
7

A Model-Driven Approach to Discovery,
Testing and Monitoring of Web Services

Marc Lohmann1, Leonardo Mariani2 and Reiko Heckel3

1 University of Paderborn, Department of Computer Science Warburger Str. 100,
33098 Paderborn, Germany mlohmann@uni-paderborn.de

2 Università degli Studi di Milano Bicocca – DISCo via Bicocca degli Arcimboldi,
8, 20126 Milano, Italy mariani@disco.unimib.it

3 University of Leicester, Department of Computer Science University Road, LE1
7RH Leicester reiko@mcs.le.ac.uk

Abstract. Service-oriented computing is distinguished by its use of dynamic dis-
covery and binding for the integration of services at runtime. This poses a challenge
for testing, in particular, of the interaction between services.

We propose a model-driven solution to address this challenge. Service descrip-
tions are promoted from largely syntactical to behavioural specifications of services
in terms of contracts (pre-conditions and effects of operations), expressed in a vi-
sual UML-like notion. Through mappings to semantic web languages and the Java
Modelling Language (JML) contracts support the automatic discovery of services as
well as the derivation of test cases and their execution and monitoring.

We discuss an extended life cycle model for services based on the model-driven
approach and illustrate its application using a model of a hotel reservation service.

7.1 Introduction

Service-oriented computing is becoming the leading paradigm for the inte-
gration of distributed application components over the Internet. Besides its
implementation, the life cycle of a service includes the creation and publication
of a service description to a registry. Clients will query the registry for ser-
vice descriptions satisfying their requirements before selecting a description,
binding to the corresponding service and using it.

Established technology for providing, querying and binding to services is
largely based on syntactic information. From UDDI registries, e.g., services
can only be retrieved by inspecting interface descriptions and associated key-
words [50]. The lack of semantic information in service descriptions prevents
reliable automatic integration of services. For instance, if an application inter-
acting with a shopping cart assumes that the addItem(item,qt) operation
adds qt to the quantity of the target item, interactions will fail with all carts

174 M. Lohmann et al.

that implement an addItem(item,qt) operation overwriting the quantity in-
stead of increasing it [26]. To mitigate semantic problems, natural language
specifications can be associated with interface descriptions. However, these
descriptions cannot be automatically processed by clients and are often am-
biguous and incomplete. For instance, according to [17], more than 80% of
Web services have descriptions shorter than 50 words and more than 50% of
service descriptions are even shorter than 20 words.

In addition to the danger of binding to incompatible services, problems can
be caused by services which fail to correctly implement their specifications,
i.e., their public service descriptions. A client application has only limited
capacity to verify the quality of a remote Web service because it cannot access
the service implementation. Moreover, owners of services can modify their
implementations at any time without alerting existing clients. Hence, clients
can neither rely on the quality of a service at the time of binding nor on its
behavioural stability over time.

Several testing and analysis techniques for Web services and service-based
applications have been developed [10], addressing the verification of functional
and non-functional requirements, interoperability and regression, but they fo-
cus on the technical verification problem, failing to provide a sound embedding
in the life-cycle of services. For example, many approaches focus on testing
entire applications, which is obviously insufficient because it reveals faults of
single services too late to be effectively fixed and does not consider dynamic
changes.

In this chapter, we present a framework for developing high-quality service-
based applications addressing both the verification problem, as well as its
embedding in the service life-cycle. In line with the current best practice,
this includes a model-driven approach for developing service specifications
with automated mappings to languages for service description and matching,
as well as monitoring at the implementation level. We focus on functional
service specifications aimed at the interoperability of services.

Model-driven development provides the foundation for (formal) reasoning
about the behaviour of services and their compositions. Models allow devel-
opers to focus on conceptual tasks and abstract from implementation details.
Moreover, models are often represented with a high-level visual language that
can be understood more intuitively than source code and formal textual de-
scriptions and are effective for communication between developers [15].

We describe the data types visible at a service interface with a class di-
agram. We specify the behaviour of its operations by graph-transformation
rules [13], describing the manipulation of object structures over the class di-
agrams. Graph transformation rules combine a number of advantages which
make them particularly suitable for the high-level modelling of operations:
(1) they have a formal semantics; (2) they address the transformation of
structure and data, an aspect that would otherwise be specified textually in
a programming- or logic-oriented style; (3) they form a natural complement

7 An MD Approach to Discovery, Testing and Monitoring WS 175

to mainstream visual modelling techniques like state machines or sequence
diagrams; and (4) they can easily be visualised themselves in a UML-like
notation, supporting an intuitive level of understanding beyond the for-
mal one [3].

Our approach aims to guarantee high-quality service-oriented applications
by refining the classical life-cycle of service registration, discovery and usage
as follows.

• Service registration: Only tested Web services should be allowed to par-
ticipate in high-quality service-based applications. For this, we propose to
extend the functionality of UDDI registries to automatically generate test
cases that are executed when a Web service either adds or updates its
behavioural description. Registration is allowed only if all test cases have
been passed [26].

• Service discovery: Based on the extension of service descriptions to in-
clude behavioural specifications, service discovery can match descriptions
against behavioural requirements [23]. For instance, a client can explicitly
query for a cart that implements an addItem operation that overwrites
the quantity of items already present in the cart.

• Service usage: Since clients can access services over a period of time, it
is important that their behaviour remains consistent with their specifi-
cations. Service models are used to automatically generate monitors that
are able to continuously verify the behaviour of Web service implementa-
tions [16].

In summary, our framework provides discovery mechanisms based on be-
havioural descriptions, supports continuous monitoring of web services at the
provider and client sides and allows registration and composition of high-
quality Web services only.

The rest of the chapter is organised as follows. Section 7.2 describes the life-
cycle of high-quality service-based applications. Section 7.3 introduces graph-
transformation as the formal language used to describe the behaviour of ser-
vices, along with a running example used throughout the chapter to present
our framework. Testing, discovery and monitoring techniques, which are the
core of the approach, are presented in Sects. 7.4–7.6, respectively. Sects. 7.7
and 7.8 discuss empirical validation of our framework and related work, re-
spectively. Finally, Sect. 7.9 outlines conclusions and future work.

7.2 Life-Cycle of High-Quality Service-Oriented
Applications

High-quality service-oriented applications are systems obtained from reliable
composition of high-quality web services. Reliable composition is achieved by
automatic service discovery and binding based on the matching of behavioural

176 M. Lohmann et al.

Service Requestor Service Provider

Service

developer

implements

Service
Description

(Visual Contracts)

creates

Query

(Visual Contracts)

creates

Correctness
(Model-Driven Monitoring)

Discovery Service

generate
failure reports

developer

Client

implements

Service
Description

(Visual Contracts)

Query

(Visual Contracts)

Comparison
(Model-Driven Matching)

repository
of failures

test cases

test case
execution

publishes
searches

Oracle

Model-Driven Generation
of test cases and oracles.

Client-side
monitor

checking

interactions

Service
Description

generation

Fig. 7.1. The development process for high-quality service-based applications

specifications. High-quality services are tested before their registration and
monitored throughout their life time.

Figure 7.1 shows the entities that participate in service development, pub-
lication and discovery of high-quality service-oriented applications. Different
shades of grey are used to mark entities involved in different steps of the pro-
cess. Items associated with service development are indicated in light grey,
artefacts and activities related to service registration are shown with a dark
grey background, and service discovery is indicated with a white background.

During service development software developers design and implement sin-
gle services. The development methodology associated with our framework is
based on the integrated use of UML diagrams to describe static aspects and
graph transformations to describe dynamic properties of the service under
development. The dynamic properties of a service are given in terms of pre-
and post-conditions, both instances of the design class diagram as explained
in Sect. 7.3. These visual descriptions are used both internally and externally.

Internal use consists of translating these visual descriptions into JML mon-
itors that are embedded into the implementation.4 External use consists in

4 The Java Modelling Language (JML) [9, 33] is a behavioural specification lan-
guage for Java classes and interfaces. JML assertions are based on Java expression
and annotated to the Java source code. Thus, JML extends Java with concepts
of Design by Contract following the example of Eiffel [37]. However, JML is more
expressive than Eiffel, supporting constructs such as universal and existential

7 An MD Approach to Discovery, Testing and Monitoring WS 177

uploading these descriptions to the discovery service to support the generation
of test cases and monitors required in the next phases. Violations detected by
JML monitors are collected in a repository and examined by developers who
use this information to fix bugs in the implementation.

The translation process from visual descriptions to JML monitors consists
of two parts: first, Java class skeletons are generated from the design class
diagrams; second, JML assertions are derived from graph transformation rules.
The assertions allow us to validate the consistency of the models they are
derived from with the manually produced code. The execution of such checks
must be transparent in that, unless an assertion is violated, the behaviour
of the original program remains unchanged. This is guaranteed since JML
assertions are free of side-effects. (See Sect. 7.6 for details on the translation.)

