontal and vertical
grid lines, respectively. After the removal of all the vertices of degree 1 two situations
are possible. In the first case a graph with all vertices of degree at least 2 is left. By
means of a proof similar to the one of Theorem 4, bounds similar to the ones in such a
theorem can be proved. In the second case (G is a tree) only one vertex without incident
edges is left. In this case every drawing has a total number of rows and columns that
is at most r 4+ 1 and ¢ + 1, respectively. The total area of the drawing is hence at most

(r+1)(c+ 1), that is maximized when rc¢ is maximized. Since r + ¢ = n' — 1, rcis

7 7
n'—1 n n

maximized when r = ¢ = 5 if n’ is odd, or when r = 5 2andr = 5 or vice
. . . . / .
versa if n’ is even. In the former case we obtain a maximum area of (" 2+ 12, in the
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latter one 75/ "/2+ 2 From these bounds the claimed lower bound follows by replacing n’
with 1 + b. Finally, observe that the bound [ 27! | x ["*0+1] s tight, since there
exist shapes that have such an area drawing (see e.g. the shapes in Figs. 3.c and 3.d). [

Changing the geometry can lead to different area exploitations, as shown in the
following:

Lemma 1. There exist shapes that admit an O(n + b) minimum area drawing and an
O((n + b)?) maximum area drawing.

(a) (b)

Fig.4. (a) A quadratic area drawing of the orthogonal shape H. (b) A linear area drawing of the
orthogonal shape H.

Proof: Consider the shape H drawn in Fig. 4.a. Let n and b be the vertices and bends
of H, respectively (identically represented in Fig. 4.a by circles). It’s easy to see that
H covers an area that is quadratic in n + b. The same shape requires linear width and
constant height when drawn as in Fig. 4.b. (]

While the problem of minimizing the area of an orthogonal drawing with a given or-
thogonal shape is NP-complete [10], the problem of maximizing the area of a given
orthogonal shape can be solved in linear-time, as described in the following.

Theorem 6. Computing a maximum-area drawing of an orthogonal shape has linear-
time complexity in the number of vertices of the graph.

Proof: Let H be an orthogonal shape. Obtain an orthogonal shape H' with no bend by
replacing each bend of H with a dummy vertex. Orient each horizontal edge of H' from
left to right and each vertical edge from the bottom to the top. Consider two maximal
sequences s’ and s” of vertices connected by horizontal edges. We say that s’ precedes
s if there is a sequence of vertical edges from s’ to s”. The set of maximal horizontal
sequences and their precedence relation is a partially ordered set. Assign a y coordinate
to each sequence according to its position in a linear extension of such a poset. An z
coordinate for each maximal sequence of vertices connected by vertical edges can be
found in an analogous way. Since each horizontal (vertical) sequence must lie on the
same grid line, the area of the produced drawing is maximal. All the steps involved in
the computation can be performed in linear time. (]
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The maximization of the total edge length appears to be a more difficult problem. How-
ever, for special families of orthogonal shapes we are able to find a polynomial-time
algorithm.

Lemma 2. Let H be an orthogonal shape such that all its faces are rectangular. Com-
puting a drawing of H with maximum total edge length has polynomial-time complexity.

Proof: First, we compute the maximum area drawing I of H by using the technique
described in the proof of Theorem 6. Let w and h be the width and height of I, re-
spectively. We use a technique analogous to that described in [5] for the minimization
of the area of an orthogonal drawing with rectangular faces. Namely, we build two flow
networks Ny, (see Fig. 5.a) and N, (see Fig. 5.b) where each internal face f of H cor-
responds to a node n? in Nj, and to a node n% in N,. Also, Nj, () has two special
nodes s" and t" (s and t?, respectively) representing the left and right region (the
lower and the upper region, respectively) of the external face. Two nodes of N}, (N,)
are connected by an arc if the corresponding faces share a vertical (respectively, hori-
zontal) segment. The arcs of N}, (IV,,) are oriented from s” to t" (sV to tV, respectively).
Each arc has a minimum flow of 1 unit and cost 1. In [5] it is shown that two admissible
flows in Nj, and N, correspond to a drawing I" of H. Hence, the maximum-cost flow
of N, when s” (") is a source (sink) of A units of flow and analogous maximum-cost
flow of NV,,, when s (V) is a source (sink) of w units of flow provide a drawing of H

with the maximum total edge length. (]
SV
o [J,]
2
|:|l 3 1 ]
Sh 1 r D¥ th 1 Zﬁj

R

i

(a) (b)

Fig. 5. The two flow networks N}, (a) and N, (b) in the proof of Lemma 2

Observe that Lemma 2 can be extended to turn-regular [3] orthogonal shapes, by suit-
ably transforming them into rectangular orthogonal shapes.

5 Other Models for Bad Drawings and Open Problems

In this paper we have considered the problem of producing bad drawings of graphs,
mostly focusing on the maximization of the number of bends. Namely, we have shown
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that, for some classes of planar graphs, drawings with an arbitrarily high number of
bends can be produced, while for other classes of planar graphs it’s not possible to ob-
tain drawings with the same arbitrarily high number of bends on all the edges. However,
there are still some intriguing open questions left:

Problem 1. Given a maximum degree 4 plane graph GG and an integer k, which is the
time complexity of deciding whether G admits a k-bend drawing?

Notice that for £ = 0 polynomial time suffices (simple variation of the technique
in [13]).

There are, of course, other models for studying bad drawings. For example one can
study the maximization of the number of bends in an elementary setting, where a rect-
angle is given and the drawing of a graph should be squeezed into the rectangle. We
consider this problem in the case in which the input graph is a single edge or a path. In
this setting we do not use the model for bends introduced before and allow an edge to
have bends in any direction.

Let A be a finite rectangular grid with width X and height Y.

Lemma 3. An edge ¢ = (u,v) admits a drawing in the grid A with b bends, where b is
as follows:

— ifmin{X,Y} is even, thenb = XY — min{X,Y}
- ifmin{X, Y} is odd:

o f X #£Y, thenb= XY —max{X,Y}

o if X =Y, thenb=XY —max{X,Y} -1

Proof: First, consider the case in which min{X,Y} is even. Suppose that X is the
minimum between X and Y. Draw vertex u in the top-left corner of A, and fill the first
two columns of A with a sequence of segments right-down-left-down-right-down. . .
(see Fig. 6.a), till a point in the last row is drawn. Then draw segments to the right till
the third column is reached. Now fill the third and the fourth column with a sequence
of segments right-up-left-up-right-up..., till a point in the first row is drawn. Then
draw segments to the right till the fifth column is reached. The whole drawing can be
constructed by repeating these two steps till there are pairs of columns to fill. The last
point inserted is vertex v. It’s easy to see that for each two columns only two grid points
don’t contain bends. If min{ X, Y} = Y an analogous construction fills A so that for
each two rows only two grid points don’t contain bends.

Now consider the case in which min{ X, Y’} is odd. Suppose that X is the minimum
between X and Y. Again start by placing vertex u in the top-left corner of A, and fill
the first two rows by a sequence of segments down-right-up-right-down-right-up. . ., till
a point in the last column is reached. Then draw segments towards the bottom part of A
till the third row is reached. Fill the last two columns by a sequence of segments left-
down-right-down-left-down-right-down. . ., till a point in the last row is reached. Then
draw segments to the left till the third column from the right is reached. Fill the last two
rows by a sequence of segments up-left-down-left-up-left-down-left. . ., till a point in
the first column is reached. Then draw segments towards the top part of A till the third
row from the bottom is reached. Fill the first two columns by a sequence of segments
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up-right-up-left-up-right-up-left. . ., till a point in the third row is reached. The whole
drawing can be constructed by repeating these four steps till there are pairs of columns
to fill. When only one column is missing, and a point on it has been drawn, then one
bend can still be introduced if X # Y (see Figs. 6.b and 6.c). In this case it can be
noticed that each row has only one grid point that doesn’t contain a bend, otherwise one
row has two grid points that don’t contain bends. (]

Fig. 6. Drawing an edge in a rectangular grid with the maximum number of bends. Black circles
represent end-vertices of the edge, white circles represent bends, and red crosses represent grid
points in which there is neither a vertex nor a bend. (a) min{X, Y} is even. (b) min{X, Y} is
oddand X #Y.(c) min{X,Y}isoddand X =Y.

Lemma 4. An n-vertex path p admits a drawing in the grid A with b bends, where b is
as follows:

— ifmin{X, Y} is even, then b = XY — max{n, min{X,Y}}
- if min{ X, Y} is odd:

o if X #Y, thenb = XY — max{n, max{X,Y}}

o f X =Y, thenb= XY —max{n,max{X,Y} + 1}

Proof: The construction described in the proof of Lemma 3 can be slightly modified so
that each grid point that doesn’t contain a bend or a vertex is internal to a segment of
the drawing. Then we can draw an edge and insert the n — 2 vertices that turn the edge
in an n-vertex path exactly in those grid points in which there aren’t bends. When the
number of points that don’t contain bends is less than n — 2, vertices must be introduced
also instead of bends. The claimed bounds directly follow from this observation. ([

Since the previous two lemmas provide upper bounds on the maximum number of bends
that can be introduced when drawing an edge or a path inside a rectangle, one can ask
the following:

Problem 2. Are the bounds in Lemmas 3 and 4 tight?

Of course the problem considered here, when extended to graphs richer than paths, is
much more interesting:
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Problem 3. Given a maximum degree 4 plane graph GG and an X x Y rectangular grid
A, which is the maximum number of bends that a planar orthogonal drawing of G inside
A can have?

Once the orthogonal shape has been fixed, one can ask for the maximization of several
other graph features, like the area or the total edge length of the drawing. In the case
of the area we have shown that a simple linear-time algorithm allows to maximize the
area of the drawing of a given orthogonal shape. However, the time complexity for the
maximization of the total edge length of an orthogonal shape is still unknown.

Problem 4. Given a maximum degree 4 plane graph G, which is the time needed to
compute an orthogonal drawing of G with maximum total edge length?

We conclude by observing that one of the oldest and still open problems in Graph
Drawing can be seen as a problem of obtaining a “bad” drawing of a graph. Namely,
in the first 60’s Conway suggested the following graph representation: each edge is a
simple Jordan curve, each pair of edges cross exactly once, either in a common end-
vertex or in a proper crossing. Conway asked for the maximum number of edges that
a graph that can be represented in such a way can have. Moreover, he conjectured that
any graph that can be drawn in this way doesn’t have more edges than vertices. Despite
a big research effort, the problem of proving or disproving Conway’s conjecture is still
open [8,4].
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Abstract. Consider a netscape inhabited by mobile computational en-
tities (e.g., robots, agents, sensors). In the algorithmic literature, these
environments are usually assumed to be safe for the entities. Outside of
the literature, this is hardly the case: highly harmful objects can operate
in the netscape rendering the environment dangerous for the entities. A
particular example is the presence of a black hole: a network site (node,
host) that disposes of any incoming robot/agent, leaving no observable
trace of such a destruction. The reasons why a node becomes a black hole
are varied; for example, the presence at a node of a harmful static process
(e.g., a virus) that destroys incoming code and messages transforms that
node into a black hole; the undetectable crash failure of a host renders
that host a black hole; "receive-omission” failures in the communication
software of a site makes that site act as a black hole. Indeed, this type
of danger is not rare.

Clearly the presence of a black hole renders computations in the net
dangerous to be performed, and some tasks become impossible to be
carried out. We will examine two classic problems for mobile entities,
Ezploration and Gathering (or Rendezvous), and discuss how they are
affected by the presence of a black hole. In particular, we will view them
with respect to a new task that, in this context, is even more basic and
essential: Black Hole Search, the problem of a team of mobile entities
locating the black hole. Obviously, any entity entering the black hole is
destroyed; the black hole location problem is solved if at least one agent
survives, and all surviving agents know the location of the black hole.

Not satisfied with correctness, our focus is on efficiency. The basic cost
measures are the number of entities (and of casualties), and the number
of moves.

Keywords: Harmful Host, Exploration, Rendezvous, Gathering, Mo-
bile Agents, Robots, Asynchronous, Anonymous Networks, Anonymous
Agents, Whiteboards, Tokens.
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Abstract. Provided that one is willing to use randomness and to toler-
ate an approximate answer, many computational problems admit ultra-
fast algorithms that run in less than linear time in the length of the
input. In many interesting cases, even algorithms that run in constant
time are known, whose efficiency depends only on the accuracy of the
approximation and not on the length of the inputs.

Algorithms for graph problems on dense graphs are especially efficient
and simple. I will describe an algorithm that estimates the size of the
maximum cut in a dense graph, and its specialization to the task of
distinguishing bipartite dense graphs from dense graphs that are “far
from bipartite.” Results “explaining” the simplicity of such algorithms
will also be discussed.

Some sublinear-time algorithms are also known for graph problems
in sparse graphs, but they are typically more elaborate. I will describe
a simple but very clever algorithm that approximates the number of
connected components of a given graph, and its generalization to the
problem of approximating the weight of the minimum spanning tree of
a given weighted graph. The algorithm runs in time dependent only on
the maximum degree, the required quality of approximation, and the
range of weights, but the running time is independent of the number of
vertices.

* This material is based upon work supported by the National Science Foundation
under grant CCF 0515231 and by the US-Israel Binational Science Foundation Grant
2002246.
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Abstract. We discuss some new geometric puzzles and the complexity
of their extension to arbitrary sizes. For gate puzzles and two-layer puz-
zles we prove NP-completeness of solving them. Not only the solution of
puzzles leads to interesting questions, but also puzzle design gives rise to
interesting theoretical questions. This leads to the search for instances
of partition that use only integers and are uniquely solvable. We show
that instances of polynomial size exist with this property. This result
also holds for partition into & subsets with the same sum: We construct
instances of n integers with subset sum O(n**1), for fixed k.

1 Introduction

Many good puzzles are instances of problems that are in general NP-complete.
Conversely, NP-complete problems may be the inspiration for the design of nice
puzzles. This is true for puzzles based on combinatorics, graphs, and geometry.

A puzzler’s classification system of geometric puzzles exists that includes
the classes Put-Together, Take Apart, Sequential Movement, and various oth-
ers [1]. Although instances of puzzles in these classes have constant size, the natural
generalization of many of them to sizes based on some parameter are
NP-complete. For example, Instant Insanity is NP-complete [7,10], sliding block
puzzles like the 15-puzzle, Sokoban, and Rush Hour are NP-complete or PSPACE-
complete [2,6,9], and puzzles related to packing like Tetris are NP-complete [5].
Some overviews are given by Demaine [3] and Demaine and Demaine [4].

In this paper we discuss some new geometric puzzles of the Put-Together type
and analyze their complexity. We also discuss the creation of good instances of
certain geometric puzzles based on set partition.

Gate puzzles. Gate puzzles consist of a board that is a regular square grid of
holes and a number of pieces called gates. Gates consist of three rods, two vertical
and one horizontal, connecting the tops of the vertical rods. The vertical rods
are called legs and have a certain leg distance that allows the gate to be placed
on the board. A gate has a leg distance of 1 if the two legs are in adjacent holes.
Furthermore, gates have a height, taken from a small set of values. To solve a
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Fig. 1. Gate puzzles. Left with two-legged gates, right also with three-legged gates.

gate puzzle, a given set of gates must be placed in the board. Every hole of the
board must contain exactly one of the legs, and two gates can only intersect
in the vertical projection if they have a different height, and the intersection
is not at the vertical rods of the higher gate. Figure 1 shows an example. On
the left, a 5 x 5 grid is shown with eleven normal gates of heights 2, 3, and 4,
and three loose pegs (one-legged gates) of height 1. On the right, a variation
is shown where many gates have an extra leg: Two gates have two legs and
seven gates have three legs. Most puzzlers take half an hour to a full hour to
solve one of these puzzles. Gate puzzles were first described by the third author
in [12]. In this paper we show that solving gate puzzles is NP-complete, which
we prove by reduction from the strongly NP-complete problem 3-PARTITION (see
for instance [7]).

Two-layer puzzles. Two-layer puzzles consist of a set of pieces that must be
arranged in two layers, where touching pieces from opposing layers must fit. The
simplest type of such a puzzle consists of 2k pieces of base k x 1, and every
1 x 1 unit has a height 1 or 2. The pieces must be arranged to make a solid
k x k x 3 block. To this end, k of the pieces must be arranged as rows, and the
other k pieces must be arranged upside down and as columns. Other two-layer
puzzles can have pieces that use more than two heights, or pieces that do not
have different heights, but use slanted tops in one of the four orientations [11].
See Figure 2 for two examples.

A different realization of simplest type of two-layer puzzle is also known as
the 16-holes puzzle. It consists of eight flat pieces of 4 x 1, with one, two or three
holes. The objective is to cover the 16 holes of a 4 x 4 grid by placing the pieces
on the grid in two layers, see Figure 3.

Two-layer puzzles are NP-complete to solve, which we prove by reduction
from Hamiltonian Circuit on graphs of degree three.
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Fig. 2. Examples of two-layer puzzles
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Fig. 3. The 16-holes puzzle by Wim Zwaan

Partition puzzles. Partition puzzles are puzzles that are based on the well-known
PARTITION problem: Given a set of positive integers vy, ..., v,, partition them
in two subsets of equal total value. This problem is NP-complete [7]. The easiest
realization as a geometric puzzle is to consider each integer value v; asa 1 x1 xv;
block and the puzzle is to pack the blocks in a (very long) box of dimensions
1x2xV/2 where V =31 v,

Another partition problem that is NP-complete is 3-PARTITION, which in-
volves partitioning a set of 3n positive integers into n sets of three elements each
and with the same subset sum. One puzzle that appears to be directly based on
3-PARTITION is Kunio Saeki’s Pipes in Pipe, designed for the 18th International
Puzzle Party in 1998. It has 21 little cylinders of different lengths that must fit
in seven holes of equal length, see Figure 4.

Obviously, partitioning a set of integers into three or four subsets of the same
total sum is also NP-complete. A realization of a partition puzzle that uses three
subsets is shown in Figure 5. In this puzzle, the slant of 7/3 and the different
ways to deal with the corners make it a variation on a 3-partition puzzle.

Not only solving puzzles based on partition problems is difficult, the creation
of geometrically good instances of such partition puzzles is also challenging.
A good geometric puzzle has the property that it is clear whether a particular
solution is the correct solution. Furthermore, it should not be too large, physi-
cally. Finally, most good puzzles have only few pieces but are still very hard. The
last property can be interpreted for partition puzzles that there should be only
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Fig. 4. Partition puzzle by Kunio Saeki

Fig. 5. Partition puzzle based on covering an equilateral triangle with nine pieces of
different lengths and shapes

one solution. The presence of equal pieces tends to make the solution easier, since
it reduces the number of different potential solutions. Therefore, we require that
all pieces are distinct. We thus restrict our attention to sets of numbers instead
of multisets.

The discussion on clearness of the correct solution can be interpreted as fol-
lows: if a set of reals has a solution with two sums of value V', then there should
not be a small £ > 0 such that a different partition into two sets has sums of
values V + ¢ and V — €. Here the ratio of V' and e is important. We will only
consider the partition problem for integers. This automatically gives a difference
in the subset sums between a correct partition and non-correct partition of 2.
Since a difference of length of 2 mm is clearly visible, we could take millime-
ters as units of measurement. But then the sum of a subset that gives a correct
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solution is the size of the puzzle in millimeters. We would like to find the smallest
instance of partition, meaning that the sum of all integers is as small as possible.

We show that for PARTITION, a set of n values exists that has a unique
partition into two subsets of equal sum, and of which the sum is O(n?). Similarly,
we show for k-subsets partition that a set of n values exist that has a unique
partition into k subsets of equal sum, and the sum is O(n**!). The proofs are
constructive: we give schemes that give instances of the partition problems. In
all cases, the k subsets have equal cardinality.

2 The Complexity of Gate Puzzles

In this section we show that solving gate puzzles is NP-complete. We consider
the simplest form where only two-legged gates occur, and only two heights are
used.

Theorem 1. Given a grid of n x m, and nm/2 gates of height 1 or 2, il is
NP-complete to decide if they can be placed on the grid.

Proof. Clearly the problem is in NP. To prove NP-hardness we make a reduction
from 3-PARTITION, which is NP-complete in the strong sense [7]. An instance of
3-PARTITION consists of 3N positive integers v, ..., vsy, where each integer is
between B/4 and B/2 for some given B, and Zf’ivl v; = NB. The problem is
to decide whether a partition of the 3V integers into N subsets exist such that
each of these subsets has sum B. We transform an integer v; into one gate with
leg distance 2v; N? — 1 and height 2, and v; N2 — 1 gates of leg distance 1 and
height 1. We ask if all gates fit on a grid of size (2N2B — 1) x N, see Fig. 6.

We first show that gates of height 2 only fit horizontally. It is obvious that
they do not fit vertically, but they might fit as the diagonal of a Pythagorean
triangle. Note that any gate of height 2 has leg distance L > N2. It can easily be
seen that such a gate cannot fit diagonally, since L —1 > /(L — 2)2 + (N — 1)2,
see Figure 7.

2N2B — 1 positions

M

N positions

A
|
|
|
|
|
|
:
\J

Fig. 6. Reduction of 3-PARTITION to gates
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L positions = length L — 1

length
N -1

Fig. 7. Since gates have large enough leg distance, they cannot be placed diagonally

We showed that there are 3N gates that only fit horizontally. There are N
rows, and every row will contain three gates of height 2 in any solution. The
gates of height 1 are only for making the gate puzzle valid by filling the holes of
the whole grid. They fit under the height 2 gate with which they were created.

It is clear that the gate puzzle has a solution if and only if 3-PARTITION has
a solution. The reduction is polynomial because 3-PARTITION is NP-complete
in the strong sense: even if we write all values in unary notation on the input,
the problem is NP-complete. Therefore, the number of gates obtained after the
reduction is polynomial in the input size. |

3 The Complexity of Two-Layer Puzzles

For the NP-completeness proof of two-layer puzzles, we choose a version with
2n pieces of length n. Every piece is a row of elements, each of which has height
1 or 2. We must place n pieces as rows, and the other n pieces upside down as
columns on top, such that if a position of the bottom, row layer contains a 1,
then the corresponding position of the top, column layer contains a 2, and vice
versa.

Theorem 2. Given a set of 2n two-layer pieces of length n, it is NP-complete
to decide if they can be placed to form a solid block of n x n x 3.

Proof. Clearly, the problem is in NP. To prove NP-hardness, we transform from
HAMILTONIAN CIRCUIT FOR CUBIC GRAPHS [8].

Fig. 8. A two-layer piece with two heights, for a 10 x 10 x 3 block



22

H. Alt et al.
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\

ng type HC
r
\

4 } type HF
y
\

ng type HM
'

Fig. 9. The horizontal pieces for the reduction; grey is height 2 and white is height 1

Let G = (V,E) be a cubic graph, i.e., each vertex in V has exactly three

neighbours. Write ng = |V|. Note that ng is even, as G is cubic. Without loss

of

generality, assume that ng > 8. Assume V = {v1,..., v, }
We build a collection of 4ng + 8 two-layer pieces of length n = 2ng + 4,

and distinguish certain types. The main ones are the H-type and V-type, see
Figures 9 and 10. Each of these types has subtypes, and the following pieces per
subtype:

— Type HF: four pieces with all positions at height 2. (Horizontal, Full)
— Type HC: ng pieces with all but three positions at height 2. For 1 < i <

ng — 1, we have a piece with positions 1, ¢ + 2, and 7 + 3 at height 1 and
all other positions at height 2. We also have a piece with positions 1, 3, and
2 4+ ng at height 1, and all other positions at height 2. (Horizontal, Circuit,
as these will be used to model the Hamiltonian circuit. The last piece models
the edge that closes the circuit.)

— Type HM: n¢ pieces with all but two positions at height 2. For 1 < i < n¢g/2,

we have two pieces with positions 2 and 2+ ng + ¢ at height 1, and all other
positions at height 2. (Horizontal, Matching, as these model a matching in
G.)

— Type V1: two pieces with positions 1 until ng (inclusive) at height 2, and

all other positions at height 1.

— Type VE: one piece for each of the 3ng/2 edges in E. If {v;,v;} € E, then

we take a piece with positions ¢ and j at height 2, and all other positions at
height 1. (Vertical, Edge, as these model the edges of G.)

— Type VF: ng/2 + 2 pieces with all positions at height 1. (Vertical, Full)

We claim that this collection of pieces has a solution if and only if G has a

Hamiltonian circuit. This claim and the fact that the collection of pieces can be
constructed in polynomial time, given GG, show the NP-hardness.
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ng neg/2
K>

0
1
2
ne i type HC 6
5
6 4
7 7
4 } type HF
0
3
nag type HM

7
6
5
4
3
2
1
0

L  ——
V1 type VE type VF

Fig. 10. The vertical pieces for the reduction, showing a solution for the graph of the
cube (on the right, with the Hamiltonian circuit highlighted). This time, grey is height 1
and white is height 2, complementing the horizontal pieces of Fig. 9 after permuting
them within the groups HC and HM. The vertices of the cube are numbered 0-7. Two
vertices are adjacent if their difference is a power of 2.

Suppose vj,,Vj,, .., Vj,. is a Hamiltonian circuit in G. Let M be the set of
edges in G that do not belong to the circuit. As each vertex in G is incident to
two edges on the circuit, M is a matching in G. We place the pieces as follows,
see Figure 10.

Pieces of H-type will always be placed horizontally, pieces of V-type vertically.
If we do not state that a piece is reversed, it is placed like its description above.

— One piece of type V1 is placed in the first column.

— The second piece of type V1 is placed in the second column, but reversed,
that is, the height 2 squares are at the intersection with rows ng + 5 until
2ng + 4.

— For 1 < i < ng, the VE-piece which models the edge {v;,,v;,,, } is placed in
column 7 + 2.

— The VE-piece that models the edge {anG ,vj, } is placed in column ng + 2.

— The n¢g /2 VE-pieces that model the edges in M are placed reversed in some
arbitrary order in the columns ng + 3,...,3ng/2 + 2.

— The VF-pieces are placed in columns 3ng/2+3,...,2ng + 4.

— The HF pieces are placed in rows ng + 1, ng + 2, ng + 3, ng + 4.

— The HC-piece with height 1 positions at 1, ¢ + 2, i + 3 is placed in row j;.
Note that it fits with the VE-pieces!

— The HC-piece with height 1 positions at 1, 3, and 2 4+ n¢g is placed in row

Ing-
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— For each i, 1 <i < ng/2: consider the edge {vg,, v, } € M whose VE-piece
is placed reversed in column ng + 2 + 4. The two HM-pieces with height 1 at
positions 2 and ng + 2 + i are placed in rows 2ng +4 — k1 and 2ng +4 — ko.
Note that this fits with the VE-pieces; here we use that M is a matching.

One can verify that we indeed have a solution for the puzzle.

Suppose the collection of pieces has a solution. Consider an arbitrary piece of
type HF. Without loss of generality, suppose it is placed horizontally. Then, all
other pieces of type HF must be placed horizontally, otherwise we would have a
mismatch at the position where the pieces intersect. Each piece of type HC and
HM has at most three positions of height 1, so it cannot be placed vertically.
(Otherwise, it would share a position with each of the four HF-type pieces, and
at least one of these positions it would also have height 2.) As all 2n¢ + 4 pieces
of H-type are placed horizontally, all pieces of V-type are placed vertically.

V1-type pieces have ng positions of height 2. So, if a V1-type piece is placed
in column 7, then there are ng H-type pieces with height 1 at position i or
2ng + 5 —i. For each i € {3,...,2ng + 2}, there are at most six H-type pieces
with height 1 at positions ¢ or 2ng + 5 — i. There are ng H-type pieces with
height 1 at position 1, and ng H-type pieces with height 1 at position 2. Thus,
one V1-type piece must be placed in column 1 or 2ng +4, and one V1-type piece
must be placed in column 2 or 2n¢g + 3.

Without loss of generality, we suppose one V1-type piece is placed in column
1, and it is not reversed. Consider the H-type pieces at rows 1,...,ng. At their
first position, they meet the height 2 position of the V1-type piece, so they must
have height 1 at their first position, and hence be a HC-type piece. Also, their
orientation cannot be reversed.

For 1 <i < ng, if the HC-piece with height 1 positions at 1, 7+ 2, i+ 3 is in
row j, set vj, = j. Similarly, if the piece with height 1 positions at 1, 3, 2 4+ ng
is in row j, set v;, . = j. This gives a Hamiltonian Circuit. Consider a pair of
successive vertices vy, vj,,,. Note that the HC-type pieces in rows j; and j;y1
have height 1 at their position 7 + 3. So the V-type piece in column i + 3 must
have height 2 at positions j; and j;;+1. It cannot be a V1-type piece, see above.
So, we have a VE-type piece with height 2 at positions j; and j; 41, and hence
{vj:,vj,,, } € E. A similar argument shows that {v;, ,v;,} € E, and hence we
have a Hamiltonian circuit. a

4 Designing Partition Puzzles

In this section we consider partition problems for integers. From the introduction
we know that we are mostly interested in instances that are uniquely solvable
and have a small total value. We will concentrate on instances of 2n, or more
generally, kn integers that have a unique partition into 2 subsets (or k subsets,
respectively). Moreover, we want all subsets of the partition to have the same
cardinality n. It is easy to adapt the instances to subsets of different cardinalities,
by simply combining pieces.
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Lemma 1. Let S be a set of integers that has a partition into two subsets Sy
and Ss, each of total value é Y weg V- Then this is the unique partition with
this property, if and only if no proper subset of S1 has equal value to any proper
subset of Ss.

Proof. If two such subsets exist, they can be exchanged and the partition is not
unique. Conversely, let S7, S be a different partition with equal sums. Since
St =(S1\ (S1—51)) U(S] = S1)), the sets S; — S and S — S1 are nonempty
proper subsets of S7 and of Sy with equal sums. O

For k > 3, the condition of Lemma 1 applied to pairs of sets, is not sufficient to
guarantee uniqueness. For example, no two proper subsets of S; = {8, 14, 78},
Sy ={9, 15, 76}, or S3 = {10, 13, 77} have equal sums, but S; = {9, 13, 78},
Sy ={10, 14, 76}, S5 = {8, 15, 77} is a different solution.

We present schemes that generate instances of partition with a set S of 2n
or kn integers that have a strongly unique solution and a polynomial bound on

ZviES Vi

A simple scheme for partition. Suppose we wish to generate a set S of 2n integers
that has a unique partition into two subsets S; and Sy of cardinality n each.

51:{17 2 ...777,—17 N }

So={inn-1)+1Inn-1)+2,...,nn—1)+n—-1,n(n—1)+n}

where N = 37" (3n(n — 1) +1i) — yn(n — 1). Since all integers in Sy are larger
than the sum of the smallest n — 1 integers in S7, and the n-th integer from Sy
is larger than all integers from S5, no proper subset sum from S; can be equal
to any proper subset sum of Ss.

Theorem 3. For any n > 2, an instance of PARTITION exists with 2n values
which has a unique solution in two subsets. Both subsets have n integers, and
the subset sum is (n®+n)/2 = O(n?). O

The obvious lower bound corresponding to the theorem is 22221 i = 02(n?).

A simple scheme for partition into k subsets. The scheme for partition can easily
be extended to a scheme for partition into k£ subsets. The scheme gives subset
sums that are polynomial in n, but exponential in k. We write V; for the sum of
the smallest n — 1 elements in S;.

51:{17 27 ...77’[,—17 N1 }
So={Vi+1, Vi+2 ..., Vi+n—-1, N }
Ss={Va+1, Vo+2, ...,Va+n—-1, Nj }

Sk1={ Voo + L, Vi o 4+2,...,Vheo+n—-1,Npy 1}
Sp=A{Vicr+L, Vi1 +2,...,.Vicr+n—-1 Vi1 +n}

The integers Ni,..., Nr_1 are chosen so that all subsets have the same subset
sum as Sk. As before we can argue that Nj is such that only 1,...,n — 1 are
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small enough to be with N; and give the right subset sum. Since this fixes Sy,
we can repeat the argument by observing that Ns is such that of the remaining
integers, only V1 +1,..., V) +n— 1 are small enough to be with S, and give the
right subset sum.

Theorem 4. For any k > 2 and n > 2, an instance of PARTITION INTO k
SUBSETS exists with kn values which has a unique solution in k subsets. All
subsets have n integers, and the subset sum is O(n**t1), if k is fized. O

Although we presented a scheme that gives uniquely solvable instances of parti-
tion of cubic size, the scheme is not satisfactory from the puzzle point of view.
It contains an integer that is so large that it is clear which other integers should
go in the same subset (which was the argument for uniqueness). So in this case,
uniqueness of solution does not imply that a puzzle using this scheme will be
difficult. Therefore, we will present another partition scheme and its extension
for k subsets that does not have this problem. We will bound the value of the
largest integer in the partition problem while obtaining the same bound on the
subset sum.

An improved scheme for partition. To obtain a scheme that does not have the
disadvantage of the simple scheme, choose two sets of integers 1,2,...,n and
1,2,...,n—1,n+ 1. Multiply each integer in the first set by n. Multiply each
integer in the second set by n and subtract 1. This way we get S7 and Ss:

S1={n, 2n, 3n, ooy (n—=1)n, n? }
So={n-1,2n-1,3n—-1,....,(n—1)n—1,n?+n—-1}

Every subset sum from S is a multiple of n. No proper subset sum from S5 is a
multiple of n, because each integer is = —1 mod n. Hence, no proper subset sum
of S can be equal to any proper subset sum of S5. The sum of all integers in .S is
equal to the sum of all integers in So, and is equal to sn(n+1)-n = (n+n?)/2.

Theorem 5. For any n > 2, an instance of PARTITION ezists with 2n values
which has a unique solution in two subsets. Both subsets haven integers, all integers
have value 2(n) and O(n?), and the subset sum is (n® +n?)/2 = O(n?). O

It is easy to adapt the scheme to yield a partition in subsets of different cardinal-
ities: we let n be the desired cardinality of the larger subset in the scheme, and
generate S; and So. Then we add n — m + 1 values in S to get any cardinality
m for the smaller subset, and the partition itself remains unique.

For small values of n, we have computed the uniquely solvable instances of
PARTITION with smallest subset sum with the help of a computer, by an enu-
meration algorithm. The instances in the following table turned out to be the
unique instances with the given sums, where the two subsets have equal cardinal-
ity. (For n = 7 there are two different smallest instances.) For decompositions
into parts of distinct cardinalities, there are smaller solutions. For examplem
{1,3,4,5,6,7}U{2,24} is the unique solution for an 8-element set, with sums 26,
but clearly, this leads to a very easy puzzle.
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One can see in the table that the constructions of Theorems 3 and 5 are
not far from the optimum. Also, the instances for n = 5, n = 6, and n = 7
share certain characteristics with the construction of Theorem 5: they contain
arithmetic progressions, which tends to reduce the number of different subset
sums that can be built from a given set. The two solutions for n = 7 seem to be
based on arithmetic progressions with step lengths 7 and 6, respectively.

minimum simple  improved

n S1 Sy subset  scheme scheme
sum 5 (n® +n) 5 (n®+n?)
2 1,4 2,3 5 5 6
3 1,3,9 2,5,6 13 15 18
4 2,7,10,12 3,5,8,15 31 34 40
5 2,7,12,17,22 3,5,10,15,27 60 65 75
6 3,7,10,21,28,35 4,11,14,18,25, 32 104 111 126
7 2,9,16,23,30,37,44 5,7,14,21,28,35,51 161 175 196
7 5,11,17,23,29,35,41 1,6,12,18,24,47,53 161 175 196

An improved scheme for partition into k subsets. We now present a scheme to
generate instances of unique partition into 3 subsets, of n integers each, and
bounded integers. Below we will generalize it to larger values of k. Because we
wish to avoid large integers in the instance, we cannot use the inductive argu-
ment that was used in the simple scheme for partition into k subsets to obtain
uniqueness. Instead, we use the following property to guarantee uniqueness.

Strong Uniqueness. If the total sum of the set S is kN, there are only k
subsets of S whose sum is N.

Choose two integers p = n and ¢ = n+1, and let 7 = p-g. The sets of integers
in Sy, S, and S5 are:

Si={r+q¢2r+q,....,(n=1)r+q¢,nr+q }
52:{T+pa27"+p,...7(n—1)r+p’nr+2p}
SSZ{T7 27"7 ~-~7(n—1)’l"’ nr—+r }

It is easy to see that the three subset sums are the same. Also, > g v =
(3n(n+1)+ 1pg = (jn(n +1) + )n(n + 1) = O(n?).

To prove uniqueness of the partition, we show strong uniqueness: Sy, Sz, and
Sj are the only subsets of S = S1 US> U S3, with subset sum (jn(n+1)+1)r =
3 > v,esVi- Let S’ be any subset S, and let S” have h elements from S, i
elements from So, and j elements from S3, where 0 < h, 4,5 < n. Since elements
from S; are = gmod r, and p and ¢ are relatively prime, h > 0 implies that
h = n to obtain a total sum of S’ that is = 0 mod r. This subset is already 51,
and 7 and j have to be 0, otherwise the total sum is too large. Similarly, i > 0
implies that S” must contain all elements of Sy to be = 0 mod r, and h = 0 and
j = 0. Finally, if A = 0 and 7 = 0, we need j = n to get a subset S’ of large
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enough total sum. Hence, Sy, S3, and S3 are the only subsets of S with sum
(3n(n+1)+1)r.

To extend this scheme to k sets we need k — 1 integers p1,...,pr—1 that are
at least n and pairwise relatively prime. One way to construct such integers is
as follows: Let K be the least common multiple of 1,2, ...,k —2. Select p; in the
interval n < p; < n + K, relatively prime to K, and set p;+1 = p; + K, for i =
1,...,k—2. This yields integers p; < n+(k—1)! that are pairwise relatively prime.

We let r = Hf:_ll pi, and construct sets based on r and py,...,pr—1 as above.
Fori=1,...,k—1, we define

r T T
Si:{T—t—al- ,2r+as- ..., nr+ag,- },
bi bi Di
where (aq,as,...,a,) is a sequence of small positive integers summing p;.
(A different sequence (a1, as,...,a,) is chosen for every i.) As before, the last

set is just
Sg={r2r,...,(n=1r, (n+1)r}
The subset sum of each set is jn(n +1)-r+r = O(n*t).

Theorem 6. For any k > 2 and n > 2, an instance of PARTITION INTO k
SUBSETS exists with kn values which has a unique solution in k subsets. All

subsets have n integers, all integers have value 2(n*=1) and O(n*), and the
subset sum is O(nF*1), if k is fized. |

5 Conclusions and Open Problems

We showed that two new types of geometric puzzles—gate puzzles and two-
layer puzzles—are NP-complete to solve. For puzzles based on partition, we
constructed instances with polynomially bounded values that have unique solu-
tions. The sum of the values relates to the physical size of the geometric puzzle.
Uniqueness tends to make a puzzle harder, but we saw that a uniquely solvable
puzzle may still be easy (for instance, in the simple scheme for partition).

The strong uniqueness property for partition in three or more subsets is
stronger than necessary for having a unique solution. Also for this reason, it
may be possible to improve upon the O(n**!) bound on the summed value
of instances with a unique solution. Moreover, the strong uniqueness property
makes the puzzle easier: if the puzzler finds a subset with the right sum, then
this subset is certainly part of the overall solution. So for puzzle design purposes,
it is interesting to have instances of partition into three or more subsets that
have a unique solution, but many subsets with the right summed value.
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HIROIMONO Is NP-Complete
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Abstract. In a Hiroimono puzzle, one must collect a set of stones from a
square grid, moving along grid lines, picking up stones as one encounters
them, and changing direction only when one picks up a stone. We show
that deciding the solvability of such puzzles is NP-complete.

1 Introduction

Hiroimono ({7, “things picked up”) is an ancient Japanese class of tour puz-
zles. In a Hiroimono puzzle, we are given a square grid with stones placed at
some grid points, and our task is to move along the grid lines and collect all the
stones, while respecting the following rules:

1. We may start at any stone.

2. When a stone is encountered, we must pick it up.

3. We may change direction only when we pick up a stone.
4. We must not make 180° turns.

Figure 1 shows some small example puzzles.

Q()Oé}é)@@@" &g()(}—@

(a) (b) (c) ()

Fig. 1. (a) A Hiroimono puzzle. (b) A solution to (a). (¢) Unsolvable. (d) Exercise.

Although it is more than half a millennium old [1], Hiroimono, also known
as Goishi Hiroi (#6051 appears in magazines, newspapers, and the World
Puzzle Championship. Many other popular games and puzzles have been studied
from a complexity-theoretic point of view and proved to give rise to hard com-
putational problems, e.g. Tetris [2], Minesweeper [3], Sokoban [4], and Sudoku
(also known as Number Place) [5]. We shall see that this is also the case for
Hiroimono.

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 30-39, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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We will show that deciding the solvability of a given Hiroimono puzzle is
NP-complete and that specifying a starting stone (a common variation) and/or
allowing 180° turns (surprisingly uncommon) does not change this fact.

Definition 1. HIROIMONO is the problem of deciding for a given nonempty
list of distinct integer points representing a set of stones on the Cartesian grid,
whether the corresponding Hiroimono puzzle is solvable under rules 1—4. The
definition of START-HIROIMONO is the same, except that it replaces rule 1 with
a rule stating that we must start at the first stone in the given list. Finally,
180-HIROIMONO and 180-START-HIROIMONO are derived from HIROIMONO
and START-HIROIMONO, respectively, by lifting rule 4.

Theorem 1. All problems in Definition 1 are NP-complete.

These problems obviously belong to NP. To show their hardness, we will con-
struct a reduction from 3-SAT [6] to all four of them.

2 Reduction

Suppose that we are given as input a CNF formula ¢ = Cy ACo A --- AN Cy
with variables z,x9,...,z, and with three literals in each clause. We output
the puzzle p defined in Fig. 2—4. Figure 5 shows an example.

pi=
- 1 1
. J
j::[Qm—i-G
® _H = P S
g ) ) S
= g g g
T S S| S
I~ = < Ny
—~ (] (O] (]
[a\]
+
g
)

Fig. 2. The puzzle p corresponding to the formula ¢. Although formally, the problem
instances are ordered lists of integer points, we leave out irrelevant details such as
orientation, absolute position, and ordering after the first stone ©.
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choice(i) :=
+O
O-—-
C
\
I(2m+8)(n—i)+1
8(;
staircase
P
I'\I
00 -
2m + 4
10 =4
(Adm+7)(—-1)+1
- ). .
staircase
O _
2m+2)(n—1d)+1
Py [ P REIEE %
Tl S NSRS ©
ol o] DL O] w
— | | gl =] | g
Tl T S| || |T T

Fig. 3. The definition of choice(i), representing the variable z;. The two staircase-
components represent the possible truth values, and the c-components below them
indicate the occurrence of the corresponding literals in each clause.

staircase :=

o
5

O
[S—
w
>
|
w

1+ug
Q0O
000
1 — g

Fig. 4. The definition of staircase, consisting of m “steps”, and the c-components.
Note that for any fixed k, all c(k, 1)-components in p, which together represent Cj, are
horizontally aligned.
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%@;J\ 1 T1 T2 T2
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bos
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ot i
S S
00
8o
oot
2
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8.2 5
i
te'e}

Fassiciic g8
C: g8
s 88 8.8
Cs SISTHHH SRR

Fig.5. If ¢ = (z1VaaVa2)A(z1 Va1 Vo) A(x1Vaee Va)A(z1Vaee V), this is p. Labels
indicate the encoding of clauses, and dotted boxes indicate choice(1), choice(2), and
staircase-components. The implementation that generated this example is accessible
online [7].

3 Correctness

From Definition 1, it follows that

c HIROIMONO -
START-HIROIMONO = =

180-HIROIMONO.
< 180-START-HIROIMONO €
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Thus, to prove that the map ¢ — p from the previous section is indeed a correct
reduction from 3-SAT to each of the four problems above, it suffices to show
that ¢ € 3-SAT = p € START-HIROIMONO and p € 180-HIROIMONO = ¢ €
3-SAT.

3.1 Satisfiability Implies Solvability

Suppose that ¢ has a satisfying truth assignment t*. We will solve p in two
stages. First, we start at the leftmost stone @ and go to the upper rightmost
stone along the path R(t*), where we for any truth assignment ¢, define R(t) as
shown in Fig. 6-8.

R(t) :=

|

Fig. 6. The path R(t), which, if ¢ satisfies ¢, is the first stage of a solution to p

Definition 2. Two stones on the same grid line are called neighbors.

By the construction of p and R, we have the following:

Lemma 1. For any t and k, after R(t), there is a stone in a c(k,1)-component
with a neighbor in a staircase-component if and only if t satisfies Cl.

In the second stage, we go back through the choice-components as shown in
Fig. 9 and 10. We climb each remaining staircase by performing Rsc backwards,
but whenever possible, we use the first matching alternative in Fig. 11 to “collect
a clause”. By Lemma 1, we can collect all clauses. See Fig. 12 for an example.

Since this two-stage solution starts from the first stone © and does not make
180° turns, it witnesses that p € START-HIROIMONO.

3.2 Solvability Implies Satisfiability

Suppose that p € 180-HIROIMONO, and let s be any solution witnessing this (as-
suming neither that s starts at the leftmost stone nor that it avoids 180° turns).
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Fig. 7. Assigning a truth value by choosing the upper or lower staircase
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Fig. 9. The second stage of solving p
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choice(7)

"— lf t(xl) 1

‘. > Zf t(iﬂl) =T

Fig. 10. In the second stage, the remaining staircase-component in choice(4) is collected

A
A

M

) (o4 = @ ® >
T FTE ¥ -y Y
=3 K B ¥

Fig. 11. Six different ways to “collect a clause” when climbing a step in a staircase

Now consider what happens as we solve p using s. Note that since the topmost
stone and the leftmost one each have only one neighbor, s must start at one of
these and end at the other. We will generalize this type of reasoning to sets of
stones.

Definition 3. A situation is a set of remaining stones and a current position.
A dead end D is a nonempty subset of the remaining stones such that:



HIROIMONO Is NP-Complete 37

— There is at most one remaining stone outside of D that has a neighbor in D.
— No stone in D is on the same grid line as the current position.

A hopeless situation is one with two disjoint dead ends.

Since the stones in a dead end must be the very last ones picked up, a solution
can never create a hopeless situation. If we start at the topmost stone, then we

:
i
-
4.-
o[ ey
o s
LI
%OY
w.% 3 SRR
o r
e 218 %?'

Fig.12. A solution to the example in Fig. 5. The dotted path shows the first stage
R(t*), with t*(z1) = T and ¢*(x2) = L. The solid path shows the second stage, with
numbers indicating the alternative in Fig. 11 used to collect each clause.
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will after collecting at most four stones find ourselves in a hopeless situation, as
is illustrated in Fig. 13. Therefore, s must start at the leftmost stone and end at
the topmost one.

We claim that there is an assignment t* such that s starts with R(¢*). Figure 14
shows all the ways that one might attempt to deviate from the set of R-paths and
the dead ends that would arise. By Lemma 1, we have that if this t* were to fail
to satisfy some clause Cy, then after R(t*), the stones in the c(k, 1)-components
would together form a dead end. We conclude that the assignment ¢* satisfies ¢.

e
~ 48— 8B
% R

Fig. 13. Starting at the topmost stone inevitably leads to a hopeless situation. A 4
denotes the current position, and a @ denotes a stone in a dead end.

choice e )

s ' Y '
0

\

staircase
A& T
sl 1A
Bl Y
O nbon
Ak
Q

Fig. 14. Possible deviations from the R-paths and the resulting dead ends
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Abstract. We study some combinatorial properties related to the prob-
lem of tablature for stringed instruments. First, we describe the problem
in a formal way and prove that it is equivalent to a finite state automa-
ton. We define the concepts of distance between two chords and tablature
complexity in order to study the problem of tablature in terms of music
performance. By using the Schiitzenberger methodology we are then able
to find the generating function counting the number of tablatures having
a certain complexity and we can study the average complexity for the
tablatures of a music score.

1 Introduction

The music perfomance process involves several representation levels [13], such
as physical, perceptual, operational, symbolic, structural. Consequently, a per-
formance environment should be concerned at least in:

getting a score in input (symbolic level);

analysing it, like a human performer would do (structural);

modelling the constraints posed by body-instrument interaction (operational);
manipulating sound parameters (physical).

= W

In particular, in the present paper we focus our attention on a problem present in
both structural and operational levels, and very relevant for string instrument,
namely the problem of tablature. Some instruments, such as the piano, have only
one way to produce a given pitch. To play a score of music on a piano, one needs
only to read sequentially the notes from the page and depress the corresponding
keys in order. Stringed instruments, however, require a great deal of experience
and decision making on the part of the performer. A given note on the guitar
may have as many as six different positions on the fretboard on which it can
be produced. A fretboard position is described by two variables, the string and
the fret. To play a piece of music, the performer must decide upon a sequence
of fretboard positions that minimize the mechanical difficulty of the piece to at
least the point where it is physically possible to be executed. This process is
time-consuming and especially difficult for novice and intermediate players and,

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 40-52, 2007.
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as a result, the task of reading music from a page, as a pianist would, is limited
only to very advanced guitar players. To address this problem, a musical notation
known as tablature was devised. A tablature describes to the performer exactly
how a piece of music is to be played by graphically representing the six guitar
strings and labeling them with the corresponding frets for each note, in order.
Fingering is the process that, given a sequence of notes or chords (set of notes
to be played simultaneously), yields to assigning to each note one position on
the fretboard and one finger of the left hand. Fingering and tablature problem
has been studied from many points of view (see, e.g., [12,14,18]).

In this paper, we study some combinatorial properties of tablature problem.
This problem can be described by a finite state automaton (or, equivalently, by
a regular grammar) to which we can apply the Schiitzenberger methodology (see
[8,9,15,16] for the theory and [6,7,11] for some recent applications). We define
the concepts of distance between two chords and tablature complexity to study
the problem of tablature in terms of the music performance. It is then possible
to compute the average complexity of a tablature. In particular, we prove the
following basic results:

1. every tablature problem is equivalent to a finite state automaton (or to a
regular grammar);
2. an algorithm exists that finds the finite state automaton corresponding to a
tablature problem;
3. by using the Schiitzenberger methodology we find the generating function
Z(t) =5 Ept"™ counting the number =, of tablatures with complexity n.
n
The concept of complexity introduced in this paper takes into consideration
the total movement of the hand on the fretboard during the execution. This
quantity is certainly related to the difficulty of playing a score of music but,
of course, many other measures could be considered. Moreover, the difficulty
depends on the artist who plays the song.
We will show an example taken from Knocking on Heaven’s Door by Bob
Dylan.

2 Stringed Instruments, Tablature and Symbolic Method

A note is a sign used in music to represent the relative duration and pitch of
sound. A note with doubled frequency has another but very similar sound, and
is commonly given the same name, called pitch class. The span of notes within
this doubling is called an octave. The complete name of a note consists of its
pitch class and the octave it lies in. The pitch class uses the first seven letters of
the latin alphabet: A, B, C, D, E, F, and G (in order of rising pitch). The letter
names repeat, so that the note above G is A (an octave higher than the first
A) and the sequence continues indefinitely. Notes are used together as a musical
scale or tone row. In Italian notation, the notes of scales are given in terms of
Do - Re - Mi - Fa - Sol - La - Si rather than C-D - E-F - G- A - B. These
names follow the original names reputedly given by Guido d’Arezzo, who had
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taken them from the first syllables of the first six musical phrases of a Gregorian
Chant melody Ut queant laxis, which began on the appropriate scale degrees.

In this section we define in a formal way the problem of the tablature of a
stringed instrument score. In order to do this, we take into consideration the set
of the notes defined in the MIDI standard (see [4,5]), which uses the note-octave
notation. In fact, this set contains a range of integer numbers 1= {0, ..., 127},
where every element represents a note of an octave.

Table 1. A representation of notes in the MIDI standard

Note numbers
Do Do# Re Re# Mi Fa Fa# Sol Sol# La La#

Octave
Si

C C# D D# E

F F# G G# A A# B

0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 7T 78 79 80 81 82 83
7 8 8 8 87 8 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112113 114 115 116 117 118 119
10 120 121 122 123 124 125 126 127

A string instrument (or stringed instrument) is a musical instrument that
produces sounds by means of vibrating strings.

Definition 1 (String Instrument). We define a string instrument with m
strings ST, as a pair (Sp,,ny) where:

— S = (notey, - ,note,,) € 1" represents the notes of the corresponding
strings;
— ny € N represents the number of frets in this instrument.

Example 1. For convention, the enumeration of the strings begins from the high-
est note to the most bass note. Therefore, we can define the classical guitar [3]
as follows:

note/ fret 1 11 XIX

@ x>0 QW
1
1
1

Sg = (64,59, 55, 50, 45, 40)
nf =19
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instead for the bass guitar [1] we have:

note/ fret 1 11 111 XXII

e T Q
1
1
1

Sy = (31,26,21, 16)
TLf =22

In music and music theory a chord is any collection of notes that appear
simultaneously, or near-simultaneously over a period of time. A chord consists
of three or more notes. Most often, in European influenced music, chords are
tertian sonorities that can be constructed as stacks of thirds relative to some
underlying scale. Two-note combinations are typically referred to as dyads or
intervals. For the sake of simplicity, we use the following:

Definition 2 (Chord). We say that & is a chord, if it belongs to 27.

Ezample 2. A famous chord is the G Major (or Sol Major). It is characterized
by the following notes:

D, G, B (or Re, Sol, Si in Italian notation).

Using the previous definitions, £ = {50, 55,59} corresponds to a G Major on the
fourth octave. In the same way, C' Major (formed by C, E, G) on the fourth
octave is representable with & = {48,52, 55}, whereas £ = {60} is a simple note
C (or Do) on the fifth octave.

Definition 3 (Chord for a String Instrument). Let SZ,,= (Sy,,ns) be a
string instrument with m strings and § = {a1,...,a;} a chord with j < m. & is
a chord for ST, iff there exists an injective function f : & — {1,...,m} such
thatVi=1,...,5 we have 0 < a; — noteyqa,) < ny. We indicate with I'st the set
of these chords.

A chord progression (also chord sequence, harmonic progression or sequence) is
a series of chords played in order. In this paper, we give the following:

Definition 4 (Chord Progression). Given a string instrument SZ,,, we call
chord progression for the instrument SZ,,, every finite sequence &1, ...,&, such
that Vi=1,...,n we have & € ['st.

Example 3. If we use a classical guitar, a chord progression can be defined as
follows:

C Major, A Minor, D Minor, G Tth
(or Do Magor, La Minor, Re Minor, Sol Tth)
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where:
Chord name Notes of chord Numeric representation
C Major C, G, C, E (or Do, Sol, Do, Mi) {48,55,60,64}
A Minor A, A, C, E (or La, La, Do, Mi) {45,57,60,64}
D Minor D, A, D, F (or Re, La, Re, Fa) {50,57,62,65}
G Tth G, G, B, F (or Sol, Sol, Si, Fa) {43,55,59,65}

While standard musical notation represents the rhythm and duration of each
note and its pitch relative to the scale based on a twelve tone division of the
octave, tablature (or tabulatura) is instead operationally based, indicating where
and when a finger should be depressed to generate a note, so pitch is denoted
implicitly rather than explicitly. Tablature for plucked strings is based upon
a diagrammatic representation of the strings and frets of the instrument. In a
formal way, we give the following:

Definition 5 (Position). Giwven an intrument SI,, with m strings, we call
position the following function TAB:

TAB: N, — Nyu{O}
where

— Ny ={1,...,m} is the set of strings in the instrument ST ,,;
— Ny={1,...,ny} is the set of frets in the instrument ST,,;
— O is the null position.

Ezxample 4. We can also describe a position using a graphic representation. In
this way, we represents only the notes that the musician must pluck. For exam-
ple, given a classical guitar we can represent the chord progression described in
the Example 3 as follows:

note/ fret 1 11 111 note/ fret 1 11 III
E E ©
B i—o 5 e
G O G @
D D
A P A O
E E (I'
C Major (Do Major) A Minor (La Minor)
note/ fret 1 11 111 note/ fret 1 11 IIr
E —@ E
B ® B §
e @ G O
D O D
A (I' A
P E ®
D Minor (Re Minor) G Tth (Sol Tth)

We use the gray dots to indicate that the string must be used without fret
pressure.
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Definition 6 (Tablature). Given a string instrument SZ,,, we call tablature
a finite sequence of position TAB1,...,TAB,,.

A position will be realizable on a string instrument SZ, iff a common hand
can realize such position on SZ. Otherwise, the position will be bad for the
mbtrument Given an mstrument S8Z, let Tsz be the set of the positions on SZ.
Tst = T s7U TSI where 7! 's7 is the set of the realizable positions and Ts7 is the
set of the bad positions.

Definition 7 (Expansion function). Given an instrument SZ,, we define the
expansion function as follows:

0:lst — 9Tsz
where Y& EAF 's7 we have
5(&) = {TABYE | TABE € Tsz corresponds to the chord £}

With the previous definition we understand that, given a string instrument, we
can associate a set of positions to the same chord. Extending the concept, we
can associate to a specific chord progression a set of tablatures.

Ezxample 5. Given a classical guitar we can play the same C' Major defined in
the Example 3 using the following positions:

note/fret I 11 I note/ fret I1I v %
E E
» T ; .
¢ Q G ®
D D ®
A @ A —@
E E
C Major (Do Major) C Magjor (Do Magjor)
note/ fret VIII IX X note/fret 'V Vi VII VIII
E E
B B |—e
G ® ¢ e
D ® D |}—e
A ® A
E L—¢ E
C Magor (Do Magjor) C Magor (Do Magjor)

Proposition 1 (Automaton of chord progression). Given a string instru-
ment SZ,, and a chord progression &1, ..., &, we can define a deterministic finite
state automaton A = (qo, {2,825, F) which represents the set of all possible
tablatures for the progression in SZ,,, where:

— qo,0 1S the initial state;
— (2 is the set of the states;
— 2y C §2 is the set of the final states;

F is the transition function with F : {2 X TSI — 1.
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Proof. We associate the null position to the initial state. Moreover, |2—{qo.0}|=
> 16(&)| where V& we introduce the subset of states {qio,- -, |5¢)-1}- The
i=1

transition function will be F = {(qi,l)j,TAB,[fi],qi,k)}i,jﬁkeN with TAB,[f”] S
6(&)-

Ezample 6. We take into consideration the sequence C, E and G in the fourth
octave, in other words Do = {48}, Mi = {52}, Sol = {55}. Using the classical
guitar and the expansion function on these notes, we have the following positions:

6({48}) = {((1,00), (2,00, (3,00), (4,00), (5, 3), (6,0)),
(1,00, (2,00, (3,00, (4,00, (5,00, (6,8)) }

6({52}) = {{(1,00), (2,00, (3,00), (4,2), (5,00), (6, 00)),
((1,00), (2,00, (3,00, (4,00), (5, 7), (6,00))
(1,00, (2,00, (3,00, (4,00, (5,00, (6,12)) }

5({55}) = {((1,00),(2,00),(3,00), (4, 00), (5, 00), (6, D)),
((1,00), (2,00, (3,00, (4,5), (5,00), (6, 10))
(1,00, (2,0), (3,00, (4,00), (5,10), (6,00))
(1,00, (2,00, (3,00, (4,00, (5,00, (6,15)) }

where every pair (c,t) indicate the string and the fret number respectively. In
this way we obtain the following automaton:

null position

Do

Mi

Definition 8 (Distance between two positions). Given a string instrument
S, = (Sm,ny), we define the distance function as follows:

d: T\SI X T\SIH{L ...,nf}
where ¥ TAB,, TAB; € fgz we set
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M =min{fret A0 | 3j =1,...,m such that TAB;(j) = fret},
Ao =min{fret A0 | 3j =1,...,m such that TABy(j) = fret},

then d(TAB1,TABs) = |\ — Ao|. If Vj TABy(j) = O or TABs(j) = O then
d(TAB,,TABy) = 0.

Example 7. We take into consideration the following positions:

note/fret 1 I II7 note/ fret V VI VII VIIT

E —@ E

B Py B |l-e

a o ¢ l—e

D9 D |l—e

A A

gL E -—

D Minor (Re Minor) C Major (Do Major)

In this case the distance between the two positions is equal to four.

The concept of distance is important to determinate the complexity of a tabla-
ture. In fact, a greater distance requires a great deal of experience on the part
of the performer. Therefore, we give the following:

Definition 9 (Tablature complexity). Given a string instrument SZ,,, let
TABs,...,TAB, be a tablature for this instrument. We call complexity of the
tablature the following quantity:

n—1

Y. d(TAB;, TAB; ).
]:

Proposition 2. Given a string instrument SZ,, and a chord progression &1, . . .
& for the instrument, let A be its associated automaton. We can obtain the
following generating function:

Z(t) =3 Eptn

n

which counts the number =, of tablatures having complezity equal to n.

Proof. We use the Schiitzenberger’s methodology (or the symbolic method) to
associate the indeterminate t to the distance between two sequential positions.
Therefore, when we change the position from TAB,[f”] to TAB,[f”l], the tran-
sition ¢; x — ¢i+1,, becomes a term of the generating function =j ;(¢) in the
form td(TABz[f”vTABEHI])EHLh(t) where d(TAB,; i, TAB;11,) is the distance
between the two positions. By solving the obtained equations system in the
unknown = o(t) = =(¢) we have the desired generating function.

Example 8. A very famous song is Knocking on Heaven’s Door by Bob Dylan
(see [2]). This song is a good example, because every strophe is characterized by
the following chord progression:

G Magor, D Major, A Minor, G Major, D Major, C' Major
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Table 2. Knocking on Heaven’s Door by Bob Dylan

Introduction
G Major, D Major, A Minor, G Major, D Major, C Major

G Major D Major A Minor
Mama, take this badge off of me

G Major D Major C Major
I can’t use it anymore.

