
8

Web Services Regression Testing

Massimiliano Di Penta, Marcello Bruno, Gianpiero Esposito,
Valentina Mazza and Gerardo Canfora

RCOST — Research Centre on Software Technology — University of Sannio
Palazzo ex Poste, Via Traiano 82100 Benevento, Italy
{dipenta, marcello.bruno, gianpiero.esposito}@unisannio.it,
{valentina.mazza, canfora}@unisannio.it

Abstract. Service-oriented Architectures (SOA) introduce a major shift of per-
spective in software engineering: in contrast to components, services are used in-
stead of being physically integrated. This leaves the user with no control over
changes that can happen in the service itself. When the service evolves, the
user may not be aware of the changes, and this can entail unexpected system
failures.

When a system integrator discovers a service and starts to use it, she/he
may need to periodically re-test it to build confidence that (i) the service de-
livers over the time the desired functionality and (ii) at the same time it is
able to meet Quality of Service requirements. Test cases can be used as a form
of contract between a provider and the system integrators. This chapter de-
scribes an approach and a tool to allow users to run a test suite against a
service to discover if functional and non-functional expectations are maintained
over time.

8.1 Introduction

A challenging issue for the verification and validation of service-oriented sys-
tems is the lack of control a system integrator has over the services she/he
is using. System integrators select services to be integrated in their systems
based on a mixture of functional and non-functional requirements. An un-
derlying assumption is that the service will maintain its functional and non-
functional characteristics while being used. However, behind any service there
is a software system that undergoes maintenance and evolution activities.
These can be due to the addition of new features, the evolution of the exist-
ing ones, or corrective maintenance to cope with problems that arise during
the service usage.

Whilst the service evolution strategy is out of the system integrators con-
trol, any changes to a service may have an impact on all the systems using it.
This is a relevant difference with respect to component-based development:

206 M. Di Penta et al.

when a component evolves, this does not affect systems that use previous
versions of the component itself. Component-based systems physically inte-
grate a copy of the component and, despite the improvements or bug fixing
performed in the new component release, systems can continue to use an old
version.

Several types of changes may entail that a service does not satisfy any-
more the requirements of an integrator. When the evolution activity does not
require modifying the service interface and/or specification—e.g., because the
provider believes this is a minor update—the change remains hidden from
whoever is using the service. In other words, the system continues to use the
service without being aware that its behavior, in correspondence with some
inputs, may be different from the one exhibited previously. Evolution cannot
only alter the service functional behavior, but can also affect its Quality of
Service (QoS). While the current version of a service meets integrator non-
functional requirements, future versions may not. Finally, when the service is,
on its own, a composition of other services, the scenario may be even more
complex. As a matter of fact, changes are propagated between different sys-
tem integrators, and it happens that the distance between the change and the
actor affected by the change makes unlikely that, even if the change is adver-
tised, the integrator will be able to get it and react accordingly. To summarize,
functional or non-functional changes can violate the assumptions the integra-
tor made when she/he discovered the service and negotiated the Service Level
Agreement (SLA).

This chapter describes a regression testing strategy that can be used to
test whether or not, during its lifetime, a service is compliant to the behav-
ior specified by test cases and QoS assertions the integrator downloaded when
she/he discovered the service and negotiated the SLA. Similarly to what made
for components [1, 2], test cases are published together with the service inter-
face as a part of its specification. In addition, they can be complemented by
further test cases produced by the system integrator, as well as by monitoring
data, to form a sort of executable contract, which may or may not be part of
the legal contract. During the service lifetime, the integrator can run the test
suite against the (possibly new versions of the) service. If some test cases or
QoS assertions fail, the contract has been violated.

A relevant issue, that makes service testing different from component test-
ing, is the cost of such a test. Test case execution requires service invocations,
that are supposed to have a cost, and a massive testing can consume provider
resources or even cause denial of service. Both provider and integrator, there-
fore, may want to limit actual service execution during testing. To this aim,
this chapter explains how monitoring data can be used to reduce the number
of service invocations when executing a test suite.

The proposed service regression testing approach is supported by a toolkit,
described in the chapter. The toolkit comprises a Testing Facet Genera-
tor, that analyzes unit test suites (e.g., JUnit test suites) produced by the
service developer/provider and generates XML-encoded test suites and QoS

8 Web Services Regression 207

assertions that can be executed by service consumers, who do not have ac-
cess to the service internal implementation but only to the service interface.
Such test suites and QoS assertions will be one of the facets composing the
whole service specification.1 Another component of the toolkit, the Test Suite
Runner, permits the downloading and the execution of the test suites against
the service. Finally, the tool manages test logs and provides a capture/replay
feature.

The chapter is organized as follows. Section 8.2 motivates the approach,
describing the different service evolution scenarios that can result in a need for
re-testing the service, discussing the different stakeholders that can be involved
in service regression testing, and finally describing the running example used
to describe the approach. Section 8.3 presents the regression testing approach
through its different phases and the related tool support, also discussing issues
and open problems. Section 8.4 presents case studies carried out to evaluate
different aspects of the approach. After a discussion of the related literature
in Sect. 8.5, Sect. 8.6 concludes the chapter.

8.2 Motivations and Testing Scenarios

This section motivates the need for service regression testing. It firstly de-
scribes how services can evolve and to what extent this can have an impact on
systems using them. Then, it discusses the different perspectives from which a
service can be tested and what makes service regression testing different from
component regression testing. Finally, it presents some motivating examples
that will be used to explain the testing approach.

8.2.1 Evolution Scenarios in SOA

Let us imagine that a system integrator has discovered the release rn of a
service and, after having negotiated the SLA with the service provider, starts
to use it. At release rn+k the service has evolved, and different scenarios may
arise:

• Change in the service functional behavior: At release rn+k the service may
behave differently from release rn. If the integrator negotiated the SLA
at rn, the new, unexpected behavior may cause failures in the system.
This happens when the service, at release rn+k, replies to a given set of
inputs differently from release rn, or it handles exceptions differently. For
example, release rn+k of a search hotel service may return an unbounded
list of available hotels, while rn only returned a single results.

1 To enrich the service specification available within the WSDL interface, one could
hyperlink other files, e.g., specifying the semantics, the QoS, or containing test
cases.

208 M. Di Penta et al.

• Change in the service non-functional behavior: This can be due to changes
in the service implementation—which may or may not alter the service
functional behavior—as well as to changes in the provider hardware, in
the network configuration, or in any other part of the environment where
the service is executed. For example, the throughput may decrease or the
response time may increase, causing violations of the contract stipulated
between the integrator and the provider.

• Change in the service composition/bindings: A service may, on its own,
be composed of other services. It may happen that the composite service
owner changes some bindings. For example, let us suppose that an image
processing service (S1) uses another service (S2) for filtering the image. In
particular, S2 is able to ensure a given image resolution. It can happen that,
since S2 is not available anymore, S1 re-binds its request to an equivalent
image filtering service, S′

2 which, however, is not able to ensure the same
resolution anymore. As a result, S1 users will obtain an image having a
lower resolution without being aware of what actually happened behind
S1 interface.

