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Abstract. Conversations provide an intuitive and simple model for analyzing in-
teractions among composite web services. A conversation is the global sequence
of messages exchanged among the peers participating in a composite web service.
Interactions in a composite web service can be analyzed by investigating the tem-
poral properties of its conversations. Conversations can be specified in a top-down
or bottom-up manner. In a top-down conversation specification, the set of conver-
sations is specified first, without specifying the individual behaviors of the peers. In
a bottom-up conversation specification, on the other hand, behavior of each peer is
specified separately and the conversation set is defined implicitly as the set of con-
versations generated by these peers. For both top-down and bottom-up specification
approaches we are interested in the following: (1) Automatically verifying properties
of conversations and (2) investigating the effect of asynchronous communication on
the conversation behavior. These two issues are closely related since asynchronous
communication with unbounded queues increases the difficulty of automated verifi-
cation significantly.

In this chapter, we give an overview of our earlier results on analysis and verifica-
tion of conversations. We discuss two analysis techniques for identifying bottom-up
and top-down conversation specifications that can be automatically verified. Syn-
chronizability analysis identifies bottom-up conversation specifications for which the
conversation set remains the same for asynchronous and synchronous communica-
tion. Realizability analysis, on the other hand, identifies top-down conversation spec-
ifications which can be implemented by a set of finite state peers interacting with
asynchronous communication. We discuss sufficient conditions for synchronizability
and realizability analyses which are implemented in our Web Service Analysis Tool
(WSAT). WSAT can be used for verification of LTL properties of both top-down
and bottom-up conversation specifications.

3.1 Introduction

Web services provide a promising framework for development, integration,
and interoperability of distributed software applications. Wide-scale adoption
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of the web services technology in critical business applications will depend on
the feasibility of building highly dependable services. Web services technology
enables interaction of software components across organizational boundaries.
In such a distributed environment, it is critical to eliminate errors at the
design stage, before the services are deployed.

One of the important challenges in static analysis and verification of web
services is dealing with asynchronous communication. Asynchronous com-
munication makes most analysis and verification problems undecidable, even
when the behaviors of web services are modeled as finite state machines. In
this chapter, we give an overview of our earlier results on analysis and ver-
ification of interactions among web services in the presence of asynchronous
communication.

In our formal model, we assume that a composite web service consists of
a set of individual services (peers) which interact with each other using asyn-
chronous communication. In asynchronous communication, the sender and the
receiver of a message do not synchronize their send and receive actions. The
sender can send a message even when the receiver is not ready to receive that
message. When a message arrives, it is stored in the receiver’s message buffer.
Message buffers are typically implemented as FIFO queues, i.e., messages in a
message buffer are processed in the order they arrive. A message will wait in
the message buffer without being processed until it moves to the head of the
message buffer and the receiver becomes available to consume it by executing
a receive action.

Asynchronous communication is important for building robust web ser-
vices [5]. Since asynchronous communication does not require the sender and
the receiver to synchronize during message exchange, temporary pauses in
availability of the services and delays in the delivery of the messages can be
tolerated. In practice, asynchronous messaging is supported by message deliv-
ery platforms such as Java Message Service (JMS) [26] and Microsoft Message
Queuing Service (MSMQ) [32].

Although asynchronous communication improves the robustness of web
services, it also increases the complexity of design and verification of web
service compositions as demonstrated by the two examples below.

Example 1 Consider a small portion of the example from Chap. 1, where the
GPS device of the traveler automatically negotiates a purchase agreement with
two existing map service providers. Fig. 3.1a provides a top-down specification
of this composition. There are three peers, the traveler (T ), map provider 1
(M1), and map provider 2 (M2). Assume that before the composition starts,
a “call for bid” message has been broadcast to both map providers. The fi-
nite state machine in Fig. 3.1 describes the bidding process. Intuitively, the
protocol specifies that the first bidder will win the contract. Fig. 3.1b demon-
strates a sample implementation for all peers involved in the composition. For
each peer the sample implementation is generated by a projection operation.
Given a protocol (represented as a finite state machine) and a peer to project
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Fig. 3.1. An unrealizable design due to asynchronous communication

to, the projection operation replaces the transitions that are labeled with a
message that is neither sent nor received by the given peer by ε edges, and
then minimizes the resulting automaton.

Now, let us consider whether this protocol is realizable, i.e., if there are im-
plementations for all peers, whose composition can generate exactly the same
set of global behaviors as specified by the protocol automaton in Fig. 3.1a.
If synchronous communication is used, the protocol can be executed without
any problem. Synchronous communication is similar to communicating with
telephone calls, but without answering machines. For a message exchange to
occur, the sender and the receiver both have to be on the phone at the same
time. With synchronous communication, the peer implementations shown in
Fig. 3.1b can generate exactly the conversation set as specified by Fig. 3.1a.
Notice that according to these implementations, at the beginning stage, both
map service providers call the traveler to bid. When the first bidder success-
fully makes the call, the traveler, according to the protocol, will not answer
any other calls. Hence the call by the second bidder will not go through and
the winner is decided. The second bidder will just stay in its initial state,
which is also one of its final states.

If we continue with the telephone analogy, asynchronous communication is
similar to communicating with answering machines where each phone call re-
sults in a message that is recorded to the answering machine of the callee.
The callee retrieves the messages from the answering machine in the or-
der they are received. If the peer implementations shown in Fig. 3.1b in-
teract with asynchronous communication, then the map service providers
do not have to synchronize their send actions with the traveler’s receive
actions. For example, if asynchronous communication is used, at the ini-
tial state, both map service providers can send out the bid messages. How-
ever, in such a scenario only one of them will successfully complete the
transaction, and the other will be stuck waiting for an answer and it will
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never reach a final state. To put it another way, if asynchronous commu-
nication is used then the composition of these three peers can generate a
global behavior that is not described in the protocol given in Fig. 3.1a. One
such undesired behavior can be described using the following sequence of
messages:

M1 → T : bid1; M2 → T : bid2; T → M1 : agreement.

This behavior results with the map service provider 2 being stuck because
the traveler will never respond to his request. Again using the telephone
analogy, in this scenario, both map providers call the traveler and leave
a bid message in the traveler’s answering machine. However, based on its
state machine (shown on the right side of Fig. 3.1b) the traveler listens to
only the first bid message in its answering machine and calls back the map
provider that left the first message. The other map provider never hears
back from the traveler and is stuck at an intermediate state waiting for a
call.

A conversation protocol specified as a finite state machine is realizable if
and only if it is realized by its projections to all peers [16]. Hence, the protocol
in Fig. 3.1 is not realizable.

Figure 3.1 is an example of how asynchronous communication complicates
the design of composite web services. In the next example given below, we dis-
cuss how asynchronous communication affects the complexity of verification.
This time we consider bottom-up specification of web services.

Example 2 Assume that the GPS device of the traveler needs to invoke the
service of the map service provider for a new map whenever the vehicle moves
one mile away from its old position. Fig. 3.2 presents two different sets of im-
plementations for the GPS device and the map service provider. Note that we
are assuming that the interaction mechanism is asynchronous communication.