G Major D Major A Minor
It’s gettin’ dark, too dark for me to see

G Major D Magjor C Major
I feel like I’'m knockin’ on heaven’s door.

or, in Italian notation:
Sol Major, Re Major, La Minor, Sol Major, Re Major, Do Major.

We want to study the complexity of a single strophe of this song. Using the
Definition 5 we can give the following realizable positions (you can find C Major
positions in Example 4):

G Major (or Sol Major) = {67,59, 55,43}

note/f'ret I 11 117 note/fret 117 A% 174
E={64} @ E —@
B—{59;i B
G={55}0 G @
D={50} D L
A={45} A
E={40} ® £ —e

D Major (or Re Major) = {66,62,57,50}

note/ fret 1 11 117 note/fret 'V VI VII
E E
B @ B
G G @
D ) D
A % A —@
E L E
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note/fret X X1 XII note/ fret VII VIIT 11X X
E E
B B — @
G @ G — @
D @ D —@
A @ A

A Minor (or La Minor) = {64, 60,57,45}

note/ fret 1 11 III note/fret 'V VI VII
E © E
B —@ B @
G @ G —@
D D P
A ? A
E E lL—g

Using Proposition 1 we can generate the following automaton:

null G Major D Major A Minor G Major D Major C Major
position 2 2 : 1

o=@
3 I 5 \\// 3
44,0 I qs5,1 “:}'ll@
SOA S
R XKL
L Y CRAY
q4,1 | qs5,2 "‘,‘“@

3 I 5 : ‘1.0
o

I I
7

In the previous figure, for all ¢; ;, we have written also the

@!}/ X

min{fret#0 | 3j=1,...,m such that TAB,[f"'](j) = fret}.

These values are necessary to compute the distance between two positions. More-
over, we can observe as, in this simple case, there are 512 different tablatures for
the same chord progression. Using Proposition 2 we obtain the following system
of equations:
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Sa0(t) = tZ30(t) + 7531 (t)

Eoa(t) = t*Z30(t) + Z5.1(t)

Sa0(t) = t9530(t) + 1531 (1)

Sa3(t) = 1°Z50(t) + 12531 (1)

Ss0(t) = t*Z40(t) + t*Z41 (1)

S31(t) = t2540(t) +2541(1)

Euo(t) =tZ50(t) + 12551 (1) +t"S50(t) + t1Z5.5(t)
Eua(t) = tS50(t) + °55.1(t) + 7 Z52(t) + t* 55 5(t)
Ssot) =t +t+t°+¢

Esat) =t"+ 2+ +1°

Esot) =t +t"T+ 2+ 1°

Ssa(t) =10+ttt + 17

By solving in =y ¢(f) we obtain:

Z0.0(t) = 245 + 2818 + 167 + 48t10 4 16t + 32¢12 + 28413 + 40t 4 1241 +
40816 + 16¢17 + 36118 + 12¢19 + 44420 4 8421 + 28122 + 12¢23 + 24424 + 44 +
12670 4+ 4127 4 1248 + 8¢%0 + 4432 4 4¢3

This generating function counts the number of tablatures for each complexity.
For example, the term 24t® indicates the existence of 24 different tablatures with
complexity equal to 6 to execute the chord progression. These 24 solutions cor-
respond to tablatures requiring the shortest total movement of the hand on the
fretboard. From the generating function we also find that the average complexity
and the variance are: = = 16.25 and o = 141, 195. This means that if we play
the song with a random tablature we make a total hand jump corresponding to
16 frets, on the average.

Ezxample 9. We can use the previous proposition also with infinite sequence
of chords. In fact, in this example we define a very simple string instrument
ST = ((48,49),ny) as follows:

note/ fret I 11 117
C
Ct I

We study the tablatures of the following infinite notes progression:
C ={48},D = {50},C,D,C, D, ...

In this case note C' has only one position, but note D has two positions.
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note/ fret 1 11 117
C
Ct
C' (or Do)
note/ fret I I II7 note/ fret I I II7
c c ®
Ct I—. cy L
D (or Re) D (or Re)

We have the following system of equations:

We set the term 1 in = o(t) because we can consider the initial state as a final
state. By solving the system, we obtain:

Z0,0(t) =1+ tZ0,0(t) + t2Z0,0(t)
and this equation corresponds to the generating function of Fibonacci’s numbers
F,,, in fact:
B 1
1t —¢2

Therefore, in this example, there are F,, different tablatures with complexity n.

Zo,0(t) =1+t +2t2 + 3t3 + 5t + O(t°).

3 Conclusion

In this paper we introduce the problem of tablatures for stringed instruments and
explain some combinatorial properties. We don’t present an exhaustive study, in
fact there are some questions which require a further study. In the Example 8 we
have 24 tablatures with lowest complexity. Which one is the better? A tablature
can be considered better also in terms of the mechanical difficulty of any single
position. This concept is linked with the problem of fingering. In a next paper
we will study this kind of problems.
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Abstract. In this paper we investigate the relations between knitting
and computer science. We show that the two disciplines share many con-
cepts. Computer science, in particular algorithm theory, can suggest a
lot of powerful tools that can be used both in descriptive and prescriptive
ways and that apparently have not yet been used for creative knitting.
The obtained results are short (optimal size) recursive descriptions for
complex patterns; creation of new complex recursive patterns; and the
application of three-valued algebra operations to combine and create a
wide variety of new patterns.

Keywords: Modeling Knitting; Pattern Knitting Diagrams; Checker-
board, Sierpinski, and Butterfly patterns; Knitting Complexity.

1 Knitting, Mathematics and Computer Science

Knitting is usually considered a female activity and females are usually not con-
sidered to be inclined to mathematics, or to science in general. Nevertheless
mathematical skills are necessary for knitting, because they help to realize sym-
metries, inversions, scalings and proportions; good abstraction capabilities are
indeed needed to figure the final result out and to map the idea of a pattern into
a knitted form. Therefore, even illiterate women use mathematics while knitting,
without knowing it.

Furthermore, if you think about knitting carefully, you can find a lot of formal
and abstract structures. And here, computer science may come in, by providing
tools and ways of interpreting and re-interpreting these structures, thus giving
a form to knitting.

Knitting offers us a nice chance to revisit some of the main concepts of com-
puter science from a new perspective and, at the same time, knitting can be
better understood in the light of this theoretical tour. Computer science, espe-
cially algorithm theory, can suggest a lot of powerful tools that can be used both
in descriptive and prescriptive ways and that apparently have not yet been used
for creative knitting.

A pattern can be seen as a matrix of stitches (columns) and needles (rows),
and it is usually repeated many times horizontally or vertically, or inserted into
another pattern or interleaved with one or more other patterns. The stitches
can be chosen from a set of possible stitches, but not all the combinations are
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allowed: we have to select them according to a set of predefined rules, which
guarantee a consistent result.

Once a new pattern has been created, its description is represented through
the so called pattern knitting diagram; in this way the pattern can be reproduced
many times and communicated to others. The diagram must be read from the
bottom to the top, the odd rows from right to left and the even ones in the
opposite direction, i.e., a “bustrophedic” reading (from ancient greek Sovg, ”ox”
+ oTpegerr, "to turn”, imitating the ox ploughing the field, back and forth).
Rows and, in general, patterns exhibit structural regularity, which allows us to
use the notion of grammars to describe them (Section 2). On the other hand,
exactly the bustrophedic reading of the diagram gives the specification, row by
row, of the elementary stitches to be performed and essentially represents the
algorithm to be executed to realize the piece of work.

The relations between mathematics and knitting have been studied from many
points of view. A wide review on this subject can be found in the web site The
Home of Mathematical Knitting [8].

As computer scientists we will mostly consider other aspects of the creative
knitting process, which, as we will see, are interesting and, to our knowledge,
have not yet been investigated. First of all, recall that one of the first examples of
an elementary computer was a mechanical loom, invented by Joseph Jacquard in
1801. This machine was able to execute patterns composed of several interleaved
threads of different colors following the scheme of punched holes in board punch
cards. In this way the Jacquard machine automatically selected the color of
each stitch, allowing complex combinations. Nowadays we still use the name
jacquard to indicate this kind of pattern and the idea of using punched cards as
knitting diagrams to reproduce particular patterns has been used also by more
modern knitting machines. Now they include very sophisticated control devices
that behave as real dedicated computers and are able to reproduce any complex
pattern.

We started our study by asking ourselves what applying recursion to knitting
could lead to. First of all we wanted to understand if recursive motives could
be employed to obtain beautiful patterns, and then to see how to exploit the
power of recursion to create very short descriptions. We found some surprising
results as shown by the examples of recursive patterns proposed here, which, in
our opinion, show some beauty (Section 4). Moreover, the recursive patterns can
be seen as schemes of patterns, from which it is possible, changing the initial
conditions and the basic stitches, to obtain families of new patterns, thereby
opening a new style of knitting.

In addition, recursive patterns can be defined in a very succinct way, i.e., their
pattern knitting diagrams can be automatically generated with very short recur-
sive algorithms. Applying, by analogy, the well known concept of Kolmogorov
Complezity in this framework, we might say that recursive knitting patterns
have low “knitting complexity” (Section 5). This result shows how recursion al-
lows us to get an optimal compression of patterns, whose standard description
would have a much higher complexity. The usual knitting instructions, described
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in natural language, can then be derived from the recursive algorithms, or di-
rectly from the generated pattern diagrams, in an automatic way by some sort
of knitting compiler.

A second part of this study is still devoted to creating new patterns, but based
on the combination of given patterns. Different combinations of stitches give rise
to different textures, among which the most famous are flat stockinette, reverse
stockinette, and seed stitches (Section 3). Patterns and motifs are obtained by
using different textures for different areas of the knitting piece. Consequently,
the elementary unit to be considered seems to be the texture unit, i.e., the stitch
processed according to a particular texture. We call this unit knitting element
or knittel, in analogy with pixel (picture element).

We show how considering a set of possible textures and their combinations
as a three-valued algebra, it is possible to combine shapes and patterns in a very
simple and elegant way, using the algebra operations, and to easily obtain the
specifications of many nice patterns (Section 6). This is only an example of how
a formal approach offers a way to enhance the design possibilities.

2 The Grammar of Knitting

In specialistic journals, patterns are specified both with pattern knitting dia-
grams and verbal descriptions. A pattern knitting diagram is a matrix, where
each element corresponds to a single stitch and every row corresponds to a nee-
dle. The pattern can be repeated as many times as needed. Every kind of stitch
is represented by a special knitting symbol. In other words, there is a finite
alphabet S of knitting symbols S and a precise syntax of these symbols.

S ::= stitches
| knit
— purl
0 cast on

The verbal description is compressed horizontally by inserting the repetitions
between two stars, and vertically indicating the rows to be repeated, as in Fig. 1
(see also Fig. 5). The explanation of each row resembles the production rules in a
regular grammar [3], where terminals are knitting symbols in S and one special
non terminal symbol suffices to generate each row. Consider, e.g., the first row
in Fig. 1. It is easy to rephrase it as the following production (remember that
the row should be read from right to left):

Roa= |l [ B =
that, in turn, generates the following language of words L(R) = ||[{— — ||}* =
LI ==l 101 ==Il = =1l .-} (see the diagram in Fig. 1, which presents just a

single repetition). It is interesting to observe that the pattern descriptions use
the star with the same meaning of the Kleene star.
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Cast on over a number of stitches multiple of 4 plus 3.

Row 1: * knit 2, purl 2; repeat from *: to last 3 sts, knit 3.

Repeat row 1.

Fig. 1. Standard description (top) and pattern knitting diagram (bottom) of Mistake
Rib

Consequently, grammars appear a good tool for pattern modeling, as they pro-
vide simple and elegant representations of patterns. Actually, a pattern corre-
sponds to a two-dimensional word and this calls for a generalization of formal word
language theory. There are many possible models for two-dimensional languages
that can be used for the knitting framework. This subject is left for future work.
The nice thing is that we can define a sweater as a piece of a particular language.

3 Knit Textures

Different combinations of stitches give rise to knit fabrics that result in different
textures (see Fig. 2). The basic knit fabric is called stockinette pattern and it
is obtained by alternating rows of knits with rows of purls on the right side.
The visual effect is a grid of V shapes. On the wrong side the pattern has a
different texture, the effect is a grid of ~ shapes and it is used as a pattern in
itself (obtained by alternating rows of purls with rows of knits) with the name of
reverse stockinette. Another common fabric is called seed stitch and it is obtained
by alternating knits and purls. Generally, the visible patterns are not completely
congruent to their diagrams. For instance, the visual effect of the seed stitch is
that of a checkerboard, while its diagram (the right one in Fig. 2) has a different
aspect. This is due to the fact that the odd rows describe the right side of the
fabric, whereas even ones refer to the wrong side. When following the diagram,
this corresponds to the perspective on the fabric of the person who knits it.
Patterns are usually obtained by combining different textures as in the checker-
board pattern in Fig. 3, where stockinette and reverse stockinette are combined

Fig. 2. Pattern Knitting Diagrams for Stockinette (left), Reverse Stockinette (center),
Seed Stitch (right)
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Fig. 3. Checkerboard: Pattern Knitting Diagram (left), Visible Pattern (right)

in a checkerboard style in four tiles (see also Section 4). Again, the diagram does
not give the immediate intuition of the pattern. To better visualize the pattern,
we can use a symbol for the generic point of the stockinette texture, e.g., “a” and
another, e.g., the “b” for the generic point of the reverse stockinette. Sometimes
a similar convention is used in pattern knitting diagrams. In other words, we are
using an abstraction of the texture, namely the knitting element or knittel, the
elementary texture unit. In our example, the knittel symbol “a” stands for the
generic point of the stockinette, that can be either a knit or a purl, depending on
the position in the stockinette area. Of course, we can also associate “a” and “b”
to other pairs of textures and obtain new combinations. For ease of presentation,
in Section 6 we will use a color code for textures, associating them to different
scales of gray.

4 Recursive Knitting: An Algorithmic Description

How can we apply the powerful concept of “recursion” to the knitting world? Prob-
ably, the most natural way is that of exploiting the recursion in the description
of the knitting patterns, by using recursive algorithms to automatically generate
them. One additional advantage of our algorithmic description over standard ones
based on instructions in natural languages as well as pattern knitting diagrams, is
that with just one algorithm it is possible to obtain whole families of new patterns
by simply changing the initial conditions and the basic stitches.

We propose here three examples of families of patterns of increasing difficulty,
as well as beauty, that can be generated recursively. The first example concerns
a pattern that could be easily defined in an iterative way; in the second example
we consider a pattern based on a well known plane fractal; finally, the pattern
shown in the third example is nothing other than a knitted butterfly network.

Without loss of generality, we consider the generation of square knitting dia-
grams, each represented as a matrix a, whose entries describe single stitches. The
generation of the knitting diagram is performed in two steps: first the execution
of a recursive algorithm generates the pattern, which resembles its final aspect,
and then the associated knitting diagram is simply produced by inverting every
other row (i.e., changing the knit stitches into purl ones, and viceversa).

Checkerboard pattern. As said above, a Checkerboard pattern is composed of
identical squares that alternate between stockinette stitch and reverse stockinette
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Fig. 4. Checkerboard visible patterns (top) and their knitting diagrams (bottom), with
increasing resolution. In the visible patterns the symbol | (=) stands for a knittel of a
(reverse) stockinette fabric.

stitch. The only variable is the dimension of the squares, i.e., the number of
stitches across and rows long. This pattern can be seen as a generalization of
the well known seed stitch, obtained when the dimension of the squares is one.
The input of the algorithm is given by a matrix a, whose entries are initialized
as knit stitches, its dimension n = 2*, the dimension d of the basic pattern, and
the indexes = and y used to indicate the portion of matrix to fill.

Checkerboard(a,n,d, z,y)
if (n ==d)
for (i =0; i < d/2; i++)
for (j =0; j <d/2; j++)
ali+d/2+z][j+y] = a[i+z][j+d/2+y] = —;

else
for (k=0; k < 4; k++)
1=k/2;
7 =k mod 2;

Checkerboard(a,n/2,d,x +i*n/2,y + j *n/2);

Observe that by changing the value of d from its maximum value n down to its
minimum value 2, we obtain patterns with progressively increasing resolution.
Examples of patterns of the Checkerboard family and of their corresponding knit-
ting diagrams are shown in Fig. 4. Finally, Fig. 5 shows a standard description
of a Checkerboard pattern of resolution 2, by instruction in natural languages.

Sierpinski pattern. The definition of this pattern is based on the plane fractal
known as Sierpinski carpet, first described by Wactaw Sierpinski in 1916. The
construction of the Sierpinski carpet begins with a square. The square is cut into
9 congruent subsquares in a 3-by-3 grid, and the central subsquare is removed.
The same procedure is then applied recursively to the remaining 8 subsquares,
depending on the chosen resolution.
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Cast on over a number n of stitches, multiple of 4.
Row 1: * knit 2, purl 2; repeat from *.

Row 2: repeat row 1.
Row 3: * purl 2, knit 2; repeat from *.
Row 4: repeat row 2.

Repeat rows 1, 2, 3, and 4 for n/4 times.

Fig. 5. Standard description of a Checkerboard pattern for a fixed value d = 2

To realize such a pattern with our tools, i.e., needles and handwork, we only
have to decide how to “remove” a square. This could be done, e.g., by using
stockinette stitch as background, and reverse stockinette stitch for the removed
squares, or viceversa. As before, the input of the algorithm is given by a matrix a,
whose entries are initialized as knit stitches, its dimension n = 3*, the dimension
d of the basic pattern, and the indexes z and y indicating the portion of matrix
to fill.

Sierpinski(a,n, d, x,y)
if (n ==4d)
for (i =d/3;i < 2*d/3; i++)
for (j =d/3; j <2xd/3; j++)
ali+z][j+y] = —;
else
for (i =n/3; i < 2%n/3; i++)
for (j =n/3; j <2%n/3; j++)
ali+z][j+y] = —;
for (k=0; k <9; k++)
if (k # 4)
1 =k/3;
7 =k mod 3;
Sierpinski(a,n/3,d,xz +i*n/3,y + j *n/3);

Again, decreasing d from n down to 3, we obtain patterns of progressively in-
creasing resolution. Examples of patterns of the Sierpinski family, together with
their knitting diagrams, are shown in Fig. 6. Whereas in the previous example
we were able to give a concise standard description for a given resolution by
verbal knitting instructions, for the present pattern a similar concision could
not be attained.

Butterfly pattern. Our last example of recursive knitting pattern is based on
the well known notion of butterfly network (see [5]):

Definition 1. A d-dimensional butterfly has (d + 1)2¢ nodes and d 2%+ edges.
The nodes correspond to pairs (w, i) where i is the level of the node (0 < i < d)
and w is a d-bit binary number that denotes the row of the node. Two nodes
(w,i) and (w',i") are linked by an edge if and only if i = i + 1 and either w
and w' are identical (straight edge) or they differ in precisely the i'th bit (cross
edge).
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Fig. 6. Sierpinski visible patterns (top) and their knitting diagrams (bottom), with
increasing resolution

This time, a recursive algorithm, in a classical a la divide et impera style, is
used to generate a scheme of a d-dimensional butterfly (see Fig. 7). For aesthetic
reasons, we only consider cross edges. Starting from such a scheme, one can easily
derive a matrix describing the visible pattern, and then build the associated
knitting diagram. Observe that as in the previous example, yet even more so, a
request for brief standard knitting instructions cannot be satisfied for the present
pattern.

The input of the algorithm is given by a matrix a, its dimension n = 2¢+1 —2,
and the index x used to indicate the portion of matrix to fill.

Butterfly(a, n, z)
m=(n+2)/2;
if (m == 2)
al0][z] = al][z+1] = \;
a0lle+1] = alle] = /
Butterfly(a,m — 2, z);
Butterfly(a,m — 2,2 + 1 + n/2);
Combine(a, m, x);

Combine(a, m, x)
r=m—2;
for (d=0;d<m;d=d+2)
for (j=r;j<2%m—2; j++)
ailldti-ra] = \;
for (d=m—-1;d<2xm—2;d=d+2)
for (j=r;j<2%m—2; j++)
allld-j+ra] = /;
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Fig. 7. A three-dimensional butterfly scheme recursively generated

The Butterfly pattern can be realized with needles in various way. For in-
stance, one could play with the two basic stitches, knit and purl, and use them
to realize the diagonal lines representing its edges, or, even better, the cable
stitch, as shown in Fig. 8.

5 Knitting Complexity

In computer science, the Kolmogorov complezity (also known as algorithmic en-
tropy, or program-size complexity) of an object is a measure of the computational
resources needed to specify the object [6]. For the world of knitting, by analogy
we introduce the following:

Definition 2. The knitting complexity of a knitting pattern is the length in
bits, expressed in order of magnitude, of the shortest description of its knitlting
diagram.

We pose a basic proposition providing an immediate lower bound.

Proposition 1. A knitting pattern of dimension nxm has a knitting complexity
2(logn + logm).

Proof. The bound easily follows by noting that logn + logm bits are required
to specify the diagram size.

Observe that the more a pattern is elementary, the more its diagram is repetitive
and easy to describe with “concise” instructions. On the other hand, if a pattern
does not present any structural regularity, the shortest description of its knitting
diagram will consist of the diagram itself, thus requiring ©(nm) bits.

We will now analyse the knitting complexity of the three examples described
in Section 4. We have
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Fig. 8. Cable stitch realization of the Butterfly pattern

Proposition 2. The Checkerboard, Sierpinski and Butterfly patterns have knit-
ting complexity ©(logn), therefore their recursive descriptions are optimal.

Proof. First of all observe that in this case m = n. The proof is constructively
obtained from the algorithmic description of these three patterns, specified in
Section 4. In fact, each algorithm consists of a constant number of instructions,
and the values of the variables and input parameters are all upper bounded
by n. Therefore ©(logn) bits are sufficient to describe them. The optimality
immediately follows from Proposition 1.

Observe that the optimality has been obtained thanks to the power of the re-
cursive description of the patterns. It can be easily seen that using the standard
knitting description techniques (natural language or pattern knitting diagrams)
only the complexity of the Checkerboard pattern would be of order @(logn),
since it takes a constant number of instructions to be described (see Fig. 5). For
the Sierpinski pattern, an optimal compression can be easily obtained when the
resolution is very low, e.g., d = n. For higher resolution (d < n), we can observe
that the whole visible pattern can be obtained by the composition of only two
basic d x d subsquares, as those shown in Fig. 9. For any d, these two squares can
be described with @(log d) bits, because of their regularity. The overall diagram
can then be described as an n/d x n/d array of such subsquares. In this way we
obtain a description of size ©(n?/d? + logd).

Using the standard knitting description techniques, for the Butterfly pattern
we are not able to find a better description than the whole array of stitches,
requiring ©(n?) bits.
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Fig. 9. A Sierpinsky visible pattern of size n = 27 and d = 3

6 Designing Patterns Using Algebra

Patterns and motifs are obtained by using different textures for different areas
of the knitting piece. Previous studies in this direction can be found in [2,7]. For
ease of presentation, suppose we only have three different kinds of texture in the
same pattern. To obtain new patterns, we play with a three-valued algebra, i.e.,
an algebra over the finite field GF(3). GF(3) contains three elements, usually
labelled with 0, 1 and 2, and arithmetic is performed modulo 3. As operations,
we mainly focus on the sum and multiplication modulo 3 (typical of this ring).
Note that the sum and multiplication modulo 2, i.e., the logical exclusive or
(XOR) and AND operations, and the other boolean operations can be obtained
as combinations of the typical GF'(3) operations.

We apply element-wise these operations to matrices of knittels, assuming val-
ues in {0, 1,2}, depending on the corresponding texture. We will take two pat-
terns, suitably coded in our algebra, and apply one or more operations. We can
also combine more than two patterns. We use a color code for each value in
{0,1,2}, by associating them to different scales of gray, to help in visualizing the
patterns (0.01 for 0, 0.5 for 1, and 0.95 for 2).

Boolean operations are usually used to combine patterns and shapes in com-
puter vision. Resorting to a third value increases the number of possible com-
binations. The role of values is twofold: on the one hand we can associate each
value to a different texture and obtain three textures; on the other hand, their
combination with different operations can play a role in the manipulation of pat-
terns. We can think about a generalization of the masking notion, to manipulate
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Fig. 10. Multiplication modulo 3 (right) of the two patterns A (left) and B (center)

knittel areas in bulk. It suffices to use the second pattern as a mask for the first
one. If the operation applied is the multiplication modulo 3, we can obtain the
following effects on the first pattern: (i) if the mask area consists of 0 the effect
on the corresponding area in the first pattern is that of clearing, i.e., the area
it is cleared to zero regardless of the initial value; (ii) if the mask area consists
of 1, the original values in the corresponding area are not changed, while (iii) if
the mask area consists of 2, the values 1 and 2 are inverted. Similar considera-
tions can be made for the sum modulo 3, and for all the operations possible in
GF(3).

We present two experiments, in which we consider n X n square matrices.
In the first example, in Fig. 10, we can observe the effect of the multiplication
modulo 3, depending on the values.

An interesting variation could be to apply different operations to different
sub-matrices, i.e., having also matrices of operations, as in Fig. 11, where each
operation is applied to each n/2 x n/2 sub-matrix. The matrix of operations
comb is the following: the effect is nicely kaleidoscopic.

|:+mod3 xm0d3:|

Xmod3 tmod3

Fig.11. Combination (right) of the two patterns C (left) and D (center) with the
matrix of operations comb
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7 Concluding Remarks

We conclude here our tour of the computational aspects of the knitting world.
Summarizing, the results we have obtained are:

— Short (optimal size) recursive description for complex patterns.

— Creation of new complex patterns.

— Application of three-valued algebra operations to combine and create a wide
variety of new patterns.

Beside the theoretical interest, the above results have also practical impact.
In fact, using a deep level of recursion and high resolution, we can obtain auto-
matically and in a very simple way, arbitrarily complex patterns, never designed
nor produced before, to our knowledge. Their pattern knitting diagrams can be
also obtained in an automatic way. Note that, even if a very complex pattern
will probably require a greater skill or concentration in the executor, if human,
knitting is a sequential process where one stitch is processed after the other,
and therefore the overall processing time remains linear in the size of the array.
A complex pattern can be obtained in approximately the same time as a sim-
ple one. This is true in particular for knitting machines whose execution time,
following a program, is independent of the difficulty of the diagram.

The exploration of the knitting world with the eye of the computer scientist
opens a variety of interesting topics beside those considered: this paper is only
the starting point for further investigation.

It could be also nice to organize, for educational purposes, an introduction to
basic concepts of computer science completely based on knitting, obviously for
women only!

Acknowledgments. We would like to thank the numerous men who, with a mix-
ture of diffidence and curiosity, helped us with this paper.
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Pictures from Mongolia —
Partial Sorting in a Partial World
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Abstract. You are back from that very long, marvelous journey. You have a thou-
sand pictures, but your friends and relatives will stand just a few dozens. Choos-
ing is a painful process, in particular when you cannot decide between the silent
vastity of that desert and the idyllic picture of that tranquil, majestic lake. We are
going to help.

1 Pictures, Pictures and More Pictures

In the summer of 2004, Paolo, Sebastiano and four more friends took part to a long
journey in Mongolia, with a local guide, a driver and an old Uaz van. Five of the partic-
ipants were fond of taking pictures, and Mongolia met their match: long rivers flowing
through luxuriant meadows, high peaks covered with pine trees, wild horses running
free, children laughing at our passage, camels in sandy deserts...On our trip back to
Italy, when we were in Moscow for a short stop, we started to put together all the pic-
tures we had been taking for three weeks and discovered that we had about six hundreds
of them! (We were using mainly digital cameras and we had an old light laptop with us,
so we had essentially no limit in the number of pictures we could take.)

The number was scary, not only for us but also, and importantly, for all of our friends.
If you ever happened to be invited to one of those just-after-holidays dinners at one of
your friend’s, you know what we mean: at the end of the dinner, no doubt your friend
will “propose” to look at the pictures they have been taking during their holidays in
Guatemala, and those pictures turn out to be three hundreds, and most of them about a
special tree growing in the jungle, and. ..

Yet, choosing the best representatives from a set of objects is not an easy task; even
the very nature of preference is questionable, and has been largely debated by psy-
chometrists and economists (see, e.g., [1]). In particular, a much argued point is whether
personal preference is a transitive relation or not; even if some experiments actually
prove that preference may indeed not be transitive, it is commonly agreed that intransi-
tive preference lead to irrational behaviours. For this reason, it is by now accepted that
preference can be modeled as a preorder (a.k.a. quasiorder), that is, a transitive reflex-
ive relation that is not required to be antisymmetric; for sake of simplicity, though, in
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** Partially supported by the EU Project “DELIS”.
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this paper we shall mainly focus our attention on partial orders, although many of our
algorithms can be easily extended to preorders.

So, in an abstract sense, we shall consider the problem of choosing the “best” ¢
elements from a set X of n elements subject to a given partial order; the exact notion of
“best elements” will be discussed soon. In our intended application, X is the set of all
pictures, whereas ¢ is the number of pictures we are going to put in our album, and the
order reflects the preference of some given, rational subject.

An algorithm for this problem will present a sequence of pairs of pictures to the
subject and ask her to choose which of the two pictures she likes best, or if she is
completely indifferent about the two pictures. The computational cost we are going
to take into consideration is the number of comparisons the subject is requested to
perform; notice, in particular, that we shall not be considering the number of instructions
executed or the space occupied by the data.

Apart for pictures, the problem may find more interesting applications to other ar-
eas; for example, our algorithm suggest a new way to perform rank aggregation in
Information Retrieval. Rank aggregation is the problem of combining ranking results
from various sources; in the context of the Web, the main applications include building
meta-search engines, combining ranking functions, selecting documents based on mul-
tiple criteria, and improving search precision through word associations. Here, by rank
we mean an assignment of a relevance score to each candidate. Traditional approaches
to rank aggregation [2,3] assume that ranks be aggregated in a single rank value that sat-
isfies suitable properties. Instead, we propose to produce a partial order by intersection,
and then identify suitable “best elements” of the partial order obtained in this way.

2 Basic Setup

A partial order on a set X is any binary relation < on X that is reflexive (x < x for all
x € X), antisymmetric (x < y and y < x imply x = y) and transitive (if x < y and
y < zthen x < z); a poset is a set endowed with a partial order; in this paper, all posets
will be finite. We let x < y meanx < y and x # y.

Two elements x, y € X such that either x < y or y < x are called comparable,
otherwise they are called incomparable. A set of pairwise comparable (incomparable,
resp.) elements is called a chain (antichain, resp.). The width of a poset is the maximum
cardinality of an antichain.

Antichains are “no-clue” sets: we have no freaking idea as to which picture we would
prefer out of the set. Chains are “I-got-all-clues” set: we have a precise idea about which
picture is better out of any pair.

We say that x covers y iff y < x and, for every z, y < z < x implies either y = z or
z = x. Intuitively, x is “just better” than y.

A maximal (minimal, resp.) element in a subset Y of a poset (X, <) is any element
y € Ysuchthaty <y’ € Y (Y 3y’ < y, resp.) implies y = y’. Maximal elements are
pictures for which we cannot find a better one (but there might be many incomparable
maximal elements).
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A linear order on X is a partial order that is itself a chain. A linear extension of a
partial order < is any linear order <" (on the same set) that extends < (i.e., such that
x < y implies x <’ y).

3 Setting Our Goal

We wish to give a sound and meaningful definition of what are the “best” elements of a
given poset; this notion is quite obvious in the case of a linear order, but turns out to be
much more subtle when partial orders are involved.

As afirst attempt, an upper set seems a good idea. Given a poset (X, <),asetY C X
is an upper set iff y < zand y € Y imply z € Y. Indeed, if we choose an upper set we
are sure that no picture more important than the ones chosen has been missed.

There’s however a significant problem with this definition when we try to give an
intuitive, user-related meaning to incomparability. Our friends coming from Mongolia
have pictures from Lake Hovsgol and also from the Gobi Desert!. It is reasonable to as-
sume that it is very difficult to define preferences between pictures containing just sand
and pictures containing just water, so every picture from Gobi could be incomparable
with every picture from Lake Hovsgol. But in this case the pictures from Gobi would
be an upper set, and a subset of Gobi pictures that is also an upper set could provide a
valid answer.

In other words, if we interpret incomparability as “different setting” or “different
topic” or “different subject”, we would like, say, to have at least the best picture for
every setting, or topic, or subject. Once we have the best pictures, if we still have room
we would like to get the second best pictures, and so on: intuitively, we would like to
peel the top of the poset by iteratively choosing the best pictures available. This idea
suggests a more stringent definition:

Definition 1. Ler (X, <) be a poset, and define a sequence Xo, X1, X2, ... of disjoint
subsets of X, called levels, where X; is the set of maximal elementsin X \ (XoU X1 U
-+ UX;_1) (the sequence is ultimately &). Let us define a new order T on X by setting
Xo 2 X1 2 Xo O -+ (elements in each X; are incomparable). A top set is an upper
set w.r.t. J; a top set of size t is also called a t-top set.

More explicitly, top sets are exactly sets of the form XoU X U---U X;_1 U X, where
Xz/ c X;.

Note that £ is an extension of < (if x < y and y € X; necessarily x € X; for
Jj > i): as a consequence, all top sets are upper sets (for <). The extension is in general
proper: if we consider the set X = {x, y, x, y’} ordered by x < x’, y < y/, we have
that additionally x C y’.

At this point, we are in a position to give a more precise definition of our problem:
we are given a poset (X, <) of n elements, and an integer ¢t < n, and we must output
a t-top set; the poset is available only implicitly, in the sense that we do not know <
in advance, but our algorithm can use the poset as an oracle that, given two distinct

1 Incidentally, “Gobi” in Mongolian means “desert”, which makes the expression “Gobi Desert”
at best bizarre.
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elements x, y € X, answers either “x < y”, or “x > y” or “x and y are incomparable”:
such a call to the oracle is named comparison, and we want our algorithm to perform
as few comparisons as possible.

To measure the loss w.r.t. a hypothetical optimal algorithm, we will say that an al-
gorithm is O-slow if it never makes more than ming, max|p|—, 0q (<, P, t) queries to
return the ¢-top set of a poset of size n, where ¢ (<7, P, t) is the number of queries
performed by algorithm .7 on the poset P of size n to return a ¢-top set.

Of course, there is a trivial algorithm that performs (;) comparisons and rebuilds the
whole poset, and in the general case we cannot hope to perform a smaller number of
comparisons: every algorithm must perform at least (;) comparison on a poset made of
n incomparable elements to output a top set of n — 1 elements. Indeed, if x and y are
never compared and, say, y is not in the output, the algorithm would fail for a poset in
which x < y (note that for this lower bound to work the choice of top sets vs. upper
sets is essential). This consideration can be generalised to any ¢t < n:

Proposition 1. Every correct algorithm must, in the worst case, perform at least
1 1
tCn—t—1)> _tn
2 2

comparisons (0 <t < n) to determine a t-top set of a n-elements poset.

Proof. Assume that the algorithm outputs a ¢-top set 7 of a poset of n elements without
comparing every element of 7 with every element of P; then, there is some x € T and
some y € P that have not been compared, and the algorithm would fail on a poset in
which the only comparable pair is x < y. Indeed, in that case x should not be in the
output, as < n and there are n — 1 maximal elements. Hence, the algorithm performed
at least (5) + #(n — t) comparisons, which is the left-hand side of the inequality in the
statement (the right-hand side follows from ¢ < n).

We note by passing that a similar lower bound holds for upper sets. The previous proof
can be easily amended to provide a 7 (n — t) lower bound on the number of comparisons
(if you output  elements and you did not check against some of the remaining n—¢, your
output might not be an upper set). On the other hand, finding an upper setin O (t (n —1t))
comparisons is trivial: if ¢+ < n/2 just look in a brute-force manner for a maximal
element (n — 1 comparisons), then find another maximal element in the remaining n — 1
elements (n — 2 comparisons) and so on. This requires (n — 1)+ (n—2)+---+(n—1t) =
tn—t(t+1)/2 < gt(n—t) comparisons. If > n/2 we can work backwards, eliminating
iteratively minimal elements, and returning the remaining ones.

Maybe surprisingly, an absolutely analogous approach yields a 2-slow algorithm for
top sets. The only difference is that once we find a maximal element m, we start search-
ing for elements incomparable with m in the poset, and we output them. Some care,
however, must be exercised, as once an incomparable element has been output, all
smaller elements are not good candidates for the output, even if they are incompara-
ble with m. So we must keep track of which elements of the poset should be checked
for incomparability with m, and update them each time we output a new incomparable
element. The details are given in Algorithm 1.
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Algorithm 1. A 2-slow algorithm. The notation x | denotes the set of all elements
smaller than or equal to x.
top(P: a poset, t: an integer)

1: C < @ {Candidate set: elements of the level to be peeled are to be found in here.}

2: L < P {Elements left for the next round.}

3: for ¢ times do

4 if C = @ then

5 {We prepare to peel a new level}
6: C <« L

7 L+~ 9

8 end if

9: set m to a maximal element of C

10:  outputm

11:  add m| minus m to L {Keep all elements smaller than m for the next round. ..}

12:  remove m], from C {... but remove m and all smaller elements from the candidates.}
13: end for

Theorem 1. Algorithm I outputs a t-top set.

Proof. Let O be the set of already output elements. We show that at the start of the
loop, CUL = P\ O, and the maximal elements of C are the maximal elements of
P\ (O U L). Indeed, the execution of the if statement (i.e., when C is empty, hence
L = P\ O) does not change these facts. When we output m we make it disappear from
C and appear in O, preserving the equation above (the elements strictly smaller than m
are transferred from C to L). Finally, since we remove m |, from C, m also disappears
from the set of maximal elements of C, and no new maximal elements appear. This
implies that the second property is preserved, too.

To conclude the proof, we note that just after the i-th execution of the if statement, C
will contain the entire poset P minus the first i levels. This is certainly true at the first
reassignment, and thus the maximal elements of C are exactly the first level of P. Since
we remove them one by one, by the time we execute the second reassignment we will
have output exactly the first level, so we will now assign to C the entire poset minus the
first level, and so on.

Theorem 2. Algorithm I requires no more than t 2n —t — 1) comparisons to output a
t-top set of a poset with n elements. Thus, it is 2-slow.

Proof. The algorithm performs some comparisons only when finding maximal ele-
ments, and when computing x| . In both cases at most |C| — 1 comparisons are needed,
using a brute-force approach. Note that at the start of the i-th iteration of the loop
|IC| + |L| = n — i, as several elements are moved between C and L, but exactly
one element is output (and removed from C) at each iteration, so in particular |C| <
n — i. The total number of comparison is then bounded by 2((n — 1) + --- + (n —
1)) =2tn —t(t + 1) = t(2n — t — 1). The last claim then follows immediately from
Proposition 1.
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4 Small-Width Posets

The reader might have noticed that our lower bound uses very wide posets (i.e., with
width ®(n)). It is thus possible that limiting the width we can work around the lower
bound, getting a better algorithm for small-width posets. Indeed, we expect that settings,
topics or subjects should be significantly fewer than the number of pictures, or it would
be very difficult to choose a small best subset.

Looking into Algorithm 1, it is clear that we are somehow wasting our time by scan-
ning for one maximal element at a time. A more efficient strategy could be building
in one shot the set of maximal elements, peeling them, build the new set of maximal
elements, and so on.

There are two difficulties with this approach: first of all, if we need a very small top
set we could make much more queries than necessary, as the set of maximal elements
could be significantly larger than the required top set. Second, rebuilding after each
peeling the set of maximal elements could be expensive.

There is not much we can do about the first problem, but our next algorithm (Algo-
rithm 2) tries to address the second one. If we divide P into two subsets and compute
the respective maximal elements, the latter will certainly contain all maximal elements
of P (plus some spurious elements). We can apply this reasoning recursively, building
the set of maximal elements incrementally. To avoid an expensive recomputation after
each peeling, we will arrange arbitrarily the elements of the poset P on the leaves of a
complete binary tree 7. The binary tree then induces naturally a hierarchical partition
of the elements of P—just look at the leaves of each node of given depth. We will keep
track of the maximal elements of each subset of the partition, by suitably labelling each
node of the tree. Initially, we will find on the root the set M of maximal elements of
P, which we can output. Then, we will remove the elements of M from all labels in
the tree, and recompute the new labels. The process will continue until we have output
enough elements.

Note that the width of the poset does not appear explicitly in the description of the
algorithm. Indeed, it will surface only during the analysis, when we shall put to good
use the fact that the labels on each node cannot be of cardinality larger than the poset
width.

In what follows we shall tacitly assume that the algorithm uses some data structure
to keep track of the comparisons that have already been performed; in other words, for
every pair x, y € X, we are able to tell whether x, y have ever been compared and, if so,
the result of the comparison. This assumption makes it possible to bound the number of
comparisons using just the number of pairs ever compared.

Theorem 3. Algorithm 2 is correct.

Proof. To prove the statement, it is sufficient to show that after the i-th call to com-
pleteLabelling the label of the root is the i-th level of the input poset P. Given a node
v of T, we define the v-dominated poset v{ as the subset of elements of P contained
in leaves dominated by v with the order inherited from P. It is immediate to show by
induction that if each node v of T is labelled by a (possibly empty) set of maximal el-
ements of v{}, then after a call to completeLabelling each node will be labelled by the
set of a/l maximal elements of v{}. Indeed, during the recomputation of the labels we
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Algorithm 2. An algorithm for small-width posets
top(t: an integer)
1: let T be a complete binary tree labelled on subsets of P and with n leaves
: label each leave of T" with a singleton containing a distinct element of X
: label the remaining nodes with @
while 7 > 0 do
completeLabelling(7")
let A be the label of the root of T
output # < min{z, |A|} elements from A
t<t—u
9:  remove the elements of A from all the labels
10: end while
completeLabelling(7: a binary tree)

e A A S ol

1: recursively consider all non-leaf nodes v of 7', bottom-up
: let zg, z1 be the two children of v
: fork < 0,1do
for x alabel of z; do
if no label of z;_ is greater than x add x to the label of v
end for
end for

NN R

compute the maximal elements of the union of the labels of the children. But the labels
of the children contain (by induction) all maximal elements of the respective dominated
posets, and all maximal elements of v{} must appear in the labels of the children of v (if
we partition a partial order in two disjoint subsets, all maximal elements of the partial
order are still maximal elements of the subset they belong).

Thus, the label of the root after the first iteration is the first level of P. Then, either
the algorithm stops, or we remove the first level and call again completeLabelling.
Since now the tree contains just P minus its first level, and all labels are still maximal,
the label of the root will be the second level, and so on.

Theorem 4. Algorithm 2 finds a t-top set of a poset with n elements and width w using
2wn + wt(logn — [logw])
comparisons.

Proof. We split the estimate of the number of comparisons in two parts. Assume without
loss of generality that n is a power of two. Define the depth of a node in the standard
way (the root has depth 0, and the children of nodes at depth d have depth d + 1). We
shall call the nodes of depth smaller than logn — [log w | interesting, and the remaining
nodes uninteresting. Note that uninteresting nodes are those living in the last [log w]+1
levels of the tree.

Since we never repeat a comparison, all comparisons that could be ever performed
on uninteresting nodes are very easily bounded:
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logn—1 —1 [logw]
Z 2l (zlogn—i—l)z _ Z 2i+logn(2—i—1)2 _ Z 0=iy02i=2
i=logn—|logw] i=—|logw] i=1

We now focus the rest of the proof on the interesting nodes. The number of elements
contained in each child of an interesting node can be just bounded by w, so in principle
each time we need to update the labels of an interesting node we might need w? com-
parisons. This very rough estimate can be significantly improved noting that we cannot
increase indefinitely the number of elements in a child (as it is bounded by w). Indeed,
each time we add new elements in a node, this generates some new comparisons in its
parent. Nonetheless, as long as we add elements, the number of overall comparisons
performed by the parent approaches w?, but can never get past it. So if we estimate an

initial cost
logn—|logw]—1

Z 2iw? < nwzznw,
i=0
this estimate will cover all additions, as long as elements are never deleted.

What happens when elements are deleted? In this case, the deleted element can be
replaced by a new one, and its cost is not included in our previous estimate. So we must
fix our bound by adding w comparisons for each node in which a deletion happens.

Let us make the above considerations formal. Each interesting node v has a bonus of
w? comparisons included in the estimate above. Let v ambiguously denote the number
of labels of a node v before a call to completeLabelling (so in particular v = 0 for all
interesting v at the first iteration), and v* the number of labels of v after the call. If £ and
r are the left and right child of v we show that, provided w? — £r bonus comparisons
are available before the call, w? — £*r* are still available afterwards.

When we call completeLabelling, the labels of each node v must be updated. The
update involves comparing new elements that appeared in the children of v; at most
* = Or + * —r)t + (£* — £)(r* — r) comparison are needed to update v. But since
wr —lr — (0 = Or — (r* = r)t — (* — O(* — r) = w? — £*r* the invariant is
preserved. The invariant is trivially true before the first call, so we conclude that the
costs of completeLabelling are entirely covered by the bonus.

Finally, when we remove elements from the tree, each removed element potentially
alters logn — [logw] interesting nodes, reducing by 1 the number of its labels. Thus,
to keep the invariant true we might need to cover some costs: with the same notation
as above, if, for instance, the set of labels of £ becomes smaller we need to compensate
r + 1 < w comparisons to keep the invariant true for node v (symmetrically for r).
Thus, removing an element requires patching the bonus by at most w(logn — [logw])
additional comparisons.

All in all, emitting ¢ elements will require a fixed cost of 2nw comparisons, plus
at most w(logn — |logw]) comparisons for each deleted element; since the deleted
elements are bounded by ¢ the result follows easily.

Note that, if w = O(1) and t = O(n/logn), Algorithm 2 is asymptotically optimal, as
it requires just

O(wn—l—wtlogn):O(n—i- " 10gn>=0(n)
w ogn

log
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comparisons and, for any w < n, Q(n) is a trivial lower bound for the problem (that
holds evenifr = 1).
More generally if w = o(¢) Algorithm 2 is advantageous over Algorithm 1, as

wtlog:) =nt (log Z))/(Z)) = o(nt).

The opposite happens if + = o(w). To see that this is not an artifact of the analysis
of the algorithm, just note that on a poset formed by [n/w] chains if we distribute
each level (which has width w) on a set of adjacent leaves all possible comparisons on
uninteresting nodes will be performed during the first call to completeLabelling, so the
algorithm actually requires Q2 (wn) = w(tn) comparisons if r > 0.

5 A Probabilistic Algorithm

We now attack the problem from a completely different viewpoint. Since our lower
bounds are based on very peculiar posets, we resort to a wonderful asymptotic structure
theorem proved by Kleitman and Rotschild [4]: almost all posets of n elements are
good, that is, they are made of three levels of approximate size n/4, n/2, and n/4,
respectively?. The idea is that of writing the algorithm as if all posets were good. In
this way we will get an asymptotically very fast (albeit a bit improbable) algorithm that
returns top sets on almost all posets.

Stated in a slightly more precise form, Kleitman and Rotschild prove the following
property. If you draw at random a poset (X, <) of n element uniformly among all posets
of n elements, then with probability 1 — O( rll) the poset is good, that is,3

— X can be partitioned into three antichains Lo, L1 and Lj;

ILil = | < /nlogn fori =0,2;

every elementin L; only covers elements in L; 1 (fori = 0, 1); hence, in particular,
every element in L; is minimal and every element in L is maximal;

every non-maximal element is covered by at least /8 — n’/® elements.

In other words, almost every poset is made by just three antichains, and contains
about n/4 minimal and maximal elements, whereas the remaining elements are just
“sandwiched” between a maximal and a minimal element. The main idea of the algo-
rithm is that if we need no more than n/5 top elements®, they are easy to find if the
poset is good—and almost all posets are good.

To prove that probabilistic bound on Algorithm 3, we shall be using the following
Chernoff-type bound on hypergeometric distributions, proved in [5], and stated in this
form in [6]:

2 The original paper creates levels by stripping minimal elements, but by duality all results are
valid also in our case.

3 The result proved in [4] is actually stronger, but we are only quoting the properties of good
posets that we will be needing in our proof.

41In principle, it works for an top elements, with « being any constant less than 1/4—for sim-
plicity, it is taken to be 1/5. In the end, we will incidentally provide a generalization that works
for any number of top elements.



Pictures from Mongolia 75

Algorithm 3. An algorithm for good posets and t < n/5
top(z: an integer, with t < n/5)
1: s <= min (max (10¢, [100logn1), n)
2: choose u.a.r. without replacement s elements xp, x2, ..., xg from the poset
3:Y «— g
4: fori =1,2,...,sdo
5 if isProbablyMaximal(x;) then
6: Y < YU {x;}
7 end if
8: end for
9: return any min(|Y|, #)-elements subset of ¥
isProbablyMaximal(x)
1: g < [15logn]
2: choose u.a.r. with replacement ¢ elements yy, y2, ..., yq from the poset
3: return true iff no y; is larger than x

Theorem 5. A bin contains n balls, v of which are red; s balls are drawn at random
without replacement, and X denotes the number of red balls extracted. Then, X has hy-
pergeometric distribution with mean E[X] = p = "". Moreover, for every 0 < & < 1,

) r2s
P X —p| >eu] <exp|—¢ .
nn—-s)

Using this result, we obtain that:

Theorem 6. Ifaposet (X, <) is extracted uniformly at random among all posets with n
elements, and t < 5, then Algorithm 3 returns a t-top set with probability 1 — O(1/n),
performing O (max(¢, logn)logn) comparisons in the worst case.

Proof. The bound on the number of comparisons is obvious. To perform the probabilis-
tic analysis, consider the following events:

&pyil = “the algorithm does not return a z-top set”
&g00d = “the poset (X, <) is good”
&1 = “there are less than r maximal elements among x1, ..., x; (instr. 2)”

& = “for some non-maximal x;, isProbablyMaximal returned true (instr. 3)”.

First observe that§1N& == &g, 50 il == &1U&, thatis, P[] < P[§1U&] <
P[&1] + P[&]. We are going to prove that both P[&]] and P[&;] are O(1/n), whence
the result follows. For &1, first observe that

P[&1] = P& | Egood]P[ggood] + P& | ggood]P[Egood] =

1
= P[éj_l | ggood] + P[Egood] = P[Sl | ggood] + 0 (n) .
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To bound P& | £good], let 7 be the number of maximal elements of the poset, and X
be the number of maximal elements among x1, . . ., x; (those extracted at instruction 2).
Obviously, if s = n all the maximals are extracted from the poset (so assuming that the
poset is good gives us X > n/4 — /nlogn > n/5 > t, for sufficiently large n).
Otherwise, by Theorem 5, E[X] = u = rs/n and for every ¢ € (0, 1)

2
PIX < (1 —e)u] < P[IX — ju| > el < exp (—82 o )
nn—s)

If we assume &good, 7 = 1/4 — /nlogn (by the very definition of good posets), and
(for sufficiently large n) r > n/5. We can then obtain

L= (n/5)s _ K Y
n 5

using the fact thats > 10¢.
Taking ¢ = 1/2, we have (1 — &) = u/2 > t, so

P[&1 | §good] = P[X < 1] &good] < P[X < (1 — &)t | Egood] <

e N\N? 2 _ 1r2s

xp | — exp| — .
= ©%p 2) n(n—s)) — Pl 7y 2
Since r > n/5 and s > 1001logn,

1 /n\2 100logn 1
P[& ISgood]SeXp<—4 (5) 2 ) =exp(—10gn)=0<n).

As for &, reasoning in the same way we have that P[&] < P[& | &good] + O(i),
so we can limit ourselves to proving that P[&> | &good] = 0(;). Recall that any non-
maximal element x; is dominated by at least n/8 — n’/3 elements in a good poset.
Alternatively, for any positive constant & > 0, every non-maximal element is dominated
by at least n(1/8 — «) elements, for sufficiently large n; hence, the probability that
among g elements chosen uniformly at random there is none larger than x; is at most
(1 —=(1/8 —a))? = (7/8 4+ a)?. Since there are at most s < n non-maximal elements
for which the function isProbablyMaximal is called, we have that

7 q
P[§2|§good] 5”(8 “rOl) .

We have to choose ¢ so that the latter is no more than 1/n, that is

n(1/8+a)! <1/n
qlog(7/8 +a) < —2logn
2
q g n.

> lo
—1log(7/8 + a)

Since 2/10g(8/7) =~ 14.9777, choosing ¢ to be at least 15logn is enough to guarantee
the result.
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Note that, in particular, if ¥ = O(logn) then the number of comparisons performed
by the algorithm is as low as O(log® n). Yet, this algorithm is of little use in practice,
because the asymptotic bound is obtained for good posets: even if almost all posets are
good, this is just useful if the preference poset is drawn uniformly at random among
all possible posets, something that is unlikely at best. Moreover, differently from the
deterministic algorithms presented so far, extending the probability bound to the case
of preorders is not immediate. These issues will not be discussed further in this paper,
but they constitute directions for future work.

We can remove the limit on ¢ with the help of another probabilistic algorithm that,
for any ¢, returns a 7-top set with O (n log n) comparisons. The algorithm partitions the
(hopefully good) poset X into the classes Lo, L1, Lo by calling, for each x € X, the
functions isProbablyMaximal(x) and isProbablyMinimal(x) (whose only difference
from the former is returning true iff no y; is smaller—rather than larger—than x at in-
struction 3). Having this partition, the algorithm can trivially return a ¢-top set. For this
algorithm to fail it is necessary that the given poset is not good or that at least a call to
isProbablyMaximal or isProbablyMinimal returns a wrong answer—along the same
lines of the previous proofs, it can be shown that the probability of this eventis O (1/n).

Indeed, by combining the two probabilistic algorithms (and using the second only
when ¢ is too large for the first), we remove the restriction on ¢ while leaving the same
computational bound of O (max(z, logn) logn).
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Abstract. A spoonerism is a sentence in some natural language where
the swapping of two letters results in a new sentence with a different
meaning. In this paper, we give some efficient algorithms for deciding
whether a given sentence, made up from words of a given dictionary, is
a spoonerism or not.

1 Introduction

It probably happened to most people that when speaking quickly one acciden-
tally swapped two words of a sentence. If the resulting sentence still has a mean-
ing, it might reveal a new meaning and may turn out funny. A Spoonerism is
such an accidentally transposition of words or parts of words in a sentence. It is
named after Reverend William Archibald Spooner (1844-1930). He was an En-
glish scholar who attended New College, Oxford, as an undergraduate in 1862,
and remained there for over 60 years in various capacities. Before he ultimately
became warden or president of the College, he was lecturing subjects such as
history, philosophy, and divinity. Spooner was famous for his talks and lectures
that are said to be full of these verbal slips in speech. The reason for these sub-
stitutions of phonetically similar parts is not silliness or nervousness but rather
that the mind is so swift the tongue cannot keep up.

For a detailed biography of Reverend Spooner see [3] and for a brief history and
some examples of the spoonerism see the February 1995 edition of the Reader’s
Digest Magazine. Here it says: 'Reverend Spooner’s tendency to get words and
sounds crossed up could happen at any time, but especially when he was agitated.
He reprimanded one student for “fighting a liar in the quadrangle” and another
who “hissed my mystery lecture.” To the latter he added in disgust, “You have
deliberately tasted two worms and you can leave Oxford by the town drain.”
(lighting a fire; missed my history lecture; wasted two terms; down train)’.

Many such examples have been attributed to Spooner. But a new biography
of Spooner [3] suggest that most of them were actually invented by Spooner’s
students. So, the Oxfords Dictionary gives only one example of spoonerism
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(“weight of rages”) that can be tracked back to Spooner and says: 'Many other
Spoonerisms, such as those given in the previous editions of O.D.Q., are now
known to be apocryphal.’

In French (contrepéterie) this play with word for amusement is also very
popular. However traditionally the swap results in an often indecent meaning
such that only the original part should be said. The sometimes hard task to find
the swap revealing the funny meaning is left to readers or listeners.

As said before, the substitutions often rhyme. In German there are short
rhymes that are based on the exchange of the last two stressed syllables (or
parts). These are known as “Schiittelreim” (shaken rhyme). Examples are: ”Ein
Schornsteinfeger gegen Rufl / am besten steht im RegenguB.” (A chimney swe-
eper avoids soot best when standing in the rain) and “Beim Zahnarzt in den
Wartezimmern / hért man oft auch Zarte wimmern.” (In dentist waiting rooms
one often hears tender ones whimper). The latter example (and many more) can
be found at de.wikiquote.org.

In Slovak and Czech, the spoonerism is known as “vymenka” (exchange rid-
dle). An example is “il bez nélady — Iibeznd lady” (A hive in bad mood — lovable
lady).

In psychological tests, spoonerisms have been used to analyze phonological
awareness which is related to spelling abilities [1].

In string matching and analysis, transposition of letters is used as metric for
the similarity of strings. For instance, the Jaro distance metric [4,5] and the
Jaro-Winkler distance [8] are string comparators that account for transpositions
of single letters.

We consider here the problem of deciding whether a given word or sentence is
a spoonerism, i.e., whether there exists a transposition of two letters such that
the resulting string is a valid word according to a given dictionary or can be
decomposed into valid words. The problem was introduced in an unpublished
presentation [7]. Some sketch of the ideas of the presentation can be found in
an unpublished manuscript [2]. All the algorithms and results achieved and pre-
sented there (see the comparison in Section 2) are disjoint from our results.

The problem can be formalized in the following way. A sentence s is given as
a string, i.e., as a concatenation of its words. Its length n is the total number
of letters in s. The second part of the input is a dictionary D of valid words.
The task is to decide whether there exist two positions in the string such that
a swap of the letters at these position leaves a string that can be decomposed
into words of the dictionary. For example, by swapping the letters [ and p in the
phrase “a lack of pies” we get another meaningful phrase “a pack of lies” which
is correctly spelt in English.

In this paper, we will give some efficient algorithms for deciding if a given
sentence is a spoonerism and analyze their worst-case running times. In Section
2, we will fix our notion and present a formal definition of the problem. In
Section 3, we will present a first dynamic-programming approach for solving the
spoonerism problem; two technically more involved algorithms with improved
running times will be presented in Sections 4 and 5.
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2 Preliminaries

Before we formally define the spoonerism problem, we fix some notation: For
any alphabet X, we denote by a dictionary a finite subset D of XT. By & we
denote the empty string, by w® = a;...a; we denote the reverse of a string
w=aj...aq.

A word is a string w € D, and a sentence over an alphabet X with respect
to a dictionary D is a string s € D*, i.e., a string that can be decomposed into
dictionary words.

Using this notation, we can define the spoonerism problem as follows.

Definition 1. The spoonerism problem is the following decision problem:

Input: A dictionary D = {wy,wa,...,w;} and a sentence s = $182...8, of
length n over an alphabet ..
Output: YES if there exist i,j € {1,...,n} such that s; # s; and the string

!

S =851...5-15jSi41.--5j-15iSj41.--Sn
is a sentence over X, NO otherwise.

Informally speaking, we are asked to find out whether we can swap exactly two
different symbols in a sentence s and get a new sentence s’.

Throughout the paper, we will use a,b, ¢, ... to denote single letters from X
and we will use u,v,w,... to denote (possibly empty) strings over X. Further-
more, let n = |s| be the length of the input sentence s, let k& = maxyep |u| be
the length of the longest word in the given dictionary and let m =3 5, |u| be
the total size of the dictionary.

The running time and space complexities of all of our algorithms will depend
on the four parameters |X|, m, n and k. It is obvious that m > k, furthermore,
we will assume in the following that n > k (otherwise we can just ignore longer
dictionary words).

We present two algorithms for the spoonerism problem based on the idea of
dynamic programming. The complexity of these algorithms (under the assump-
tion of fixed |¥]) is summarized in Table 1. These results improve the results
claimed! by [7,2], which use a graph-theoretic approach combined with a di-
vide and conquer technique and achieve time complexity O(n%k + nk?logn) for
processing the input sentence.

Table 1. Time complexity of presented algorithms
Preprocessing the dictionary Processing the sentence

Basic algorithm O(m) O(nk?)
Improved algorithm O(mk) O(nk?)

! The complete proofs of these results are not given in [7,2] and therefore we have not
been able to check their correctness.
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3 The Basic Dynamic-Programming Algorithm

In this section, we will present an algorithm for solving the spoonerism problem
that works in time O(|X|m + nk (| 2| + k)?).

The main idea of the algorithm is to preprocess the input dictionary (in
O(]X|m) time) and to use dynamic programming to process the input sentence,
processing each letter in O(k (|X| + k)?) time.

Definition 2. We denote the set of all prefizes of all words from the dictionary
D as Pref (D). Formally, Pref (D) = {u | 3v : uv € D}.

It is easy to see that € € Pref (D) and D C Pref (D).

Definition 3. Let u,v € X*. We say that v is a live suffix of u w.r.t. the
dictionary D if and only if there exists a partition u = u'v such that

— o’ is a sentence w.r.t. D, i.e., v’ can be represented as a sequence of words
from D, and
— v is a prefiz of some word from the dictionary D, i.e., v € Pref (D).

We denote the set of all live suffizes of word u w.r.t. the dictionary D as L3,(u).
If the dictionary is clear from the context, we also write £ (u).

Intuitively, the idea behind our algorithm can be described as follows: We want
to process the input sentence s sequentially from left to right, and, for any prefix
u of s, we want to keep track of all possible partitions of u into dictionary words
(plus one prefix of a dictionary word at the end). Actually, we will not need to
remember the complete partition, two partitions ending with the same live suffix
can be treated as equivalent; thus, we only need to store information about the
live suffixes. Here, we have to distinguish between three possible situations: The
desired swap of two letters can occur completely inside u, completely outside wu,
or it can exchange a letter from u with a letter from the remainder of s. In the
latter case, we also need to remember the letters exchanged. Formally, we can
define these sets of live suffixes as follows.

