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Abstract. Modern software architectures are increasingly dynamic. Among them,
Service-Oriented Architectures (SOAs) are becoming a dominant paradigm. SOAs
allow components to be exported as services for external use. Service descriptions
(which include functional and non-functional properties) are published by service
providers and are later discovered by potential users. Service discovery is based on
matching the published service descriptions with the required service specifications
provided by the user. Once an external service is discovered, it may be bound and
invoked remotely. New services may also be created by composing existing services.

To achieve full flexibility, the binding between a service request and a service
provision may be set dynamically at run-time. Dynamic binding and decentralized
management of external services by independent authorities, however, challenge our
ability to perform verification and validation (V&V). Traditional V&V is a pre-
deployment activity. In the new setting it extends to run-time and requires contin-
uous monitoring of functional and non-functional attributes.

This chapter investigates continuous monitoring of SOAs, with particular empha-
sis on web services. It provides a classification scheme that can help understanding
the different monitoring approaches a system designer can choose. It also analyzes
the running example and discusses some of the functional and non-functional aspects
one might be interested in monitoring in its context. The chapter then presents a
short survey of the most important ongoing research in this field and concludes by
discussing future research directions.

9.1 Introduction

Traditionally, software systems had a pre-defined, static, monolithic, and cen-
tralized architecture. This was largely due to the technology available at the
time and to the need of making the resulting system more easily manageable
and controllable. All the parts that composed a large application were under
the control of a single organization, which was ultimately responsible for their
design, development, verification, and deployment procedures. Software archi-
tectures have been constantly evolving toward increasing degrees of dynamism
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and decentralization, from statically bound compositions to dynamically com-
posed federations of already deployed and running components.

To describe this evolution, and the requirements that drove it, it is impor-
tant to provide an informal definition of some terms and concepts that will
be used throughout this chapter. The term component denotes an identifiable
piece of code implementing some useful function, which may become part of
a larger system. The term service denotes a component that is deployed and
run separately. Composition is the way a whole system is made up, by bind-
ing components together. The arrangement and relation between the bound
components defines the system’s architecture.

The evolution of software architectures has been dictated by the need for
applications to evolve continuously as the environment in which they are em-
bedded evolves. Continuous and rapid changes are requested from the real
world, and reactions to change requests must be extremely fast. The tradi-
tional strategy to respond to change requests—which implies switching to
off-line mode and re-designing, re-implementing, and re-deploying (parts of)
the application—does not work in this new context. Rather, changes should
be made dynamically at run-time.

Requirements for these new features arise in a large variety of applica-
tion fields, from in-the-large web-based information systems to in-the-small
embedded applications supporting ambient intelligence. Information systems
need to evolve continuously to support dynamic federations of business or-
ganizations interacting through the web. In this setting, each organization
exposes internal functions as new services that other members of the federa-
tion may use, and new bindings may be established between a service request
and a service provision as the opportunistic goals of the federation change
over time. In ambient intelligence settings, the requirements for dynamically
composing services derive from the goal to support context-aware behaviors.
In most practical cases, context is defined by the physical location, which may
change because of mobility. For example, a print command issued by a mobile
device should print a document from a closest printer, dynamically discovered
in the surrounding physical environment. The concept of context, however, is
more general. Suitable sensors, in general, may provide context information.
For example, depending on where the service requester is located and on light
conditions, the command to illuminate a room might imply sending signals to
actuators to switch the light on or to open the window shades. Both cases are
characterized by a novel distinctive feature: not only do the bindings among
components of the application change dynamically, as the application is run-
ning, but the components that are available for composition do so as well.

The concept of service is the cornerstone of service-oriented architectures
(SOAs). SOAs have been emerging as a most promising architectural paradigm
which provides support to dynamically evolving software architectures, where
both the components and their bindings may change dynamically. The style
is characterized by the following features:
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• Publication: Through publication, a service description is made available
by a service provider in a standardized manner that potential clients may
understand.

• Discovery: A service is searched based on the requested features it should
offer, and by matching the request with the available published descrip-
tions.

• Binding: Based on the search results, a binding is established between a
service request and a service offer.

Since publication and discovery may be performed at run-time, bind-
ings may also be established and modified dynamically. This high degree
of dynamism, while providing great benefits in terms of flexibility, has a
severe impact on the system’s correctness and on the way verification can
be performed. Traditionally, verification of correctness is performed stati-
cally, based on the known components that compose the application. Af-
ter the application is deployed, no further verification is needed (nor pos-
sible). In the case of SOAs, however, an application is made out of parts
(services) that are deployed and run independently, and may change un-
predictably after deployment. Thus, correctness cannot be ascertained stat-
ically, but rather requires continuous verification that the service delivered
complies with the request. In the case where serious problems are discov-
ered, suitable recovery reactions at the architectural level should be put in
place.

Many stakeholders are involved in service-oriented applications: clients,
providers, and third-parties. Typically, they have different needs and differ-
ent requirements. They have different business goals, and tend to state what
they expect from a system differently, both in terms of functionalities and
in terms of quality of service. Consequently, run-time monitoring has differ-
ent objectives for each of them. In this chapter, we focus on the role of a
service requester. This may be an end-user who acts as client, or a service
provider who acts as a third-party by composing a new service out of existing
services. Run-time monitoring, in this case, takes the requester’s viewpoint:
the service should deliver what it promised and should match the requester’s
expectations. If it does not, the system should take or initiate appropriate
subsequent reactions, such as notifications, remedy, compensation, etc. This
work focuses on monitoring; a study of reaction strategies falls beyond its
scope. Also, we do not focus on the process that elicits business goals and
derives run-time monitoring goals. Rather, we assume that such process is
in place, and focus our attention on the monitoring process itself. Although
our main focus is on requester-side monitoring, provider-side monitoring is
also quite relevant. In this case, the objective is to monitor the quality of the
delivered service and drive possible run-time optimizations, such as dynamic
resource allocation in SOAs implemented on grid architectures [10]. We will
only briefly touch on this point, which has received considerable attention in
a number of industrial research approaches.