The map provider replies to each request message (req) that the client
sends with a map data message (map); the interaction terminates when the
GPS device sends an end message. In Fig. 3.2a, the GPS device does not
wait for a map message from the provider after it sends a req message. In
the resulting global behavior, the req and map messages can be interleaved
arbitrarily, except that at any moment the number of req messages is greater
than or equal to the number of map messages. In Fig. 3.2b, the GPS device
waits for a map message before it sends the next req message. Now the question
is, which composition is easier to verify?

We can show that Fig. 3.2b is easier to verify because it falls into a cate-
gory of compositions called synchronizable web service compositions. A syn-
chronizable composition produces the same set of conversations under both
synchronous and asynchronous communication semantics. When all the peers
involved in a composition are finite state machines, their composition using
synchronous communication semantics is also a finite state machine. Hence,
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the problem becomes a finite state verification problem and can be solved
using existing finite state model checking techniques and tools. On the other
hand, it is impossible to characterize the conversation set of the composition
in Fig. 3.2a using a finite-state machine because a finite-state machine can-
not keep track of the number of unacknowledged req messages, which can be
arbitrarily large.

In the rest of this chapter, we will present a survey of our earlier re-
sults on realizability and synchronizability of web services that can be used
for identifying realizable top-down web service specifications and synchro-
nizable bottom-up web service specifications, respectively. The technical de-
tails and proofs of these results can be found in our earlier publications
[8, 9, 14, 15, 16, 18, 20, 21]. Our goal in this chapter is to provide an
overview of our earlier results and explain how they can be applied to the
example discussed in Chap. 1. We will also briefly discuss how we integrated
these analysis techniques into an automated verification tool for web services
[19, 39].

The rest of the chapter is organized as follows. Section 3.2 presents our
conversation model which was originally proposed in [8]. Section 3.3 discusses
the synchronizability analysis presented in [15, 21]. Section 3.4 discusses the
realizability analysis from [14, 16]. Section 3.5 discusses the extensions of
the synchronizability and realizability analyses to protocols in which message
contents influence the control flow [18, 20]. Section 3.6 briefly describes the
Web Service Analysis Tool [39, 19]. Section 3.7 discusses the related work and
Sect. 3.8 lists our conclusions.
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3.2 A Conversation-Oriented Model

In this section, we present a formal model for interacting web services
[8, 15, 16, 21]. We concentrate our discussion on static web service composi-
tions, where the composition structure is statically determined prior to the
execution of the composition and we assume that interacting web services do
not dynamically create communication channels or instantiate new business
processes.

We assume that a web service composition is a closed system where a finite
set of interacting (individual) web services, called peers, communicate with
each other via asynchronous messaging. In this section, we consider the prob-
lem of how to characterize the interactions among peers. We use the sequence
of send events to characterize a global behavior generated by the composition
of a set of peers. Based on this conversation model, Linear Temporal Logic
(LTL) can be used to express the desired properties of the system.

We will first introduce the notion of a composition schema, which speci-
fies the static interconnection pattern of a web service composition. Then we
discuss the specification of each peer, i.e., each participant of a web service
composition. Next we discuss how to characterize the interactions among the
peers, and introduce the notion of a conversation. Then we present some ob-
servations on conversation sets, which motivate the synchronizability analysis
presented in the next section.

3.2.1 Composition Architecture

There are two basic approaches for specifying a web service composition,
namely the top-down and bottom-up specification approaches. In the top-down
approach, the desired message exchange sequences among multiple peers are
specified, e.g., the IBM Conversation Support Framework for Business Process
Integration [22] and the Web Service Choreography Description Language
(WS-CDL) [40]. The bottom-up approach specifies the logic of individual peers
and then peers are composed and their global behaviors are analyzed. Many
industry standards, e.g., WSDL [41] and BPEL4WS [6], use this approach. In
our formalization, the bottom-up and top-down specification approaches have
different expressive power. Bottom-up approach is more expressive and can
be used to specify more complex interactions.

In order to explain our formal model, we will use an example derived from
the one discussed in Chap. 1 as our running example in this section.

Example 3 In this example there are three peers interacting with each other:
John, Agent, and Hotel. John wants to take a vacation. He has certain con-
straints about where he wants to go for vacation, so he sends a query to
his Agent stating his constraints and asking for advice. The Agent responds
to John’s query by sending him a suggestion. If John is not happy with
the Agent’s suggestion he sends another query requesting another sugges-
tion. Eventually, John makes up his mind and sends a reservation request to
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Fig. 3.3. An example demonstrating our model

the hotel he picks. The hotel responds to John’s reservation request with a
confirmation message. Figure 3.3 shows both top-down and bottom-up speci-
fications of this example in our framework. Top part of Fig. 3.3 shows the set
of peers participating in this composition and the messages exchanged among
them. Middle part of Fig. 3.3 gives a top-down specification of the possible
interactions among these peers. Note that in this top-down specification the
behaviors of the individual peers are not given. Bottom part of Fig. 3.3, on the
other hand, is a bottom-up specification which gives behavioral descriptions
of all the peers participating in the composition. The interaction behavior is
implicitly defined as the set of interactions generated by these peers. In either
approach, we are interested in verifying LTL properties of interactions and
we model the interactions as conversations. Below we will use this example to
explain different components of our framework.

A composition schema specifies the set of peers and the set of messages
exchanged among peers [8, 21].

Definition 1 A composition schema is a tuple (P, M) where P ={p1, . . . , pn}
is the set of peer prototypes, and M is the set of messages. Each peer proto-
type pi = (M in

i , Mout
i ) is a pair of disjoint sets of messages (M in

i ∩Mout
i = ∅),

where M in
i is the set of incoming messages, Mout

i is the set of outgoing
messages, and Mi = M in

i ∪ Mout
i is the set of messages of peer pi where⋃

i∈[1..n] M
in
i =

⋃
i∈[1..n] M

out
i = M . We assume that each message has a
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unique sender and a unique receiver, and a peer cannot send a message back
to itself.

For example, top part of Fig. 3.3 shows a composition schema where the
set of peer prototypes are P = {Agent, John, Hotel}, and the set of messages
are M = {query, suggest, confirm, reserve}. The input and output messages
for peer prototypes are defined as M in

Agent = {query}, Mout
Agent = {suggest},

M in
John = {suggest, confirm}, Mout

John = {query, reserve}, M in
Hotel = {reserve},

and Mout
Hotel = {confirm}.

3.2.2 Top-Down vs Bottom-Up Specification

Conversation protocols correspond to top-down specification of interactions
among web services. Middle part of Fig. 3.3 (labeled conversation protocol)
shows a top-down specification for the interactions among a set of peers. We
define a conversation protocol as a finite state machine as follows.

Definition 2 Let S = (P, M) be a composition schema. A conversation pro-
tocol over S is a tuple R = 〈(P, M),A〉 where A is a finite state automaton
with alphabet M . We let L(R) = L(A), i.e., the language recognized by A.