The aforementioned scenarios may or may not be reflected in changes vis-
ible in the service interface/specification. If the interface does not change, the
provider may decide to update the service without advertising the changes. In
other cases, the interface update does not necessarily reflect changes made to
the implementation. For example, the service interface indicates that a new
release of the service has been deployed at a given date. However, since noth-
ing has changed in the service specification nor in any operation input/output
parameters, the integrators will continue to invoke the service without verify-
ing whether the new release is still compliant with the assumption underlying
their system. In summary, even if providers are encouraged to update service
specifications/interfaces when the service evolves, there is no guarantee they
will actually do it properly whenever needed.

This urges the need to provide system integrators with a way to test
the service, either periodically or when they are aware that something has
changed. This form of regression testing can be used to ensure that the func-
tional and non-functional behavior is still compliant with the one observed
when negotiating the SLA.

8.2.2 Service Testing Perspectives

Whilst the introduction motivates the need for service regression testing from
a system integrator’s point of view, there are different stakeholder interested
to make sure that a service, during its lifetime, preserves its original behavior.
Similarly to what Harrold et al. [3] defined for components, it is possible to
foresee different service testing perspectives [4]:

1. Provider/developer perspective: The service developer would periodi-
cally check whether the service, after its maintenance/evolution, is still

8 Web Services Regression 209

compliant to the contract stipulated with the customers. To avoid affecting
service performance, testing can be performed off-line, possibly on a sep-
arate instance (i.e., not the one deployed) of the service and on a separate
machine. The cost of testing is therefore limited (no need for paying ser-
vice invocation, no waste of resources). On the other hand, developer’s
inputs may not be representative of system integrator scenarios, and the
non-functional testing does not necessarily reflect the environment where
the service will be used.

2. System integrator’s perspective: On his/her side, the system integrator
may periodically want to re-test the service to ensure that its evolu-
tion, or even changes in the underlying software/hardware, does not al-
ter the functional and non-functional behavior so to violate the assump-
tions she/he made when starting to use the service. Testing from this
perspective is more realistic, since it better reflects integrator’s scenarios
and software/hardware configuration. On the other hand, as discussed in
Sect. 8.3.5, testing from this side is a cost for the integrator and a waste
of resources for the provider, raising the need for countermeasures.

3. Third-party/certifier perspective: A certifier has the responsibility of test-
ing the service on behalf of another stakeholder, which can be either a ser-
vice provider or one or more system integrators. The provider can rely on
a certifier as a mean to guarantee the service reliability and performance
to potential service users (e.g., integrators). Testing from this perspective
has weaknesses for both the provider and the integrator perspective: the
testing scenario and the configuration under which the service is tested
may not fully reflect the environment where the service will actually work.
As for system integrators, testing from this perspective has a cost and con-
sumes provider’s resources, although having a single certifier is certainly
an improvement over having each integrator testing the service.

4. User perspective: As described by Canfora and Di Penta [4], the user might
also be interested to have a mechanism which periodically re-tests the ser-
vice his/her application is using. Let us imagine the onboard computer
software installed in John’s car. Such application communicates with some
services (see Sect. 8.2.4) that, over the time, might vary their behavior,
causing problems to the onboard computer software. For this reason, an
automatic (the user is not a tester and would be unaware of such a de-
tail) regression testing feature from the user side is highly desirable. The
limitations and weaknesses are the same as for a service integrator.

8.2.3 What Makes Services Different from Components?

The above section explained the need for regression testing in service-oriented
systems, while highlighting several commonalities with component-based soft-
ware. In the authors’ experience, the main differences with components, that
need to properly adapt the approach, are, among others

210 M. Di Penta et al.

• the lack of control the integrator/user has on the service evolution, and on
the way the service, on its own, provides a piece of functionality by using
other, dynamically bound, services;

• the testing cost, both for the tester and for the service provider;
• the key role played by the QoS: even if QoS is also relevant for component-

based systems, in service-oriented computing it is used to determine bind-
ing choices and to assess whether a service provider is able to meet what
stipulated with the service consumer in the SLA. Furthermore, the need
for QoS testing is also due to the highly distributed nature of service-
oriented systems that may cause huge variations in QoS values or even
service unavailability.

8.2.4 Regression Testing Scenarios

To better explain the approach, let us consider the scenario described in the
Chap. 1. When John searches for a restaurant in a given location, this search
is made through a complex system that takes as inputs

1. the current latitude and longitude;
2. the maximum distance allowed;
3. the arrival date and hour;
4. the number of seats requested.

The system, among other services—e.g., services for computing the routing
distance between two locations—accesses a third party service, RestaurantSer-
vice, that provides five operations:

1. getRestaurantID, which, given the restaurant’s name, the city name and
the address returns the related ID composed of four decimal digits.

2. getRestaurantInfo, which returns an information record of the restaurant
(i.e., address, location expressed in GPS coordinates, etc.).

3. checkRestaurantAvailability, which, given a list of restaurant IDs, the date
and the number of seats requested, returns an array of availabilities.

4. restaurantReservation, which reserves a specified number of seats in the
restaurant for a given date and hour.

5. getRestaurantList, which, given a city name, returns a list of up to three
restaurants from that city.

Let us imagine now that the service undergoes a series of maintenance
activities. Some of them have been inspired from maintenance/evolution ac-
tivity actually carried out over the Amazon Web service and documented in
its release notes2:

2 http://developer.amazonwebservices.com/ecs/resources

8 Web Services Regression 211

1. The comma-separated list of restaurant IDs as parameter for the checkRe-
staurantAvailability operation is no longer supported. This means that,
similar to the Amazon service, whilst the interface does not change, only
a single ID is accepted.

2. The list returned by getRestaurantList is now unbounded, while in the
previous release it contained at most three restaurantInfo objects.

3. The restaurant ID format changes, due to the increasing number of restau-
rants handled. The new ID is composed of five digits, rather than the
original four digits.

8.3 The Approach

The previous section identified the need for a system integrator, as well as
for other stakeholders, to perform service testing with the aim of ensuring
that the service meets his/her functional and non-functional expectations. To
this aim, it would be useful that the providers make available to the system
integrator test cases she/he can use to regression test the service during its
lifetime.

Since test suites are, very often, created during early stages of the software
system development, it would be useful to reuse them to permit the testing
of services that expose pieces of functionality of the system itself. However,
since such test suites access system’s internal resources not visible from out-
side, they must be adequately transformed so that they can be executed from
the perspective of a service integrator, which has access only to the service
interface.

8.3.1 Service regression testing process

Figure 8.1 describes a possible scenario for the test case publication and re-
gression testing process. The scenario involves both a service provider (Jim)
and two system integrators (Alice and Jane), and explains the capabilities of
the proposed regression testing approach.

1. At time t0 Jim deploys the RestaurantService service together with a test
suite.

2. At time t1 Alice discovers the service, negotiates the SLA and down-
loads the test suite; she can complement the test suite with her own test
cases, perform a pre-execution of the test suite, and measure the service
non-functional behavior. A SLA is agreed with the provider, and Alice
stores both the test suite and the QoS assertions generated during the
pre-execution.

