
14

Challenges of Testing Web Services
and Security in SOA Implementations

Abbie Barbir1, Chris Hobbs1, Elisa Bertino2, Frederick Hirsch3

and Lorenzo Martino4

1 Nortel, 3500 Carling Avenue, Ottawa, Canada {abbieb,cwlh}@nortel.com
2 Department of Computer Science and CERIAS, Purdue University, West
Lafayette, Indiana, USA bertino@cerias.purdue.edu
3 Nokia, 5 Wayside Rd, Burlington, Mass., USA frederick.hirsch@nokia.com
4 Department of Computer Technology and Cyber Center, Purdue University,
West Lafayette, Indiana, USA Imartino@purdue.edu

Abstract. The World Wide Web is evolving into a medium providing a wide array
of e-commerce, business-to-business, business-to-consumer, and other information-
based services. In Service Oriented Architecture (SOA) technology, Web Services are
emerging as the enabling technology that bridges decoupled systems across various
platforms, programming languages, and applications.

The benefits of Web Services and SOA come at the expense of introducing new
level of complexity to the environments where these services are deployed. This
complexity is compounded by the freedom to compose Web Services to address
requirements such as quality of service (QoS), availability, security, reliability, and
cost. The complexity of composing services compounds the task of securing, testing,
and managing the quality of the deployed services.

This chapter identifies the main security requirements for Web Services and de-
scribes how such security requirements are addressed by standards for Web Services
security recently developed or under development by various standardizations bod-
ies. Standards are reviewed according to a conceptual framework that groups them
by the main functionalities they provide.

Testing composite services in SOA environment is a discipline at an early stage
of study. The chapter provides a brief overview of testing challenges that face early
implementers of composite services in SOA taking into consideration Web Services
security. The importance of Web Services Management systems in Web Services de-
ployment is discussed. A step toward a fault model for Web Services is provided. The
chapter investigates the use of crash-only software development techniques for en-
hancing the availability of Web Services. The chapter discusses security mechanisms
from the point of view of interoperability of deployed services. The work discusses
the concepts and strategies as developed by the WS-I Basic Security profile for
enhancing the interoperability of secure Web Services.

396 A. Barbir et al.

14.1 Introduction

The use of Web Services in IT is becoming more relevant as the key tech-
nology for enabling the foundation of a loosely coupled, language-neutral,
platform-independent way to link applications across multiple organizations.
Despite the heterogeneity of the underlying platforms, Web Services enhance
interoperability and are thus able to support business applications composed
of chains of Web Services. Interoperability among heterogeneous systems is
a key promise of Web Service technology and therefore notions such as Web
Service composition and technologies like workflow systems are being investi-
gated and developed. Interoperability and security play an important role in
positioning Web Services as the industry choice for realizing Service Oriented
Architectures (SOAs) [27].

The use of Web Services in loosely coupled service environments enables
enterprises quickly to adapt to changing business demands. However, the ben-
efits of Web Services and SOA come at the expense of introducing new com-
plexity to the environments where these services are deployed (see, for in-
stance, [31] and [47]). In this new programming paradigm, services are used
as part of a business process. The solution implements a workflow composed
of many services that are combined to achieve the required business objective.
The complexity is compounded with the ability to compose services whereby
services can be interchangeable based on various factors such as QoS, avail-
ability, security, reliability, and cost. This complexity compounds the task of
securing, testing, and managing [35] the quality of the deployed services.

In the SOA environment, testing Web Services requires an end-to-end
approach including service integration points and the connected systems
themselves. The set of connected systems includes services, web applications,
security gateways, legacy systems, and back-end systems. Web Service(s)
consumers and providers should be able to measure the service levels of the
invoked services [35].