The conversation protocol in Fig. 3.3 corresponds to a finite state automa-
ton with the set of states {s0, s1, s2, s3, s4, s5}, the initial state s0, the set of
final states {s5}, the alphabet {query, suggest, confirm, reserve}, and the set
of transitions {(s0, query, s1), (s1, suggest, s2), (s2, query, s3), (s3, suggest, s2),
(s2, reserve, s4), and (s4, confirm, s5)}.

Note that the language recognized by the conversation protocol in Fig. 3.3
can be characterized by the following regular expression:

query suggest (query suggest)∗ reserve confirm

A bottom-up specification consists of a set of finite state peers. Bottom
part of Fig. 3.3 shows the bottom-up specification of the same web service
composition. We call a bottom-up specification a web service composition
which is defined as follows.

Definition 3 A web service composition is a tupleW=〈(P, M), A1, . . . ,An〉,
where (P, M) is a composition schema, n = |P |, and Ai is the peer imple-
mentation for the peer prototype pi = (M in

i , Mout
i ) ∈ P .

We assume that each peer implementation is given as a finite state machine.
Each peer implementation describes the control flow of a peer. Since peers
communicate with asynchronous messages, each peer is equipped with a FIFO
queue to store incoming messages. Formally, a peer implementation is defined
as follows.
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Definition 4 Let S =(P, M) be a composition schema and pi =(M in
i , Mout

i ) ∈
P be a peer prototype. A peer implementation Ai for a peer prototype pi is a
finite state machine with an input queue. Its message set is Mi = M in

i ∪Mout
i .

A transition between two states t1 and t2 in Ai can be one of the following
three types:

1. A send-transition of the form (t1, !m1, t2) which sends out a message m1 ∈
Mout

i (i.e., inserts the message to the input queue of the receiver).
2. A receive-transition of the form (t1, ?m2, t2) which consumes a message

m2 ∈ M in
i from the input queue of Ai.

3. An ε-transition of the form (t1, ε, t2).

Bottom part of Fig. 3.3 presents the peer implementations for the peer
prototypes shown at the top. For example, the peer implementation for
the peer Agent corresponds to a finite state machine with the set of states
{q0, q1, q2, q3}, the initial state q0, the set of final states {q2}, the message set
{query, suggest}, and the set of transitions {(q0, ?query, q1), (q1, !suggest, q2),
(q2, ?query, q3), and (q3, !suggest, q2)}. Similarly, the peer John corresponds to
a finite state machine with the set of states {t0, t1, t2, t3, t4, t5}, the initial state
t0, the set of final states {t5}, the message set {query, suggest, confirm, reserve},
and the set of transitions {(t0, !query, t1), (t1, ?suggest, t2), (t2, !query, t3),
(t3, ?suggest, t2), (t2, !reserve, t4), and (t4, ?confirm, t5)}. And finally, the peer
Hotel corresponds to a finite state machine with the set of states {r0, r1, r2},
the initial state r0, the set of final states {r2}, the message set {reserve, confirm},
and the set of transitions {(r0, ?reserve, r1) and (r1, !confirm, r2)}. We will use
these peer implementations for our running example for the rest of this section.

3.2.3 Conversations

A conversation is the sequence of messages exchanged among the peers during
an execution, recorded in the order they are sent. In order to formalize the
notion of conversations, we first need to define the configurations of a com-
posite web service and the derivation relation which specifies how the system
evolves from one configuration to another [8, 16, 21].

Definition 5 Let W = 〈(P, M),A1, . . . ,An〉 be a web service composition. A
configuration of W is a (2n)-tuple of the form

(Q1, t1, ..., Qn, tn),

where for each j ∈ [1..n], Qj ∈ (M in
j )∗, and tj ∈ Tj. Here tj and Qj denote

the local state and the queue contents of Aj, respectively.

Intuitively, a configuration records a snap-shot during the execution of
a web service composition by recording the local state and the FIFO queue
contents of each peer. For example, the initial configuration of our running
example is (ε, q0, ε, t0, ε, r0) where all the peers are in their initial states and all
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the queues are empty. When the peer John takes the transition (t0, !query, t1),
the next configuration is (query, q0, ε, t1, ε, r0), i.e., in the next configuration
the message query is in the input queue of the peer Agent and the peer John
is in state t1. Then, the peer Agent can receive the query message by taking
the (q0, ?query, q1) transition which would lead to the following configuration:
(ε, q1, ε, t1, ε, r0), i.e., the message query is removed from the input queue of
the peer Agent and the peer Agent is now in state q1.

We can formalize this kind of evolution of the system from one config-
uration to another as a derivation relation using the transitions of the peer
implementations. A derivation step is an atomic and minimal step in a global
behavior generated by a web service composition. Given two configurations
c and c′, we say that c derives c′, written as c → c′, if it is possible to go
from configuration c to configuration c′ by one of the following three types of
derivation steps:

1. send action, where one peer sends out a message m to another peer (de-
noted as c

!m→ c′). The send action results in the state transition of the
sender, and the transmitted message is placed in the input queue of the
receiver.

2. receive action, where one peer consumes the message m that is at the head
of its input message queue (denoted as c

?m→ c′). The receive action results
in the state transition of the receiver and the removal of the consumed
message from the head of the receiver’s input queue.

3. ε action, where one peer takes an ε transition (denoted as c
ε→ c′). This

action results in the state transition of that peer; however, it does not
affect any of the message queues.

For our running example, two example derivations we discussed above can
be written as (ε, q0, ε, t0, ε, r0)

!query→ (query, q0, ε, t1, ε, r0)and(query, q0, ε, t1, ε, r0)
?query→ (ε, q1, ε, t1, ε, r0).

Now we can define a run of a web service composition as follows.

Definition 6 Let W = 〈(P, M),A1, . . . ,An〉 be a web service composition,
a sequence of configurations γ = c0c1 . . . ck is a run of W if it satisfies the
following conditions:

1. The configuration c0 = (ε, s1, . . . , ε, sn) is the initial configuration where
si is the initial state of Ai for each i ∈ [1..n], and ε is the empty word.

2. For each j ∈ [0..k − 1], cj → cj+1.
3. The configuration ck = (ε, t1, . . . , ε, tn) is a final configuration where ti is

a final state of Ai for each i ∈ [1..n].

We define the send sequence generated by γ, denoted by ss(γ), as the
sequence of messages containing one message for each send action (i.e., c

!m→ c′)
in γ, where the messages in ss(γ) are recorded in the order they are sent.
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For example, a run of our running example would be 9

(ε, q0, ε, t0, ε, r0)
!query→ (query, q0, ε, t1, ε, r0)

?query→ (ε, q1, ε, t1, ε, r0)
!suggest→

(ε, q2, suggest, t1, ε, r0)
?suggest→ (ε, q2, ε, t2, ε, r0)

!reserve→ (ε, q2, ε, t4, reserve, r0)
?reserve→

(ε, q2, ε, t4, ε, r1)
!confirm→ (ε, q2, confirm, t4, ε, r2)

?confirm→ (ε, q2, ε, t5, ε, r2).