3. Then, Alice regularly uses the service, until,
4. after a while, Jim updates the service. In the new version the ID return

value for getRestaurantID is composed of five digits instead of four. Also,

212 M. Di Penta et al.

Jim
(Service Provider)

Alice
(Service Integrator)

Jane
(Service Integrator)

Application Server

Monitoring
Regression
Testing Tool

Test
cases
Test
cases

Test
log

deploys service
and test cases

Service
test

cases
updates service

1:

acquires service
and downloads
test cases

2:

4:

uses
service5a:

monitored
service I/O 5b:

triggers regression testing6a:

tests
service

6b:

uses monitoring data
to reduce testing cost6b:

outputs testing results6c:

Non functional
Assertions

starts pre-execution
of test cases

3:

QoS
assertions3b:

pre-execution
of test cases

3a:

Fig. 8.1. Test generation and execution process

because of some changes in its configuration, the modified service is not
able to answer in less than two seconds.

5. Jane regularly uses the new service with no problems. In fact, she uses a
field that is large enough for visualizing a restaurant ID composed of five
digits. Meanwhile, Jane’s interactions are monitored.

6. Since the service has changed, Alice decides to test it: data monitored
from Jane’s executions can be used to reduce the number of service in-
vocations during testing. A test log containing successes and failures for
both functional test cases and QoS assertions is reported. For example,
test cases expecting a restaurant ID composed of four digits will fail. The
non-functional assertions that expect a response time less or equal than
two seconds for getRestaurantID will also fail.

Test case publication and regression testing is supported by a toolkit,
developed in Java, comprising two different tools:

1. The Testing Facet Generator that generates service test cases from test
suites developed for the software system implementing the features ex-
posed by the service. In the current implementation, the tool accepts
JUnit3 test suites, although it can be extended to accept unit test suites

3 http://www.junit.org/

8 Web Services Regression 213

developed using different frameworks available for other programming lan-
guages (such as SUnit for Smalltalk or PHPUnit for PHP). JUnit supports
the development of a unit test suite as a Java class, containing a series
of methods that constitute the test cases. Each test case, in its turn,
is composed of a sequence of assertions checking properties of the class
under test.

2. The Test Suite Runner that permits the service consumer to
• download the testing facet hyperlinked to the service;
• generate QoS assertions by pre-executing the test suite;
• execute the test suite and to produce the test log;
• support capture/replay operations.

The toolkit relies on JavaCC4 to perform Java source code analysis and
transformation, on the Axis Web services framework5 and on the Xerces6

XML parser. The toolkit is freely available7 and distributed under a BSD
license.

The next subsections describe the different phases of the test case gener-
ation and execution process.

8.3.2 Testing facet generator

As shown in Fig. 8.2, the Testing Facet Generator produces a XML-encoded
testing facet organized in two levels.

1. The first level contains
• A Facet Description, providing general information such as the facet

owner and creation date.
• A Test Specification Data, containing information such as the type

of assertions contained in the test suites (functional and/or non-
functional), the number of test cases composing each test suite and the
perspective from which QoS assertions were generated (i.e., provider
or integrator).

• Links to XML files containing the test suite itself and QoS assertions.
• Some Policies, i.e., constraints that limit the number of operations that

can be invoked during a test in a given period of time. For example, the
facet in Fig. 8.2 defines the limitation of three operation invocations
per day.

2. The second level comprises files containing XML-encoded test suites and
QoS-assertions (the file testRestaurant.xml in our example).

4 https://javacc.dev.java.net/
5 http://xml.apache.org/axis/
6 http://xml.apache.org/xerces2-j/
7 http://www.rcost.unisannio.it/mdipenta/Testing.zip

214 M. Di Penta et al.

Fig. 8.2. Structure of testing facet

Generating Service Test Cases from JUnit Test Suites

As mentioned before, the service test cases are obtained by analyzing and
transforming test suites — implemented e.g., using JUnit — that the devel-
oper has produced for the system implementing the service’s features. These
test suites are very often available, and many software development method-
ologies, e.g., test-driven development, strongly encourage developers to pro-
duce them, even before implementing the system itself.

However, although these test suites are available, they cannot be directly
used by a service integrator to test the service. This because assertions con-
tained in the JUnit test cases can involve expressions composed of variables
containing references to local objects and, in general, access to resources that
are only visible outside the service interface. Instead, a test suite to be exe-
cuted from a system integrator can only interact with the service operations.
This requires that any expression part of a JUnit assertion, except invoca-
tions to service operations and Java static methods (e.g., methods of the Math
class), needs to be evaluated and translated into a literal, by executing an in-
strumented version of the JUnit test class from the server-side. The obtained
dynamic information is then complemented with test suite static analysis to
generate service test cases. Such test cases, as any other piece of information
describing the service, are XML-encoded and, to be executed, only require
access to service operation, and not to any service internal resource.

The process of generating service test cases from JUnit test suites can
be completely automatic, or user-guided. In the first case, the JUnit test
suite is translated so that operation invocations are left symbolic, whilst other
expressions are evaluated and translated into literals. In the second case, the

8 Web Services Regression 215

tool user can guide the transformation. The tool shows to the user the list
of test cases contained in the test suite (Choose test cases window in the
screenshot of Fig. 8.3). The user can select the JUnit test cases that should
be considered to generate service test cases. For the selected test cases, the
user can select (from the Select analysis window) two different options:

1. Default analysis: The tool automatically translates any expression, except
service operation invocations, in literals and generates the service test
suite;

Fig. 8.3. Facet generation tool

216 M. Di Penta et al.

2. Selective analysis: The user can select which method invocations, corre-
sponding to service operations, should be evaluated and translated into
literals, and which should be left symbolic in the testing facet.

Figure 8.4 shows an example of how a JUnit test case is mapped onto a
XML-encoded service test suite. The first assertion checks whether the oper-
ation getRestaurantID returns a valid ID, i.e., a sequence of four digits. The
upper part of the figure shows the JUnit test case, while the lower part shows
how the two assertions are mapped onto the service test suite. Note that each
functional assertion is followed by a QoS-assertion, which is checked against
the QoS values monitored when executing the assertion. As shown, some as-
sertion parameters appear as literals. For the first assertion, they were already
literal in the JUnit test suite. However, it can happen that a literal value con-
tained in the service test suite results from the evaluation of an expression
contained in the JUnit test case. The service test suite also contains some sym-
bolic parameters. These are Java static methods, e.g., Pattern.matches, that
can be invoked from the regression testing tool without the need for accessing
the service implementation and service operations, e.g., getRestaurantID. The
second assertion checks whether the restaurantReservation returns an error
output when someone attempts to book a table in the past.