Programmers use the generated Java fragments to fill in the missing be-
havioural code in order to build a complete and functional application ac-
cording to the design models and visual contract of the system. They are not
allowed to change the JML assertions, thus ensuring that they remain con-
sistent with the visual contracts. If new requirements for the system demand
new functionality, the functionality has to be specified using visual contracts
first, in order to derive new assertions for implementation.

When behavioural code has been implemented, programmers use a JML
compiler to build the executable binary code. This binary code includes the
programmer’s behavioural code and additional executable runtime checks that
are generated from the JML assertions. The runtime checks verify if the man-
ually coded behaviour of an operation fulfils its JML specification, i.e., pre-
and post-conditions. Since the JML annotations are generated from the vi-
sual contracts, we indirectly verify that the behavioural code complies with
the visual contract of the design model.

During service registration service developers publish specifications based
on graph transformations to make services available to potential clients. When
specifications are uploaded, discovery services automatically generate test
cases and oracles, to verify that services satisfy their expectations. Test cases
are executed against target services and oracles evaluate results. In some cases,
services under test may need to implement special testing interfaces to let ora-
cles inspect their internal states, to verify the correctness of the results. These
interfaces implement a get operation that returns the current state of the web
service, according to its behavioural descriptions. If necessary, these interfaces
can include a set operation that assigns a given state to the target web ser-
vice. Since both the signature of getter/setter methods and the structure of
the web service state are known a priori, these interfaces can be automatically
generated.

If a service does not pass all test cases, registries generate a report which is
sent to service developers and they cancel service registration. Otherwise, if a

quantifications. Different tools are available to support, e.g., runtime assertion
checking, testing, or static verification based on JML.

178 M. Lohmann et al.

service passes all tests, registries complete registration and inform service de-
velopers that they can turn off any testing interface. This protocol guarantees
that only high-quality Web services can register. If service providers modify
the behaviour of their services, they must provide a new specification and
repeat registration and testing. Service providers are discouraged to change
the behaviour of services without publishing updated specifications because
clients would discover services by referring to outdated specifications, and
thus they would be unable to interact with these services. Moreover, client-
side monitors can automatically detect anomalous behaviour to prevent clients
from interacting with unsound implementations of a published specification.

During service discovery clients retrieve and bind to services. To this
end, service requestors submit queries to discovery services. Discovery ser-
vices automatically process requests and if any of the specifications satisfies
the queries, references to the corresponding services are returned to clients.
In our framework, both queries and specifications are visually expressed by
graph transformations. Thus, developers use a coherent environment at both
client and service provider sites.

While using a service, clients can download the service description (service
specifications) and generate a client-side monitor to verify the correctness of
its behaviour. A client-side monitor is similar to a client-side proxy, which can
be generated from Web service engines like Apache Axis [1]. Additionally, the
client-side monitor embeds JML assertions and checks if requests and results
exchanged between clients and services satisfy expectations by wrapping the
invocation of the service of the client.

Thanks to these refinements of the standard life cycle, clients have the
guarantee of interacting with web services that have been verified against
their requirements. Moreover, any deviations from the expected behaviour
are revealed by client-side monitors.

The life-cycle of a web service described in this section allows the develop-
ment of reliable web services. It helps developers of services to produce reliable
services by generating test cases and JML assertions, which can be used to
monitor the implementation at the provider side, e.g., during testing. During
registration, automatic generation of test cases is able to detect and reject
incorrect services. Client-side monitors help to ensure that the behaviour of a
service remains consistent with its description.

Even if we only present how to generate Java and JML code from our
models in this chapter, the overall framework does not mandate a specific
programming language. The service descriptions exchanged between the ser-
vice provider, service requester and the discovery service are not platform-
specific, and the communication between them can also be based on platform
independent XML-dialects like SOAP [39]. To be completely platform inde-
pendent, we only need to adjust our code and test generators to support
multiple programming languages. A translation of graph transformation rules
to Microsoft’s Spec# [4] (adds the idea of contracts to Microsoft’s C# [32])
is also possible as shown in [44].

7 An MD Approach to Discovery, Testing and Monitoring WS 179

7.3 Web Service Specification

In this section, we describe the specification-related concepts underlying our
modelling approach using the example of a hotel reservation system. This
system is able to create a number of reservations for different hotels and
manages them in a reservation list for each customer. For example, this allows
John to organise a round trip, while visiting different hotels and celebrating
the purchase of his new car. After John has finished planning his trip he can
commit the reservation list. Later activities such as payment or check-in are
not part of our example.

In our approach, a design model consists of a static and a functional view.

7.3.1 Modelling Static Aspects

UML class diagrams are used to represent the static aspects in our design
model. Figure 7.2 shows the class diagram of our hotel reservation system.
We use the stereotypes control, entity and boundary. Each of these stereo-
types expresses a different role of a class in the implementation. Instances
of control classes encapsulate the control flow related to a specific complex
activity, coordinating simpler activities of other classes. Entity classes model
long-lived or persistent information. Boundary classes are used to model non-
persistent information that is exchanged between a system and its actors.
The stereotype key indicates key attributes of a class. A key attribute is a

createHotel(in hotelName : String, in hotelDescription : String) : Hotel
queryHotel(in queryString : String) : HotelList
createCustomer(in name : String) : Customer
createReservationList(in customerID : String) : CustomerReservationList
addHotelReservationToList(in listID : String, in hotelID : String, in sDate : Date, in eDate : Date) : ReservationResult
removeHotelReservationFromList(in reservationID : String) : Boolean
clearReservationList(in listID) : Boolean
commitReservationList(in listID : String) : Boolean

«control»
HotelBookingSystem

«key» reservationID : String
startDate : Date
endDate : Date

«entity»
HotelReservation

«key» hotelID : String
hotelName : String
hotelDescription : String

«entity»
Hotel

«key» customerID : String
customerName : String

«entity»
Customer

customerID

1

0..*

hotelID

1

0..*

0..*

0..1

reservedHotel

«key» listID : String
commit : Boolean

«entity»
CustomerReservationList

0..*

0..1

owns

listID1

0..*

0..1 0..*

reservationSuccess : Boolean
reservationID : String

«boundary»
ReservationResult

«boundary»
HotelList

0..* 0..*

Fig. 7.2. Class diagram specifying the static structure of the hotel reservation
system

180 M. Lohmann et al.

unique identifier for a set of objects of the same type. A small rectangle as-
sociated with an association ending with a qualifier (e.g. hotelID) designates
an attribute of the referenced class. In combination with the attributes, the
qualifier allows us to get direct access to a specific object. For instance, the
control class HotelBookingSystem is connected to the entity classes of the
system via qualified associations.

7.3.2 Modelling Functional Aspects

Class diagrams are complemented by graph transformation rules that intro-
duce a functional view, integrating static and dynamic aspects. They allow us
to describe the pre-conditions and effects of individual operations, referring
to the (conceptual) data state of the system. Graph transformation rules are
formed over the classes of the design class diagram and are represented by a
pair of UML object diagrams, specifying pre- and post-conditions. The use
of graph transformations to specify the functional view of services is a key
aspect of our approach because they enable specification of the service be-
haviour, automatic generation of test cases, automatic generation of monitors
and specification of visual queries.

In particular, the functional view is used to (formally) match the behaviour
required by the client and the behaviour offered by the server, at the discovery
service side. When a client uploads a description of the required behaviour, the
service discovery analyses all available specifications and responds with the
list of all compatible services. The required behaviour is visually defined by
the client as a set of graph transformation rules that represent the operations
that must be implemented by returned services. The functional view of a
service is also used during the registration phase to automatically generate
test cases and oracles. Test cases are generated by the discovery service that
executes them and rejects the requests for registration of services that do not
pass all test cases. Finally, the modelling of the functional aspect is used both
from the server and the client to automatically generate monitors that verify
at runtime if the observed interactions satisfy expectations. Any violation is
signalled to the client (server) that, in case of problems, can bind to another
service (can search and repair the fault).