The send sequence generated by this run is query suggest reserve confirm.
Finally, we define the conversations as follows.

Definition 7 A word w over M (w ∈ M∗) is a conversation of web service
composition W if there exists a run γ such that w = ss(γ), i.e., a conversation
is the send sequence generated by a run. The conversation set of a web service
composition W, written as C(W), is the set of all conversations for W.

For example, the conversation set of our running example, the web ser-
vice composition at the bottom of Fig. 3.3, can be captured by the regular
expression:

query suggest (query suggest)∗ reserve confirm

.
Linear Temporal Logic can be used to characterize the properties of con-

versation sets in order to specify the desired system properties. The semantics
of LTL formulas can be adapted to conversations by defining the set of atomic
propositions as the power set of messages. For example, the composition in
Fig. 3.3 satisfies the LTL property: G(query ⇒ F(confirm)), where G and F
are temporal operators which mean “globally” and “eventually,” respectively.

Standard LTL semantics is defined on infinite sequences [11], whereas in
our definitions above we used finite conversations. It is possible to extend
the definitions above to infinite conversations and then use the standard LTL
semantics as in [14, 16]. We can also adapt the standard LTL semantics to
finite conversations by extending each conversation to an infinite string by
adding an infinite suffix which is the repetition of a special termination symbol.

Unfortunately, due to the asynchronous communication of web services,
LTL verification of conversations of web service compositions is
undecidable [16].

Theorem 1 Given a web service composition W and an LTL property φ,
determining if all the conversations of W satisfy φ is undecidable.

The proof is based on an earlier result on Communicating Finite State Ma-
chines (CFSMs) [7]. We can show that a web service composition is essentially
a system of CFSMs. It is known that CFSMs can simulate Turing Machines
[7]. Similarly, one can show that, given a Turing Machine TM it is possible
to construct a web service composition W that simulates TM and exchanges
a special message (say mt) once TM terminates. Thus, TM terminates if and
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only if the conversations of W satisfy the LTL formula F(mt), which means
that “eventually message mt will be sent.” Hence, undecidability of the halt-
ing problem implies that verification of LTL properties of conversations of a
web service composition is an undecidable problem.

3.3 Synchronizability

Asynchronous communication among web services leads to the undecidabil-
ity of the LTL verification problem. If synchronous communication is used
instead of asynchronous communication, the set of configurations of a web
service composition would be a finite set, and it is well known that LTL
model checking is decidable for finite state systems. In this section, we discuss
the synchronizability analysis [15, 21] which identifies bottom-up web service
specifications which generate the same conversation set with synchronous and
asynchronous communication semantics. We call such web service composi-
tions synchronizable. We can verify synchronizable web service compositions
using the synchronous communication semantics, and the verification results
we obtain are guaranteed to hold for the asynchronous communication seman-
tics.

3.3.1 Synchronous Communication

To define synchronizability, we first have to define synchronous communica-
tion. Intuitively, synchronous communication requires that the sender and the
receiver of a message should take the send and the receive actions simultane-
ously to complete the message transmission. In other words, the send and the
receive actions of a message transmission form an atomic and non-interruptible
step. In the following, we define the synchronous global configuration and syn-
chronous communication semantics.

Given a web service composition W = 〈(P, M),A1, ...,An〉 where each
automaton Ai describes the behavior of a peer, the configuration of a web
service composition with respect to the synchronous semantics, called the syn-
configuration, is a tuple (t1, ..., tn), where for each j ∈ [1..n], tj ∈ Tj is the local
state of peer Aj . Notice that in a syn-configuration only the local automata
state of each peer is recorded—peers do not need message buffers to store the
incoming messages due to the synchronous communication semantics.

For two syn-configurations c and c′, we say that c synchronously derives c′,
written as c →syn c′, if c′ is the result of simultaneous execution of the send
and the receive actions for the same message by two peers, or the execution
of an ε action by a single peer.

The definition of the derivation relation between two syn-configurations is
different than the asynchronous case. In the synchronous case a send action
can only be executed concurrently with a matching receive action, i.e., sending
and receiving of a message occur synchronously. We call this semantics the
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synchronous semantics of a web service composition and the semantics defined
in Sect. 3.2 is called the asynchronous semantics.

The definitions of a run, a send sequence, and a conversation for syn-
chronous semantics is similar to those of the asynchronous semantics given in
Sect. 3.2 (we will use “syn” as a prefix to distinguish between the synchronous
and asynchronous versions of these definitions when it is not clear from the
context). Given a web service composition W , let Csyn(W) denote the conver-
sation set under the synchronous semantics. Then synchronizability is defined
as follows.

Definition 8 A web service composition W is synchronizable if its conversa-
tion set remains the same when the synchronous semantics is used instead of
the asynchronous semantics, i.e., C(W) = Csyn(W).

Clearly, if a web service composition is synchronizable, then we can ver-
ify its interaction behavior using synchronous semantics (without any input
queues) and the results of the verification will hold for the behaviors of the
web service composition in the presence of asynchronous communication with
unbounded queues.

Given a web service composition W , its conversation set with respect to
synchronous semantics is always a subset of its conversation set with respect
to asynchronous semantics, i.e., Csyn(W) ⊆ C(W) [21]. In some cases the
containment relationship can be strict, i.e., there are web service compositions
that are not synchronizable. The following is an example.

Example 4 Consider a web service composition W in Fig. 3.4. Two peers A and
B can exchange two messages a (from A to B) and b (from B to A). The peer
implementation of A sends out a and then waits for and consumes message
b from its input queue. Peer b sends out b first then receives a. Obviously,
if asynchronous semantics is used then there exists a run which generates
the conversation ab. However, note that, when synchronous semantics is used
there is no run which generates the same conversation, because at the initial
state both peers are trying to send out a message and neither of them can
get the co-operation of the other peer to complete the send operation. Based
on the definitions of the conversation sets, we have C(W) = {ab, ba} and
Csyn(W) = ∅. Hence, W is not synchronizable.

!a ?b

A

!b ?a

B

Fig. 3.4. An example specification that is not synchronizable
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3.3.2 Synchronizability Analysis

We now present two conditions for identifying synchronizable web service
compositions. Together these conditions guarantee synchronizability, i.e., they
form a sufficient condition for synchronizability.

Synchronous compatible condition: If we construct the synchronous com-
position of a set of peers, the synchronous compatible condition requires that
for each syn-configuration c that is reachable from the initial configuration,
if there is a peer which has a send transition for a message m from its local
state in c, then the receiver of m should have a receive transition for m either
from its local state in c or from a configuration reachable from c via ε-actions.

Note that the composition of A and B in Fig. 3.4 does not satisfy the syn-
chronous compatible condition. The initial syn-configuration c0 of the compo-
sition can be represented as a tuple (sA

1 , sB
1 ), where sA

1 and sB
1 are the local

initial states of A and B respectively. Obviously, at c0 peer A can send out a;
however, it is not able to because B is not in a state where it can receive the
message.