Definition 4. Let u be a string over some alphabet X', let D be some dictionary
over 3.

— So(u) is the set of all live suffizes of u, i.e. So(u) = L£(u).

— For all a,b € X such that a # b, S{~(u) is the set of all live suffizes of all
strings u’ obtained by replacing a single letter a by letter b in the string u.
More formally, S¢=°(u) =, 40—y £ (0bV").

— Sa(u) is the set of all live suffizes of all strings v’ obtained by swapping two
letters a # b in the string u. Formally, Sa(u) = U, qy by —unaps £° (vb0'a”).

We will call the sets So(u), S¢—°(u) for all a # b, and Sa(u) the S-sets for u or
the S(u)-sets for short.
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It is easy to see that there is a solution for the spoonerism problem on the input
sentence s if and only if € € Sy(s).

The idea of our algorithm is to compute the sets Sy, Sf—°, and S, incremen-
tally by using the following equations:

— To compute Sp(uc), it is sufficient to augment all possible elements of Sp(u)
with letter ¢. Furthermore, if the obtained set contains a word from the
dictionary, then we can add ¢ into Sp(uc). Formally,

So(uc) = {ve | v e Sy(u),ve € Pref (D)} U{e} iff Jv e Sy(u):veeD
oue) = {ve | v € Sy(u),ve € Pref (D)} otherwise
(1)
a—b

— For computing S§7°(uc), we distinguish two cases. Either the replacement
of the letters occurs in u, or (in case a = ¢) the letter ¢ is replaced. Each of
these cases yields a subset of Pref (D) and the resulting set S¢~°(uc) is the
union of these subsets. In the former case, the situation is analogous to the
one described in previous paragraph. Let X *~(uc) be the subset of Pref (D)
obtained from the first case:

X7 (uc) = {ve | v e 8¢ (u),ve € Pref (D)}

In the latter case (occurring only if ¢ = a), we use our knowledge of Sp(u).
Let Y% ~b(uc) be the subset of Pref (D) obtained from the second case:

{vb|v € Sy(u),vb € Pref (D)} iffa=c
0 otherwise

Y0 (ue) = {

If the obtained set X *~?(uc)UY *~*(uc) contains a word from the dictionary,
we have to add the empty string:

X (uc) U Y= (uc) U {e} iff Fv € X0 (ue) UY 2P (uc):
St (uc) = veD
X0 (ue) U Y42 (uc) otherwise

(2)

— Computing Sz(uc) is analogous to computing S¢~°(uc). Again, we distin-

guish two cases. Either the swap occurs in u, or the last letter ¢ is one of the
swapped letters. For the first case, we have

X (uc) = {ve | v € Sa(u),ve € Pref (D)}.
For the second case, we have
Y(uc) ={va|a e X,ve S u),va € Pref (D)}.
Finally, we augment the set by ¢ if necessary:

X(uc)UY (uc) U{e} iff Jv € X(uc) UY (uc) :v €D
Safue) = {X(uc) UY (uc) ) otherwise (3)



Efficient Algorithms for the Spoonerism Problem 83

Algorithm 1. Basic dynamic programming for the spoonerism problem

Input: A dictionary D of total size m with maximum word length k over an alphabet
) and a sentence s = s1...5, w.r.t. D.

1. Construct a trie from D.
2. fori:=1tondo
Compute the S-sets for s; ... s; according to Equations (1), (2), and (3), using
the trie for the look-up operations in the dictionary.
3. if e € Sa(s1...5n) then
Output YES
else
Output No

Output: YES if there exists a sentence s’ that can be constructed from s by swapping
exactly two different letters, NO otherwise.

Tt is easy to see that these equations are correct. Hence, after computing Sa(s),
the algorithm can decide if there exists a solution for the given input sentence s
just by checking if € € Sa(s).

The resulting algorithm is summarized as Algorithm 1.

Theorem 1. Algorithm 1 can be implemented to run in O(|X|m+nk(|X|+k)?)
time and O(|X|m + k(|X| + k)?) space.

Proof. For implementing the algorithm efficiently, we use a trie T' representing
all words from the dictionary D.? Each vertex of this trie uniquely represents one
element from Pref (D), the root vertex represents e and the parent of the vertex
representing ua represents u. For each vertex, it is sufficient to remember pointers
to its children and a flag whether it represents a word from the dictionary. The
total size of T is O(|X|m) and it can also be built in O(|X|m) time. Moreover,
once built, the trie can be reused for different runs of the main part of the
algorithm on different input sentences.

The main part of the algorithm processes each letter from the input sentence
and computes the corresponding S-sets. Each of these sets (there are | X|>—|X|+2
of them) can be represented as a list of vertices of the trie 7. Suppose the
algorithm has computed the S(u)-sets for some prefix u of the input sentence.
To enumerate all members of S(uc)-sets for the prefix augmented by one letter
¢, it is sufficient to iterate through all elements of the S(u)-sets and apply the
rules described in Equations (1), (2), and (3). Using the trie representation, it
is possible to process one element of the S(u)-sets in constant time as follows:
Since a string v is in the S(u)-sets represented by a pointer to a vertex in the
trie, also any string vd, for d € X', can be looked up in the trie by traversing only
one of its edges. This way, the time complexity required to process the letter ¢
of the input word is linear in the total size of the S(u)-sets.

% For a detailed description of the trie data structure see e.g. Section 6.3 in [6].



84 H.-J. Bockenhauer et al.

However, there may be some duplicate elements in the newly created S(uc)-
sets, which have to be removed. This can be done in the following way. For
each set (possibly containing duplicates), we iterate through its elements and
mark them directly in the trie. When finding an already marked element, we
remove it as a duplicate. After finishing this, we iterate through the elements
once more and unmark them in the trie. Such duplication removal requires only
linear running time with respect to the number of elements of the S(uc)-sets,
regardless of the size of the dictionary.

Since each element can be processed in constant time, the key part of the
complexity analysis of Algorithm 1 is to find an upper bound on the size of the
S-sets. We will give such a bound in what follows.

All elements in Sp(u) are suffixes of the word u of length at most k (recall that
E is the length of the longest word in the dictionary). Hence, |Sp(u)| € O(k).

Similarly, each element of |Sa(u)| is a suffix of w of length at most k, possi-
bly with two letters swapped. Since there are O(k?) possibilities for this swap,
|Sa(u)| € O(K?).

Now we analyze >, ycvnqzp |S¢~2(u)| by considering each word from the
set U, pesnazn S¢~b(u) and estimating in how many Sj-sets it can be: There
are at most k different words that are suffixes of u and each of them can be in
at most O(|X]?) sets: A suffix of u of length [ < k can be included in at most
|X]-(|X|—1) sets corresponding to the | X|- (] X| — 1) possible letter replacements
in one of the first |u| — [ positions of u. There are at most |X|k? other strings in
Ua.besnazs Si° (), since there are k possibilities for the length of the word, at
most k possibilities for the location of replacement and |X| possibilities for the
replacement letter. Each of these strings can belong to only one S; (u)-set, since
both the replaced and the replacing letter are uniquely determined by the string
itself and the string u. Hence, 3, ,c s pq [ST70(w)| € O(| 2k + [ Z[K?).

Putting this together, there can be at most O(k + |X|?k + |X|k% + k) =
O (k(|X] + k)?) elements in the S(u)-sets, which proves the time complexity

O (nk (12 + k)2> of step 2 of Algorithm 1.

As for the memory complexity, observe that only the S-sets for the latest prefix
have to be stored, which requires O(k (|| + k)°) space. Furthermore, the trie
representing the dictionary has to be stored, thus the total memory complexity
is O(|Z|m + k(| 2] + k)*). 0

It is not difficult to show that the complexity analysis presented in this theorem
is tight. To show that |Sa(u)| = O(k?), consider a word u = a’b’c’ such that
i = k/3. There are exactly i? different words w that can be obtained from b'c’
by switching one letter b with a letter c. Hence there are exactly i® = O(k?)
different words a’w such that j < 7. All of these words (if contained in the
dictionary) also belong to the set Sa(u), so, for an appropriate dictionary, the
size of Sz(u) is indeed O(k?). Similar reasoning can be used for the Sy (u)-sets,
too.
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4 An Improved Algorithm

In this section, we will present an improved algorithm with a faster running
time for processing the input sentence at the expense of a slower preprocessing
phase. This algorithm will consider two separate cases, depending on whether
the swapped letters occur inside the same dictionary word or not.

It will turn out that the case of letters that occur in two different dictionary
words after swapping can be handled with asymptotically the same preprocessing
time as in the previous algorithm and O(n(|X|*k + | X|k?)) time for processing
the input sentence.

But handling the case of swapping inside a dictionary word with an improved
time complexity will require a more expensive preprocessing in O(mk?|X|) time.

4.1 Swapping Across Dictionary Word Boundaries

First we present an algorithm which can detect in O(n(|X|?k+|X|k?)) time, after
a preprocessing in O(|X'|m) time, if there is a possibility to swap two letters in the
input sentence that are in different dictionary words in some partition of the so
constructed sentence. We can formally define this special case of the spoonerism
problem as follows.

Definition 5. The separated spoonerism problem is the following decision
problem:

Input: A dictionary D = {wy,ws,...,w;} and a sentence s = $182...8, over
an alphabet 3.

Output: YES if there exist i,7,0 € {1,...,n} such thati <1 < j, s; # s, and
the strings ' = s1...8i-18;Sit1--.51 and y' = Si41 ... 5j—18iSj41 ... Sy are
sentences over X, NO otherwise.

To solve the separated spoonerism problem, we will use a similar idea as in the
previous section, processing the input sentence not only in forward direction but
also backwards.

The algorithm tries to find a solution for all possible pairs of swapped letters
a,b € X separately. Such a solution exists if and only if it is possible to decompose
the input sentence s = zy into parts x and y such that the following holds:

C1. It is possible to replace some letter a with b in the part x such that the
result can be decomposed into dictionary words.

C2. It is possible to replace some letter b with a in the part y such that the
result can be decomposed into dictionary words.

It is obvious that condition C1 can be easily checked using the S-sets described
in Algorithm 1: C7 holds if and only if ¢ € S¢~b(z). To check condition C2,
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we need to process the word s backwards and compute sets analogous to S, but
with reversed roles of prefixes and suffixes.

Definition 6. We denote the dictionary containing reverses of all words from
the dictionary D as DE. Formally, DY = {uf* | u € D}.

We denote the set of all suffizes of all words from the dictionary D as Suff (D).
Formally, Suff (D) = {u | v : vu € D}. It is easy to see that Suff (D) =

(Pref (DF))™ and & € Suff (D) 2 D.

Let u,v € X*. We call v a live prefix of u w.r.t. the dictionary D, if and only
if v2 is a live suffix of u™ w.r.t. the dictionary DF. We denote the set of all live
prefives of word u as L (u).

By Po(u) we denote the set of all live prefives of u, i. e., Po(u) = L (u).

For all a # b € X, P¢~b(u) is the set of all live prefives of all strings u’
obtained by replacing a single letter a by letter b in the string w. Formally,

Pf‘*}b(u) = Uvav':u/\a;éb »CP (’Ub'l)/).

Hence, for checking condition C2, it is sufficient to check if £ € PY~(y). To do
S0, the elements of the P-sets can be computed similarly as the elements of the
S-sets, processing the input word backwards.

— To compute Py(cu), it is sufficient to prepend all possible elements of Py (u)
with letter ¢. Furthermore, if the obtained set contains a word from the
dictionary, then we can add e into Py(cu). Formally,

~ JA{ev|vePo(u),cv e Suft (D)} u{e} iff Jve Py(u):cveD
T {ev | v e Po(u),cv € Suff (D)} otherwise
(4)
a—b

— For computing P{~°(cu), we distinguish two cases. Either the replacement
of the letters occurs in u, or (in case a = ¢) the letter ¢ is replaced. Each of
these cases yields a subset from Suff (D) and the resulting set P{—%(cu) is
the union of these subsets. In the former case, the situation is analogous to
the one described in the previous paragraph. Let X *~*(cu) be the subset of
Suff (D) obtained from the first case:

X7 (cu) = {cv | v € PE0(u), cv € Suff (D)}

Po(cu)

In the latter case (occurring only if ¢ = a), we use our knowledge of Py(u).
Let Y%~?(cu) be the subset of Suff (D) obtained from the second case:

Yo () = {ébv | v € Po(u),bv € Suff (D)} iff c=a

otherwise
If the obtained set X *~*(cu)UY *~(cu) contains a word from the dictionary,
we have to add the empty string:
X (cu) UY P (cu) U {e} iff Fv € X9 (cu) U Y0 (cu):
Pt (cu)= veD
X970 (cu) U Y40 (cu) otherwise

®)
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The resulting strategy is summarized in Algorithm 2.

Algorithm 2. Solving the separated spoonerism problem
Input: A dictionary D of total size m with maximum word length &k over an alphabet
Y] and a sentence s = s1...8, w.r.t. D.

1. Construct a trie T from D and a trie T® from DF.
2. fori:=1tondo
Compute the Sp- and Si-sets for s; .. .s; according to Equations (1) and (2),
using T for the look-up operations in the dictionary.
Compute the Pyp- and P;-sets for s,—_;...s, according analogous equations,
using TF for the look-up operations in the dictionary.
3. forabe X a#bdo
for:=1ton—1do
if e €S s1...5) and € € PY7%(si41...5,) then
Output YES and stop.
Output No

Output: YES if there exists a solution to the separated spoonerism problem, NO
otherwise.

Lemma 1. Algorithm 2 solves the separated spoonerism problem in O(m|X| +
n(| X%k + |X]k?)) time and O(m|X| + | X|k* + n|X|?) space.

Proof. Obviously, Algorithm 2 correctly solves the separated spoonerism prob-
lem.

The preprocessing of the dictionary in step 1 can be done in O(m|X|) time
as already explained in the analysis of Algorithm 1.

Calculating the Sp- and S;-sets in step 2 is possible in O(n(|X%k + | X|k?))
time, as already shown in the proof of Theorem 1. Calculating the Py- and
P;-sets obviously takes the same time.

The test in each single iteration of step 3 can be implemented to take constant
time; thus, step 3 needs O(n|X|?) time overall.

Summarizing, the total time required by Algorithm 2 is in O(m|X|+n(|X?k+
|X|k?)). To prove the claimed space complexity, we note that the tries need
O(m|X]) space, and the S(u)- and P(u)-sets need O(|X|?k + |X|k?) space for
one prefix u. There is no reason in storing all these sets for every prefix; only
the information whether ¢ € S¢=°(u) and € € P{~b(u) needs to be stored for
each prefix u and for each a,b € X, hence requiring O(n|X|?) space. O

4.2 Swapping Inside a Dictionary Word

If the separated spoonerism problem has no solution, we proceed to the case
where the swapped letters are located in the same dictionary word. The main
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idea of the algorithm is to try all possible decompositions of the input sentence
s = wijwsows into three parts wp, ws, and ws such that w; and ws can be
decomposed into dictionary words and ws is a string such that a swap of two
different letters makes it a dictionary word.

It is easy to see that wq and ws can be decomposed if and only if £ € Sp(w1)
and € € Py(ws). Since the sets Sy and Py have already been precomputed in
Algorithm 2 for the separated spoonerism problem, each of these checks can be
made in constant time.

Now we describe how to check whether two different letters in wy can be
swapped as to yield a dictionary word.

Our algorithm constructs another trie 7”7 which contains all strings that can
be reached from a dictionary word by swapping two different letters. For a dictio-
nary word w of length [, there are obviously at most [? < k? different reachable
strings. Thus, for each dictionary word, the resulting trie 7’ contains at most k2
strings of the same length. The total size of T" is thus in O(k?m|X)|).

After we have constructed this additional trie, we can process an input sen-
tence as follows: There are O(nk) possible partitions s = wjwows as described
above, the consistency check for w; and ws can be done in constant time for
each of these partitions. By enumerating the possible partitions in a suitable
way, also the look-up of ws in the additional trie 77 can be done in amortized
constant time.

This strategy is summarized in Algorithm 3.

Algorithm 3. Solving the spoonerism problem with extensive preprocessing

Input: A dictionary D of total size m with maximum word length &k over an alphabet
Y] and a sentence s = s1...8, w.r.t. D.

1. Use Algorithm 2 to check whether the separated spoonerism problem for D and s

has a solution. If so, output YES and stop.
2. Construct a trie 7" for the set D’ of all strings that can be reached from a dictionary

word by swapping two different letters.
3. fori:=0ton—1do

for [ := 1 to min(k,n — 7) do
if e € 80(81 c. 57;) and ¢ € P0(8i+l+1 . sn) and Sit1...Si+1 € D’ then
Output YES and stop.
Output No

Output: YES if there exists a solution to the spoonerism problem, NO otherwise.

Theorem 2. Algorithm 3 solves the spoonerism problem in O(mk?|X| +
n(| X%k + |X|k?)) time and O(mk?| 2| + | X|k? + n|2|?) space.

Proof. From the discussion above it is clear that Algorithm 3 solves the spooner-
ism problem.
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We will now analyze its time complexity. Step 1 is possible in O(m|X| +
n(|X|?k+|X|k?)) time according to Lemma 1. The trie 7" has a size of O(k*m|X|)
as discussed above, and it can obviously also be constructed in O(k?m|X|) time.
The tests in each iteration of step 3 can be performed in constant time: We
have already discussed this for the tests on the sets Sy and Py above; for testing
the membership of s;11...s;4; in D' after having tested the membership of
Sit1---Si+i—1 in the previous iteration, only one step along one edge of the trie
is needed, hence this can also been done in constant time. This leads to an overall
running time in O(nk) for step 3. The total running time of the algorithm is thus
in O(m| 2| +n(| X%k + | X|k%) + E*m|X| + nk) = O(K*m|X| +n(| X2k + | 2|k?)).

The space complexity of Algorithm 3 is obviously determined by the size of
the additional trie 77 and the space complexity of Algorithm 2. O

5 A Further Improvement for Small Alphabets

In this section, we will describe another algorithm which can, at least in the case
where k > | Y|, save some preprocessing time at the expense of a slightly higher
time complexity for processing an input sentence.

This algorithm in a first phase also uses Algorithm 2 to solve the separated
spoonerism problem. In a second phase, it again considers all possible partitions
s = wjwows of the input sentence s into two sentences w; and w3 and a string
wso which becomes a dictionary word by swapping two different letters.

For testing whether the swapping of letters may occur inside ws, this al-
gorithm will combine a dynamic programming approach similar to the one of
Algorithm 1 with the idea of an expanded preprocessed trie from Algorithm 3.
More precisely, in a preprocessing step, the algorithm will construct O(|X|?)
new dictionaries, where the dictionary D" contains all strings that can be
reached from a dictionary word from D by replacing a letter a by a letter b, i.e.,
Db = {xby | xay € D}. Using dynamic programming, the algorithm further
constructs the set 7 (ws) of all strings from D%~ that can be obtained from
wy by replacing an a by a b. In other words, the set 7 (w2) contains all strings
which can be obtained both from wy and from some dictionary word w € D by
replacing a letter a by a letter b.

If 797 (wy) is non-empty for some a,b € ¥, it contains some string u = xby =
x'by’, such that wy = ray and v = 2’ay’ € D. As long as we can guarantee that
x # o', this string from 72~°(w,) gives us a positive solution to the spoonerism
problem. To ensure this, we have to store some information about the positions
where the replacements may occur. This will be done both while constructing the
tries representing the dictionaries D*~* and while computing the set 7%~ (wy).
For every string in 7%~?(wy), the replacement position has to be unique, since
we are starting with the unique string ws.

For the strings in DY, the situation is slightly more complicated. If there are
two dictionary words v = 2’ay’ and z = " ay”, both mapped to the same string
u = x'by’ = 2"by" € DY where 2’ # z”, i.e, via replacements in different
positions, the presence of u in 7%~*(wy) already ensures a positive solution to
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the spoonerism problem. This means that we have to store, for each string in
Db either the unique replacement position or just the information that the
position is not unique.

The 7% -sets can be computed in a similar way as the S*b-sets in Algo-
rithms 1 and 2. Creating the modified dictionaries D%~ in the preprocessing
phase can be implemented in O(mk|X|?) time and space. The processing of the
input sentence itself takes O(nk|X|?) time — considering O(|X|?) different let-
ter pairs, O(nk) partitions s = wiwsws and O(k) elements of the 7 b-sets
and processing each element in constant time. The space complexity (not count-
ing the preprocessed dictionaries and information reused from Algorithm 2) is
O(k), required for storing the 72 t-sets. Adding the complexity of Algorithm 2,
which is used for deciding whether the swapping of letters may occur across
dictionary word boundaries, a time complexity in O(mk|X|* + nk?|X|?) and a
space complexity in O(mk|X|? + | X|k* + n|X|?) is obtained.

Now we present the description and analysis of the algorithm in more detail.
At first we provide the formal definition of the set 7 ~?(u) and describe how to
compute it for any string v € X*. The idea is analogous to that of computing
the set S¢~°(u) used in Algorithms 1 and 2.

Definition 7. For all a,b € X, a # b, the set T*~*(u) is the set of all pairs
(w, 1), where w is a string obtained by replacing a single letter a by a letter b in
the string u that also is a prefiz of some word from the dictionary D, and
where | € {1,...,|u|} denotes the position of the letter replacement. Formally,

T (u) = {(aby. |2 +1) | u= zay A xby € Pref (D)}

Slightly abusing notation, in the following we will also say that w € 797 (u), if
there exists an [ such that (w,l) € T2~ (u).

The sets 79" can be computed similarly as the sets S¢—?, except that the
empty string ¢ is not added to the sets and the dictionary D*~? is used instead
of D. For computing 7%~ (uc), we distinguish two cases. Either the replacement
of the letters occurs in u, or (in case a = c) the letter c is replaced. Let X~ (uc)
be the set of strings corresponding to the former case:

X7 (ue) = {(ve,1) | (v,1) € T*7b(u),ve € Pref (D*0)}
In the latter case (that occurs only if ¢ = a), we obtain at most one string:

Yo—b(uc) {é{)(ub, lub))} iff c=a

- otherwise
Putting this together yields
T (uc) = X7 (uc) UY 7P (uc). (6)

The complete strategy of this approach is summarized in Algorithm 4.



Efficient Algorithms for the Spoonerism Problem 91

Algorithm 4. Refined dynamic programming for the spoonerism problem

Input: A dictionary D of total size m with maximum word length k over an alphabet
) and a sentence s = s1...5, w.r.t. D.

1. Use Algorithm 2 to check whether the separated spoonerism problem for D and s
has a solution. If so, output YES and stop.

2. For all pairs (a,b) of different letters from X, construct a trie for the dictionary
D% where the vertices of the trie are labeled with either the unique position
of letter replacement that led to the corresponding string or with MuLT if this
position is not unique.

3. fora,be X a#bdo

fori:=0ton—1do
for [ ;=1 to min(k,n — i) do
if e € So(s1...5) and ¢ € Po(siti+1.-.5,) then

Construct the set Ta*b(siﬂ ... 8i41) from the set

T“Hb(siﬂ ... Si+1—1) using Equation (6)

for all (w,1) € T°7*(siy1...5:41) do
Check if the vertex in DY corresponding to w is labeled with some
I" # 1 or with MULT. If so, output YES and stop.

Output No

Output: YEs if there exists a solution to the spoonerism problem, NO otherwise.

Theorem 3. Algorithm 4 solves the spoonerism problem in O(mk|X|?+nk?|X|?)
time and O(|X*km + | X|k* 4+ n|2|?) space.

Proof. 1t is clear from our discussion above that the algorithm correctly solves
the spoonerism problem.

Step 1 again takes O(m|X| + n(|X|*k + | X|k?)) time according to Lemma 1.
We now analyze the time complexity needed to create and preprocess the modi-
fied dictionaries in step 2. Each word u € D yields |X||u| different strings belong-
ing to various of the modified dictionaries. Each of these strings can be inserted
into the appropriate dictionary represented by a trie in O(|X||u|) time. Labeling
any vertex of any of the tries requires only constant additional time and space,
hence also the overall time and space complexity of step 2 is

0 (z zmu?) o (zm > u|) 0 (15km).

ueD ueD

The inner loop in step 3 is performed O(nk|X|?) times. Since obviously
|T%~b(u)| < k for each u, the construction of the 7-sets according to Equa-
tion (6) can be performed in O(k) time using the trie for the modified dictionary
Db, Looking up the middle part s;;1 ...5;4; in the corresponding trie can be
done in amortized constant time, with a proof analogous to the one of Theorem 2.
Thus, step 3 has a total time complexity in O(nk?|X|?).
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Overall, Algorithm 4 has a time complexity in O(m|X| + n(| X%k + | 2|k?) +
mk|X|? + nk?|X|?) = O(mk|X|? + nk?| X]?).

Considering the space complexity, the algorithm needs to store the tries for
the modified dictionaries, requiring O(mk|X|?) space. Moreover, the space re-
quirements of step 1 exceed those for step 3 (not counting the tries). Thus, the
overall space complexity is in O(mk|X|* + |22k + | X|k* +n|X|?) = O(mk|X* +
| X1k? + n|X|?). O

6 Conclusion

We have presented some efficient algorithms for the spoonerism problem. The
worst-case running time of the basic dynamic-programming algorithm (Algo-
rithm 1) is O(m|X|) for preprocessing and O(nk(|X| + k)?) for processing the
input. The improved algorithm (Algorithm 3) reduces the input processing time
to O(nk(|X|?+|Xk)), which is asymptotically better even for the case k = ©(n).
Finally, we have presented a possible improvement of the preprocessing time of
Algorithm 3 to O(mk|X|?) at the expense of a slightly worse input processing
time O(nk?|X|?).

For a variant of the spoonerism problem, where substrings of length greater
than 1 may be swapped, these algorithms obviously yield a running time that is
exponential in the length of the interchanged substrings. We leave it as an open
problem to find more efficient algorithms for this problem.
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Abstract. We analyse transports between leaves in an edge-weighted
tree. We prove under which conditions there exists a transport match-
ing the weights of a given tree. We use this to compute minimum and
maximum values for the transport between a given pair of leaves.

1 Introduction

You have been approached by a spy agency to determine the amount of contraband
goods that are being traded among several nefarious countries. After being shipped
from its country of origin, each container of goods is routed through at least
one neutral port. At the port, the containers are stored in a warehouse before
being sent on their way, so you cannot trace indwidual containers from their
country of origin to their final destination. Satellite cameras can tell you the
number of containers travelling in each direction on each leg of the journey.
They cannot distinguish individual containers, nor do you have information on
the times individual containers have been observed. You know, however, that
every container takes the shortest possible route to its destination.

The task is to determine both the mazimum and minimum number of contain-
ers that could have been travelling from one country to another. The transport
network that is observed is an unrooted tree, with countries as leaves and ports
as internal nodes. For each edge the number of containers is given in two direc-
tions. You know from the description above that no container leaves a port in
the direction it came from.

This is the description of one of the problems at the Benelux Algorithm Pro-
gramming Contest 2006, which was held in Leiden on 21 October 2006, see
www.bapc2006.n1. The name of the problem was High Spies. The problem and
some phrases in its description were taken from [Shasha, 2003].

We want to emphasize that High Spies is not just a maximum network flow
problem, to which we can apply, e.g., the well-known Ford-Fulkerson algorithm
(see [Ford and Fulkerson, 1957]). We do not so much consider networks with
(maximum) capacities on the edges, but networks with numbers (of containers)
on the edges that are actually observed, meaning that the numbers must really
be met by the transport. Moreover, no container is allowed to travel from one
node to another and back again.

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 93-107, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. A transport network with six countries and three ports

Consider, for example the network depicted in Fig. 1, and suppose we are
interested in the transport from country 1 to country 4. The (standard) maxi-
mum flow from 1 to 4 consists of four containers, as this is the minimum number
observed on the route from 1 to 4. It is, however, not possible to send four con-
tainers along this route. In that case, in port 6, one of the containers arriving
from country 2 would be forced to return, which is forbidden.

Similarly, one might think that the minimum flow from 1 to 4 has value 0.
Indeed, one may send the five containers leaving country 1 to countries 2, 5, 7
and 9. ! However, in that case, at least one of the containers arriving at port 3
from port 8 would be forced to return.

In this paper, we present and analyse an algorithm for a generalized version
of High Spies. In this version, the transport observed between two neighbouring
nodes of the tree may be any non-negative real number.

The intuition behind the algorithm is simple. For each port on the (unique)
route from a certain country (the source) to another country (the target), it
determines the minimum and maximum number of containers that can be passed
on from the direction of the source in the direction of the target. The minimum
number results from passing on as many containers as possible in directions
different from that of the target. In all this, we make sure that no container
entering the port has to go back in the direction it came from. We use the
(local) minima and maxima from the individual ports to compute the (global)
minimum and maximum number of containers transported from source to target.

The paper is organized as follows. In Sect. 2, we model the problem in terms
of weighted trees. In Sect. 3 and 4, we analyse which weighted trees actually
correspond to valid transports. We will see that global conditions for this can
be translated into easily checkable, local conditions. We need these conditions
to justify our algorithm, which we describe in Sect. 5. There, we use the local
conditions to determine the local maxima and minima just mentioned, and we
combine these into a global solution. Finally, we make some concluding remarks,
including some more remarks about the use of standard max-flow algorithms to
solve the problem.

1 Also this flow can be found with a standard max-flow algorithm, by introducing a
special target node, which is only reachable from countries 2, 5, 7 and 9.
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2 Problem Model

An unrooted tree can be denoted by an ordered pair T' = (V, E), where V is the
(non-empty) set of nodes, and E is the set of edges of the tree. In High Spies,
the direction of edges is important. Therefore, we consider an edge as an ordered
pair of nodes (i, ). To reflect the undirected nature of the tree as a whole, we
have (i,7) € E, if and only if (j,7) € E.

Definition 1. A weighted tree is an ordered pair (T, c), where T = (V, E) is an
unrooted tree and ¢ is a non-negative function (a weight function) on E.

The weight ¢(i, 7) can be considered as the observed number of containers travel-
ling from node i to node j. Note, however, that it does not have to be an integer
number.

From now on, we assume that a tree T = (V, E) contains at least two nodes.
This allows for the identification of leaves and internal nodes in the tree. For
ease of notation, we also assume that V = {1,...,n} for some n > 2. We let
Leaves(T') denote the set of leaves of T

Definition 2. A transport Tr on an unrooted tree T is a non-negative function
on the ordered pairs (l1,l2) with ly,ls € Leaves(T) and 1y # .

The number Tr(ly,l2) can be considered as the number of containers shipped
from leaf (country) I; to leaf (country) ls via the edges of the tree. Despite
this interpretation, Tr(l1,l2) does not have to be an integer number. Note that
Tr(ly,12) is not necessarily equal to Tr(la, (7).

We are interested in the total transport over a certain edge (i, j) of the tree.
This total transport comes from the leaves on one side of (i, ) and goes to the
leaves on the other side of (i, j). We now define this formally.

Each edge (i, 7) of the tree is a ‘cut’. It partitions the set V' of nodes into two
subsets: the nodes on i’s side of the tree, and the nodes on j’s side of the tree.
Let us call these subsets of nodes Left(i,7) and Right(s, j), respectively. This
partitioning induces a partitioning of Leaves(T) into a subset of leaves on i’s
side of the tree, and a subset of leaves on j’s side of the tree. Let us call these
subsets LLeaves(i,j) and RLeaves(i, j), respectively. Clearly, LLeaves(i,j) =
RLeaves(j,4) and RLeaves(i, j) = LLeaves(j, 7).

For example, in the tree in Fig. 1, LLeaves(6,3) = {1, 2} and RLeaves(6,3) =
{4,5,7,9}.

Definition 3. A matching transport Tr on a weighted tree (T, ¢) withT = (V, E)
is a transport on T, such that for each edge (i,j) € E,

> > Tr(ly, 15) = c(i, j) - (1)
Lie LLeaves(i, j) 1o RLeaves(i, j)

Indeed, if we assume that the containers travelling from one leaf to another take
the shortest route in the tree (i.e., they do not travel in two directions over the
same undirected edge), and that each container observed is on its way from one
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12 12
0 X 2 0 r.. 3
4’@7 4’@7
12 12

Fig. 2. Two weighted trees that do not have a matching transport

leaf to another (i.e., its origin or destination is not an internal node), then (1)
must hold. Each container travelling from a leaf in LLeaves(i,j) to a leaf in
RLeaves(i, j) passes edge (i,7) exactly once, and there are no other containers
travelling along this (directed) edge.

For example, a matching transport Tr for the tree in Fig. 1 is given by

Tr(1,2) = 2, Tr(1,4) = 2, Tr(1,5) = 1, Tr(2,1) = 1, Tr(2,9) = 1,
Tr(4,7) = 1,Tr(5,7) = 1, Te(7,4) = 1, Tr(9,4) = 2

(and Tr(ly,l2) = 0 for pairs of leaves (I1,l2) not mentioned).

Now, the problem High Spies can be rephrased as follows: given a weighted
tree for which at least one matching transport exists, and given two different
leaves [; and I of this tree, determine the minimum value and the maximum
value for Tr(lq,l2) over all matching transports Tr on the tree.

3 Existence of a Matching Transport

Before we start solving High Spies, we consider the question under which con-
ditions a weighted tree actually permits a matching transport. We have already
seen a matching transport for the weighted tree from Fig. 1. If we slightly modify
the tree, then there may not exist a matching transport. For example, there do
not exist matching transports for the two weighted trees in Fig. 2, in which we
have only altered the weights on edges between nodes 3 and 8.

It is intuitively clear that there cannot be a matching transport for the left
tree, becauses nodes 3 and 8 do not satisfy the graph analogue of Kirchhoff’s
current law: the total weight on the edges entering node 3 is unequal to the total
weight on the edges leaving that node, and similarly for node 8.

Although the right tree does satisfy Kirchhoff’s law, it is also intuitively clear
that there cannot be a matching transport for that tree. The weight 7 on edge
(3,8) should be carried along to nodes 4 and 5. However, the total weight on
the edges (8,4) and (8,5) is only 6. Also, the weight 3 on edge (8, 3) must have
arrived at node 8 from nodes 4 and 5. However, the total weight on the edges
(4,8) and (5, 8) is only 2.
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In Sect. 4, we prove that these are exactly the types of arguments determining
the existence of a matching transport on a weighted tree. For that purpose, we
reformulate the (global) definition of a matching transport into local terms.

Definition 4. Let (T, ¢) be a weighted tree, and let j be an internal node of T.
Let hy, ..., hy, for some m > 2 be the neighbours of j inT. Then j is a transport
node, if there exists an m x m matriz A = (a; 1) satisfying

ai >0 (i,k=1,...,m) (2)
a;; =0 (i=1,...,m) 3)
Sy ai i = c(hg, j) (i=1,...,m) (4)
St aik = c(j, hi) (k=1,...,m) (5)

In this case, the matriz A is called a witness matrix for node j.

Intuitively, a witness matrix determines the transport on a local scale. The entry
a; ), can be considered as the number of containers that is shipped from node h;
to node hy, (via node j).

For example, let us consider node j = 6 in the tree from Fig. 1. This node,
whose neighbours are nodes 1, 2 and 3, is a transport node. If we let h; = 1,
ho = 2 and hg = 3, then a witness matrix is

0 2 3 ¢(1,6) =5
A= 1 0 1 c(2,6) =2
0 0 0 c(3,6) =0

c(6,1)=1 ¢(6,2)=2 ¢(6,3) =4

Indeed, when we calculate the sums of the individual rows and columns of A,
we obtain the weights of the corresponding edges in the tree, as indicated to the
right of the matrix and below the matrix.

We now establish that local properties guarantee the existence of a (global)
matching transport:

Theorem 5. Let (T, c¢) be a weighted tree. There exists a matching transport on
(T, ¢), if and only if each internal node of (T, ¢) is a transport node.

Proof. = Assume that there exists a matching transport Tr on (7, ¢). Then
let j be an arbitrary internal node of T and let hq, ..., hy, for some m > 2 be
the neighbours of j in 7. Then the m x m matrix A = (a; ) defined by

ai)i:0 (i:L...,m)

Qi = > > Te(ly, ) (ik=1,...,m;i#k)
lieLLeaves(h;, j) 1.eRLeaves(j, hi)

is a witness for j being a transport node.

<= Assume that each internal node of (T, ¢) is a transport node. We use
induction on the number p of internal nodes to prove that there exists a matching
transport Tr on (7, ¢).
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12
0 0 2
O @
12
Y
©) (a)
Tri(1,3) =3 Tri(2,3) =1  Total=c(6,3) =4
~ -~ ~ ~ -~ ~
Tr(1,4) Tr(1,5) Tr(2,9)
~ ~ < ~ < ~ -
Trz(6,4) = 2 Tr2(6,5) =1 Tr2(6,9) =1  Total=c(6,3) =4 (p)

Fig. 3. Constructions used in the proof of Theorem 5. (a) Subtrees T3 (left) and T%
(right) resulting when we break up the weighted tree from Fig. 1. (b) Greedy distribu-
tion of values Tr1(l1,3) and Tr2(6,12) over values Tr(l1,l2).

If p =1, then T is a ‘star graph’. Let j be the only internal node, and let
hi,...,hy, for some m > 2 be the neighbours of j. These neighbours are exactly
all leaves of the tree. By assumption, j is a transport node. The m x m matrix
A = (a; 1) which is a witness for this, directly defines a matching transport:

Tr(hi, hi) = aie (k=1,...,m;i#k) .

Induction step. Let p > 1, and suppose that for every weighted tree (T, c¢)
with at most p internal nodes, each of which is a transport node, there exists
a matching transport on (7', ¢) (induction hypothesis). Now consider a weighted
tree (7', ¢) with p+ 1 internal nodes, each of which is a transport node. Let i and
j be two arbitrary adjacent, internal nodes.

We use the edge (i, j) to break up (T, ¢) into two smaller trees with some over-
lap. Let T7 be the subtree of T' consisting of node j and all nodes in Left(z, j),
together with the edges connecting these nodes. Let T be the subtree of T' con-
sisting of node ¢ and all nodes in Right(i, j), together with the edges connecting
these nodes. The weight functions ¢; and ¢ of T7 and Ts are equal to ¢, restricted
to T1 and Ty, respectively. In Fig. 3(a), we have illustrated this construction for
edge (6, 3) of the tree from Fig. 1.

Then node j is a leaf in 17 and T3 contains at most p internal nodes. Moreover,
each internal node in T} is also an internal node in 7', with the same neighbours
and with the same weigths on the edges to and from these neighbours. Conse-
quently, each internal node of T} is a transport node, simply because it is one
in T. By the induction hypothesis, there exists a matching transport Tr; on
(T1, ¢1). Analogously, there exists a matching transport Tra on (7%, ¢2).

These two matching transports can be combined into one matching transport
Tr on (7, c). For pairs of leaves in T' at the same side of edge (4,7), Tr simply
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inherits the value of Try or Try. For pairs of leaves in T at different sides of edge
(4,7), we observe that (for a transport from left to right)

oo Tri(hg) =i g) = > Tra(i 1), (6)

L eLLeaves(i, j) 1.eRLeaves(i, j)

as Tr; and Try are matching transports on 77 and 75, respectively. We now
distribute every value Try(ly,7) and every value Tra(i,l2) over values Tr(ly,l2)
(and analogously from right to left). This can be done in a greedy way, as follows.

We take an arbitrary ordering of the values Trq(l1,7) for I; € LLeaves(i, j),
and partition the total quantity c(i, j) according to these values. We label each
resulting fragment with the corresponding leaf [;. We also take an arbitrary
ordering of the values Tro(i,l2) for Iy € RLeaves(i, j), and partition the same
total quantity ¢(i,7) according to these values, again labelling the fragments
with the corresponding leaves. The resulting, double labelling determines Tr.

For example, let us consider matching transports Tr; and Tro for the trees T
and T» in Fig. 3(a), given by

Tri(1,2) = 2,Try(2,1) =1, Try(1,3) = 3, Tr1(2,3) =1 and
Tra(6,4) = 2, Tra(6,5) = 1, Tra(6,9) = 1, Tra(4,7) = 1,
Tra(5,7) = 1, Tra(7,4) = 1, Trs(9,4) = 2,

respectively. The values Try(l1,l2) with 1,15 € {1,2} and [ # [y are inherited
by Tr, and similarly for Try(l1,l2) with 11,1 € {4,5,7,9} and I3 # lo.

Figure 3(b) illustrates how the values Trq(1,3) and Trq(2,3) (in this order)
and the values Tra(6,4), Tra(6,5) and Trz(6,9) (in this order) are distributed
over Tr(1,4) = 2, Tr(1,5) = 1 and Tr(2,9) = 1. It should be obvious from the
picture and (6) that this algorithm always yields a valid matching transport.

Note that in this example, edge (3, 6) has weight 0. so that Trq(3,11), Tra(l2, 6)
and Tr(la, 1) must be 0 for all Iy € LLeaves(6,3) and lo € RLeaves(6, 3).

Note also that there usually exist different distributions of Try(l1,j) and
Tro(i,l2) over values Tr(ly,l2). For example, if we apply the same greedy al-
gorithm to a different ordering of the values Tri(l1,7) and/or to a different
ordering of the values Tra (7, l2), then we may obtain a different distribution. 0O

4 Conditions for Being a Transport Node

By Theorem 5, in order to decide whether or not a matching transport for a
weighted tree exists, it suffices to check locally if each internal node is a transport
node. By definition, an internal node j is a transport node, if and only if there
exists a witness matrix A, which matches the weights ¢(i,7) and ¢(j,7) for all
neighbours 7 of j.

Instead of actually constructing such a witness matrix, we now prove that
such a witness matrix exists, if and only if the weights c(i, 7) and c¢(j,7) satisfy
certain conditions. Then to check if node j is a transport node, we only have to
check these conditions.
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In this section and in Theorem 11, we consider individual internal nodes 7,
together with their neighbours and a weight function ¢ on the edges between j
and its neighbours. We also use the terms ‘transport node’ and ‘witness matrix’,
as if they have been defined for this local context. The results that we obtain,
however, can be applied in the context of complete weighted trees. We will do
that at the end of Sect. 5.

In Definition 4, we denoted the neighbours of an internal node j by hy,..., Ay,
for some m > 2. From now on, for notational convenience, we assume that these
neighbours are nodes 1,...,m, respectively.

Lemma 6. If node j is a transport node, then

> ki €U k) (i=1,...,m) and (8)
) (k=1,...,m) . 9)

Equation (7) is Kirchhofl’s law, meaning that the total weight entering node j
equals the total weight leaving node j. Equation (8) expresses the fact that the
weight coming in from a neighbour ¢ can go out to the other neighbours of node
j. Finally, (9) expresses the fact that the weight going out to a neighbour k can
have come from the other neighbours of node j. Exactly these equations were
violated by nodes 3 and 8 in the weighted trees in Fig. 2.

Before we prove Lemma 6, we show that there is some redundancy in (7)-(9).
For ig =1,...,m, let

MargiHC(i07j) = Zkyﬁio C(j7 k) - C(iOa .7) and
Marginc(ja ZO) = Zi;ﬁio C(iu .7) - C(j7 ZO) .

Hence, Margin,(io, ) and Margin.(j, i9) denote the differences between the right
hand side and the left side of (8) and (9), respectively. If the weight function ¢
is clear from the context, we will simply write Margin(ip, j) and Margin(j, io).
We then have:

Lemma 7. If (7) holds for node j, then for ig = 1,...,m, Margin(io,j) =
Margin(j,1i0).

This result follows directly from the definitions and (7). It implies in particular
that if (7) holds, then (8) and (9) are equivalent. Therefore, in the rest of the
paper, when we have to prove that (7)-(9) are valid for an internal node j and
a weight function ¢, we will not mention (9).

Proof of Lemma 6. Assume that node j is a transport node. Then by defini-
tion, there exists an m x m matrix A = (a; 1) satisfying (2)—(5).
When we add up all entries of A, row by row or column by column, we find



High Spies (or How to Win a Programming Contest) 101

Fig. 4. Tree resulting from the tree in Fig. 1, if we assign a quantity a = 0.5 from edge
(5,8) to edge (8,4)

Indeed, (7) holds. Let ig be an arbitrary neighbour of j. Then

c(io, Jj Zazo,k— S aik< )y Zazk > ek -

kio ki i=1 kio
Hence, also (8) holds. O

At first glance, it is not obvious that Lemma 6 can be reversed. That is, that if
(7)-(9) hold for an internal node j, then j is a transport node. In particular, it
is imagineable that for each individual neighbour i of j, the weight on edge (i, )
can be carried along to the other neighbours of j, but that this is not possible
for all neighbours of j simultaneously. Simply, because the weights on incoming
edges (i, j) for different neighbours i are competing for the same outgoing edges
(i ).

For example, let 7 be node 8 in the tree from Fig. 1. In Fig. 4 we have
depicted the tree resulting from assigning a quantity a = 0.5 from the incoming
edge (5,8) to the outgoing edge (8,4). Now, the weight on edge (3,8) can no
longer be passed on to the other neighbours of node 8.

We will see that this problem can be avoided, and that we can indeed reverse
Lemma 6. First, however, we state a result on the values of Margin(i,j) for
competing edges (ig,7) and (i1,7), which follows directly from the definitions
and (7).

Lemma 8. Assume that (7)-(9) hold for node j. Let ig and i1 be two different
neighbours of j. Then
Margin(io, j) + Margin(ix, j) = > c(i,j)+ > c(Gk) . (10)
ii0,i1 kio i1
We now state the converse of Lemma 6 and provide its proof.

Lemma 9. If (7)-(9) hold for node j, then j is a transport node.

Proof. Assume that ¢ satisfies (7)-(9). We prove that we can find an m x m
matrix A = (a;,;,) satisfying conditions (2)—(5). If this is true, then node j is a
transport node.
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We use induction on the number p. of weights on the incoming and outgoing
edges of j, which are strictly positive.

If p. =0, then for i = 1,...,m, ¢(i,j) =0, and for k =1,...,m, ¢(j, k) = 0.
It is easily verified that for thls case, the m x m matrix A a; ) with all
O-entries satisfies conditions (2)—(5).

Induction step. Let p > 0, and suppose that for every non-negative weight
function ¢ on the incoming and outgoing edges of 7, which satisfies (7)—(9) and for
which p. < p, we can find an m x m matrix A as specified (induction hypothesis).
Now, consider a non-negative weight function ¢ on the same edges and satisfying
the same conditions, with p, = p + 1.2

Without loss of generality, assume that c(ig, j) > 0 for some neighbour iy of
Jj. Let ko be an arbitrary neighbour of j which satisfies ko # i¢ and ¢(j, ko) > 0.
By (8), such a neighbour exists.

We now proceed to assign a maximum quantity a of the weight c¢(ig, ) of
the incoming edge (i, j) to the outgoing edge (7, ko). In order to specify a, we
introduce the following quantity:

MinMargin = min Margin.(4,5) .
i#10,ko
Let i1 # ig, ko be a neighbour of j for which this value is achieved. If m = 2,
then MinMargin is set to infinity and ¢; is not defined.

Obviously, the value a is bounded by ¢(ig,7) and ¢(j, ko). It is, however, also
bounded by MinMargin. If we let a be larger than MinMargin, then the total
weight on outgoing edges, that is available to the incoming edge (i1,7) would
become smaller than (i1, j). We therefore set

a = min (c(io, j), ¢(j, ko), MinMargin) .
We now distinguish two cases:

o If a = c(ip,j) or a = ¢(j, ko), then we define a new weight function ¢ by
subtracting a from ¢(ig, 7) and ¢(j, ko) and leaving all other weights unchanged.

It is easily verified that ¢’ is non-negative and satisfies (7)—(9). Moreover, as
either ¢(ig,j) = 0, or ¢/(j,ko) = 0 (or both), p. < p. Hence, by the induction
hypothesis, there exists an m xm matrix A" = (a; ;) satisfying conditions (2)—(5)
for the weight function ¢. It follows immediately that the m x m matrix
A = (a; 1) defined by

Qi ko = zo ko T @
Aik = ai,k ( (i,k) # (0, ko) )

satisfies the same conditions for the original weight function c.
e If « = MinMargin and MinMargin < min(c(ig, j), ¢(j, ko)), then in particular
m > 3 and node i; is defined. Now, we define a new weight function ¢’ by

(’Lo, ) 0

2 Note that, because of (7), it is impossible that p. = 1. This, however, does not harm
our argument.



High Spies (or How to Win a Programming Contest) 103

@ @

c(ilvj) C(j,il) c(ilvj) c(j,il)—(c(io,j)—a)

- C(j,io) Y - C(k(),j) - C(j,io) Y - C(k‘o,j)
O i) "L i) @y Ak W
c(d, i)v c(i, J) c(J, i)v c(i, J)
@ @

Fig. 5. Old (left) and new (right) weights for the second case in the proof of Lemma 9

(4, ko) = c(j, ko) — a

c(j4,i1) = c(d,i1) — (c(io, J) — @)

(i, 7) = (i, j) (i # io)
(4, k) = c(j. k) (k # ko, i1)

(see Fig. 5). By definition and by Lemma 7,

a = Margin, (i1, j) = Margin.(j,i1) = Y _ ¢(i, j) — c(j,i1) > c(io, §) = c(j,ir) -
iy

Hence, ¢/(j,41) > 0, which implies that ¢’ is non-negative for every edge.

It is easily verified that the weight function ¢’ satisfies (7). It remains to be
proved that ¢ also satisfies (8), i.e., that Margin. (i2,j) > 0 for each neighbour
1 of j. For this, we can distinguish four subcases: i3 = ig, i2 = i1, i2 = kg and
i # 49,11, ko. The proofs for the first two cases are straightforward. The proofs
for the last two cases are more involved, but similar. We give the details for the
case that 12 7é io,il, kol

Margin iz, j) = »_ ¢ (j,k) — ¢ (i2, j)

k‘;éiQ
= > clj. k) —a—(c(io, j) — a) — cliz, j) = Margin,(iz, j) — c(io, j) -
kin
By Lemma 8,

Marginc(i27j) + MarginC(ilvj) = MarginC(i27j) +a
= Y clig)+ Y (k) = clio.j) + el ko) > clin, §) +a .
iFi2,i1 k#i2,i1
This implies that Margin. (is,7) > 0.

Because by definition, ¢/(ig,j) = 0, we have p. < p. Hence, by the induction
hypothesis, there exists an m xm matrix A" = (a] ;) satisfying conditions (2)—(5)
for the weight function ¢’. It follows immediately that the m x m matrix



104 A. Deutz, R. van Vliet, and H.J. Hoogeboom

A = (a; 1) defined by

Gig,ko = a;o’ko ta
Qi iy = ago,il + (C(i07j) - a)
Qi = ( (i,k) # (io, ko), (i0,71) )
satisfies the same conditions for the original weight function c. O

When we combine Lemma 6 and Lemma 9, we obtain

Theorem 10. Node j is a transport node, if and only if (7)-(9) hold for j.

5 Minimum and Maximum Transport

A transport node in a weighted tree may have many different witness matrices.
We examine the minimum and maximum values for each of the entries in these
witness matrices.

Theorem 11. Assume that node j is a transport node and that A = (a; 1) is a
witness matrix for this. Let ig and ko be two arbitrary, different neighbours of j.
Then

tig ky > max (0, cio, ) = > c(G,k), c(i, ko) — > c(i,j)) and (11)
k#ig,ko 1#10,ko

io ko < min (eio.5), e(ji ko). min Marginc(i.j) ). (12)

and each value satisfying these equations can be achieved.

It would be a nice exercise to prove that the right-hand side of (11) is at most as
large as the right-hand side of (12), without using these equations themselves.
Note that by (4) and Lemma 7, (11) is equivalent to the following inequality:

Z Qig,k < min ( C(i07j)7 Z C(jv k)a Marginc(kmj) ) . (13)

kZko k#io,ko

Proof. We first prove (11). By definition, a;, r, > 0. By successively applying
(3), (2) and (5), we find

Zaio,k: Z Qig, ke < Z Zai,k: Z c(j, k) -

k#ko k#io,ko k#io,ko i=1 k#io,ko

Hence, by (4), aiy,kg = ¢(0,5) = D ksio 1o €U, k). Analogously, we find a;y,k, >

C(jv ko) - Ziy&io,ko C(lvj)
In the proof of Lemma 9, we have seen that also (12) holds.

We now prove that each value a;, r, = a satisfying (11) and (12) can be
achieved. If m = 2, then 7, ; ; c(j,k) = >, x, c(4,j) = 0. Hence, by (11)
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and (12), the only possible value for ai, k, is @iy.k, = c(i0,j) = c(j, ko). The
existence of a witness matrix A implies that this value can indeed be achieved.
Now assume that m > 3 and let a;, 1, = a be an arbitrary value satisfying
(11) and (12).
By Lemma 6, we know that the weight function ¢ satisfies (7)-(9). Let the
weight function ¢’ be defined by

d(io, j) = clio. j) — a

(4, ko) = c(f, ko) —a

¢(i,9) = e ) (i # io)
(4, k) = c(G, k) (k # ko) -

Because a < (i, j) and a < ¢(j, ko), ¢ is non-negative. Further, ¢’ satisfies (7),
because ¢ does. Finally, because a < min;;, 1, Margin.(7, j), Margine (4, j) > 0
for i = 1,...,m. Hence, ¢ also satisfies (8). By Theorem 10, j is still (in the
context of the new weight function ¢’) a transport node.

Now, let ki,...,k,—2 be the neighbours of j different from iy and ky. We
must assign the remaining weight ¢/(ig,j) = ¢(ip,j) — a on the incoming edge
(i0,7) to the outgoing edges (j7 k1),...(j, km—2). That is, we must find a witness
matrix A" = (a; ;) for j and ¢’ for Wthh @ jo = 0.

We can prove that such a matrix exists by induction on the number of neigh-
bours k € {k1,...,km—2} for which Margin. (k, j) < ¢’(ip, 7). The intuition be-
hind this is, that 1f for some neighbour k; with 1 <[ <m — 2, 1\/Iarg1ncf(kl7 ) >

' (ig, ), then after any partitioning of ¢/(ig,j) over aZO s e ,alo)km ,» We can
still pass the weight ¢/(k;,j) to the edges (j,k) with k # k;. If, on the other
hand, Margin. (ki, j) < ¢(io, j), then we must make sure that a; , gets at least
a share ¢/(ig,j) — Margin. (k;, j) of the weight ¢ (ig, 7).

As the details of this proof are rather technical, we do not carry out this proof
here. We just make two observations. First, by (11),

(i, j) = clio, ) —a < > cGk)= Y. Gk .
}{?751'0,]60 k;féio’ko

Hence, the total weight available on the edges (j, k1), .. .,(j, km—2) is enough to
receive the remaining weight on edge (ig, j). Second, by (11) and Lemma 7,

d(i0, §) = clio. ) — a < c(io, j) — c(j ko) + D (i, j)
i#i0,ko
= Margin.(j, ko) = Margin.(ko, 7) = Margin. (ko, j) -
Hence, after assigning ¢/ (i, j) to the edges (j, k1), ..., (J, km—2), we can still pass

the weight ¢'(ko, j) of edge (ko,j) to neighbours of J dlfferent from k.
Assuming that we can find the matrix A’ the matrix A* = (a; ;) defined by

* _
Qg ko = @

ajy = agy, ( (4, k) # (i0, ko) )

is a witness matrix for j and ¢, with the desired value a for aj , .
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Algorithm for the Global Problem

We return to the context of a complete weighted tree (7', ¢). We can use Theo-
rem 5 and Theorem 10 to decide whether or not there exists a matching transport
Tr on (7', ¢). Assume that this is the case. For two different leaves [; (the source)
and lo (the target), let MinTr(l1,12) and MaxTr(ly,l2) denote the minimum and
maximum possible values for Tr(l1,ls) respectively. We use Theorem 11 to de-
termine these values. The algorithm for this is simple.

The transport from I; to Iy follows the (unique) path in the tree from I; to
lo. Let ji,...,jp for some p > 0 be the internal nodes on this path, in the order
of occurrence on the path. Let us define jo = {; and jp11 = lo.

If p = 0 (which is only possible if {; and s are the only nodes in the tree), then
obviously, MinTr(ly, 1) = MaxTr(ly,l2) = ¢(l1,l2). It is impossible for containers
from [; to ‘escape’ to other destinations, as there are no other destinations.

Now assume that p > 1. Let us denote the lower bound and upper bound for
@iy ko from Theorem 11 by LB(i, j, ko) and UB(io, 7, ko), respectively.

As announced in the introduction, to obtain MinTr(l1,ls), we proceed in a
greedy way. In each internal node j; on the path from [y to [, we direct as
much weight as possible from the preceding node ji_1 to neighbours of ji other
than jri1. As we have to pass at least LB(jx—1,Jk, jr+1) of the weight from
Jk—1 tO jr+1, we can direct at most ¢(jr—1,Jk) — LB(Jk—1, Jk, jk+1) to the other
neighbours (see also (13)). Then MinTr(l4,l2) equals the weight remaining from
¢(l1, j1) after passing by all internal nodes:

P

MinTr(lh 12) = max ( 07 C(llvjl) - Z(C(jkflvjk) _LB(jk;fl,jk;,ij»])) ) : (]‘4)
k=1

To obtain MaxTr(l;,13), for each internal node ji on the path from Iy to la, we
pass as much weight as possible from ji_1 via ji to jg+1. The minimum value
UB(jk—1,Jk, jr+1) we encounter on the path determines the maximum weight
that can be transported from [y to ls:

p
MaxTr(ly,l2) = Il?:hllUB(jk—lajkajk+l) . (15)

The complete algorithm consists of first determining the path from Iy to lo, and
then (if p > 1) calculating (14) and (15). It is not hard to see that the time
complexity of this algorithm is linear in the size of the input.

Let us consider the weighted tree from Fig. 1, and let [; = 1 and l; = 4. Then
the path from [ to ls contains p = 3 internal nodes 6, 3, 8, and our algorithm
yields the following sequence of values:

k 0 1 2 3 4
i 1 6 3 8 4
c(Jr—1,Jk) — LB(jk—1, K, e+1) 2 1 1
UB(jk—1, Jks Jr+1) 3 45
As aresult, MinTr(1,4) = 5—(24+1+1) = 1 and MaxTr(1,4) = min(3,4,5) = 3.
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6 Concluding Remarks

A large fraction of this paper dealt with transport nodes and corresponding
witness matrices A = (a; ). In the resulting algorithm, these concepts do not
play any role. However, we needed them to prove that the algorithm is correct,
i.e., to prove that the minimum (or maximum) value computed for the transport
from one leaf (the source) to another leaf (the target) in a weighted tree, can be
extended to a complete matching transport on the tree, and that this value is
indeed minimal (maximal, respectively).

In the introduction, we explained why standard max-flow algorithms such as
the Ford-Fulkerson algorithm could not be applied directly to High Spies. For
the integer-valued case, however, there does exist an approach to the problem,
based on such algorithms. In this approach, the lower bound and upper bound
for the (local) transport at an internal node j are found by fixing a candidate
value a;, 1, = a (for proper choices of a), and trying to extend this to a com-
plete m x m witness matrix A = (a; ). With two copies of every neighbour i
of j (corresponding to the edges (i,7) and (j,17), respectively), two additional
nodes (source and target) and proper connections between the nodes, A can be
derived from a maximum flow with value > ." ¢; ; — a. However, as the number
of connections is quadratic in m and the complexity of max-flow algorithms is at
least linear in this number, this ‘max-flow approach’ is far more time-consuming
than applying Theorem 11.

The ‘max-flow approach’ can be extended in a natural way to an approach
for finding the maximum (global) transport between two leaves, which does not
rely on (local) transports at internal nodes. Again, however, this would be far
less efficient than our algorithm. Moreover, this extension does not work for the
minimum (global) transport.

Both the original definition of a matching transport (Definition 3) and the
equivalent formulation in terms of transport nodes from Theorem 5 are well
suited to generate instances of High Spies. Due to space limitations, we could
not elaborate on that here, but we plan to do this in a forthcoming report. In
that report, we will also give more detailed proofs for some of the results in this
paper.

We want to emphasize, that we did not expect the teams that participated in
the Benelux Algorithm Programming Contest 2006 to prove that their solutions
for High Spies were correct. A correct implementation of the algorithm described
in Sect. 5 was sufficient.
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Abstract. In this paper, we explain how Robert Langdon, a famous
Harvard Professor of Religious Symbology, brought us to decipher the
Code of the Origins. We first formalize the problem to be solved to un-
derstand the Code of the Origins. We call it the Scatter Problem (SP).
We then show that the SP cannot be deterministically solved. Next, we
propose a randomized algorithm for this problem. The proposed solution
is trivially self-stabilizing. We then show how to design a self-stabilizing
version of any deterministic solution for the Pattern Formation and the
Gathering problems.

Keywords: Fun with distributed algorithms, fun with mobile robot net-
works, fun with stabilization.

1 Introduction

End of April 2007.

The corpse of a distinguished scientist was found in one of the corridors at the
CERN (European Organization for Nuclear Research), in Switzerland. On the
body of the unfortunate scientist, an odd symbol has been branded—refer to
Figure 1.

Quickly, the Swiss Judicial Police called for Captain Fache, a French policeman
who is known for having solved the odd Louvre’s case [4]. Fache felt taken aback
when he saw the symbol. He guessed he had already seen the symbol in the
Rosslyn Chapel—often called the Cathedral of Codes—which was built by the
Knights Templar in 1446 near Edinburgh, the capital of Scotland. Nobody knew
more than Fache who to call for. He summoned Robert Langdon, a famous
Professor of Religious Symbology at Harvard University. Fache and Langdon
met in Paris during the Louvre’s case [4]. They became friends afterwards.

Right from his arrival at CERN, Langdon took a close look at the body of
the scientist. At first glance, Langdon recognized the sign.