In the following, we will introduce graph transformation rules through
a number of examples. The operation createReservationList of the con-
trol class HotelBookingSystem creates a new reservation list for an existing
customer. Figure 7.3 shows a graph transformation rule that describes the be-
haviour of the operation. The rule is enclosed in a frame, containing a heading
and a context area. The frame notation originates from UML 2.0, providing a
portable context for a diagram. The heading is a string enclosed in a rectangle
with a cutoff corner, placed in the upper left corner of the frame. The keyword
gtr refers to the type of diagram, in this case a graph transformation rule.
The keyword is followed by the name of the operation specified by the rule,
in turn followed by a parameter list and a return parameter, if declared in

7 An MD Approach to Discovery, Testing and Monitoring WS 181

gtr createReservationList(cid) : crl

NAC

customerID = cid

«entity»
/c : Customer

«control»
/this : HotelBookingSystem

«control»
/this : HotelBookingSystem

commit = false

«entity»
/crl : CustomerReservationList

customerID = cid

«entity»
/c : Customer

commit = false

«entity»
 : CustomerReservationList

customerID = cid

«entity»
/c : Customer

Fig. 7.3. Graph transformation rule for operation createReservationList

the class diagram. All parameters occur in the graph transformation rule. An
extension of the UML 2.0 metamodel for graph transformation rules of this
form can be found in [16].

The graph transformation rule itself is placed in the context area. It con-
sists of two object diagrams, its left- and right-hand side, both typed over
the design class diagram. The basic idea is to consider the left-hand side as a
pattern, describing the objects, attributes and links that need to be present
for the operation to be executable. Then, all items only present in the left-
but not in the right-hand side of the rule are removed, and all present only
in the right-hand side are newly created. Objects present in both sides are
not affected by the rule, but required for its application. If there is only one
object of a certain type, it can remain anonymous; if a distinction between
different objects of the same type is necessary, then there must be an object
identifier separated from the type by a colon.

We may extend the pre- or post-conditions of a rule by negative pre-
conditions [20] or post-conditions. A negative condition is represented by a
dark rectangle in the frame. If the dark rectangle is on the left of the pre-
condition, it specifies object structures that are not allowed to be present
before the operation is executed (negative pre-condition). If the dark rectangle
is on the right of the post-condition, it specifies object structures that are
not allowed to be present after the execution of the operation (negative post-
condition). A detailed explanation of graph transformation rules can be found
in [13].

The graph transformation rule as described in Fig. 7.3 expresses the
fact that the operation createReservationList can be executed if the
HotelBookingSystem object references an object of type Customer, which
has an attribute customerID with the value cid. The concrete values are
specified when the client calls the operation. The negative pre-condition ad-
ditionally requires that the object c:Customer be not connected to an ob-
ject of type CustomerReservationList that has the value false for the at-
tribute commit. That means, the system only creates a new reservation list
for an existing customer if there is no reservation list for the customer, which
is not yet committed. As an effect, the operation creates a new object of
type CustomerReservationList and two links between the objects of types

182 M. Lohmann et al.

HotelBookingSystem and CustomerReservationList as well as Customer
and CustomerReservationList. As indicated by the variables used in the
heading, the object crl:CustomerReservationListbecomes the return value
of the operation createReservationList. The active object, executing the
method, is designated by the variable this.

Figure 7.4 shows a functional specification of the operation
addHotelReservationToList by two graph transformation rules. If the oper-
ation is successfully executed, it adds a new hotel reservation to the reserva-
tion list of the customer. If the operation is not successfully executed, it does
nothing. The pre-conditions of both rules are identical. That means, from an
external point the resulting behaviour is non-deterministic. A client does not
know whether the hotel reservation system will create a new reservation or
not. The reason is that the decision depends on the availability of the hotel,
which is not known in advance. For a successful execution of the operation,
the object this must know two different objects with the following charac-
teristics: an object of type Hotel which has an attribute hotelID with the
value hid, an object of type CustomerReservationList which has an at-
tribute listID with the value lid and an attribute commit with the value
false. If the requested hotel is available, the operation creates a new ob-
ject HotelReservation and initialises its attributes startDate and endDate

gtr addHotelReservationToList(lid, hid, sDate, eDate) : rer

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

hotelID = hid

«entity»
/h : Hotel

reservationID = rid
startDate = sDate
endDate = eDate

«entity»
/hr :HotelReservation

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

hotelID = hid

«entity»
/h : Hotel

reservationSuccess = true
ReservationID = rid

«boundary»
/rer : ReservationResult

gtr addHotelReservationToList(lid, hid, sDate, eDate) : rer

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

hotelID = hid

«entity»
/h : Hotel «control»

/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

hotelID = hid

«entity»
/h : Hotel

reservationSuccess = false

«boundary»
/rer : ReservationResult

Fig. 7.4. Graph transformation rule for operation addHotelToList

7 An MD Approach to Discovery, Testing and Monitoring WS 183

gtr clearReservationList(lid) : true

«entity»
/hr :HotelReservation

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

Fig. 7.5. Graph transformation rule for operation clearReservationList

according to the parameter values (see top rule in Fig. 7.4). This new object is
linked to the objects h:Hotel and crl:CustomerReservationList identified
in the pre-condition. Additionally, the object creates a new boundary object of
type ReservationList, initialises its attributes and uses this object as return
value. Generally, the boundary object is used to group different return values
into one return object. If the requested hotel is not available, the service only
creates a boundary object rer:ReservationResult and sets the value of its
attribute to false (see bottom rule in Fig. 7.4). This allows to show the client
that the reservation has not been successful.

Universally quantified operations, involving a set of objects whose cardi-
nality is not known at design time, can be modelled using multi-objects. An
example is shown in Fig. 7.5. This rule specifies an operation which removes all
HotelReservations from an existing, not committed
CustomerReservationList. The multi-object hr:HotelReservation in the
pre-condition indicates that the operation is executed if there is a set (which
maybe empty) of objects of type HotelReservation. After the execution of
the operation, all objects conforming to hr:HotelReservation (as well as the
corresponding links) are deleted, i.e., the reservation list is cleared.

Figure 7.6 shows the remaining graph transformation rules for the opera-
tions of the hotel reservation system.

7.4 Web Service Registration

As outlined in Sect. 7.2, registration of web services includes a testing phase
where registries automatically generate, execute and evaluate test cases. Only
if all test cases are passed, the registration phase is successfully completed;
otherwise, registration is aborted. In both cases, a report is sent to service
owners.

Execution of test cases can require the implementation of ad hoc interfaces
that are used by registries to set and reset the state of Web services, when
normal interfaces do not support all necessary operations. In particular, test
case execution usually requires a reset operation to clean the current state, a

184 M. Lohmann et al.

gtr removeHotelReservationFromList(lid, rid) : true

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

reservationID = rid

«entity»
/hr :HotelReservation

gtr createHotel(hname, hdescription) : h

«control»
/this : HotelBookingSystem

hotelName = hName
hotelDescription = hdescription

«entity»
/h : hotel

«control»
/this : HotelBookingSystem

gtr createCustomer(name) : c

«control»
/this : HotelBookingSystem

customerName = name

«entity»
/c : Customer

«control»
/this : HotelBookingSystem

gtr commitReservationList(lid) : true

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

«control»
/this : HotelBookingSystem

listID = lid
commit = true

«entity»
/crl : CustomerReservationList

gtr queryHotel(queryString) : hList

«control»
/this : HotelBookingSystem

«control»
/this : HotelBookingSystem

«entity»
/h : Hotel

«entity»
/h : Hotel

«boundary»
/hList : HotelList

Fig. 7.6. Remaining graph transformation rule for operations of the hotel reserva-
tion system

7 An MD Approach to Discovery, Testing and Monitoring WS 185

creational interface to transform the target service into a given state (similarly
to a setter method) and an inspection interface, to access the internal state
of Web services (similarly to a getter method). Once testing has been passed,
the testing interface can be disabled.

Automatic test case generation validates the behaviour of a given Web ser-
vice by addressing two aspects: correctness of single operations, e.g., booking
a hotel room, and correctness of multiple operations, e.g., fully managing a
reservation list [26].

The registration phase also includes the generation of client-side monitors.
The following sections present techniques for generation of test cases and
monitors.

7.4.1 Test Cases for Single Operations

The result of an operation depends on both its inputs and the current state
of the service. Admissible inputs are defined by operation signatures, which
constrain each variable with a type, while states are defined by class diagrams
limiting the types and relations of objects. This information is complemented
by transformation rules that specify the pre-conditions and effects of the
operations.

Testing single operations means executing them on samples from their
domains to evaluate the general correctness of their behaviour. Since trans-
formation rules provide information that allows the identification of different
sets of “equivalent” inputs, we generate test cases by a domain-based strat-
egy [54] known as partition testing. The rationale is that test cases can be
suitably selected by dividing operations’ domains into (possibly overlapping)
subsets and choosing one or more elements from each subset [53]. Inputs from
each domain should trigger sets of equivalents behaviours, according to Web
service specifications.