An algorithm for checking the synchronous compatible condition is given in
[21]. The basic idea in the algorithm is to construct a finite state machine that
is the product (i.e., the synchronous composition) of all peers. Each state (i.e.,
syn-configuration) of the product machine is a vector of local states of all peers.
During the construction, if we find a peer ready to send a message but the
corresponding receiver is not ready to receive it (either immediately or after
executing several ε-actions), the composition is identified as not synchronous
compatible. If all states of the product machine are examined without finding a
violation of the synchronous compatible condition, then the algorithm returns
true. The worst case complexity of the algorithm is quadratic on the size of
the product and the size of the product is exponential in the number of peers.

Autonomous condition: A web service composition is autonomous if each
peer, at any moment, can do only one of the following: (1) terminate, (2) send
a message, or (3) receive a message.

To check the autonomous condition, we determinize each peer implementa-
tion and check that outgoing transitions for each non-final state are either all
send transitions or all receive transitions [21]. We also check that final states
have no outgoing transitions. The complexity of the algorithm can be expo-
nential in the size of the peers in the worst case due to the determinization
step.

In Fig. 3.1b, neither of the peer implementations of the map service
providers (M1 and M2) are autonomous because there is a transition orig-
inating from the initial state which is also a final state. However, the imple-
mentation of traveler (T ) is autonomous.

In Fig. 3.2a the implementation of GPS is not autonomous, because at the
initial state the peer can send message req and receive message map.
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We now present the key result concerning the synchronizability analysis.
The proof for the following results can be found in [21].

Theorem 2 Let W = 〈(P, M),A1, . . . ,An〉 be a web service composition. If
W is synchronous compatible and autonomous, then for any conversation gen-
erated by W there exists a run which generates the same conversation in which
every send action is immediately followed by the corresponding receive action.

When the synchronous compatibility and autonomy conditions are satis-
fied by a web service composition, then for each conversation generated by
that composition, there is always a run which generates the same conversation
where each send action is immediately followed by the corresponding receive
action. By collapsing the pairs of send/receive actions for the same message,
we get a synchronous run which generates the same conversation. Then based
on Theorem 2 we get the following result.

Theorem 3 Let W = 〈(P, M),A1, . . . ,An〉 be a web service composition. If
W is synchronous compatible and autonomous, then W is synchronizable.

Theorem 3 implies that web service compositions that satisfy the two syn-
chronizability conditions can be analyzed using the synchronous communica-
tion semantics and the verification results hold for asynchronous semantics.

Notice that synchronizability does not imply deadlock freedom. Think
about the following composition of two peers A and B, which exchange mes-
sages m1 (from A to B) and m2 (from B to A). If A accepts one word ?m2,
and B accepts one word ?m1, it is not hard to verify that the composition
of A and B is synchronizable; however, they are involved in a deadlock right
at the initial state since both peers are waiting for each other. Hence, be-
fore the LTL verification of a web service composition, designers may have to
check the composition for deadlocks. However, for synchronizable web service
compositions the deadlock check can be done using the synchronous semantics
(instead of the asynchronous semantics), since it is possible to show that [13] a
synchronizable web service composition has a run (with asynchronous seman-
tics) that leads to a deadlock if and only if it has a syn-run (with synchronous
semantics) that leads to a deadlock.

3.4 Realizability of Conversation Protocols

In this section, we discuss the realizability problem for top-down web service
specifications, i.e., conversation protocols [8, 16]. We also discuss the relation-
ship between synchronizability and realizability analyses.

Intuitively, realizability means that given a conversation protocol it can be
realized by some web service composition, i.e., the conversation set generated
by the web service composition is exactly the same as the language accepted
by the conversation protocol.
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Definition 9 Let S = (P, M) be a composition schema, and let the conversa-
tion protocol R and the web service composition W both share the same schema
S. We say that W realizes R if C(W) = L(R). A conversation protocol R is
realizable if there exists a web service composition that realizes R.

Let us first consider the following question: Are all conversation protocols
realizable? The answer is negative as we show below.

Example 5 Figure 3.5 shows a conversation protocol over four peers A, B, C,
and D. The message alphabet consists of two messages: a (from A to B) and c
(from C to D). The protocol specifies a conversation set which consists of one
conversation only ({ac}). It is not hard to see that any peer implementation
which can generate the conversation ac can generate ca too, because there is
no way for peers A and C to coordinate their actions. Hence, the conversation
protocol shown in Fig. 3.5 is not realizable.

Notice that the problem of realizability is also an issue for synchronous
communication semantics. For example, the protocol in Fig. 3.5 is not realiz-
able using synchronous semantics either. However, the asynchronous semantics
does introduce new complexities into this problem as discussed in [16, 21].

Below we will argue that realizability of conversation protocols can be
solved by extending the synchronizability analysis. First we need to intro-
duce notions of projection and join for peer implementations and conversation
protocols.

For a composition schema (P, M), the projection of a word w to the al-
phabet Mi of the peer prototype pi, denoted by πi(w), is a subsequence of w
obtained by removing all the messages which are not in Mi. When the pro-
jection operation is applied to a set of words the result is the set of words
generated by application of the projection operator to each word in the set.

For composition schema (P, M), let n = |P | and let L1 ⊆ M∗
1 , . . . , Ln ⊆

M∗
n, the join operator is defined as follows:

join(L1, . . . , Ln) = {w | w ∈ M∗, ∀i ∈ [1..n] : πi(w) ∈ Li}.

Let L = {ac} be the conversation set specified by the conversation protocol
in Fig. 3.5. πA(L) = {a}, πB(L) = {a}, πC(L) = {c}, and πD(L) = {c}. The

Conversation Protocol

Peer A

Peer D

Peer B

Peer C

a

c

Composition Schema

A � B : a

C � D : c

Fig. 3.5. A non-realizable protocol in both synchronous and asynchronous semantics
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join of all these peer projections will produce a larger conversation set:

join(πA(L), πB(L), πC(L), πD(L)) = {ac, ca}

We now introduce a third condition used in the realizability analysis.

Lossless join condition: A conversation protocol R is lossless join if L(R) =
join(π1(L(R)), . . . , πn(L(R))), where n is the number of peers involved in the
protocol.

The lossless join condition requires that a conversation protocol should
include all words in the join of its projections to all peers. An algorithm for
checking the lossless join property is given in [21]. Intuitively, the lossless join
property requires that the protocol should be realizable under synchronous
communication semantics. The algorithm simply projects the conversation
protocol to each peer prototype, and then constructs the product of all pro-
jections. If the resulting product is equivalent to the protocol, then the algo-
rithm reports that the lossless join property is satisfied. The algorithm can
be exponential in the size of the conversation protocol in the worst case due
to the equivalence check on two non-deterministic finite state machines.