‘The Four Elements!” Langdon yelled. ‘ The Greek classical elements are Fire,
Earth, Air, and Water’ Langdon said to Fache. ‘In Greek philosophy and science,
they represent the realms of the cosmos wherein all things exist and whereof all
things consist’.

* Title and story freely inspired from [3].
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Fig. 1. The symbol branded on the body of the scientist

‘Good heavens!” Langdon huffed by pointing suddenly the little circle in the
center of the figure. ‘How come I almost missed the circle? A circle in the middle
generally means the negative form of the sign.” ‘In other words’, Langdon said
glancing at Fache, ‘this symbol is the original icon for the Antimatter!’

Fache was dumbfounded. Once again, he was impressed by the huge knowledge
of his friend. Fache stared at Langdon for a moment and then went to a nearby
toolbag from which he took a papyrus roll. Langdon smiled. ‘One clue after
another, my friend!” he said, while he was already looking into the old document.
After a couple of seconds, he turned pale and looked overwhelmed. ‘My friend’,
he said turning to Fache, ‘I am holding in my hands the most ancient manuscript
of Humanity!’

Later, Langdon’s conjecture was confirmed by a carbon dating.

The manuscript was probably written upwards of 9000 years B.C. By contrast,
the most ancient Egyptian papyrus known until now is dated between 3580 and
3536 B.C.

After some investigations, the papyrus roll disclosed its secrets. Langdon found
that this astonishing document included tens of thousands of unbelievable clues
about the making of the Universe. In particular, he found a passage containing
the sign branded on the body of the unfortunate scientist. He understood that
the fragment seemed to describe how the Antimatter was formed during the Big
Bang. The description is followed by a kind of informal algorithm showing the
relativistic dilatation of the Universe. That is, how starting from the primitive
soup, the matter clusters were self-scattered and self-organized in star clusters.

Fache had never seen his friend so exited. For three whole days, Langdon
did nothing else than study the ancient document to figure out the informal
algorithm which he called the Code of the Origins. However, Langdon met with
difficulties. They lie in the fact that the Code of the Origins is made of a string of
clues or riddles. Despite his incredible knowledge of ancient myths and symbols,
Langdon eventually got stuck with the following odd phrase in the Code of the
Origins:

‘Lord Grapefruit condenses the Antimatter while Lord Onion Skin
scatters the Matter.’

Langdon thought ‘ The onion skin is an example of the Voronoi diagram. I should
call for scientists who are currently working on Voronoi diagrams in dynamic
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systems.” Langdon heard from a colleague at Harvard that some computer scien-
tists were working on that sort of problems, mainly in the area of the distributed
coordination of autonomous mobile robots.

That is how we soon received an email from Robert Langdon with the follow-
ing odd message:

This is an urgent and quite tmportant message I would like to bring
to your attention. Your approach in the design of algorithms for a team
of weak robots (agents, or whatever...) should be helpful in the under-
standing of a major paradigm of the making of the Universe. A key mech-
anism of this paradigm is called the Code of the Origins. I definitively
need your help to figure the formal code out, and also to prove its correct-
ness. Again, this is a very important message. The Code of the Origins
is a keystone in the origins of the Universe and of course, for Humanity.
Can you please help? I look forward to receiving an agreement from your
side.

We accepted the challenge. We first figured out from the explanations given
by Langdon that in fact, the Code of the Origins was not strictly speaking an
algorithm or a code, but rather a paradigm describing the scatter of matter
clusters. Moreover, the paradigm does not assume that the matter is initially
concentrated in a sort of “single point” as one can imagine.

Below are the results of our research.

In the next section, we describe the model considered in this paper and the
formal definition of the problem to be solved, i.e., the Scatter Problem. Next, in
Section 3, we consider how this problem can be solved. We first show that the
Scatter Problem cannot be deterministically solved in the considered model. We
then give a probabilistic algorithm for this problem along with its correctness
proof. In Section 4, we put the result of Section 3 back into the context of
distributed coordination of autonomous mobile robots. In this area, two classes
of problems have received a particular attention!:

1. The Pattern Formation Problem (PFP) which includes the Circle Formation
Problem, e.g. [21,13,15,7,17,8,9,10;
2. The Gathering Problem (GP), e.g., [1,21,14,21], and also in [6,5].

We consider these two major classes of problems into self-stabilization settings.
Regardless of the initial states of the computing units, a self-stabilizing system
is guaranteed to converge to the intended behavior in finite time [11,12]. To our
best knowledge, all the above solutions assume that in the initial configuration,
no two robots are located at the same position. As already noticed [7,16], this
implies that none of them is self-stabilizing. In Section 4, we show that, being

! Note that some of the following solutions are in a model called CORDA [18] allowing
more asynchrony among the robots than the semi-synchronous model (SSM) used
in this paper. However, it is showed in [19] that any algorithm that correctly solves
a problem P in CORDA, correctly solves P in SSM. So, any algorithm described
in CORDA also works in SSM.
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self-stabilizing, the proposed algorithm can be used to provide a self-stabilizing
version of any deterministic solution for PFP and GP, i.e., assuming any arbi-
trary initial configuration—including configurations where two or more robots
can be located at the same position. Finally, we conclude the story in Section 5.

2 Preliminaries

In this section, we define the distributed system, basic definitions and the prob-
lem considered in this paper.

Distributed Model. We adopt the model introduced in [20], below referred to
as SSM—SSM stands for Semi-Synchronous Model. The distributed system
considered in this paper consists of n mobile robots (entity, agent, or element)
r1,T9, -, rp—the subscripts 1, ..., n are used for notational purpose only. Each
robot r;, viewed as a point in the Euclidean plane, moves on this two-dimensional
space unbounded and devoid of any landmark. When no ambiguity arises, r; also
denotes the point in the plane occupied by that robot. It is assumed that the
robots never collide and that two or more robots may simultaneously occupy
the same physical location. Any robot can observe, compute and move with
infinite decimal precision. The robots are equipped with sensors enabling to
detect the instantaneous position of the other robots in the plane. Each robot
has its own local coordinate system and unit measure. There is no kind of explicit
communication medium. The robots implicitly “communicate” by observing the
position of the other robots in the plane, and by executing a part of their program
accordingly.

The considered robots are uniform, oblivious, and anonymous. Uniform indi-
cates that they all follow the same program. Obliviousness means that the robots
cannot remember any previous observation nor computation performed in any
previous step. Anonymous means that no local parameter (such as an identity)
could be used in the program code to differentiate any of them.

In this paper, we also discuss some capabilities the robots are able to have or
not:

Multiplicity Detection: The robots are able to distinguish whether there is more

than one robot at a given position;
Localization Knowledge: The robots share a common coordinate system, i.e., a

common Cartesian coordinate system with a common origin and common
-y axes with the same orientations.

Time is represented as an infinite sequence of time instants to,t1,...,%;,...
Let P(t;) be the set of the positions in the plane occupied by the n robots at
time ¢; (j > 0). For every t;, P(t;) is called the configuration of the distributed
system in ¢;. P(t;) expressed in the local coordinate system of any robot r; is
called a view, denoted v;(t;). At each time instant ¢; (j > 0), each robot r; is
either active or inactive. The former means that, during the computation step
(tj,tj+1), using a given algorithm, r; computes in its local coordinate system a
position p;(t;41) depending only on the system configuration at ¢;, and moves
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towards p;(tj41)—pi(tj+1) can be equal to p;(t;), making the location of r;
unchanged. In the latter case, r; does not perform any local computation and
remains at the same position. In every single activation, the distance traveled
by any robot r is bounded by o,.. So, if the destination point computed by r is
farther than o,, then r moves toward a point of at most o,. This distance may
be different between two robots.

The concurrent activation of robots is modeled by the interleaving model in
which the robot activations are driven by a fair scheduler. At each instant t¢;
(j > 0), the scheduler arbitrarily activates a (non empty) set of robots. Fairness
means that every robot is infinitely often activated by the scheduler.

Specification. The Scatter Problem (SP) is to design a protocol for n mobile
autonomous robots so that the following properties are true in every execution:

Convergence: Regardless of the initial position of the robots on the plane, no

two robots are eventually located at the same position.
Closure: Starting from a configuration where no two robots are located at the

same position, no two robots are located at the same position thereafter.

3 Algorithm

The scope of this section is twofold. We first show that there exists no determin-
istic algorithm solving S P. The result holds even if the robots are not oblivious,
share a common coordinate system, or are able to detect multiplicity. Next, we
propose a randomized algorithm which converges toward a distribution where
the robots have distinct positions.

3.1 Impossibility of a Deterministic Algorithm

Lemma 1. There exists no deterministic algorithm that solves the Scatter Prob-
lem in SSM, even if the robots have the localization knowledge or are able to
detect multiplicity.

Proof. Assume, by contradiction, that a deterministic algorithm A exists solving
SP in SSM with robots having the localization knowledge and being able to
detect multiplicity. Assume that, initially (o), all the robots are located at the
same position. So, it does not matter whether the robots have the localization
knowledge, are able to detect multiplicity or not, all the robots have the same
view of the world. Assume that at tg, all the robots are active and execute A.
Since A is a deterministic algorithm and all the robots have the same view, then
all the robots choose the same behavior. So, at time ¢;, all of them share the
same position on the place. Again, they all have the same view of the world. By
induction, we can deduce that there exists at least one execution of A where the
robots always share the same position. This contradicts the specification of SP.
Hence, such Algorithm A does not exist.
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Note that Lemma 1 also holds whether the robots are oblivious or not. Indeed,
assume non-oblivious robots, i.e., any robot moves according to the current and
previous configurations. So, each robot r; is equipped with a (possibly infinite)
history register H;. At time t¢, for each robot r;, the value in H; depends on
whether the registers are assumed to be initialized or not.

First assume that, at tg, H; is initialized for every robot. Since the robots are
assumed to be uniform and anonymous, the values stored in the history registers
cannot be different. So, for every pair of robots (r;,r;), H; = Hi at to. Then,
all the robots have the same view of the world. This case leads to the proof of
Lemma 1.

Now, assume that, for every robot r;, H; is not assumed to be initialized at
time tg. Note that this case captures the concept of self-stabilization. In such a
system, at tg, one possible initialization of the history registers can be as follows:
(riy7ir), H; = Hy for every every pair (r;, 7). This case is similar to the previous
case.

3.2 Randomized Algorithm
We use the following concept, Voronoi diagram, in the design of Algorithm 1.

Definition 1 (Voronoi diagram). [2,7] The Voronoi diagram of a set of points
P ={p1,p2, -, pn} is a subdivision of the plane into n cells, one for each point
in P. The cells have the property that a point q belongs to the Voronoi cell of
point p; iff for any other point p; € P, dist(q,p;) < dist(q,p;) where dist(p, q) is
the Euclidean distance between p and q. In particular, the strict inequality means
that points located on the boundary of the Voronot diagram do not belong to any
Voronoi cell.

We now give an informal description of Procedure SP, shown in Algorithm 1.
Each robot uses Function Random(), which returns a value randomly chosen
over {0,1} : 0 with a probability 3 and 1 with a probability }. When any robot
r; becomes active at time ¢;, it first computes the Voronoi Diagram of P;(¢;), i.e.,
the set of points occupied by the robots, P(¢;), computed in its own coordinate
system. Then, r; moves toward a point inside its Voronoi cell Cell; if Random()
returns 0.

Algorithm 1. Procedure SP, for any robot r;

Compute the Voronoi Diagram;

Cell; := the Voronoi cell where r; is located;

Current Pos := position where r; is located;

if Random()=0

then Move toward an arbitrary position in Cell;, which is different from Current Pos;
else Do not move;
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Lemma 2 (Closure). For any time t; and for every pair of robots (ri,ri)
having distinct positions at t; (pi(tj) # pir(t;)), then by executing Procedure SP,
r; and vy remain at distinct positions, thereafter (Vj' > j, pi(t;) # pu(tj)).

Proof. Clearly, if at time ¢;, r; and ry have distinct positions, then r; and 7y
are in two different Voronoi cells, V; and Vj, respectively. From Definition 1,
Vi N V; = 0. Furthermore, each robot can move only in its Voronoi cell. So, we
deduce that r; and 7y have distinct positions at time ¢;11. The lemma follows
by induction on j’, j' > j.

In the following, we employ notation Pr[A] = v to mean that v is the probability
that event A occurs. Two events A and B are said to be mutually exclusive if and
only if ANB = (). In this case, Pr[AU B] = Pr[A]+ Pr[B]. The probability that
event A occurs given the known occurrence of event B is the conditional proba-
bility of A given B, denoted by Pr[A|B]. We have Pr[AnN B| = Pr[A|B]Pr[B|.

Lemma 3 (Convergence). For any time t; and for every pair of robots (r;, i)
such that p;(tj) = pi(tj). By executing Procedure SP, we have

e Pripi(tier) 7 pir(tier)] =1

Proof. Consider at time t;, two robots r; and r; such that p;(t;) = pi(¢;). Let
X, (respectively, Y;,) be the random variable denoting the number of robots
among 7; and 7y which are activated (respectively, move). Pr[X;, = z] (resp.
PrlY;, = 2']) indicates the probability that z € [0..2] (resp. 2’ € [0..2]) robots
among r; and r; are active (resp.move) at time ¢;. Note that we make no other
assumption than fairness on the activation schedule. In particular, the probabil-
ity Pr[Xy, = 2] is not assumed to be time invariant.

Robot r; (resp r;) can move only if r; (resp 7;/) is active. Both r; and r; are
in a single position at time ¢;; only if one of the following four events arises in
computation step (t;,t;41):

— Eventl: “Both r; and r;; are inactive.” In this case:
Pr[Eventl] = Pr[X;, =0] <1 (1)

— Event2: “There is exactly one active robot which does not move and one
inactive robot.” Then, we get:

Pr[Event2] = Pr[X,, = 1NY;, = 0]

So,
Pr[Event2] = Pr[Y;, = 0|1 X, = 1]Pr[X,, = 1]

J

1
Pr[Event2] = 4Pr[Xt, =1]

J

Thus,
1
Pr[Event2] < 4 (2)
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— Event3: “There are exactly two active robots and both of them move toward
the same location.” The probability that both robots are activated and move
(not necessarily at the same location) is given by:

PriX;, =2N0Y,, =2]

But,
Pr(Xy, =2N0Y;, =2] = Pr[Y;, =2|X;, = 2|Pr[X;, =2
That is,
3
PriXy, =2NnY,, =2] = (4)2Pr[th = 2]
Thus,
9
Pr(Xy, =2NnY;, =2] < "

Since the probability that all the robots are activated and move (not nec-
essary at the same location) is lower than or equal to 196, the probability of
Event3 (i.e both move toward the same location) is also lower than or equal
to 2 ie.

167

9
Pr|E <
r[Event3] < 16 (3)

— Event4: “There are exactly two active robots and both of them do not
move.” The probability that both robots are activated and do not move is
given by:

Pr(X;, =2N0Y;, =0

We have
Pr(X;, =2N0Y;, =0] = Pr[Y;; = 0|X;, = 2]Pr[X;, =2]

Hence
1
16

Let {2 be a sequence of time instants starting from ¢;. Denote by k the number
of time instants in (2. Value a (resp. na) indicates the number of instant in {2
where at least one robot is active (resp. both r; and r; are inactive) among r;

and r;7. Obviously, a + na = k. From Equations (2) and (3) and the fact that
Event2, Event3 and Event4 are mutually exclusive, we have:

1
Pr[Eventd] < (4)2 =

Pr[Event2 U Event3 U Eventd] = Pr[Event2| + Pr[Event3] + Pr[Event4]

So,
Pr[Event2 U Fvent3 U Eventd] < 1 + ) + 1 _7 (4)
~4 16 16 8
From Equation (4), the probability that r; and r; are located at the same

position after & time instant is

Pripi(t ) = pultyan)] < ()"
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By fairness, both r; and r;, are infinitely often activated. Therefore, limy_. o, a =
o0, and then

i Pr(pi(tivx) = pir(tir)] =0

The lemma follows from the fact that Prp;(t;+r) # pir(tj+x)] =1—Pr[pi(tjtr)=
pir (tj+k)]-

From Lemma 2 and 3 follows:

Theorem 1. Procedure SP solves the Scatter Problem in SSM with a probability
equal to 1.

Note that as a result of Theorem 1 and by the specification of the Scatter Prob-
lem, Procedure S'P provides a self-stabilizing solution in SSM.

4 Related Problems and Self-stabilization

The acute reader should have noticed that by executing Procedure SP infinitely
often, the robots never stop moving inside their Voronoi cells, even if no two
robots are located at the same position. This comes from the fact that Proce-
dure SP does not require robots to have the multiplicity detection capability.
Henceforth, in this section, let us assume that the robots are equipped of such
an ability. This assumption trivially allows the robots to stop if there exists no
position with more than one robot. So, with the multiplicity detection, Proce-
dure SP provides a valid initial configuration for every solution for PFP and
GP. In the next two subsections, we show how Procedure SP can be used to
provide self-stabilizing algorithms for PFP and GP.

4.1 Pattern Formation Problem

This problem consists in the design of protocols allowing the robots to form a
specific class of patterns.

Let Procedure App(C) be a deterministic algorithm in SSM allowing the
robots to form a class of pattern C. Algorithm 2 shows Procedure SSApp(C),
which can form all the patterns in C starting from any arbitrary configuration.

Algorithm 2. Procedure SSAppr(C) for any robot r;

if there exists at least one position with a strict multiplicity
then SP;
else Apr;

Theorem 2. Procedure SSApr(C) is a self-stabilizing protocol for the Pattern
Formation Problem in SSM with a probability equal to 1.
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4.2 Gathering Problem

This problem consists in making n > 2 robots gathering in a point (not pre-
determined in advance) in a finite time. In [19], it has been proved that GP is
deterministically unsolvable in SSM and CORDA. In fact, one feature that the
robots must have in order to solve GP is multiplicity detection [21,6,5]. Never-
theless, even with the ability to detect multiplicity, GP remains unsolvable, in
a deterministic way, for n = 2 in SSM [21]. For all the other cases (n > 3),
GP is solvable. So, when n > 3, the common strategy to solve GP is to combine
two subproblems which are easier to solve. In this way, GP is separated to two
distinct steps:

1. Starting from an arbitrary configuration wherein all the positions are dis-
tinct, the robots must move in such a way as to create exactly one position
with at least two robots on it;

2. Then, starting from there, all the robots move toward that unique position
with a strict multiplicity.

As for the deterministic algorithms solving PFP, the deterministic algorithm
solving GP (n > 3) requires that the robots are arbitrarily placed in the plane
but with no two robots in the same position. Let Procedure Agp be a deter-
ministic algorithm solving GP, for n > 3, with multiplicity detection in SSM.
Algorithm 3 shows Procedure SSAgp, which solves GP with multiplicity detec-
tion starting from any arbitrary configuration if n > 3. Note that it is paradoxical
that to make GP self-stabilizing, the robots must scatter before gathering.

Algorithm 3. Procedure SSAgp for any robot r;, n > 3
if there exist at least two positions with a strict multiplicity
then SP;

else Acgp;

Theorem 3. Procedure SSAgp is a self-stabilizing protocol for the Gathering
Problem in SSM with a probability equal to 1 whether n > 3.

Note that, for case n = 2, we can provide a randomized algorithm solving GP.
Informally, when any robot becomes active, it chooses to move to the position
of the other robot with a probability of ; By using a similar idea as in the
proof of Lemma 3, we can prove that both robots eventually occupy the same
position with a probability of 1. By combining our basic routine for n = 2 with
Procedure SSAgp, we obtain a procedure which solves the self-stabilizing GP
with multiplicity detection starting from any arbitrary configuration. It follows
that:

Theorem 4. There exists a self-stabilizing protocol for the Gathering Problem
i SSM with a probability equal to 1 for any n > 2.
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5 Epilogue

We have shown that the Scatter Problem cannot be deterministically solved. We
have proposed a randomized self-stabilizing algorithm for this problem. We have
used it to design a self-stabilizing version of any deterministic solution for the
Pattern Formation and the Gathering problems.

June 5th, 2007, 23:20, Beau Rivage Hotel, Geneva.
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Fig. 2. The signs drawn on the piece of paper

Robert Langdon was lying on his bed, staring into space. He had just put
down the manuscript revealing the above results down on the bedside table.
Landgon felt confused. He had not yet made the connection between the murder
of the scientist and the results about the Scatter Problem. Disappointed and
tired, he was prepared to go to sleep when someone pounded on his door. ‘Mr
Langdon? I've got a message from Mr Fache for you.” a female voice said behind
the door. Landgon rushed to open the door. He took the piece of paper given by
the women. Odd signs were drawn one one side of the paper—refer to Figure 2.
On the other side, Langdon read :

Pasquini Castel, Castiglioncello.

‘My God! The Etruscans!” Langdon felt his hairs raise on his arms. ‘I should
have thought of this before!l’

Langdon picked up the telephone. The male receptionist in the lobby an-
swered. ‘Good evening. May I help you, Sir?’

‘Could you please book a seat on the next flight for Pisa, Italy? Thanks.’
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Abstract. Architectures for optical processors designed to solve
bounded instances of NP-Complete problems are suggested. One ap-
proach mimics the traveling salesman by traveling beams that simul-
taneously examine the different possible paths. The other approach uses
a pre-processing stage in which O(n?) masks are constructed, each rep-
resenting a different edge in the graph. The choice and combination of
the appropriate (small) subset of these masks yields the solution. The
solution is rejected in cases where the combination of these masks totally
blocks the light and accepted otherwise. We present detailed designs for
basic primitives of the optical processor. We propose designs for solving
Hamiltonian path, Traveling Salesman, Clique, Independent Set, Vertex
Cover, Partition, 3-SAT, and 3D-matching.

1 Introduction

The basic element used for computing is a switching element [7]. One such basic
element in the scope of electronic circuitry is the transistor that is used to imple-
ment basic logic gates, such as logical and and logical or. The technology today
seeks multi-core solutions in order to cope with the clock frequency limitations of
VLSI technology. Namely, to implement on a single chip parallel /distributed sys-
tem where a bus is used for communication among the processing units. There-
fore, the communication overhead associated with distributed/parallel process-
ing would be reduced dramatically. One may take the multi-core technology to
the extreme — having a very large number of cores that are incorporated into the
processing by sending signals over high-speed buses, maybe using optical/laser
communication instead of traditional buses [10].

Optical communication may be chosen due to the free space transmission ca-
pabilities of laser beams or the need to transmit signals from/to the processing
unit through fiber optic channels. In such cases one may try to avoid the opti-
cal to digital conversion (and the digital to optical conversion) and use optical

* Partially supported by the Lynne and William Frankel Center for Computer Science
and the Rita Altura Trust Chair in Computer Science.

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 120-134, 2007.
© Springer-Verlag Berlin Heidelberg 2007



The Traveling Beams Optical Solutions 121

switches for computing. The straightforward solution is to implement optical
logic gates, such as logical and gate and logical or gate, a design that directly
maps the current VLSI design to an all optical processor [4,9].

On the other hand, electronic computers are not structured as mechanical
computers, such as the Babbage machine [6], and it is possible that optical com-
puters should be designed differently as well. In fact, some success in using many
beams in free space for computing has been recently reported [8]. The design of
[8] is based on parallel optical multiplication. The use of similar multiplication
devices to solve bounded NP-Complete problems is suggested in [12], where a
device which is designed to solve NP-Complete problems bounded by n is able
to solve instances of size smaller or equal to n. Still, use of the fact that beams
propagate in three dimensions is limited in the architectures of [8,12] as the
propagation of beams is in approximately the same direction. The beam traver-
sal time is not used in the architectures that use Multiplication; we propose to
use the space in multi directional fashion and use the time dimension as well.

The seminal work of [11] demonstrates the mapping between beam propaga-
tion and the computation of the deterministic Turing machine. In [2] use of a
mapping similar to the non-deterministic Turing machine by (amplifying and)
splitting beams is suggested. The mapping can be viewed as a theoretical ex-
istence proof for a solution, rather than an efficient solution. Knowing that a
solution for a (bounded) NP-Complete problem instance exists, we seek for the
most efficient solution in terms of the number of beams used, the number of
optical elements (or location in space used to represent a computation state),
the energy needed in terms of the maximum number of beams that should be
split from a single source beam (fan-out), and the number of locations a beam
needs to visit (and possibly split) from its creation until its final detection of
arrival. Note that we are not solving every instance of an NP-Complete problem
in a polynomial time, but we suggest that an optical approach may be promis-
ing in solving larger instances of hard combinatorial problems. We extend the
design suggested in [2] and present a design for all (six) basic NP-Complete
problems listed in [5]: Hamiltonian Path, Clique, Vertex Cover, Partition, 3-
SAT, and 3D-matching. Note that polynomial reduction between NP-Complete
problems is not used here, since we are concerned with the constant blowups in
the instances size; solving the largest possible instance of each of these problems.

There are two main approaches used for the traveling beam Architecture;
the first is a mapping of the graph nodes to physical locations in space and
propagation of beams according to the edges of the input graph instance. The
second approach propagates beams along a computation tree such that the leaves
represent all possible solutions and the delay in propagation from the root to each
leaf corresponds to the “value” of the specific combination. We also present a
totally different architecture called the coordinated holes in mask-made-blackbozx.
In this architecture a set of masks with “holes” are chosen from n? — n pre-
computed masks, according to the input instance. A solution exists only if the
combined masks do not block all beams.
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Paper organization. The next section describes the settings used for our de-
signs. Section 3 details the design for the six basic NP-Complete problems. In
particular, we extend the discussion on solving the Hamiltonian-path to gain
some intuitive insight that is later used in describing the solutions for the next
five problems. In Section 4 we present a totally different architecture for solv-
ing the Hamiltonian-path. Section 5 concludes the paper. Proofs and details are
omitted from this extended abstract and can be found in [3].

2 Settings of the Optical Computing Device

The optical micro-processor simulates a non-deterministic Turing machine. In
a deterministic Turing machine, the next configuration is uniquely defined by
applying the transition function ¢ to the current configuration (the transition
function ¢ defines for each configuration the next configuration it yields in the
computation). In a non-deterministic Turing machine the transition relation 4 is
a set of pairs of configurations such that (¢q,c2) € § if and only if a configuration
¢ yields configuration co, meaning it is possible to go from the first configuration
to a number of different configurations in a single move.

We will think of the non-deterministic computation as a directed graph. In
this graph, each configuration is represented by a node, a directed edge connects
two nodes vy and wvs if it is possible to go from the configuration vy represents
to the configuration vo represents in a single move. The graph constructed is a
tree, in which the initial configuration is the root, and all the final configurations
are the leaves.

In the optical micro-processor, each configuration corresponds to a 3D
location. Laser or other beam creator (i.e., electronic beam) is used as a source
at the initial configuration. The transition from one configuration to all the fol-
lowing configurations simultaneously is simulated by splitting the light at each
location and propagating it in parallel to all the following configurations, as
determined by the transition relation §. According to the input, we may use
barriers to block light between two configurations so that the transition between
them is not allowed, or we may use an arrangement similar to an almost par-
allel arrangement of mirrors that will delay the transition of light between two
configurations.

The constructed optical micro-processor enables us to use the parallel qualities
of light to explore all possible paths of computations simultaneously. Light at a
certain location indicates the feasibility of the correlated computation, while the
absence of light indicates that the computation is not feasible. We will (possibly
use a prism to direct all outputs to a single location, and) use light detectors at
the leaves locations, in order to check whether and when light arrived at one of
the final accepting configurations. According to this information, we will decide
if the output is accepted, or the output is rejected.

In the sequel, we will use the term column to describe a group of locations
that share the same (z,y) coordinates in space. These locations usually represent
configurations that share a common attribute in the computation.



The Traveling Beams Optical Solutions 123

In the following section we describe the architectures designed to solve the ba-
sic NP-Complete problems that are presented in [5]. The design (of the
Hamiltonian-path architecture) is based on [2], we add an analysis of the fan-in,
fan-out, efficiency factor, where the efficiency factor is defined as the number
of locations that light may reach divided by the number of possible solutions,
and depth, where the depth is the maximal number of locations a beam traverses
from the source to the detectors.

3 Architectures for Basic NP-Complete Problems

3.1 Hamiltonian-Path

Given as input a directed graph G = (V,E), the objective is to determine
whether G contains a Hamiltonian-path.

Definition 1. A path is a sequence of vertices such that from each vertex there
1s an edge to the next vertex in the sequence. A Hamiltonian-path is a path which
visits each vertex of the graph exactly once.

The architecture. The configurations in this architecture represent different
paths of length zero to n, where n is the number of vertices in the graph. The
initial configuration is a path of length zero, the final configurations are all
possible paths of length n.

The arrangement of the configurations in space. The locations are ordered
in n columns, c¢q,...,c,, one column per each vertex. Location in column ¢;
represents a path that ends in vertex v;. In addition to the arrangement in n
columns, the locations are arranged in n levels, levely, . .., level,,. Configurations
in level; represent paths of length i. Locations in column c¢; and level level;
correspond to all different paths of length ¢ which end in vertex v;.

The following procedure is used to determine which path corresponds to a
location in column c; level level;:

e As stated before, the level of the location determines the length of the path,
the column of the location determines the last vertex in the path. This location
represents a path of size ¢, which ends in vertex v;.

e In order to determine the previous vertex in the path, we divide the array
of locations in this column and level into n, and check in which part (sub-array)
our location appears. A location which appears in part k& indicates that the
previous vertex is vy.

e We will repeat the former action ¢ — 1 times, each time with the sub-array
we obtained earlier, until we will determine the entire path.

The column of vertex v in a graph with three vertices is shown in Fig. 1. The
black and white colors of the locations represent the mask that will be defined
later. Sub-array; corresponds to locations for which the incoming beams arrive
from vertex v;. The locations in this column are ordered in three levels — levely,
levels, and levels. We will demonstrate how to determine which path corresponds
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to the location marked by the dot. The location appears in levels in the column of
v1. Therefore the path is a path of length three which ends in vertex wv.
We divided levels into three

sub-arrays; the location

appears in the second sub- Vertex 1
array, therefore the previ-

ous vertex in the path is vs. Sub-array 3
We continue and divide the

second sub-array into three Vi -V, -V,
sub-arrays. The location ap- Level 3 Sub-array 2

pears in the third sub-array,

meaning the previous ver-

tex is vz and the path rep-

resented by this location is Level 2
(1}3 — Vg — ’Ul).

Sub-array 1

Level 1 {
Creating the mask. We

would like to block the light
from reaching locations
which represent paths that
contain a repetition of a vertex. In order to do so, we use a mask. We view a mask
as a screen (e.g., transparency) of material carrying patterns that are either trans-
parent or opaque to the wavelengths used; the mask is created a priori regardless
of the input graph. The mask will allow further propagation of light to locations
that represent a feasible path, and will block the light from reaching locations
which represent paths that contain a repetition of a vertex.

The algorithm of creating the mask is presented in Fig. 2. It is an iterative
optical process which occurs level after level. We copy the mask of the previous
level n times, then we divide the array of locations (in this level) into n, and
blacken the 7 part. Although the number of locations in a mask is exponential
in n, the creation of the mask can be done by n? iterated processes of optical
copying in a way similar to the process suggested in [12].

The  masked
column of vertex

Fig. 1. Illustration of the Hamiltonian-path column

v; is shown in Procedure CreateMask(c;) :
Fig. 1. Locations 1. for level; = level; to level,, do
colored in black 2. if level; = levely

then the mask is transparent
else
for k=1 ton do
copy the mask of level;_; from column c;
blacken part j of the mask of level;

indicate that the
mask is opaque
to  the wave
length used and
the light is blo-
cked. Locations
colored in white Fig. 2. Creating the mask

indicate that the

mask is transparent. According to the algorithm, level; is transparent. The

N oW
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second level is created by copying the transparent mask of the first level three
times, then dividing level; into three, and blackening the first part. The creation
of the third level is done by copying the mask of the second level three times,
then dividing levels into three, and blackening the first part.

To create a mask for a certain level we have to copy the former level n times;
this takes n iterations. There are n columns, n levels in each column, so the
whole process of creating the mask takes n? iterations.

The transition relation. At the initial configuration the beam of light is split
into n beams which propagate simultaneously to level; in n different columns.
In this way we get configurations that represent n different paths of length one
(the configuration in column ¢; represents the path (v;)).

In all locations (except the initial one) the beam of light is amplified and
split into (n — 1) beams. These beams propagate to (n — 1) configurations that
are located in the other (n — 1) columns. Light propagates from a configuration
in level; to (n — 1) configurations in level;11. Configuration located in column
c; will propagate light to part j of the next level. The yielding configurations
represent the extension of the path (represented by the first location) with the
vertex each column represents. For example, in the location that represents
the path (vq1), the beam of light is split into (n — 1) beams which propagate
simultaneously to (n — 1) locations in levels in columns ca, ..., ¢y,; in this way
we get configurations that represent (n — 1) different paths of length two (for
example, the configuration in column ¢; represents the path (v — v;)).

The transition relation is determined according to the input graph G. If the
edge (v;,vj) € G then the transition between a configuration in column ¢; to a
configuration in column c; is not legal and should be blocked. In order to block
light between configurations we will use n(n — 1) barriers, one barrier between
every possible pair of columns. If (v;,v;) ¢ G then a barrier will block the light
that propagates from column ¢; to column c;.

Detectors in level,, will indicate if a beam arrived to a location [ in level,, in
one of the columns. If the detector sensed a beam then there exists a path of
length n with no vertex repetitions, and the transition between any two sequen-
tial vertices in the path represented by the location [ is allowed. Meaning, there
exists a Hamiltonian-path in the graph and the output is accepted, otherwise the
output is rejected.

The Hamiltonian-path architecture for a graph with three vertices is illus-
trated in Fig. 3. Vertices v; and vy are not connected, thus a barrier blocks the
light between column ¢; and column ¢;. The mask is transparent in locations
colored in white, and opaque in locations colored in black. Light propagates
from the initial configuration to level; in all three columns. To simplify the il-
lustration, we show further propagation from column ¢; only. In column ¢; the
beam is split into two beams. The beam directed to column ¢, is blocked by the
barrier, the other beam arrives at levels in column ¢z, then the beam is split into
two beams which propagate simultaneously to levels in columns ¢; and c3. The
location in column ¢; represents the path (v; — vs — v1) which is not feasible;
the mask blocks the light from reaching this location. The location in column
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Vertex 1 Vex 2 Vertex 3

(a)

Fig. 3. Illustration of the Hamiltonian-path architecture

¢ represents the path (v; — v — wvg) which is a Hamiltonian-path, therefore
the output is accepted.

A way to obtain a solution to the Traveling Salesman Problem from the
Hamiltonian-path architecture is described in [3].

Lemma 1. In the Hamiltonian-path architecture:
e mazx(fan-out) = n. e mazx(fan-in) = one. o efficiency factor = n.
e depth = n.

3.2 Clique

Given as input an undirected graph G = (V, E), and an integer k, the objective
is to determine whether G contains a clique of size k.

Definition 2. A clique is a set of vertices S C V', such that Yvi,vy € S,
(1}1,’02) e FE.

The architecture. The configurations in this architecture represent different
subsets of vertices of size zero to n, where n is the number of vertices in the
graph. The initial configuration is the empty set, the final configurations are all
possible subsets.

The architecture is built out of n vertex architectures, and an additional col-
umn, the AND column. The vertex architecture of v; will indicate for each set 9,
such that v; € S, whether all the other vertices in S are connected to v;. A set
S is a clique if and only if Vu; € S all the other vertices in S are connected to
v;. The AND column will indicate whether the set is a clique.

The arrangement of the configurations in space

Vertex architecture. The configurations in the vertex architecture are ordered
as a tree, with n + 1 columns, where configurations in depth i represent all pos-
sible subsets of v1 ... v;. The left half of the configurations in depth i correspond



The Traveling Beams Optical Solutions 127

to subsets S such that v; € S, where the right half of the configurations in depth
1 correspond to subsets which do not contain v;.

The propagation of beams between configurations is done in the following
manner. In each location the beam is amplified and split into two beams. These
beams propagate to two configurations that are located in the next column.
Meaning, beam propagates from a configuration in depth ¢ which corresponds
to the set S to two configurations in depth ¢ + 1, the transition to the right
configuration represents the set S, and the transition to the left configuration
represents the set {v; 41} US.

For example, in the location that represents the initial configuration, meaning
the empty set, the beam is split into two beams of light which propagate simulta-
neously to two locations in the first column. The right configuration corresponds
to the empty set, the left configuration corresponds to the set {v;}.

The transition relation. In order to estimate the size of the sets, we will delay
the light beams that pass through certain locations by d time units. The delay
is done in any transition to the right, thus light will reach a configuration in the
final column, which corresponds to a set S of size i, after d - (n — i) time units
(a delay of d time units per each vertex v; ¢ S). In addition, we will use barriers
to block the light from reaching configurations corresponding to sets which are
not a clique.

In each vertex architecture v;: If (v;,v;) ¢ E, we will block the light from
reaching configurations that correspond to sets that contain v;, we will place
the barriers before the left half of locations of depth j. In addition, we want
to block the light from reaching locations corresponding to sets that do not
contain v;. In order to achieve this goal we will place a barrier before the right
half of the locations in depth i. In this way, light will reach a leaf configuration
corresponding to a set S in the vertex architecture of v;, only if v; € S and all
the other vertices in S are connected to v;.

We will number the leaf locations and the locations in the AND column as
ly...lon. Light propagates from a leaf location l; in the vertex architecture to
location l; in the AND column. In the AND column we will use threshold, just
like choosing photographic film sensitivity, to block the light in locations where
less than k& beams of light arrived. In this way, sets which are not clique are
blocked. A lens will concentrate the outgoing beams of the AND column to a
single detector that will indicate whether a beam arrived after d - (n — k — 0.5)
time units (the sensor is activated after d- (n —k —0.5) time units to ignore sets
with size smaller than k; light from such sets will arrive at the detector after
d- (n — k) time units). If the detector sensed a beam after d - (n — k — 0.5) time
units, then the output is accepted, otherwise the output is rejected.

The clique architecture is illustrated in Fig. 4. Locations colored in gray delay
the light, locations colored in black block the light. Threshold on the number of
incoming beams to locations in the AND column allow the light to propagate to
the detector only if all k£ incoming beams arrive.
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Vertex 1 Vertex 2 Vertex 3

AND column

Detector

Fig. 4. Illustration of the clique architecture

Determining which set S corresponds to a configuration is done by traversing
the tree. A turn to the right in depth 7 in the path from the root to this leaf
indicates that v;41 € S; a left turn indicates that v;41 € S.

A way to obtain a solution to the independent-set problem from the clique
architecture is described in [3].

Lemma 2. In the clique architecture:
e mazx(fan-out) = two. e max(fan-in) = n. e efficiency factor = 2n + 1.
e depth = n+1.

3.3 Vertex Cover

Given as input an undirected graph G = (V, E), and an integer k, the objective
is to determine whether G contains a vertex cover of size k.

Definition 3. A vertex cover is a set of vertices S C V', such that Yv; & S,
Ju; € S for which (v;,v;) € E.

In order to solve this problem we will use the following observation:

Observation 1. There exists a vertex cover of size k in graph G, if and only if
there exists a clique of size n — k in the complementary graph G.

Given a graph G and an integer k, we will use the clique architecture with G
and n — k as an input. This reduction does not increase the size of the input.

Lemma 3. In the vertex cover architecture:
e mazx(fan-out) = two. e max(fan-in) = n. e efficiency factor = 2n + 1.
e depth = n+ 1.

3.4 Partition

Given a set of integers S = {ay,...,a,}, the objective is to determine whether

there exists a subset S; C S such that > a;= > a;.
a; €S a; €S\ S1
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The architecture. The configurations in this architecture represent different
subsets of length zero to n, where n is the size of the set S. The initial configu-
ration is the empty set, the final configurations are all possible subsets.

The arrangement of the configurations in space. The configurations are
ordered as a tree, where configurations in depth ¢ represent all possible subsets
of ay,...,a;. The right half of the configurations in depth i correspond to sets
that do not contain a;, where the left half of the configurations correspond to
sets that contain a;.

The transition relation. In each location the beam of light is amplified and
split into two beams. These beams propagate into two configurations that are
located in the next column. The transition to locations that represent sets Sp
such that a; € Sy delays the light by a; time units. Meaning, light propagates
from a configuration in depth ¢ which corresponds to the set S; to two configu-
rations in depth ¢ + 1. The transition to the right configuration represents the
set S;. The transition to the left configuration represents the set {a;+1} U S;,
light is delayed by ;11 time units in this transition.

For example, in the location that represents the initial configuration, mean-
ing the empty set, the beam is split into two beams of light which propagate
simultaneously to two locations in the first column. The right configuration cor-
responds to the empty set (and does not delay the light), the left configuration
corresponds to the set {a;} and the transition to this configuration delays the
light by a1 time units.

The partition architecture for a set of three integers {a1, as, az} is illustrated
in Fig. 5. The transition to a configuration in depth 7 which is colored in gray
delays the light in a; time units. Light reaches the final configuration which
correlates to the set {a1,as,as} after a1 + az + a3 time units.

A partition of the set S exists if and only if a beam of light reached one of

the leaf configurations after Z‘”;S “ time units.

We will use a lens to concentrate the light that goes from the leaf configura-

tions to a single detector. The detector will be used to identify arriving beam

> ies @i . . . > wics @i
after ~*5° " time units. If a beam arrived after ~"5*

output is accepted, otherwise the output is rejected.

Determining which subset corresponds to a leaf configuration is done by
traversing the tree. A turn to the right in depth ¢ in the path from the root
to this leaf indicates that a;y1 is in the subset, and a left turn indicates that
a;41 is not in the subset.

time units then the

Lemma 4. In the partition architecture:
e mazx(fan-out) = two. e max(fan-in) = one. o efficiency factor = two.
e depth = n.

3.5 3-SAT

Given a 3-CNF formula ¢ as input, the objective is to determine whether ¢ is
satisfiable.
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Detector

Fig. 5. Illustration of the partition architecture

Definition 4. Formula ¢ is satisfiable if and only if there exists an assignment
for the formula’s variables under which ¢ evaluates to true.

The architecture. Configurations in this architecture represent different par-
tial assignments of size zero to n, where n is the number of variables. A partial
assignment of size 7 assigns values to the variables x1 ... xz;. The initial configura-
tion is the empty assignment, the final configurations are all possible assignments
of v1...xp.

The architecture is built out of I clause architectures, where [ is the number
of clauses, and an additional column, the AND column. In order to determine
whether ¢ is satisfiable, we will check separately whether the assignment satisfies
each of the formula’s clauses (using the clause architecture). Assignment satisfies
o if and only if it satisfies all ¢’s clauses; the AND column will indicate whether
the assignment satisfies all clauses.

The arrangement of the configurations in space

Clause architecture. As demonstrated in Fig. 6, the configurations in the clause
architecture are ordered as a tree, where configurations in depth ¢ represent all
possible assignments of x7 ...x;. The right half of the configurations in depth 4
correspond to assignments where x; evaluates to true. The left half of the config-
urations in depth 4 correspond to assignments where z; evaluates to false.

The propagation of light between configurations is done in the following man-
ner. In each location the beam of light is amplified and split into two beams.
These beams propagate to two configurations in the column of the next vari-
able. The yielding configurations represent the extension of the assignment rep-
resented by the first location. In the right transition the value of the next variable
is true, and in the left transition it is false. For example, in the location that
represents the initial configuration, meaning the empty assignment, the beam of
light is split into two beams which propagate simultaneously to two locations
in the first column. In this way we get the right configuration in the first col-
umn that represents the partial assignment of size one x7 = true, and the left
configuration in the first column for the partial assignment x; = false.
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We designed two methods for implementing the transition relation: The first
method uses the delay of light, the second method uses a reduction in light inten-
sity. The details of the second method are omitted from this extended abstract
and can be found in [3].

The transition relation (with delay). In this architecture we will delay the
light that goes through certain locations by d time units.

In each clause architecture c¢: If x; € ¢ then light that goes through the left
half of column i is delayed for d time units; if z; € ¢ the light that goes through
the right half of column 7 is delayed by d time units. The idea is to delay the light
by 3d time units in assignments where all three literals are assigned to false.

We will number the leaf locations and the locations in the AND column as
ly ...l Light propagates from leaf location [; to location l; in the AND column.
In the AND column we will use threshold to block the light in locations to which
less than [ beams of light arrived, where [ is the number of clauses in the formula.
The idea is to block the assignments where at least one clause evaluates to false.

A lens will be used to concentrate all beams from the AND column to one
location where a detector will indicate whether a beam arrived after 2.5d time
units. If there exists a location in the AND column where all [ beams arrived in
less than 3d time units, then there exists a satisfying assignment. If a beam ar-
rived at the detector after 2.5d time units, then the output is accepted, otherwise
the output is rejected.

The 3-SAT architecture for the formula (21 Vo Vas)A(z Vs Vas) is illustrated
in Fig. 6. A configuration colored in gray delays the light by d time units.

Determining which assignment corresponds to a certain configuration is done
by traversing the tree. A turn to the right in depth 4 of the path from the root
to this leaf indicates that the value of x; 1 is true, and a left turn indicates that
it is false.

Lemma 5. In the 3-SAT architecture:
e max(fan-out) = two. e max(fan-in) = 1. e efficiency factor = 21 + 1.
e depth = n+1.

3.6 3D Matching

This problem is a generalization of the bipartite matching problem. In the 3D-
matching problem, the input is three sets B, G, and H (boys, girls, and homes),
such that |B| = |G| = |H| = n, and a set of triples ', T C B x G x H. The
objective is to determine whether there exists a set of n triples in 7', such that
each boy is matched to a different girl, and each couple has home of its own. We
will refer to such an arrangement as a perfect match.

Definition 5. A perfect match is a set of triples S C T, such that Yo; € B U
G U H, o; appears exactly in one triple in S.

We will say that a triple ¢; is consistent with triple ¢; if and only if Vo; € t; = 0; &
t;. We will construct a graph G' where each triple is represented by a vertex. An
edge connects v; and v; if and only if the triple v; is consistent with triple v;.
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Clause 1 Clause 2

Detector

Fig. 6. Illustration of the 3-SAT architecture

Observation 2. There ezists a perfect match if and only if there exists a clique
of size n in the constructed graph G.

Given the input sets B, G, H, and T we will construct the graph G and use the
clique architecture with G and n as an input. This reduction does not increase
the size of the input.

Lemma 6. In the 3D-matching architecture:
e mazx(fan-out) = two. e max(fan-in) = t. e efficiency factor = 2t + 1.
e depth =t+1.

4 Coordinated Holes in Masks-Made-Blackbox

In the following section we present a different architecture for an optical micro-
processor. We will demonstrate how this optical processor is used to solve
bounded instances of the Hamiltonian-path problem.

In [12] the authors present an iterative algorithm that produces a binary ma-
trix that represents all possible Hamiltonian-paths using optical copying. Every
column in the matrix correlates to a possible edge in the graph, every row in
the matrix correlates to a possible Hamiltonian-path. Zero (opaque screen) in
the [4][j] entry of the matrix indicates that the edge e; does not appear in path
number 4, where one (transparent screen) in the [i][j] entry indicates that the
edge e; does appear in path number 7. We will use a similar technique to produce
a matrix where zero indicates the existence of an edge, and vise versa.

In our architecture we will use each column of the binary-matrix mask as a
barrier. There are n(n — 1) possible barriers, a barrier per each possible directed
edge. The barrier of edge e; blocks the light in paths p where e; € p, and allows
the propagation of light in paths p such that e; & p.

Given an input graph G = (V, E), we will select a subset of the barriers. If
e; € F then we do not use the barrier of edge e;. Otherwise, we will use the
barrier of edge e; which will block the light in paths p where e; € p.
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Fig. 7. Illustration of the holes in masks-made-blackbox architecture

The masks that are in use (according to the input) are ordered one behind
the other in a way that the entry of the path p in one mask is placed behind the
entry of the same path p in the other masks. Note that the masks can be in any
3D shape, for example, nested boxes or balls.

Light propagates from the light source, passes through all the masks, and if
possible reaches a detector. A lens will be used to concentrate the light from the
final configurations to a single detector. The detector indicates whether light
passed all barriers and reached the final configuration. If so, it means that there
exists a specific path where the barriers did not block the light from passing.
Meaning, all edges in this path exist in the graph. If the detector sensed light then
the graph contains a Hamiltonian-path and the output is accepted, otherwise the
output is rejected.

The coordinated holes in masks-made-blackbox architecture for a graph with
three vertices is illustrated in Fig. 7. The edges €1, e3, and e4 do not appear in
the graph, thus the correlated barriers are used. To simplify the illustration, we
show the propagation of two beams only. The upper left entry correlates to a
path that contains the edge ez, thus the mask of ez in this entry is opaque to the
wavelength and the beam is blocked and does not reach the detectors. The lower
right entry correlates to a path that does not include edges e1, es, and ey, thus
this entry is transparent in all three masks, and the beam reaches the detector,
which indicates that the graph contains a Hamiltonian-path.

5 Concluding Remarks

The advance in optical communication and computing may well serve as a way
to cope with the limitations VLSI technologies now face. We suggest ways to use
the natural parallelism of wave propagation in space for solving inherent hard
problems in the scope of sequential or even parallel electronic computers. The
existence of recent industrial attempts to produce optical processing devices
(e.g., [8]) as well as the limited implementations in our laboratory (e.g., [12])
encourage us to believe that our new designs will be used in practice for solv-
ing combinatorial tasks, at least when there are real-time constraints. Some
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cryptographic usage of optical processors are suggested in [1,13,14]. We would
like to remark that most of our designs solve in fact the #P version of the prob-
lem. At last, we view our work as a beginning for further investigations on using
beams of light and their location in free space for parallel computations.

Acknowledgments. We thank Stephan Messika for discussions in the first steps
of this research, and Nati Shaked for fruitful discussions.
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Abstract. In this paper, we consider the question: what is the worst
possible page-replacement strategy? Our goal is to devise an online strat-
egy that has the highest possible fraction of misses as compared to the
worst offline strategy. We show that there is no deterministic, online page-
replacement strategy that is competitive with the worst offline strategy.
We give a randomized strategy based on the “most-recently-used” heuris-
tic, and show that this is the worst possible online page-replacement
strategy.

1 Introduction

Since the early days of computer science, thousands of papers have been written
on how to optimize various components of the memory hierarchy. In these papers
a recurrent question (at least four decades old) is the following: Which page-
replacement strategies are the best possible?

The point of this paper is to address the reverse question: Which page-
replacement strategies are the worst possible? In this paper we explore different
ways to formulate this question. In some of our formulations, the worst strategy
is a new algorithm that (luckily) has little chance of ever being implemented in
software or silicon. In others, the worst strategy may be disturbingly familiar.

We proceed by formalizing the paging problem. We assume a two-level mem-
ory hierarchy consisting of a small fast memory, the cache, and an arbitrarily
large slow memory. Memory is divided into unit-size blocks or pages. Exactly
k pages fit in fast memory. In order for a program to access a memory location,
the page containing that memory location must reside in fast memory. Thus, as
a program runs, it makes page requests. If a requested page is already in fast
memory, then the request is satisfied at no cost. Otherwise, the page must be
transferred from slow to fast memory. When the fast memory already holds &
pages, one page from fast memory must be evicted to make room for the new
page. (The fast memory is initially empty, but once it fills up, it stays full.) The
cost of a program is measured in terms of the number of transfers.

The objective of the paging problem is to minimize the number of page trans-
fers by optimizing which pages should be evicted on each page requests. When all
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page requests are known a priori (the offline problem), then the optimal strategy,
proposed by Belady, is to replace the page whose next request occurs furthest
in the future [2].

More recent work has focused on the online problem, in which the paging
algorithm must continually decide which pages to evict without prior knowledge
of future page requests. Sleator and Tarjan introduce competitive analysis [10] to
analyze online strategies. Let A(o) represent the cost incurred by the algorithm
A on the request sequence o, and let OPT(o) be the cost incurred by the optimal
offline strategy on the same sequence. For a minimization problem, we say that
an online strategy A is c-competitive if there exists a constant 3 such that for
every input sequence o,

A(o) <c-OPT(o)+ 5.

Sleator and Tarjan prove that there is no online strategy for page replace-
ment that is better than k-competitive, where k is the memory size. Moreover,
they show that the least-recently-used (LRU) strategy, in which the page
chosen for eviction is always the one requested least recently, is k-competitive.
If the online strategy operates on a memory that is twice the size of that used
by the offline strategy, they show that LRU is 2-competitive. Since this seminal
result, many subsequent papers have analyzed paging algorithms using compet-
itive analysis and its variations. Irani [7] gives a good study of many of these
approaches.

Page-replacement strategies are used at multiple levels of the memory hierar-
chy. Between main memory and disk, memory transfers are called page faults,
and between cache and main memory, they are cache misses. There are other
differences in between levels besides mere terminology. In particular, because
caches must be fast, a cache memory block, called a cache line, can only be
stored in one or a limited number z of cache locations. The cache is then called
direct mapped or x-way-associative, respectively. There have been several
recent algorithmic papers showing how caches with limited associativity can use
hashing techniques to acquire the power of caches with unlimited associativ-
ity [5,9].

We are now ready to describe what we mean by the worst page-replacement
strategy. First of all, we are interested in “reasonable” paging strategies. When
we say that the strategy is reasonable, we mean that it is only allowed to evict
a page from fast memory when

1. an eviction is necessary to service a new page request, i.e., when the fast
memory is full, and
2. the evicted page is replaced by the currently requested page.

Without this reasonableness restriction a paging strategy could perform poorly
by preemptively evicting all pages from fast memory. In contrast, we explore
strategies that somehow try to do the right thing, but just fail miserably.

Thus, our pessimal-cache problem is as follows: identify replacement strate-
gies that maximize the number of memory transfers, no matter how efficiently
code happens to be optimized for the memory system.
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As with traditional paging problems, we use competitive analysis. Since we
now have a maximization problem, the definition of competitive is slightly dif-
ferent: An online algorithm A is c-competitive if there exists a constant 3 such
that for every input sequence o,

Ao) > :—: -OPT(0)—f .

An input sequence o consists of a sequence of page requests.! The objective
of the online algorithm A is to maximize the number of page faults on the input
sequence, and OPT is the offline strategy that maximizes the total number of
page faults.

Since we are turning the traditional problem on its head, terminology may
now seem backwards. Optimal now means optimally bad from a traditional point
of view. The adversary is trying to give us an input sequence for which we do
not have many more page faults than OPT. Thus, in some sense, the adversary
is our friend, who is looking out for our own good, whereas we are trying to
indulge in bad behavior.

Note that the pessimal-cache problem still assigns cost in the same way, and
thus counts competitiveness in terms of the number of misses and not the number
of hits. We leave the problem in this form because OPT may have no hits, whereas
even the best online strategies have infinitely many.

Results. In this paper, we present the following results:

— We prove that there is no deterministic, competitive, online algorithm for
the pessimal-cache problem (Section 2).

— We show that there is no (randomized) algorithm better than k-competitive
for the pessimal-cache problem (Section 2).

— We give an algorithm for the pessimal-cache problem that is expected
k-competitive, and hence optimal (Section 3). Since this strategy exhibits
a 1/k fraction of the maximum number of page faults on every input se-
quence, this strategy is the worst page-replacement strategy.

— We next examine page-replacement strategies for caches with limited asso-
ciativity. We prove that for the direct-mapped caches, the page-replacement
is, in fact, worst possible, under the assumption that page locations are ran-
dom (Section 4).

2 Lower Bounds

This section gives lower bounds on the competitiveness of the pessimal-cache
problem. We show that no deterministic strategy is competitive. Then we show

L If a page is requested repeatedly without any other page being interleaved, all strate-
gies have no choice, and there is no page fault on any but the first access. Thus, we
consider only sequences in which the same page is repeated only when another page
is accessed in between.
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that no strategy can be better than expected k-competitive, where k is the fast-
memory size.

Our first lemma states that there is no deterministic online strategy that is
competitive with the offline strategy.

Lemma 1. Consider any deterministic strateqy A for the pessimal-cache prob-
lem with fast-memory size k > 2. For any € > 0 and constant (3, there exists an
input sequence o such that A(o) <e-OPT(o) — .

Proof. Consider a sequence o that begins by requesting pages v1,va, ..., Ugt1-
While the first & pages are requested, all strategies have no choice and have a
fast-memory containing pages v1, . .., Ux. At the time vy is requested, one of the
pages must be evicted from fast memory. Suppose that the deterministic strategy
chooses to evict page v;. Then for any j with 1 < j < k and i # j, consider the
sequence o = VUi, v2, ..., Vg4+1,Vj, Vk+1, V5, Up4+1, - - - that alternates between vy
and v;. Since the deterministic strategy has vy, ..., vy in fast memory when vy41
is requested, and v; # v; is evicted, both v; and vr41 are in fast memory after
the request. Thus, all future requests are to pages already in fast memory, and
this strategy does not incur any more page faults after the first £+ 1. The offline
strategy OPT, on the other hand, still incurs a page fault on every request by
evicting page v; when vi41 is requested and vice versa. Extending the length of
the sequence proves the lemma.

Lemma 1 also holds even if we introduce resource deaugmentation, that is,
the online strategy runs with a smaller fast memory of size ko, > 2 and offline
optimal strategy runs with a larger fast memory of size kog > kon.? Even so,
there is still no competitive deterministic strategy. The same proof still applies
with the same sequence—the proof just relies on the fact that there are two
particular pages in the fast memory of the online algorithm.

We now turn our attention to randomized strategies with an oblivious ad-
versary, meaning that the adversary must choose the entire input sequence
before seeing the result of any of the coin tosses used by the randomized al-
gorithm. Note that in the presence of a nonoblivious adversary, randomization
does not provide extra power for pessimal-cache problem.

The following lemma states that no randomized strategy is better than ex-
pected k-competitive when both the online and offline strategies have the same
fast-memory size k. Moreover, when the offline strategy uses a fast memory of
size kog and the online strategy has a fast memory of size ko < ko, no online
strategy is better than kog/(kog — kon + 1).

Lemma 2. Let ko be the fast memory size of the offline strategy and koy (with
1 < kon < kom) be the fast memory size of the online strategy. Consider any
(randomized) online strateqgy A. For any ¢ < kogt/(kott — kon + 1) and constant
B, there exists an input o such that E[A(c)] < ! - OPT(c) — 8.

2 Note that resource deaugmentation in the pessimal-cache problem means is the ana-
log of resource augmentation in the classical problem, in which the online algorithm
has a larger cache than the offline algorithm.
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Proof. The proof is similar to that of Lemma 1. After the (kog+1)st page request
Ukou+1, the online algorithm A has ko, pages in fast memory. Page vk, +1 is
definitely in fast memory. Of the remaining k.g pages requested so far, ko, — 1
are in A’s fast memory.

Now let v; be a randomly selected page from vi,...,vg,. Page v; is in
A’s fast memory with probability (kon — 1)/kog. Now consider the sequence
ULy e oy Vkgges Ukggt15 Ujs Ukoge+15 Ujis Vkogr 15 - - - With probability (kon — 1)/kog,

page v; is still in fast memory after vy ;11 is requested. In this case, no fu-
ture page requests cause page faults, giving the online strategy a total of kog + 1
page faults. With probability (kogg — kon + 1)/kogt, v; is not in memory, and the
strategy may be able to attain the optimal ¢ page faults, where ¢ is the length of
the sequence following the first request for vy, +1. Thus, the expected number
of page faults is at most (kog + 1) + €(kott — kon + 1)/komr, whereas the offline
strategy attains (k+ 1)+ ¢. Choosing a long enough sequence proves the lemma.

3 Most-Recently Used

This section describes two k-competitive strategies for the pessimal-cache prob-
lem. The first strategy uses one step of randomization followed by the deter-
ministic “most-recently-used” (MRU) heuristic. The second strategy uses more
randomization to achieve the optimal result even when the offline and online
strategies have different fast-memory sizes.

Since least-recently-used (LRU) is k-competitive and optimal for traditional
paging, we explore reverse strategies for the the pessimal-cache problem. The
most-recently-used (MRU) heuristic always evicts the page in fast memory
that was used most frequently. It might be reasonable to expect MRU to be
k-competitive for the pessimal-cache problem. MRU, however, is deterministic,
and Lemma 1 states that no deterministic strategy can be competitive.

Instead, we consider a natural variation on MRU, which we call randomized
MRU. In randomized MRU, the first page evicted is chosen at random. (Recall
that this first eviction happens when the (k+1)th distinct page is requested.) All
subsequent evictions follow the MRU strategy. Randomized MRU gets around
the alternating-request strategy used to prove lower bounds in Lemmas 1 and 2.
The following lemma shows that MRU keeps a (slightly) random set of pages in
fast memory.

Lemma 3. Let k be the size of fast memory (for both online and offline strate-
gies), and consider any request sequence o. After the (k + 1)st distinct page
1s requested, randomized MRU guarantees that there are k pages each having
probability exactly 1 — 1/k of being in fast memory, and there is one page, the
most-recently-used page, that has probability 1 of being in fast memory. All other
pages are definitely not in fast memory.

Proof. We prove the claim by induction on the requests over time.

Base case. The base case is after the (k+1)st distinct page is requested, which
is after the first eviction. Since there are k pages in fast memory at the time
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that the (k + 1)st distinct page is requested, and one is chosen to be evicted at
random, the claim holds for the base case.

Inductive step. Suppose that the claim holds up until the ¢tth request. Assume
that the next request is for page v;. There are several cases.

Case 1. Suppose that v; is definitely not in fast memory. Then the most-
recently-used page v; is evicted, and hence v; is definitely in fast memory and
v; is definitely not.

Case 2. Suppose that v; is in fast memory with probability 1. Then none of
the probabilities change.