Usually, input domains are identified by following fault-based guidelines,
identifying small partitions, where several insidious faults can be present,
and large partitions, where little assumptions about specific implementation
threats can be made [53]. In case of operations specified by graph transfor-
mations, if opi are the transformation rules that define the behaviour of an
operation and the pre-condition of each rule is indicated with prei, we can
identify the following domains:

• completeDomain: Each prei is a domain. Selecting at least one input from
each prei guarantees the execution of all transformation rules.

• multiRules: Any prei ∩ prej �= ∅ is a domain. It represents the case of
an input that can potentially trigger either of two rules. The choice is
internal to the Web service, and can eventually be non-deterministic. The
identification of the rule that must be triggered is a potential source of
problems, coverage of these domains guarantees execution of all possible
decision points.

186 M. Lohmann et al.

• boundaryValues: Any prei can specify conditions on node attributes. Since
many faults are likely to arise when attributes assume values at boundaries
of their domain, a separate domain is represented for each input where at
least one attribute assumes a boundary value.

• multiObjects: prei can contain multi-objects, which are satisfied by inputs
with any cardinality of nodes. The operation must be able to suitably
manage any input. We identified three domains that must be covered when
a multi-object is part of a pre-condition: inputs with 0 elements, with 1
element and with more than 1 element.

• unspecified: Input values that do not satisfy any prei, but conform to the
constraints represented by the operation signature. In these cases, a target
Web service should respond by both signalling incorrectness of the input
and leaving its state unchanged.

Note that domains are not disjoint because the same input can reveal a failure
for multiple reasons.

Given an operation op and its rules opi, we derive test cases by gener-
ating a set of triples (in, seq, out), where in is an input that belongs to one
of the domains associated with op, seq consists of an invocation to op, and
out is the expected result, which can be any opi(in), where in satisfies the
pre-condition of opi. Test cases must cover all domains. Moreover, different
domains can be covered with different numbers of test cases, according to the
tester’s preference. For instance, we can cover the “completeDomain” with
four test cases, and the “multiObjects” domain with one test case. Concrete
attribute values are randomly generated taking into account constraints asso-
ciated with rules. We only consider linear constraints; however, extensions to
non-linear constraints can be incorporated as well [30]. Values from the unspec-
ified domain are obtained by considering a transformation rule, and generating
inputs that preserve the structure of the pre-condition of the rule, but in-
cludes attribute values that violate at least one constraint associated with the
pre-condition.

For example, if we generate test cases for the rule
clearReservationList(lid) shown in Fig. 7.5, we can identify the following
domains:

• completeDomain: The operation is specified with one rule, thus the tech-
nique identifies only one domain that corresponds to the pre-condition of
clearReservationList(lid).

• multiRules: Since we have only one rule, there is no input that can poten-
tially trigger multiple rules. Thus no domain is selected.

• boundaryValues: The rule includes only one unspecified attribute value,
which is listId. The type of this attribute is String. Thus, two domains
with Strings of minimum and maximum length are considered (the max-
imum length can be either defined by the tester or inherited from the
specification of the String type).

7 An MD Approach to Discovery, Testing and Monitoring WS 187

• multiObjects: The rule includes one multi-object. Thus the technique
generates three domains: one with an empty set of HotelReservation,
one with a single HotelReservation and one with multiple
HotelReservations.

• unspecified: The only constraint about attribute values that can be vi-
olated is commit=false. Thus, the technique generates a domain with
commit=true. This is an interesting test case because Web service devel-
opers may erroneously assume that the clearReservationList operation
can be executed on commited reservation lists.

The exact number of test cases depends on the amount of samples that
are extracted from each domain. For instance, if we extract 4 samples from
completedomain, 1 sample from boundaryValues, 1 sample from multiObjects
and 1 sample from unspecified, we obtain 4 × 1 + 1 × 2 + 1 × 3 + 1 × 1 = 10
test cases.

7.4.2 Test Cases for Operation Sequences

To test the effect of sequences of operations, we analyse the relation between
transformation rules. A sequence of rule applications leads to a sequence
of transformations on the data state of the service. Typically, when state-
dependent behaviour has to be tested, data-flow analysis is used to reveal
state-dependent faults by exercising variable definitions and uses [19]. A sim-
ilar idea can be applied to graph transformation rules.

In particular, given two transformation rules p1 and p2, p1 may dis-
able p2 if it deletes or adds entities that are required or forbidden by
p2, respectively. In this case, we say that a conflict between p1 and p2

exists. Given two transformation rules p1 and p2, p1 may cause p2 if it
deletes or adds state entities that are forbidden or required by p2, respec-
tively. In this case, we say that a dependency between p1 and p2 exists.
For example, a dependency between rule addReservationToList, shown
in Fig. 7.4, and rule createReservationList, shown in Fig. 7.3, exists.
This is because the former rule can be applied only if the state includes a
CustomerReservationList node, which can be created by the latter rule.
Moreover, a conflict between rule clearReservationList, shown in Fig. 7.5,
and rule removeHotelReservationFromList, shown in Fig. 7.6, exists. This
is because the former rule deletes the HotelReservation node, which is re-
quired by the latter rule.

Our technique addresses testing of sequences of operations by covering
dependencies and conflicts between rules. Sequences of operations that do not
include any dependency or conflict are likely to be sequences of independent
operations. Thus, they have been already covered by testing of the single
operations.

To turn the test requirement to cover a sequence of two rules 〈p1, p2〉 into
an executable test case, we must solve a search problem. In particular, the

188 M. Lohmann et al.

pre-condition of rule p1 may not be satisfied by the initial state of the target
web service (this happens also for testing of single operations). Moreover, the
state that results from the execution of rule p1 may not allow the immediate
execution of rule p2. Thus, we need to identify two sequences of operations:
seqpre, which brings the Web service from the initial state to a state that
satisfies the pre-condition of p1, and seqbetw, which brings the web service
from the state that results from the execution of p1 to a state that satisfies
the pre-condition of p2. The sequence seqbetw should not modify the entities
that are part of the conflict/dependency between p1 and p2, otherwise the
dependency between the two transformations would be removed.

Conflicts and dependencies can automatically be identified by the AGG
tool [51], while the search for sequences seqpre and seqbetw can be supported
by tools like PROGRESS [47] and GROOVE [46]. The existence of testing
interfaces can simplify the solution to the search problem. Early experience
presented in [26] shows that the problem is feasible at the level of complexity
of several common Web service APIs.

For example, if we focus on rule createReservationList, shown in
Fig. 7.3, we can automatically identify the following dependencies

• 〈createCustomer, createReservationList〉, because createCustomer
creates the Customer node, which is required by the pre-condition of
createReservationList.

• 〈commitReservationList, createReservationList〉, because commit-
ReservationList modifies the value of the commit attribute from false
to true, and the createReservationList rule forbids the presence of a
CustomerReservationList with commit equals to false.

and conflicts:

• 〈createReservationList, createReservationList〉, because the first
createReservationList creates a ReservationList with commit equals
to false, which is forbidden by the second createReservationList.

Examples of concrete test cases that can be generated from the test require-
ments above are (attribute values are omitted):

• TC1 = createCustomer; createReservationList
• TC2 = createCustomer; createReservationList;

commitReservationList; createReservationList
• TC3 = createCustomer; createReservationList;

createReservationList

7.4.3 Test Oracles for Services

Oracles evaluate the correctness of the test result by comparing the expected
return values and post states with those produced by the test of the service.
Graph transformation rules can be translated into JML assertions that verify

7 An MD Approach to Discovery, Testing and Monitoring WS 189

consistency of runtime behaviour and specification. The mapping for gener-
ating JML assertions is presented in detail in Sect. 7.6.

Clients can use this technology to create client-side monitors. A client-side
monitor is a stub with embedded assertions. In this case, JML assertions can
only check data values sent and received by clients, and cannot inspect the
web service state. Verification of internal behaviour of Web services is possible
using server-side monitors. For example, a client-side monitor can verify that
the createCustomer operation, shown in Fig. 7.6, returns a customer object
with a name equal to the string passed as parameter, but cannot verify if the
same object is part of the internal state of the web service.

All violations revealed by the client-side monitors are recorded, to be ac-
cessed by the developers of the service or prospective clients, to identify and
fix problems, to adapt client applications or to select new web services.

7.5 Web Service Discovery

An important part of our approach, albeit not the focus of this book chap-
ter, is the discovery of services based on their semantic descriptions. Current
standards already enable much of the discovery process, but they concentrate
largely on syntactic service descriptions. However, service requestors can be
assumed to know what kind of service they need (i.e. its semantics), but not
necessarily how the service is actually called (i.e. its syntax). Thus, a provider
must be able to formulate a semantic request and a discovery service must be
able to match a semantic service description to a corresponding request.

We will give only a brief overview of how our approach enables the semantic
discovery of services. The interested reader is referred to previous publications
on the discovery of services specified by graph transformation rules [23, 24].