240 C. Ghezzi and S. Guinea

Although this chapter concentrates on service composition providers and
their needs, most of what we present is general enough and easily ex-
tendible to cover the needs of different stakeholders [6]. Most of what we
say here also holds for SOAs in general. However, we focus on web ser-
vices and discuss solutions that hold in the case of the available web service
technology.

The chapter is organized as follows. Since many different monitoring ap-
proaches exist, and since they all behave quite differently (i.e., each with its
own strengths and weaknesses), Sect. 9.2 starts off by providing the reader
with an overview of some key aspects that can be used to better understand
and classify them. Section 9.3 continues by discussing the example intro-
duced in the initial chapters of this book in the context of run-time moni-
toring. Section 9.4 introduces our own assertion-based approach to monitor-
ing called “Dynamo,” and its monitoring definition language called WSCoL
(Web Service Constraint Language). Section 9.5 compares some of the other
most prominent research and industrial monitoring approaches, while Sect. 9.6
concludes the chapter.

9.2 Run-Time Monitoring

The need to monitor SOAs at run-time has inspired a large number of research
projects, both academic and industrial. The differences between these research
proposals are manifold, and quite evident after an accurate analysis. This has
led to an unfortunate situation in which the term “monitoring” is commonly
used, but with many possible interpretations. Although their main goal—
discovering potential critical problems in an executing system—remains the
same, there are differences that concern important aspects, such as the goals
of monitoring, the stakeholders who might be interested in them, the potential
problems one might try to detect, etc.

A thorough understanding of these aspects that characterize SOA mon-
itoring is important in order to classify the different monitoring approaches
available in the literature, to evaluate them, and to choose the monitoring
approach most suitable for the problem at hand.

Our presentation will concentrate on the following most significant as-
pects: the type of properties that can be monitored, the type of collabo-
ration paradigm with which they can be coupled, the methods they use
to collect data, their degree of invasiveness, and their timeliness in discov-
ering anomalies. Even though the classification items are presented sepa-
rately, they are heavily intertwined, and the choices made in the context of
one dimension may influence the others. For example, the choice to mon-
itor certain functional properties impacts the way run-time data are col-
lected, which in turn has an impact on the degree of invasiveness of the
approach.
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9.2.1 Types of Properties

Monitoring approaches can be tailored to the verification of two main fam-
ilies of properties: functional and non-functional (or quality-of-service re-
lated) properties. When monitoring the former, we are interested in verifying
whether a given service delivers the function we expect from it. This obvi-
ously requires that some specification of the expected behavior be available.
Since the invocation of a service can be seen as a black box that, given certain
inputs, produces certain outputs, most monitoring approaches tend to rely
on procedural specifications expressed in terms of pre- and post-conditions.1

The monitoring approaches, therefore, typically consist of mechanisms that
produce suitable oracles for the service being monitored.

Since we focus on web services, most descriptions—such as those given
using the WSDL standard[7]—only specify the syntactical aspects involved in
invoking a web service. A number of special-purpose specification languages
have been proposed to address this problem. Some of the proposals originated
in the field of software engineering, such as our own language WSCoL, were
built on the legacy of Design by Contract [22,23] and assertion languages
for standard programming languages such as Anna [20] or APP [30]. Others
originated in the field of Semantic Web, such as the current specification
language candidates being considered in the context of OWL-S [29]. Their
principal candidate is the Semantic Web Rule Language (SWRL) [11].

Regarding non-functional or “quality of service” related properties, moni-
toring focuses on those that can be measured in a quantitative way. This leaves
out a number of relevant properties (such as usability or scalability) that are
either qualitative (and subjective), or for which quantitative metrics do not
exist. Some of the most common non-functional properties are as follows:

• Availability, which measures the readiness of a web service to be used by its
clients. It also considers aspects such as how long a given service remains
unavailable after occurrence of a failure.

• Accessibility, which considers the capability of the service provider’s in-
frastructure to instantiate a service and guarantee provisioning even in the
case of heavy traffic. In some way, it measures scalability of the provider’s
infrastructure.

• Performance, which is usually measured in terms of throughput and la-
tency. The former defines the number of requests that can be addressed
in a given time-frame. The latter defines the round-trip time of a request
and its response.

• Security, which is perceived as an extremely important aspect due to the
open environment (the Internet) in which service interactions occur. Its
most important goals are to guarantee confidentiality, non-repudiation,
and encryption.

1 This works fairly easily for stateless services, which behave like functions. Stateful
services require a way to model the hidden abstract state as well.
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• Reliability, which measures the capability of a service to guarantee the
promised or negotiated qualities of service.

9.2.2 Collaboration Paradigms

The true advantages of service-oriented architectures become evident when
remote services are used cooperatively to achieve some overall business goals.
Different existing collaboration paradigms exist, each presenting its own
unique aspects. This leads to monitoring approaches that are tailored toward
a specific style of collaboration.

Collaboration paradigms differ in the degree of coupling among the par-
ticipating services and the degree with which business responsibility is dis-
tributed amongst them. A typical distinction is between orchestration and
choreography. In the case of orchestration-based approaches, a single party is
responsible for the correct evolution of the business process. The current state
of the art in orchestration-based approaches is the Business Process Execution
Language for Web Services (BPEL)[16], which became a de-facto standard in
the last few years. BPEL is an executable workflow language that is processed
by a suitable engine. Most current implementations are based on a central-
ized workflow engine (e.g., ActiveBPEL), although distributed BPEL engines
have also been proposed [28]. The workflow engine is responsible for correctly
executing the business process and invoking the required external services, as
specified in the process. As we mentioned, the binding between an invocation
of an external service and the actual service exported by a service provider can
change dynamically at run-time. The monitoring approaches that are tailored
to such a scenario are typically concerned with checking whether the external
services behave as promised, and expected. That is, one needs to check that
external services—when invoked—satisfy certain functional or non-functional
requirements that allow the business process to achieve its goals.