Case 3. Suppose that v; is in fast memory with probability 1 — 1/k and that
vj is the most-recently-used page. Then with probability 1/k we have v; not in
fast memory, and hence the request for v; evicts v;. Otherwise, v; stays in fast
memory. Thus, the probability that v; is in fast memory is 1 — 1/k, and the
probability that the most recently used page v; is in fast memory is 1.

The probability of any other page (other than the ones mentioned in the
appropriate case) being in fast memory is unchanged across the request.

The following theorem states that randomized MRU is k-competitive, where k
is the size of fast memory.

Theorem 1. Randomized MRU is expected k-competitive, where k is the size of
fast memory.

Proof. Consider any input sequence o. If sequence o contains requests to fewer
than k+1 distinct pages, then randomized MRU has at the same number of page
faults as the offline strategy OPT (Both strategies have page faults only the first
time each distinct page is requested.) Consider any request after the first (k+1)st
distinct page is requested. If the request is for the most-recently-used page, then
neither OPT nor randomized MRU have a page fault, since that page must be
in fast memory. Otherwise, OPT causes a page fault. By Lemma 3, randomized
MRU incurs a page fault with probability at least 1/k. Specifically, MRU incurs
a fault with exactly probability 1/k for any of k pages and probability 1 for any
of the other pages. Thus, in expectation, randomized MRU incurs at least 1/k
page faults for each page fault incurred by OPT.

This result for randomized MRU is not quite analogous to the result of Sleator
and Tarjan’s [10] result for LRU. It is true that LRU is k-competitive for the
traditional paging problem, and randomized MRU is k-competitive for the
pessimal-cache problem. However, LRU also has good performance with resource
augmentation. Specifically, if LRU has a fast memory of size k and the offline
strategy has a fast memory size (1 —1/¢)k, then LRU is c-competitive. In partic-
ular, if the LRU has twice the fast memory of offline, then LRU is 2-competitive.
The above result for the pessimal-cache problem does not generalize in the same
way—the competitive ratio depends only on the size of randomized MRU’s fast
memory. If randomized MRU has a size-k fast memory and the offline strategy
has a size 2k fast memory, then randomized MRU is still only k-competitive.
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We now give a more powerful MRU algorithm, reservoir MRU, that
achieves a better competitive ratio for the case of resource deaugmentation.
As before, let kog and kon < kog be the sizes of the offline and online’s fast
memory, respectively.

The main idea of reservoir MRU is to keep a reservoir of ko, — 1 pages,
where each previously-requested page resides in the reservoir with equal prob-
ability. (This technique is based on Vitter’s reservoir sampling [11].) Reservoir
MRU works as follows. For the first ko, distinct requests, the fast memory is
not full, and thus there are no evictions. Subsequently, if there is a request
for a previously-requested page v;, and the page is not in memory, then the
most-recently requested page is evicted. Otherwise, when the nth new page is
requested, for any n > kon, with probability 1 — (kon — 1)/(n — 1), the most
recently requested page is evicted. Otherwise, the page to evict (other than the
most-recently-used page) is chosen uniformly at random.

Reservoir MRU has an invariant that is a generalization of Lemma 3. After
any request, the page that was requested most recently has probability 1 of
being in fast memory. All other n — 1 pages have probability (kon, — 1)/(n — 1)
probability of being in fast memory.

Lemma 4. Let kog and kon < kog be the fast memory sizes of the offline strategy
and of reservoir MRU, respectively. Consider any page-request sequence o to
reservoir MRU. After the n > koyth distinct page is requested, there is a single
page, the most-recently-used page, that has probability 1 of being in fast memory.
All other pages have probability (kon — 1)/(n — 1) of being in fast memory.

Proof. The proof is by induction on the requests, and is reminiscent of the proof
of Lemma 3.

Base case. After the (kon + 1)th distinct request, the (kon + 1)th page is defi-
nitely in fast memory, and one page randomly chosen has been evicted. Reservoir
MRU evicts the most recently used page with probability 1 — (kon — 1)/kon =
1/kon and all other page with the same probability. Thus, every page, except the
last one has probability 1 —1/key, of being in fast memory, and the lemma holds
for the base case.

Inductive step. Consider a request for page v; after the nth distinct page has
been requested. Assume by induction that the most-recently-used page v; is
definitely in fact memory and that all other n — 1 pages are in fast memory with
probability (kon — 1)/(n — 1). There are several cases.

Case 1. Suppose that page v; = vy, i.e., v; is in fast memory with probability 1.
Then none of the probabilities change.

Case 2. Suppose that page v; has been previously requested, but v; # v;. If v;
is already in fast memory then nothing is evicted. Otherwise, by the properties of
reservoir MRU, page v; is evicted. Since v; was in fast memory with probability
(kon — 1)/(n — 1), page v; is evicted with probability 1 — (kon — 1)/(n — 1)
and remains in fast memory with probability (kon — 1)/(n — 1). None of the
probabilities for pages other than v; and v; change.
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Case 3. Suppose that page v; has never been requested before, that is, v; is the
(n+1)st distinct request. By the properties of reservoir MRU, the most-recently-
used page v; (which is definitely in fast memory) is evicted with probability
1 — (kon — 1)/n and remains in fast memory with probability (kon — 1)/n. Thus,
the probability that v; is in fast memory is at the desired value.

The probability that each additional page is in shared memory now also needs
to decrease since the number of distinct pages has increased by one. Since with
probability (kon — 1)/n, a random page from the other ko, — 1 pages is evicted
from fast memory, each page in fast memory is evicted with probability 1/n. The
probability that any page is in fast memory after this process is the probability
that the page was in a fast memory before the (n + 1)st distinct page request
times the probability that the page was not evicted by this request, which is
(kon —1)/(n —1)(1 = 1/n) = (kon — 1)/n. Since the number of distinct pages
requested is now n + 1, this probability also matches the lemma statement.

We now use the previous lemma to prove a better competitive ratio for reservoir
MRU in the case of resource deaugmentation.

Theorem 2. Reservoir MRU is expected kog [ (Kot — kon + 1)-competitive, where
komr is the size of fast memory of the offline strategy, and kon < kog is the size
of fast memory for reservoir MRU.

Proof. Before kog distinct requests, reservoir MRU has at least as many page
faults as the offline strategy. And after this point, each time the offline strat-
egy has a page fault, since n > kqg, reservoir MRU incurs a page fault with
probability at least 1 — (koy — 1)/kogr from Lemma 4.

This theorem means that when the offline strategy and reservoir MRU have
the same fast-memory size k, reservoir MRU is k-competitive. When reservoir
MRU has fast-memory size ko, and the offline strategy has fast-memory size
(14 1/¢)kon, reservoir MRU is (c + 1)-competitive.

Reservoir MRU requires some additional state—in particular, we need one bit
per page to indicate whether the page has been requested before. Consequently,
if the sequence requests n distinct pages, then we need O(n) extra bits of state.
In contrast, Achlioptas et. al.’s [1] optimal randomized algorithm for the page-
replacement problem requires only O(k? log k) extra bits of state. The extra state is
unavoidable for reservoir MRU, however, because we must know when 7, the num-
ber of distinct pages, increases. Fortunately, these extra bits can be stored in the
slow memory, associated with each page—only the more reasonable O(logn) bits
for the counter storing n need be remembered by the algorithm at any given time.

4 Direct Mapping

In this section we consider the page-replacement strategy used in direct-mapped
caches. We show that for the pessimal-cache problem, direct mapping is

31In fact, the offline strategy can have a slightly smaller memory-with size
[(1+1/c)(kon — 1)]—and we still attain the (¢ + 1)-competitiveness.



The Worst Page-Replacement Policy 143

k-competitive under some assumptions about the mapping strategy or about
the layout in slow memory.

In a direct-mapping strategy (see, e.g., [6]) each page v; can be stored in only
a single location L(v;) in fast memory. Thus, in a direct-mapped cache, once the
function L(v;) is chosen, there are no algorithmic decisions to make: whenever a
page v; is requested, we must evict the page that is currently stored in location
L(v;) and store v; there instead.

In the following, we show that if L(v;) is randomly chosen for each v;, then
direct mapping is k-competitive with the optimal offline strategy (with no direct-
mapped restrictions).

In fact, typically in real caches, the function L(v;) is determined by the low-
order bits in the address of v; in slow memory; it is not random. However, if
each page v; is stored in a random memory address in slow memory then our
theorem still applies. While it is often unrealistic to assume that each page v; is
randomly stored, this approach was also used in [5,9] to enable direct-mapped
caches to simulate caches with no restrictions on associativity.

Observe that direct mapping is not a reasonable strategy when compared
with the optimal off-line strategy with no mapping restrictions. In particular, a
direct-mapped fast memory may evict a page before the rest of the fast memory
is full. However, since caches with limited associativity are so common, it is of
interest to explore this special case.

The following theorem states that direct mapping is competitive with the
optimal offline strategy for the pessimal-cache problem.

Theorem 3. Direct-mapping is k-competitive, where k is the fast-memory size
of the both be the direct-mapping and offline strategies.

Proof. We claim that a particular page is requested many times and the offline
strategy incurs a page fault on £ of these requests, then direct mapping incurs
at least ¢/k page faults on v; in expectation. We prove this claim by induction
on the number of requests to v;.

The first time that v; is requested, there is a page fault. If v; is requested again
immediately (without any interleaving page requests), then both strategies have
the page in fast memory. If v; is requested again after another page is requested,
then the offline strategy may have a page fault. The direct-mapping strategy
incurs a page fault with probability at least 1/k, because at least one page v; is
requested between v; requests, and this page v; has a 1/k probability of evicting
v; from fast memory.

5 Conclusions

For the pessimal-cache problem, randomization is necessary to achieve any com-
petitive ratio, and the best competitive ratio without resource deaugmentation
is k. In contrast, for the original problem, deterministic strategies can be k-
competitive [10], and upper [4,8,1] and lower [4] bounds of O(log k) exist for
randomized strategies against oblivious adversaries.
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In this paper, competitive ratios are k or larger; is there some model in which
the competitive ratio is smaller? Essentially, we're trying to get a better defini-
tion of reasonable strategies giving the adversary just the right amount of power.
This concept is similar to many approaches for the original page-replacement
problem—for example, the graph-theoretic approach [3] tries to better model
locality. Unfortunately, the traditional approaches seem to have little impact for
the pessimal-cache problem. For example, looking at access patterns matching
a graph, little can be said even if the graph is just a simple line. Adding power
like lookahead to the online strategy, on the other hand, trivializes the problem
since the optimal offline strategy can be implemented with a lookahead of 1. It
would be nice to come up with a more accurate model that allows us to beat
k-competitiveness.

It’s interesting that direct-mapped cache is optimally bad when the program
shows no locality (i.e., as in a multiprogrammed environment). In this model,
however, we cannot show anything about the badness of a 2-way (or, more gen-
erally, c-way) set-associative cache using LRU. In particular, the LRU subcom-
ponent forces the cache to make the “right” choice for eviction, and the sequence
ping-ponging between two pages is sufficient to guarantee no future misses.

One way of weakening the adversary is to restrict the definition of “reason-
able” strategies by disallowing the eviction of the most (or perhaps the ¢ most)
recently used pages. In some sense, we're forcing the cache to model some small
amount of locality, since, after all, that is the purpose of the cache. This mod-
ification of the problem has the nice property that it allows us to analyze the
pessimal-cache problem for a c-way set-associative cache. In particular, a 2-way
set-associative cache is roughly k?-competitive for the pessimal-cache problem.
This result appears to generalize for c-way set-associative caches as well.

It would nice to see if anything from this paper applies to other problems, or
generalizations of the paging problem, like the k-servers on a line problem, for
example.
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Abstract. The Hydra was a many-headed monster from Greek mythol-
ogy that would immediately replace a head that was cut off by one or
two new heads. It was the second task of Hercules to kill this monster. In
an abstract sense, a Hydra can be modeled as a tree where the leaves are
the heads, and when a head is cut off some subtrees get duplicated. Dif-
ferent Hydra species differ by which subtress can be duplicated in which
multiplicity. Using some deep mathematics, it had been shown that two
classes of Hydra species must always die, independent of the order in
which heads are cut off. In this paper we identify three properties for a
Hydra that are necessary and sufficient to make it immortal or force it
to die. We also give a simple combinatorial proof for this classification.
Now, if Hercules had known this...

1 Introduction

According to Greek mythology, the Hydra was a many-headed monster living in
a marsh near Lerna [20]. If one head was cut off, one or two new heads grew
from the Hydra’s body. Nevertheless, in his second task (of twelve, ordered by
his cousin Eurystheus) the Greek hero Hercules (a.k.a. Herakles), a son of Zeus,
defeated the Hydra, although he did not fully play by the rules: while he was
happily hacking away at the heads, his nephew Iolaus burnt the Hydra to prevent
new heads from growing [23].

Kirby and Paris studied this epic fight from a graph theoretic point of view
and showed that Hercules might even have won without employing unfair tactics
(although, then, he would probably still be fighting today) [17]. They proposed
to model the Hydra as a rooted tree where the heads are the leaves (see Fig. 1).
The classical Hydra would grow one or two new heads replacing any head that
was cut off. Clearly, this Hydra species cannot die (except by fire). Now, Kirby
and Paris suggested to study another Hydra species which can duplicate entire
subtrees which contained the head that was cut off. At the first glance, one might
expect this to be a more powerful Hydra variety, but they proved that this species
must eventually die (and this cannot be shown by a simple proof by induction).

* The work described in this paper was partially supported by a grant from the Na-
tional Natural Science Fund China (grant no. 60573025).
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Fig. 1. Cutting off  and growing two copies of T, from z

To be more precise, they suggested to duplicate subtrees as follows (we call
this Hydra species the i-head Hydra). For a node v, let T, denote the subtree
rooted at v. For a leaf x, its predecessor y is called the neck, and the predecessor’s
predecessor z is called the trunk. The path from the root to y is called the spine
of z. When z is cut off in the i-th blow, ¢ new subtrees identical to T}, without
z, denoted by T,", will grow from the trunk z. Fig. 1 shows an example of a
second blow. We cut off head z, and the Hydra grows two copies of T}, out of z.
If  has no siblings, its neck y becomes a leaf, i.e., a new head, and i new heads
(the copies of T})) grow from the trunk z. If y is the root, no new subtrees grow.
If x is the root, i.e., the root is the only node (and head) of the Hydra, cutting
off x will kill the Hydra.

A Hydra is doomed if it will die in a finite number of steps, for any possible
sequence of head cuts. Otherwise, it is immortal. In a deep mathematical proof
based on transfinite induction (if we add the first ordinal number w, the smallest
infinite number, and arbitrary polynomial expressions of w to the set of natural
numbers and define the operation w — 1 as choosing an arbitrary finite number
smaller than w, then the principle of transfinite induction states that we always
reach zero in a finite number of steps when counting down from an arbitrary
number) Kirby and Paris showed that the i-head Hydra is doomed. Later, Luccio
and Pagli gave an elementary combinatorial proof based on a potential function
defined on the nodes for the special case of the 2-head Hydra which can only
grow two (or any fixed constant number of) subtree copies in each step. They
posed as an open problem to find an elementary combinatorial proof for the
i-head Hydra [21].

In this paper we give such a proof for the more general class of finite Hydras.
As we will see later, the actual number of subtrees grown in each duplication
step is not relevant for the fate of a Hydra as long as it is always a finite number,
only the locations of the subtrees to be copied do matter.

A finite Hydra is a finite tree. If we cut off a head z, it can, in any order,
copy an arbitrary but finite number of subtrees according to the following three
properties (see Fig. 2 for an example).
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(P1) The subtree to be copied is rooted at a node on the spine of x.
(P2) The subtree copy becomes a child of a node on the spine of x.

(P3) The subtree copy is placed at the same level or closer to the root than the
original subtree.

In principle, a Hydra may choose not to copy an entire subtree but only part
of it (a subtree of the subtree), but obviously it cannot gain anything by doing
S0, so we may assume w.l.o.g. that a Hydra always copies entire subtrees.

Clearly, the 2-head and i-head Hydras are special cases of the finite Hydra.
The number of new subtree copies may either be predetermined (e.g., the 2-
head Hydra), given as a function of the structure of the tree or the length of the
fight (e.g., the i-head Hydra), or the Hydra may adapt to the cutting sequence,
deciding on the number of tree copies each time a head is cut off (this corresponds
to choosing an arbitrary finite number in the operation w — 1 in the transfinite
reduction proof by Kirby and Paris).

Generalizing the results by Luccio et al. and Kirby et al., we show that any
finite Hydra is doomed.

Theorem 1 (Hydra Theorem). Any finite Hydra is doomed.

We will give a simple combinatorial proof of the Hydra Theorem in Section 3,
after shortly reviewing the mathematical history of this problem in Section 2.

Fig. 2. When we cut head x in a finite Hydra, it can first grow a copy of 7. at w and
then grow a copy of the new T, at the root
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In Section 4 we will see that relaxing any one of the three properties (P1)-
(P3) can make a Hydra immortal. In Section 5 we shortly discuss worms [13],
a one-dimensionally restricted Hydra, and the Buchholz Hydra [3], a truly two-
dimensional generalization of the finite Hydra.

2 The History of the Hydra Battle

Kurt Tucholsky once noted a speaker should “always start with ancient Rome
and mention the historical background of the matter” [27]. We already discussed
the pre-Roman story of Hercules and the Hydra, so we may jump directly to the
past century (there was not much happening in between; at least, nothing related
to this paper).

There is a branch of mathematical logic that is concerned with the relative
power of the various axioms of mathematics [9] (the Axiom of Choice (AC), the
axioms of Peano Arithmtic (PA), etc.) After Gentzen had shown the consistency
of PA [11] (see also [26]) in 1936, Goodstein gave in 1944 a recursive definition
of the so-called Goodstein sequence and showed that in PA it cannot be proven
to terminate [12] (see also Cichon [5]). Basically, this means there is no classical
proof by induction for this theorem. A problem of a similar flavour is the famous
3z + 1 conjecture (where termination has not been proven yet), also known as
Collatz problem, Syracuse problem, Kakutani’s problem, Hasse’s algorithm, and
Ulam’s problem [19].

Much later, in 1982, Kirby and Paris gave an alternative proof for the termina-
tion of the Goodstein sequence [18] and introduced the Hydra battle as another
example to demonstrate their new technique from [22]. They showed that i-head
Hydras are doomed and this cannot be shown in PA even if Hercules is required
to always cut off the rightmost head of the Hydra (assuming a natural ordering
of subtrees by decreasing size). In this case, even if the Hydra has only height
two, the length of the battle is not primitive recursive. Another proof was given
by Carlucci via reduction from Gentzen’s Reduction Strategy [4].

The Kirby-Paris paper led to a flurry of research on the Hydra and related
problems. It was quickly observed that their results actually hold for the more
general case of arbitrary-head Hydras (which decide in every step how many
subtree copies are grown). But no generalization to growing copies at arbitrary
nodes on the spine (as in our finite Hydra) was suggested, mathematicians only
grow new subtrees at the trunk of the cut head.

Since the Kirby-Paris Hydra can only grow in width, the question arose
whether there is a generalization of these results to height-growing Hydras. In
1987, Buchholz answered this in the positive with a doomed Hydra species that
can grow in width and height [3] (basically, the growth in each dimension is
bounded by a Hydra battle). This Hydra is now known as the Buchholz Hydra.

Hamano and Okada went the other direction and restricted Hydras to truly
one-dimensional objects, so-called worms [13] (see also Beklemishev [2]). Al-
though being recursively defined and of reasonably bounded length, they can-
not, in PA, be proven to terminate. Hydras also came to fame in the Scientific



150 R. Fleischer

American when Gardner [10] discussed the Hydra battle and Smullyan’s Urn
Game [24], kind of a simplified version of the arbitrary-head Hydra.

In 2000, Luccio and Pagli discovered the combinatorial beauty of the Hydra
battle [21] and asked whether there is a simple combinatorial proof that the
i-head Hydra is doomed. Luccio’s presentation of the problem at FUN 2001
let to lively discussions among the conference participants (futily trying to find
proofs) and might be considered the birth hour of the present paper. Here, we
give a simple combinatorial proof that finite Hydras are doomed. We use Koenig’s
Lemma, which pops up here and there in the computer science literature, mainly
in proofs in logics and formal languages. Although it is deceivingly simple to
state and prove, it is actually a powerful theorem outside of PA, equivalent to
AC [6,15,16], so our simple proof does not contradict the Kirby-Paris result.

Lemma 2 (Koenig’s Lemma). A tree is finite if and only if every node has
finite degree and every simple path from the root is finite.

Proof. If one node has infinite degree or there is an infinite simple path, the
tree is infinite. On the other hand, if a tree where all nodes have finite degree
is infinite, then one of the subtrees of the root must be infinite. If we follow the
edge to that subtree and iterate, we can construct an infinite simple path. O

Daly also used Koenig’s Lemma to give simple proofs for Smullyan’s Urn Game
and the Goodstein sequence [7]. Weiermann recently showed the exact threshold
of the transition between PA-provability (the 2-head Hydra) and non-PA-
provability (the i-head Hydra) [29]. Readers interested in reading the mathe-
matical papers might first want to read some good introduction into the theory
of ordinals (for example, Avigad [1] or Dershowitz [8]).

3 Proof of the Hydra Theorem

If not all finite Hydras are doomed, there must be an immortal Hydra H of
smallest height. We call the subtrees of the root of H subhydras. If we cut a
head in a subhydra, H may choose to create a finite number of copies of the
subhydra, which we also call subhydras.

Let p be an infinite hacking sequence that does not kill H. Now we define the
hacking tree S. Initially, S consists of a root with one leaf for each subhydra of H.
Each time we cut a head in a subhydra, the corresponding leaf of S will become an
internal node with k& + 1 new children leaves, where k£ > 0 is the number of copies
we create of the subhydra. One of the new leaves corresponds to the subhydra that
was copied, the other leaves correspond to the copies. So after each step, each leaf
of S corresponds to one of the current subhydras of H, and siblings in S represent
identical copies of the same subhydra (here we use (P1), that a subtree can only
be copied if it contained the head that was cut off).

Since p is infinite, S is infinite. Each node has finite degree (here we use that
we only create a finite number of subtree copies in each step), thus there must
exist an infinite simple path p in S by Koenig’s Lemma, corresponding to an
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infinite subsequence o of p. For each node v on p, we may w.l.o.g. assume that the
successor w (the child of v in S) is actually the original subhydra that was copied
in this cutting step (here we use (P3) in a subtle way; our proof by contradiction
is actually a proof by induction on the height of doomed Hydras, where the
induction step cuts off the root. Therefore, we cannot allow that subtrees get
copied higher up in the tree, because otherwise in the inductive step we could
have new subhydras appearing out of the blue sky). Thus, o is an infinite cutting
sequence in one of the initial subhydras G of H. Note that (P2) implies that none
of the cuts in p — o can affect G. So we have found an immortal Hydra G of
smaller height than H, a contradiction.

4 Immortal Hydras
Fig. 3-5 show examples of immortal Hydras violating exactly one of the proper-

ties (P1)-(P3). Note that the Hydras violating (P1) and (P3) are immortal in a
strong sense: they can survive any cutting sequence.

o

Fig.3. A Hydra that can copy a subtree not containing the head that was cut off,
violating (P1). If we cut off  and the Hydra copies the subtree containing y, the new
Hydra is a supertree of the original one, i.e., it is immortal.

5 Worms and the Buchholz Hydra

Hamano and Okada defined a worm as a one-dimensional version of the two-
dimensional Buchholz Hydra and showed it to be equivalent to the i-head Hydra
[13]. Here we give the self-contained definition by Beklemishev [2]. A worm is a
finite sequence of natural numbers w = (f(0), f(1),..., f(n)). f(n) is called the
head of the worm. The worm battle is defined by the sequence of worms wy = w
and wy+1 = next(wy,n + 1), defined as follows.

1. If f(n) =0, then next(w, m) = (f(0),..., f(n—1)). That is, in this case we
cut off the head of the worm.

2. If f(n) > 0, let k¥ = max;<,{f(?) < f(n)}. The worm w (with the head
decreased by one) is then the concatenation of two parts, the good part

r=(f(0),..., f(k)), and the bad part s = (f(k+1),..., f(n—1), f(n)—1).

We define next(w,m) =1 *s* 5%+ *s.
N~ ~ ~

m+1 times
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Fig.4. A Hydra that can copy a subtree to nodes not on the spine of the cut head,
violating (P2). If we cut off head x, the Hydra can grow a copy of T, at node w (which
is at the same level as v). If we now cut off the new head y’, v’ will become a head and
we can grow a copy of this head at z. This Hydra is now a supertree of the original
one, so it is immortal.

Fig.5. A Hydra that can place a copy of a subtree higher up on the spine, violating
(P3). This is the same Hydra as in Fig. 2, but this time we grow the copy of 7. not at
w but at z. The new Hydra is a supertree of the original one and thus immortal.

w,y, is defined by a primitive recursive function, and the length of a worm is
bounded by |wy,| < (n + 2)! - Jwpg|. Still, proving that any worm must eventually
die cannot be shown in PA (actually, it is equivalent to the i-head Hydra battle).

Buchholz generalized the i-head Hydra to a species that can also grow in
height [3] by relaxing (P3). He allowed subtree copies to be placed higher up in
the tree, but only a bounded number of times. Since this bound is essentially
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given by the length of a i-head Hydra battle, this produces a Hydra that grows
as high as it grows wide. To be more precise, a Buchholz Hydra is a finite labeled
tree H with the following properties:

1. The root has label +.
2. Any other node of H is labeled by some ordinal v < w.
3. All nodes immediately above the root of H have label 0 (zero).

If we cut off head x, H will choose an arbitrary number n € IN and transform
itself into a new Hydra H(x,n) as follows. Let y denote that node of H which is
immediately below x (the neck), and let H~ denote that part of H which remains
after = has been cut off. The definition of H(x,n) depends on the label of z.

Case 1:label(x) = 0. If y is the root of H, we set H(x,n) = H~. Otherwise,
H (z,n) results from H~ by growing n copies of H,~ from the node immediately
below y, i.e., the trunk. Here, H,~ denotes the subtree of H ™ rooted at y.

Case 2: label(z) = u + 1. Let z be the first node below x with label v < u. Let
G be the tree which results from the subtree H, by changing the label of z to u
and the label of z to 0. H(x,n) is obtained from H by replacing « by G. In this
case, H(x,n) does not depend on n.

Case 3: label(z) = w. H(x,n) is obtained from H simply by changing the label
of z: w is replaced by n + 1.

Note that a Buchholz Hydra with all labels equal to zero is just the classical
i-head Hydra. Buchholz showed that every Buchholz Hydra can be killed by
repeatedly cutting off the rightmost head, but this cannot be shown in PA (it
can be shown in (IT{ —CA)+BI, if you really want to know). Later, Hamano and
Okada showed that the Buchholz Hydra is actually doomed with any cutting
sequence [14]. Wainer further generalized the underlying mathematics of struc-
tured tree-ordinals [28], but it is not clear (to us) what this implies for the Hydra
battle.

6 Conclusions

We have characterized the elementary Hydras that are doomed or immortal by
identifying three properties (P1)—(P3) that are necessary and sufficient for a
Hydra to be doomed. We could not find an example of a Hydra only violating
(P2) that can survive any cutting sequence. We would also like to find a simple
combinatorial proof for the Buchholz Hydra.
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Abstract. In this paper we show a polynomial-time algorithm to find
the best rational approximation of a given rational number within a given
interval. As a special case, we show how to find the best rational number
that after evaluating and rounding exactly matches the input number. In
both results, “best” means “having the smallest possible denominator”.

1 DMotivation

Phillip the physicist is doing an elaborate experiment. He precisely notes each
numeric result along with the error estimate. Thus, his results may look as
follows: x = 1.4372 4+ 0.001.

Larry the lazy physicist is doing similar experiments. However, he just takes
the exact value he gets, rounds it to several decimal places and writes down the
result. Example of Larry’s result: x ~ 2.3134.

Cole the computer scientist is well aware of the Occam’s Razor principle (in
other words, understands what Kolmogorov complexity is). He knows that the
simplest answer is often the right one. In the physicists’ case, the exact value
might very well be a rational number. However, it is not obvious which rational
number this might be. Cole’s task will be to find the best, simplest one that
matches the measured results.

2 Previous Results

The sequence of irreducible rational numbers from [0, 1] with denominator not
exceeding a given N is known under the name Farey sequence of order N. For
example F5 = {0/1,1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,1/1}. Several prop-
erties of these sequences are known. The one we are most interested in is the
following one: Let p/q, p’'/q’, and p”/q" be three successive terms in a Farey
sequence. Then

P'/d =w+0")/(a+4q") (1)

See [3] for Farey’s original conjecture of this property, and e.g. [6,1] for a more
involved discussion of the history and properties of these sequences.

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 156-165, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Approximating Rational Numbers by Fractions 157

11

\
1/5/ 2/5; 3/5 \4/5
/ A

Fig.1. The Stern-Brocot tree. Full lines show the edges of the tree as commonly
defined. For select vertices dotted lines show their other “parent” vertex.

Note that the sequence F can be created from Fy_; by inserting those
fractions a/N where a and N are relatively prime. There are ¢(N') such fractions,
where ¢(INV) is Euler’s totient function.

The importance of the property (1) lies in the fact that it gives us more insight
into how the sequence is altered with increasing N. It tells us exactly where the
next elements will appear — or equivalently, what is the next element that will
appear between two currently neighboring ones.

When we denote this addition process graphically, we get the Stern-Brocot
tree, (see [9,2]) as depicted in Figure 2. The construction and some properties
of the tree can be found in [5].

The book [5] also notes the following important fact:

Suppose that « € [0,1) is a given real number, and we want to find the best
rational approximation of @ with denominator not exceeding a given N. Clearly,
all we have to do is to find «’s place in the sequence Fiy, and consider the closest
two elements (or one, if « is an element of Flv). This place can be found by an
analogy of a “binary search” by descending the Stern-Brocot tree. Each visited
vertex of the tree clearly represents either the best lower, or the best upper
approximation so far. (Here, “so far” means “with denumerator smaller or equal
to the one in the current vertex”.)

For example, suppose that o = 0.39147. .., then the first few vertices visited
will be: 1/1,1/2,1/3,2/5,3/8,5/13, 7/18, ...

This gives us our first algorithm to find a good rational approximation to a
given value a: Walk down the Stern-Brocot tree until the difference between «
and the value in the current vertex is close enough to be acceptable. At this
moment, you can be sure that no rational number with a smaller denominator
gives a better approximation.

Sadly, this algorithm is far from being polynomial in the input size. As a triv-
ial counterexample, consider o = 10747, The path to « is long and boring, as it
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contains all fractions 1/ for x < 10%7. However, these difficulties can be over-
come, and our polynomial-time algorithm is derived from this naive algorithm
using two improvements.

Another related tool used to find good rational approximations are continued
fractions. A simple continued fraction is a fraction of the form:

1
o= ap + (2)

ai +
' 1
az +
as _|_ PN
To save space, continued fractions are commonly written as [ag, a1, az,as, .. .].
Every rational number has a finite simple continued fraction (or two of them,
depending on the exact definition of terminating). Every irrational number can
be represented as an infinite continued fraction.

By truncating the continued fraction of a real number « after a finite number
of steps we obtain a rational approximation of «. More exactly, the number
¢n, as defined in (3) is called the n-th convergent of «. It can be proved that
any convergent of « is a best rational approximation of « in the sense that the
convergent is nearer to « than any other fraction whose denominator is less
than that of the convergent. Moreover, more exact bounds on how good this
approximation is are known, but we won’t need them in this article.

1
Cn =ap+ (3)
a +
as +

1

1
-+
Gn
Note that there may be cases when the desired rational approximation of «
is not a convergent of a. More exactly, there are fractions p/q such that:

— No fraction with denominator less than ¢ is closer to « than p/q.
— The fraction p/q is not a convergent of «.

As a simple example, suppose that o = 0.1. The fraction 1/7 satisfies the
conditions above.

Furthermore, note that 1/7 is the first fraction that after evaluating and
rounding to one decimal place gives a. In other words, 1/7 is the best rational
approximation of a = 0.1 with a given tolerance d = 0.05.

3 Problem Formulation

The exact problem we are trying to solve can be formulated as follows: given
is a rational number o € (0,1) and a precision d. (Both numbers are given in
decimal notation, with N digits each.) The goal is to find positive integers p, g
such that p/q lies within the interval (o — d, & + d), and ¢ is minimal.
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Several notes on this definition:

We opted to limit the problem to « € (0, 1) instead of the more general task
a € R. However, note that the general problem is easily reduced to our definition:
For o = 0 the best answer is always 0/1. Any o € R\ [0,1) can be written as
|la] + o/, where o/ € [0,1). The best approximation of « can be computed by
finding the best approximation of o/ and adding the integer |«a].

Also, by solving this task for the open interval (« — d, o 4+ d), we can easily
obtain solutions for half-closed intervals [a — d, a« + d), (& — d, a + d] and for the
closed interval [ — d,  + d] simply by checking whether the included bounds
correspond to a better approximation than the one found.

Theorem 1. The correct solution of the problem defined above is unique, and
ged(p, q) = 1.

Proof. Both parts will be proved by contradiction. First, suppose that there are
two best approximations A = p;/q and B = ps/q with the same denominator
g > 1 and p; < pa < ¢q. Consider the fraction C' = p1/(¢ — 1). Clearly we have
C > A. Moreover, we get:

p2(q — 1) = paq —p2 > p2qg — q = (p2 — 1)q > p1gq (4)

From (4) it follows that pa/q > p1/(¢ — 1), in other words B > C. Thus C is
also a valid approximation, and it has a smaller denominator.

The coprimeness of p and ¢ in the optimal solution is obvious. Formally,
suppose that ged(p,q) = g > 1. Then clearly p’ = p/g and ¢’ = ¢q/g is a valid
approximation with a smaller denominator. a

4 Mathematica and Similar Software

The software package Mathematica by Wolfram Research, Inc. claims to include
a function Rationalize that solves the problem as stated above. (And variations
thereof, as Mathematica can work both with exact and with approximate values.)
Citing from the documentation [11],

— Rationalize[x] takes Real numbers in x that are close to rationals, and
converts them to exact Rational numbers.

— Rationalize[x,dx] performs the conversion whenever the error made is
smaller in magnitude than dx

— Rationalize[x,dx] yields the rational number with the smallest denomi-
nator that lies within dx of x

However, we discovered that this is not the case. We tried to contact the au-
thors of the software package, but to date we received no reply. In Table 1 we
demonstrate a set of inputs where Mathematica 5.2 fails to find the optimal solu-
tion. The exact command used was Rationalize[alpha‘‘200,d¢‘200], where
the €200 part tells the software to consider the values as arbitrary-precision
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Table 1. Example inputs where Mathematica fails to find the optimal approximation

input correct Mathematica

a=0.1,d=0.05 1/7 1/9

a=0.12, d = 0.005 2/17 3/25

a = 0.15, d = 0.005 2/13 3/20
a=0.111112, d = 0.0000005 888890/8 000009 1388889/12 500000
a = 0.111125, d = 0.000 000 5 859/7730 889/8000

values with 200 digits of accuracy. (See [10] for more details.) The counterexam-
ples in the last two lines of Table 1 seem to scale. (I.e., we can get new inputs by
increasing the number of 1s in o and the number of Os in d by the same amount.
Mathematica fails on most of these inputs.)

Furthermore, if the first argument is an exact number, Mathematica leaves it
intact, which might be not optimal. E.g., Rationalize[30/100,4/100] returns
3/10 instead of the correct output 1/3.

We are not aware of any other software that claims to have this functionality.
For example, Matlab does include a function rat, but the documentation [8]
doesn’t guarantee optimality of approximation in our sense — on the contrary, it
directly claims that rat only approximates by computing a truncated continued
fraction expansion.

5 Outline of Our Algorithm

We will derive the polynomial algorithm in two steps. First, we will show a
compressed way of traversing the Stern-Brocot tree. We will show that this
approach is related to generating the approximations given by the continued
fraction. However, keeping the Stern-Brocot tree in mind will help us in the
second step, where we show how to compute the best approximation once we
reach a valid approximation using the compressed tree traversal.

Imagine that we start traversing the Stern-Brocot tree in the vertex 1/1. The
path downwards can be written as a sequence of ‘L’s and ‘R’s (going left and
right, respectively).

E.g., for a = 0.112 we get the sequence LLLLLLLLLRLLLLLLLLLLLL.
This can be shortened to LYRL'2. As noted in [5], there is a direct correspon-
dence between these exponents and the continued fraction representation of a.
As an example, note that

0.112=0+ =0+ (5)
8+ 8+

1 1
T3 +12+}

For a given path in the Stern-Brocot tree let (ag,as,as,...) be the sequence
of exponents obtained using the path compression as described above. Our
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algorithm will visit vertices corresponding to paths L, L* R% [® R™ [
and so on. In each such vertex we will efficiently compute the next value a;. A
detailed description of this computation can be found in Section 6.

For the example above, @ = 0.112, our algorithm will visit the vertices cor-
responding to L°, LR, and LY RL'2. These correspond to fractions 1/9, 2/17,
and 14/125 = a.

For comparison note that the subsequent approximations of a = 0.112 by
truncating the continued fractions are: 0, 1/8, 1/9, (13/116 and)! 14/125 = a.

In Section 7 we will modify the compressed tree traversal algorithm slightly.
It can be shown that after the modification the set of examined vertices will be
a superset of the convergents, however we omit the proof, as it is not necessary
to prove the correctness of our algorithm.

Now, let’s assume that the exact input instance is « = 0.112 and d = 0.0006.
For this input, the algorithm as defined above skips the optimal solution 9/80 =
0.1125.

In Section 7 we will show that the best approximation has to lie on the last
compressed branch of the visited path. More generally, it has to lie on the first
compressed branch such that its final vertex represents a valid approximation.
Also, we will show that this approximation can be computed efficiently.

An example implementation of the algorithm can be found in Section 8.

6 Compressed Tree Traversal

We will describe traversal to the left, i.e., to a smaller fraction than the current
one. Traversal to the right works in the same way.

Let pa/qa and pp/qp be the last two vertices visited, with p, /g, < @ < pp/qp.
At the beginning of the entire algorithm we are in this situation with p, = 0
and ¢, =pp = qp = 1.

We are now in the vertex corresponding to py/q,, and we are going to make
several steps to the left. Using (1) we get that in our situation each step to
the left corresponds to changing the current fraction p/q into a new fraction
(p+pa)/(q+ qa)-

Let x be the number of steps performed by the naive algorithm. How to
compute the value z without actually simulating the process?

Clearly, z is the smallest such value that the fraction we reach is smaller than
or equal to a. We get an inequality:

Po + TPa <a (6)
Qb + 2qq
This can be simplified to
Py — agqy < x(aga — pa) (7)

! The presence of this continuent depends on the chosen form of the continued fraction,
see equation (5).
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We assumed that p,/q, < «, thus (ag, — p,) is positive, and we get

—
> Do b ®)
Qg — Pa

T

As x has to be an integer, and we are interested in the smallest possible x, the
correct x can be computed as follows:

. ’Vpb_a%-‘ 9)

Afq — Pa

7 Locating the Best Approximation

Theorem 2. Suppose that while going in one direction the naive algorithm
visited exactly the fractions po/qo, ---, Pn/Gn. Consider the fractions po/qo,
DPn-1/qn—1 and p,/qn. If neither of these three fractions represents a valid ap-
prozimation (i.e., lies within d of «), then none of the p;/q; represent a valid
approximation.

Proof. WLOG let’s consider steps to the left. p,, /g, is the first and only value out
of all p; /q; such that p,, /g, < a. The fact that p, /¢, is not a valid approximation

gives us that in fact p,/q¢, < a — d. Similarly, p,_1/¢,—1 > a + d, and clearly
all other p;/q; are even greater. a

This gives us a way how to check that our compressed tree traversal algorithm
doesn’t skip any valid approximations: In each step, after computing the value
x from (9), check whether making either x — 1 or z steps yields a valid approxi-
mation. If not, Theorem 2 tells us that we may make = steps without skipping
a valid approximation. If we found a valid approximation, we need to find the
smallest one.

Again, for simplicity we will only show the case when the naive algorithm
makes steps to the left. In this case, the best approximation simply corresponds
to the smallest & < x such that the fraction after k steps is a valid approximation
— or, equivalently, is less than a + d.

We can compute this & in very much the same fashion as when we computed
x in the previous section. The exact formula for & for the going-to-left case:

e (a+d)g
k= \‘(a-ﬁ-d)qa—paJ +1 (10)

8 Implementation

A proof-of-concept implementation of our algorithm in the open-source cal-
culator bc follows. All computations are done using arbitrary-precision inte-
gers. For this reason, the input is given in the variables alpha_num, d_num,
and denum. These variables represent the values o = alpha_num/denum and
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d = d_num/denum. We assume that 0 < d_num < alpha_num < denum and that
d_num + alpha_num < denum. This exactly covers the cases when « € (0,1) and
the answer is not 0/1 or 1/1.

Example: The input a = 0.33456 and d = 0.000005 can be entered as
alpha_num = 334560, d_num = 5, and denum = 1000000.

# input variables: alpha_num, d_num, denum

#

# we seek the first fraction that falls into the interval
# (alpha-d, alpha+d) =

# = ( (alpha_num-d_num)/denum, (alpha_num+d_num)/denum )

# fraction comparison: compare (a/b) and (c/d)
define less(a,b,c,d) { return (a*xd < b*c); }
define less_or_equal(a,b,c,d) { return (axd <= bx*c); }

# check whether a/b is a valid approximation

define matches(a,b) {
if (less_or_equal(a,b,alpha_num-d_num,denum)) return O;
if (less(a,b,alpha_num+d_num,denum)) return 1;
return O;

}

# set initial bounds for the search:
p.a=0;qga=1;pb=1;q9gb=1

define find_exact_solution_left(p_a,q_a,p_b,q_b) {
k_num = denum * p_b - (alpha_num + d_num) * g_b
k_denum = (alpha_num + d_num) * g_a - denum * p_a
k = (k_num / k_denum) + 1

print (p_b + k*p_a)," ",(q_b + k*qg_a),"\n";

}

define find_exact_solution_right(p_a,q_a,p_b,q_b) {
k_num = - denum * p_b + (alpha_num - d_num) * q_b
k_denum = - (alpha_num - d_num) * g_a + denum * p_a
k = (k_num / k_denum) + 1
print (p_b + k*p_a)," ",(q_b + k*qg_a),"\n";

}

while (1) {

# compute the number of steps to the left

x_num = denum * p_b - alpha_num * g_b

x_denum = - denum * p_a + alpha_num * g_a

x = (x_num + x_denum - 1) / x_denum # = ceil(x_num / x_denum)

# check whether we have a valid approximation

aa = matches( p_b + x*p_a, q_b + x*q_a )

bb = matches( p_b + (x-1)*p_a, g_b + (x-1)*qg_a )

if (aa || bb) { cc = find_exact_solution_left(p_a,q_a,p_b,q_b); break;}
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# update the interval
new_p_a = p_b + (x-1)*p_a ; new_qg_a
new_p_b = p_b + x*p_a ; new_q_b

g_b + (x-1)*q_a
q_b + x*q_a

p_a = new_p_a ; g_a = new_g._a
p_b = new_p_b ; q_b = new_q_b

# compute the number of steps to the right

x_num = alpha_num * gq_b - denum * p_b

x_denum = - alpha_num * g_a + denum * p_a

x = (x_num + x_denum - 1) / x_denum # = ceil(x_num / x_denum)

# check whether we have a valid approximation

aa = matches( p_b + x*p_a, q_b + xxq_a )

bb = matches( p_b + (x-1)*p_a, q_b + (x-1)*q_a )

if (aa || bb) { cc = find_exact_solution_right(p_a,q_a,p_b,q_b); break;}

# update the interval
new_p_a = p_b + (x-1)*p_a ; new_qg_a g_b + (x-1)*q_a
new_p_b = p_b + x*p_a ; new_q_b = q_b + x*q_a

p_a = new_p_a ; gq_a = new_g._a
p_b new_p_b ; q_b new_q_b

9 Time Complexity

We claim that after each pass through the main while-loop of our implemen-
tation each of the values ¢, and ¢, at least doubles. To prove this, note the
following: After the steps to the left the new two denominators are greater than
or equal to ¢, and ¢, + qp. After the steps to the right the final two denominators
are greater than or equal to ¢, + ¢, and ¢, + 2qp.

Now, suppose that the input numbers have at most N digits. The fraction
alpha_num/denum is clearly a valid approximation. Therefore the optimal solu-
tion has a denominator with at most N digits.

After the while-loop was executed K times, the denominators of the currently
examined fractions are greater than or equal to 2%. Clearly after 4N loops the
denominators would exceed N digits in length. Thus the while-loop will be
executed O(N) times only.

Each execution of the while-loop involves a constant number of operations
with O(N) digits long integers. The required operations are addition, subtrac-
tion, multiplication and division. The first two operations can easily be done in
O(N). For multiplication and division our implementation uses the naive O(N?)
algorithm. Thus the running time of our solution is O(N?3) — polynomial in the
input size.

Clearly the bottleneck are the algorithms for multiplication and division. How-
ever, there are faster algorithms for both operations, for example the FFT-based
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multiplication algorithm running in O(N log V), and its corresponding division
algorithm that uses multiplication and Newton’s method to estimate the recip-
rocal of the denominator. For a discussion of these algorithms, see [7].
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Abstract. We consider cryptographic and physical zero-knowledge
proof schemes for Sudoku, a popular combinatorial puzzle. We discuss
methods that allow one party, the prover, to convince another party, the
verifier, that the prover has solved a Sudoku puzzle, without revealing
the solution to the verifier. The question of interest is how a prover can
show: (i) that there is a solution to the given puzzle, and (ii) that he
knows the solution, while not giving away any information about the
solution to the verifier.

In this paper we consider several protocols that achieve these goals.
Broadly speaking, the protocols are either cryptographic or physical. By
a cryptographic protocol we mean one in the usual model found in the
foundations of cryptography literature. In this model, two machines ex-
change messages, and the security of the protocol relies on computational
hardness. By a physical protocol we mean one that is implementable
by humans using common objects, and preferably without the aid of
computers. In particular, our physical protocols utilize scratch-off cards,
similar to those used in lotteries, or even just simple playing cards.

The cryptographic protocols are direct and efficient, and do not involve
a reduction to other problems. The physical protocols are meant to be un-
derstood by “lay-people” and implementable without the use of computers.

1 Introduction

Sudoku is a combinatorial puzzle that swept the world in 2005 (especially via
newspapers, where it appears next to crossword puzzles), following the lead of
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Japan (see the Wikipedia entry [19] or the American Scientist article [11]). In a
Sudoku puzzle the challenge is a 9x9 grid subdivided into nine 3x3 subgrids. Some
of the cells are already set with values in the range 1 through 9 and the goal is to
fill the remaining cells with numbers 1 through 9 so that each number appears
exactly once in each row, column and subgrid. Part of the charm and appeal of
Sudoku appears to be the ease of description of the problems, as compared to
the time and effort it takes one to solve them.

A natural issue, at least for cryptographers, is how to convince someone else
that you have solved a Sudoku puzzle without revealing the solution. In other
words, the question of interest here is: how can a prover show (i) that there
is a solution to the given puzzle, and (ii) that he knows the solution, while
not giving away any information about the solution. In this paper we consider
several types of methods for doing just that. Broadly speaking, the methods
are either cryptographic or physical. By a cryptographic protocol we mean one
in the usual model found in the foundations of cryptography literature. In this
model, two machines exchange messages and the security of the protocol relies
on computational hardness (see Goldreich [5] for an accessible account and [6]
for a detailed one). By a physical protocol we mean one that is implementable
by humans using common objects, and preferably without the aid of computers.
In particular, our protocols utilize scratch-off cards, similar to those used in
lotteries.

This Work: The general problem of Sudoku (on an nxn grid) is in the com-
plexity class NP, which means that given a solution it is easy to werify that it
is correct (In fact, Sudoku is known to be NP-Complete [20], but we are not
going to use this fact, at least not explicitly.). Since there are cryptographic
zero-knowledge proofs for all problems in NP [7], there exists one for Sudoku,
via a reduction to 3-Colorability or some other NP-Complete problem with a
known zero-knowledge proof (see definition in Section 2). In this work, however,
we are interested in more than the mere existence of such a proof, but rather its
efficiency, understandability, and practicality, which we now explain.

First, the benefits of a direct zero-knowledge proof (rather than via a reduc-
tion) are clear, as the overhead of the reduction is avoided. Thus, the size of the
proof can be smaller, and the computation time shorter. In addition, we wish our
proofs to be easy to understand by “non-experts”. This is related to the prac-
ticality of the proof: the goal is to make the interaction implementable in the
real world, perhaps even without the use of a computer. One of the important
aspects of this implementability requirement is that the participants have an in-
tuitive understanding of the correctness of the proof, and thus are convinced by
it, rather than relying blindly “on the computer”. For another example in which
this intuitive understanding is important, see the work of Moran and Naor [13]
on methods for polling people on sensitive issues.

The contributions of this paper are efficient cryptographic protocols for show-
ing knowledge of a solution of a Sudoku puzzle which do not reveal any other
useful information (these are known as zero-knowledge proofs of knowledge) and
several transparent physical protocols that achieve the task.
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Organization: In Section 2 we outline the definition of a zero-knowledge proto-
col, and the properties of the cryptographic and physical protocols. In section 3
we describe two cryptographic zero-knowledge protocols: the first protocol is
very simple and direct, and the second is slightly more involved, but has a lower
(better) probability of error. In Section 4 we describe several physical protocols,
using envelopes and scratch-off cards. Finally, in Section 5 we discuss further
research directions.

2 Definitions

Sudoku: An instance of Sudoku is defined by the size n = k? of the nxn grid,
where the subgrids are of size kx k. The indices, values in the filled-in cells and
the values to be filled out are all in the range {1,...,n}. Note that in general
the size of an instance is O(n? logn) bits and this is the size of the solution (or
witness) as well.

Cryptographic Functionalities: We only give rough descriptions of zero-
knowledge and commitments. For more details, see the above mentioned books
by Goldreich [5] and [6], Chapter 4 or the writeup by Vadhan [18]. In general,
a zero-knowledge proof, as defined by Goldwasser, Micali and Rackoff [8], is an
interactive-proof between two parties, a prover and a verifier. They both know
an instance of a problem (e.g. a Sudoku puzzle) and the prover knows a solution
or a witness. The two parties exchange messages and at the end of the protocol
the verifier ‘accepts’ or ‘rejects’ the execution. The protocol is probabilistic, i.e.
the messages that the two parties send to each other are functions of their inputs,
the messages sent so far and their private random coins (sequence of random bits
that each party is assumed to have in addition to its input). Once the programs
of the verifier and prover are fixed, for a given instance the messages sent are a
function of the random coins of the prover and verifier only. We will be discussing
several properties of such protocols: completeness, soundness, zero-knowledge
and proof-of-knowledge.

The completeness of the protocol is the probability that an honest verifier
accepts a correct proof, i.e. one done by a prover holding a legitimate solution
and following the protocol. All our protocols will have perfect completeness;
a correct proof is always accepted (i.e. with probability 1). The probability is
over the random coins of the prover and the verifier. The soundness error (or
soundness) of the protocol is the (upper bound on the) probability that a verifier
accepts an incorrect proof, i.e. a proof to a fallacious statement; in our case this
is the statement that the prover knows a solution to the given Sudoku puzzle,
even though it does not know such a solution.

The goal in designing the protocols is that the verifier should not gain any new
knowledge from a correct (interactive) proof. Le. the protocol should be zero-
knowledge in the following sense: whatever a verifier could learn by interacting
with the correct prover, the verifier could learn itself. To formalize this require-
ment, we require that there is an efficient simulator that could have generated
the verifier’s conversation with the prover without the benefit of the conversation
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actually occurring, based on knowing the puzzle only, without knowledge of the
solution. Since the protocol is probabilistic, we consider the distribution of the
conversation, the messages sent back and forth between the prover and verifier.
We want the two distributions, the one of a conversation between the real prover
and verifier, and the one that the simulator produces, to be indistinguishable.
Furthermore, we want a simulator for any possible behavior of the verifier, even
a verifier that does not follow the prescribed protocol.

Our protocols should also be proofs-of-knowledge: if the prover (or anyone
impersonating him) can succeed in making the verifier accept, then there is
another machine, called the extractor, that can communicate with the prover
and actually come up with the solution itself. This must involve running the
prover several times using the same randomness (which is not possible under
normal circumstances), so as not to contradict the zero-knowledge properties.

The only cryptographic tool used by our proofs is a commitment protocol.
A commitment protocol allows one party, the sender, to commit to a value to
another party, the receiver, with the latter not learning anything meaningful
about the value. Such a protocol consists of two phases. The first is the commit
phase, following which the sender is bound to some value v, while the receiver
cannot determine anything useful about v. In particular, this means that the
receiver cannot distinguish between the case v = b and v = ¥’ for all b and ¥'.
This property is called hiding. Later on, the two parties may perform a decommit
or reveal phase, after which the receiver obtains v and is assured that it is the
original value; in other words, once the commit phase has ended, there is a
unique value that the receiver will accept in the reveal phase. This property is
called binding. Bit commitments can be based on any one-way function [14] and
are fairly efficient to implement. Both the computational complexity and the
communication complexity of such protocols are reasonable and in fact one can
amortize the work if there are several simultaneous commitments. In this case,
the amortized complexity of committing to a bit is O(1).

Note that in this setting we think of the adversary as controlling one of the
parties (prover and verifier) and as being malicious in its actions. The guarantees
we make (both against a cheating prover trying to sneak in a fallacious proof and
against a cheating verifier trying to learn more than it should) are with respect
to any behavior.

Physical Protocols: While the cryptographic setting is well established and rea-
sonably standard, when discussing ‘physical’ protocols there are many different
options, ranging from a deck of cards [3,17] to a PEZ dispenser [1], a broadsheet
newspaper [15], and more (see [12] for a short survey). In our setting we will be
using tamper-evident sealed envelopes, as defined by Moran and Naor [12]. Tt is
simplest to think of these as scratch-off cards: each card has a number on it from
{1,...,n}, but that number cannot be determined unless the card is scratched (or
the envelope is opened and the seal is broken). Actually for two of our three phys-
ical protocols the tamper evident sealed envelopes can be implemented via stan-
dard playing cards. These are ‘sealed’ by turning a card face down and opened by



170 R. Gradwohl et al.

turning the card over. For a demonstration of a zero-knowledge proof for Sudoku
using only playing cards, see the web page [10].

We would like our physical protocols to enjoy zero-knowledge properties as
well. For this to be meaningful we have to define the power of the physical
objects that the protocol assumes as well as the assumptions on the behavior
of the humans performing it. In general, the adversarial behavior we combat is
more benign than the one in the cryptographic setting. See details in Section 4.

3 Cryptographic Protocols

We provide two cryptographic protocols for Sudoku. The setting is that we have
a prover and a verifier who both know an instance of an n xn Sudoku puzzle,
i.e. a subset of the cells with predetermined values. The prover knows a solution
to the instance and the verifier wants to make sure that (i) a solution exists and
(ii) the prover knows the solution.

The protocols presented are in the standard cryptographic setting, as de-
scribed in Section 2. The structure of the proof is as follows, which is common
to many zero-knowledge protocols:

1. The prover commits to several values. These values are functions of the
instance, the solution and some randomization known only to the prover.

2. The verifier requests that the prover open some of the committed values

— this is called the challenge. The verifier chooses the challenge at random

from a collection of possible challenges.

The prover opens the requested values.

4. The verifier checks the consistency of the opened values with the given in-
stance, and accepts or rejects accordingly.

bt

The only cryptographic primitive we use in both protocols is bit or string
commitment as described above.

To prove a protocol with the structure above is zero-knowledge we use the
so called ‘standard’ argument, due to [7]: we require that the distribution of
the values opened in Step 3 is an efficiently computable function of the Sudoku
puzzle and the challenge the verifier sent in Step 2 (but not of the puzzle’s
solution, e.g. it could be a random permutation of {1,...,n}). If the number of
possible challenges in Step 2 is polynomial in the size of the Sudoku puzzle, then
this property, together with the indistinguishably property of the commitment
protocol, implies the existence of an efficient simulator, as described below.

The simulator operates in the following way: it picks at random a challenge
that the verifier might send in Step 2 (i.e. it guesses what the verifier’s challenge
will be), and computes commitments for Step 1 that will satisfy this challenge.
The simulator simulates sending these commitments to the verifier, then it runs
the verifier’s algorithm with the puzzle as its input, a fresh set of random bits
and these commitments being the first message it receives. It then obtains the
challenge the verifier sends in Step 2. If this challenge is indeed the value it
guessed, then the simulator can open the commitments it sent and the verifier
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should accept; the simulator can continue simulating the protocol and output the
transcript of the simulated protocol execution. Otherwise, the simulator resets
the simulation and starts it all over again.

If the number of possible challenges is polynomial, then each time the simu-
lator “guesses” the verifier’s challenge, it is correct with some ‘reasonably high’
probability (i.e. at least an inverse polynomial). Therefore within a polynomial
number of tries the simulator is expected to guess the verifier’s challenge cor-
rectly and the simulation process succeeds. This procedure guarantees that the
protocol is zero knowledge because the output of the simulator looks very much
like a successful execution of the proof protocol. L.e., the output of the simulator
is indistinguishable from what the verifier would see when interacting with the
prover, but is computed without ever talking with the prover!

The two protocols we provide are based on two classic zero-knowledge pro-
tocols for NP problems: for 3-Colorability and Graph Hamiltonicity. We find it
interesting that while the original protocols seem to fit different types of prob-
lems, we could efficiently adapt both of them for the same problem.

3.1 A Protocol Based on Coloring

The following protocol is an adaptation of the famed GMW zero-knowledge proof
of 3-Colorability of a graph [7] (see [6]) for Sudoku puzzles. The idea there was for
the prover to randomly permute the colors and then commit to the (permuted)
color of each vertex. The verifier picks a random edge and checks that its two
end points are colored differently. To apply this idea in the context of Sudoku
it helps to think of the graph as being partially colored to begin with, so one
should also check consistency with the partial coloring. The resulting protocol
consists of the prover randomly permuting the numbers and committing to the
resulting solution. What the verifier checks is either the correctness of the values
of one of the rows, columns or subgrids, or consistency with the filled-in values.
The protocol operates in the following way:

Protocol 1. A cryptographic protocol with 1 — 3n1+1 soundness error
Prover

1. Prover chooses a random permutation o : {1,...,n}— {1,...,n}.
2. For each cell (i,7) with value v, prover sends to verifier a commitment for
the value o (v).

Verifier: Chooses at random one of the following 3n + 1 possibilities: a row,
column or subgrid (3n possibilities), or ‘filled-in cells’, and asks the prover to
open the corresponding commitments. After the prover responds, in case the ver-
ifier chose a row, column or subgrid, the verifier checks that all values are indeed
different. In case the verifier chose the filled-in cells option, it checks that cells
that originally had the same value still have the same value (although the value
may be different), and that cells with different values are still different, i.e. that
o 1s indeed a permutation over the values in the filled-in cells.
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Proof sketch for the required properties: The perfect completeness of the protocol
is straightforward. Soundness follows from the fact that any cheating prover must
cheat either in his commitments for a row, column, subgrid, or the filled-in cells
(namely, there is at least one question of the verifier for which the prover cannot
provide a correct answer). Thus, the verifier catches a cheating prover with prob-
ability at least 1/(3n + 1). Note also that the protocol is a proof-of-knowledge,
since if the prover convinces the verifier with high probability this means that
all the 3n + 1 queries can be answered properly, and then it is possible to find a
solution to the original puzzle (simply find a reverse permutation o~! mapping
the filled-in values). The distribution on the values of the answer when the chal-
lenge is a row, column or subgrid is simply a random permutation of {1,...,n}.
The distribution in case the challenge is filled-in cells is a random injection of
the values appearing in those cells to {1,...,n}. Therefore the zero-knowledge
property of the protocol follows the standard arguments. The witness/solution
size, as well as the number of bits committed, are both O(n? logn) bits.

3.2 An Efficient Cryptographic Protocol with Constant Soundness
Error

Below is a more efficient zero-knowledge protocol for the solution of a Sudoku
puzzle. It is closest in nature to Blum’s protocol for proving the existence of
a Hamiltonian Cycle [2]. The protocol described has constant (2/3) soundness
error for an nxn Sudoku problem, and its complexity in terms of the number of
bits committed to is O(n?logn), which is also the witness/solution size.

The idea of the protocol is to triplicate each cell, creating a version of the cell
for the row, column and subgrid in which it participates. The triplicated cells
are then randomly permuted and the prover’s job is to demonstrate that the
following properties hold:

a. The cells corresponding to the rows, columns and subgrids have all possible
values.

b. The three copies of each cell have the same value.

c. The cells corresponding to the predetermined values indeed contain them.

If all three conditions are met, then, as we show below, there is a solution and
the prover knows it. The following protocol implements this idea:

Protocol 2. A cryptographic protocol with 2/3 soundness error
Prover

1. Commit to 3n? values vy, va, ..., Vsn2 where each cell of the grid corresponds
to three randomly located indices (i1,i2,13). The values of vi,,v;, and v,
should be the value v of the cell in the solution.

2. Commit to n? triples of locations in the range {1, ...,3n?}, where each triple
(i1,12,13) corresponds to the locations of a cell of the grid in the list of
commitments of Item 1.

3. Commit to the names of the grid cells of each triple from Item 2.
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4. Commit to 3n sets of locations from Item 1, corresponding to the rows,
columns and subgrids, where each set is of size n and no two cells inter-
sect.