Service Level Agreement (SLA) is a term widely used in the industry to
express contracts between service consumers and service providers [35]. A Ser-
vice Level Agreement defines the quality of service, how quality is measured,
and what happens if the service quality is not met. In today’s environment,
SLAs are implicit and in most cases negotiated in advance. However, the
same concept can be extended and used as means to express the performance
of a Web Service throughout the whole integration chain. Consumers of Web
Services can generate tests against the exposed services and compare the re-
sults with the SLAs. Service providers can publish test suits for their services
that can be used by the consumers to test the compliance to the published
SLA. However, service management and diagnosis require the knowledge and
view of the end-to-end service. This constraint entails the sharing of man-
agement across the administrative domain in order to provide an end-to-end
view [14, 35].

14 Challenges of Testing Web Services 397

Web Service must protect its own resources against unauthorized access.
This in turn requires suitable means for identification, whereby the recipient
of a message must be able to identify the sender; authentication, whereby
the recipient of a message needs to verify the claimed identity of the sender;
authorization, whereby the recipient of a message applies access control poli-
cies to determine whether the sender has the right to use the required Web
Services and the protected resources.

In a Web Service environment it is, however, not enough to protect the
service providers, it is also important to protect the parties requiring services.
Because a key component of the Web Service architectures is represented
by the discovery of services, it is crucial to ensure that all information used
by parties to this purpose be authentic and correct. Also, we need approaches
by which a service provider can prove its identity to the party requiring the
service in order to avoid attacks, such as phishing attacks. Within this con-
text, the goal of securing Web Services can be decomposed into three broad
subsidiary goals:

1. Providing mechanisms and tools for securing the integrity and confiden-
tiality of messages as well as the guarantee of message delivery.

2. Ensuring that the service acts only on message requests that comply with
the policies associated with the services.

3. Ensuring that all information required by a party in order to discover and
use services is correct and authentic.

The overall goal of Web Services security standards is to make interop-
erable different security infrastructures and to reduce the cost of security
management. To achieve this goal, Web Services security standards have to
provide a common framework, and common protocols, for the exchange of se-
curity information between/among Web Services that, once implemented and
deployed,

• can accommodate such existing heterogeneous mechanisms, i.e. different
encryption algorithms, different access control mechanisms, etc.

• can be extended so as to cope with new requirements and/or available
security technologies.

Ensuring the integrity, confidentiality, and security of Web Services through
the application of a complete security model is essential for the wide adop-
tion of this technology in SOAs. Security should be a testable property of
a published service SLA. Testing Web Services for vulnerabilities is a dif-
ficult task [31] complicated by current trends in service collaboration that
includes federation. The OASIS WS-Security versions (WSS) 1.0 and 1.1
[12, 13, 14, 15, 16, 17, 18] use SOAP extensibility facilities to provide secu-
rity functions for SOAP messages. The WS-Security specifications secure the
SOAP foundation layer by leveraging core technologies such as XML Signature
[20], XML Encryption [21], XML Canonicalization [28], and SSL/TLS [30] as

398 A. Barbir et al.

well as standards for conveying key and other information, such as SAML [16]
and X509 [15] certificates. The WS-Security (WSS) specification provides a
flexible framework for securing SOAP messages. For this reason, it is diffi-
cult for various implementations of WS-Security to interoperate unless simi-
lar choices have been made. Lack of interoperability at the SOAP and SOAP
message security layer adds complexity for security testing of Web Services
implementations.

This work is organized as follows. Section 14.2 discusses Web Services se-
curity challenges. Section 14.3 develops a Web Services security standards
framework. Section 14.4 discusses the complexities of testing Web Services.
This section provides a brief overview of current testing strategies and dis-
cusses the role of Web Services middleware in real-life deployments. Addition-
ally, this section identifies Web Services interaction stake holders, their testing
perspectives, and their testing levels.

Section 14.5 addresses Web Services security interoperability as an en-
hancement for testability. The section discusses the Basic Security Profile
(BSP) usage scenarios, BSP strength of requirements, BSP conformance and
BSP testability. This section provides an example of BSP profiling and takes
a close look at BSP security considerations.