Generating QoS Assertions

Assertions over QoS attributes are used to check whether the service, during
its evolution, is able to preserve its non-functional behavior, in compliance
with SLA stipulated by service consumers. These assertions are automatically
generated by executing test cases against the deployed service, and measuring
the QoS attributes by means of a monitor. Test cases are executed against the
service for a large, specified number of times and QoS values (e.g., response
time) measured. Given the QoS value distribution, a constraint can be fixed as

ResponseT ime < pi

where pi is the ith percentile of the response time distribution as measured
when the service was discovered and the SLA negotiated. Both the facet gener-
ation tool and the service regression testing tool have a feature for generating
the QoS assertions, after having specified how the assertion shall be gener-
ated, i.e., how many executions are necessary to compute the average QoS
value and which would be the percentile to be used to define the boundary.

QoS assertions are XML-encoded within the test suite using a format
similar to those defined by the WSLA schema [5]. An example of QoS assertion
for the getRestaurantID operation is shown in Fig. 8.4. The example indicates
that, when executing the getRestaurantID operation (part of the functional
assertion), the response time must be less than 3949 ms, which is the 90
percentile of the response time distribution estimated when generating the

8 Web Services Regression 217

<FunctionalAssert type="assertTrue">
<param name="expected" type="boolean" evaluation ="literal">

<boolean>true</boolean>
</param>
<param name=“actual" type="Pattern.matches" evaluation ="symbolic" invocationtype ="java static">

<param name="param0" type="java.lang.String">
<string>[0-9]{4}</string>

</param>
<param name="param1" type="r.getRestaurantID" evaluation ="symbolic"
invocationtype="operation">

<param name="param11" type="java.lang.String">
<string>Il Mare</string>

</param>
<param name="param12" type="java.lang.String">

<string>Naples</string>
</param>
<param name="param13" type="java.lang.String">

<string>Via Posillipo</string>
</param>

</param>
</param>

</FunctionalAssert>

<QoSExpression>
<AND><Expression>

<Predicate type="lessthan" percentile=“90" >
<SLAParameter>responsetime</SLAParameter><Value>3949</Value>

</Predicate>
</Expression>
<Expression>

<Predicate type="greaterthan" percentile=“10" >
<SLAParameter>throughput</SLAParameter><Value>0.25322866</Value>

</Predicate>
</Expression></AND>

</QoSExpression>

<FunctionalAssert type="assertEquals">
<param name="expected" type=“java.lang.String“ evaluation ="literal“>

<string>ERROR</string>
</param>
<param name=“actual" type="r.restaurantReservation" evaluation ="symbolic"
invocationtype="operation">

<param name="param0" type="java.lang.String"><string>2006-08-28</string></param>
<param name="param1" type="java.lang.String"><string>21:00</string></param>
<param name="param2" type=“int"><int>12</int></param>
<param name="param3" type="java.lang.String"><string>7134</string></param>

</param>
</FunctionalAssert>

<QoSExpression>
<AND><Expression>

<Predicate type="lessthan" percentile=“90" >
<SLAParameter>responsetime</SLAParameter><Value>293</Value>

</Predicate>
</Expression>
<Expression>

<Predicate type="greaterthan" percentile=“10" >
<SLAParameter>throughput</SLAParameter><Value>3.4129644</Value>

</Predicate>
</Expression></AND>

</QoSExpression>

public void testRestaurantReservation () throws Exception {
String id = "7134"

RestaurantService r= new RestaurantService();

assertTrue(Pattern.matches("[0-9]{4}",r.getRestaurantID("Il Mare","Naples","Via Posillipo")));

assertTrue(Pattern.matches("ERROR",r.restaurantReservation(“2006-08-28","21:00",12,id));

1

2

Q
o
S

A

s

s
.

Q
o
S

A

s

s
.

Fig. 8.4. Mapping of a JUnit test case onto a XML-encoded service test case

218 M. Di Penta et al.

QoS assertion. While a SLA document expresses general QoS constraints8

(e.g., “Throughput > 1 Mbps” or “Average response time < 1 ms”), QoS
assertions indicate the expected service performance in correspondence with
a given set of inputs (specified in the test case). For example, the assertion in
figure indicates what is the maximum response time permitted when invoking
the getRestaurantID operation.

As an alternative to using of QoS assertions, the service non-functional
behavior can be checked against the SLA. However, while the assertions are
used to check the QoS achieved for each test case, SLA can only be used to
check aggregate QoS values (e.g., the average, the minimum, or the maximum
against all test case executions).

An important issue to be discussed is who should generate QoS assertions.
The provider can generate QoS assertions when deploying the service. These
assertions will reflect the service QoS (e.g., response time or throughput) that
only depends on the service behavior (e.g., an image compression service will
respond slowly when the input is a large image) and on the provider’s machine
configuration. However, different integrators may experience response times
having a large variability from those generated by the provider. To overcome
this limitation, a system integrator can generate his/her own assertions, mea-
suring the QoS expected in correspondence with the given inputs (specified
by test cases) within a more realistic configuration.

8.3.3 Test Cases as a Contract

Test cases and QoS assertions constitute a kind of executable contract between
the system integrator and the service provider. When executing the test cases,
the integrator can observe the service’s functional and non-functional behav-
ior. If satisfied, she/he stipulates the contract. The provider, on his/her own,
agrees to guarantee such a behavior over a specified period of time, regardless
of any change that would be made to the service implementation in the future.
If, during that period, the service evolves — i.e., a new release is deployed —
deviations from the agreed behavior would cause a contract violation.

When a service has been found, the system integrator can download the
test suite published as a part of the service specification. Since the system
integrator may or may not trust the test suite deployed by the provider,
she/he can complement it with further test cases, also to better reflect the
intended service usage scenario. In a semi-structured environment — e.g., a
service registry of a large organization — the system integrator can publish
the new test suite, so that other integrators can reuse it. On the contrary, this
may not be possible in an open environment, where the additional test suite
is stored by the system integrator, and only serves to check whether future
service releases still satisfy his/her requirements.

8 That must hold for any service usage.

8 Web Services Regression 219

The decision on whether the integrator has to add further test cases may
be based on the analysis of the provider’s test suite (e.g., characterizing the
range of inputs covered) and from the test strategy used by the provider to
generate such a test suite — e.g., the functional coverage criterion used —
also advertised in the testing facet. The trustability level of the provider’s
test suite can be assessed, for instance, by analyzing the domain in which the
service inputs vary and the functional coverage criteria adopted.

8.3.4 Performing Service Regression Testing

Once the system integrator has downloaded the test suite and has generated
the QoS assertions, she/he can use them to perform service regression testing.
When regression testing starts, service operations contained in the test suite
are invoked, and assertions are evaluated. A test log is generated, indicating,
for each test case, (i) whether the test case has passed or failed and (ii) the
differences between the expected and actual QoS values. Also in this case, the
QoS monitoring is used to measure actual QoS values, thus permitting the
evaluation of QoS assertions.

Figure 8.5 shows a screenshot of the test suite runner. After specifying
the service URL and selecting a test facet from a local file or from a remote
URL, it is possible to run the test cases against the service, selecting whether
someone wants to perform only functional check, only non-functional, or both.
Progress bars report the test cases that have been passed and failed, both for
the functional and for the non-functional parts. Also, a progress bar indicates
the percentage of operation invocations that were avoided because reuse was
made through monitoring data. This would let the tester figuring out to which
extent the use of monitoring data permits to reduce the service testing cost
(further details will be provided in Sect. 8.3.5). After the execution has been
completed, it is possible to analyze the test execution results from a XML-
encoded log, or by browsing a table reporting summary results for each test
case executed.