At the other end of the spectrum, it is possible to envision paradigms in
which services are individually responsible for the overall coordination effort
and the correctness of different parts of the business process. This is the case
of choreography-based approaches to collaboration. The current state of the
art is the Web Service Choreography Description Language (WSCDL)[17].
WSCDL is a non-executable specification language that describes the mes-
sages exchanged among the different parties during a collaboration. It defines
both the message formats and the order in which they must be sent. In a
choreography, no central party is responsible for guiding the collaboration,
but rather each partner must be (1) aware of the defined business-logic, (2)
capable of correlating messages, and (3) capable of performing its role in the
process. In such scenarios, it is important to monitor the functional and non-
functional qualities of service invocations. It is also necessary to monitor the
evolution of the business logic, by checking that the required messages are
sent and received in the specified order. To achieve this goal, the monitor
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must be provided with a behavioral specification of the process being carried
out, which can be derived from the specification of a choreography.

9.2.3 Collecting Monitoring Data

Data can be collected from different sources. At least four very prominent
cases can be identified.

1. Collection of process state data: In orchestration-based systems, data may
be collected through appropriate probes that are placed throughout the
process. The properties that can be checked are those that predicate on
process states. To make the approach less invasive, it is possible to limit the
check of process states to the points where the workflow process interacts
with the outside world, by capturing the data that flow in and out. In a
centralized execution environment, this can be achieved quite simply by
intercepting the incoming and outgoing messages. In a choreography, the
probes must be set up in a distributed fashion.

2. Collection of data at the SOAP message level: In service collaborations,
data can also be collected at the message level. This can be achieved
through the use of appropriate probes that intercept all the SOAP mes-
sages entering or leaving the system on which a service is deployed. This is
especially useful when we need to check the properties of a SOAP message
header, or of a message’s payload.

3. Collection of external data: Some monitoring approaches require addi-
tional data that must be collected externally. This happens when a certain
property to monitor predicates on data that does not belong to the cur-
rent business process. For example, it might be necessary to verify if the
value of the interest rate, returned by a banking web service, satisfies the
correctness requirement that it should not exceed a threshold defined by
the National Bank. Since the threshold may change dynamically, it must
be retrieved at run-time by invoking an appropriate external data source.
Obviously, the monitoring framework must be aware of the existence of
this data source in order to verify such a constraint.

4. Collection of low level events: Some monitoring approaches rely on data
collection that is achieved at a lower level of abstraction, such as at
the execution engine level. The events generated by the execution are
collected and logged for on-the-fly or later analysis. For example, the
ActiveBPEL execution engine[1] associates special states to the BPEL
activities being executed. An invoke activity can be in an “inactive”
state, a “ready to execute” state, or an “execute” state, and produces
an event each time when there is a valid state transition. Data collection
can be wired into the execution engine to capture these transitions, al-
lowing analysis to predicate on the order in which they occur, when they
occur, etc.
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9.2.4 Degrees of Invasiveness

Existing monitoring approaches differ in the degree of invasiveness with re-
spect to specification of the business logic and its execution.

Regarding specification—a typical design-time activity—in certain ap-
proaches the definition of the business logic and the monitoring activities
are highly intertwined (e.g., through the use of annotations in the process
definition). Other approaches keep the specification of the monitoring logic
entirely separate from the business logic, thus encouraging a “separation of
concerns” which allows designers to reason separately on the two problems.

Regarding execution, it is possible to distinguish between approaches in
which the execution of the business and of the monitoring logic are highly
intertwined, and approaches in which they execute independently.

An example of a highly invasive approach to monitoring is the use of pre-
and post-conditions. Since they require process execution be blocked when
the properties are checked, they have an adverse effect on performance. On
the other hand, approaches that have a low degree of invasiveness usually take
place externally to the process.

9.2.5 Timeliness in Discovering Undesirable Situations

A timely monitor detects an anomalous situation as soon as the data indi-
cating the anomaly have been collected. In general, the distance between the
two time points denotes the degree of timeliness of the monitoring approach,
which can vary from early to late detection.

At one end of the spectrum, we can find approaches that adopt highly
intrusive techniques, which aim at discovering erroneous situations as early
as possible. These should be used in situations that are critical for the busi-
ness process, such as cases in which we need to be sure that a message is
transmitted in encrypted form, using the appropriate encryption algorithms.
A possible way to ensure high degrees of timeliness is to express the proper-
ties in terms of assertions (e.g., pre- and post-conditions on service invoca-
tions) that block the business process while the run-time checking is being
performed.

At the other end of the spectrum, we can find approaches that allow de-
signers to do post-mortem analysis to discover erroneous situations. These
approaches can be used to plan changes that may affect future executions,
bindings, or versions of a business process. A possible implementation may be
based on logging events and execution states for later analysis.

A special mention should also go to approaches that perform proactive
monitoring. Thanks to the data collected both during previous executions of
the business process and on-the-fly, these approaches try to identify situations
in which it is progressively more and more likely that global process quali-
ties (e.g., the overall response time) will not be maintained. However, since
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erroneous behaviors—especially those regarding non-functional qualities—
can be transient, pro-active monitoring may lead to situations in which the
monitoring signals a problem that actually does not manifest itself.

9.2.6 Abstraction Level of the Monitoring Language

The language used to specify the monitor depends on the expected end-user.
Highly structured approaches provide a low-abstraction level and are heavily
influenced by aspects such as the collaboration paradigm being used and its
data formats. These must be considered tools for the designers responsible for
delivering high quality and dependable processes.

On the other hand, it is also possible to envision approaches in which
higher abstraction levels are used. These hide the intricacies of the business
process’ collaboration paradigm, and allow non-technical end-users to define
functional and/or non-functional properties they consider important for their
applications.

9.2.7 Other Aspects

Many other classification dimensions can be considered when analyzing exist-
ing monitoring approaches. An example is the degree of expressiveness pro-
vided by the monitoring specification language. Depending on the nature of
the properties the approach is capable of verifying, we can find languages that
require a more theoretical background, such as first-order logics or temporal
logics, or that are closer to a more typical object-oriented system designer’s
background, such as OCL.

Another possible classification dimension is the degree of automation in
the derivation of the monitoring directives. In fact, it is possible to envision
approaches that require the designer to manually define the properties to be
checked, and approaches in which the properties are automatically derived by
the system, by formally reasoning on the requirements.