In our approach, graph transformation rules serve as both description of
an offered service and formulation of a request. From a provider’s point of
view, the left-hand side of the rule specifies the pre-condition of the provider’s
service (i.e. the situation that must be present or the information that must
be available for the service to perform its task). The right-hand side of the rule
depicts the post-condition (i.e. the situation after the successful execution of
the web service). From a requester’s point of view, the left-hand side of the rule
represents the information the requester is willing to provide to the service,
and the right-hand side of the rule represents the situation the requester wants
to achieve by using the service.

Matching the rules of a provider with those of a requestor means deciding
whether a service provider fulfils the demands of a service requestor and vice
versa. Informally, a provider rule matches a requestor rule if (1) the requestor
is willing to deliver the information needed by the provider and in turn (2)
the provider guarantees to produce the results expected by the requestor.

We have formalized this informal matching concept using contravariant
subgraph relations between the pre- and post-conditions of the rules of the

190 M. Lohmann et al.

service provider and the requestor [24]. In short, the requester is willing to
deliver the information needed by the provider if the latter’s pre-conditions is a
subgraph of the requestor’s pre-conditions. The provider produces the results
expected by the requestor if the provider’s post-condition is a subgraph of the
requestor’s post-condition. That means, the requestor is allowed to offer more
information than needed by the provider and the provider can produce more
results than needed by the requestor.

A prototypical implementation of our approach is available [23] using
DAML+OIL [12] as semantic web language for representing specifications at
the implementation level. Matching is based on the RDQL (RDF Data Query
Language) [48] implementation of the semantic web tool Jena by HP [27].
RDQL is a query language for specifying graph patterns that are evaluated
over a graph to yield a set of matches. A visual editor for graph transformation
rules has been implemented, to support the creation of models [34, 16].

7.6 Web Service Monitoring

The loose coupling of services in a service-oriented application requires the
verification that a service satisfies its description not only at the time of
binding, but also that it continues to do so during its life time. We propose
to use a monitoring approach to continuously verify services at runtime.

Monitors are derived from models, with class diagrams describing the
structure and graph transformations describing the behaviour of services. In
the following, we describe a translation of models into JML constructs to
enable a model-driven monitoring [16, 25, 36].

7.6.1 Translation to JML

Class diagrams are used to generate static aspects of Java programs, like inter-
faces, classes, associations and signatures of operations. The transformation of
graph transformations into JML constructs makes the graph transformations
observable in the sense that they can be automatically evaluated for a given
state of a system, where the state is given by object configurations. In the
following, we will concentrate on the code generation for the service provider.
The code generation for the client side monitors works similar and will not
be discussed in detail in this book chapter. The requestor side monitors can
be obtained by restricting the generation of JML assertion to the ones that
include only references to parameters. Thus, any assertions with references to
any other state variables will not part of the client-side monitor.

Translation of UML Class Diagrams to Java

Given a UML class diagram, we assume that each class is translated to a
corresponding Java class. In the following, we will focus on the characteristics

7 An MD Approach to Discovery, Testing and Monitoring WS 191

of such a translation that we need for explaining our mapping from graph
transformation rules to JML.

All private or protected attributes of the UML class diagram are trans-
lated to private and protected Java class attributes with appropriate types
and constraints, respectively. According to the Java coding style guides [45],
we translate public attributes of UML classes to private Java class attributes
that are accessible via appropriate get- and set-methods. Standard types
may be slightly renamed according to the Java syntax. Attributes with multi-
plicity greater than one map to a reference attribute of some container type.
Furthermore, each operation specified in the class diagram is translated to a
method declaration in the corresponding Java class up to obvious syntactic
modifications according to the Java syntax.

Associations are translated by adding an attribute with the name of the
association to the respective classes. For handling, e.g., the association owns
of Fig. 7.2, a private variable owns of type Customer is added to the class
CustomerReservationList. Again, appropriate access methods are added to
the Java class. Because the UML association owns is bidirectional, we addi-
tionally add an attribute named revOwns to the class Customer. For asso-
ciations that have multiplicities with an upper bound bigger than one, we
use classes implementing the standard Java interface Collection. A collec-
tion represents a group of objects. In particular, we use the class TreeSet as
implementation of the sub-interface Set of Collection. A set differs from
a collection in that it contains no duplicate elements. For qualified asso-
ciations, we use the class HashMap implementing the standard Java inter-
face Map. An object of type Map represents a mapping of keys to values.
A map cannot contain duplicate keys; each key can map to at most one
value. In addition, we provide access methods for adding and removing el-
ements. Examples are the access methods addCustomerReservationList or
removeCustomerReservationList. To check the containment of an element,
we add operations like hasCustomerReservationList. In case of qualified
attributes, we access elements via keys by adding additional methods like
getCustomerReservationListByID. As described in [18], in order to guaran-
tee the consistency of the pairs of references that implement an association,
the respective access methods for reference attributes call each other.

Translation of Graph Transformation Rules to JML

For the transformation of graph transformation rules into JML, we assume a
translation of design class diagrams to Java as described above. Listing 7.1
shows how a method is annotated with a JML specification. The behavioural
information is specified in the Java comments. Due to their embedding into
Java comments, the annotations are ignored by a normal Java compiler. The
keywords public normal_behavior state that the specification is intended
for clients, and that if the pre-condition is satisfied, a call must return nor-
mally, without throwing an exception. JML pre-conditions follow the keyword

192 M. Lohmann et al.

1 pub l i c c l a s s A {
2
3 . . .
4
5 /∗@ pub l i c normal behav ior
6 @ r e q u i r e s JML−PRE;
7 @ ensure s JML−POST;
8 @∗/
9 pub l i c Tr m(T1 v1 , . . . Tn vn) { . . . }

10
11 . . .
12
13 }

Listing 7.1. Format for specifying pre- and post-conditions by JML

requires, and post-conditions follow the keyword ensures. Both JML-PRE
and JML-POST are Boolean expressions. The pre-condition states what con-
ditions must hold for the method arguments and other parts of the state of
the systems. If the pre-condition is true, then the method must terminate in
a state that satisfies the post-condition.

If a JML construct represents a visual contract, the JML’s pre- and post-
conditions must be interpretations of the graphical pre- and post-conditions.
When a JML pre-condition (post-condition) is evaluated, figuratively an oc-
currence of the pattern that is specified by the pre-condition of the corre-
sponding graph transformation rule has to be found in the current system
data state. To find the pattern, a JML pre-condition (post-condition) applies
a breadth-first search starting from the object this. The object this is the ob-
ject that is executing the behaviour. If a JML pre-condition (post-condition)
finds a correct pattern, it returns true, otherwise it returns false.

In Listing 7.2 the JML contract for verifying the visual contract of Fig. 7.3
is shown. Mainly, we test the pre- and post-conditions by nesting existence
or universal quantifications that are supported by JML. Additionally, the
negative application condition is nested into the pre-condition. The general
syntax of JML’s quantified expressions is given as (\forAll T x; r ; p)
and (\exists T x; r; p). The forAll expression is true if every object x
of type T that satisfies r also satisfies p. The exists expression is true if there
exists at least one object x of type T that satisfies r also satisfies p.

Next, we explain the JML-contract of Listing 7.2 in more detail. The pre-
condition including the negative application condition is tested in lines 2–11.
Lines 3–5 check if the active object (object this of type HotelBookingSystem)
knows an object of type Customer with the value cid (parameter of the op-
eration createReservationList) for the attribute customerID.

In lines 6–11 the negative application condition is checked. It is checked
whether the previously identified customer (c) references an object of type

7 An MD Approach to Discovery, Testing and Monitoring WS 193

1 /∗@ publ i c
2 normal behavior
3 @ r e qu i r e s
4 @ (\ e x i s t s Customer c ;
5 @ th i s . getCustomer . va lues () . conta ins (c) ;
6 @ c . getCustomerID () . equa l s (c id) &&
7 @ ! (
8 @ (\ e x i s t s CustomerReservationList crlNAC ;
9 @ c . owns . conta ins (crlNAC) ;

10 @ crlNAC . getCommit () == f a l s e
11 @)
12 @)
13 @) ;
14 @
15 @ ensur es (

16 @ (\ e x i s t s Customer c ;
17 @ th i s . getCustomer . va lues () . conta ins (c) ;
18 @ c . getCustomerID () . equa l s (c id) &&
19 @ (\ e x i s t s CustomerReservationList c r l ;
20 @ th i s . cus tomerReservat i onLi s t . va lues () . conta ins (c r l) ;
21 @ c r l . owns == c &&
22 @ c r l . getCommit () == f a l s e &&
23 @ \ r e s u l t == c r l
24 @)
25 @) ;
26 @∗/
27 pub l i c CustomerReservationList c r ea t eRe s e r va t i onL i s t
28 (Str ing c id) ;

Listing 7.2. JML contract of operation createReservationList of Fig. 7.3

CustomerReservationList with the value false for the attribute commit. If
such an object is found, then lines 6–11 return false (see ! in line 7).