Section 14.6 considers strategies for testing Web Services security with a
focus on developing a Web Services security fault model. The section pro-
vides an overview of testing strategies for Web Services security that includes
general testability guidelines. A case study for securing an application is also
provided. Section 14.7 investigates the use of crash-only software for enhanc-
ing the availability of and reducing testing complexities for composite Web
Services. Section 14.8 provides research proposals and discusses open research
issues. Section 14.9 concludes the discussion of this work and provides guide-
lines for future research.

14.2 Web Services Security Challenges

The discussion in the previous sections highlights the difficulties of testing Web
Services. The complexities increase when security is taken into consideration,
especially when application security applied at the server is not enough. A
multilayer service and resource protection strategy is required, including the
application of security techniques for Web Services description, discovery, and
messaging.

The main features that make Web Services attractive to enterprises, such
as accessibility to data, dynamic application connections, platform indepen-
dence, and open run-time environment, are at odds with traditional security
approaches. Security can be a key inhibitor to the wide adoption of Web
Services [22]; there is need to develop a Web security vulnerabilities frame-
work reflecting the service deployment environment. Understanding these

14 Challenges of Testing Web Services 399

vulnerabilities would help developers choose the right testing tools to detect
faults in the services.

14.2.1 Web Services Threats

This section provides a brief description of the most common threats facing
the security of Web Services. For a more complete analysis of these challenges,
the reader is referred to [10], where Web Services threats and possible counter
measures are discussed in more detail.

1. Message alteration: In this threat, message information is altered by in-
serting, removing, or modifying information created by the originator of
the information and mistaken by the receiver for the originator’s intention.
This type of attack is easily performed due to the use of intermediaries
and transformation mechanisms in Web Services.

2. Confidentiality: This type of threat makes information within the message
visible to unauthorized participants.

3. Falsified messages: This threat occurs when an attacker constructs coun-
terfeit messages and sends them to a receiver who believes them to have
originated from a party other than the sender.

4. Man in the middle: The term “man in the middle” is applied to a wide
variety of attacks that have little in common except for their topology. In
our context, this type of attack occurs when a third party poses as the
other participant to the real sender and receiver in order to fool both par-
ticipants (e.g. the attacker is able to downgrade the level of cryptography
used to secure the message). Designers have to examine their developed
applications on a case-by-case basis for susceptibility to anything a third
party might do.

5. Principal spoofing: A message is sent which appears to be from another
principal (e.g., Alice sends a message which appears as if it is from Bob).

6. Forged claims: A message is sent in which the security claims are forged
in an effort to gain access to otherwise unauthorized information (e.g., a
security token which was not really issued by the specified authority).

7. Replay of message parts: A message is sent which includes portions of
another message in an effort to gain access to unauthorized information
or to cause the receiver to take some action (e.g., a security token from
another message is added). This technique can be applied in a wide variety
of situations. All designs must be carefully inspected from the perspective
of what could an attacker do by replaying messages or parts of messages.

8. Replay: A whole message is resent by an attacker.
9. Denial of service: This is a form of an amplifier attack where the attacker

does a small amount of work forcing the system under attack to do a
large amount of work. This can cause the attacked system to provide a
degraded service or even fail completely.

400 A. Barbir et al.

14.2.2 End-to-End Security Requirements for Web Services

For Web Services Security, the objective is to create an environment where
message-level transactions and business processes can be conducted securely
in an end-to-end fashion. The requirements for providing end-to-end security
for Web Services are as follows:

• Mutual authentication: Mutual authentication of a service provider and a
service invoker to verify their identities enables them to interact with con-
fidence. This also includes data origin authentication whereby the receiver
can be sure that the data came from the sender without modification.

• Authorization to access resources: Authorization mechanisms control in-
voker access to appropriate system resources, controlling access to systems
and their components. Authentication may be necessary to perform au-
thorization.

• Data integrity and confidentiality: Ensure that information has not been
modified during transmission and is only accessible by the intended parties.
Encryption technology and digital signature techniques can be used for this
purpose.