Monitoring approaches can also be classified based on the validation tech-
niques they adopt. Some examples of techniques for verifying properties are
assertion checking, trace analysis, model-checking, etc.

The approaches can also be classified based on their degree of adoptabil-
ity. Some approaches, thanks to the adoption of standards, do not depend on
the run-time infrastructure chosen by a service composition provider. Oth-
ers, instead, from a technological and implementation standpoint, are tied to
a certain proprietary run-time environment, and therefore cannot be easily
configured to interoperate and integrate with different ones.

Finally, monitoring approaches can be classified based on the nature of
their support infrastructure. It is possible to conceive monitoring infras-
tructures as centralized components that overlook service execution, or as
distributed components that collaborate to check the functional and/or non-
functional properties we need.
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9.3 Case Study

The case study introduced in the initial chapters of this book provides informal
common grounds for reasoning on the different facets of web services. To dwell
deeper in the real intricacies of the monitoring problem, we need to further
detail some key aspects of the proposed scenarios, such as their functional
and non-functional requirements, the required collaboration paradigms, the
underlying architecture, and its binding policies.

9.3.1 Functional Correctness of the Holiday
Location-Finder Web Service

The process starts with John looking for suitable locations for his get-away
weekend, locations that must satisfy certain requirements (they must be close
to where he lives, by a lake, near the mountains, etc). Using his office com-
puter, John interacts with a fairly simple orchestrated process that guides him
in finding the location, booking the rooms in a hotel, etc.

Figure 9.1 specifies the interface of the holiday location-finder web service,
using a stereotyped UML class diagram to avoid the low-level details of a
WSDL XML interface. In this abstraction, web services are seen as boxes
that only provide public methods. The input and output parameters for these
methods are described through “dataType” stereotypes, which only contain
public attributes.

Given a request that specifies the departure location (i.e., a location name
and GPS coordinates), a maximum traveling distance the client is willing to
go, and an articulate description (the format of which is omitted for simplicity)

+ findLocation(RequestSpec) : LocationResults

<<service>>
Holiday Location Finder

+ departureLocation : Location
+ maxLocationDistance: int
+ selectionCriteria : Criteria

<<dataType>>
RequestSpec

+ locations : Location[]

<<dataType>>
LocationResults

+ name : String
+ Coordinate_Zone : int
+ Coordinate_Easting : int
+ Coordinate_Northing : int

<<dataType>>
Location

Fig. 9.1. The holiday location-finder web service
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of key interests, such as proximity to a lake, mountains, etc., the web service
responds with an array of possible holiday locations.

We assume that the external location-provider web service invoked by
the workflow is used by John under a temporary trial license. Before sub-
scribing a contract with the provider, John wishes to verify that the ser-
vice delivers what it promises, and therefore he turns the monitor on. The
monitor checks whether the returned locations satisfy all the user-defined
selection criteria. To simplify our example, we will concentrate on verify-
ing whether the locations are within the maximum distance specified in the
request.

John decides to adopt an invasive monitoring approach, in which post-
conditions block the process while executing run-time checks. The post-
condition that checks the validity of the service can be expressed as in
Fig. 9.2.2 However, an invasive monitoring approach based on a blocking post-
condition is not the only possible solution. John could have instead adopted
a solution that checks the property in a less timely fashion, using a less in-
trusive approach, and with a lower impact on the overall performance of the
process.

9.3.2 Functional Correctness of the Map Web Service

The example scenario states that John and his wife decide to travel by car.
The car is equipped with a haptic device to communicate with remote ser-
vices for entertainment reasons (e.g., purchase a multimedia stream), or for
gathering useful information from the environment. John decides to use his
device to obtain a map illustrating how to reach the vacation resort. The de-
vice can show only certain image formats with a given resolution. Therefore,
it is important that the map returned by the external service satisfies both
requirements. Suppose that John’s workflow has a pre-installed binding to a
free-of-charge external service that does not always guarantee fulfillment of
the requirement. It may, in fact, sometimes deliver maps whose format or res-
olution are invalid for the haptic device. The monitor is therefore turned on,

For all the returned locations l, 
(RequestSpec.departureLocation.Coordinate_Easting - l.Coordinate_Easting)  +
(RequestSpec.departureLocation.Coordinate_Northing - l.Coordinate_Northing)  <=
RequestSpec.maxLocationDistance

2

2

2

Fig. 9.2. A functional property

2 We assume that the monitoring language allows properties to be specified using
universal quantifiers over the elements of a certain data set.
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to allow for delivery of unacceptable maps to be trapped. A suitable reaction
to a detected anomaly might consist of switching to another service provider
who provides maps under payment.

In order to discover an image’s format and resolution, special-purpose tools
are needed. Since the delivery environment (i.e., the BPEL execution engine)
does not possess the necessary tools for manipulating and/or aggregating the
monitoring data, the monitor itself is responsible for retrieving the data it
needs. Furthermore, John decides to adopt an invasive but timely monitoring
policy, which prevents the haptic device from using a non-compliant image.
As a non-compliant image is detected, the system starts a reaction strategy
which tries to find a suitable substitute for the current map service. To achieve
this goal, John decides to define the property in terms of a process-blocking
post-condition.

9.3.3 Monitoring Security

In the example, John uses a service—provided by his bank—to pay for his
reservations. John expects his banking services to provide standard encryp-
tion strategies and technologies capable of ensuring “safe transactions.” Safe
transactions prevent eavesdropping, message tampering, fake messages, etc.
The main standards proposed for tackling these problems are WS-Security [2]
and WS-Trust [15]. The former supports end-to-end security issues, such as
origin authentication, integrity, and confidentiality, while the latter supports
the creation of trust relationships between different parties.

In order to ensure end-to-end security, the monitor must have access to
the SOAP messages flowing in and out of the execution engine. In fact, it
is necessary to verify whether the messages carry the appropriate signature
elements, and whether certain message parts are encrypted as specified. In
practice, the messages should be intercepted after their preparation has been
finalized by the sending party, but before they are sent out. Due to the impor-
tance security issues have, an intrusive and timely approach should be used,
to prevent insecure messages from being sent out.