Verifier: Ask one of the following three options at random:

a. Open all 3n? commitments of Item 1 and the commitments of Item 4. When
the answer is received, verify that each set contains n different numbers.

b. Open all 3n? commitments of Item 1 and the commitments of Item 2. When
the answer is received, verify that each triple contains the same numbers.

c. Open the commitments of Items 2, 3 and 4 as well as the commitments
of Item 1 corresponding to filled-in cells in the Sudoku puzzle. When the
answer is received, verify the consistency of the commitments with (i) the
predetermined values, (i) the set partitions of Item 4 and (iii) the naming
of the triples.

Each option for the verifier’s query checks a corresponding property from the list
of properties that the prover must prove. Option (a) checks the constraint that
all values should appear in each row, column and subgrid (item (a) in the list of
properties above). Option (b) makes sure that the value of the cell is consistent
in its three appearances. Option (¢) makes sure that the filled-in cells have the
correct value and that the partitioning of the cells to rows, columns and subgrids
is as it should be. Therefore, if all three challenges (a, b and ¢) are met, then we
have a solution to the given Sudoku puzzle. This is a proof-of-knowledge as well,
since the answers to all the options of the verifier’s queries reveal the solution
to the puzzle. As for soundness, a cheating prover cannot successfully answer
all three of the possible challenges, and thus with probability at least 1/3 the
verifier rejects. The probability of cheating is at most 2/3. As before, perfect
completeness of the protocol is straightforward. Regarding the zero-knowledge
property, note that for each challenge it is easy to describe the distribution on
the desired response, and so the zero-knowledge of the protocol follows from
standard arguments, as outlined in the beginning of the section.

Overhead of our protocols: The communication complexity and computa-
tion time of both protocols presented here is similar (assuming efficient commit-
ments), and is O(n? logn). However, the first protocol allows the prover to cheat
(without being caught) with relatively high probability, (1—1/(3n+1)), while the
second protocol has a constant probability of catching a cheater. In both cases
the soundness can be decreased by repeating the protocols several times, either
sequentially or in parallel (for parallel repetition more involved protocols have to
be applied, see [6], to preserve the zero-knowledge property). Therefore, to reduce
the cheating probability to e, the first protocol has to be repeated O(nlog(1/¢))
times and the resulting communication complexity is O(n®lognlog1/e) bits,
while the second protocol should be repeated only O(log1/e) times, and the
resulting communication complexity is O(n? lognlog1/¢) bits.
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4 Physical Protocols

The protocols described in Section 3 can both have a physical analog, given
some physical way to implement the commitments. The problematic point is
that tests such as checking that the set partitions and the naming of the triples
are consistent (needed in challenge (¢) of the protocol in Section 3.2) are not easy
for humans to perform. In this section we describe protocols that are designed
with human execution in mind, taking into account the strengths and weaknesses
of such beings.

Tamper evidence as a physical cryptographic primitive: A locked box
is a common metaphoric description of bit (or string) commitment, where the
commiter puts the hidden secret inside the box, locks it, keeps the key but gives
the box to the receiver. At the reveal stage he gives the key to the receiver
who opens it. The problem with this description is that the assumption is that
the receiver can never open the box without the key. It is difficult to imagine a
physical box with such a guarantee that is also readily available, and its operation
transparent to humans.! A different physical metaphor was proposed by Moran
and Naor [12], who suggested concentrating on the tamper-evident properties of
sealed envelopes and scratch-off cards. That is, anyone holding the envelopes can
open them and see the value inside, but this act is not reversible and it will be
transparent to anyone examining the envelope in the future. Another property
we require from our envelopes is that they be indistinguishable, i.e. it should be
impossible to tell two envelopes apart, at least by the party that did not create
them (this is a little weaker than the indistinguishable envelope model formalized
in [12]).

Another distinction between our physical model and the cryptographic one has
to do with the way in which we regard the adversary. Specifically, the adversary
we combat in the physical model is more benign than the one considered in the
cryptographic setting or the one in [12,13]. We can think of our parties as not
wanting to be labelled ‘cheaters’, and so the assurance we provide is that either
the protocol achieves its goal or the (cheating) party is labelled a cheater.

We think of the prover and verifier as being present in the same room, and
in particular the protocols we describe are mot appropriate for execution over
the postal system (see Section 5). The presence of the two parties in the same
room is required since the protocols use such operations as shuffling a given set
of envelopes - one party wants to make sure that the shuffle is appropriate, while
the other party wants to make sure that the original set of envelopes is indeed
the one being shuffled.

We also need two of additional functionalities that are not included in the
vanilla model of sealed envelopes ([12,13]): shuffle and triplicate. The shuffle
functionality is essentially an indistinguishable shuffle of a set of seals. Suppose
some party has a sequence of seals Lq,...,L; in his possession. Invoking the
shuffle functionality on this sequence is equivalent to picking o €r S;, i.e. a

! Perhaps quantum cryptography can yield an approximation to such a box, but not
a perfect one. See the discussion in [12].
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random permutation on 4 elements, to yield the sequence L, (1), ..., Ls(;). The
triplicate functionality is used only in our last protocol, so we defer its description
to Section 4.2.

It is easy to apply in the physical setting described above, the same defini-
tions of completeness and soundness as in the cryptographic setting. The def-
inition of zero-knowledge in the physical setting can be made rigorous: as in
the cryptographic case, we need to come up with a simulator that can emulate
the interaction between the prover and verifier. The simulator interacts with a
cheating verifier, runs in probabilistic polynomial time, and produces an inter-
action that is indistinguishable from the verifier’s interaction with the prover.
The simulator does not have a correct solution to the Sudoku instance, but it
does have an advantage over the prover: at any point in time it is allowed to
swap an unscratched off card with another. This advantage replaces the ability
of simulators to “rewind” the verifier in cryptographic zero-knowledge proto-
cols. The appropriate analogy is editing a movie, as first suggested in [16]. When
making a movie of the proof one can swap the cards and edit the movie so it is
unnoticeable. The result is indistinguishable from what one would see in a real
execution. We will describe such simulators in Sections 4.1 and 4.2.

Finally, since we want protocols that are also proofs-of-knowledge, we will
describe extractors that interact with honest provers in the physical setting and
extract a correct solution for the Sudoku instance.

An implementation without using any scratch-off cards: Given that the
setting we consider involves the prover and receiver being in the same room there
is a very simple implementation for sealed envelopes, without scratch-off cards
or envelopes: standard playing cards. Sealing a value means that a card with this
value is placed faced down. The equivalent of scratching off or opening the value
is simply turning the card over so that it is face up. Tamper evidence is achieved
by making sure that no card is turned over before it should be. The prevalence
of playing cards and the experience people have in shuffling such cards makes
this implementation very attractive. This implementation is relevant for the first
two protocols. A demonstration of running the first protocol using only playing
cards is documented in the web page [10].

4.1 A Physical Zero-Knowledge Protocol with Constant Soundness
Error

In the following protocol, the probability that a cheating prover will be caught
is at least 8/9. The main idea is that each cell should have three (identical)
cards; instead of running a subprotocol to check that the values of each triple
are indeed identical we let the verifier make the assignment of the three cards to
the corresponding row, column and subgrid at random. The protocol operates
in the following way:

Protocol 3. A physical protocol with 1/9 soundness error

— The prover places three scratch-off cards on each cell. On filled-in cells, he
places three cards with the correct value, which are already open (scratched).
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— For each row/column/subgrid, the verifier chooses (at random) one of the
three cards of each cell in the corresponding row/column/subgrid.

— The prover makes packets of the verifier’s requested cards (i.e. for every
row/column/subgrid, he assembles the requested cards). He then shuffles each
of the 3n packets separately (using the shuffle functionality), and hands the
shuffled packets to the verifier.

— The wverifier scratches off all the cards in each packet and verifies that each
packet contains all of the numbers.

An implementation with playing cards: As mentioned above, this protocol
can be implemented using standard playing cards, without any scratch-off layer.
In the first step the prover puts all cards face down, except for those cards in
filled-in cells, which are put face up. In the following steps the verifier chooses
cards, and the prover makes packets and shuffles them, without turning over the
cards. Only in the last step do the parties turn the cards over and examine their
values.

Consider the typical 9x9 case. The total number of cards needed is 3-81 = 243
cards, 27 cards of each type. We want to use standard packs of playing cards,
(it is important that they have identical backs). Using only the cards numbered
1 to 9, discarding all other cards, requires 7 packs (if all the cards are used, 5
packs suffice). So the equipment needed to execute the protocol for any puzzle
is a large sheet with the 9x 9 grid marked on it and several packs of cards. A
demonstration of running the protocol in this manner is documented in the web
page [10].

Completeness: Perfect completeness of the protocol is straightforward.

Soundness: We claim that the soundness error of the protocol is 1/9. We
describe a simple argument showing that the soundness error is 1/3 and provide
a more involved analysis showing that it is indeed 1/9. Assume that the prover
does not know a valid solution for the puzzle. Then he is always caught by the
protocol as a liar if he places the cards such that each cell has three cards of
identical value. The only way a cheating prover can cheat is by placing three
cards that are not all of the same value on a cell, say cell a. This means that in
this cell at least one value y must be different from all others. Suppose that for
all other cells the verifier has already assigned the cards to the rows, columns
and subgrids. A necessary condition for the (cheating) prover to succeed is that
given the assignments of all cells except a there is exactly one row, column or
subgrid that needs y to complete the values in {1,...,n}. The probability that
for cell a the verifier assigns y to the row, column or subgrid that needs it is 1/3.

We now sketch a more involved argument that shows that the soundness error
is actually 1/9. We know that there is a cell where not all three values are the
same. Also, the total number of cards of each value must be correct, otherwise
the prover will be caught with probability 1. Thus, there must be at least two
cells on which the prover cheats, say a and b. We will consider different ways in
which a prover can cheat on these cells, and show that his success probability is
bounded above by 1/9.



Cryptographic and Physical Zero-Knowledge Proof Systems for Solutions 177

First suppose the prover cheats on exactly two cells, say a and b, and suppose
the values are (x,z,y) for cell a and (y,y, z) for cell b. Note that this is the only
way he can cheat on exactly two cells without being caught with probability 1.
There are three possibilities for the location of cells a and b: it may be that they
are not in the same row, column or sub-grid, they may be same row, column or
subgrid (exactly one of them), and they may be both in the same row or column
and in the same subgrid. We have to analyze the cheating prover’s probability
of being caught for each of these cases. This analysis (as well as the case where
there are more than two cells on which the prover cheats) is given in the full
version [9].

Zero-Knowledge: To show that Protocol 3 is zero-knowledge, we have to de-
scribe an efficient simulator that interacts with a cheating verifier, and produces
an interaction that is indistinguishable from the verifier’s interaction with the
prover. The simulator does not have a correct solution to the Sudoku instance,
but it does have an advantage over the prover: before handing the shuffled pack-
ets to the verifier, it is allowed to swap the packets for different ones (see the
discussion above). The simulator acts as follows:

— The simulator places three arbitrary scratch-off cards on each cell.

— After the verifier chooses the cards for the corresponding packets, the simu-
lator takes them and shuffles them (just as the prover does).

— Before handing the packets to the verifier, the simulator swaps each packet
with a randomly shuffled packet of scratch-off cards, in which each card
appears once. If there is a scratched card in the original packet, there is one
in the new packet as well.

Note that the final packets, and therefore the entire execution, are indistin-
guishable from those provided by an honest prover, since the shuffle functionality
guarantees that the packets each contain a randomly shuffled set of scratch-off
cards.

Knowledge extraction: To show that the protocol constitutes a proof-of-
knowledge, we describe the extractor for this protocol, which interacts with the
prover to extract a solution to the Sudoku instance: After the prover places the
cards on the cells, the extractor simply scratches all the cards. If the proof con-
vinces the verifier with high probability, then the scratched-cards give a solution.

Overhead: Finally, in terms of the complexity of the protocol, we utilize 3n?
scratch-off cards, and 3n shuffles by the prover. However, recall that we are
interested in making the protocols accessible to humans. For a standard 9x9
Sudoku grid, this protocol requires 27 shuffles by the prover, which seems a bit
much. Thus, we now give a variant of this protocol that reduces the number of
shuffles to one.

Reducing the Number of Shuffles. We now discuss a variant of the previous
protocol, where the number of required shuffles is ¢ — 1, at the expense of each
shuffle being applied to a larger set of envelopes (expected size 3n?/c) and with
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worse soundness (1 — §“_!). The idea is to run the protocol as above, but then
pick a random subset of the rows, columns and subgrids and perform the shuffle
on all of them simultaneously. Note that the special case of only one shuffle has
soundness error 4/9.

Protocol 4. A physical protocol with c—1 shuffles and 1— S(Zzl) sound-

ness error

— The prover places three scratch-off cards on each cell. On filled-in cells, he
places three scratched cards with the correct value.

— For each row/column/subgrid, the verifier chooses (at random) one of the
three cards for each cell in the corresponding row/column,/subgrid.

— The prover makes packets of the verifier’s requested cards (i.e. for every
row/column/subgrid, he assembles the requested cards into a packet).

— The verifier marks each packet with a number chosen uniformly at random
from 0,...,c— 1, where 0 corresponds to leaving the packet unmarked.

— Fori=1,...,¢c—1:
The prover takes all packets marked with i, shuffles them all together, and
hands them to the verifier.

— The verifier scratches off all the cards and verifies that in each packet, each
number appears the correct number of times (namely, if t packets were marked
i, each number must appear t times in the packet corresponding to ).

As before, the protocol is perfectly complete, since an honest prover will always
succeed. For analyzing the soundness, note that if the prover is cheating, then
with probability 8/9 (as above) there is at least one packet which is unbalanced.
If this packet is marked (i.e. by a number 4 from 1 to ¢ — 1), and no other
unbalanced packet is marked by 4, then the final count of values is unbalanced
and the prover fails. However, we have to be a bit careful here, since there may
be two or more unbalanced packets that, when marked together, balance each
other out.

By a more careful analysis we will show that the cheating probability is at
most (1 — Sczl): With probability 8/9, some packet, say a, is unbalanced. Now
suppose the verifier has already gone through all other packets and marked them.
Thus far, each marked packet is either balanced or unbalanced. If they are all
balanced, then with probability (¢ — 1)/c¢ the verifier will mark packet a with
one of 1,...,c—1, and the final mix will be unbalanced. If one marked packet is
unbalanced, then with probability (¢ —1)/c the verifier will not mark the packet
a with the correct number, and again the final mix will be unbalanced. Finally,
if more than one marked packet is unbalanced, then with probability 1 the final
mix will be unbalanced. Thus, with probability (¢ — 1)/¢, the final mix will be
unbalanced, and the verifier will be caught. Note that this was conditioned on the
fact that some packet is unbalanced, so overall, the probability that a cheating
prover will be caught is 8/9 - (¢ — 1)/c as claimed.

The zero-knowledge and proof-of-knowledge properties can be proved in the
same way as they were proved for Protocol 3.
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4.2 A Physical Zero-Knowledge Protocol with No Soundness Error

In this section we describe another physical zero-knowledge protocol, this time
with the optimal soundness error of 0. This comes at the expense of a slightly
stronger model, as we also make use of the t¢riplicate functionality of the tamper-
evident seals. This functionality generates three identical copies of a card, with-
out revealing its value. We show here two possible methods of implementing the
triplicate functionality:

Triplicate using a trusted setup: It is simplest to view this functionality
as using some supplementary “material” that a trusted party provides to the
parties. For instance, if the Sudoku puzzles are published in a newspaper, the
newspaper could provide this material to its readers. The material consists of a
bunch of scratch-off cards with the numbers {1,...,n} (3n of each value). The
cards come in triples that are connected together with an open title card on top
that announces the value. The title card can be torn off (see figure below). It
is crucial that the three unscratched cards hide the same value, and that it is
impossible to forge such triples in which the hidden numbers vary.

Fig. 1. A scratch-off card with the triplicate functionality

Triplicate without trusted setup: It is preferable to be able to implement the
triplicate functionality in the absence of a trusted party preparing the cards in
advance. To do so we utilize a property of the human visual system: it can easily
distinguish between a uniformly colored patch and one which has more than one
color. We will use scratch-off cards as before, but the underlying numbers are
replaced by colors, in a straightforward encoding, e.g. ‘1’ is encoded by yellow,
‘2’ by red etc. The idea is that the prover prepares a scratch-off card which is
(or at least should be) uniformly colored. The verifier partitions (cuts) the card
at random to three parts of equal shape and size. When it is time to peel off the
top layer, if the color in one of the parts is not uniform then it is evident the
prover was cheating and the verifier will summarily reject. Concretely, let the
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prover use a circular scratch card. When the prover wishes to triplicate a card,
he asks the verifier to cut the card into three equally shaped parts (if it is easier
to perform, he could ask the verifier to partition into four parts, one of which
will be thrown away or shuffled and checked separately). The point is that the
partitioning should be random.

If this task is performed by humans (which is the objective of this procedure),
then slight variations in shapes will most likely go unnoticed by the human eye.
A cheating prover may cheat by coloring some third a different color from the
rest. However, assuming the cards are circles, there are (infinitely) many places
in which the verifier can cut the cards. Thus, the probability that he cuts along
the border separating two different colors (which is the only way the prover
will not be caught) is nearly zero (the exact value depends on assumptions on
resolution and on the model random partition).

Using the tamper-evident seals with the additional shuffle and triplicate func-
tionalities, the protocol is as follows:

Protocol 5. A physical protocol with 0 soundness error, using tripli-
cate

— The prover lays out the seals corresponding to the solution in the appropriate
place. The seals placed on the filled-in squares are scratched off; they and
must be the correct value (otherwise the verifier rejects).

— The verifier triplicates the seals (using the triplicate functionality).

— For each seal, each third is taken to be in its corresponding row / column /
subgrid packet, and the packets are shuffled by the prover (using the shuffle
Junctionality). The prover hands the packets to the verifier.

— The wverifier scratches off the cards of each packet, and verifies that in each
packet all numbers in {1,...,n} appear.

Note that the triplicate functionality solves the problem of the first physical
protocol, by preventing the prover from assigning different values to the same
cell. Therefore the prover has no way of cheating. Thus, the soundness error of
the protocol is 0 (assuming that the triplicate functionality is perfect, i.e., that
the prover can never generate different copies of the same card).

The simulator for this protocol is nearly identical to that of Protocol 1, with
the exception that the cards in the swapped packets are also formed using the
triplicate functionality. Since we are assuming that triplicated cards are indis-
tinguishable by the verifier, the packets swapped by the simulator will look the
same to the verifier as the original packets. The protocol will therefore be zero-
knowledge and be a proof-of-knowledge.

5 Open Problems and Discussion

Is there an implementable physical protocol that can be executed by (snail)
mail, i.e. without assuming that the prover and the verifier are in the same



Cryptographic and Physical Zero-Knowledge Proof Systems for Solutions 181

room? In principle we know that such protocols exist, based on the scratch-off
functionality, since in [12] it was shown how to construct commitments from
this functionality and hence the cryptographic protocols of Section 3 can be
used. However, since there is an amplification step in the construction of com-
mitments from the tamper-evident envelopes of [12], involving a large number
of repetitions, the result is not really human implementable.

One of the major applications of zero-knowledge proofs in the cryptographic
setting is as a mechanism for converting a protocol that is resilient to semi-
honest behavior of the participants into one that is resilient to any malicious
behavior. This conversion is not necessarily always possible with physical proto-
cols. It would be interesting to see whether it is possible to do so for the Sudoku
protocols.
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Abstract. This paper is devoted to the “Discovery of Slowness.” The
archetypical perversely awful algorithm bogo-sort, which is sometimes
referred to as Monkey-sort, is analyzed with elementary methods. More-
over, practical experiments are performed.

1 Introduction

To our knowledge, the analysis of perversely awful algorithms can be tracked
back at least to the seminal paper on pessimal algorithm design in 1984 [2]. But
what’s a perversely awful algorithm? In the “The New Hacker’s Dictionary” [7]
one finds the following entry:
bogo-sort: /boh‘goh-sort’/ /n./ (var. ‘stupid-sort’) The archetypical per-
versely awful algorithm (as opposed to = bubble sort, which is merely the
generic *bad* algorithm). Bogo-sort is equivalent to repeatedly throwing a
deck of cards in the air, picking them up at random, and then testing whether
they are in order. It serves as a sort of canonical example of awfulness. Look-
ing at a program and seeing a dumb algorithm, one might say ”Oh, I see, this
program uses bogo-sort.” Compare = bogus, = brute force, = Lasherism.

Among other solutions, the formerly mentioned work contains a remarkably slow
sorting algorithm named slowsort achieving running time Q(n'°"/(+9)) even
in the best case. But the running time, still being sub-exponential, does not
improve (i.e., increase) in the average case, and not even in the worst case. On
the contrary, the analysis of bogo-sort carried out here shows that this algo-
rithm, while having best-case expected running time as low as O(n), achieves
an asymptotic expected running time as high as Q(n - n!) already in the average
case. The pseudo code of bogo-sort reads as follows:

Algorithm 1. Bogo-sort

1: Input array a[l...n]

2: while q[l...n] is not sorted do
3:  randomly permute a[l...n]
4: end while

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 183-197, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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The test whether the array is sorted as well as the permutation of the array
have to be programmed with some care:

1: procedure sorted: {returns 1: procedure randomly permute:
true if the array is sorted and {permutes the array}
false otherwise} fori=1ton—1do

return true
end procedure

2:
2: fori=1ton—1do 3:  j:=rand[i...n]
3. if a[i] > a[i + 1] then 4:  swap ali] and a[j]
4: return false 5: end for
5.  end if 6: end procedure
6: end for
T
8:

The second algorithm is found, e.g., in [5, p.139]. Hence the random permu-
tation is done quickly by a single loop, where rand gives a random value in the
specified range. And the test for sortedness is carried out from left and right.

In this work we present a detailed analysis, including the exact determination
of the expected number of comparisons and swaps in the best, worst and average
case. Although there are some subtleties in the analysis, our proofs require only a
basic knowledge of probability and can be readily understood by non-specialists.
This makes the analysis well-suited to be included as motivating example in
courses on randomized algorithms. Admittedly, this example does not motivate
coursework on efficient randomized algorithms. But the techniques used in our
analysis cover a wide range of mathematical tools as contained in textbooks such
as [4].

We will analyze the expected running time for bogo-sort under the usual
assumption that we are given an array * = z12s ...z, containing a permutation
of the set of numbers {1,2,...,n}. In a more abstract fashion, we are given a
list containing all elements of a finite set S with |S| = n and an irreflexive,
transitive and antisymmetric relation . To analyze the running time of the
algorithm, which is a comparison-based sorting algorithm, we follow the usual
convention of counting on one hand the number of comparisons, and on the other
hand the number of swaps. An immediate observation is that the algorithm isn’t
guaranteed to terminate at all. However, as we will prove that the expectation
of the running time 7' is finite, we see by Markov’s inequality

pIT > 1] < ET]

, for t > 0,

that the probability of this event equals 0. There are essentially two different
initial configurations: Either the list x is initially sorted, or it is not sorted. We
have to make this distinction as the algorithm is smart enough to detect if the
given list is initially sorted, and has much better running time in this case. This
nice built-in feature also makes the running time analysis in this case very easy:
The number of total comparisons equals n — 1, and the total number of swaps
equals zero, since the while-loop is never entered.
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We come to the case where the array is not initially sorted. Note that the first
shuffle yields a randomly ordered list, so the behavior of the algorithm does no
longer depend on the initial order; but the number of comparisons before the
first shuffle depends on the structure of the original input.

2 How Long Does It Take to Check an Array for
Sortedness?

2.1 The Basic Case

We make the following important

Observation 1 If the kth element in the list is the first one which is out of order,
the algorithm makes exactly k — 1 comparisons (from left to right) to detect that
the list is out of order.

This motivates us to study the running time of the subroutine for detecting if
the list is sorted on the average:

Theorem 2. Assume x is a random permutation of {1,2,...,n}, and let C
denote the random variable counting the number of comparisons carried out in
the test whether x is sorted. Then

[E[C]:Zil! ~el.
i=1
Proof. For 1 < k < n, let I be the random variable indicating that (at least)
the first k elements in = are in order. A first observation is that I, =1 < C > k.
For on one hand, if the first k& elements are in order, then at least k£ comparisons
are carried out before the for-loop is left. On the other hand, if the routine
makes a minimum of & comparisons, the kth comparison involves the elements x,
and xj41, and we can deduce that r1 < xo < -+ < xp_1 < Tf.
Thus, we have also P[C' > k] = P[I;]. This probability computes as

Z)(n—k)'

PLI] = ( n!

The numerator is the product of the number of possibilities to choose k first
elements to be in correct order and the number of possibilities to arrange the
remaining n — k elements at the end of the array, and the denominator is just the
total number of arrays of length n. Reducing this fraction, we obtain P[I}] = kl! .
As the range of C' is nonnegative, we obtain for the expected value of C:

n—1 n—1
1 1 1
[E[C’]zE:[P[C’Zk]:E:[P[Ik]:§:k' :E:m_or

k>0 k>0 k=1 k=0 :

And it is a well-known fact from calculus that the last sum appearing in the
above computation is the partial Taylor series expansion for e* at z = 1. a
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Wasn'’t that marvelous? Theorem 2 tells us that we need only a constant number
of comparisons on the average to check if a large array is sorted, and for n large
enough, this number is about e — 1 ~ 1.72. Compare to the worst case, where
we have to compare n — 1 times.

2.2 A Detour: Random Arrays with Repeated Entries

In a short digression, we explore what happens if the array is filled not with n
distinct numbers. At first glance we consider the case when n numbers in different
multiplicities are allowed. Then we have a look at the case with only two distinct
numbers, say 0 and 1. In the former case the expected number of comparisons
remains asymptotically the same as in the previous theorem, while in the latter
the expected number of comparisons jumps up dramatically.

Theorem 3. Assume x is an array chosen from {1,2,...,n}"™ uniformly at ran-
dom, and let C denote the random variable counting the number of comparisons
carried out in the test whether x is sorted. Then

E[O}:f(n_;+k> (;)kwe—l.

k=1

Proof. The random variable C' takes on a value of at least k, for 1 <k <mn —1,
if the algorithms detects that the array is out of order after the kth comparison.
In this case x is of the form that it starts with an increasing sequence of numbers
chosen from {1,2,...,n} of length k, and the rest of the array can be filled up
arbitrarily. Thus, the form of x can be illustrated as follows:

lt12t2\',"nt3i'v"ﬁ with t1 +to+...+t, =k and ¢; > 0, for 1 <i < n.
k n—k

Hence we have to determine how many ways an integer k& can be expressed as
sum of n non-negative integers. Image that there are k£ pebbles lined up in a
row. Then if we put n — 1 sticks between them we will have partitioned them
into n groups of pebbles each with a non-negative amount of marbles. So we
have basically n — 1 + k spots, and we are choosing n — 1 of them to be the
sticks—this is equivalent to choosing k marbles. Therefore the number of arrays
of this form is ("_;‘H“)n”*k, and P[C' > k] = ("_;‘”'k) (}L)k, as there is a total
of n™ arrays in {1,2,...,n}". But then

ca-Frean-£ (1) ()

k=1
(B ) B e

Next let us consider both infinite sums in more detail. By elementary calculus
on generating functions we have for the first sum

i(n_;rk)'xk:(l—lx)”’ (3)

k=0
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which in turn gives ()" because z = ! and by juggling around with double
fractions. It remains to consider the second sum. Shifting the index n places left
gives us a more convenient form for the second sum:

o0 o0
Z(an:;k)'”"kM:an(%ki;k)'mk (4)
k=0 k=0

Doesn’t look that bad. As the coefficients of this power series are binomial
coeflicients, there might be quite a good chance that this sum can be expressed as
a (generalized) hypergeometric function. In general, a hypergeometric function
is a power series in x with r + s parameters, and it is defined as follows in terms
of rising factorial powers:

r a1,a2,...,0r
b17b27"'7bs

k. k
atas ...a¥ x
x] - Z }c i L k-
>0 bibs ... b :
In order to answer this question we have to look at the ratio between consec-
k
utive terms—so let the notation of the series be >, .t - 7, with to # 0. If the

term ratio ty4+1/ty is a rational function in k, that is, a quotient of polynomials

in k£ of the form
(k+a)(k+a2)...(k+ar)

then we can use the ansatz

k
T a1,a2,...,0y
ty - :tO‘F|:
|
kzzo k! bi,ba, ..., bs

So let’s see whether we are lucky with our calculations. As ¢, = (2"};1;’“) R
the first term of our sum is to = (*"'), and the other terms have the ratios
given by

tht1 2n + )k +n)l(n — D)k + 1)! (k+2n)(k+1)

te  (n+E+D)!n-D!2n—1+k)k  (k+n+1) ’

which are rational functions of k, yeah . ... Thus, the second sum equals

= /(2n—1+Ek 2n —1

S ()= ) e[ ]

o +n n
1 /2n 2n, 1
)l e

because (2"7:1) = 75!2&:11))!! = o (j!"n)!! = % . (2:) This looks much nicer, and

it’s even a Gaussian hypergeometric function, i.e., r =2 and s = 1. What about
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a closed form for F(1,2n;n + 1 | x)? Supercalifragilisticexpialidoceous® ....
That’s fresh meat for the Gosper-Zeilberger algorithm. Next the fact

25, (n)z(x —1)(2n — 1) + nSy(n — 1) =0,

@n)*()* 2

where S, (n) is the indefinite sum > e

k=—o0
symbolic computation software at at hand.? Hence the sum is Gosper-Zeilberger
summable. Ah, ...Maybe it’s worth a try to check whether the original sum
given in Equation (1) is Gosper-Zeilberger summable as well. Indeed, with a
similar calculation as above we obtain

can be easily verified with a

(x = 1)Sz(n) 4+ Sx(n—1) =0,

where S, (n) now equals Y ("_;+k) -2%. That’s even nicer than above. Since
we don’t remember all details of the Gosper-Zeilberger algorithm by heart, we
peek into a standard book like, e.g., [4]. Wow, ... our sum (with slight modifica-

tions) from Equation (1) is already “solved”—[4, page 236]: The recurrence for

the definite sum s, (n) = Y p—y ("4 ") 2" note that E[C] = s ,(n)—1—reads
as
1 2n —3
#(n) = sn—1)+(1-2 ).
52(n) 1_3;(3 (n—1)+( x)(n_2> T )

Because s, (1) = 1, we can solve the recurrence and obtain

1 &2k -1 ¥
sw(n):(l_x)n_l—i-(l—%:)Z(k_l)-(1_x)n_k. (6)

k=1

1 According to Pamela L. Travers’ “Mary Poppins” it is a very important word every-
body should know—see, e.g., [6]:

Jane: Good morning, father. Mary Poppins taught us the most wonderful word.

Michael: Supercalifragilisticexpialidocious.

George W. Banks: What on Earth are you talking about? Superca - Super - or what-
ever the infernal thing is.

Jane: It’s something to say when you don’t know what to say.

George W. Banks: Yes, well, I always know what to say.

2 The actual computation is done by Maple’s hsum-package as follows:

> read "hsumlO.mpl";
Package "Hypergeometric Summation", Maple V - Maple 10
Copyright 1998-2006, Wolfram Koepf, University of Kassel
> sumrecursion(hyperterm([1, 2*n], [n + 1], x, k), k, S(n));
2@n+1) (x-1Dx8@m+1)+@+1) 8 =0

Here S(n) plays the role of S;(n). Moreover, we have shifted the index n one to the
right to obtain the above mentioned recurrence.
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Unfortunately this “closed form” is more complicated than the original sum.?

So we are happier with Equation (1) as a solution.

What about the asymptotic behaviour for z = 711 and growing n. For both
Equations (5) and (6) taking limits is no fun at all, in particular for the re-
spective second terms! But still we are lucky, because it is not too hard to

give an estimate for z™ Z;O:O (Z"k_js'k) - 2% from Equation (4) by noting that

(2”,;1;}“) < 22n=1+k Qo this sum is upper-bounded by a geometric series:
gn2?n=l 3 (22)F = am2277t L which is valid for # < 1/2. For n > 2,
we can plug in = 1/n, and get >, (2"_1'%)(1/71)"“c <! (i)n7 and this

k+n 2
even holds for n > 2. Thus we have

(1) () s () e

Since (#)" tends to 0 as n grows and ( " ) ~ e, we see that E[C], the

n—1

expectation of (', is asymptotically e — 1. O

The behavior of (the analytic continuations of) these two functions is compared
in Figure 1. We turn to the binary case, which again turns out to be easier.

Theorem 4. Assume x is an array chosen from {0,1}™ uniformly at random,
and let C' denote the random variable counting the number of comparisons carried
out in the test whether x is sorted. Then

E[C] =3 - (2n+4)27" ~ 3.

Proof. Assume k € {1,2,...,n—2}. If C takes on the value k, then the algorithm
detects with the kth comparison that the array is out of order. Thus z must be of
a special form: it starts with a number of 0s, then follows a nonempty sequence
of 1s, which is again followed by a 0 at index k£ + 1. The rest of the array can be
filled up arbitrarily with zeroes and ones. This can be illustrated as follows:

0

k

0...01...1
N IS
4 k 0

*
~
—> n

= %

Counting the number of arrays of this form, we obtain: Z?;Ol on—h=l — pon—k-1
and P[C =k| =k (;)kﬂ, as there is a total of 2" arrays in {0,1}".

The remaining case is that the number of comparisons equals n — 1. In this
case, either the array is sorted, or z has the following form:

3 Our detour on hypergeometric functions was not useless because by combining Equa-

tions (2), (5), and (6) and evaluating at = } results in the quaint hypergeometric

identity (T)F {2211

;} = 22" for integers n > 2.
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Fig. 1. The functions on the number of expected number of comparisons from Theo-

rems 2 and 3 compared with the constant e — 1
The set {0,1}™ contains exactly n + 1 sorted arrays, and the number of arrays
of the second form clearly equals n — 1. Thus we have P[C' = n — 1] = 2n27™.

Now we are ready to compute the expected value as

n—2 1\ k1 1 (=2
E[C] =)+ <2> +(n—DP[C=n—1]= (Z k2w’“> +(2n® —2n)27",
k=1 k=1

for x = ; Next, the fact

(x—1)3- Z Kb = m2am™ —2m(m — 1)2™ 2 + (m 4+ 1)%2m ! — 22 — 2

k=1

can be easily verified if we have a symbolic computation software at hand. Then
we briskly compute 2712 k? (%)k =6— (4n% +8)2™™, and finally get it: E[C] =
]

3—(2n4+4)27"
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We can use a similar approach to determine the expected value in the setup where
the array is drawn uniformly at random from all arrays with a fixed number of
zeroes, but it apparently cannot be expressed in a neat form as above. As we
feel that ugly expressions are outside the scope of this conference, we refuse to
further report on this here.

2.3 The Expected Number of Swaps in Bogo-Sort

When computing the expected number of iterations in bogo-sort, we concentrate
on the case where the input x is not sorted; for the other case it equals 0, because
of the intelligent design of the algorithm. In each iteration, the array is permuted
uniformly at random, and we iterate until we hit the ordered sequence for the
first time. As the ordered sequence is hit with probability 71! in each trial, the
number of iterations I is a random variable with

== (")

That is, I is a geometrically distributed random variable with hitting probability
p= ), and E[I] =p~! =nl

In each iteration, the array is shuffled; and a shuffle costs n — 1 swaps. As the
algorithm operates kind of economically with respect to the number of swaps,
these are the only swaps carried out while running the algorithm. If S denotes
the random variable counting the number of swaps, we have S = (n — 1) - I. By
linearity of expectation, we derive:

Theorem 5. If S denotes the total number of swaps carried out for an input x
of length n, we have

E[S] = {O if x is sorted

(n—1)n!  otherwise.

Corollary 6. Let S denote the number of swaps carried out by bogo-sort on a
gwen input x of length n. Then

E[S] =

0 in the best case,
(n—1)n! in the worst and average case.

2.4 The Expected Number of Comparisons in Bogo-Sort

Now suppose that, on input x, we iterate the process of checking for sortedness
and shuffling eternally, that is we do not stop after the array is eventually sorted.
We associate a sequence of random variables (C;);>o with the phases of this
process, where C; counts the number of comparisons before the ith shuffle. Recall
the random variable I denotes the number of iterations in bogo-sort. Then the
total number of comparisons C' in bogo-sort on input z is given by the sum

I
C = ZC’Z-.
1=0
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Wait ... This is a sum of random variables, where the summation is eventually
stopped, and the time of stopping is again a random variable, no? No problem.
We can deal with this rigorously.

Definition 7. Let (X;);>1 be a sequence of random variables with E[X;] < oo
for all i > 1. The random variable N is called a stopping time for the sequence
(Xi)i>1, if E[N] < oo and, L(n<p) is stochastically independent from (X;)isn,
for all n.

For the concept of stopping times, one can derive a useful (classical) theorem,
termed Wald’s Equation. For the convenience of the reader, we include a proof
of this elementary fact.

Theorem 8 (Wald’s Equation). Assume (X;);>1 is a sequence of indepen-
dent, identically distributed random variables with E[X1] < oo, and assume N is
a stopping time for this sequence. If S(n) denotes the sum Y . X;, then

E[S(N)] = E[X3] - E[N].

Proof. We can write S(n) equivalently as Y °, X; - 1(y>; for the terms with
1 > N are equal to zero, and the terms with ¢ < N are equal to X;. By linearity
of expectation, we may write E[S(n)] as > ;2 E[X; - 1(ny>)]. Next, observe that
X; and 1(y>;) are stochastically independent: Since N is a stopping time, X;
and 1 y<;_1) are independent. But the latter is precisely 1 — 1(n>;). Thus we
can express the expectation of X; - 1(>;) as product of expectations, namely
as E[X;] - E[1(y>)]. And finally, as the X; are identically distributed, we have
E[X;] = E[X1]. Putting these together, we get

E[5(m)] = S LX) Ellya] = YOEIXJPIN 2 ] = E[X) - E[N],
as E[L(n>y) = P[N >i] and E[N] =%, P[N >1]. 0

Now we have developed the tools to compute the expected number of
comparisons:

Theorem 9. Let C denote the number of comparisons carried out by bogo-sort
on an input x of length n, and let ¢(x) denote the number of comparisons needed
by the algorithm to check x for being sorted. Then

Je(z)=n—-1 if © is sorted
ElC] = {c(x) +(e—1)n!—=0O(1) otherwise.

Proof. The random variable Cj has a probability distribution which differs from
that of C; for ¢ > 1, but its value is determined by z, that is P[Cy = c¢(x)] = 1.
By linearity of expectation, E[C] = ¢(z) + [E[Zle C;]. For the latter sum, the
random variables (C;);>1 are independent and identically distributed. And I is
indeed a stopping time for this sequence because the time when the algorithm
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stops does not depend on future events. Thus we can apply Wald’s equation and
get [IZ[Zf:1 C;] = E[C1] - E[I]. After the first shuffle, we check a random array
for being sorted, so with Theorem 2 and the following remark holds E[C}] =
e—1— O(;!). The left inequality follows by an easy induction. And recall from
Section 2.3 that E[I] = nl. |

Corollary 10. Let C' denote the number of comparisons carried out by bogo-sort
on a given input x of length n. Then

n—1 in the best case,
E[C] =< (e—1)n!+n—0(1) in the worst case, and
(e —1n!+0O(1) in the average case.

Proof. In the best case, the input array x is already sorted, and thus the total
number of comparisons equals n — 1. In the worst case, z is not initially sorted,
but we need n — 1 comparisons to detect this. Putting this into Theorem 9, we
obtain E[C] = (e — 1 — O(},)) n!+n— 1. For the average case, recall in addition
that ¢(z) =e—1—0(,},) holds for an average input = by Theorem 2. O

3 Variations and Optimizations

3.1 A Variation: Bozo-Sort

We can generalize the template of repeated testing and shuffling by using other
shuffling procedures than the standard shuffle. For instance, the set of trans-
positions, or swaps, generates the symmetric group S,. Thus one can think of
the following variation of bogo-sort, named bozo-sort: After each test if the ar-
ray is ordered, two elements in the array are picked uniformly at random, and
swapped. The procedure is iterated until the algorithm eventually detects if the
array is sorted.

Algorithm 2. Bozo-sort
1: Input array a[l...n]
2: while a[l...n] is not sorted do
3:  randomly transpose a[l...n]
4: end while

We note that this specification is ambiguous, and two possible interpretations
are presented in pseudo-code:

1: procedure rand. transpose: 1: procedure rand. transpose:
{swaps two elements chosen {swaps a random pair }
independently} 2: i:=rand[l...n]

2: i:=rand[l...n] 3 j:=rand[l...i—1,i+1,...n

3: j:=rand[l...n] 4: swap ali] and a[j]

4: swap ali] and a[j] 5: end procedure

5: end procedure
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We refer to the variant on the left as bozo-sort and to the right variant as
bozo-sort™. Note the apparent difference to bogo-sort: This time there are per-
mutations of  which are not reachable from x with a single exchange, and indeed
there are inputs for which the algorithm needs at least n — 1 swaps, no matter
how luckily the random elements are chosen.

We conclude that the respective process is not stateless. But it can be suitably
modeled as a finite Markov chain having n! states. There each state corresponds
to a permutation of x. For bozo-sort™, transition between a pair of states hap-
pens with probability 1/ (g) if the corresponding permutations are related by a
transposition. The expected hitting time of the sorted array on n elements for
this Markov chain was determined using quite some machinery in [3]. Translated
to our setup, the relevant result reads as:

Theorem 11 (Flatto/Odlyzko/Wales). Let S denote the number of swaps
carried out by bozo-sortt on an input x of length n. Then

E[S] =n!+2(n—2)! +o((n —2)!)
in the average case.

The expected number of swaps in the best case is clearly 0, but we do not know
it in the worst case currently. The expected number of comparisons is still more
difficult to analyze, though it is easy to come up with preliminary upper and
lower bounds:

Theorem 12. Let C denote the number of comparisons carried out by bozo-
sort™ on an input x of length n. Then

nl+2n—2)+o((n—2)1) <E[C]< (n—1n!+2(n—1)!+o((n—1)!)
in the average case.

Proof. We can express the number of comparisons as a sum of random variables
as in Section 2.4: If I denotes the number of iterations on an input x chosen
uniformly at random, and C; the number of iterations before the ith swap, then
the total number C' of comparisons equals C' = Z{:o C;. Obviously 1 < C; <
n — 1, and thus E[S] < E[C] < (n — 1)E[S] by linearity of expectation. O

The results obtained in Section 2.4 even suggest that the expected total number
of comparisons on the average is as low as O(n!). This would mean that the
running time of bogo-sort outperforms (i.e. is higher than) the one of bozo-sort
on the average. In particular, we believe that bozo-sort has the poor expected
running time of only O(n!) in the average case. Compare to bogo-sort, which
achieves Q(n - n!).

Conjecture 13. For arrays with n elements, the expected number of comparisons
carried out by bozo-sort™ is in ©(n!) in the average case, as n tends to infinity.
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3.2 Comments on Optimized Variants of Bogo-Sort

Though optimizing the running time seems somewhat out of place in the field
of pessimal algorithm design, it can be quite revealing for beginners in both
fields of optimal and pessimal algorithm design to see how a single optimization
step can yield a dramatic speed-up. The very first obvious optimization step
in all aforementioned algorithms is to swap two elements only if this makes
sense. That is, before swapping a pair, we check if it is an inversion: A pair of
positions (7, j) in the array a[l...n] is an inversion if i < j and a[i] > a[j]. This
leads to optimized variants of bogo-sort and its variations, which we refer to as
bogo-sortept, bozo-sortey, and bozo—sor‘c:,rpt7 resp. As there can be at most (g)
inversions, this number gives an immediate upper bound on the number of swaps
for these variants—compare, e.g., to Q(n - n!) swaps carried out by bogo-sort. It
is not much harder to give a similar upper bound on the expected number of
iterations. As the number of comparisons during a single iteration is in O(n), we
also obtain an upper bound on the expected total number of comparisons:

Lemma 14. The expected number of iterations (resp. comparisons) carried out
by the algorithms bogo-sort,py, bozo-sortypy, and bozo-sortjpt on a worst-case

input x of length n is at most O(n*logn) (resp. O(n®logn)).

Thus a single optimization step yields polynomial running time for all of these
variants. The proof of the above lemma, which is based on the coupon collectors’
problem, is elementary and well-suited for education. A very similar fact is shown
in [1], so the details are omitted. Besides, variations of bozo-sort based on this
optimization have been studied in [1]: A further optimization step is to run the
procedure sorted only after every nth iteration, which results in the algorithm
guess-sort, designed and analyzed in the mentioned work.

4 Experimental Results

We have implemented the considered algorithms in C and have performed some
experiments. The source code as well as the test scripts are available on request
by email to one of the authors. The experiments were conducted on our lab
pool, roughly 10 PCs AMD Athlon XP 24004 and Intel Pentium 4 CPU 3.20
GHz with 3 to 4 GB RAM. It took quite some time to collect our results, but
this was no problem, since the lab courses start in late February and the PCs
were idle anyway. The results are shown in Figure 2, for the number swaps
and comparisons for the bogo-sort and both bozo-sort variants. For the values
n = 2,3,...,6 all n! permutations were sorted more than 1000 times. For the
remaining cases n = 7,8,9,10 only 6! - 1000 randomly generated permutations
were sorted. The average values depicted in the diagrams nicely fit the theoretical
results. Moreover, our conjecture on the number of comparisons carried out by
bozo-sort™ is supported by the given data. We can also conclude from the data
that in practice bogo-sort outperforms, i.e., is slower than, the bozo-sort variants
w.r.t. the number of swaps by a linear factor, whereas all variants perform equally
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Fig. 2. Expected number of swaps (left) and comparisons (right) for the three consid-
ered randomized sorting algorithms—both axes are logarithmically scaled. The factorial
function is drawn as a solid line, while the factorial times (e — 1) is drawn as dotted
line.
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Fig. 3. Expected number of swaps (left) and comparisons (right) for the three consid-
ered optimized randomized sorting algorithms—both axes are logarithmically scaled.
Both, the function jn(n — 1) (left), which is the number of expected inversions, and
n*logn (right) are drawn as solid lines.

good w.r.t. the number of comparisons. This is somehow counter-intuitive since
one may expect at first glance that the bozo-sorts are slower.

Finally, we have evaluated the performance of optimized variants of bogo-
sort and bozo-sort empirically on the same data-set as described above. The
data in Figure 3 suggests that the upper bounds on the expected running time
we obtained are probably not sharp and can be improved. In particular, we
experience that the optimized variant of bogo-sort performs considerably less
comparisons than the appropriate counterparts bozo-sort,, and bozo—sortjpt.
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5 Conclusions

We contributed to the field of pessimal algorithm design with a theoretical and
experimental study of the archetypical perversely awful algorithm, namely bogo-
sort. Remarkably, the expected running time in terms of the number of swaps
and comparisons can be determined exactly using only elementary methods in
probability and combinatorics. We also explored some variations on the theme:
In Section 2.2, we determined the number of comparisons needed to detect sort-
edness on the average in different setups. And in Section 3, we introduced two
variants of bogo-sort which are based on random transpositions. The analysis of
these variants seems to bear far more difficulties. There our results essentially
rely on a technical paper on random walks on finite groups. Quite opposed,
we showed that the expected running time becomes polynomial for all variants
by a simple optimization. We contrasted our theoretical study with computer
experiments, which nicely fit the asymptotic results already on a small scale.
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Abstract. HEYAWAKE is one of many recently popular Japanese pencil
puzzles. We investigate the computational complexity of the problem of
deciding whether a given puzzle instance has a solution or not. We show
that Boolean gates can be emulated via HEYAWAKE puzzles, and that it
is possible to reduce the Boolean Satisfiability problem to HEYAWAKE.
It follows that the problem in question is NP-complete.

1 Introduction

HEYAWAKE is one of many pencil puzzles published by the Japanese company
Nikoli Inc. which specializes in logic games. Pencil puzzles have gained consid-
erable popularity during recent years. The arguably most prominent example is
the game of Number Place (jap. Sudoku), which first appeared as early as 1979
in an American magazine, but did not receive much attention until Nikoli Inc.
published their version of the puzzle on the Japanese market. Being a big hit in
Japan, the puzzle later became very popular around the whole world, and now
the interest in other pencil puzzles is also rising.

As most other pencil puzzles, HEYAWAKE (engl. “divided rooms”) is played
on a finite, two-dimensional rectangular grid. Compared to most other pencil
puzzles however, HEYAWAKE seems to be substantially more complicated due
to its many rules. The grid is sub-divided into smaller rectangles (which are
also called rooms, hence the name), and each of these rectangles may or may
not contain a number. The sub-rectangles must form a disjoint partition of the
whole grid. The goal of the game is to paint the cells of the board either white
or black, according to the following rules:

1. Black cells are never horizontally or vertically adjacent.

2. All white cells must be interconnected. Diagonal connections do not count.

3. If a sub-rectangle contains a number, it must contain exactly that many
black fields. Otherwise, any number of black cells is allowed.

4. Any horizontal or vertical straight line of white cells must not pass through
more than 2 sub-rectangles.

Figure 1 shows an example HEYAWAKE puzzle and its solution. The reader is
encouraged to verify that the solution is unique. Lots of puzzles are available on

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 198-212, 2007.
© Springer-Verlag Berlin Heidelberg 2007



The Troubles of Interior Design 199

1]

=
EEEE
| |

<] ]

V)
[+]

Fig. 1. HEYAWAKE example puzzle (left) and its solution (right)

the internet, e.g., on http://www.nikoli.com or on http://www.janko.at (in
German).

For a computer scientist, pencil puzzles are especially interesting from the
computational complexity point of view. The probably most basic problem is
finding a solution for a given puzzle, and in most cases, the corresponding de-
cision problem (“is there a solution?”) turns out to be NP-complete. Here NP
denotes the class of problems solvable in polynomial time on a nondeterministic
Turing machine. To our knowledge, the first result on pencil puzzles is due to
Ueda and Nagao [8], who showed that Nonogram is NP-complete. Since then, a
number of other pencil puzzles have been found to be NP-complete, e.g., Cor-
ral [2], Pearl [3], Spiral Galaxies [4], Nurikabe [6], Cross Sum (Jap. Kakkuro) [7],
Slither Link [10], Number Place (Jap. Sudoku) [10], and Fillomino [10]. We con-
tribute to this list by showing that HEYAWAKE is NP-complete, too, proving the
following theorem:

Theorem 1. Solving a HEYAWAKE puzzle is NP-complete.

To this end, we show how to emulate Boolean circuits via HEYAWAKE puzzles.
We assume the reader to be familiar with the basics of complexity theory as
contained in [5]. Hardness and completeness are always meant with respect to
deterministic many-one log-space reducibilities.

2 Heyawake Is Intractable

To prove Theorem 1, we have to show that the problem in question is contained
in NP, and that it is NP-hard. The containment in NP is immediate, since it
is obvious that a nondeterministic Turing machine can guess a black and white
pattern and check if that pattern constitutes a valid solution in polynomial time.
It remains to prove the NP-hardness of the problem. We achieve this by showing
how to reduce a 3SAT formula to HEYAWAKE. We define the problem 3SAT as
follows:

Instance: A finite set of Boolean variables X = {z1,x9,...,2,} and a finite
set of clauses C' = {c1,¢a,..., i}, where each clause consists of 3 literals.

Question: If the input is interpreted in the obvious way as a 3CNF formula,
is there an assignment for the variables such that the formula evaluates to
true?
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(a) 4 x 4 wire grid (b) Soldering points (c) Negation points (d) OR-gate

Fig. 2. Basic devices, simplified representation

It is well known that this problem is NP-complete [5]. In our construction, we will
use a variant of it where clauses contain 4 literals instead of three. That variant
is obviously NP-complete as well, and using it simplifies the construction.

Now we are ready to present our reduction. We use the following gadgets to
emulate Boolean formulas:

— A two-dimensional grid of wires: Each wire in the grid will carry a Boolean
value. The gadget is designed such that crossing wires will not affect each
other (unless connected by a soldering point).

— Soldering points: They are used to synchronize the values between two cross-
ing wires.

— NOT-gates: Used to invert a Boolean signal.

— OR-gates: Each of these has 4 inputs, and works in a slightly “nonstandard”
way. Instead of producing another Boolean output value, it won’t allow that
all of the input values are “false.”

Before we start to explain in detail how to emulate these gadgets through
HEYAWAKE puzzles, we want to provide the reader with a more schematic
overview of our reduction. Figure 2 shows some simplified symbolic drawings
for our gadgets. The basic size of our devices is chosen such that 2 horizontal
and 2 vertical wires fit, device boundaries are indicated by grey bounding boxes.
This means that some space is wasted, but as we will see later, it also helps to
greatly simplify and clarify the actual HEYAWAKE construction. The 4 inputs to
the OR-gate are indicated by the soldering points on the corners of the gadget.
Note that these soldering points are not merely decoration, but they actually
function as soldering points. This means that the horizontal and vertical wires
that meet at one input have their values synchronized. However, the 4 input
values are of course decoupled through the OR-gate, so, e.g., the value at the
lower left input may be different from the value at the lower right input and so
forth.

There will be one OR-gadget for each clause, placed at a certain position
in the grid, and by using the soldering point gadgets, the appropriate Boolean
values can be transported to the OR-gate. Note that we don’t need an AND-
gate, because its functionality is already implicitly present: The only thing that
the AND-operator in a 3CNF formula does is that it forces the value of every
clause to “true,” and as we explained above, our OR-gate already does that.
Figure 3 shows an example construction.
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Fig. 3. Schematic construction for example formula (z1Vxa2VaesVes)A(z1VaaVesVey)

It is quite easy to see how this example construction can be extended to
represent arbitrary formulae. For every variable that occurs in a formula, we
add two vertical wires, one carrying the signal for the variable and the other is
just a spacer which carries an arbitrary signal.

Another two unused vertical wires are added left of the variable wires. They
are added so we can negate values on the horizontal wires that cross these vertical
wires. That way, we can easily determine the original content of any clause in
the input formula by just reading off the negation points in that vertical layer
of the construction.

Finally, we add an OR-gadget for each clause, and we transport the Boolean
variable signals to the gadget using 6 horizontal and two vertical wires. The first
two gadgets are placed as shown in the example, and any additional gadget is
then added two wires to the left and 6 wires above the last.

We will now present the HEYAWAKE sub-puzzles used in our construction.
Rooms that have a single unique solution have their solution pattern entered.
Cells are painted light green if we know that they cannot possibly be colored
black because of any of our 4 rules. Whenever we talk about coordinates of
form (z,y), they have the following meaning: The upper left corner has coor-
dinates (1,1), and the values denote first the horizontal and then the vertical
position relative to that spot. Sizes of gadgets are specified as h x v with h and
v denoting horizontal and vertical extent. We leave a border of undetermined
cells around the sub-puzzles to indicate that they must never be regarded as
stand-alone puzzles, and there will always be some kind of surrounding, like,
e.g., another gadget.
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The wire grid is the basis for our whole construction. An example wire grid
of size 2 x 2 is shown in Figure 4. There are essentially three different kinds of
sub-rectangles used. We explain these in detail, because most of them are also
important for the other gadgets.

— 3 x 3 rooms with a number of 5 black fields. There is obviously only one
solution for these rooms. We will refer to them as “spacer rooms,” and they
are basically used to decouple the solution patterns in any adjacent rooms.

— 3 x 4 (resp. 4 x 3) rooms with a number of three black fields. These are
the rooms that represent our wires, thus we will also refer to them as “wire
rooms.” Because of the vertically (resp. horizontally) adjacent 3 x 3 rooms,
only 3 x 2 (resp. 2 x 3) fields are left for the black cells, and thus there are
exactly two possible solutions for this kind of room. Each of these solutions
represents a Boolean value.

— 4 x 4 rooms with two black fields. These represent the crossing of wires,
hence we will call them “crossing rooms.” There are two possible solutions
for these: Because of Rule 4, the black cells must be either in the upper left
and lower right corner, or in the upper right and lower left corner. Choosing
a solution for one of these rooms also determines the solution for all other
rooms of this kind (because of Rule 4), they must all be filled with the same
solution.

To propagate the Boolean values, we use only Rule 4. If a certain solution is
chosen for a horizontal resp. vertical wire room, we have to choose the other
solution for the next horizontal resp. vertical wire room. Figure 4 also shows
that choosing the same solution leads to an invalid configuration, the red fields
indicate a white line that spans over three rooms and thus violates Rule 4. So
the solution pattern representing a certain Boolean value alternates from one
wire room to the next. We still have to define which solution represents which
value, but since the interpretation depends on the actual implementation of the
OR-gadget, we will get to this later.

To combine several wire gadgets to form a larger grid, we can just copy the
gadget such that the spacer rooms on the border coincide. If we want, e.g., to
create a 4 x 2 wire grid from the example shown in Figure 4 (which has a size
of 17 x 17 cells), we would need to take the 17 x 17 block of cells at (3,3) and
copy it to position (17,3). Vertical extension works analogous.

The HEYAWAKE puzzle corresponding to a soldering point is shown in
Figure 5. The actual gadget has size 10 x 10 and can be found at position (10, 10)
in the diagram. Whenever we copy that 10 x 10 block over a wire crossing in a
wire grid (again such that the 3 x 3 spacers coincide), the corresponding vertical
and horizontal wires have their values synchronized. Note that we also have to
modify the four adjacent crossing rooms: They are extended by one cell towards
the middle of the gadget. If we leave the crossing rooms unchanged, the two
black fields of the those rooms could no longer be placed arbitrarily (because
of Rule 2), but a certain solution would be enforced. This solution depends on
the Boolean input value of the gadget and it thus would conflict with any other
soldering point gadget that has the other Boolean value as input.
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Fig. 4. Wire construction (left) and propagating values with Rule 4 (right), showing
an inconsistent solution (top right) and a consistent solution (bottom right)

Note that because we need to modify the adjacent crossing rooms, combining
soldering points is difficult: If we place a soldering point on a wire crossing, we
cannot place another soldering point on any of the 8 neighbouring wire crossings.
Also, if two soldering points are placed on the same wire with only one wire
crossing in between, then the crossing room between these soldering points has
to grow in both directions.

Again, Rule 4 is used to propagate information: There are four rooms of sizes
2 x 4 resp. 4 x 2 and one room of size 2 x 2 in the middle. Each of these rooms
effectively contains a 2 x 2 region of cells that has to be filled with two black cells
each. The information is transferred through the rooms marked with 0. All of
the 2 x 2 regions must be filled with the same pattern, because otherwise Rule 4
is violated.

Figure 5 also contains a negation point in the right part of the diagram. The
basic idea is to shrink one of the wire rooms horizontally, thus one of the adjacent
crossing rooms must grow, as in the soldering point gadget. The alternating
pattern of solutions in the wire rooms is interrupted by this, and the signal is
inverted. The principle can also be applied on a vertical wire, but we won’t make
use of that. The shrinking of the right crossing room also leads to a modification
in the crossing room on the left: Two black fields are enforced there due to
Rule 4. This means that we need to change the number of black fields from 2
to 3 in the left crossing room. The neighboring crossing rooms on the top, left
and bottom assure that the remaining black field is placed in the lower left or
upper left corner of the room, which assures that the rest of the construction is
not influenced in any way. Since the crossing rooms are modified, we also cannot
combine this gadget arbitrarily with any other gadgets that involve modified
crossing rooms. However, we can easily avoid any conflicts by simply making
our construction large enough.

The final and most important gadget in our construction is the OR-gate,
shown in Figure 6. Again, the gadget requires a modification to the adjacent
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Fig. 5. HEYAWAKE construction for soldering points (left) and negation gadget (right)

crossing rooms, and we have to be cautious about placing other such gadgets
too close. The input values determine the solution of the 2 x 2 blocks on the
corners of the gadget. A certain pattern in these rooms would lead to an invalid
configuration, so the corresponding combination of input values is forbidden.
Figure 7 shows that configuration: The red highlighted cells (which are actually
black cells) enclose a certain area, and the white cells inside that area are dis-
connected from the white cells outside, which means that Rule 2 is not satisfied.

It is also easy to see that this sub-puzzle has a solution if any of the input
values are changed, i.e., if not all of the corners are “closed,” since the black and
white pattern that has been chosen for the inner rooms remains valid indepen-
dently from the input values, and all of the inner white fields get connected to
the outer white fields as soon as one of the four corners “opens.”

Now it also becomes clear how we have to interpret the solutions in the wire
gadgets as Boolean values: The solution that leads to a “closed” corner has
to be identified with “false,” the other solution corresponds to “true.” Looking
again at Figure 3, we would like to be able to “read off” a satisfying variable
assignment from a solved puzzle. It would probably be most convenient if we
could just interpret the patterns that occur at the lower end of the variable
wires as Boolean values. So let us examine all four input corners of the OR-
gadget and find out which pattern is induced in the wire gadgets by an input
value of “false.” Figure 8 shows the example circuit with every variable set to
“false.” The signal shapes are similar to the solution shapes in the underlying
HEYAWAKE puzzle, so this diagram illustrates the following argumentation.

Since the solution pattern alternates in every wire room, the pattern that
appears at the lower end of the variable wire depends on the number of wire
crossings the signal passes on its way to the input corner of the OR-gate, so all
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Fig. 6. The OR-gate

we need to do is count these crossings. In our example, the lower left input node
of the OR-gadget is connected to the variable wire that represents x1, and the
corresponding signal passes over 6 wire crossings, the edge of the OR-gadget is
not counted. From that observation, we can derive that the pattern that plays
the role of “false” is the pattern that resembles an array pointing to the left.
Now if we would want to connect any of the other variables to the lower left
input of the OR-gate, we would have to move the corresponding soldering point
from the x; wire horizontally to some other variable wire. Since the parity of
the number of crossings is left unchanged by this process, we can conclude that
the same pattern plays the role of “false” for all variables.

The next input we want to check is the lower right input. In the example, it is
connected to the variable wire carrying xo. The number of wire crossings is now
odd, but also the “closing” pattern for the lower right input is inverse to that
for the lower left input. This means that the same pattern as before represents
the value “false” at the lower end of the variable wire. With the same argument
as above, this also holds true if we connect a different variable than xs to the
lower right input.