The lossless join property is a necessary condition for the realizability of
conversation protocols. If synchronous semantics is used, it is the necessary
and sufficient condition. The following result connects the synchronizability
analysis and the realizability analysis.

Theorem 4 Given a conversation protocol R = 〈(P, M),A〉 where n = |P |,
let W = 〈(P, M),A1, . . . ,An〉 be a web service composition s.t. for each i ∈
[1..n], Ai is the minimal deterministic FSA such that L(Ai) = πi(L(R)). If
W is synchronizable, and R is lossless join, then R is realized by W.

The proof of this property follows directly from Theorem 3 and the fact
that the synchronous composition of a set of peers accepts the join of their
languages. Theorem 4 demonstrates an interesting relationship between the
synchronizability analysis introduced in [21] and the realizability analysis in-
troduced in [16].

3.5 Message Contents

In the previous sections, we assumed that the contents of the messages were
abstracted away, i.e., in our formal model messages did not have any content.
This type of abstraction would be fine as long as the contents of the messages
do not influence the control flow of the peers. In practice, this assumption
may be too restrictive, i.e., contents of a message received by a peer may
influence the control flow of that peer. One natural question is, is it possible
to extend the analyses introduced in the earlier sections to an extended web
service model where messages have contents?
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To facilitate the technical discussions, let us extend the web service speci-
fication framework as follows. Assume that each peer in a web service compo-
sition is a guarded automaton instead of a standard finite state automaton. In
the guarded automata model, messages have contents. A message class defines
the structure of a message and a message is an instance of a message class.
Each transition is labeled with a message class and a guard. A guard is a re-
lational expression which evaluates to a boolean value. The building elements
of a guard are the attributes of messages. Only when the guard evaluates to
true, can the transition be fired (if the automaton is in its source state).

Example 6 Figure 3.6 presents a modified version of the example given in
Fig. 3.3 by extending the messages with contents and the transitions with
guards. In Fig. 3.6 message classes req and map have an integer attribute
id. The guard of each transition is a boolean expression enclosed in a
pair of square brackets. For example, the send transition !req has a guard
“id′ = id + 1.” This means that whenever a new req message is sent, its id
attribute is incremented by 1. Note that here the primed-variable id′ repre-
sents the “next value” of the attribute id. The receive transition ?req in the
map provider service requires that the ids of the incoming req messages must
monotonically increase. Obviously, the implementation of GPS satisfies this
requirement. Similarly, the guard of the send transition !map guarantees that
the id attribute of a map message must match that of the most recent req
message.

We call a web service composition a “guarded composition” if its peers are
specified using guarded automata. Similarly, we define the “guarded peer,”
“guarded protocol”, etc. Given a guarded automaton, if we remove the con-
tents of the messages and the guards of the transitions then we get a standard
finite state automaton. We call this resulting automaton the skeleton automa-
ton. Similarly, we use the name “skeleton peer,” “skeleton composition,” and
“skeleton protocol” to refer the skeleton of a guarded peer, guarded composi-
tion, and guarded protocol, respectively.

One natural conjecture is the following: Does the synchronizability of
a skeleton composition imply the synchronizability of the corresponding

!req
[id’=id+1]

GPS

?map
[true]

!end 
[true]

Map Provider

?req
[id’>id]

!map 
[id’=req.id]

?end [true]

Fig. 3.6. An example with message contents
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guarded composition? The answer is negative as demonstrated by the fol-
lowing example.

Example 7 Figure 3.7 presents an example guarded composition that shows
that the above conjecture is false. The composition consists of two peers A
and B. Peer A can send a message a to B, and B can send a message b to
A. Both messages a and b have an integer attribute id which varies between
1 and 2. In the following, we use the notation a(1) to represent a message a
whose attribute id is 1. The composition produces two conversations a(1)b(2)
and b(2)a(1). In addition, to produce these two conversations, asynchronous
semantics has to be used. For example, to produce a(1)b(2), the message a(1)
has to stay in the input queue of peer B when b is sent out. Such a conversation
cannot be generated by synchronous composition of these two peers.

On the other hand, if we drop the message contents and guards of the
guarded automata in Fig. 3.7, we get two standard finite state automata,
which accept conversations {!a?b, ?b!a} and {!b?a, ?a!b}, respectively. The
composition of these two finite state automata peers are synchronizable.

Example 7 demonstrates that the synchronizability of the skeleton com-
position does not imply the synchronizability of the guarded composition.
Interestingly, if the skeleton composition is not synchronizable, it does not
imply that the guarded composition is not synchronizable either. Similar ob-
servations hold for conversation protocols. It is not possible to tell if a guarded
conversation protocol is realizable or not based on the realizability of its skele-
ton protocol. Examples and arguments for the above conclusions can be found
in [13, 18, 20].

Skeleton of a guarded composition, however, can still be used for syn-
chronizability analysis. The following theorem forms the basis of a skeleton
analysis for synchronizability of guarded compositions.

Theorem 5 A guarded web service composition is synchronizable if its skele-
ton satisfies the autonomous and synchronous compatible conditions.

!a 
[id’=1]

A

?b 
[true] 

?b 
[false] 

!a 
[id’=2]

?a 
[false]

B

!b 
[id’=1] 

!b 
[id’=2] 

?a 
[true]

Fig. 3.7. A counter-example for the conjecture on skeleton synchronizability
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Theorem 5 implies that if the skeletons of a guarded composition satisfies
the two sufficient synchronizability conditions, then the guarded composition
is guaranteed to be synchronizable. The proof of Theorem 5 is based on the
following observation. For any run of a guarded composition, we can find a
corresponding run of its skeleton composition, which traverses through the
same path (states and transitions) and has the same input queue contents
(disregarding message contents) at each peer. Since the skeleton composition
satisfies autonomous and synchronous compatible conditions, there exists an
equivalent execution of the skeleton composition in which each message is
consumed immediately after it is sent. From this execution of the skeleton
composition we can construct an execution for the guarded composition in
which each message is consumed immediately after it is sent. This leads to
the synchronizability of the guarded composition as shown in [13].

A similar skeleton analysis can be developed for guarded conversation pro-
tocols. A guarded conversation protocol is realizable if its skeleton satisfies the
autonomous, synchronous compatible, lossless join conditions, and a fourth
condition called “deterministic guards condition.” Intuitively, the determin-
istic guards condition requires that for each peer, according to the guarded
conversation protocol, when it is about to send out a message, the guard that
is used to compute the contents of the message is uniquely decided by the
sequence of message classes (note, not messages) exchanged by the peer in
the past. The details of this analysis can be found in [20].

Skeleton analysis sometimes can be inaccurate. Below we will discuss this
inaccuracy and techniques that can be used to refine the skeleton analysis.

Example 8 Consider the modified composition of GPS and Map Provider in
Fig. 3.8. The composition is actually synchronizable. In GPS implementation,
the guard id = map.id in transition !req enforces that the sending of next req
message must wait for the last req message being matched by a corresponding
map message. Thus, the interaction of two services runs in lock-step fashion,
where the id attribute of req messages alternates between 0 and 1. However, the
skeleton analysis cannot reach the conclusion that the guarded composition
is synchronous, because the skeleton of GPS does not satisfy the autonomous
condition.