On the other hand, if the goal is to monitor the correct establishment of
trust relationships, a slightly different approach should be used. Since WS-
Trust embeds special tokens in messages using the WS-Security specification,
it is important to verify their presence at the message level. However, WS-
Trust also specifies multi-party protocols for obtaining the needed tokens,
and these should be verified as well. Moreover, in these protocols, it is often
the case that a number of intermediaries—already in a trust relationship—
are used to help establish the new relationship (i.e., between John’s system
and the bank web service). These collaborations are typically choreographic
in nature, especially when concepts such as trust federations are introduced.
As a consequence, monitoring should also verify that the desired protocols
perform as expected.
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9.3.4 Monitoring Response Time

Web service response times are typically monitored by web service providers,
who establish control policies on their assets and plan changes in their deploy-
ment strategies, should response time degrade over time (e.g., due to request
overload). Examples of how a deployment strategy can be modified and im-
proved are the migration to more capable servers or the deployment of new
instances of the service.

However, clients are also directly interested in monitoring the response
times of services they interact with. For example, in our scenario, John’s haptic
device could be interested in monitoring the time taken by his bank’s web
service to open a secure channel with the highway’s tollgate payment service,
pay the toll, and have the tollgate lift its bars. In this case, one might define
a non-invasive approach that proceeds in parallel with the normal process
execution. Through statistical analysis, the monitor may proactively discover
non-functional problems before they actually occur. This would give the on-
board computer the time to let John know if he should slow down, or avoid
the automatic gates entirely and proceed to one where he can pay manually.

9.4 Dynamo

Dynamo (Dynamic Monitoring) is an approach and a toolset we developed to
support service monitoring. Its conceptual roots originate from the software
engineering community, and in particular can be traced back to assertion
languages like Anna (Annotated Ada [20]), JML (Java Modeling Language
[3]), and the notation added to the Eiffel language [22] to support “Design by
Contract” [24]. These languages allow designers to add constraints to their
programs in the form of assertions, typically pre-conditions, post-conditions,
and invariants.

Dynamo provides a language called WSCoL [4]—similar to the light-weight
version of JML—which allows designers to specify constraints on orchestrated
collaborations. WSCoL is tailored toward the de-facto standard BPEL and
supports the definition of pre- and post-conditions for activities that interact
with external services (i.e., invoke, receive, reply, and pick). Dynamo monitors
the evolving client-side state of the process and assumes that it can be modified
erroneously only through external collaboration. That is, the approach trusts
the internal business logic, but not the execution of the external services the
process is bound to. This is the reason why post-conditions must be checked.
On the other hand, pre-conditions may be useful in the debugging phase of
a service composition to check that external services are invoked correctly.
Dynamo also fosters separation of concerns since monitoring is defined as a
cross-cutting concern. Designers can concentrate on the business logic and on
the monitoring directives independently. Therefore, we can say the approach
is non-invasive at the specification time.



250 C. Ghezzi and S. Guinea

To favor adoption of our monitoring approach, the BPEL execution envi-
ronment was not changed: appropriate external services—called Monitoring
Managers—are responsible for analyzing WSCoL constraints. The business
logic is unaffected by the monitoring, but to allow the process to interact
with the external monitors, additional BPEL code is added to the process
at deployment time by means of static weaving. This leads to an intrusive
approach (with regard to the execution of the system itself), which blocks
the process execution to check pre- and post-conditons to discover erroneous
situations in a timely fashion, i.e., as soon as they occur.

Dynamo explicitly supports—through the WSCoL specification language—
two main kinds of data collection: (1) directly from the process and (2) from
external data sources, if these are provided via web service interfaces.

Figure 9.3 summarizes the approach and gives a better idea of the static
weaving that occurs at deployment time. The component responsible for weav-
ing the code that ties the process to the external monitoring managers is
called BPEL2. It takes as inputs both the non-monitored version of the busi-
ness process—specified in terms of BPEL code—and an external Monitoring
Definition File. This file contains both the WSCoL constraints to be checked
and the “locations” within the process in which (i.e., the BPEL activities
for which) the constraints should be verified. These locations are expressed
using an XPATH [8] expression (since BPEL is an XML specification lan-
guage) and a keyword indicating whether the condition is a pre-condition or
a post-condition.

The monitored version of the process that is produced substitutes each
BPEL invocation for which a pre-condition or a post-condition, or both, has
been defined (see invocation of service B in Fig 9.3), with a call to the Mon-
itoring Manager, which acts both as a proxy for the service invocation and
as a gateway toward external components that can act as WSCoL constraint

Fig. 9.3. An overview of Dynamo
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analyzers. The weaving also adds some additional code at the beginning of
the process and at the end, respectively responsible for the set up of the
monitoring manager, and its release once the process execution terminates.

9.4.1 WSCoL

WSCoL, our monitoring language, allows the designer to do the following:

• Define and predicate on variables containing data originating both within
the process and outside the process.

• Use pre-defined functions, e.g., string concatenation.
• Use the typical boolean operators such as && (and), || (or), ! (not), =>

(implies), and <=> (if and only if), the typical relational operators, such
as <, >, ==, <=, and >=, and the typical mathematical operators such
as +, −, ∗, and /.

• Predicate on sets of variables through the use of universal and existential
quantifiers.

Since the web services invoked by a workflow may be considered as black
boxes that expose public methods, which take an input and produce an output,
there is no side effect on input variables. Assertion expressions may, therefore,
refer to variables in the input message without distinguishing between the
value prior to service invocation and the value afterward.

WSCoL will be introduced via examples, to describe properties that can
be verified using Dynamo in the case study outlined in Sect. 9.3.

Internal Variables

It is common practice in BPEL to use one variable to contain the data that
must be sent to a web service, and another variable to contain the data that
the invocation returns to the process. These variables match the XSD types of
the input and output messages of the web method being called, as defined in
the service’s WSDL description. WSCoL can refer to internal BPEL variables
through use of a syntax which is somewhat similar to XPATH. The designer
must specify the name of the variable, and the internal path from the root
of the variable to the actual content he/she wants to refer to. The XPATH
must point to a simple data type, since WSCoL does not allow the definition
of relationships between complex data types.