• End-to-end integrity and confidentiality of messages: Ensure the integrity
and confidentiality of messages even in the presence of intermediaries.

• Integrity of transactions and communications: Ensure that the business
process was done properly and the flow of operations was executed in a
correct manner.

• Audit records and mechanisms: Enable dispute resolution and system ver-
ification. Records are necessary to enable a resolution if a party to a trans-
action denies the occurrence of the transaction, or if other disputes arise;
also to trace user access, behavior, and to enable system integrity verifi-
cation.

• Distributed enforcement of security policy: Enable implementers to de-
fine a security policy and enforce it across various platforms with varying
privileges.

14.2.3 Role of Cryptography

Cryptography [10] can play an important role in mitigating some of the threats
to Web Services. For example, symmetric cryptography in the form of encryp-
tion can be used to provide confidentiality for messages. Asymmetric cryptog-
raphy, on the other hand, can be used to enable authentication, confidentiality,
and dispute resolution. This can be achieved through the appropriate use of
public and private keys. Here, it is assumed the original sender and the re-
ceiver (including intermediaries if they are on the trust path) have access to
the appropriate public keys through some mechanism. In this regard, dispute
resolution can be enabled when the sender encrypts a message using its private
key since it is harder for the sender to deny the sending of the message.

14 Challenges of Testing Web Services 401

Confidentiality can be achieved when the original sender encrypts a mes-
sage using the receiver public key, requiring the receiver private key for de-
cryption. In a typical deployment, asymmetric cryptography is used as a
mechanism for exchanging session keys to be subsequently used in symmetric
cryptography. This technique is more efficient since symmetric cryptography
is usually faster to execute than asymmetric cryptography.

Asymmetric cryptography can provide authentication. In this case the
sender digitally signs a message using its private key. The receiver then verifies
the signature and the authenticity of the sender certificate to confirm that the
sender is the party that actually sent the message.

Asymmetric cryptography can be used to provide message integrity whereby
a message is first digitally signed by the original requestor private key and
is then encrypted using the ultimate receiver public key. Upon receiving the
message, the receiver first decrypts the message with its corresponding pri-
vate key and then decrypts the message with the sender public key. Integrity
is verified when the process executes without any errors.

14.2.4 Transport Layer Security

This subsection addresses using Transport layer [10] to secure SOAP messages
that are sent from a sender to a receiver. This approach is limited when there
are intermediaries; since termination of transport layer security at an endpoint
may allow that intermediary to modify or examine messages. For HTTP-based
bindings of SOAP, TLS/SSL provides point-to-point security (Fig. 14.1). For
Web Services, however, there is a need for end-to-end security, which becomes
an important distinction when one or more intermediaries exist between the
original service requester and the service provider. In this case the use of
Transport layer TLS/SSL has significant limitations. Transport layer security
mechanisms may be used to secure messages between two adjacent SOAP
nodes and message layer security mechanisms should be used (possibly in
conjunction with TLS/SSL) in the presence of intermediaries or when data
origin authentication is required.

Receiver
Sender

SOAP
Intermediary

Transport Layer
Security Context

Transport Layer
Security Context

SOAP
Intermediary

SOAP

Message

SOAP

Message

SOAP

Message
Receiver

Sender
SOAP

Intermediary

Transport Layer
Security Context

Transport Layer
Security Context

SOAP
Intermediary

SOAP

Message

SOAP

Message

SOAP

Message

SOAP

Message

SOAP

Message

Fig. 14.1. Transport and message level Security

402 A. Barbir et al.

14.2.5 Message Level Security

The SOAP specifications [23, 24] do not specify how to deal with security-
related issues such as authentication, integrity, and confidentiality. However,
they provide an extensibility model that can be used to build extensions to
the original SOAP standard. The OASIS WS-Security versions (WSS) 1.0 and
1.1[12, 13, 14, 15, 16, 17, 18] use these extensibility facilities to add security
functions to SOAP. WS-Security specifications secure the SOAP foundation
layer by leveraging core technologies such as XML Signature[20], XML En-
cryption [21], XML Canonicalization [28], and SSL/TLS. The WS-Security
specification adds security to SOAP messages by specifying how the header
part of the message can carry security information in conjunction with rules
on how to apply security technologies.