When Regression Testing Needs to be Performed

The lack of control system integrators have over services poses critical issues
on when service regression testing should be performed.

• Triggered by service versioning: If the service specification provides infor-
mation on when the service was changed, the integrator can check such
an information and launch regression testing. For example, the WSDL can
contain service versioning information, or the service deployment date.
Nevertheless, this kind of information cannot be completely trusted: the
service implementation can, in fact, change without the need for a service
re-deployment.

• Periodic re-testing: The tool permits to automatically launch regression
testing periodically.

220 M. Di Penta et al.

Fig. 8.5. Test suite runner

• Whenever the service needs to be used: This option is the most expensive;
however, it may be required when high reliability is needed. In this case,
the service should be re-tested before each execution. This, however, does
not provide an absolute confidence on the fact that, if the test suite does
not reveal any failure at time tx, the same condition will be held at time
tx + δ, where δ is the time interval between the testing and the subsequent
service usage.

Finally, it is important to point out that service regression testing is not the
only testing activity an integrator should perform. As discussed by Canfora
and Di Penta [4], she/he should also perform integration testing between the
system and the services being integrated.

8.3.5 Minimizing Service Invocations by Using Monitoring Data

A critical issue of service testing is cost. Test suite execution requires a num-
ber of service invocations that, in most cases, have a cost. In other words,
the provider charges the service consumer when she/he invokes the service,
even if the invocation is done for testing purposes. Also, a testing activity
is generally undesired for a provider because it wastes resources reserved for

8 Web Services Regression 221

production service usage. The number of service invocations needed for ser-
vice regression testing should be, therefore, limited as much as possible. First,
the test suite itself needs to be minimized. To this aim, whoever generates
a service regression test suite — i.e., both the provider or the integrator —
can use one of the several existing regression test suite reduction techniques
(see Sect. 8.5). In addition, assuming that service executions are monitored,
monitoring data can be used to mimic service behavior and, therefore, avoid
(or at least reduce) service invocations during regression testing.

To explain how this can happen, let us recall the scenario explained in
Sect. 8.3.1 and depicted in Fig. 8.1. After Jim has updated the service at time
t1, Jane uses it without experiencing any problem. After a while, Alice wants
to use the service. She realizes that the service has changed (because, e.g.,
the versioning info is reported in the service interface) and decides to re-test
it. When executing the test suite, some of the inputs can be part of Jane’s
executions after t1. For example, if Alice’s test suite contains an assertion
to check that the getRestaurantID operation returns a correct restaurant ID,
this result can be reused when Jane’s test suite is executed, thus avoiding
to actually invoke the getRestaurantID operation. In other words, monitoring
data can be used to mimic the service behavior.

For security reasons, however, testers should not be allowed to access mon-
itoring data. This, in fact, could issue serious non-disclosure problems. Espe-
cially when services are used over the Internet, one would avoid to have other
people looking at his/her own service invocation data. To overcome such a
risk, in the proposed approach the (server side) monitor supports the pos-
sibility to check assertions sent by the client-side testing tool, as a way of
mimicking the service behavior.

The usage of monitoring data to reduce the testing cost is feasible if the
relationship between service I/O is deterministic, i.e., different service invo-
cations with the same inputs always produce the same output. If this is not
the case, it can be possible to overcome such a limitation by checking that
the service output matches a pattern or belongs to a given domain, instead
of performing an exact match.

A further possibility for reducing the testing cost is to provide the service
with a testing interface. Such an interface uses monitoring data (if they are
available) to answer a service request, otherwise it directly accesses the service.
Whilst this solution still requires service invocation, it will certainly reduce the
usage of server resources, due to the execution of the service implementation,
on the provider side.

8.3.6 Capture/Replay

A useful feature that the proposed regression testing tool makes available is
the possibility to perform capture/replay. Similar approaches have been used
for GUI testing [6] and for Web application testing [7]. During the service
usage, I/O data is captured and stored within a monitoring database. In our

222 M. Di Penta et al.

implementation, monitoring is performed by a plug-in installed behind the
Axis application server, thus supported by the service provider. Nevertheless,
alternative solutions, e.g., sniffing SOAP messages from client side, are also
viable and have the advantage of being applicable for any service, even if the
provider does not support monitoring.

When a service evolves, the tester can decide to re-test the service by
replaying the inputs. Test case success or failure can be determined either
by doing an exact match between previously monitored outputs and actual
outputs or by performing a weaker check over the assertions, e.g., by checking
that, in correspondence with a given input, the output still belongs to a given
domain. The user can select the date interval from which captured data shall
be taken. Then, when replay is being performed, the progress bar shows the
percentage of test cases that failed. Finally, as for regression testing, it is
possible to open a window where a detailed test log can be browsed.

8.3.7 Issues and Limitations

Service testing activities require to perform service invocation. In many cases,
this can produce side effects, i.e., a change of state in the service environ-
ment. For example, testing a hotel booking service operation (like the restau-
rantReservation in our motivating example) can produce a series of unwanted
room reservations, and it can be even worse when testing a book purchasing
service. While a component can be tested in isolation, this is not possible for
a service when the testing activity is carried out from the system integrator’s
perspective. In other words, the approach is perfectly viable for services that
do not produce side effects in the real world. This is the case, e.g., of services
performing computations, e.g., image compressing, DNA microarray process-
ing, or any scientific calculus. For services producing side effects, the approach
is still feasible from the provider’s perspective, after having isolated the ser-
vice from its environment (e.g., databases), or even from the integrator’s side
if the provider exports operations to allow integrators to test the service in
isolation.

Despite the effort made to limit it, another important issue from inte-
grator’s perspective remains testing cost [4]. This is particularly true if the
service has not got a fixed fee (e.g., a monthly usage fee) while the price
depends on the actual number of invocations. From a different perspective,
testing can have a high cost from the provider, when the service is highly
resource-demanding.

The dependency of some service non-functional properties (e.g., response
time) from the configuration where the service is used poses issues on the
service non-functional testing. To this aim, the integrator can generate some
non-functional assertion, by executing the test suite against the service and
monitoring the QoS. However, monitoring data depends on the current config-
uration (server machine and load, network bandwidth and load, etc.). While
averaging over several measures can mitigate the effect of network/server load

8 Web Services Regression 223

at a given time, changes in network or machines may lead to completely dif-
ferent QoS values. Clearly, the way our toolkit computes QoS distribution
estimates can be biased by network or server loads, although such an effect
can be mitigated by sampling the response time over a large set of service
executions. More sophisticated QoS estimation approaches are available in
the literature, accounting for the server load [8], the HTTP protocol parame-
ters [9] and, in general, to the network and server status [10, 11]. While such
kind of QoS estimates are not implemented in our toolkit at the time of writ-
ing, their adoption would, in the future, make the QoS testing less dependent
on the network/server configuration and load.