In Sect. 9.3, to express the functional requirements of the “Holiday Lo-
cation Finder” service, we need to refer to the maximum location distance.
Figure 9.4 shows the structure of the internal BPEL variables “RequestSpec”
and “LocationResults” used to call the “Holiday Location Finder Web Ser-
vice” web method. To refer to the maximum location distance we can write:

($RequestSpec/maxLocationDistance)
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Fig. 9.4. The input and output messages for the Holiday Location Finder Web
Service

The first part of the expression is introduced by a dollar sign and indi-
cates the BPEL variable we are referring to (i.e., “RequestSpec”) while the
remaining part specifies how to obtain the “maxLocationDistance” value from
the variable. In this case the XPATH expression matches a node containing
a integer value (see Fig. 9.1), on which a function like “abs” can be used to
evaluate the absolute value.

External Variables

WSCoL allows the designer to refer to external variables through the concept
of external data collection. External variables can be simple data types such as
strings, integers, longs, booleans, etc. WSCoL provides a number of functions
for data collection, one for each simple data type that can be returned, and
assumes the external data collectors being used can be queried through a web
service interface.

In the example discussed in Sect. 9.3, we need to first discover the map’s
resolution (of which we only had a byte representation), and then compare
it with the highest resolution accepted by the haptic device—say 300 by 200
pixels. To do so, we use a data collector (e.g., the “imageInfoService,” whose
return type is shown in Fig. 9.5), which provides the resolution of an image
it is given as input.

The common signature for WSCoL’s data collection functions is

(\return<X> (W, O, Ins, Out))
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Fig. 9.5. Structure of the return type for “imageInfoService”’s “getInfo” web
method

where

• X is the XSD type of the function’s return value.
• W is the location of the WSDL specification for the data collector that is

to be used.
• O is the name of the operation (web method) that is to be called on the

data collector.
• Ins is a string concatenation of the input values that should be used when

calling the data collector’s web method.
• Out is an XPATH indicating how to obtain the correct return value within

the complex data type returned by the data collector.

Figure 9.6 shows a post-condition that specifies the requested resolution
(higher than 300 by 200 pixels) of the map returned by the service.

Quantifiers

WSCoL also offers designers the possibility to use universal and existential
quantifiers. These are useful in cases in which we want to express constraints
on sets of values.

Universal quantifiers indicate a constraint that must be true for each ele-
ment in a given range. They follow a simple syntax:

(\forall $V in R; C)
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(\returnInt('WSDL', 'getInfo', ($getRoute/parameters/getRouteResult), 
'//parameters/getInfoResult/HResolution') <= 300 &&
(\returnInt('WSDL', 'getInfo', ($getRoute/parameters/getRouteResult), 
'//parameters/getInfoResult/VResolution') <= 200

Fig. 9.6. The post-condition on the map web service

They indicate a constraint that must be true for each element in a given range.
The meanings of the different parts are as follows:

• $V in R defines the variable and the finite set in which the variable is
considered. The set is defined using the syntax previously introduced for
variables, where the XPATH expression returns a set of nodes, instead of
a single node.

• C defines the constraint that must hold.

For example, the “findLocation” web method in the “Holiday Location
Finder” web service returns an array of locations (see Fig. 9.4 for the structure
of the returned data type). In Sect. 9.3 our post-condition for this method
was that “all the returned locations should be within the maximum location
distance specified in the request.” The WSCoL constraint can be seen in
Fig. 9.7.

Existential quantifiers follow a similarly simple, and equally intuitive, syn-
tax:

(\exists $V in R; C)

9.4.2 The Monitoring Manager

The internal architecture of the Dynamo monitoring manager is shown in
Fig. 9.8. It follows a plug-in style, which allows it to interact with different
kinds of data analyzers for different kinds of properties. In its current imple-
mentation, Dynamo uses the XlinkIt engine [27] as its external data analyzer.
The following are the monitoring manager’s principal components:

(\forall $l in ($LocationResults/locations/location/); 
($l/Coordinate_zone)==($RequestSpec/departureLocation/Coordinate_Zone) &&
[($l/Coordinate_Easting) - ($Request/departureLocation/Coordinate_Easting)] ^2 + 
[($l/Coordinate_Northing) - ($Request/departureLocation/Coordinate_Northing)] ^2 <=
($RequestSpec/maxLocationDistance)^2)

Fig. 9.7. The post-condition for the “findLocation” web method
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Fig. 9.8. The architecture of the monitoring manager

• Rules manager, which represents the interface through which the moni-
toring manager interacts with its clients. It is responsible for managing
the monitoring manager’s set up, for how the other internal components
collaborate to achieve constraint verification, and for releasing the mon-
itoring manager’s resources, once the executing process no longer needs
monitoring.

• Configuration manager, which contains all the information needed by the
other components to verify the constraints. Every time weaving is per-
formed, the BPEL2 component adds a snippet of BPEL code at the begin-
ning of the monitored process. This allows the configuration manager to
be set up independently for each process to be monitored. In particular,
the extra code sends the monitoring manager all the WSCoL assertions it
will be asked to verify during the process execution, thereby reducing the
amount of data that will be sent each time a constraint needs to be checked,
by restricting it to information that can be obtained only at run-time.

• External analyzers manager, which allows different external data analyzers
to be used by the monitor. This component is responsible for transforming
the collected monitoring data and the WSCoL assertions into the specific
formats that can be understood by the external data analyzers. In the
case of XlinkIt, the data are transformed into XML data files, while the
WSCoL rules are transformed into [25] rules.
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• Invoker, which can invoke any external component, provided it has a
WSDL interface. It is used for external data collection, to invoke external
data analyzers, and to invoke the external web service being checked and
for which the monitoring manager is acting as a proxy.