With analogous reasoning, we can conclude that the pattern representing
“false” at the end of a variable wire is always the “left arrow” pattern, and the
pattern for “true” is given by the inverse solution.

This is where the construction gets easier because of the 2 x 2 wire size of
our gadgets. If, e.g., the variable wires were placed directly next to each other
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Fig. 7. The forbidden configuration

(without the unused spacing wire in between), the pattern for “false” would
alternate for each variable. And if we tried to save some more space, then the
interpretation of the patterns would certainly get more complicated.

The description of our construction is almost complete, but one last thing
remains to be explained. We never talked about how to handle the border of the
game board. If we place, e.g., a 3 X 3 room with five black cells directly into the
upper left corner of the game grid, there is a problem: Two of the white cells (the
upper and the left white cell) get isolated, Rule 2 is not satisfied. The simplest
way to fix this problem is to add some border rooms to the construction. To add
these rooms, we will have to increase the size of the construction by two cells
on each side, so if the original construction has size h X v, the size after adding
the border rooms will be (h +4) x (v+4), and the original construction will be
placed at (3, 3). The border is made up of two rooms with a size of (h+2) x 2 and
two rooms of size 2 x (v + 2). Both rooms need not contain a number. However,
if we wished to abandon the feature of using blank rooms (see Rule 3), we could
mark the border rooms with the number of vertical/horizontal wires used in
the construction. The additional rooms are arranged such that the 2 x (v + 2)
rooms are placed at (1,1) and (h+ 3,3), and the (h+2) x 2 rooms are placed at
(3,1) and (1,v+3). Note that they cannot possibly interfere with the rest of the
construction, because all the mechanisms used in our gadgets are independent
from the surroundings.
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Fig. 8. Example circuit from Figure 3, with the relevant patterns of the underlying
HEYAWAKE puzzle indicated

3 A Heyawake Variant

Now that the proof of NP-completeness for the regular HEYAWAKE ruleset is
finished, it would be interesting to know if there are rules that are not essential
for the NP-completeness. We will look at the variant where rule 2 is absent,
which indeed turns out to be NP-complete as well:

Theorem 2. Solving a HEYAWAKE puzzle, when played with Rules 1, 8 and 4,
but not with Rule 2, is NP-complete.

To show NP-completeness in this new situation, we can basically reuse the con-
struction that has been developed for the original HEYAWAKE puzzle. All of our
gadgets can easily be adapted to the new ruleset, and only slight modifications
are necessary.

Figure 9 shows the new wire grid construction. It works completely analogous
to the normal wire grid. The crossing rooms remain unchanged, and because of
Rule 4, the two black fields will be placed in the corners of the room, just as
before. Note however that choosing a solution for one crossing room no longer
determines the solution for other crossing rooms, because now there is one black
field between the corners. The 3 x 2 resp. 2 x 3 rooms now play the role of the
wire rooms. It is obvious that these rooms have exactly two possible solution
patterns, and the pattern propagates as before due to Rule 4. The new solution
pattern of the wire rooms also has the convenient property that the patterns no
longer alternate between wire rooms.
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Fig. 9. The modified wire grid

The soldering point gadget is shown in Figure 10, it works exactly as before:
The patterns of the two crossing wires are synchronized, because otherwise Rule 4
is not satisfied. The construction is even somewhat simpler than before: We no
longer have to make modifications to the adjacent crossing rooms, because this
was only necessary due to Rule 2.

The negation gadget, in contrast, is a little bit more complicated to construct
under the new ruleset. Because of the modifications that have been made to the
wire construction, it is not as easy as in the original construction to resize a
wire room, and neither would this suffice to achieve the desired negation effect.
We could use a wire room containing 3 black cells instead of 2 black cells to
invert the signal, but in that case, we would need to introduce two blank rooms.
Although this yields a rather simple negation gadget, we still want to get by
without using the mentioned feature, so we discard the idea.

It seems substantially more complicated to emulate a negation gadget without
using unspecified rooms. The best device we could find for this job is also shown
in the right half of Figure 10. It is quite different from the negation gadgets
discussed so far because it doesn’t simply negate the signal that is carried on
the affected wire. The gadget rather operates like a soldering point gadget that,
instead of forcing the values on the horizontal and vertical crossing wires to be
the same, forces them to be inverse to each other.

The OR-device also requires extensive modifications. In the original construc-
tion, its functionality relied entirely on Rule 2, which is not available any more.
But fortunately, a simple counting mechanism can also be used to achieve the
desired effect, and Figure 11 shows the resulting gadget. The idea is as follows:
In the middle of the device, there is a big room that is marked with the num-
ber 9. A certain input value forces two black fields into this room, while the other
value forces only one black field. The pattern that forces two fields corresponds
to the value “false,” and the other one corresponds to “true.” If all input values
are “false,” we would need to put at least 10 fields into the big room, but there
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Fig. 10. Modified soldering point (left) and “negating soldering point” (right)
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are only up to 9 allowed. If any of the other input values are “true” however,
a solution exists. So all in all, the gadget works just like its counterpart in the
original construction did.
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Fig.11. OR-gadget
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Now we finally have all the devices needed to carry out the overall construc-
tion. There are some minor differences, but the idea basically remains the same.
Instead of dedicated negation gadgets, we now use the new “negation and sol-
dering point” gadgets, and it is obvious that this works just as well: Every value
is routed through at least one soldering point on its way to the OR-gadget, and
if the value must be negated, then we simply use the negating soldering point
instead of a normal soldering point.

Also, the wire room patterns have to be interpreted slightly different: Because
the pattern does not alternate from room to room any more, the parity argument
used in the original construction is not valid anymore. This means that it is not
as easy as before to “read off” the variable values from a HEYAWAKE solution.
By looking at the input corners of all OR-gates, we can determine the pattern in
the wires that induces the “false” pattern at the OR-gate. Note that a pattern
that corresponds to “false” in one corner of the gadget may correspond to “true”
at another corner. So we may arbitrarily choose the values that the wire room
patterns represent, and then we can use negation gadgets to make sure that
everything works as intended.

4 Conclusion

In this paper we have shown that the game of HEYAWAKE is NP-complete by
reducing the Boolean Satisfiability problem to the problem under consideration.
We also examined a slight variation of the original puzzle and showed it to be
NP-complete, too. Thus, the rule of connectivity on white cells has been shown
to be artifical in the sense that it does not add to the complexity of the game.

There is another problem that has not been discussed so far, but commonly
arises in puzzle making practice: Determining whether a puzzle has a unique
solution or not. For a problem that can be classified as NP-complete, it is quite
common that its counting variant can be classified into the class #P(see [9]).
It is obvious that computing the number of solutions to a HEYAWAKE puzzle is
#P-complete: The counting variant of 3SAT is #P-complete, and we can easily
determine a correspondence between the number of solutions of a 3SAT instance
and the corresponding HEYAWAKE puzzle. For each unused wire, we have to
multiply the number of solutions by 2, and there are two possible solutions for
the wire rooms. Looking at our example from Figure 8, there are 6 vertical and
4 horizontal unused wires, and combined with the two solutions that can be
chosen for the wire rooms, we have to multiply the number of solutions of the
underlying SAT instance with 2 - 26%# to get the number of solutions that the
HEYAWAKE instance will have. It is possible to make things easier by improving
our result such that there is a one-to-one correspondence between solutions.

To achieve this, we have to verify that all gadgets have the property of being
completely determined by their input values, and we need some way to fix the
solutions in unused wires, and in the crossing rooms. The first requirement is met
all of our gadget, which is obvious in all cases except for the OR~gate. But as it
turns out, even though we have not mentioned it before, the OR-gadget actually
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Fig. 12. Modified wire room that forces a wire value and a crossing room solution at
the same time

does have that property. This can be verified by trial and error as follows: It is
clear that the the inputs are completely determined, and thus the only possibly
problematic part is the interior, i.e., the four rooms that are arranged around
the 1 in the middle, and the four adjacent rooms that contain a 2. Each of the
rooms containing a 2 has only 4 possible solutions, and if we try to solve the
gadget starting with one of these solutions, a conflict will arise in all cases except
for one solution.

Forcing a value in an unused wire is also quite easy: Let us look, e.g., at the
lowest wire room of a vertical wire. If we simply split up that room, such that
it is partitioned into one room of size 3 x 3 and one of size 1 x 3. We mark the
latter room with a 0 (just because we do not want to use blank rooms), and with
this we will have forced a certain pattern into the other room, due to Rule 4.
The technique works completely analogous for horizontal wires.

To force a specific solution for a crossing room, we further modify the wire
room at the bottom of an unused wire that has already been modified as de-
scribed. We split the 1 x 3 room again to get a 1 x 1 and a 1 x 2 room, both
marked with a 0. Because of Rule 4, this will force black fields above and below
the two rooms. But this means that a black field is enforced in one corner of
a crossing room, and so the whole room is determined, and in turn all other
crossing rooms. The other black field will be forced in one of the border rooms,
but that is no problem if we increase the number contained in that room by 1.
Figure 12 shows a diagram illustrating the overall idea.

Using this modified construction, we can also derive a somewhat different,
more adequate result: Checking whether a HEYAWAKE puzzle has a unique solu-
tion is complete for the class US, which is the class of sets of type { z | f(z) =1},
for some f € #P, that has been introduced and studied in [1]. The uniqueness
result is more adequate since we are not really interested in knowing the number
of solutions of a HEYAWAKE instance, as long as we know whether the solution
is unique or not.

There remain some open questions: There are other rulesets for which it is
unknown whether the problem remains NP-complete or not. Furthermore, it
would be interesting to know if HEYAWAKE remains NP-complete if there is a
restriction on the values of the numbers in the rooms. Our original construction
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can be done using only numbers from 0 to 3, if the spacer rooms are divided into
several single cell rooms containing the numbers 0 and 1 to imitate the spacer
pattern. We don’t know if this result is optimal, or if the problem remains NP-
complete if the range of used numbers is reduced further.
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Abstract. A spreadsheet, especially MS Excel, is probably one of the
most popular software applications for personal-computer users and gives
us convenient and user-friendly tools for drawing tables. Using spread-
sheets, we often wish to draw several vertical and horizontal black lines
on selective gridlines to enhance the readability of our spreadsheet. Such
situations we frequently encounter are formulated as the Border Drawing
Problem (BDP). Given a layout of black line segments, we study how
to draw it efficiently from an algorithmic view point, by using a set of
border styles and investigate its complexity. (i) We first define a formal
model based on MS Excel, under which the drawability and the efficiency
of border styles are discussed, and then (ii) show that unfortunately the
problem is NP-hard for the set of the Excel border styles and for any
reasonable subset of the styles. Moreover, in order to provide potentially
more efficient drawing, (iii) we propose a new compact set of border
styles and show a necessary and sufficient condition of its drawability.

1 Introduction

MS Excel is probably one of the most popular software applications for personal-
computer users. Among other nice features, it gives us a convenient and user-
friendly tool for drawing tables. Suppose, for example, we wish to draw a table
as shown in Figure 1. Other than characters, we have to draw several black
lines called borders. To do so, we click “Border Style” button and then there
appears the drop-down menu as shown in Figure 2. This includes 12 different
styles, style (1) through style (12) in the order of top-left, top-second, through
bottom-right. To draw the top horizontal border of the table, for example, we
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select the five horizontal cells just above this border and click style (2). Since
the table includes 21 line segments, it is easy to draw it in 21 steps by using only
style (2) and style (3). However, it turns out that the same table can be drawn
in much less steps by using other styles, in as few as four steps!

Thus, there can be a big difference in the efficiency between naive users and
highly trained users. It should be noted that such a mechanism as above, namely
applying ready-made templates sequentially to do something, is an important
paradigm in many different systems, including in theoretical models. One of the
best known examples is the PQ-tree [2], which was introduced for checking
the consecutive-one property of a Boolean matrix and has also been studied
recently for application to bioinformatics (e.g., [6,10]). Data structures are also
a nice example, where clever use of basic operations plays a key role for efficient
programs. However, such a rigorous research from an algorithmic point of view
has not extended to more practical systems like MS Excel, Tgif [12] and Xfig [14]
(See Previous Work).

Our Contribution. In this paper, we concentrate ourselves on MS Excel and
investigate the complexity of the Border Drawing Problem (BDP), which is
basically the same as drawing a table described above. Our model has been
carefully designed, which we believe does not lose the basic nature of Excel and
at the same time can be used for more general discussion such as the completeness
of the style set.
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As for the complexity of BDP, our results are somewhat negative. Namely,
the problem is NP-hard for the style set of Excel and is also A/P-hard for any
reasonable subset of styles. We also give some observations on which styles are
important for several kinds of instances. Furthermore, we consider the possibility
of designing a style set which is better than the Excel set. More concretely, we
give an interesting set of styles which is natural, compact, and more efficient
than Excel by up to a factor of n for some instances, but unfortunately is not
complete. It is apparently important to give approximation algorithms and/or
heuristic algorithms, but in this paper, we only give a few basic observations.

Previous Work. The most related problem is probably the rectilinear polygon
covering problem [11] (also known as the rectilinear picture compression one),
which is, given a Boolean matrix, to cover (or to draw) all the 1’s with as
few rectangles as possible. The problem has a number of important practical
applications, such as in data mining [4], and in the VLSI fabrication process [8].
Thus, it has received a considerable amount of attention and there are a lot
of its variants [1,3,6,7]. In [13] (on p.433), the time complexities for various
polygon covering problems are listed; almost all variations are N'P-hard. The
difference is that our problem to draw (and also to delete) lines by using several
different border styles, which provide numerous varieties for drawing a picture;
this certainly makes the problem harder but more attractive than just rectangles.

2 Models

We first give a formal definition of the terminology (basically we follow that
of Excel). A spreadsheet (or worksheet) is delineated by n + 1 horizontal and
n + 1 vertical gridlines of length n, which are illustrated by dotted lines in this
paper. Note that the gridlines are always viewable on the screen, however, any
gridline will not be actually drawn or not printed on a spreadsheet. A single
addressable unit surrounded by two consecutive horizontal gridlines and two
consecutive vertical lines is called a cell. Let ¢(i,7) be a cell on the intersection
of the ith row from the top and the jth column from the left for 1 < 4,57 < n.
For example, reading left-to-right across the spreadsheet on the top row, we
encounter ¢(1, 1) through ¢(1,n). The intersection of the kth horizontal and the
(th vertical gridlines forms a wvertex, (k,£), for 0 < k,¢ < n. That is, there are
(n + 1)% vertices, (0,0) through (n,n). Throughout the paper, we assume n is
not too small, for example n > 4, to avoid trivial cases.

A rectangle surrounded by two (not necessarily consecutive) horizontal grid-
lines and two vertical gridlines is called an extended cell or an e-cell in short. See
Figure 3. An e-cell is specified by an ordered pair of its upper-left cell and lower-
right one with a colon, for example, ¢(1,2) : ¢(3,3) for 3 x 2 cells, whose four
corners are (0,1), (0,3), (3,1), and (3,3). Also, as a special case, c(i,7) : ¢(i,7)
means a single cell ¢(i,j). A portion of a (single) gridline is called a line seg-
ment, which is denoted by its two endpoints, [(x,y), (z + u,y)], if it is vertical
and by [(z,y), (x,y + v)] if it is horizontal. Two horizontal line segments that
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are touching, namely [(z,41), (x,y2)] and [(z,y2), (x,y3)], are equivalent to the
single line segment [(z,y1), (x,y3)]. Similarly for vertical line segments.

In many situations, we may wish to draw several vertical and horizontal black
lines on selective gridlines to enhance the readability of our spreadsheet, or
enclose a selected range of cells with four black lines to highlight data in the
range. The Border Drawing Problem (BDP) is formulated by such situations
we frequently encounter in spreadsheet applications. An instance of BDP, called
a pattern, is given as a set of N black line segments, each of which is called a
border. Given a pattern as an input, we study how to draw it by using a set of
border styles defined as follows.

According to the Excel border styles shown in Figure 2, a border style (or style)
is defined as a mapping from {1,2,3,a,b,c} into {B, W, T}. It is convenient to
use an illustration as in Figure 4 to represent a style, where three horizontal
lines correspond to 1, 2 and 3 from top to bottom and three vertical lines to a,
b and ¢ from left to right. B, W, and T stand for black, white and transparency,
respectively. In the figure, the left-side vertical line is given as a thick straight
line, which means a is mapped to B in this style. Similarly, 1, 2, b and ¢ are
thin dotted lines, which means those are mapped to 7T'. 3 is a thick dotted line,
meaning it is mapped to W.

A pattern is drawn by a sequence of operations. A single operation is given
by a pair of an e-cell and a style. For example, see Figures 5-(1) and (2). Here
we selected the e-cell whose four corners are (2, 1), (2,5), (5,1) and (5,5). Thus
this e-cell includes four horizontal line segments and five vertical ones, each of
which is represented by a symbol in {1,2,3,a,b,c}, namely, 1 shows the up-
permost horizontal line segment, 3 the bottom horizontal one, 2 the remaining
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(intermediate) horizontal ones, a the left most vertical one, b the intermediate
vertical ones and ¢ the right most vertical one. Now suppose that our style is the
one illustrated in Figure 5-(2) then the “colors” of the nine line segments of this
e-cell will change as shown in Figure 5-(3) if the original colors of them are all
white. Note that B (W, respectively,) requires that the corresponding line seg-
ments become black (white, respectively,) regardless of their original colors and
T does not change the original colors. We assume that all the gridlines are white
at the beginning and the drawing is completed if the colors of all the borders
have become black and all the others remain white.

MS Excel basically allows us to use nine different styles which are given in
Figure 6. Styles (1) through (9) are referred to by ¢, r, t, b, tb, ¢r, o, 0, ¢,
respectively. A set of styles is said to be complete if we can draw any pattern by
using only styles in the set. It is easy to see that {{,r,t,b}, denoted by Sy, is
complete (and therefore any set including Sy is also complete).

Theorem 1. Sy, {{r,t,b, ¢}, {€,r,th, ¢}, {lr,tb, ¢} are all of the minimal com-
plete style sets. (Proof is straightforward and omitted.)



218 K. Iwama, E. Miyano, and H. Ono

(1) (2)

Fig. 7. (1) Proof of Theorem 2-(i) (2) Proof of Theorem 2-(ii)

Thus, just to draw every pattern, for example, we need only four styles {¢,r, ¢, b}.
However, some other styles are important when considering the efficiency of the
drawing. For example, consider the set {,r,t,b,¢}. This set, Sy plus the style
which makes all line segments of the e-cell white, is probably the most convenient
for beginners. Note that ¢ is mainly used to correct mistakes, but it is important
for the efficiency. We now show that there is a pattern for which Sy needs 2(n?)
steps, but O(n) steps are enough for SyU{¢} : Consider the pattern illustrated in
Figure 7-(1). For simplicity of exposition, we assume that n is divided by 2. It has
5 ladder-shaped tables. Since there exist disjoint I x (n—1) vertical segments, Sy
obviously requires 2(n?) steps. For S;U{¢}, one can see that the following O(n)
sequence of operations draws the pattern: (i) Using the first n— 1 steps, we place
n — 1 vertical lines segments, [(0, 1), (n,1)] through [(0,n — 1), (n,n — 1)]. (ii) In
the next 7 steps, all borders of § — 1 e-cells, ¢(2,1) : ¢(2,n), c(4,1) : c(4,n),
through ¢(n —2,1) : ¢(n—2,n) are deleted by the sequence of the ¢ styles. Here,
each ¢ style can disconnect (n — 1) segments at a time. (iii) n 4 1 horizontal line
segments of length n are added. (iv) Finally, the leftmost and the rightmost line
segments of length n are placed.

As observed above, the deletion operation by using the ¢-style gives us efficient
drawing sequences. Also, the #-style sometimes helps: See Figure 7-(2). Since
there are (n — 3) x 2+ 4 vertical and (n — 3) X 2+ 4 horizontal borders, Sy U {¢}
obviously needs £2(n), but only three steps suffice for S4U{o,0, ¢} to draw those
borders: (¢(1,1) : ¢(n,n),8),(c(2,2) : c(n—1,n—1),9), (¢(2,2) : ¢c(n—1,n—1),0)
in this order.

Theorem 2. (i) There is a pattern for which Sy takes 2(n?) steps, but S4U{d}
does O(n) steps. (ii) There is a pattern for which Sy U{¢} takes 2(n) steps, but
SasU{o0,0,¢} does O(1) steps.

To quantify the efficiency of drawing a pattern P by using style sets A or B,
we introduce an acceleration factor of A for B to draw P, as a(a p)(P) =
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Table 1. The acceleration factors a(4,py(n) of A (row) for B (column)

Sa SaU{e} SaU{0} SaU{g,0} {tr,th, ¢} {tr,tb, ¢} U{0}

Sy - subset  subset  subset (1) (1)

SsU{o} 2(n) - 2(n) subset (1) (1)

S, U {0} 2(n) 2(n) - subset 2(n) (1)

SaU{¢,0}  £2(n)  £(n)  L2(n) - 2(n) (1)

{lr,tb, ¢} 2(n) (1) 2(n) (1) - subset
{lr;th,p} U{0} 2(n) 2(n)  2(n) (1) 2(n) -

stepp(P)/stepa(P),where stepa(P) and stepg(P) are the minimum numbers
of the steps to draw P by using style sets A and B, respectively. For the size n
of the spreadsheet, we define the acceleration factor of A for B as

aa,p)(n) = max{aw,p)(P) | P € Pn},

where P, is the set of all possible patterns in the spreadsheet with size n. Table 1
summarizes the acceleration factors between representative styles that we found.

For some patterns, Sy U{®, 0} can be more efficient than Sy by up to a factor
of n, and similarly for the full set of the Excel border styles, denoted by Sgxcel,
and Sy. One might ask whether there is a pattern that this factor is significantly
more than n, such as £2(n?) steps for S; and O(y/n) steps for Sgycel. The answer
is NO:

Theorem 3. Sgxcel can be simulated by Sy in an overhead factor of O(n). That
08, (Speer,50) (M) = O(n).

Proof. We show that Sgxeel \ S4 can be simulated by Sy in O(n) steps. (1) A
single use of the tb-style (resp. £r-style) in Sgxeel can be achieved only by using
a pair of the ¢- and b-styles (resp. ¢- and r-styles) in S4. (2) The o-style in Sgxcel
is equal to be a sequence of four styles in Sy. (3) The #-style can be simulated
in O(n) steps because it includes at most n horizontal and at most n vertical
line segments. (4) The remaining is the ¢-style. Suppose that the ¢ style is now
used. Then, it divides one horizontal (resp. vertical) line segment into at most
two pieces, which means that a single operation of the ¢-style can be simulated
by at most two operations of the t-style (resp. {-style) per horizontal (resp.
vertical) line segment. Since the ¢-style cuts at most 2n line segments at a time,
it can be simulated by Sy in O(n) steps. O

3 Complexity of Border Drawing Problem

The border drawing problem with a style set S, BDP(S), is to find a drawing
sequence of minimum size for a given pattern where every style is in S. Re-
stating this optimization problem as a decision problem, BDP(S, k), we wish to
determine whether a pattern has a drawing sequence with S of a given size k. As
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mentioned in the previous section, this problem is obviously in P for the set Sy.
In this section we show that the problem becomes intractable if we use the set
S5 = S4U{¢}, the most interesting subset as mentioned in the previous section.

Theorem 4. BDP(Ss, k) is N'P-complete.

Proof. Tt is easy to show that BDP(Ss, k) is in N'P. Its N'P-hardness is proved
by reducing the N'P-complete rectilinear picture compression problem (RPC in
short) [11] to BDP(S5, k). The RPC problem asks whether given an m x m
matrix M of 0’s and 1’s and a positive integer ¢, there exists a collection of ¢
or fewer rectangles that cover precisely those entries in M that are 1’s. That is,
we have to show that for a given m x m matrix M we can construct a pattern
P such that P can be drawn by a drawing procedure of length k or shorter if
and only if there exists a collection of ¢ or fewer rectangles that cover precisely
those entries in M that are 1’s.

First of all, the m x m matrix M is modified to (m+2) x (m+2) matrix M’ by
padding one row of (m+ 2) 0’s on the top row, one row of (m+2) 0’s under the
bottom row, one column of (m+2) 0’s in the leftmost, and one column of (m+2)
0’s in the rightmost. Namely, the new matrix M’ is obtained by surrounding the
original matrix M with 0’s.

000000

0111 001110
[o101 , _|oo1010
M=11111] M=lo11110
1000 010000
000000

We next prepare a two-dimensional grid of (m + 2) x 3 rows and (m + 2) x 3
columns, and place black borders on all gridlines except for its outline. Then,
if the entry at the ith row and jth column of M’ is 1, then we obtain borders
by placing white lines (or deleting the black borders drawn above) on all the
outside and inside black borders of nine cells, ¢(3i — 2,35 — 2), ¢(31 — 2,35 — 1),
¢(3i—2,37), ¢(3i—1,3j—2),¢(3i—1,35—1), ¢(3i—1, 35), ¢(3i,35—2), ¢(3i,35— 1),
¢(3i,3j) for every 1 <i,j <m+ 2.

Finally, by surrounding the above grid with (3m + 7) x 2 horizontal and
(3m + 7) x 2 vertical black borders of length one, called scraps, we obtain our
reduced pattern P from the instance of RPC. Figure 8 illustrates P, that has
(3m + 10) x (3m + 10) cells.

As shown later in Lemmas 1 and 2, the reduced pattern P has a feasible
drawing sequence of length k = g + 6m + 18 or shorter for the pattern P if and
only if all 1’s in M are covered by a collection of ¢ or fewer rectangles. This
completes the proof. O

Lemma 1. The pattern P has a feasible drawing sequence of length k = q +
6m + 18 or shorter for the pattern P if all 1’s in M are covered by a collection
of q or fewer rectangles.
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Fig. 8. Pattern P

Proof. We can actually give a drawing sequence of ¢ + 6m + 18 steps as follows:
(i) We place 3m + 7 horizontal black borders of length 3m + 10, i.e., all of
them go across from the left-end to the right-end, by using the first 3m + 7
steps. (ii) Also, 3m + 7 vertical borders of length 3m + 10 are placed in the
next 3m + 7 steps. (iii) By using the ¢ style, all black borders of four e-cells of
¢(2,2):¢(2,3m+9), c(3m+9,2) : ¢(3m+9,3m+9), ¢(2,2) : ¢(3m +9,2), and
c(3m—+9,2) : ¢(3m+9,3m+9) are completely deleted. (iv) Finally, according to
the rectangle covering of RPC, we delete the black borders again by using the ¢
style in at most ¢ steps. O

Lemma 2. The pattern P has a feasible drawing sequence of length k = q +
6m + 18 or shorter only if all 1’s in M are covered by a collection of q or fewer
rectangles.

Proof. Suppose that the pattern P can be drawn in at most k = ¢ + 6m + 18
steps. Our first claim is that out of this k = q + 6m + 18 steps we need 6m + 18
steps only to draw the (3m +7) x 4 scraps and the borders corresponding to the
0’s in M’ padded to the original matrix M in its surrounding area. (Since we
have so many scraps and at most two scraps are drawn in a single step, one can
see easily that the procedures (i) through (iii) in the proof of the previous lemma
is the only one way to draw this portion of the pattern.) Moreover, after drawing
those scraps and the padded ones in this number of steps, all the gridlines of the
central part of the figure must be black. (This is obvious if we have no choice
other than using the procedures (i) through (iii).)

So, we now have to complete the drawing with the remaining ¢ steps. Obvi-
ously we have to use the ¢ style for all those steps to make the “holes” in the
central part, but that can be simulated by the same number of rectangles which
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cover all the 1’s of the matrix M. Thus the answer the the original RPC problem
is also Yes, which is a contradiction. a

Let St denote {¢,7,t,b,0}, namely ¢ is replaced by € in S5. Then the proof of
NP-hardness for BDP(S%, k) is easier than above, since we can simulate the
RPC problem almost directly. Also one can see easily that BDP is N'P-hard if
its style set includes {¢,r,t,b} and 0 or ¢ (actually we do not need all the four
basic styles). Probably another interesting case other than Sy is the case of the
full set.

Theorem 5. BDP(Sgxcel, k) is N'P-complete.

Proof. Since we can use many styles, there are too many possibilities for drawing,
which makes our proof hard. The basic idea is to restrict the original pattern of
the RPC problem so that to use, for example, ¢ does not help for the simulation.
Details are omitted. O

Now it is natural to consider approximation algorithms or heuristic algorithms
for BDP. Among the several intractable cases, the first one to be considered is
S, because an approximation algorithm for BDP(S%) might be a prototype for
other cases. (The reason will be mentioned later.)

Consider a pattern as an input for BDP(S?) illustrated in Figure 9-(1). A
cell surrounded by black borders is called a black-cell; otherwise gray-cell. For
example, ¢(1,2) and ¢(2,2) are black-cells, and ¢(1,1) and ¢(1, 3) are gray-cells.
A sequence of consecutive vertically aligned black-cells bounded by gray-cells
on the top and the bottom constitutes a strip. See Figure 9-(2); the pattern
has 11 strips, ¢(3,1), ¢(1,2) : ¢(6,2), ¢(2,3) : ¢(3,3), and so on. Two strips
c(ir, k1) @ c(j1,k1) and c(ig, ko) : c(Jo, ko) are said to be independent if i1 #
io or j1 # jo holds. For example, six stripes ¢(1,2) : ¢(6,2), ¢(2,3) : ¢(3,3),
c(6,3) : ¢(7,3), ¢(3,4), c(4,5) : ¢(5,5), ¢(2,6) : ¢(6,6) are mutually independent.
For each strip ¢(i, k) : ¢(j, k), we define its associated rectangle to be the unique
rectangle that covers this strip, and extends as far as possible to the left and
to the right. As shown in Figure 9-(3), there are six rectangles associated with
mutually independent six strips.

The basic idea of our approximation algorithm ALG(S%) for BDP(S?) is quite
simple: First we draw by the ¢- or r-style (resp., - or b-style) every vertical
(resp., horizontal) black line segment which passes through some pair of consec-
utive horizontally (resp. vertically) aligned gray-cells. For example, a vertical line
segment [(1,8), (7, 8)] passes through two gray-cells ¢(3, 8) and ¢(3,9) and thus it
is drawn by the (-style. Similarly, we draw a horizontal line segment [(1,0), (1, 7)]
by the t-style since it passes through two gray-cells, say, ¢(1,5) : ¢(2,5). Notice
that these draws are indispensable, because other styles cannot draw the line
segments. Then only black-cells are left. To draw the black-cells, it is better to
use the #-style. Since drawing the black-cells by the #-style is essentially the
same as the RPC problem, we run a similar procedure introduced in [9] as a
subroutine, which has the best approximation factor of O(y/logn). Here is a
description of ALG(S§):
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Fig. 9. (1) black-cells, gray-cells, (2) strips, and (3) associated rectangles

Algorithm ALG(SL)

Step 1. Draw every vertical (resp. horizontal) black line segment which
passes through some pair of consecutive horizontally (resp. vertically)
aligned gray cells by using ¢- or r-style (resp. t- or b-style) in column-
first order (resp. row-first order).

Step 2. Find rectangles associated with mutually independent strips,
and draw each of the associated rectangles by using the #-style.

Theorem 6. Algorithm ALG(SL) achieves an approzimation ratio of O(y/logn)
for BDP(SL). (Details of the proof are omitted.) O

If we can use ¢ as well, then what we should do first is to look for “holes”
for which using ¢ helps. Then we once “fill” those holes and apply the above
greedy algorithm. After that those holes are dug again by using ¢. Unfortunately
we have no idea about its approximation factor, the analysis of which appears
hard.
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4 Border Styles with Black and White

Recall that all Excel styles, except for the ¢-style, have no white segments and
then do not update black borders to white ones. Only the ¢-style deletes black
borders we have drawn previously or updates black lines back to white ones. As
shown in the previous section, this deletion capability gives us efficient drawing
sequences. In this section we consider styles which include both Black and White
at the same time, as illustrated in Figure 10. In the case of the (*“-style in
Figure 10-(1), all three horizontal line segments 1, 2, and 3 (from top to bottom)
are mapped to W, and three vertical ones a, b, and ¢ are mapped to B, W, and W,
respectively. The r?®-style maps 1, 2, 3, a, b, and c into W, W, W, W, W, and B,
respectively. The t* and b*“-styles are similar. Let Sy be {¢0w, rbw bw pbw}

In this section, we assume that the given pattern does not include the gridlines
of the boundary of spreadsheets. The reason is as follows: For example, there are
no cells above the top horizontal gridline of the sheet itself. Therefore, any border
on this gridline cannot be drawn by the b** style. However, all other horizontal
borders can be drawn by that style. One can see that the above assumption
excludes such a trivial incompleteness of the style set.

As shown in a moment, S is sometimes very efficient, which indicates some
possibilities of improving the style set of Excel.

Proposition 1. There is a pattern for which Sy needs 2(n?) steps, but S§
O(n) steps.

Proof. Figure 11 illustrates one of such patterns. Sy needs £2(n?) since there are
2(n?) vertical segments. Here are rough ideas for S§*: We first place all vertical
n-length borders in O(n) steps. Then, with cutting them, we place around 23"
horizontal borders by using the t** and the b styles in O(n) steps. Finally, two
outer vertical borders are added. O

For several patterns, S5 is more efficient than S, but, unfortunately, there is
a large class of patterns for which S} has no feasible drawing sequences (other
than the trivial ones mentioned at the beginning of this section). Here are some
definitions: As shown before, in the case of S¢*, the order of the drawing sequence
is very critical and strongly affected by the pattern’s layout. In order to discuss
the drawing-order of borders, we associate a pattern with an undirected graph,
defined below. In the following, we apply each border style in S only on unit
cell, which simplifies the explanation. Actually, this restriction may affect the

number of drawing steps, but not the (in)completeness of S5.
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Fig. 11. Proof of Proposition 1

For a given pattern, we say (distinct) unit cells are neighbors to each other
if they share a border. For example, cell ¢(z,y) and c¢(x + 1,y) are neighbors if
the former has a bottom border, or equivalently the latter a top one. Given a
pattern P of borders {b1,ba, - ,bn}, a neighborhood graph G(P) is defined by
a graph of node set V(P) and edge set E(P), where

V(P)={u;;|1<i,j<n} and,
E(P) = {(ui j,ukz) | c(i,j) and c(k, £) are neighbors}.

Note that each node u; ; corresponds to unit cell ¢(¢, j). As for the pattern and
its corresponding neighborhood graph, we have the following result:

Theorem 7. Pattern P has no feasible drawing sequences on S5 if and only
if its neighborhood graph G(P) contains a cycle.

Proof. (=) Suppose that G(P) does not have a cycle, i.e., G(P) is a tree. Take
an arbitrary node as root r, then find paths from r to its leaves. According to the
paths, we add direction information (u; — us2) to each edge e = (u1,u2), which
means that u; is a tail node and us a head one. If, for example, the edge between
u1,2 and ug 2 has direction (u1,2 — us2,2), then the operation (¢(2,2) : ¢(2,2), tow)
is executed. Due to the orientation, in-degree of each node is at most 1, which
implies that a border of each node (or cell) once drawn will not be erased.
Therefore, according to the tree-orientation, we can find at least one drawing
sequence that can draw P.

(<) We just give a sketch. We show that G(P) containing a cycle cannot be
drawn by S} by contradiction. Suppose that G(P) can be drawn by S*. This
means that S5 has a finite drawing sequence of styles for a pattern correspond-
ing to a simple cycle C, because drawing sequences that are noncontiguous for
the cycle always leave some borders undrawn. Note that if we apply one of the
bw-type border styles, then one border is added but at the same time three other
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ones are deleted. Hence, the node corresponding to the cell where the last style
of the drawing sequence is placed must be a leaf, which is a contradiction. O

From the above theorem, every subset of S is also not complete. Since we have
a simple characterization of the drawability and the incompleteness means the
number of patterns which can be drawn is small, one might think that, for exam-
ple, BDP(S%", k) becomes tractable. However, it still remains N'P-complete even
for BDP({r®" 1"} k), although we omit the details due to the space limitation.

Theorem 8. BDP(S, k) is N'P-complete for any of the following S: {r®® t**},
{re,ohy, (e 0}, {000 0Py, SEN{e SR Y, SN}, S\ (b}
and S§v. O
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Abstract. In the classical wolf-goat-cabbage puzzle, a ferry boat man
must ferry three items across a river using a boat that has room for only
one, without leaving two incompatible items on the same bank alone. In
this paper we define and study a family of optimization problems called
FERRY problems, which may be viewed as generalizations of this familiar
puzzle.

In all FERRY problems we are given a set of items and a graph with
edges connecting items that must not be left together unattended. We
present the FERRY COVER problem (FC), where the objective is to deter-
mine the minimum required boat size and demonstrate a close connec-
tion with VERTEX COVER which leads to hardness and approximation
results. We also completely solve the problem on trees. Then we focus
on a variation of the same problem with the added constraint that only
1 round-trip is allowed (FC1). We present a reduction from MAX-NAE-
{3}-SAT which shows that this problem is NP-hard and APX-hard. We
also provide an approximation algorithm for trees with a factor asymp-
totically equal to g. Finally, we generalize the above problem to define
FC,,, where at most m round-trips are allowed, and MFT}, which is the
problem of minimizing the number of round-trips when the boat capac-
ity is k. We present some preliminary lemmata for both, which provide
bounds on the value of the optimal solution, and relate them to FC.

Keywords: approximation algorithms, graph algorithms, vertex cover,
transportation problems, wolf-goat-cabbage puzzle.

1 Introduction

The first time algorithmic transportation problems appeared in western litera-
ture is probably in the form of Alcuin’s four “River Crossing Problems” in the
book Propositiones ad acuendos iuvenes. Alcuin of York, who lived in the 8th
century A.D. was one of the leading scholars of his time and a royal advisor in
Charlemagne’s court. One of Alcuin’s problems was the following:

A man has to take a wolf, a goat and a bunch of cabbages across a river, but
the only boat he can find has only enough room for him and one item. How can
he safely transport everything to the other side, without the wolf eating the goat
or the goat eating the cabbages?

This amusing problem is a very good example of a constraint satisfaction prob-
lem in operations research, and, quite surprisingly for a problem whose solution

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 227-239, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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is trivial, it demonstrates many of the difficulties which are usually met when
trying to solve much larger and more complicated transportation problems ([2]).

In this paper we study generalizations of Alcuin’s problem which we call
FERRY problems. In these problems, which belong to a wide family of transporta-
tion problems, the goal is to ferry a set of items across a river, while making sure
that items that remain unattended on the same bank are safe from each other.
The relations between items are described by an incompatibility graph, and the
objective varies from minimizing the size of the boat needed to minimizing the
number of trips.

There are many reasons which make the study of FERRY problems interesting
and worthwhile. First, as they derive from a classical puzzle, they are amusing
and entertaining, while at the same time having algorithmic depth. This makes
them very valuable as a teaching tool because puzzles are very attractive to stu-
dents. Several other applications of these concepts are possible. For example in
cryptography, the items may represent parts of a key and the incompatibilities
may indicate parts that could be combined by an adversary to gain some infor-
mation. A player wishes to transfer a key to someone else, without allowing him
to gain any information before the whole transaction is complete.

The rest of this paper is structured as follows: basic definitions and prelimi-
nary notions are given in Section 2. In Section 3 we study the FERRY COVER
problem without constraints on the number of trips and present hardness and
approximation results, as well as results for several graph topologies. Section
4 consists of an analysis of the TRIP-CONSTRAINED FERRY COVER problem
with the maximum number of trips being three, i.e. only one round-trip allowed.
We present a reduction from MAX-NAE-{3}-SAT which leads to hardness re-
sults for this variation. In Section 5 we analyze the general TRIP-CONSTRAINED
FErRrRY COVER and MIN FERRY TRIPS problems presenting several lemmata
that provide bounds on the value of the optimal solution and relate them to FC.
Finally, conclusions and directions to further work are given in Section 6.

2 Definitions — Preliminaries

The rules of the FERRY games can be roughly described as follows: we are
given a set of n items, some of which are incompatible with each other. These
incompatibilities are described by a graph with vertices representing items, and
edges connecting incompatible items. We need to take all n items across a river
using a boat of fixed capacity k without at any point leaving two incompatible
items on the same bank when the boat is not there. We seek to minimize the
boat size in conjunction with the number of required trips to transfer all items.

Let us now formally define the FERRY problems we will focus on. To do
this we need to define the concept of a legal configuration. Given an incompat-
ibility graph G(V, E), a legal configuration is a triple (Vy,,Vg,b), VL, U Vg =
V.V NV =0,b € {L, R} s.t. if b = L then Vg induces an independent set on
G else Vi, induces an independent set on G. Informally, this means that when
the boat is on one bank all items on the opposite bank must be compatible.
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Given a boat capacity k a legal left-to-right trip is a pair of legal configurations
((Vey, VR, » L), (Vy, VR, R)) s.t. Vi, € Vi, and |Vi,| — |Vi,| < k. Similarly a
right-to-left trip is a pair of legal configurations ((V1.,, Vr,, R), (Vi,, Vr,, L)) s.t.
Ve, € VR, and |Vg, | — |Vr,| < k. A ferry plan is a sequence of legal configura-
tions starting with (V, 0, L) and ending with (0, V, R) s.t. successive configura-
tions constitute left-to-right or right-to-left trips. We will informally refer to a

succession of a left-to-right and a right-to-left trip as a round-trip.

Definition 1. The FERRY COVER (FC) problem is, given an incompatibility graph
G, compute the minimum required boat size k s.t. there is a ferry plan for G.

We will denote by OPTgc(G) the optimal solution to the FERRY COVER problem
for a graph G.
We can also define the following interesting variation of FC.

Definition 2. The TRIP-CONSTRAINED FERRY COVER problem is, given a
graph G and an integer trip constraint m compute the minimum boat size k
s.t. there is a ferry plan for G consisting of at most 2m + 2 configurations, i.e.
at most 2m + 1 trips, or equivalently m round-trips plus the final trip.

We will denote by OPTrc,,(G) the optimal solution of TRIP-CONSTRAINED
FERRY COVER for a graph G given a constraint on trips m.

The problem of minimizing the number of trips when the boat capacity is
fixed can be defined as follows:

Definition 3. The MIN FERRY TRIPS problem is, given a graph G and a boat
size k determine the number of round-trips of the shortest possible ferry-plan for
G with capacity k.

We will denote by OPTypr, (G) the optimal solution of MIN FERRY TRIPS for
a graph G given a boat capacity k. It should be noted that for some values of k
there is no valid ferry-plan. In these cases we define OPTyipr, = 00.

For the sake of completeness let us also give the definition of the well-studied
NP-hard VERTEX COVER and MAX-NAE-{3}-SAT problems ([3]).

Definition 4. The VERTEX COVER problem is, given a graph G(V,E) find a
mianimum cardinality subset V' of V' s.t. all edges in E have at least one endpoint
in V' (such subsets are called vertex covers of G).

We denote by OPTyc(G) the cardinality of a minimum vertex cover of G.

Definition 5. The MAX-NAE-{3}-SAT problem is, given a CNF formula
where each clause contains exactly 3 literals, find the maximum number of clauses
that can be satisfied simultaneously by any truth assignment. In the context of
MAX-NAE-{3}-SAT, we say that a clause is satisfied when it contains two
literals with different values.

Finally, let us give the definition of the H-COLORING problem, which will be
useful in the study of FCj.
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Definition 6. For a fized graph H(Vy, Er) possibly with loops but without mul-
tiple edges, the H-COLORING problem is the following: given a graph G(Vg, Eg),
find a homomorphism 0 from G to H, i.e. a map 0 : Vo — Vg with the property
that (u,v) € Eg = (0(u),0(v)) € Eq.

The above problem was defined in [4]. Informally, we will refer to the vertices of
H as colors.

3 The Ferry Cover Problem

In this section we present several results for the FERRY COVER problem which
indicate that it is very closely connected to VERTEX COVER. We will show that
FERRY COVER is NP-hard and that it has a constant factor approximation.

Lemma 1. For any graph G, OPTyc(G) < OPTrc(G) < OPTve(G) + 1.

Proof. For the first inequality note that if we have boat capacity k and OPTy¢(G)
> k, then no trip is possible because any selection of k vertices to be transported
on the initial trip fails to leave an independent set on the left bank.

For the second inequality, if we have boat capacity OPTy¢ + 1 then we can
use the following ferry plan: load the boat with an optimal vertex cover and
keep it on the boat for all the trips. Use the extra space to ferry the remaining
independent set vertex by vertex to the other bank. Unload the vertex cover
together with the last vertex of the independent set. O

Theorem 1. There are constants €g,ng > 0 s.t. there is no (14 e€p)-approzima-
tion algorithm for FERRY COVER with instance size greater than ng vertices
unless P=NP.

Proof. 1t is known that there is a constant eg > 0 such that there is no
(1—eg)-approximation for MAX-3SAT unless P=NP([1]) and that there is a gap
preserving reduction from MAX-3SAT to VERTEX COVER. We will show that
there is also a gap-preserving reduction from MAX-3SAT to FERRY COVER.

The gap-preserving reduction to VERTEX COVER in [3] and [6] implies that
there is a constant ey > 0 s.t. for any 3CNF formula ¢ with m clauses we
produce a graph G(V, E) s.t.

2
OPTyax_3saT(¢) = m = OPTyc(G) < 3 \4

2
OPTMAX73SAT(¢) < (1 — es)m = OPTvc(G) > (1 + ev)

\%
S
In the first case it follows from Lemma 1 that
2 2
OPTvc(G) < 3\V‘ = OPTrc(G) < 3\V\ + 1.
In the second case,

2 1+ 2
OPTyo(G) > (1+ev)5|V] = OPTro(G) > (1 +ev — o, - )V +1).

3 sVI+17°3
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14ey
2IVI+1

rs Elv] completes the proof. O

For |[V| > 3 ! there is a constant ep > 0 s.t. ey — > ep. Setting ng =

Corollary 1. FERRY COVER is NP-hard

Proof. Tt follows from Theorem 1 that an algorithm which exactly solves large
enough instances of FERRY COVER in polynomial time, and therefore achieves
an approximation ratio better than (1 + ep), implies that P=NP. O

It should be noted that the constant e¢r in Theorem 1 is much smaller than
ey . However, this is a consequence of using the smallest possible value for ny.
Using larger values would lead to a proof of hardness of approximation results
asymptotically equivalent to those we know for VERTEX COVER. This is hardly
surprising, since Lemma 1 indicates that the two problems have almost equal
optimum values. Lemma 1 also leads to the following approximation result for
FERRY COVER.

Theorem 2. A p-approzimation algorithm for VERTEX COVER implies a (p +

OP}FFC)—appro:cimation algorithm for FERRY COVER.

Proof. Consider the following algorithm: use the p-approximation algorithm for
VERTEX COVER to obtain a vertex cover of cardinality SOLvy ¢, then set boat
capacity equal to SOLpc = SOLyc + 1. This provides a feasible solution since
loading the boat with the approximate vertex cover leaves enough room to trans-
port the remaining independent set one by one as in Lemma 1. Observe that
SOLgpc = SOLyc + 1 < pOPTye + 1 < pOPTgc + 1 (the first inequality from
the approximation guarantee and the second from Lemma 1). (I

We now present some examples for specific graph topologies.
Ezample 1. If G is a clique, i.e. G = K,,, then OPTpc(G) = OPTvc(G) = n—1.
Ezample 2. If G is a ring, i.e. G = C), then OPTpc(G) = OPTvc(G) =[5 1.

Ezample 3. Consider a graph G(V, E), |V| > n+ 3 s.t. G contains a clique K,
and the remaining vertices form an independent set. In addition every vertex
outside the clique is connected with every vertex of the clique. For example see
Figure 1.

We will show that OPTrc(G) = OPTve(G) + 1. Assume that OPTrc(G) =
OPTyc(G). The optimal vertex cover of G is the set of vertices of K,,. A ferry
plan for G should begin by transferring the clique to the opposite bank and
then leaving a vertex there. On return the only choice is to load a vertex from
the independent set, because leaving any number of vertices from the clique is
impossible. On arrival to the destination bank we are forced to unload the vertex
from the independent set and reload the vertex from the clique. We are now at
a deadlock, because none of the vertices on the boat can be unloaded on the left
bank.

The graph G described in this example is a generalization of the star, where
the central vertex is replaced by a clique. The star is the simplest topology where
OPTrc(G) = OPTyc(G) + 1.
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Fig. 1. An example of the graph described in Example 3

The following theorem, together with the observation of Example 3 about stars,
completely solves the FERRY COVER problem on trees.

Theorem 3. If G is a tree and OPTyc(G) > 2 = OPTrc(G) = OPTyc(G).

Proof. Let v1, v be two vertices of an optimal vertex cover of G. Then v; and
v2 have at most one common neighbor, because if they had two then G would
contain a cycle. We denote by u the common neighbor of v; and wvs, if such a
vertex exists.

Then a ferry plan for G is the following: load the vertex cover in the boat
and unload v; in the opposite bank. Then transfer all the neighbors of vo vertex
by vertex, leaving vertex u last to be ferried. When w is the only remaining
neighbor of vy on the left bank, unload v, and load w on the boat. On arrival
to the destination bank unload w and load v;. The remaining vertices of the
independent set are now transported one by one to the destination bank and
finally vo is loaded on the boat on the last trip and transported across together
with the rest of the vertex cover. (]

Remark 1. If OPTyc(G) for a tree G is 1 (i.e. the tree is a star) then
OPTrc(G) = 2 unless the star has no more than 2 leaves, in which case
OPTyc(G) = 1.

Corollary 2. The FERRY COVER problem can be solved in polynomial time in
trees.

Proof. The VERTEX COVER problem can be solved in polynomial time in trees.
Theorem 3 and Remark 1 imply that determining OPTy¢ is equivalent to
determining OPTpc.

4 The Trip-Constrained Ferry Cover Problem with Trip
Constraint 1

An interesting variation of FC is the TRIP-CONSTRAINED FERRY COVER prob-
lem where there is a limit on the number of trips allowed. In this section we study
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TRIP-CONSTRAINED FERRY COVER in the case of a very tight trip constraint,
i.e. when only one round-trip is allowed (recall that we denote this variation by
FC;). We will show that even in this case the problem is NP-hard, by obtaining
a reduction from MAX-NAE-{3}-SAT. Our reduction is gap-preserving, and
therefore we will also show that FC; is APX-hard.

We will use the H-COLORING problem to obtain an equivalent definition for
FC;.

Lemma 2. A ferry plan of a graph G for FCy is equivalent to an F}-coloring
of graph G, where Fy is the graph of Figure 2.

09

Fig. 2. Graph F; of Lemma 2

Proof. Given a ferry plan we can define the following homomorphism 6 from G
to F} 1:

— 0(u) = 1, for all vertices u of G remaining on the boat only during the first
trip,

— 0(u) = 2, for all vertices u of G remaining on the boat throughout the
execution of the plan,

— 0(u) = 3, for all vertices u of G remaining on the boat only during the final
trip.

Given an Fj-coloring we can devise a ferry plan from the above in the obvious
way. ([l

Corollary 3. For any graph G(V, E) OPTrc, (G) = min{|Va|+max{|V4],|V5]}},
where the minimum is taken among all proper Fy-colorings of G and Vi, V2, V3
are the subsets of V' that have taken the colors 1, 2 and 3 respectively.

Proof. From Lemma 2 we obtain a ferry plan for FCy: load the subsets V4 and
V5 in the first trip and unload the subset V; in the opposite bank while keeping
V5 on the boat. Then return to the first bank and load V3 together with V5 and
transport them to the destination bank.

This implies that the boat should have room for V5 together with the larger
of the sets V7 and V5. O

From now on we will refer to the value |Va| + max{|V1],|V3|} as the cost of
an Fj-coloring. Thus, FC; can be reformulated as the problem of finding the
minimum cost over all possible Fj-colorings. This reformulation leads to the
following theorem:
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Theorem 4. FC; is NP-hard. Furthermore, there is a constant ep > 0 s.t. there
is no polynomial-time (1 + ep)-approzimation algorithm for FCy, unless P=NP.

Proof. We present a gap-preserving reduction from MAX-NAE-{3}-SAT. Our
first step in the reduction is, given a formula ¢ with m clauses, to construct a
formula ¢’ with 2m clauses by adding to ¢ for every clause (11 VI3V 13) the clause
(l1VI2 Vl3). Observe that if a formula contains the clause (I3 VI2Vlis3), we can add
the clause (I VI3 Vi3) without affecting the formula’s satisfiability, since a truth
assignment satisfies the first clause (in the NAESAT sense) iff it satisfies both.
Note that this also has no effect on the ratio of satisfied over unsatisfied clauses
for any truth assignment. In addition, for any 4, literals I; and [; appear in ¢’ the
same number of times. Note that, since this is the version of NAESAT where
every clause has exactly three literals, the sum of the numbers of appearances
of all variables in ¢’ is equal to 6m.

Next, we construct a graph G from ¢’. Every variable x; must appear an
even number of times in ¢’, half of them as z; and half as —x;. Let 2f; denote
the total number of appearances of the variable x;. Then, for every variable z;
we construct a complete bipartite graph Ky, r,. One half of the bipartite graph
represents the appearances of the literal z; and the other half the appearances
of the literal —x;.

For every clause (I V12 V13), we construct a triangle. We connect each vertex
of the triangle to a vertex of the bipartite graph that corresponds to its literal,
and has not already been connected to a triangle vertex. This is possible, since
the vertices in the bipartite graphs that correspond to a literal [; are as many
as the appearances of the literal [; in ¢, and therefore as many as the vertices
of triangles that correspond to l;. This completes the construction, and we now
have a graph where every vertex of a triangle has degree 3 and every vertex of
a Ky, y, has degree f; + 1.

Suppose that our original MAX-NAE-{3}-SAT formula ¢ had m clauses,
and we are given a truth assignment which satisfies ¢ of them. Let us produce an
Fi-coloring of G with cost 8m — t. The given truth assignment satisfies 2¢ of the
2m clauses of ¢’. Assign colors 1 and 3 to the vertices of the bipartite graphs,
depending on the truth value assigned to the corresponding literal (1 for false
and 3 for true). Every triangle corresponding to a satisfied clause can be colored
using all three colors, by assigning 1 to a true literal, 3 to a false literal and
2 to the remaining literal. Triangles corresponding to clauses with all literals
true are colored with two vertices receiving 2 and one receiving 1. Similarly,
triangles corresponding to clauses with all literals false are colored with two
vertices receiving 2 and one receiving 3. Note that, due to the construction of ¢’,
the number of clauses with all literals true, is the same as the number of clauses
with all literals false. Therefore, [Vi| = |V5| = 3, fi4+2t+ 2™, % = 4m+t, while
[Va| = 2t + 2(2m — 2t) = 4m — 2t making the total cost of our coloring equal to
8m —t.

Conversely, suppose we are given an Fij-coloring of G with cost at most 8m —t,
we will produce a truth assignment that satisfies at least 2¢ clauses of ¢’ and
therefore at least t clauses of ¢. We will first show that this can be done when



The Ferry Cover Problem 235

the color 2 is not used for the vertices of the bipartite graphs, and then show
that any coloring which does not meet this requirement can be transformed to
one of at most equal cost that does.

If color 2 is not used in the bipartite graphs, then the cost for these vertices
is >, fi = 3m. Therefore, the cost for the 2m triangles is at most 5m — t. No
triangle can have cost less than 2, therefore there are at most m — t triangles
with cost 3, or equivalently at least m + ¢ triangles of cost 2. Suppose that no
triangle uses color 2 three times (if not, pick one of its vertices arbitrarily and
color it with 1 or 3, without increasing the total cost). Also, wlog suppose that
[Va| > |V4] (if not, colors 1 and 3 can be swapped without altering the cost).

Now, triangles can be divided in the following categories:

1. Triangles that use color 2 once. These triangles also use colors 1 and 3 once
and their cost is 2.

2. Triangles that use color 2 twice and color 1 once. These triangles have a cost
of 2.

3. Triangles that use color 2 twice and color 3 once. The cost of these triangles
is 3.

Suppose that the first category has k triangles (these correspond to clauses
that will be satisfied by the produced truth assignment). Now, V3| < >, fi +
m—t+k, but V3| > |Vi| >3 fi+m+t, thus, m+t<m—t+k=Fk>2t
Produce a truth assignment according to the coloring of the bipartite graphs
(I — false and 3 — true). The assignment described above satisfies at least k
clauses.

If color 2 is used in the bipartite graphs, we distinguish between two separate
cases: first, suppose that the same side of a bipartite graph does not contain both
colors 1 and 3. In other words, one side is colored with 1 and 2, and the other
with 2 and 3. On the first side, pick a vertex with color 2. If its only neighbor
from a triangle has received colors 2 or 3, change its color to 1. If its neighbor
has received color 1 exchange their colors. Repeat, until no vertices on that side
have color 2 and proceed similarly for the other side, thus eliminating color 2
from the bipartite graphs without increasing the total cost.

Finally, suppose that the same side of a bipartite graph contains both colors
1 and 3 (let A denote the set of vertices of this side). Then, the other side (the
set of its vertices is denoted by B) must contain only color 2. We will reduce this
case to the previous one. Let A; be the subset of A consisting of vertices colored
with 1 and As the subset of vertices colored with 3 (|A1] + |As| < |A|). Let By
be the subset of B consisting of vertices connected with triangle vertices colored
with 2 or 3, and let Bs be the subset of B consisting of vertices connected with
triangle vertices colored with 2 or 1 (|B1| + |Bs| > |B|). Since |A| = |B| then
|A1] < |By] or |As] < |Bs|. If |A1| < |Bj| then assign color 2 to all vertices of
A; and color 1 to all vertices of By (this does not increase the total cost), thus
eliminating color 1 from side A. If |A3| < |Bj| similarly assign color 2 to the
vertices of A3 and color 3 to the vertices of Bs.
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The above reduction shows that given a MAX-NAE-{3}-SAT formula ¢ with
m clauses we can construct a graph G s.t.

OPTyax-NaE-{3}-saT(¢) = m = OPTkc, (G) = Tm

=7
OPTymax-NaE-(3}-saT(9) < (1 — €)m = OPTrc, (G) > (1 +€p)Tm

where e = 7. In other words we have constructed a gap-preserving reduction
from MAX-NAE-{3}-SAT to FC;, by making use of the reformulation with
H-colorings. Well-known hardness results for MAX-NAE-{3}-SAT (see for ex-
ample [5]) complete the proof of this theorem. O

Theorem 5. There is a g—approximation algorithm for FCy on trees.

Proof. First observe that OPTrc, (G) > 75, since the boat only arrives to the
destination bank twice, and therefore it must be able to carry at least half of the
vertices of G. Next, it can be shown that OPTyc(G) < 7, since on trees there is
always an independent set of size at least . This can be trivially shown, since
trees are bipartite graphs.

A ferry plan for a tree is the following: compute an optimal vertex cover (its
size is at most 7 ) and place all its vertices on the boat. Fill the boat with enough
of the remaining vertices so that it contains [ % | vertices. Move to the other side,
compute an optimal vertex cover of the graph induced on the original graph by
the vertices on the boat (its size is at most (7221]) and keep only those vertices
on the boat. Return to transfer the remaining vertices to the destination bank.

Clearly, a boat capacity of at most [g] + 151 < 32 is sufficient to execute this
plan, and this is at most g times the optimal. (Il

The ideas of the previous theorem can be further refined to produce the following
result:

Theorem 6. There is an approzimation algorithm for FCy on trees with ap-
prozimation guarantee asymptotically equal to é.

Proof. Suppose now that instead of transporting 3 vertices on the first trip we
wish to transport ' vertices for some k& > 1. Upon arrival to the destination
bank we unload at least half of them and return with at most J; vertices. Now
we need to take all the remaining vertices to the other side.

This plan requires a boat capacity of max{7, ;; +n — }}. It is not hard to
see that this is minimized for k = g Thus, by taking two thirds of the vertices
on the initial trip we devise a ferry plan that requires a capacity of 2; vertices.
Clearly, this is at most é times the optimal.

Unfortunately, the preceding analysis requires that n is a multiple of 3. If this
is not the case we would be required to take f23"1 < 23" + 1 vertices. This results
to an approximation ratio bounded by g + Z which tends to g as n tends to
infinity. |
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5 The Trip-Constrained Ferry Cover and Min Ferry Trips
Problems

In this section we study TRIP-CONSTRAINED FERRY COVER for general values
of the trip constraint and present several lemmata which provide bounds on the
optimal solution and relate FC,,, to FC. We extend the reasoning behind those
lemmata to prove a set of similar results for MIN FERRY TRIPS.

First note that a very loose constraint on the number of trips makes the
problem equivalent to the FERRY COVER problem.

Lemma 3. For any graph G(V, E), |V| =n, OPTpc,._,(G) = OPTrc(G).

Proof. Any solution to FCax_1(G) allows a ferry plan with at most 2% con-
figurations. There are at most 2" partitions of the vertices of G into two sets,
therefore there are at most 2"t! possible legal configurations. No optimal ferry
plan repeats the same configuration twice, since the configurations found be-
tween two successive appearances of the same configuration in a ferry plan can
be omitted to produce a shorter plan. Therefore, any optimal ferry plan for the
unconstrained version has at most 2"t configurations and can be realized within
the limits of the trip constraint. O

Loosening the trip constraint can only improve the value of the optimal solution.
Lemma 4. For any graph G and any integeri > 0, OPTrc,(G) > OPTrc, ., (G).

Proof. Observe that a ferry plan with trip constraint ¢ can also be executed with
trip constraint ¢ + 1. O

A different lower bound is given by the following Lemma.