Moreover, in case the service to be tested is a composite service and dy-
namic binding mechanisms hold, it may still happen that the bindings at
testing time are different from these that could be determined when using the
service. As a consequence, the QoS testing may or may not be able to identify
QoS constraint violations due to binding changes.

Finally, as also mentioned in Sect. 8.3.5, non-determinism can limit the
possibility of using assertions to check service I/O. Many services do not
always produce the same response when invoked different times using the
same inputs. This is the case, e.g., of a service returning the temperature
of a given city. However, this issue can be addressed by replacing a strong
assertion — e.g., temperature = 12.5o C — with a weaker one, e.g., −40o C <
temperature < 50o C.

8.4 Assessing the Approach

This section presents two studies that have been carried out to assess the
usefulness of the approach. The first study aims to investigate to what ex-
tent a test suite can be used to check whether the evolution of service
would have affected its functional and non-functional behavior. The second
study shows how monitoring data has been used to reduce the number of
service invocations — and therefore the testing cost — during regression
testing.

8.4.1 Study I: Assessing the Service Compliance Across Releases

Due to the lack of availability of multiple releases of real services, we wrapped
five releases of an open source system, i.e., dnsjava, as Web services. dnsjava9

is a Domain Name System (DNS) client and server; in particular, we focused
our attention on dig (domain information groper), a utility used to gather
information from DNS servers. The service under test is not a real service;

9 http://www.dnsjava.org/

224 M. Di Penta et al.

however, it well reflects the evolution that any DNS existing service10 could
have undergone.

The Web service has five input parameters: the domain to be solved
(mandatory), the server used to solve the domain, the query type, the query
class, and an option switch. The service answers with two strings: the query
sent to the DNS and the DNS answer. We carefully checked whether the re-
sponse message contained values such as timestamps, increasing id, etc. that
could have biased the result, i.e., causing a failure for any test case execu-
tion. Test case generation was based on equivalence classes for each input
parameter. The number of test cases was large enough (1000) to cover any
combination of the equivalence classes. Test cases were run against the five
service releases.

Service outputs were checked by comparing the output of a reference re-
lease, corresponding to the service implementation running when the inte-
grator started to use the service, with the output of future releases. The
comparison has been performed using two types of checks:

1. a strong check, comparing both dnsjava response messages (i.e., the
DNS query and answer). This is somewhat representative of a stronger
functional-contract between the system integrator and the provider, which
guarantees an exact match of the whole service response over a set of re-
leases;

2. a weak check, comparing only the DNS answer, i.e., the information that
often a user needs from a DNS client. This is somewhat representative of
a weaker functional contract.

Finally, values of two QoS attributes—i.e., the response time and the
throughput—were measured. To mitigate the randomness of these measures,
the test case execution was repeated 10 times, and average values consid-
ered. The following subsections will discuss results related to functional and
non-functional testing.

Functional Testing

Table 8.1 reports the percentage of test cases that failed when comparing
different dnsjava releases, considering the strong check contract. Rows repre-
sent the releases when the integrator started to use the service, while columns
represent the service evolution. It clearly appears that a large percentage of
failures (corresponding to contract violations) is reported in correspondence
with release 1.4. This is mostly explained by changes in the set of DNS types
supported by dnsjava.

All the system integrators who started to use the service before release
1.4 could have reported problems in the service usage. Integrator-side testing

10 Although many DNS services exist, the chapter does not provide any URL for
them since they are fairly unstable and likely to change over the time.

8 Web Services Regression 225

Table 8.1. dnsjava: % of failed test cases

strong check weak check

1.3.0 1.4.0 1.5.0 1.6.1 1.3.0 1.4.0 1.5.0 1.6.1

1.2.0 3% 74% 74% 74% 1% 7% 7% 7%

1.3.0 74% 74% 74% 9% 9% 9%

1.4.0 0% 0% 0% 0%

1.5.0 0% 0%

would have been therefore effective to identify the change. If executed from
the provider’s perspective, testing would have suggested to advertise — e.g.,
updating the service description — the change made. Vice versa, integrators
who started to use the service at release 1.4 experienced no problem when the
service evolved toward releases 1.5 and 1.6.

Let us now consider the case in which the comparison is limited to the
DNS answer (weak check). As shown in Table 8.1, in this case the percentage
of violations in correspondence with release 1.4 is lower (it decreases from
74% to 7–9%). Such a large difference is due to the fact that only the DNS
query (involved in the comparison only when using the strong check and not
when using the soft check) reports DNS types: here the comparison of re-
solved IP addresses did not produce a large percentage of failures. Where
present, failures are mainly due to the different way subsequent releases han-
dle exceptions. While this happens in a few cases, it represents a situation
to which both the provider and the system integrators should pay attention
carefully.

Non-functional Testing

Figure. 8.6 reports average response time and throughput values measured
over the different dnsjava releases. A response time increase (or a throughput
decrease) may cause a violation in the SLA stipulated between the provider
and the integrator. Basically, the figure indicates that

• except for release 1.6, the performance always improves;
• integrators who started to use the service at release 1.5 could have noticed

a SLA violation, in case the provider guaranteed, for future releases, at
least the same performances exhibited by release 1.5;

• integrators who started to use the service at release 1.4 could have noticed,
in correspondence with release 1.6, a slight increase in the response time,
even if a slight improvement in terms of throughput;

• finally, all the integrators who started to use the service before release 1.4
were fully satisfied.

226 M. Di Penta et al.

Fig. 8.6. dnsjava measured QoS over different releases

Overall, we noticed that the QoS always improved over its evolution, ex-
cept for release 1.6.5, where developers decided to add new features at the
cost of worsening the performances.

8 Web Services Regression 227

Table 8.2. Characteristics of the services under test

Operation Inputs Outputs # of test
Cases

HotelService

getHotelInfo HotelID, Arrival Date, #
of Nights

of Rooms Available 13

getHotelListByLocation City, Location List of Hotel IDs
getHotelByLocation City, Location Hotel ID

RestaurantService

restaurantReservation Restaurant ID, date, Reservation outcome 7
hour, # of seats

checkRestaurant- Restaurant ID, date, Restaurant
Availability #of seats availabilities
getRestaurantList City, Location List of Restaurant Info
getRestaurantInfo Restaurant ID Info related to the

specified restaurant
getRestaurantID restaurant name, city,

address
the related ID

8.4.2 Study II: Usage of Monitoring Data to Reduce Service
Invocations During Regression Testing

The second study was performed with the aim of investigating the use of
monitoring data to reduce the number of testing invocations. To this aim, we
selected two services developed within our organizations and being used as a
part of the test-bed for an integrated service marketplace developed within a
large research project [12]. In particular, we considered a service for searching
hotels HotelService and a service for searching restaurants RestaurantService,
also used in Sect. 8.3 to explain the proposed approach and toolkit. Table 8.2
reports characteristics of these services in terms of operations provided and
(JUnit) test cases developed for each service (each test case only contains a
single service operation invocation).

As shown in Fig. 8.7, the two services underwent three evolution stages. As
explained in Sect. 8.2, some of the evolution scenarios stem from the evolution
of the Amazon Web service.