The collaboration diagram of Fig. 9.9 illustrates how run-time monitoring
is achieved. The figure illustrates a simple case in which (1) the Rules man-
ager checks whether a pre-condition is defined in the Configuration manager
for the specific service invocation being monitored (steps 1–2), (2) discov-
ers that a constraint exists and asks the External analyzers manager to use
the appropriate analyzer plug-in to transform the monitoring data and the
WSCoL constraint into suitable formats (steps 3–6), (3) asks the Invoker to
call the external data analyzer to verify the constraint (steps 7–10), (4) finds
out that the constraint holds and asks the Invoker to call the external service
(steps 11–14), and finally gets back to the process with the data it is expecting
(step 15). Although many interactions take place, the implementation is ex-
tensively configurable. All components can be kept local in order to minimize
the amount of needed distributed interactions.

The actual cost of our approach in terms of distributed interactions is
difficult to quantify. On the one hand, each call to an external service being
monitored is substituted by a call to our Monitoring manager proxy. At that

WS-BPEL
Process

Data Collector

Web Service

Data AnalyzerInvoker

Rules
Manager

External
Analyzers
Manager

Monitor Plug-
in

Configuration
Manager

12: Invoke Web Service
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3: Tranform WS-Col Expression
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Fig. 9.9. Checking a pre-condition
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point, two things can happen depending on whether a pre-condition has been
defined or not. In the first case, if the pre-condition is verified correctly then
the proxy will call the actual external service. In the second case, a post-
condition must be present (if not the proxy would not have been called). In
order to verify such a condition, the proxy must first call the actual external
service. Therefore, in the worst case, from a performance standpoint, two ser-
vice invocations are performed: one to the proxy and one to the service itself.
Their payloads are similar, except that the call to the proxy contains the extra
monitoring data collected from within the process in execution. The actual
amount of extra data depends solely on the nature of the WSCoL expressions
defining the pre- and/or post-condition being checked. External data collec-
tion, through which data are gathered from external sources that expose a
web service interface, also affects performance. In fact, the occurrence of ex-
ternal variables in pre- or post-conditions implies extra remote invocations
that must be performed at run-time.

Regardless of the actual number of service invocations being performed,
however, the main performance bottleneck in the current version of Dynamo
is due to the verification of the CLiX rules (after they have been translated
from the original WSCoL rules) performed by XlinkIt, which uses XML files to
perform its tasks. We are currently producing a pure WSCoL analyzer based
on Java that will solve this problem by keeping the data in main memory,
without leaning on filesystems and databases.

9.5 Other Monitoring Approaches

This section reviews a number of research and industrial monitoring ap-
proaches and discusses their properties in terms of the classification items
presented earlier. For some of these approaches, more in-depth presentations
can be found in the other chapters of this monograph. A summary of our
comparative analysis of all the approaches is presented in Table 9.1.

9.5.1 Research Approaches

Requirements Monitoring

Spanoudakis and Mahbub [26] present an approach in which the requirements
to monitor in a BPEL workflow are defined using event calculus, a first-order
logic that incorporates predicates for expressing temporal features. An event
interceptor component is needed to capture phenomena, such as operation
invocations, return messages, etc. By tying the event interceptor to a central-
ized execution engine, with this approach it is not necessary to instrument
the individual services in the collaboration.

Two kinds of requirements are considered: behavioral properties, automat-
ically obtained from the BPEL collaboration specification, and behavioral as-
sumptions that are manually specified. When events are collected at run-time,
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they are stored in an event database. The specified properties are then verified
against the collected data, using variants of integrity-checking techniques in
temporal databases.

This approach is meant to capture erroneous situations post-mortem. Even
though the approach is tailored toward monitoring functional properties, non-
functional properties can also be expressed and verified, such as properties
regarding response times. Since events are collected in parallel with the process
execution, a low degree of invasiveness is ensured.

For a deeper analysis of this approach, see Chap. 10.

Planning and Monitoring Service Requests

A significantly different approach is proposed by Lazovik et al. [18]. They
present a planning architecture (with a specially tailored run-time environ-
ment) in which service requests are presented in a high-level language called
XSRL (Xml Service Request Language). They adopt a proprietary orches-
trated approach to collaboration, since they claim that current standards,
like BPEL, do not have the necessary flexibility to satisfy user requirements
that heavily depend on run-time context information.

The planing architecture is based on a continuous interleaving of planning
steps and execution steps. Because BPEL lacks formal semantics, the authors
decided to extrapolate state-transition systems from BPEL specifications and
to enrich them with domain operators and constructs.

This framework is based on reactive monitoring. In particular, design-
ers can define three kinds of properties: (1) Goals that must be true before
transitioning to the next state (2) goals that must be true for the entire pro-
cess execution, and (3) goals that must be true for the process execution
and evolution sequence. The XSRL language also allows for the definition of
constraints as boolean combinations of linear inequalities and boolean propo-
sitions. It provides sequencing operators such as “achieve-all,” “before” and
“then,” “prefer” goal x “to” goal y, and “then.” It also defines a number of
operators that can be used on the propositions themselves, defining how these
propositions should be satisfied such as “vital” and “optional.”

The delivery platform continuously loops between execution and planning.
In particular, the latter activity is achieved by taking into account context and
the properties specified for the state-transition system. This makes it possible
to discover, each time it is undertaken, whether a property has been violated
by the previously executed step, or if execution is proceeding correctly.

9.5.2 Industrial Approaches

In the last few years, numerous industrial approaches to monitoring have
been developed. With respect to research proposals, industrial approaches
tend to be tailored on the requirements of service providers and concentrate
on monitoring low-level events. Most of the monitoring approaches are part
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of a deployment environment, and consist of either ways to capture low-level
information (such as response time and throughput) or exceptions that occur
while trying to enforce certain non-functional properties (or policies). We will
start by presenting examples of the latter, by looking at two industrial propos-
als: Cremona and Colombo. We will then conclude by investigating lower-level
approaches such as GlassFish and IBM’sTivoli Composite Application Man-
ager for SOAs.

Cremona

Cremona is a proposal from IBM, which is currently distributed within the
Emerging Technologies Toolkit (ETTK) [19]. Cremona, which stands for “Cre-
ation and Monitoring of WS-Agreements,” is a special-purpose library devised
to help clients and providers in the negotiation and life-cycle management of
WS-Agreements (i.e., their creation, termination, run-time monitoring, and
re-negotiation).