The OASIS WSS 1.0 standard [12] provides the underlying foundation for
SOAP message level security. It defines mechanisms for identifying the origin
of a message and verifying tampering through the use of signatures. It provides
mechanisms for message confidentiality by ensuring that only the intended
recipient is able to see the message through the use of encryption. WSS 1.0
introduces a security header in a SOAP message and three key elements:

1. Tokens: SOAP messages can contain security tokens with authentication
information. The standard defines Username tokens, X.509 Tokens, and
SAML tokens, among others. These tokens can be part of security headers
and can vouch for security claims to a recipient.

2. Signature elements: Security headers can contain Signature elements that
contain an XML Signature used to sign any part of the message. The
recipient can use the signature to verify that the request of the sender has
not been changed and that the message really originated from the sender.

3. Encryption elements: Some parts of the SOAP message can be encrypted
to protect sensitive information from unauthorized entities.

WS-Security defines a security header for SOAP messages as a mechanism
for conveying security information with and about a SOAP message. This
header is, by design, extensible to support many types of security informa-
tion. The security header may contain security tokens, references to security
tokens found elsewhere, timestamps, nonce, signatures, encrypted keys, and
encrypted data. Each security header is targeted to a specific SOAP actor. A
SOAP message may contain multiple security headers; however, each must be
targeted to a different SOAP actor. Each security header may contain mul-
tiple security tokens, security token references, nonce, signatures, encrypted
keys, and encrypted data; however, the BSP recommends that there may be
at most one timestamp in a message.

The WS-Security standard describes the processing rules for using and
processing XML Signature [20] and XML Encryption [21] in the context of a
SOAP message; however, these rules do not apply to using these standards
directly in application data. These WS-Security rules must be followed when

14 Challenges of Testing Web Services 403

using any type of security token. The specification does not dictate if and
how claim confirmation must be done; however, it does define how signatures
may be used and associated with security tokens (by referencing the security
tokens from the signature) as a form of claim confirmation.

WS-Security 1.1 enhances WSS 1.0 with additional mechanisms to con-
vey token information (e.g., sending Thumbprint of an X.509 certificate, or
a SHA1 hash of an Encrypted key). WSS1.1 also introduces the concept of
SignatureConfirmation that enables a communication sender to confirm that
the received message was generated in response to a message it initiated in
its unaltered form. In this technique, the recipient sends back the signature
values received from sender in SignatureConfirmation element. This technique
helps to prevent certain forms of reply and message alteration attacks. WS-
Security 1.1 has become an OASIS standard as of February 1, 2006. WSS1.1
also introduces a mechanism to encrypt SOAP headers.

WS-Security provides mechanisms to send security tokens as part of a
message, message integrity, and message confidentiality. Developers can use
the specification in conjunction with other Web Service extensions and higher-
level application specific protocols to accommodate a wide variety of security
models and security technologies. It does not specify how a security context
or authentication mechanisms are established. Furthermore, key derivation,
advertisement and exchange of security policy, trust establishment, and non-
repudiation are out of scope of the specification.

14.3 Web Services Security Standard Framework

In this section we present first the different notions of standards. We then
present the conceptual framework for Web Services security standards, and,
for each level of this framework, we survey existing and proposed standards,
their specific purpose, and their current status.

14.3.1 The Concept of Standard

The concept of “standard” covers different notions, ranging from a public
specification issued by a set of companies, to a de jure standard issued by a
recognized standardization body. These different notions can provide to the
potential users useful indications about the maturity, the stability, and the
level of endorsement of a given standard. A de facto standard is a technology
that is used by a vast majority of the users of a function. Such function
may, e.g., be provided in a product from a single supplier that dominates the
market; or it may be a patented technology that is used in a range of products
under license. A de facto standard may be endorsed by a standardization
initiative, and eventually become a consortium recommendation, or a de jure
standard. The relevant requirements are that it is widely used, meets the needs
for functionality, and supports interoperability.