The post-condition is tested in lines 14–23. The objects of the post-
condition are tested in the following order by the JML expression: c:Customer
and crl:CustomerReservationList. Therefore, two JML-exists expressions
are nested into each other. In line 22 whether the object crl is returned by
the operation is tested. The JML-keyword result is used to denote the value
returned by the method.

7.6.2 Runtime Behaviour

For enabling model-driven monitoring, we have bridged the gap between the
model and the implementation level by the definition of a transformation of
our visual contracts into JML assertions. On the implementation level we can
take advantage of existing JML tools: The JML compiler generates assertion
check methods from the JML pre- and post-conditions. The original, manual
implemented methods are replaced by automatically generated wrapper meth-
ods and the original methods become a private method with a new name. The

194 M. Lohmann et al.

execution of operation call

alt

Client Service

return

operation call

exception

check pre-condition

throw
pre-condition error

[else]

execute original,
manual implemented

operation

[pre-condition
holds]

check post-condition

[post-condition
holds]

throw
post-condition error

return normally

system
state sk

system
state sk+1

Fig. 7.7. Runtime behaviour of operation, model-driven monitoring approach

wrapper methods delegate client method calls to the original methods with
appropriate assertions checks.

This leads to a runtime behaviour of an operation call as shown in Fig. 7.7.
When a client calls an operation of a service, a pre-condition check method
evaluates a method’s pre-condition and throws a pre-condition violation ex-
ception if it does not hold. If the pre-condition holds, then the original opera-
tion is invoked. After the execution of the original operation, a post-condition
check method evaluates the post-condition and throws a post-condition vio-
lation exception if it does not hold.

If an exception is thrown during the pre-condition test, then the client
(routine’s caller), although obligated by the contract to satisfy a certain re-
quirement, does not satisfy it. This is a bug in the client itself; the routine is
not involved. A violation of the post-condition means that the manual imple-
mented operation was not able to fulfil its contract. In this case, the manual
implementation contains a bug, the caller is innocent.

If the contracts are not violated at runtime, then automatic monitoring is
transparent. The system state is only changed by the original operation. Our
transformation of the visual contracts into JML ensures that the assertion
checks generated by the JML compiler do not have any side effects on the
system state. That is, except for time and space measurements, a correct
implementation’s behaviour is unchanged.

With the generated assertions, we can monitor the correctness of an im-
plementation. If we want to take full advantage of our model-driven moni-
toring approach, a system needs to react adequately. As introduced before,
an exception is thrown if a pre- or a post-condition is violated at runtime.
The JML tools introduce the exception classes JMLPreconditionError and
JMLPostconditionError to catch these exceptions. Listing 7.3 shows how to
use these classes in an implementation. The operation at the beginning of the

7 An MD Approach to Discovery, Testing and Monitoring WS 195

1 try {
2 shop . cartAdd (item , ca r t I d) ;
3 } catch (JMLPreconditionError e) {
4 System . out . p r i n t l n (” V io l a t i on o f p recond i t i on ”
5 + e . getMessage ()) ;
6 } catch (JMLPostcondit ionError e) {
7 System . out . p r i n t l n (” V io l a t i on o f pos t cond i t i on ”
8 + e . getMessage ()) ;
9 } catch (Error e) {

10 System . out . p r i n t l n (” Un id en t i f i e d e r r o r ! ”
11 + e . getMessage () ;
12 }

Listing 7.3. Exceptions handling at development time

1 V io l a t i on o f pre−cond i t i on by method OnlineShop . cartAdd
2 regard ing s p e c i f i c a t i o n s at
3 F i l e ”de\upb\ dbis \amazonmini\OnlineShop . r e f i n e s −java ” ,
4 l i n e 34 , charac t e r 18 when
5 ’ cid ’ i s Cart 1
6 ’ item ’ i s de . upb . db is . amazonmini . Item@ecd7e
7 ’ th i s ’ i s de . upb . db is . amazonmini . OnlineShop@1d520c4

Listing 7.4. Example of an exception

try-catch block is an operation detailed by visual contracts on the design
level. A programmer on the client side can now use these exception handling
mechanisms to catch pre- and post-condition violations and implement an ad-
equate reaction. Listing 7.4 shows the example of a message if a pre-condition
is violated.

To summarise, with our model-driven monitoring approach we can build
reliable (correct and robust) software systems. Correctness is the ability of
a software system to behave according to its specification. Robustness is the
ability to react to cases not included in the specification. At runtime, the
generated JML assertions allow for the monitoring of the correctness. The
generated exceptions allow a programmer to make a software system robust
if it does not behave according to its specification.

7.7 Empirical Validation

The framework presented in this chapter has been used with several case
studies: test case generation has been applied to publicly available web services
and the monitoring technology has been used with web services provided by

196 M. Lohmann et al.

industrial partners. In the following, we summarize the results obtained so
far. Details about these experiences are available in [26, 35, 14].

The technique for automatic testing has been applied to both a selection of
web services available from www.xmethods.com and the Amazon web service.
Since the GT-based specifications of these web services are not available, we
manually specified the behaviour expected from these web services, and we
used automatic testing to check if web service implementations conform with
our expectations.

Testing showed that all web services, with the exception of the Kayak
Paddle Guide web service, behave according to our expectations. The Kayak
Paddle Guide web service returns the recommended length of a paddle given
the height of the person who will use it. Testing revealed a fault that consists
in suggesting a kayak of a maximum length, even if the input represents an
incorrect height for a person.

Test case generation applied to the Amazon Web Service also revealed an
incompatibility between its specification and the actual behavior of the web
service. However, the incompatibility was due to our misinterpretation of the
operation for adding items. Once the specification had been fixed, test cases
did not identify any incompatibility.

This experience showed that the technique for test case generation scales
well even with web services of non-trivial complexity, like the Amazon Web
Service.

In an industrial case study [35, 14], we successfully applied graph trans-
formations for specifying the interfaces of web services. In this case study,
we used the web services of a business process for ordering new insurance
contracts. We have been able to replace almost all previously created textual
descriptions of web services by descriptions with graph transformations to
allow for an efficient administration and monitoring of web services.

Moreover, we demonstrated the feasibility of the monitoring technology by
implementing an in-house version of the Amazon Web service and generating
its server-side monitors. The monitoring components worked fine and this
experience demonstrated the feasibility of the technology.

7.8 Related Work

The vision of service-oriented architectures is that a program in need of some
functionality (that it cannot provide itself) queries a central directory to ob-
tain a list of service descriptions of potential suppliers of this functionality.
The notion of service description is a central one in service-oriented archi-
tectures. A service description describes the functionality of a service. An
important fact to note at this point is that a service requestor must know the
syntax of a service to be able to call the service and additionally the service

7 An MD Approach to Discovery, Testing and Monitoring WS 197

requestor must know the semantics of a service to be able to call the service
correctly.

In this section, we will focus on the service descriptions, the usage of
models and model-driven testing approaches in service-oriented architectures.

7.8.1 Service Descriptions

An interface definition is a technical description of the public interfaces of
a web service. It specifies the format of the request and the response from
the web service. The Web Service Description Language (WSDL) [11] pro-
posed by the World Wide Web Consortium (W3C) is an XML (Extensible
Markup Language) format for describing interfaces offered by a web service
as a collection of operations. For each operation, its input and output pa-
rameters are described. The W3C refers to this kind of service description as
the “documentation of the mechanics of the message exchange” [5, 7]. While
these mechanics must be known to enable binding, a semantic description of
services based on WSDL is not possible. WSDL only encodes the syntax of
the web service invocation; it does not yield information on the service’s se-
mantics. Of course, human users might guess which service an operation (e.g.
orderBook(isbn:String)) provides, but such explicit operation names are
technically not required.

UDDI (Universal Description, Discovery, and Integration) [50], the proto-
col for publishing service descriptions, allows users to annotate their WSDL
file with information about the service in the form of explanatory text and
keywords. Using Keywords is one way of supplying semantics but not a re-
liable one, as there has to be a common agreement between requestors and
providers about the meaning of the different keywords. The current state of
web service technology is such that a developer solves these semantic problems
by reading additional textual service descriptions in natural language.