!req
[id = map.id ∧

id’=1-id]

GPS

?map
[true]

!end 
[map.id = req.id]

Map Provider

?req
[id’<> id]

!map 
[id’=req.id]

?end [true]

Fig. 3.8. An example on inaccuracy of skeleton analysis
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!req
[id = 1 ∧
id’=0]

GPS Map Provider

?req
[id’<> id]

!map 
[id’=req.id]

?end [true]

!req
[id = 0 ∧
id’=1]

?map
[true]

?map
[true]

!end 
[map.id = req.id]

!end 
[map.id = req.id]

Fig. 3.9. A refined version of the guarded composition in Fig. 3.8

The inaccuracy of skeleton analysis can be fixed by a refined symbolic
analysis of guarded compositions. The basic idea is to symbolically explore the
configuration space of a guarded automaton, and split its states and remove
redundant transitions if necessary. The result is another guarded automaton
which generates the same set of conversations, but has more states.

Example 9 For example, after applying the iterative symbolic analysis on the
GPS service in Fig. 3.8, we obtain the refined guarded automaton in Fig. 3.9.
The refined automaton splits the initial state to four different states. If we
examine the four non-final states (starting from the initial state and walk-
ing anti-clockwise), these states represent four different system configurations
where the id attributes of the latest copies of req and map messages are (0, 0),
(1, 0), (1, 1), and (0, 1), respectively. The refined automaton is equivalent to
the original GPS implementation in Fig. 3.8. If we apply the skeleton anal-
ysis on Fig. 3.9, we can now reach the conclusion that the composition is
synchronizable.

The algorithm for the iterative symbolic analysis can be found in [20].

3.6 Web Service Analysis Tool

The synchronizability and realizability analyses are implemented and inte-
grated to the Web Service Analysis Tool (WSAT) [19, 39]. WSAT accepts
web service specifications in popular web service description languages (such
as WSDL and BPEL4WS), system properties specified in LTL, and verifies if
the conversations generated conform to the LTL property.

Figure 3.10 shows the architecture of WSAT. WSAT uses Guarded Au-
tomata (GA) as an intermediate representation. A GA is a finite state machine
which sends and receives XML messages and has a finite number of XML
variables. The types of XML messages and variables are defined using XML
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Fig. 3.10. WSAT architecture

schema. In the GA representation used by WSAT, all the variable and message
types are bounded. Each send transition can have a guard, which is essentially
an assignment that determines the contents of the message being sent. Each
receive transition can also have a guard—if the message being received does
not satisfy the guard, the receive action is blocked. The GA representation is
capable of capturing both the control flow and data manipulation semantics
of web services. WSAT includes a translator from BPEL to GA that supports
bottom-up specification of web service compositions. It also includes a trans-
lator from top-down conversation protocol specifications to GA. Support for
other languages can be added to WSAT by integrating new translators to its
front end without changing the analysis and the verification modules.

Synchronizability and realizability analyses are implemented in WSAT.
When the analysis succeeds, LTL verification can be performed using the syn-
chronous communication semantics instead of asynchronous communication
semantics. When the analysis is not successful on the web service input, asyn-
chronous semantics is used and a partial verification is conducted for bounded
communication channels. WSAT also implements extensions to the synchro-
nizability and realizability analyses to handle the guards of the transitions in
the GA model [18]. Algorithms for translating XPath expressions to Promela
code are presented in [17] where model checker SPIN [24] is used at the back-
end of WSAT to check LTL properties.

We applied WSAT to a range of examples, including six conversation pro-
tocols converted from the IBM Conversation Support Project [25], five BPEL
services from BPEL standard and Collaxa.com, and the SAS example from
[17]. We applied the synchronizability or the realizability analysis to each ex-
ample, depending on whether the specification is bottom-up or top-down. As
reported in [21], only 2 of the 12 examples violate the conditions discussed in
this chapter (both violate the autonomous condition). This demonstrates that
the sufficient conditions used in the synchronizability and realizability analy-
ses are not too restrictive and that they are able to show the synchronizability
and realizability of practical web service applications.
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3.7 Related Work and Discussion

This section presents a survey of related work on modeling and analyzing web
services. Particularly, we are interested in the following four topics: (1) mod-
eling approaches for distributed systems, (2) description of global behaviors
in distributed systems, (3) realizability analysis, and (4) automated analysis
and verification of web services. At the end of this section we also present a
discussion about our approach, identifying its limitations and possible exten-
sions.

3.7.1 Modeling Approaches and Communication Semantics

Since the web service technology can be regarded as essentially a branch of
distributed systems, we include a discussion of earlier models for describing
interaction and composition of distributed systems. Traditionally, many mod-
eling approaches use synchronous communication semantics, where sender and
receiver of a message transmission have to complete the send and the receive
actions simultaneously. The typical examples include (but not limited to) CSP
[23], I/O automata [29], and interface automata [2].

In the models which use asynchronous communication semantics, FIFO
queue is the most commonly used message buffer. Communicating Finite
State Machines (CFSM) were proposed in early 1980s as a simple model with
asynchronous communication semantics [7]. Brand et al. showed that CFSM
can simulate Turing Machines [7]. Other related modeling approaches for dis-
tributed systems include Codesign Finite State Machine model [10], Kahn
Process Networks [27], π-Calculus [30], and Microsoft Behave! Project [37].
Most of them, e.g., π-Calculus and Behave! Project, use or support simulation
of asynchronous communication semantics.

3.7.2 Modeling Global Behaviors

In the conversation model, a global behavior is modeled as a sequence of send
events. In many other modeling approaches, e.g., Message Sequence Charts
(MSCs) [31], both send and receive events are captured. Such different mod-
eling perspectives can lead to differences in the expressive power and in the
difficulty of analysis and verification problems. We now briefly compare the
conversation model and the MSC model [4]. This section is a summary of the
more detailed discussion given in [21].

MSC model [31] is a widely used specification approach for distributed sys-
tems. A comparison with the basic MSC model would not be fair since using
the MSC model one can specify only a fixed number of message traces. Instead,
we compare our model with the more expressive MSC graphs [4], which are
finite state automata that are constructed by composing basic MSCs. MSC
graphs use asynchronous communication semantics. There are other MSC ex-
tensions such as the high-level MSC (hMSC) [38]. However, hMSC is mainly
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used for studying infinite traces and the composition model used in [38] is syn-
chronous. Therefore, the MSC graph is a more suitable model for comparison.

An MSC consists of a finite set of peers, where each peer has a single
sequence of send/receive events. We call that sequence the event order of that
peer. There is a bijective mapping that matches each pair of send and receive
events. Given an MSC M , its language L(M) is the set of linearizations of
all events that follow the event order of each peer. Essentially, L(M) captures
the “join” of local views from each peer. A formal definition of MSC can be
found in [4].