Lemma 5. For any graph G(V, E), OPTyc,, (G) > Tlx_ll

Proof. Observe that a trip constraint of m implies that for any ferry plan the
boat will arrive at the destination bank at most m + 1 times. Therefore, at least

M vertices. O

one of them it must carry at least "

Corollary 4. There is an (m + 1)-approximation algorithm for FC,,.

Proof. A boat of capacity |V| can trivially solve the problem. From Lemma 5 it
follows that this solution is at most m + 1 times the optimal. O

Setting the trip constraint greater or equal to the number of vertices makes the
constrained version of the problem similar to the unconstrained version.

Lemma 6. For any graph G(V, E), with |V| =n, OPTyc(G) < OPTpc, (G) <
OPTvc(G) + 1.

Proof. For the first inequality, a boat capacity smaller than the minimum vertex
cover allows no trips. For the second inequality it suffices to observe that the
ferry plan of Lemma 1 can be realized within the trip constraint. ([
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Corollary 5. Determining OPTrc,, is NP-hard for all m > n. Furthermore,
there are constants ep,ng > 0 s.t. there is no (1 + ep)-approximation algorithm
for OPTgc,, with instance size greater than ng vertices unless P=NP.

Proof. By using Lemmata 6 and 4 we can show that OPTy¢(G) < OPTgc,, <

m —

OPTyc(G) 4 1. The rest of the proof is similar to that of Theorem 1. O

It is unknown whether there are graphs where OPTpc, (G) > OPTpc(G). We
conjecture that there is a threshold f(n) s.t. for any graph G, OPTrc;,,,, (G) =
OPTrc(G) and that f(n) is much closer to n than 2" — 1 which was proven in
Lemma 3.

Following similar reasoning as in Lemmata 3 - 6 we reach the following results
for MFT}:

Lemma 7. For any graph G(V, E), [V]| =n

1. Ifk= OPTVC(G) then OPTypT, (G) <2" —1 or OPTypr, (G) =00
2. For any integer k, OPTyrr, (G) > OPTyrr, ,, (G)
3. OPTyrr, >} — 1

Proof. Similar to proofs of Lemmata 3,4,5,6 respectively.

MFTy is at least as hard as FC since determining the optimal number of trips
involves deciding whether a ferry-plan is possible with the given boat capacity,
which is exactly the decision version of FC. However, it would be interesting to
investigate whether MF Ty, remains NP-hard even for k > OPTy¢ + 1, in which
case there is always a valid ferry plan. We conjecture that the problem remains
NP-hard in that case.

6 Conclusions and Further Work

In this paper we have investigated the algorithmic complexity of several vari-
ations of FERRY problems. For the unconstrained FERRY COVER problem we
have presented results that show it is very closely related to VERTEX COVER,
which is a consequence of the fact that the optimal values for the two problems
are almost equal.

For FC; we have presented hardness results, but the question of how the
problem can be efficiently approximated is open. It would be interesting to see
an approximation algorithm which achieves a ratio better than 2, which can be
achieved trivially by setting boat size n.

For the TRIP-CONSTRAINED FERRY COVER and MIN FERRY TRIPS prob-
lems, we have presented several lemmata that point out their relation to FC. We
believe that these variations are more interesting because they appear to be less
related to VERTEX COVER than FC. It remains an open problem to determine
at which value of the trip constraint FC,,, becomes equivalent to FC (however,
an upper bound on this value is 2" — 1, as shown in Lemma 3). This is a particu-
larly interesting question since so far it remains open whether FC is in NPO, or
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there exist graphs where every optimal ferry plan is of exponential length. How-
ever, we believe it is highly unlikely that FC is not in NPO. Finally, it would be
interesting to investigate whether there are values of m for which FC,, can be
solved in polynomial time, but we believe that hardness results similar to those
for m =1 and m > n hold for all values of m.
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Abstract. Graphides cincinnatae (also known as circulant graphs)
Cin(L) of n vertices are studied here as link farms in the Web, built
automatically by a spammer to promote visibility of a page 1. These
graphs are k-consecutive, denoted by C'iy i, if each vertex v; is connected
to vi4; and v;—; with 7 = 1,2, ..., k. Graphides cirratae are cincinnatae
with some irregularities. We discuss how to fight this phenomenon with
a set of Web marshals, that is autonomous agents that visit the farm for
cutting the links to 7". The farm reacts reconstructing the links through
majority voting among its pages. We prove upper and lower bounds on
the number of marshals, and of link hops, needed to dismantle the farm.
We consider both synchronous and asynchronous operations.

Regular Keywords: Circulant graph, Web graph, Page-rank, Web
spam, Link farm, Autonomous agent, Majority rule.

Elegant Keywords: Graphis cincinnata, Graphis cirrata, Curly graph,
Web marshal.

1 Background

A known definition (aside perhaps for the wording) is the following:

Definition 1. A graphis cincinnata! Ci, (L) is a graph of n vertices vo,v1, ...,
Un—1 in which v; is connected to viy; and v,—; for each j in a list L (indices are
taken modulo n).

In particular we say that a graphis cincinnata Ci,,(L£) is k-consecutive, denoted
by Cliy i, if £ is the list of consecutive integers 1, 2,..., k. C'iy (1,2, 3) and Cip(1,4)
are shown in Figure 1. The former is 3-consecutive, also denoted as Cf,, 3.
Graphides cincinnatae emerge from pure graph theory to the Web, to assume
arole in the so called “visibility bubble”. Reference is generally made to Google’s
page-ranking, although all search engines suffer similar attacks. The main tech-
nique for boosting page visibility is well known (e.g., see [5,6]). A spammer
creates a link farm (also called spam farm) F of n boosting pages pointing to
a target page T whose ranking is to be artificially increased. Then the spammer

* As to now, no foreseeing institution has sponsored this research.
! Plural: “Grafides cincinnatae”, literally “curly graphs”. Dully called “circulant
graphs” in the literature [2,10].

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 240-248, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Web Marshals Fighting Curly Link Farms 241

A

Fig. 1. Graphides cincinnatae Ci,(1,2,3) = Ciyn,3 and Ciy,(1,4)

blog

the Web

Fig. 2. Schematic of a link farm F' promoting a target page T'

provides links to F' from regular pages outside F', for example by posting a hy-
perlink to F' in a public blog or in a Web page open to be written in. Such a
structure is sketched in Figure 2.

Conditions for enhancing the efficiency of a link farm have been indicated
in [7], and then thoroughly studied in [3] and in [1], respectively from a theoretical
and an experimental point of view. In particular, in the latter work link farms
are detected by a robot (or crawler) as densely connected subgraphs, where each
node is related to the rest of the graph only for incoming links from some blog,
and for the out link to the target page T (for simplicity we assume that only
one page is targeted). Since F' contains a high number of pages and is built
automatically, it seems reasonable to assume that it has a regular structure. In
fact we shall assume that F' is a graphis cincinnata or some of its variations.

We propose that, after a link spam F' has been detected by a crawler, a group
of autonomous agents called Web marshals be sent to dismantle F with mini-
mum amount of changes done in its pages. On its side the spammer has provided
a recovery mechanism against the marshals, based on automatic information
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exchange among the pages of F'. The fighting is carrying on, and its terms will
now be explained.

2 Recovering by Proximity

Assume that m marshals My, My, ..., M,,_1 are sent all together to a vertex of
F, from which they start moving along the links. Before the attack takes place
all the vertices of F' are harmful. When a marshal reaches a harmful vertex
v, it makes it harmless by changing one bit in the link from v to the target
page T'. Periodically the vertices of F' interrogate their adjacent peers to check
the value of the link to 7', and “repair” it automatically by taking as correct
value the one stored in the majority (i.e., more than one half) of its neighbors.
So a vertex v made harmless might become harmful again, or vice-versa. Our
algorithms, however, insures that, after v has been made harmless it will be
unable to recover. That is, after the attacking marshal has gone, v is never
surrounded by a majority of harmful neighbors.

This acting model is a combination of the ones based on mobile agents [4],
and on dynamos [9], as already been proposed in [8] for repairing faulty net-
works. Clearly it can be modified at will. Our problem is finding the minimum
number of agents needed to dismantle a link farm, together with the attacking
algorithm. Of minor importance is the time (or the number of link hops) needed
by the marshals, in view of the fact that they will work asynchronously. Still,
for simplicity we will examine synchronous functioning first, and then show how
such a limitation can be removed.

Let the harmful vertices of F' be white; the harmless vertices still containing
a marshal be black; and the harmless vertices previously visited by a marshal,

Fig. 3. Ci,, 2 promoting the ranking of one page, and the three marshals. Edges without
an arrow represent links in two directions.
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and presently without one, be gray (see Figure 3). As the link farms considered
here are graphides cincinnatae, all their vertices have the same degree § and
the majority of their neighbors in F' is equal to §/2 + 1 (recall that only the
edges among vertices of F' are considered, and that 0 is even). For a vertex v,
let o(v) denote the number of its harmless neighbours (black or gray) at any
given moment. Our model must obey to the following basic lemma, that is easily
derived from a result of [8] noting that, if the stated conditions were violated, v
would become harmful again.

Lemma 1. Let a vertex v contain one marshal M :

1. if o(v) < 6/2, M cannot move from v;
2. if o(v) =8/2, M can only move to a white neighbour of v;
3. if o(v) > 8§/2, M can move to any neighbour of v.

3 Fighting Link Farms

The three basic parameters here are: n = number of vertices in F'; m = number
of marshals; and k for Ciy, i, or in general k = greatest element in £ for C'i,, (L).
Note that 6 = 2k for C'iy, k, or in general 6 = 2|L]| for C'i,,(L£). With the vertex
numbering of Definition 1, we recognize a main cycle vy, v1, va, ..., Vp—1 in Ciy, (L)
(e.g., see Figure 1). We assume that the marshals can discriminate among the links
of each page of F', in particular, they can recognize the links of the main cycle.

We start by presenting a simple algorithm for dismantling a link farm F' in
the form of a k-consecutive graphis cincinnata C'%,, j, with m = k + 1 marshals.
We prove that this value is minimum, i.e., less marshals cannot do the job,
and that the total number of link hops is also minimum if the marshals work
synchronously. Note that it is not required that the marshals know the value of
n, so they can work with fixed memory size, but they must be able to recognize
each other upon meeting in a vertex.

Algorithm 1. Dismantling C'iy, j; with m =k + 1 marshals Mo, My, ..., M, 1.
start with the marshals in vg;
c=[m/2];
for i € {1,..,c} move M; to v,_; along the link (vy, v,,—;);
for i € {¢+1,..,m — 1} move M, to v;_. along the link (vg,v;_.);
repeat (move M, 1 one step forward along the main cycle)
until (M,,_1 meets M.).

For example three marshals can dismantle C', o as shown in Figure 3, where
two of them are maintained in vertices n — 1 and 0, and the third one travels
along the main cycle. In fact, starting from vertex 1 the third marshal can move
forward since it always has two harmless neighbors in F, that is the number
required by point 2 of Lemma 1. We have:
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Theorem 1. A link farm F in the form of Ciy, ), can be dismantled by m = k+1
synchronous marshals with n link hops.

Proof. Use algorithm 1. Correctness of the algorithm derives from Lemma 1
point 2, as marshal M,, can move forward always maintaining ¢/2 = k harmless
neighbors in F'. The number of hops is the sum of the £ initial moves of marshals
My,..., My,,—1 (two for cycles of the algorithm), plus the next n — k moves of
M,,,—1 along the main cycle. The assumption of synchronicity is required because
marshal M,,_1 could be moving faster than the others, thus moving along the
main cycle before k of its neighbors have become harmless. Q.E.D.

We now prove the the upper bounds of Theorem 1 are tight. We have:

Theorem 2. To dismantle a link farm F' in the form of Ci,, . at least m = k+1
synchronous marshals, and n link hops, are needed.

Proof. 1. Number of marshals. By contradiction, assume that m’ < k marshals
are used. Since all the vertices of F' must be visited, gray vertices will inevitably
appear at some point. Let v be the gray vertex appearing first, that is, all the
other vertices are black or white at this point. v can now have at most m’
harmless neighbors, not a majority as required. Hence v would become white
again, against the attacking rules. (In fact, the marshal that left from v could
not have done it by Lemma 1, because v had at most m’ — 1 < k harmless
neighbors).

2. Number of hops. At least n — 1 moves are needed to reach the vertices
V1,..., Un—1 from vy, and an additional move is needed for a final meeting of two
marshals in the same vertex, to ensure termination. Q.E.D.

We now explain how Algorithm 1 can be simply modified for dismantling a
general Ci, (L) using m = k + 1 marshals, where k is now the greatest element
in £. This is shown in Figure 4 where four marshals M, to M3 are used for
attacking C'i,(1,3). The marshals are initially moved to the vertices n—2,n—1,
0, 1 along the main cycle, as direct links between vy and the other vertices may
not exist in this case. This is done with an obvious modification of the two for
cycles of the algorithm. At this point each marshal occupies a vertex v with
o(v) = 2 = /2 harmless neighbors, then M,,_; can move along the main cycle
as in Algorithm 1 (the first move is shown in Figure 4) because it always reaches
vertices v with o(v) = 2.

It can be easily seen that the total number A of link hops required by the two
for cycles of the algorithm is now given by:

b k24 + k)2 for k even (1)
T\ K4+ k/2+1/4 for k odd

Note that h is integer. We then have:

Theorem 3. A link farm F in the form of Ci, (L) can be dismantled by m =
k + 1 synchronous marshals with n — k + h link hops, where k is the greatest
element in L, and h is given by equation (1).
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Fig. 4. Cin(1,3) dismantled by four marshals

However, we are unable to establish whether these bounds are tight. Noting that
0 = 2|L] we can only state:

Theorem 4. To dismantle a link farm F in the form of Ci,(L) at least m =
k+ 1 synchronous marshals and n link hops are needed, with k = |L|+1.

4 Asynchronous Marshals

As already stated, we expect the marshals to work asynchronously. Therefore
Algorithm 1 and its modification for C%, (£) may not work properly. To overcome
this difficulty we send an additional marshal M, that travels along the graph
to inform the other marshals of their mutual positions. As before let m = k + 1,
where k is the greatest element in £ (then the marshals will be k + 2). To this
end we propose the new Algorithm 2 below.

It can be easily seen that the total number h of link hops required to place
the marshals M;,..., M,,_o into the initial vertices v,_c,..., Um—_2+¢, including
the hops of M,,, is now given by:

b {3(k§/4—k/2) for k even @)
3(k*/4 —k/2+1/4) for k odd
Algorithm 2. Dismantling C'i,, (L) with m + 1 marshals Mg, M, ..., M,,.
start with the marshals in vg;
c=[m/2];

move M; and M, to v,—1 along the main cycle;
when the two marshals meet at v,,_; move M, back to vg;

for i =2 to cdo
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when M, returns to vy
move M; and M,, to v,_; along the main cycle;
when the two marshals meet at v,,_; move M,, back to vg;

move M.y, and M, to v; along the main cycle;
when the two marshals meet at v; move M, back to vg;

fori=c+2tom—2do
when M, returns to vy
move M; and M, to v;_. along the main cycle;
when the two marshals meet at v;_. move M, back to vg;

when M, returns to vy
repeat (move M, 1 one step forward along the main cycle)
until (M,,_1 meets M.).

Referring to Algorithm 2 we can state:

Theorem 5. A link farm F in the form of Ci,(L) can be dismantled by m =
k + 2 asynchronous marshals with n — ¢ + h link hops, where k is the greatest
element in L, ¢ = |(k+1)/2], and h is given by equation (2).

However, we are unable to establish whether these bounds are tight. Theorem 4
still applies, changing asynchronous for synchronous.

5 Concluding with Other Graphides

Graphides cinncinnatae are called cirratae? if some irregularities arise in their
structure. Since the farm F' is built automatically by the spammer, we assume
that only some systematic deviations from the standard form of Ci, (L) may
occur. Assuming that the main cycle vg, v1, ..., V5,1 is maintained, and that the
graph has a repetitive structure, we consider two cases of graphides cirratae:

1. The graph presents alternation of links of different “length” connecting ver-
tices of the main cycle, as in graph C; of Figure 5 where links of length 2
and 4 alternate. In terms of graph theory, these are regular but not circulant
graphs [2,10].

2. The graph has vertices of different degree, as graph C5 of Figure 5. These
are not regular graphs.

In the graphs of type 1 the vertex degree § is constant, and we let & =
max(j — i)modn, where 7,7 are vertex indices such that the link (v;,v;) exists
(i.e., k is the length of the “longest” link outside the main cycle). In graph C;
of Figure 5 we have § =4 and k = 4.

In the graphs of type 2 we let 6 = maximum vertex degree, and k defined as
for type 1. In graph Cs of Figure 5 we have § = 6 and k = 4.

2 Literally, ”with natural curls”.
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Fig. 5. Two graphides cirratae

It can be easily verified that Algorithm 1 (extended for handling C'i, (L) as
indicated), and Algorithm 2, work properly also for graphides cirratae of type 1
and 2, if the start vertex vy is chosen as the source of a “longest” link. In our

example five synchronous marshals, or six asynchronous marshals, can dismantle
both C7 and C5. We have:

Theorem 6. A link farm F in the form of a graphis cirrata of type 1 or 2 can
be dismantled by k + 1 synchronous marshals or k 4+ 2 asynchronous marshals.

To conclude, we are aware that the model presented here is too constrained to
be realistic. In fact we regard it as a way to initiate studying the dismantle-
ment of link farms by autonomous agents. Further work is needed for extend-
ing our algorithms to different proximity majority rules, and to more general
graphs.
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Abstract. In this paper we consider the problem of capturing an intruder in a
networked environment. The intruder is defined as a mobile entity that moves
arbitrarily fast inside the network and escapes from a team of software agents.
The agents have to collaborate and coordinate their moves in order to isolate the
intruder. They move asynchronously and they know the network topology they
are in is a particular fractal graph, the Sierpifski graph SG,.

We first derive lower bounds on the minimum number of agents, number of
moves and time steps required to capture the intruder. We then consider two mod-
els: one in which agents have a capability, of “seeing" the state of their neighbors;
the second one in which the actions of the agents are leaded by a coordinator. One
of our goals is to continue a previous study on what is the impact of visibility on
complexity: we have found that in this topology the visibility assumption allows
us to reach an optimal bound on the number of agents required for the cleaning
strategy. On the other hand, the second strategy relies only on local computations
but requires an extra agent and a higher (by a constant) complexity in terms of
time and number of moves.

Keywords: Mobile agents, intruder capture, Sierpinski graphs.

1 Introduction

In this paper we consider a networked environment in which a set of software agents move
along the network links from a node to a neighboring one. The intruder is a mobile (pos-
sibly malicious) entity that moves from node to node, escaping from the other agents.

The problem we consider consists of devising a strategy that allows a team of agents,
initially located on the same node, the homebase, and unaware of the position of the
intruder, to search for it and to surround it (so that it does not have a free link to escape
through). We assume a worst case scenario in which the intruder is a very powerful
entity, that can move arbitrarily fast inside the network and can permanently “see" the
position of all the other agents, thus avoiding them as long as possible.

This problem can be easily reformulated in terms of another known problem called
the decontamination (or cleaning) problem, in which a network, initially contaminated
has to be decontaminated. More formally, initially all nodes are contaminated, except
for the ones where agents are located, which are guarded. A node becomes clean when-
ever an agent passes through it an all its neighboring nodes are either clean or guarded;
on the other hand, the intruder contaminates the node and edges it traverses. In the

P. Crescenzi, G. Prencipe, and G. Pucci (Eds.): FUN 2007, LNCS 4475, pp. 249-261, 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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node-decontamination problem at the end of the computation all the nodes of the net-
work have to be clean, analogously, in the edge-decontamination problem at the end all
the nodes and edges have to be clean. In this case the intruder can be seen as a virus that
spreads inside a system, and that has to be isolated and recovered from.

In this paper we are interested in solving the node-decontamination problem and we
are interested in complexity issues, i.e., devising efficient strategies, where efficiency is
measured in terms of the size of the agent team, the number of moves agents have to
perform and the time.

1.1 Related Work

The problem of capturing an intruder, firstly introduced by Breish [4] and Parson [13], is
well known in the literature with the name of graph search or decontamination problem
([5,10,11,12]) and considers a system of tunnels, initially contaminated, that have to be
decontaminated by a set of searchers. The tunnels are the edges of the graph.

There are several variants of the graph search problem, and in most of them the
actions that can be performed consist in placing and removing searchers at any time and
on any node, i.e., searchers may "jump" across the network. In the node and edge search
problems the searchers have to lead the network to a state in which all the edges are
simultaneously decontaminated. In the node search problem an edge is decontaminated
whenever two searchers are placed on the edge extremes, in the edge search problem,
the edge has also to be traversed, thus in this case this action is also allowed. The
strategy has also to minimize the number of searchers involved, i.e., to consume the
minimum amount of resources. However, determining whether the smallest number of
searchers for which a search strategy exists (the so called search number) is at most k,
for any integer k, is an N P-hard problem in most topologies.

Note that, graph search, intruder detection, and decontamination are equivalent
problems.

In this paper we consider another variant of the problem, called the contiguous,
monotone, node search problem, where agents may only move contiguously inside the
network (i.e., may not be removed), nodes may not be recontaminated and finally, the
set of clean nodes at any instant of time has always to define a connected subnetwork.

This problem, first formulated in [2], is still interesting, as the authors prove that also
in this variant finding if the optimal number of agents required to capture the intruder
with a contiguous strategy is at most &, for any integer &, is an /N P-complete problem
for arbitrary graphs, moreover the known techniques for node and edge search, do not
generally apply.

Some specific topologies have been investigated as trees, chordal rings and tori,
meshes and hypercubes [2,6,7,8], and in arbitrary networks some heuristics have been
proposed [9] and a move-exponential solution, that passes through a temporary recon-
tamination of the network (but provides a final contiguous and monotone strategy) has
been given in [3].

1.2 Our Results

In this paper we study the problem of capturing an intruder in a nontrivial family of
fractal graphs, called Sierpiiski graphs [14], that have been lately vastly investigated
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(see e.g.,[1,15]). We have chosen these graphs, because they have a very nice fractal
representation. Moreover, they are interesting from an applicative point of view, as a small
variation of them has been lately investigated as it simultaneously exhibits fractality and
small world effect, the latter being a feature of real interconnection networks [1].

We first prove a lower bound on the number of agents, number of moves and of time
steps required to solve the contiguous monotone search problem in finite Sierpifiski
graphs. We then propose two different strategies: the first one in which agents have the
capability of "seeing" the state of their neighbors, thus can move autonomously in a
fully distributed way. The second one, in which actions are leaded by a coordinator. We
show that the first strategy is optimal in terms of number of agents used, whereas the
second one requires an extra agent; both their time and move complexities are distant
for a logarithmic factor from the optimal. The second strategy will also require a higher
(by a constant) number of moves and times steps compared to the first strategy.

2 Definitions and Basic Properties

2.1 The Sierpinski Graphs

We consider a family of nontrivial fractal graphs, the Sierpiriski graphs SG,,. These
graphs are obtained by n out of an infinite number of iterations of the procedure that
builds a fractal, the Sierpiriski gasket S, (also called the Sierpiriski sieve or the Sier-
pinski triangle), first presented by Sierpinski in 1915 [14]. The procedure, illustrated in
Figure 1, is as follows:

a) b) )

Fig. 1. S1, Sz and 55

Construction of a Sierpinski gasket.
1. Build an equilateral triangle (Figure 1 a));
2. choose the middle point of each of the three sides of the triangle and build a
new equilateral triangle 7" (white triangle in Figure 1 b));
3. repeat step 2 with the three triangles obtained by the construction of 7" (the
black triangles in Figure 1 b).

Figure 1 c) is the output of the procedure after three steps and represents S3. S7 and S
are represented in Figure 1 a) and b), respectively. In general, at step 7 of the procedure
we obtain S;, and the actual fractal is obtained after an infinite number of steps.

A nice property of the Sierpifiski fractal is that it can be visualized from Pascal’s
triangle by coloring black all odd numbers, and white all even numbers.
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The Sierpiriski graph SG,, is constructed after n iterations of the procedure that
builds S,,, by considering as a vertex set V,,, the intersecting points of the line segments
of S, and as the edge set F,, the line segments connecting two intersecting points. An
example of SG4 and SGf5 is illustrated in Figure 2.

SGT s

Fig. 2. The Sierpiniski graph SG4 on the left, SG'5 on the right

By construction, SG,,, for n > 1, is composed of three copies of SG,,_1, one on the
top, one on the bottom left and one in the bottom right. We will denote them by SGT,,,
SGBL,, and SGBR,, respectively (see Figure 2 right for SGT5).

The number of vertices V,, and edges E,, of SG,, are given by:

Proposition 1. /2] SG,, has |V,,| = 37124“ 3 vertices and E,, = 3" edges.
We also need the following property:

Property 1. The vertices of the Sierpiniski graph SG,, have all degree 4 but the three
corner vertices that have degree 2.

PROOF. By induction. S; has three corner vertices all of degree 2. Assume SG,, 1
has all the vertices of degree 4 but the corner vertices that have degree 2. SG,, may
alternatively be built glueing together three copies of SG,,_ that is SGT,,, SGBL,,
and SGBR,,. SGT,, and SGBL,, will share a common corner, that is one of their old
corners will not be a corner anymore and will now have degree 4. The same will hold
for SGBL,, and SGBR,, that will share a corner and for SGT,, and SG BR,, that will
share another corner. All the other vertices will maintain their original degree that by
inductive hypothesis is either 4 or 2 (the vertices with degree 2 will be the new corners).
The claim follows.

2.2 The Model

Consider an undirected (respectively directed) graph G = (V, E). We say that if
{z,y} € E (respectively (x,y) € FE) then x and y are neighbors and that {x,y}
(respectively (z,y)) is an edge outgoing from x and ingoing into y. The degree (in-
degree) of a vertex (node) is the number of ingoing and outgoing (for the out-degree)
edges (arcs).
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In SG,, operates a team of autonomous mobile agents, that can move from a node to
a neighboring one, have computing capabilities, computational storage (O(logn) bits
suffice for all our algorithms), and obey the same set of behavioral rules. The intruder
escapes from the team, whereas agents in the team have to collaborate in order to cap-
ture the intruder. Initially, all agents are located at the same node, the homebase and
have distinct Identities (Ids for short), otherwise agents are all identical.

The network and the agents are asynchronous, i.e., all actions agents perform (i.e.,
computing, moving), take a finite but unpredictable amount of time. In this setting ef-
ficiency is measured in terms of the number of agents to be involved, the traffic (i.e.,
number of moves the agents have to perform), and the time (or steps).

The cleaning strategy has to be contiguous, i.e., agents start the procedure at a spe-
cific vertex, the homebase, and expand the cleaning around the homebase, forming a
connected subnetwork, until the whole network is clean. Moreover, it has to be mono-
tone, that is, whenever a vertex has been cleaned, it will always remain clean.

3 The Strategy

In this section we first compute a lower bound on the number of agents, number of
moves and time steps needed to clean the Sierpifiski graph SG,,. We then propose two
different strategies for the capture of the intruder in this graph, the first in which agents
have the capability of "seeing" the state of their neighbors, the second in which agents
are leaded in the cleaning by a coordinator.

3.1 Lower Bound

We first state a lower bound, that holds for all models, on the number of agents needed
to clean the Sierpiniski graph SG.,.

Theorem 1. 7o solve the contiguous monotone search problem in SG,, at least n + 1

agents are required. Using n + 1 agents, the number of time steps is at least 25(}:;1) +1

and the number of moves is at least 3 ; 3.

PROOF. We prove the bound on the number of agents by induction. For n = 1 in
SG at least two searchers are required as a unique searcher, while leaving a vertex
would not be able to protect it from recontamination. Thus, for the base case of the
induction the proof holds. Let us now assume by inductive hypothesis that in SG,,_;
at least n searchers are required to capture the intruder. Let us now prove that at least
n + 1 are required to capture the intruder in SG,,. Assume by contradiction that n
agents are enough. Any possible cleaning strategy has either to clean one of the three
SG,,—1 subgraphs of SG,, and then move to the others, or may start on two or three
of them together. In this latter case, however, less than n agents would be used for the
cleaning of SG,,_1, thus a contradiction on the inductive hypothesis. Assume now the
first case. W.l.o.g., by inductive hypothesis n agents are used to clean SGT;,. These

! As the system is asynchronous, we will measure ideal time, i.e., we assume - for the purpose
of time complexity only - that it takes one unit of time for an agent to traverse a link.
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n agents could be first used to clean, e.g., SGBL,,, and then SGBR,,. However, no
matter which strategy would be used, if no agent would be placed on the bottom corner
of SGT,, (vertex x of Figure 2 left), recontamination of SGT;, could occur. Thus an
agent has to be placed in this corner to protect SGT;,. At this point n — 1 searchers
would not be enough to clean SGBL,, thus a contradiction.

Let us now recall that we are interested in monotone and contiguous procedures, thus
that all agents start from the same vertex. To compute the number of time steps let us
first observe that the n + 1 agents will first be placed in a vertex and then will be able

to clean at most n + 1 vertices at a time, thus the entire cleaning will require at least
3743 _q n . . . P
(fl +1) +1= 2%nﬁ) + 1 time steps. Moreover, all vertices will have to be visited and

cleaned, thus at least 37124“ 3 moves will have to be executed.

3.2 Cleaning with Visibility

In this section we propose a cleaning strategy where agents have "visibility" , i.e., they
are located at a node and can “see" whether their neighboring vertices are clean or
guarded or contaminated. Thus decisions rely only on some local knowledge. This vis-
ibility capability could be easily achieved if the agents have also communication power
and send a message (e.g., a single bit) to their neighboring nodes after cleaning a node
or guarding a node [6,7,8].

Formally, we assume what follows:

Definition 1. [6,7,8] An agent located at node = has a visibility capability if it can see
the state of its neighbors N ().

This property will allow us to define a strategy that requires an optimal number of
agents.

Cleaning strategy. The main idea of this strategy applied to SG,, is that all the re-
quired n + 1 agents, starting from the same homebase H, move on, and recursive clean
one subgraph SG,,_ at the time. They are identical and autonomous, and they all fol-
low the same local rule. In order to obtain this recursive procedure we first build a
special directed subgraph of SG,, called Sub,,: this graph has a recursive structure.
Agents will only move along the arcs of Sub,,. We store on the vertices of Sub,, a value
that ranges from 0 to 2 and that associates to at most one of the 2 outgoing arcs of Sub,,
the number of agents that have to be sent along that arc. The remaining agents will be
sent along the other arc. An agent on a node z moves on an outgoing directed arc of
Sub,, to a node y given that: 1) all the neighbors of = not reachable with a directed arc
from x in Sub,, are clean or guarded; 2) if there is another contaminated neighbor z of
x reachable from x on Sub,, then there is another available agent at x. That is, the agent
moves as long as SG,, is not recontaminated.

Let us now formally define the strategy starting from the one for SG; and SG,
that is illustrated in Figure 3 a) and b), respectively. H is the homebase from which
all the agents start the procedure. White vertices have been cleaned, black vertices
are contaminated. Thick arrows indicate the arcs of Sub; and Subs which in this
special case are binary trees (the dotted arrow in Subs will be used in the general
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a) 2 agents, 2 moves, 2 time steps b) 3 agents, 6 moves, 3 time steps

Fig. 3. Capture of an intruder with visibility in SG1 and SG»

construction of Sub,,). The values on the arcs indicate the number of agents that have
to be sent along that arc. This number will decrease up to 0, in this case the remain-
ing agents will be sent along the other arc. For simplicity we have represented a syn-
chronous execution of the cleaning procedure.

Sub,,, for n > 2 is built through the recursive procedure SB,,, for n > 2, which
returns the tuple (Sub,,,v1,v2,vs,e) where vy, v2,vs are the corners of Sub,, and
e = (z,y) is the only arc ingoing into the bottom right corner vs. € represents arc

(y, 7).

Definition 2. The graph Sub,, = (V', E’) is a directed subgraph of SG,, recursively
built as follows:

Base Case, i = 2 SBy = (Subg, vq, v, vh, (v}, v5)) (see Figure 4).
Nodes of Suby are "fresh”, i.e., every call of S By produces a graph such as Subs,
with new node names.
Recursive Case, i > 2 Let
(G’ v}, vh,v5,¢") = SB;_q,
(G«//7 'Ui/’ Ug, Ug, e//) = SB;_1,
(C;’///7 ,Ullll’ Ué//, Ué//, e///) — SB'L—1~
in
SBZ — (G/ U G// [,Ué/,ui/} U G/// [,Ué//,U:/l//’ ,Ué/,Ué//7 é////e///}7 ,U:/l7 ,Ué//7 ’Ué/7 e//),
where €' is the only arc ingoing into v, v/v' is an operation that renominates
vertex v in v and e/ €' replaces arc e’ with arc e.

An example of how to construct Subs from Suby, and an example of Subs are shown
in Figure 4. Note that the construction of SG),, has a very simple recursive structure.
Moreover, the values associated to some of the arcs require only O(1) bits of memory,
as we store only values 0, 1, 2, (} (an example of how to associate these values is given in
Figure 4), and there is at most one of these values stored on the node they are outgoing
from. This follows from the construction of subgraph Sub,,, and also from the following

property:
Property 2. All the vertices of Sub,, have at most 2 ingoing and at most 2 outgoing arcs.

PROOF. Sub, is a subgraph of SG,, that by Property 1 has vertices of degree 4 or 2.
We now have to prove that the nodes of Sub,, have in and out-degree at most 2. We
prove it by induction. This is implied by the construction of Sub,,: for n = 1,2, 3 the
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Fig. 4. The construction of subgraph Sub,,

property trivially holds. Assume it is true for Sub,,_1,n — 1 > 2. Also assume n is odd.
Swub,, is composed of three copies of Sub,, _1,1.e., G/, G”, G"" with corners respectively,

v, vh, vh, v v vl and o, vl oY, that are such that: v4 and v{ are merged and re-

spectively have in-degree 2 and out-degree 2; v} and v} are merged and respectively
have in-degree 2 and out-degree 2; and finally, v and v5’ are merged and respectively
have in-degree 1 and in-degree 1 (that will become an out-degree). Thus the property is

maintained. The proof for the case n even is analogous.

We will now present the procedure for the capture of the intruder with visibility in SG,,.
The cleaning will be carried out along the arcs of Sub,,. Let us call Cgq,, () (respec-
tively C'sp, (), the set of contaminated neighbors of = not connected (respectively,
connected) by a directed arc from x in Sub,,. Note that, by construction, |Csq,, ()] < 2

Algorithm. CAPTURE WITH VISIBILITY.
— Start from the homebase H;
— On anode z, if (z has out-degree = 0) then terminate else
1. while (|Csg,, (x)| > 0) or (|Csus, ()| > |A(z)]) do wait at x.
/* there are contaminated neighbors not reachable from x in Sub,, or there
are more contaminated neighbors of = in Sub,, than available agents */

2. choose (coherently with the other agents in A(z)) a neighbor y of = in Subs,.
/* that is, if v(x, y) > 0, then at most v(z, y) agents choose arc (x,y), the
remaining choose the other arc */
if v(z,y) > 0 then v(z,y) :=v(z,y) — 1;
move along (z,y), decontaminate and guard y.
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(the trivial proof is omitted), and |C'gyp,, ()| < 2). Call A(x) the set of available agents
at node . Finally, call v, , the value associated to arc (z,y) at x. This value can be
{0,1,2} or0.If v, ,y € {1, 2} this arc may be chosen, else the other arc has to be chosen
(i.e., enough agents have traversed it).

Let us now define the cleaning procedure for an agent a at node . The procedure starts
from the homebase H.

Figure 5 shows the order in which the nodes get cleaned with our strategy (a syn-
chronous execution with all agents starting together from H'). The number close to every
agent represents the size of the agent set, whereas the number close to an arc represents
its value. Note that, at step 2 only agents on the right may move as the one on the left
have a contaminated neighbor not reachable with an arc of Sub,, from the node their are
guarding. At step 4 the agent on the right waits up to step 9 (not shown) to move.

Note that, with this strategy nodes are not cleaned sequentially; several nodes, in fact,
could be cleaned independently.

Fig. 5. An almost complete execution of Algorithm CAPTURE WITH VISIBILITY on a Sierpinski
graph SG3

Correctness and complexity analysis. We now prove the correctness of Algorithm
CAPTURE WITH VISIBILITY and we compute the number of agents required by the pro-
cedure.

Theorem 2. The cleaning process of Algorithm CAPTURE WITH VISIBILITY on a Sier-
piriski graph SG,, decontaminates all nodes using n + 1 agents. During the execution
clean nodes cannot be recontaminated.

PROOF. By induction on n. From Figure 3 and 5 we have that the algorithm is correct
for SG1, SG5 and SG3 and that respectively 2, 3, 4 agents are used by the procedure.
Moreover we want to check if all agents but one reach one bottom corner of SG,,, and
all the others reach the other bottom corner. This is also true for SG1, SGo and SG3
(by the value assignment that has been given). The base of the induction follows. Let
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us now assume all the above properties are true for SG,,_1. SG,, will be composed of
three copies SG1,,, SGBL,,, SGBR,,, of SG,,_1. On each of them the algorithm will
correctly work as long as n agents start the procedure from the a corner. If n is odd (re-
spectively, even), then n + 1 agents are sent and by the assignment of values, the arc
connecting the bottom left (respectively, right) corner of SG'T,,, let us call it bl (br), will
have associated value 1, and only one agent will arrive at bl (br). Moreover, by construc-
tion, bl (br) will have only one outgoing arc that connects it to SGBL,, (SGBR,,), thus
the agent will stop in bl (br) up to when the cleaning will arrive at SGBL,, (SGBR,,).
All the remaining n agents will arrive at the bottom right (left) corner of SGT, , let us
call it br (bl). Thus, all the n agents will be able to clean SGBR,, (SGBL,,). Also note
that no recontamination may occur as SGT), is protected from recontamination by the
agent on bl (br) as the n agents will first correctly (by the inductive step) clean SGBR,,
(SGBL,) and then move to SGBL,, (SGBR,,). Thus the claim is true.

Note that, n + 1 is an optimal number of agents. We now calculate the total number of
moves and the time needed for the entire process.

Theorem 3. The total number of moves needed to perform the cleaning of the Sier-
piriski graph SG,, with Algorithm CAPTURE WITH VISIBILITY is O(n - 3"). The time
complexity is O(3™) time units.

PROOF. We start by computing the number of moves and the time required for the pro-
cedure on S, first with 4 agents, then with n + 1. By construction this will have to be
repeated 3" 2 times (once for each of the 3”3 subgraphs SG3 contained inside SG,,).
We now remind that we are working in an asynchronous environment, so we consider
the ideal time complexity for the cleaning strategy (i.e., we assume that it takes one unit
of time for an agent to traverse an edge). The number of moves and of steps necessary to
clean SG3 with 4 agents is constant. Thus trivially, if n + 1 agents have to execute the
algorithm on SG3, O(n) moves will be required (the extra n — 3 agents will also execute
a constant number of moves) and trivially 11 time steps (i.e., O(1)) are required. This
has to be repeated for 3"~ times thus the total number of moves needed to perform the
cleaning of the Sierpiniski graph SG,, with Algorithm CAPTURE WITH VISIBILITY is
O(n - 3™). The time complexity is O(3™) time units.

Note that, from Proposition 1 we have that SG,, has |V,,| = 3"; 3 vertices, thus the
number of time steps is linear in the number of vertices and the number of moves has
an extra logarithmic factor. Moreover they differ by a logarithmic factor from the lower
bound.

3.3 Cleaning with a Coordinator

In this section we propose a cleaning strategy where actions are leaded by a coordinator.
The strategy we propose in very similar to the one of the previous section, however an
extra agent will be required to coordinate the moves of the other agents. On the other
hand this strategy does not require the extra capability of "visibility" and actions may be
taken by solely accessing local information.
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Cleaning strategy. The main idea of this strategy is that all the agents, starting from the
same homebase, move on and clean one subgraph SG,,_ at the time, coordinated by
an agent (e.g., the one with smallest Id), that acts as a leader. While moving they protect
system from recontamination. The moves the agents will execute will be the same of
the Algorithm CAPTURE WITH VISIBILITY with the exception of the coordinator that
will have to move back and forth to lead the moves of the other agents. As in the other
algorithm, the new procedure will work recursively using the subgraph Sub,,. Thus it
will only be necessary to show the coordinated moves inside a Subs.

Figure 6 shows the order in which the nodes are cleaned by the agents leaded by the
coordinator. Note that for SG1, 2 agents would be enough as the coordinator would not
need to lead both agents to the vertex (they will eventually arrive there). However we
have shown a strategy with 3 agents as will will use this as a subroutine for the cleaning

of SGQ
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Fig. 6. Algorithm COORDINATED CAPTURE on a Sierpinski graph SG2 and SG3. One agent
(the lady in black) is the coordinator.

The procedure for SG3 is the same of the one used in Algorithm CAPTURE WITH
VISIBILITY with the difference that here moves may not rely on local decisions, but the
coordinator has to decide where and when agents have to move, and thus has to simulate
the decisions of the previous strategy by leading the agents. It is trivial to prove that this
generalizes to a correct strategy for SG,, with the extra expense of an additional agent (the
coordinator), extra moves (the one executed by the coordinator, whereas the other agents
execute the same move), and extra time steps (the extra time spent for the movements
of the coordinator). However both time and move complexities will globally differ by a
constant factor from the one of the previous strategy.

4 Conclusion

In this paper we have considered the problem of capturing an intruder in a Sierpinski
graph SG,,. We have considered two different models: one where agents have a
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visibility capability, i.e., can see the state of their neighbors, the other in which agents
are leaded by a coordinator and execute actions by accessing only local information.

Our goal was to continue a study on the impact that these additional assumptions have
on the efficiency of the solution process for the intruder capture problem in general net-
works. From our observations Visibility seems to be a crucial assumption for the reduc-
tion of all the complexities.

An open problem is to show if the algorithms in both models also reach an optimal
complexity in the number of moves and time steps and if the second model may require
only n + 1 agents. Another interesting issue would be to study the problem in a higher
dimensional fractal graph, i.e., the Sierpinski tetrahedron.
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Abstract. A central problem in optical networks is to assign wave-
lengths to a given set of lightpaths, so that at most g of them that
share a physical link get the same wavelength (g is the grooming factor).
The switching cost for each wavelength is the number of distinct end-
points of lightpaths of that wavelength, and the goal is to minimize the
total switching cost. We prove NP-completeness results for the problem
of minimizing the switching costs in path networks. First we prove that
the problem is NP-complete in the strong sense, when all demands are
either 0 or 1, the routing is single-hop, and the number of wavelengths
is unbounded. Next we prove that the problem is NP-complete for any
fixed ¢ > 2, and when the number of wavelengths is bounded. These
results improve upon existing results regarding the complexity of the
traffic grooming problem for ring and path networks.

Keywords: Wavelength Assignment, Wavelength Division Multiplex-
ing(WDM), Optical Networks, Add-Drop Multiplexer(ADM).

1 Background

Optical wavelength-division multiplexing (WDM) is today the most promising
technology, that enables us to deal with the enormous growth of traffic in com-
munication networks, like the Internet. A communication between a pair of nodes
is done via a lightpath, which is assigned a certain wavelength. In graph-theoretic
terms, a lightpath is a simple path in a graph, with a color assigned to it. Most
of the studies in optical networks dealt with the issue of assigning wavelengths
to lightpaths, so that every two lightpaths sharing a common edge get different
wavelengths.

When the various parameters comprising the switching mechanism in these
networks became clearer, the focus of studies shifted, and today a large portion
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of the studies concentrate with the total hardware cost. The key point here is
that each lightpath uses an Add-Drop Multiplexer (ADM) at each of its two
endpoints. If two lightpaths sharing a common endpoint are assigned the same
wavelength, then they can use the same ADM. An ADM may be shared by at
most two lightpaths. The total cost considered is the total number of ADMs.
Lightpaths sharing ADM’s in a common endpoint can be thought of as con-
catenated, so that they form longer paths or cycles. These paths/cycles do not
use any edge e € E twice, for otherwise they cannot use the same wavelength
which is a necessary condition to share ADM’s. In graph-theoretic terms, this
can viewed as assigning colors to given paths so that no two paths that get the
same color have any edge in common. Each path uses two ADM’s, one at each
endpoint, and at most two paths of the same color can share an ADM at their
common endpoint. The goal is to minimize the total number of ADMs.

Moreover, in studying the hardware cost, the issue of grooming became central.
This problem stems from the fact that the network usually supports traffic that
is at rates which are lower than the full wavelength capacity, and therefore the
network operator has to be able to put together (= groom) low-capacity demands
into the high capacity fibers. In graph-theoretic terms, this can be viewed as
assigning colors to given paths so that at most g of them (g being the grooming
factor) can share one edge. Each path uses two ADM’s, one at each endpoint,
and in case g paths of the same wavelength enter through the same edge to one
node, they can all use the same ADM (thus saving g — 1 ADMs). The goal is to
minimize the total number of ADMs. Note that the above coloring problem is
simply the case of g = 1.

When considering these problems, some parameters play important role:

1. Lightpaths: we either deal with the case where the lightpaths are given, or
with the case where we are given a set of pairs of nodes, and the problem is
to design a set of lightpaths that satisfies the communication between these
pairs.

2. Number of colors: this can be either unbounded, or we might be given a
bound on the number of colors, and we have to find the best solution satis-
fying this bound.

3. Mode of communication: The communication between pairs of nodes is using
either a single lightpath (the single-hop case) or a concatenation of lightpaths
(the multi-hop case). In the multi-hop case the assumption is that the traffic
between a given pair of nodes can be routed through a sequence of lightpaths
of possibly different wavelengths.

4. Communication links: can be directed or undirected, and the underlying
graph is either directed or undirected. In case of a directed graph, the con-
dition applies to directed edges.

5. Routing: the traffic between a given pair of nodes can be routed either through
different routes (splittable case) or it is constrained to be routed through a
unique route (non-splittable case). In this case the assumption is that each re-
quirement is an integer, and the splitting can be only to integral components.
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We show that the grooming problem is NP-complete in the strong sense, for
graphs of path topology, even in the case where all demands are either 0 or
1, the routing is single-hop, and the number of colors is unbounded. Next we
prove that the problem is NP-complete for graphs of path topology, for any fixed
g > 2, and when the number of colors is bounded. These results improve the
complexity analysis of the traffic grooming problem for the fundamental ring
and path networks. In particular, they extend the result of [EMZ02], where it
was shown that the problem in NP-complete for a ring network for ¢ = 1, and
the result of [CMO00] (and others - see Section 2), where a weak NP-completeness
proof is given for a general g and general demands. We present the results in
the case where the lightpaths are given, the mode of communication is single-
hop, the links are directed, and the routing is non-splittable. We refer to other
possibilities throughout the discussion and in the summary section.

The paper is organized as follows: We start with presenting the formal model
in Section 3, continue with showing the two NP-complete results in Sections 4
and 5, respectively, and end with a summary and open problems in Section 6.

2 Previous Work

The problem of minimizing the number of ADMs for the case ¢ = 1 was intro-
duced in [GLS98] for ring topology. The problem was shown to be NP-complete
for ring networks in [EMZ02]. The discussion in [EMZ02] easily implies that
minimizing the number of ADMs, with ¢ = 1, for a ring network, where all
edge loads are equal, is NP-hard. In both cases, between each pair of nodes the
number of requests is arbitrary. These reductions follow immediately from the
NP-completeness of the problem of coloring of circular arc graphs. As is often
the case, showing NP-completeness of a problem for a path network turns out to
be more difficult than doing so for the case of a ring network (this is due to the
fact that coloring of interval graphs is polynomial whereas coloring of circular
arc graphs is NP-complete). We note that minimizing the number of ADMs for
a path network is trivial for this case of g = 1.

An approximation algorithm for the ring topology, for the case of g = 1,
with approximation ratio of 3/2, was presented in [CW02], and was improved in
[SZ04, ELO04] to 10/7+ € and 10/7, respectively. For a general topology [EMZ02]
describes an algorithm with approximation ratio of 8/5. The same problem was
studied in [CFW02], and an algorithm with approximation ratio 3/2 + € was
presented.

The notion of traffic grooming (¢ > 1) was introduced in [GRS98] for the ring
topology. The problem was shown to be NP-complete in [CMO00] for a directed
ring network, and a general g, and where all the lightpaths connecting the nodes
to a single node, termed egress node. The authors discuss the single-hop case, the
reduction is done from the Bin Packing problem (see [GJ79]), and the complexity
of the problem stems from the fact that the number of lightpaths that connect
a node to the egress node is arbitrary. Actually, the result of [CMO00] holds also
for a path topology, since in the reduction there is no lightpath connecting the
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egress node to others. In unidirectional ring networks the problem is equivalent
to partitioning the requests into sets of size at most g, so that the sum of the
nodes induced by each set is minimum. This problem is termed the SONET edge
partition problem in [GHLOO03], which proves that the problem is NP-complete
for any g > 3, and gives an O(,/g)-approximation algorithm for it. A different
version of the traffic grooming problem is presented in [DHR06, H02], where
the authors discuss the multi-hop case, and use a cost function in which each
ADM is counted not only once - like in our case - but a number of times that is
equal to the number of lightpaths that use it. The authors show an NP-complete
result by using a reduction from the Knapsack problem (see [GJ79]); this result is
presented in more detail in [H02]). In this case the network topology is a directed
path, and the complexity of the problem stems - as in [CMO0] - from the fact that
the number of lightpaths between pairs of nodes is arbitrary. The NP-complete
results of [CM00, DHRO06, H02] are all in the weak sense (see [GJ79]).

The uniform all-to-all traffic case, in which there is the same demand between
each pair of nodes, is studied in [CM00, BC03] for various values of g; an op-
timal construction for the uniform all-to-all problem, for the case ¢ = 2 in a
path network, was given in [BBCO05]. A review on traffic grooming problems can
be found in [ZMO03]. A log g approximation for ring networks was presented in
[FMSZ05].

3 Formal Model

3.1 Problem Definition

An instance of the problem consists of an undirected graph G = (V, E), a set of
paths P = {p1,p2,-+- ,pn}, and a grooming factor g. We have to assign colors
to the paths in P such that at most g paths of the same color can share an edge.
Formally, a coloring function w : P — {1,...,W} is said to beg-feasible if for
every edge e € E and every color A € {1,...,W}

{p € P|p includes e, w(p) = \}| < g

. A 1-feasible function is termed feasible.

Every colored path p € P needs one ADM at each of its endpoint nodes. T'wo
lightpaths p and p’, with a common endpoint v, and such that w(p) = w(p’),
can share an ADM at v. An ADM at a node v can serve paths of two incident
edges, and at most g lightpaths of the same color from each such edge. Our aim
is to minimize the number of ADMs. Note that one can always assign N distinct
colors to the given lightpaths, and then the number of ADMs will be 2N. On
the other hand, the number of ADMs will always be at least N/g. This implies
that the approximation ratio of any algorithm will be at most 2g.

Given a graph, a set of paths, and a grooming factor g, our aim is thus to find
a g-feasible coloring function that minimizes the total number of ADMs.

We consider the following decision problem:

THE TRAFFIC GROOMING PROBLEM:
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Input: A graph G = (V, E), a set P of paths in G, integers g, T, K > 0.
Question: Is there a g-feasible coloring w, that uses at most T ADMs and at
most K colors?

Note that as P is a set, a path can appear at most once in P, as opposed to
a multiset in which a path can appear more than once, i.e. there is an integer
demand associated with a path.

In the case where the graph is a path or a ring, and w is a g-feasible coloring
function, let ADM}’ be the number of distinct end-nodes of paths assigned
color A by w .The goal is to find a feasible g-coloring w that minimizes the value
ADM™ =%, ADM}.

4 Path Network, Any Given Grooming Factor

In this section we prove the strong NP-completeness of the grooming problem,
as follows:

Lemma 1. The grooming problem for a path, is NP-complete in the strong sense
even when the number of colors is unbounded.

Proof. For the proof we use the following problem:
THE 3-PARTITION PROBLEM (see [GJ79]):

Input: A set A= {a1,az2, - ,a3y} and a bound B > 0, such that B/4 < a; <
B/2 for every 1 <1i < 3m, and Zf;nl a; = mbB.

Question: Can the elements of A be partitioned into triplets (a;,,a;,,a5,), j =
1,---,m such that aj, +aj, +aj, = B for every 1 < j <m?

This problem is N P-complete in the strong sense, i.e., N P-complete even if
B is bounded by a polynomial in m. Given such an instance « of 3-partition,
we construct an instance o of the grooming problem, as follows (note that the
reduction is polynomial, in view of the fact that B is bounded by a polynomial):
G = (V, E) is a directed path with mB + 3m + 1 nodes, where

V=VoUViU{d},

Vo={vij |1<i<3m,1<j<a},Vi={v;|1<i<3m},

E={(vi,vi1) |1 <i<3m}U{(vij,vijt1]1<i<3m,1<j<a;}U
{(Via;, vie1 | 1 <1 <3m}U{(v3m,a5,.,0)}

P ={(vi,v;;) |1 <i<3m,1<j<a;}U{(v;;,0)]1<i<3m,1<j<aq;},

g=DB,T=m(B+4).

We now show that there is a solution to the instance « of the 3-partition
problem if and only if there is a solution to the instance o’ of the grooming
problem.

Assume we are given a solution to the 3-partition problem (a;,,a;,,a;,) ,
j=1,---,m such that a;, + aj, + aj, = B for every j. Then, for each of the m
triplets (aj,,aj,,a;,), we can assign the same color to all the lightpaths
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{(Wisv5,5) 11 <5 <aj } U{(v)y,0555) | 1 <j<aj, U
{(Wjs,vj5.5) 11 <j < az} U{(vy, 5,0)[1 <j<ay, pU
{(Ujmj’ﬂ)‘l SJ < ajz} U{(Ujsvjvﬁ)u < J < ajs}'

These lightpaths require one ADM at each of the nodes in
{vjwvjzavjwf)} U {vjhj‘v 1<j< aj1} U {sz)j‘l <J< ajz} U {vj3,j|1 <J< aja}'

This is true since each of the nodes except for v has at most B incident lightpaths,
and © has exactly B incident lightpaths (since a;, +a;, +a;j, = B). This amounts
to aj, +aj, +aj, +4 = B+4 ADMs. Summing for all the m triplets we thus get
a solution for the instance of the grooming problem which uses 7' = m(B +4)
ADMs.

Conversely, assume we are given a solution to the grooming problem that
uses at most T = (B +4)m ADMs. We clearly need an ADM at each of the
nodes in V — {@}; this amounts to [V — {5} = |Vo| + |[Vi| = 0" a; + 3m =
m(B+3) ADMs. Since the total number of ADMs cannot exceed T' = m(B+4),
it follows that the number of ADMs in o is at most m. On the other hand, since
the number of lightpaths with endpoint at o is Zf’fl a; = mB, and since the
grooming factor is B, we need at least m ADMs at 0.

We thus conclude that the given solution to the grooming problem must use
exactly m ADMSs at 0, and exactly one ADM at each of the nodes in V) and V;.
This implies that, for every 1 < j < 3m, all the a; lightpaths from the node v;
to the nodes v; , 1 <k < a; , have the same color, and that this same color
must also be used by all the a; lightpaths from the nodes v , 1 < k < aj
to 0.

Therefore we have m ADMs at 0, and each of them must be the endpoint of
exactly B lightpaths. Since all the a; lightpaths from the nodes vj , 1 <k < aj,
to © have the same color, it follows that the numbers a; have to be partitioned
into subsets, each summing up to B. Now, since B/4 < a; < B/2 for every
i, it follows that each of these sets must contain exactly three elements. In
other words, we conclude that the numbers a; can be partitioned into triplets
(aj,,aj,,a;,) such that a;, + aj, + aj, = B. This establishes a solution to the
given instance of the 3-partition problem. O

5 Path Network, Fixed Grooming Factor

We now show the NP-completeness for any fixed value of g. We show the con-
struction for g = 2, and in the next lemma show how to extend it to any fixed
value of g > 1. Note that for ¢ = 1, the greedy path coloring algorithm to
minimize the number of colors solves this problem too, optimally.

Lemma 2. The grooming problem for a path is NP-complete for g = 2, for
bounded number of colors.

Sketch of proof: For the proof we use the following problem:
K-COLORING OF CIRCULAR ARC GRAPH (see [GJT9]):
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Input: A cycle, whose nodes N' = {1,2,--- ,n} are numbered clockwise, a set
of arcs A = {(a;,0:)|1 <i < t},a;,b; € N (the arc (a;, ;) is clockwise from a;
to b;), such that each of the edges {(1,2),(2,3),---,(n—1,n),(n,1)} is covered
by exactly k arcs in A.

Question: is there a coloring function f : A — {1,2, -, k}, such that f(a) #
f(b) if the arcs a and b intersect.

Given an instance « of the k-coloring of circular arc graph problem we con-
struct an instance o of the grooming problem.

Rather than formally present the construction, we show it by an example.
Assume the circle is as depicted in Figure 1; namely, it is of size n = 5, and
its nodes are 1,2,3,4,5. The arcs are a = (2,5),b = (5,2),c = (4,1),d = (1,3)
and e = (3,4). The load on each edge is & = 2. In the first step we cut the
paths that go through the edge (5,1); namely, we cut the paths b and ¢. We
construct a path, whose vertices are, from right to left, ¢/,¥',1,2,3,4,5,b”,¢”.
The lightpaths are the original arcs a, d and e that were not cut, the lightpaths
b1, ba, bg (that correspond to the arc b that was cut), and the lightpaths ¢, 2, c3
(that correspond to the arc ¢ that was cut). This is depicted in Figure 2.

In the next step we duplicate each of the vertices 1,2,3,4 and 5, and change
the paths so that they do not have any endpoint in common, except for the
pairs by, b3 (that meet at b”), by, by (that meet at b’), ¢1,c3 (that meet at ¢”),
and cg, c3 (that meet at ¢’). For example, the two paths ¢y and d met at vertex
1 (Figure 2), so they are separated so that one ends at 1 and the other at 1’
(the choice is arbitrary). The resulting path consists of 5 more vertices, and is
depicted in Figure 3.

Fig. 1. A given instance « of the k-circular arc coloring problem

In general, given an instance of the k-circular arc graph problem «, that con-
sists of a total of m arcs, we construct a corresponding instance of the grooming
problem on a path of 2m + 2k nodes and with m + 2k lightpaths (in our example
m =5 and k = 2), the bound T on the number of ADMs is equal to the number
of nodes, namely T' = 2m + 2k, and the bound on the number of colors is k.
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Fig. 2. The first step in the construction of a path

[ Cs Co

a

e d

Fig. 3. The second step in the construction - the instance o’ of the traffic grooming
problem

If there is a solution to the circular arc graph coloring problem that uses k col-
ors, then we can assign the same colors to the lightpaths that do not go through
the edge (n, 1), and the three paths that correspond to a path that does go through
(n, 1) get the same color as the original path. In our example, the lightpaths a, d, e
in Figure 3 will get the same color as they got in the coloring of the instance of
Figure 3, the lightpaths by, b2, b3 will get the same color that was assigned to b,
and ¢y, c2, c3 will get the same color that was assigned to ¢. The inner lightpaths
use a total of 2(m — k) ADMs (since all of their endpoints are distinct), and the
other lightpaths use a total of 4k ADMs, and thus we got a coloring with grooming
of g = 2 that uses a total of T' = 2m + 2k ADMs and k colors.

Conversely, assume that we have a coloring, with grooming of g = 2, that uses
at most T'= 2m + 2k ADMs and k colors. Since each node is an endpoint of at
least one lightpath, this means that each of the nodes must use exactly one ADM.
This means that the three lightpaths that correspond to an arc that was ’cut’
must get the same color. In our example, the three lightpaths by, b2, b3 must be
colored with the same color, and so do the lightpaths ¢, co, c3. Moreover, these
k lightpaths get k distinct colors, due to the grooming g = 2. Since on each edge
each of the k colors is used once by the ’long’ lightpaths, and since the capacity
is 2k, two intersecting inner lightpaths must get different colors. We thus get a
coloring of the arcs in o with exactly k colors. a

In a similar manner, we can show that

Lemma 3. The grooming problem for a path is NP-complete for any fized g > 2,
for bounded number of colors.
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Sketch of proof: For the proof we use the same construction, but for each of
the arcs that we cut we add g — 1 'long’ lightpaths. For example, for case g = 3,
we will add two lightpaths identical to b3 and c3. The reduction is polynomial
for any fixed value of g. We skip here the rest of the details. O

6 Summary

In this paper we proved the NP-completeness of the traffic grooming problem on
a path. We proved that the problem is NP-complete in the strong sense when the
number of colors is unbounded, and that it is NP-complete for any fixed g > 2
for a bounded number of colors. Natural open problems are to determine the
complexity of the traffic grooming problem for a path with unbounded number
of colors, for other restrictions on the various parameters and special topologies,
for cost measures that involve also other switching components except the ADMs,
and for dynamic (e.g. on-line) scenarios.
Regarding the notes at the end of Section 1:

1. Our proofs apply also to the case where we are only given the pairs of nodes
to connect; to this end we can use the same reduction, since, given the pairs
to be connected, the routing is unique.

2. Number of colors: the first reduction applies for any number of colors, whereas
the second reduction assumed a bound on the number of colors.

3. Our proofs also apply for the multi-hop case. For this it suffices to note that
the choice of parameters in the first reduction imply that at each of the
nodes, except for ¥, we could use only one ADM. This implies that all the
lightpath starting at v;, for any 7, must have the same color; in addition,
this implies that we cannot use multi-hop routing and save in the number
of ADMs, since we cannot change a color in any intermediate node (since
changing a color implies the use of an additional ADM). This comment can
be shown to apply also to the second case.

4. Our proofs apply clearly to undirected graphs.

Our proofs apply to rings.

6. Our proofs apply to the non-splittable case, since in our instance no splitting
is possible.

ot
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