A WS-Agreement is an XML binding between clients that require spe-
cific functional and/or non-functional properties be ensured at run-time and
providers that promise them. The standard, proposed by the GRAAP(Grid
Resource Allocation and Agreement Protocol) workgroup, provides XML syn-
tactical templates for agreements—protocols that should be followed during
the creation of an agreement—and a number of operations that can be used
to manage them throughout their life-cycle.

Regarding the monitoring problem, the Cremona framework provides an
“Agreement Provider” component, whose structure incorporates, among other
things, a “Status Monitor.” This component is specific to the system provid-
ing the service. By consulting the resources available on the system and the
terms of an agreement, it helps decide whether a negotiation proposal should
be accepted or refused. Once an agreement has been accepted by both parties
(the client and the provider), its validity is checked at run-time by a “Compli-
ance Monitor,” a sophisticated system-specific component that can check for
violations as they occur, predict violations that still have to occur, and take
corrective actions. Since both monitoring components are system dependent,
designers are guaranteed great flexibility in terms of the properties they can
check.

Colombo

Colombo [9] is a lightweight middleware for service-oriented architectures pro-
posed by IBM. It advocates that an optimized and native run-time environ-
ment, which does not build upon previously existing application servers, can
provide greater performance, and guarantee simplified models for development
and deployment. It supports the entire web service stack and, in particular,
orchestrated collaborations defined using BPEL. It also supports declarative
service descriptions, such as those expressed using WS-Policy [14].
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Table 9.1. Comparing monitoring approaches
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WS-Policy is a declarative language that aggregates quality-of-service
assertions that are defined using domain-specific languages. Of the many
domain-specific policy languages already defined or being defined, WS-Security
and WS-Transactions are the most prominent. Policies are statements that can
be attached to a service, to a single operation, or even to a single message
type. Therefore, recalling the example of Sect. 9.3, Colombo could be used
to monitor the messages being sent to the bank service and to check whether
they satisfy the specified security policies (i.e., encryption, authentication,
etc.). Colombo manages incoming and outgoing messages by passing them
through two corresponding pipes of dedicated policy verifiers and enforcers
(i.e., one for each kind of policy supported by the system), it can discover
erroneous behavior in a timely fashion, but is intrusive in nature. It provides
support for important issues, such as security.

9.5.3 Other Approaches

Many other industrial approaches to the monitoring of service-oriented sys-
tems exist. Most of them, however, tend to interpret monitoring at an even
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lower level of abstraction. In fact, they limit themselves to logging the mes-
sages being sent in and out of a system. They can be assimilated to mere
data collectors, since there is seldom any automatic analysis of functional or
non-functional properties, and data are interpreted manually.

GlassFish

GlassFish [12] is an open-source community implementation of a server for
Java EE 5 applications. Regarding monitoring of deployed services, GlassFish
provides a number of specific tools. Using technologies such as “J2EE Man-
agement” [13] and “Java Management Extensions”[21], GlassFish makes it
possible to access information on resources and properties that are tied to the
web services to be monitored. This information is given in the form of opera-
tional statistics (and in graphical form as well). The nature of the monitored
aspects depends on the level of monitoring chosen for a given service. There
are three possible levels: low, which monitors response times, throughput, and
the total number of requests and faults; medium, which adds message tracing
under the form of content visualization; and off, in which no data is col-
lected. Captured information can also be automatically aggregated to obtain
“minimum response times,” “maximum response times,” “average response
times,” etc.

Regarding the examples presented in Sect. 9.3, this approach could be
helpful in monitoring response times. Analysis of the monitored data could
then be achieved either manually, or automatically, possibly in conjunction
with a more sophisticated monitoring approach, such as Dynamo. This could
be the case of the examples presented in Sect. 9.3, in which John’s haptic
device needs to know how much time it usually takes to interact with the
bank service, pay the toll, and open the toll bars.

IBM Tivoli Composite Application Manager for SOAs

Another similar approach is the IBMTivoli Composite Application Manager
for SOAs [31]. This application manager uses an event-based collaboration
paradigm, implemented through a special-purpose integration bus. Messages
enter and leave the bus continuously, passing through special components
called the “ServiceBusInbound” and the “ServiceBusOutbound,” making it
easy to monitor their behavior and, in particular, their performance. However,
the application manager lacks the specially tailored tools present in other
similar approaches.

9.6 Conclusions

In this chapter we argued that dynamic software architectures, like SoAs, re-
quire verification to extend to run-time. In fact, since both the components
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of an application and their interconnections may change after deployment,
traditional pre-deployment verification is not enough to guarantee that the
application will satisfy the required quality requirements. We discussed run-
time monitoring as a possible solution to this problem, and we analyzed the
possible dimensions that may characterize the monitoring activity. In partic-
ular, we zoomed into an approach to monitoring that we investigated in our
research, based on assertions.

We believe that monitoring should also be the basis for architectural recov-
ery. It should be possible to design SOAs that provide self-organized reactions,
which may occur as deviations from the expected quality requirements de-
tected by the monitor. This is still an open and challenging research direction
in which we plan to invest our future efforts.

We are also considering a new version of the Dynamo framework that re-
lies heavily on Aspect-oriented Programming technology. In particular, we are
using AspectJ to enhance the ActiveBPEL engine [1] with Dynamo’s moni-
toring capabilities. Such an approach is allowing us to treat business logic and
monitoring as two completely cross-cutting concerns that are only intertwined
at run-time. The original process is no longer modified at deployment-time
and is directly deployed to the framework, regardless of the number of moni-
toring strategies defined by the different stakeholders. The approach also has
another advantage. Since the actual service invocations are no longer per-
formed by the Dynamo framework, which is only responsible for monitoring,
but by the ActiveBPEL engine itself, all general-purpose policies supported
by ActiveBPEL are a given. Such an approach also provides slightly better
performance.

Finally, we have also been using WSCoL and slightly extended versions
of Dynamo to enable the management of general policies such as those used
within the WS-Policy spec [14]. Some initial results have been achieved [5],
but the work is still ongoing.
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