An MSC graph [4] is a finite state automaton where each node of the
graph (i.e., each state of the automaton) is associated with an MSC. Given
an MSC graph G, a word w is accepted by G, if and only if there exists an
accepting path in G where w is a linearization of the MSC that is the result
of concatenating the MSCs along that path.

The main difference between the MSC graph framework and the
conversation-oriented framework is the fact that the MSC model specifies
the ordering of the receive events whereas the conversation model does not.
In the conversation model the timing of a receive event is considered to be a
local decision of the receiving peer and is not taken into account during the
analysis of interactions among multiple peers.

Conversation protocols and MSC graphs are incomparable in terms of their
expressive power [21]. For example, it is possible to construct two MSC graphs
with different languages but identical conversation sets. This implies that there
are interactions that can be differentiated using MSC graphs but not using
conversation protocols. On the other hand, there are interactions which can
be specified using a conversation protocol but cannot be specified with any
MSC graph. Hence, expressiveness of MSC graphs and conversation protocols
are incomparable. It is also possible to show that the expressive power of
the MSC graphs and the bottom-up specified web service compositions are
incomparable [21].

One natural question is, which approach is better? Both approaches have
pros and cons. In the conversation model the ordering of receive events is like
a “don’t care” condition which can simplify the specification of interactions.
On the other hand, realizability problem in the conversation model can be
more severe since we focus on global ordering of send events. For example,
the non-realizable conversation protocol {aA→B bC→A} cannot be specified
using MSCs.

The different modeling perspectives on global behaviors leads to different
realizability analysis techniques. Alur et al. investigated the weak and safe re-
alizability problems for sets of MSCs and the MSC graphs [3, 4]. They showed
that determining realizability of a set of MSCs is decidable; however, it is not
decidable for MSC graphs. They gave one sufficient and necessary condition for
realizability of MSC graphs. The sufficient and necessary condition looks very
similar to the lossless join condition in the realizability analysis on the conver-
sation model. However, there are key differences: (1) In the MSC model, the
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condition is both sufficient and necessary whereas in the conversation model
lossless join is a sufficient condition only and (2) it is undecidable to check
the condition for MSC graphs. Alur et al. introduced another condition called
boundedness condition, which ensures that during the composition of peers the
queue length will not exceed a certain preset bound (on the size of the MSC
graph). This condition excludes some of the realizable designs. Note that the
realizability conditions in the conversation model do not require queue length
to be bounded. However, notice that the realizability analysis on conversa-
tion model does not subsume the realizability analysis on MSC graphs. There
are examples which can pass the realizability analysis on MSC graphs but are
excluded by the realizability analysis we presented for the conversation model.

3.7.3 Realizability and Synchronizability

Interest in the realizability problem dates back to 1980s (see [1, 35, 36]).
However, the realizability problem means different things in different contexts.
For example, in [1, 35, 36], realizability problem is defined as whether a peer
has a strategy to cope with the environment no matter how the environment
decides to move. The concept of realizability studied in this chapter is rather
different. We are investigating realizability in a closed system that consists
of multiple peers interacting with each other. Our definition of realizability
requires that the implementation generates exactly the same set of global
behaviors as specified by the protocol. A closer notion to the realizability
problem in this chapter is the “weak realizability” of MSC graphs studied in
[4]. Different communication assumptions can lead to different realizability
analysis. For example, realizability problem for high-level MSC is studied in
[38].

To the best of our knowledge, synchronizability analysis was first proposed
in [15]. The relationship between synchronizability (for bottom-up specifica-
tions) and realizability (for top-down specifications) was discussed in [21].

3.7.4 Verification of Web Services

Application of automated verification techniques to web services has been an
active area. Narayanan et al. [34] modeled web services as Petri Nets and in-
vestigated the simulation, verification, and composition of web services using
the Petri-net model. Foster et al. [12] used LTSA (Labeled Transition System
Analyzer) to verify BPEL web services using synchronous communication se-
mantics and MSC model. Nakajima [33] proposed an approach in which a given
web service flow specified in WSFL was verified using the model checker SPIN.
The approach presented by Kazhamiakin et al. [28] determined the simplest
communication mechanism necessary to verify a web service composition, and
then verifies the composition using that communication mechanism. Hence, if
a web service is not synchronizable it is analyzed using asynchronous commu-
nication semantics.
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3.7.5 Discussion

We conclude this section with a discussion of possible limitations of the pre-
sented framework and possible extensions.

We believe that an important limitation of the presented analyses tech-
niques is the fact that they do not handle dynamic service creation or es-
tablishment of dynamic connections among different services. In the model
discussed here we assume that interacting web services do not dynamically
create communication channels or instantiate new business processes. Since
dynamic service discovery is an important component of service oriented com-
puting, in order to make the approach presented in this chapter applicable to
a wider class of systems, it is necessary to handle dynamic instantiation of
peers and communication channels. Extending synchronizability and realiz-
ability analyses to such specifications is a promising research direction.

So far we have only applied the presented analysis techniques to protocols
with a modest number of states. This is due to the fact that most web service
composition examples we have found do not have a large number of control
states. In the future, it would be interesting to investigate the scalability
of the presented techniques for specifications with large number of states.
Generally, we believe that the presented techniques will be scalable as long as
the specifications are deterministic, and, therefore, the cost of determinization
can be avoided.

Currently, we do not have an implementation of symbolic synchronizabil-
ity and realizability analyses for handling specifications in which message con-
tents influence the control flow. At this point, the WSAT tool only performs
skeleton analyses for the guarded automata specifications. This makes the
synchronizability and realizability analyses conditions quite restrictive, and
using symbolic techniques can relax these conditions. However, it is necessary
to find a symbolic representation for XML data in order to implement sym-
bolic analyses, which could be a difficult task. If successful, such a symbolic
representation can also be used for symbolic verification of web services as
opposed to the explicit state model checking approach we are currently using.

Finally, the synchronizability and realizability conditions presented in this
chapter are sufficient conditions and it could be possible to relax them. Finding
necessary and sufficient conditions for synchronizability and realizability of
conversations is an open problem.

3.8 Conclusions

Conversations are a useful model for specification of interactions among web
services. By analyzing conversations of web services one can investigate prop-
erties of the interactions among them. However, asynchronous communication
semantics makes verification and analysis of conversations difficult. We dis-
cussed two techniques that can be used to overcome the difficulties that arise
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in verification due to asynchronous communication. Synchronizability anal-
ysis identifies web service compositions for which the conversation behavior
does not change when different communication mechanisms are used. Using
the synchronizability analysis one can verify properties of conversations using
the simpler synchronous communication semantics without giving up the ben-
efits of asynchronous communication. Realizability analysis is used to make
sure that for top-down web service specifications asynchronous communica-
tion does not create unintended behaviors. Realizable conversation protocols
enable analysis and verification of conversation properties at a higher level of
abstraction without considering the asynchronous communication semantics.
As we discussed, it is also possible to extend synchronizability and realizabil-
ity analyses to specifications in which message contents influence the control
flow.
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