Trying to describe a service with keywords also ignores the operational
nature of services. When executing a service, one expects certain changes,
i.e., the real world is altered in some significant way (e.g. an order is created,
a payment is made or an appointment is fixed). Service descriptions should
reflect this functional nature by providing a semantic description in the form
of pre- and post-conditions (a style of description also known from contract-
based programming) [38]. For a service-oriented architecture, this kind of se-
mantic description can be found in [42, 49]. In both approaches the pre- and
post-conditions are expressed in terms of specialised ontologies. While [42]
shows the matching only for single input and output concepts, [49] combines
a number of pre-defined terms to express the pre- and post-conditions (e.g.
CardCharged-TicketBooked-ReadyforPickup). Using this style of descrip-
tion, it is possible to distinguish between rather similar services (e.g. booking
a ticket, which is sent to the customer vs booking a ticket, which has to be
picked up) without coining special phrases for each individual service in the
ontology.

198 M. Lohmann et al.

While this latter approach addresses human users, all previously men-
tioned solutions are directed towards machine-readable descriptions only. An
important characteristic of our approach is its usability by mainstream soft-
ware engineers.

7.8.2 Models

Models provide abstraction from the detailed problems of the implementa-
tion technologies and allow developers to focus on the conceptual tasks. In
particular, visual structures can often be understood more intuitively than
source code or formal textual descriptions. Thus, they are usually more effec-
tive for the communication between a service provider and a service requestor.
Software engineers have long recognised this feature of visual languages and
they make use of it. Especially, the diagrams of the industry standard Unified
Modelling Language (UML) [41] have become very successful and accompa-
nying software development tools are available. Further, models are an es-
tablished part of modern software development processes. They are becoming
more crucial with the advent of the Model Driven Architecture (MDA), since
the MDA promotes generating implementation artefacts automatically from
models, thus saving time and effort. Thus, a visual representation of pre- and
post-conditions is a promising amalgamation that can be easily integrated
into today’s model-driven software development processes.

Since version 1.1, the UML standard comprises the Object Constraint
Language (OCL) [40] as its formal annotation language for UML models. In
contrast to the commonly used graphical diagrammatic UML sub-languages,
OCL is a textual language. As a consequence, OCL expressions have a com-
pletely different notation for model elements than the diagrams of the UML.
The types of constraints that can be expressed in OCL include invariants on
classes and types as well as pre- and post-conditions of operations. However,
OCL is of limited use even in organisations which employ UML diagrams. The
limited readability of OCL and the difficulty of integrating a purely textual
language like OCL with diagrams are important reasons for this situation.

Other proposals provide a visual counterpart of OCL by exploiting visual-
isations with set-theoretic semantics. Kent and Howse define a visual formal-
ism for expressing constraints in object-oriented models. They first proposed
constraint diagrams [31] that are based on Venn diagrams and visualised the
set-theoretic semantics of OCL constraints. Later, Howse et al. advanced this
approach towards Spider Diagrams [28] to support reasoning about diagrams.
Visual OCL [8] is a graphical representation of OCL. Both proposals embed
textual logic expressions in the diagrams, which leads to a hybrid notation
of OCL constraints. In addition, the diagrams differ from the diagrams that
are commonly used in organizations employing UML in software development
and, thus, developers have to learn another visual language.

We rather prefer to represent practically relevant concepts of object con-
straints by using graph transformation rules. A graph transformation rule

7 An MD Approach to Discovery, Testing and Monitoring WS 199

allows for the reuse of UML’s object diagram notation. Thus, we have chosen
a notation that is familiar to software developers and it easily integrates into
today’s software development processes.

7.8.3 Testing

There are several techniques for testing applications that include web services,
see [10] for a survey on this topic. A few of these techniques investigated the
development of enhanced UDDI servers that validate the quality of web ser-
vices by executing test cases during the registration phase [6, 52]. In particular,
Tsai et al. investigated the use of UDDI servers that execute test scripts de-
veloped by web service providers [52], and Bertolino et al. investigated the use
of UDDI servers that generate test cases from Protocol State Machine dia-
grams [6]. The former technique focuses on validating a limited set of scenarios
identified by testers at design-time, while the latter technique focuses on val-
idating interaction protocols. These techniques follow a complemental point
of view with respect to the one presented in this chapter, which focuses on
validating if the effect of single invocations and invocation sequences modify
the conceptual state of an external web service according to its specification.
Moreover, existing techniques do not address the methodology aspect of the
development.

We believe that high-quality applications can be obtained with thorough
design and modelling of systems. UML is a well-known design language, and
some of its diagrams, e.g., sequence diagrams and state charts, can be used
for test case generation [43]. However, the generated test cases often fail to
capture the concrete complexity of the exchanged parameters that are often
restricted to few simple types, see for instance [22]. Moreover, due to the lack
of a precise semantics, UML diagrams often need to be extended with some
formalism that unambiguously defines the semantics of their elements.

Graph-transformations naturally integrate with UML diagrams, because
they can be easily derived from UML design artefacts [3], they allow reasoning
about behaviours of target applications and are suitable for test case gener-
ation. Moreover, graph transformations naturally address the complexity of
both objects that can be exchanged between components and state objects.

A few approaches for test case generation from graph transformations ex-
ist [2, 55]. We advance these approaches in three ways: (1) we extend and
apply domain-based testing and data-flow techniques to the case of graph
transformations, (2) we generate executable test oracles from graph transfor-
mation rules and (3) we automatically test and validate web services. Finally,
the idea of using registries which automatically test web services before reg-
istering seems to be original.

Automatic generation of assertions from models has been addressed in
other works. For instance, different approaches show how to translate OCL
constraints into assertions that are incorporated into Java code. Hamie [21]
proposes a mapping of UML design class diagrams that are annotated with

200 M. Lohmann et al.

OCL constraints to Java classes that are annotated with JML specifications.
OCL is used to precisely describe the desired effects of the operations in terms
of pre- and post-conditions. Invariants on the classes of a design model are also
expressed using OCL. The Dresden OCL Toolkit [29] supports parsing, type
checking and normalisation of OCL constraints. An application of the toolkit
is a Java code generator that translates OCL constraints into Java code frag-
ments that can compute the fulfilment of an OCL constraint. Even if different
approaches facilitate the translation of OCL into executable contracts, OCL
still lacks an easy-to-use representation.

7.9 Conclusions

Service-oriented applications are characterised by loosely coupled and dy-
namic interactions among participants. In particular, to obtain reliable and
high-quality systems, service discovery, binding and integration must be ex-
tensively validated. Several approaches address quality problems in isolation,
failing to provide a sound embedding of quality techniques into the life-cycle
of services.

In contrast, our framework addresses coherent and model-driven develop-
ment of high-quality service-based applications and its embedding into the
service life-cycle. The resulting service-oriented architecture

• allows participation only of high-quality web services, i.e., web services
that passed automatic testing;

• continuously monitors the behaviour of web services and instantaneously
signals any violation of specifications;

• supports discovery based on behavioural descriptions rather than syntac-
tical descriptions of interfaces;

• provides client-side monitoring facilities, which support clients in discov-
ering integration problems and re-selecting new services if current services
do not behave correctly.

We demonstrated the feasibility of our approach by applying the technolo-
gies that are part of the framework for high-quality service-based applications
to several real web services.

References

1. Apache. Axis. http://ws.apache.org/axis/.
2. P. Baldan, B. König, and I. Stürmer. Generating test cases for code generators

by unfolding graph transformation systems. In proceedings of the 2nd Interna-
tional Conference on Graph Transformation, Rome, Italy, 2004.

3. L. Baresi and R. Heckel. Tutorial introduction to graph transformation: a soft-
ware engineering perspective. In proceedings of the International Conference on
Graph Transformation, volume 1 of LNCS. Springer, 2002.

7 An MD Approach to Discovery, Testing and Monitoring WS 201

4. M. Barnett, K. R. M. Leino, and W. Schulte. The spec# programming system:
An overview. In CASSIS 2004, volume 3362 of LNCS. Springer-Verlag, 2004.

5. B. Benatallah, M.-S. Hacid, C. Rey, and F. Toumani. Semantic reasoning for web
services discovery. In proceedings of the WWW 2003 Workshop on E-Services
and the Semantic Web (ESSW’ 03), 2003.

6. A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans. Architecting Systems
with Trustworthy Components, chapter Audition of Web Services for Testing
Conformance to Open Specified Protocols. Number 3938 in Lectures Notes in
Computer Science Series. Springer, 2006.

7. D. Booth, H. Haas, F. McCabe, E. Newcomer, C. Michael, C. Ferris, and
D. Orchard. Web services architecture - W3C working group note 11 febru-
ary 2004. Technical report, W3C, 2004.

8. P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A visualization of
OCL using collaborations. In M. Gogolla and C. Kobryn, editors, proceedings of
the 4th International Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, volume 2185 of Lecture Notes In Computer
Science, pages 257–271. Springer-Verlag, 2001.

9. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer (STTT), February 2005.

10. G. Canfora and M. D. Penta. Testing services and service-centric systems:
Challenges and opportunities. IEEE IT Pro, pages 10–17, March/April 2006.

11. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web services de-
scription language (WSDL) version 2.0 part 1: Core language - W3C working
draft 10 may 2005, May 2005.

12. D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. DAML+OIL (march 2001) reference description -
W3C note 18 december 2001, March 2001.

13. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Chap-
ter 3: Algebraic approaches to graph transformation - part I: Basic concepts
and double pushout approach. In G. Rozenberg, editor, Handbook of Graph
Grammars of Computing by Graph Transformation. World Scientific, 1997.

14. G. Engels, B. Güldali, O. Juwig, M. Lohmann, and J.-P. Richter. Industrielle
Fallstudie: Einsatz visueller Kontrakte in serviceorientierten Architekturen. In
B. Biel, M. Book, and V. Gruhn, editors, Software Enginneering 2006, Fachta-
gung des GI Fachbereichs Softwaretechnik, volume 79 of Lecture Notes in Infor-
matics, pages 111–122. Köllen Druck+Verlag GmbH, 2006.

15. G. Engels, R. Heckel, G. Taentzer, and H. Ehrig. A view-oriented approach
to system modelling based on graph transformation. In proceedings of the 6th
European Conference held jointly with the International Symposium on Founda-
tions of Software Engineering, pages 327–343. Springer-Verlag, 1997.

16. G. Engels, M. Lohmann, S. Sauer, and R. Heckel. Model-driven monitoring:
An application of graph transformation for design by contract. In proceedings
of the Third International Conference on Graph Transformations (ICGT 2006),
volume 4178 of Lecture Notes in Computer Science, pages 336–350. Springer,
2006.

17. J. Fan and S. Kambhampati. A snapshot of public web services. SIGMOD
Record, 34(1):24–32, March 2005.

202 M. Lohmann et al.

18. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new
graph rewrite language based on the Unified Modeling Language. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Selected papers from
the 6th International Workshop on Theory and Application of Graph Transfor-
mations (TAGT), volume 1764 of Lecture Notes In Computer Science, pages
296–309. Springer Verlag, 1998.

19. P. Frankl and E. Weyuker. An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering, 14(10):1483–1498, 1988.

20. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative applica-
tion conditions. Fundamenta Informaticae, 26(3,4):287–313, 1996.

21. A. Hamie. Translating the object constraint language into the java modeling
language. In proceedings of the 2004 ACM symposium on Applied computing,
pages 1531–1535. ACM Press, 2004.

22. J. Hartmann, C. Imoberdorf, and M. Meisinger. Uml-based integration testing.
In proceedings of the 2000 international symposium on Software testing and
analysis (ISSTA), pages 60–70. ACM Press, 2000.

23. J. H. Hausmann, R. Heckel, and M. Lohmann. Model-based discovery of
Web Services. In proceedings of the International Conference on Web Services
(ICWS), 2004.

24. J. H. Hausmann, R. Heckel, and M. Lohmann. Model-based development of
web services descriptions enabling a precise matching concept. International
Journal of Web Services Research, 2(2):67–84, April-June 2005.

25. R. Heckel and M. Lohmann. Model-driven development of reactive informations
systems: From graph transformation rules to JML contracts. International Jour-
nal on Software Tools for Technology Transfer (STTT), 2006.

26. R. Heckel and L. Mariani. Automatic conformance testing of web services. In
proceedings of the 8th International Conference on Fundamental Approaches to
Software Engineering (FASE). Springer-Verlag, 2005.

27. Hewlett-Packard Development Company. Jena - a semantic web framework for
Java. http://jena.sourceforge.net/.

28. J. Howse, F. Molina, J. Tayloy, S. Kent, and J. Gil. Spider diagrams: A di-
agrammatic reasoning system. Journal of Visual Languages and Computing,
12(3):299–324, June 2001.

29. H. Hussmann, B. Demuth, and F. Finger. Modular architecture for a toolset
supporting OCL. Science of Computer Programming, 44:51–69, 2002.

30. B. Jeng and E. Weyuker. A simplified domain-testing strategy. ACM Transac-
tions on Software Engineering and Methodology, 3:254–270, 1994.

31. S. Kent and J. Howse. Mixing visual and textual constraint languages. In
R. France and B. Rumpe, editors, proceedings of International Conference on
The Unified Modeling Language (UML’99), volume 1723 of Lecture Notes in
Computer Science, pages 384–398. Springer, 1999.

32. A. Kühnel. Visual C# 2005. Galileo Computing, 2006.
33. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behav-

ioral interface specification language for Java. Technical Report 98-06-rev27,
Department of Computer Science, Iowa State University, February 2005.

34. M. Lohmann, G. Engels, and S. Sauer. Model-driven monitoring: Generat-
ing assertions from visual contracts. In proceedings of the 21st IEEE Interna-
tional Conference on Automated Software Engineering (ASE’06), pages 355–356,
September 2006.

7 An MD Approach to Discovery, Testing and Monitoring WS 203

35. M. Lohmann, J.-P. Richter, G. Engels, B. Güldali, O. Juwig, and S. Sauer. Ab-
schlussbericht: Semantische Beschreibung von Enterprise Services - Eine indus-
trielle Fallstudie. Technical Report 1, Software Quality Lab (s-lab), Unversity
of Paderborn, May 2006.

36. M. Lohmann, S. Sauer, and G. Engels. Executable visual contracts. In M. Erwig
and A. Schürr, editors, proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05), pages 63–70, 2005.

37. B. Meyer. Applying “Design by Contract”. IEEE Computer, 25(10):40–51, 1992.
38. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood

Cliffs, second edition, 1997.
39. N. Mitra. SOAP version 1.2 part 0: Primer - W3C recommendation 24 june

2003, Juni 2003.
40. OMG (Object Management Group). UML 2.0 OCL final adopted specification,

2003.
41. OMG (Object Management Group). UML 2.0 superstructure specification -

revised final adopted specification, 2004.
42. M. Paolucci, T. Kawmura, T. R. Payne, and K. Sycara. Semantic matching of

web services capabilities. In I. Horrocks and J. A. Hendler, editors, proceedings of
the First International Semantic Web Conference on the Semantic Web, volume
Lecture Notes In Computer Science; Vol. 2342, pages 333–347, Sardinia, Italy,
2002. Springer-Verlag.

43. M. Pezzè and M. Young. Software Test and Analysis: Process, Principles and
Techniques. John Wiley and Sons, 2007.

44. M. Raacke. Generierung von spec#-code aus visuellen kontrakten, October
2006. Bachelor Thesis at the University of Paderborn.

45. A. Reddy. Java coding style guide. Technical report, 2000.
46. A. Rensink. The GROOVE simulator: A tool for state space generation. In

2nd Intl. Workshop on Applications of Graph Transformations with Industrial
Relevance, volume 3062 of LNCS, pages 479–485. Springer, 2004.

47. A. Schürr, A. J. Winter, and A. Zündorf. The PROGRES approach: language
and environment. In Handbook of graph grammars and computing by graph
transformation: vol.2: applications, languages, and tools, pages 487–550. World
Scientific, 1999.

48. A. Seaborne. RDQL - a query language for RDF - W3C member submission 9
january 2004. Technical report, W3C, 2004.

49. K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to
web services standards. In L.-J. Zhang, editor, proceedings of the International
Conference on Web Services, ICWS ’03, pages 395–401, Las Vegas, Nevada,
USA, 2003. CSREA Press.

50. O. U. S. TC. UDDI version 3.0.2. OASIS standard, Organization for the Ad-
vancement of Structured Information Standards, 2004.

51. Technical University Berlin. The attributed graph grammar system (AGG).
http://tfs.cs.tu-berlin.de/agg/.

52. W. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi, and B. Xiao. Verification of web ser-
vices using an enhanced UDDI server. In proceedings of the IEEE International
Workshop on Object-oriented Real-time Dependable systems, 2003.

53. E. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Trans-
actions on Software Engineering, 17:703–711, 1991.

54. L. White and E. Cohen. A domain strategy for computer program testing. IEEE
Transactions on Software Engineering, 6:247–257, 1980.

204 M. Lohmann et al.

55. J. Winkelmann, G. Taentzer, K. Ehrig, and J. Küster. Translation of restricted
OCL constraints into graph constraints for generating meta model instances by
graph grammars. In proceedings of the International Workshop on the Graph
Transformation and Visual Modeling Techniques, Electronic Notes in Theoreti-
cal Computer Science, 2006.