1. Time t0: The two services are released.
2. Time t1: The HotelService input parameter location becomes mandatory

(while it was optional at time t0). For RestaurantService the operation
getRestaurantList now returns an unbounded list of Restaurant Info (at
time t0 the list contained three items at most).

3. Time t2: For RestaurantService the maintenance activity impacted the
checkRestaurantAvailability and getRestaurantID operations. In

228 M. Di Penta et al.

Fig. 8.7. Service evolution and usage timeline

particular, the checkRestaurantAvailability operation does not accept a
comma-separated list of restaurant IDs anymore, but only a single ID.
The getRestaurantID operation now returns a restaurant ID composed of
five digits instead of four. Finally, the HotelService search criteria changed.

Services I/O were monitored. From the beginning of the analysis (t0) to its
completion (t2 + Δ) we monitored a total of 70 invocations for HotelService
and 203 for RestaurantService. The time between the release time tx and
the testing time tx + Δ was about five hours. During these time intervals,
we monitored a number of invocations (Table 8.3) reusable to reduce service
invocations when performing regression testing.

Figure. 8.8 reports the percentage of test cases that failed at time t0 + Δ,
t1 + Δ, and t2 + Δ respectively. No test case failed at time t0 + Δ. This is not
surprising, since system integrators started to use the services and downloaded
the test suites at that time. At time t1 + Δ, the change made to HotelService
was not detected by any test case, because the location parameter was always
specified for all test cases of the HotelService test suite. This was not the case
of RestaurantService, where test runs were able to detect the change: the list
returned by the operation getRestaurantList contains more elements than the
three expected.

When running again the test suite at time t2 + Δ, it was able to identify
the changes made to HotelService. In particular, the different outputs pro-
duced for the same query were captured when executing the test cases. For
RestaurantService, the execution of the test suite discovered only the change
related to getRestaurantID (five digits instead of four), while the change of im-
plementation for checkRestaurantAvailability was not detected, since the test
cases considered always contained a single ID, instead of a comma-separated
list of IDs.

Table 8.3. Number of monitored messages for the services under test

Service [t0, t0 + Δ] [t1, t1 + Δ] [t2, t2 + Δ]

HotelService 11 8 18
RestaurantService 15 19 24

8 Web Services Regression 229

Fig. 8.8. Percentage of failed test cases

Figure. 8.9 shows how data from monitoring were used to reduce the num-
ber of operation invocations during the testing activity. Clearly, the percentage
of the reused invocations (between 8% and 70% in our case studies) depends
on the accesses made by external users during their normal usage of the ser-
vices and, in particular, during the time interval [tx, tx + Δ] between a new
release and the testing activity.

8.5 Related Work

The idea of complementing Web services with a support for testing comes
from the testing of component-based systems. As described by Weyuker [2],
Bertolino et al. [1], and Orso et al. [13, 14], components can be complemented
with a high-level specification, a built-in test suite, and also a traceability map
that relates specifications to component interfaces and test cases. Weyuker [2]

230 M. Di Penta et al.

Fig. 8.9. Percentage of reused invocations

indicates that, especially for components developed outside the user orga-
nization, the provider might not be able to effectively perform component
unit testing, because she/he is not aware of the target usage scenarios. As a
consequence, the component integrator is required to perform a more careful
re-test inside his/her own scenario. The aforementioned requirements are also
true for services and, as discussed in Sect. 8.1 and in Sect. 8.2.3, the shift of
perspective services enforces the need for testing during service evolution. In
addition, while components are, very often, developed as independent assets
for which unit test suites are available, services expose a limited view of com-
plex software systems. However, test suites developed for such systems are not
suitable to be executed by the system integrators.

The literature reports several approaches for regression testing. A compre-
hensive state of the art is presented by Harrold [15], explaining the different
techniques and issues related to coverage identification, test-suite minimiza-
tion and prioritization, testability, etc. Regression test selection [16, 17, 18]

8 Web Services Regression 231

is an important aspect: it aims to reduce the cost of regression testing that
largely affects the overall software maintenance cost [19]. Much in the same
way, it is important to prioritize test cases that better contribute toward
achieving a given goal, such as code coverage or the number of faults re-
vealed [20, 21]. Cost-benefits models for regression testing have also been de-
veloped [22, 23, 24]. For services, the issue of cost reduction is particularly rel-
evant, as discussed in Sects. 8.3.5 and 8.3.7. Nevertheless, the aforementioned
white-box techniques cannot be applied for services, due to the unavailability
of source code from the integrator’s perspective.

While the research on service testing is at an initial stage, it is worth
comparing a few approaches with ours. Tsai et al. [25] defined a scenario-
based testing method and an extension to WSDL to test Web services. The
Coyote tool [26] is an XML-based object-oriented testing framework to test
Web services. It supports both test execution and test scenario management.
The Coyote tool consists of two parts: a test master and a test engine. The
test master produces testing scenarios from the WSDL specification. The test
engine interacts with the Web service being tested and provides tracing infor-
mation to the test master. Tsai et al. [27] also proposed to extend the UDDI
registry with testing features: the UDDI server stores test scripts in addition
to WSDL specifications.

Bertolino and Polini [28] proposed a framework to extend the UDDI reg-
istry to support Web service interoperability testing. With their approach,
the registry changes its role from a passive role of a service directory toward
an active role of an accredited testing organism.

The use of the above approaches and tools is limited to a closed environ-
ment, since the tools need to know the scenario in which the available Web
services and the user applications are deployed. On the other hand, our tool
is usable in a open environment, as it just requires that the provider releases
the XML-encoded test suite together with the service. Even if the provider
does not release a test suite, it is still possible for the system integrator to
develop his/her own test suite and use it against the service.

Heckel and Mariani [29], use graph transformation systems to test single
Web services. Like Tsai et al., their method assumes that the registry also
stores additional information about the service. Service providers describe
their services with an interface descriptor (i.e., WSDL) and some graph trans-
formation rules that specify their behavior.

At the time of writing, some commercial tools supported Web service re-
gression testing. Basically, they generate random test cases starting from input
types defined in WSDL interfaces. Such an approach can lead to quite large
and expensive test suites. In our case, we can either generate a test suite start-
ing from unit test suites available for the software system which is behind the
service interface, or use a capture/replay approach. Moreover, we try to re-
duce the testing cost further by using monitoring data to reduce the number
of service invocations when executing the test. Finally, we combine the check
of service functional and non-functional (QoS) properties.

232 M. Di Penta et al.

In a companion paper [30] we introduced the idea of service testing as a
contract and presented a preliminary description of the approach. This chapter
thoroughly describes the service regression testing approach by means of a
running example and provides details about the tool support. In addition, it
outlines the main open issues for service regression testing and proposes the
use of monitoring data to reduce the testing cost.

8.6 Concluding Remarks

The evolution of a service is out of control of whoever is using it: while being
used, a service can change its behavior or its non-functional properties, and
the integrator may not be aware of such a change. To this aim, regression
testing, performed to ensure that an evolving service maintains the functional
and QoS assumptions and expectations valid at the time of integration into a
system, is a key issue to achieve highly reliable service-oriented systems.

This chapter discussed the idea of using test cases as an executable contract
between the service provider and the system integrator. The provider deploys
an XML-encoded test suite with the service, while the user can rely on such
a test suite, properly complemented if necessary, to test the service during
its evolution. The proposed approach is supported by a toolkit composed of
(i) a tool that generates the XML-encoded test suite, which can be executed
against the service, from JUnit test cases available from the system behind
the service interface, and (ii) of a tool that allows the integrator to regression
test the service.

Reducing the testing cost has always been an issue for any testing activity.
This is particularly true when testing a service, since service invocations have
a cost and consume provider’s resources. This chapter proposes to exploit
previously monitored I/O to reduce the number of service invocations due to
the execution of test cases.

Service regression testing still presents a number of open issues. The testa-
bility of services that produce a side effect and the dependency of testing
results, especially for non-functional testing, from the particular configura-
tion and from factors such as the network workload, are just some of them.
Work-in-progress is devoted to enhance the tool, further improving the mech-
anism for reducing invocations by using monitoring data and adopting more
sophisticated mechanisms to model service QoS.

References

1. Bertolino, A., Marchetti, E., Polini, A.: Integration of ”components” to test
software components. ENTCS 82 (2003)

2. Weyuker, E.: Testing component-based software: A cautionary tale. IEEE
Softw. 15 (1998) 54–59

8 Web Services Regression 233

3. Harrold, M.J., Liang, D., Sinha, S.: An approach to analyzing and testing
component-based systems. In: First International ICSE Workshop on Testing
Distributed Component-Based Systems, Los Angeles, CA (1999) 333–347

4. Canfora, G., Di Penta, M.: Testing services and service-centric systems: Chal-
lenges and opportunities. IT Professional 8 (2006) 10–17

5. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level
Agreement (WSLA) language specification (2005)
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

6. Hicinbothom, J.H., Zachary, W.W.: A tool for automatically generating tran-
scripts of human-computer interaction. In: Proceedings of the Human Factors
and Ergonomics Society 37th Annual Meeting. (1993) 1042

7. Elbaum, S.G., Rothermel, G., Karre, S., Fisher, M.I.: Leveraging user-session
data to support Web application testing. IEEE Trans. Software Eng. 31 (2005)
187–202

8. Zhang, L., Ardagna, D.: SLA based profit optimization in autonomic computing
systems. In: Proceedings of the 2nd ACM International Conference on Service
Oriented Computing (ICSOC 2004), ACM Press (2004)

9. Liu, H., Lin, X., Li, M.: Modeling response time of SOAP over HTTP. In: pro-
ceedings of the IEEE International Conference on Web Services (ICWS 2005),
11-15 July 2005, Orlando, FL, USA, IEEE Computer Society (2005) 673–679

10. Menasce, D.A.: Qos issues in web services. IEEE Internet Computing 06 (2002)
72–75

11. Menasce, D.A.: Response-time analysis of composite web services. IEEE Inter-
net Computing 08 (2004) 90–92

12. Canfora, G., Corte, P., De Nigro, A., Desideri, D., Di Penta, M., Esposito, R.,
Falanga, A., Renna, G., Scognamiglio, R., Torelli, F., Villani, M.L., Zampog-
naro, P.: The C-Cube framework: Developing autonomic applications through
web services. In: Proceedings of Design and Evolution of Autonomic Applica-
tion Software (DEAS 2005), ACM Press (2005)

13. Orso, A., Harrold, M., Rosenblum, D., Rothermel, G., Soffa, M., Do, H.: Using
component metacontent to support the regression testing of component-based
software. In: Proceedings of IEEE International Conference on Software Main-
tenance. (2001) 716–725

14. Orso, A. Harrold, M., Rosenblum, D.: Component metadata for software engi-
neering tasks. In: EDO2000. (2000) 129–144

15. Harrold, M.J.: Testing evolving software. J. Syst. Softw. 47 (1999) 173–181
16. Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., Rothermel, G.: An em-

pirical study of regression test selection techniques. ACM Trans. Softw. Eng.
Methodol. 10 (2001) 184–208

17. Harrold, M.J., Rosenblum, D., Rothermel, G., Weyuker, E.: Empirical studies
of a prediction model for regression test selection. IEEE Trans. Softw. Eng. 27
(2001) 248–263

18. Rothermel, G., Harrold, M.J.: Empirical studies of a safe regression test selec-
tion technique. IEEE Trans. Softw. Eng. 24 (1998) 401–419

19. Leung, H.K.N., White, L.: Insights into regression testing. In: Proceedings of
IEEE International Conference on Software Maintenance. (1989) 60–69

20. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: A
family of empirical studies. IEEE Trans. Softw. Eng. 28 (2002) 159–182

21. Rothermel, G., Untch, R.J., Chu, C.: Prioritizing test cases for regression
testing. IEEE Trans. Softw. Eng. 27 (2001) 929–948

234 M. Di Penta et al.

22. Leung, H.K.N., White, L.: A cost model to compare regression testing strate-
gies. In: Proceedings of IEEE International Conference on Software Mainte-
nance. (1991) 201–208

23. Malishevsky, A., Rothermel, G., Elbaum, S.: Modeling the cost-benefits trade-
offs for regression testing techniques. In: Proceedings of IEEE International
Conference on Software Maintenance, IEEE Computer Society (2002) 204

24. Rosenblum, D.S., Weyuker, E.J.: Using coverage information to predict the
cost-effectiveness of regression testing strategies. IEEE Trans. Softw. Eng. 23
(1997) 146–156

25. Tsai, W.T., Paul, R.J., Wang, Y., Fan, C., Wang, D.: Extending WSDL to
facilitate Web services testing. In: 7th IEEE International Symposium on
High-Assurance Systems Engineering (HASE 2002), 23-25 October 2002, Tokyo,
Japan. (2002) 171–172

26. Tsai, W.T., Paul, R.J., Song, W., Cao, Z.: Coyote: An XML-based frame-
work for Web services testing. In: 7th IEEE International Symposium on
High-Assurance Systems Engineering (HASE 2002), 23-25 October 2002, Tokyo,
Japan. (2002) 173–176

27. Tsai, W.T., Paul, R.J., Cao, Z., Yu, L., Saimi, A.: Verification of Web services
using an enhanced UDDI server. (2003) 131–138

28. Bertolino, A., Polini, A.: The audition framework for testing Web services
interoperability. In: EUROMICRO-SEAA, IEEE Computer Society (2005)
134–142

29. Heckel, R., Mariani, L.: Automatic conformance testing of Web services. In
Cerioli, M., ed.: FASE. Volume 3442 of Lecture Notes in Computer Science.,
Springer (2005) 34–48

30. Bruno, M., Canfora, G., Di Penta, M., Esposito, G., Mazza, V.: Using test
cases as contract to ensure service compliance across releases. In Benatallah,
B., Casati, F., Traverso, P., eds.: ICSOC. Volume 3826 of Lecture Notes in
Computer Science., Springer (2005) 87–100