404 A. Barbir et al.

A de jure standard is usually defined by entities with a legal status in inter-
national or national law such the International Organization for Standardiza-
tion (ISO). Consortium recommendations on the other hand are a technology
agreed on and recommended by groups of companies in order to fulfill some
functionality. The Organization for the Advancement of Structured Informa-
tion Standards (OASIS), the World Wide Web Consortium (W3C), and the
Internet Engineering Task Force (IETF) are examples of examples of such
consortia.

De facto standards, eventually promoted to the de jure standard by a sub-
sequent endorsement by a standardization body, offer a higher guarantee of
support for interoperability. Conversely, de jure standards or consortia recom-
mendations do not guarantee per se that a standard will be widely endorsed
nor the market availability of really interoperable implementations by mul-
tiple vendors. Moreover, the definition of a standard and its issuance by a
standardization body or by a consortium is a long-lasting process, subject to
formalized organizational procedures.

14.3.2 Framework for Web Services Security Standards

Web Services security standards address a variety of aspects, ranging from the
message-level security to the identity management. In order to provide a struc-
tured and engineered approach to the development of the standards, an over-
all conceptual reference framework was needed. Such a reference framework is
crucial in organizing the standards according to layers and in promoting the
reuse of already developed specification.

XML Encryption/Signature

IPSec

SSL/TLS

Security Management Identity ManagementSecurity Management Identity Management

Message Security Reliable MessagingMessage Security Reliable Messaging

SOAP FoundationSOAP Foundation

XML SecurityXML Security

Transport Level SecurityTransport Level Security

Network Level SecurityNetwork Level Security

Policy & Policy &
AccessAccess
ControlControl

XML Encryption/Signature

IPSec

SSL/TLS

Security Management Identity ManagementSecurity Management Identity Management

Message Security Reliable MessagingMessage Security Reliable Messaging

SOAP FoundationSOAP Foundation

XML SecurityXML Security

Transport Level SecurityTransport Level Security

Network Level SecurityNetwork Level Security

Policy & Policy &
AccessAccess
ControlControl

Fig. 14.2. Refined classification of standards

14 Challenges of Testing Web Services 405

In this work, we adopt the following classification, as shown by Fig. 14.2.
This classification has been adopted in order to take into account in the dis-
cussion the standards below the SOAP layer and most importantly, to group
the standards by their main intended purpose rather than adopting a “stack”
view that emphasizes mainly how each specification is built on top of the
other ones. In particular, we deemed useful to separate message-level security
specifications (the two groups labeled Message Security and Reliable Messag-
ing) from the specifications addressing Policy and Access Control, Security
Management, and Identity Management issues.

14.4 Complexities of Testing Web Services

Currently, Web Services are generally managed using tools supplied by plat-
form vendors [34]. This makes testing a vendor-dependent activity. Service
management includes configuration, accounting, QoS, policy and fault identi-
fication, containment, and repair. Passive or active testing mechanisms are
widely used as tools for fault detection. Active testing techniques require
the generation and the application of test cases in order to detect faults
[31, 32, 33, 34, 35]. Passive testing techniques use observers to track the in-
teraction between the entities being tested. Observers can be inserted directly
on-line in the data flow or can be off-line and with access to log files.

Current proposed Web Services strategies are either based on active testing
techniques [34] or require Web Services to participate in their management
through the support of a management interface to active testers [34]. These
solutions assume that a Web Service will participate in its management by
providing specific interfaces that are based on active testers. Requiring Web
Services to provide their own management interfaces adds complexity to Web
Services architecture and may impact performance. In addition, there are
security risks associated with these interfaces.

14.4.1 Brief Overview of Current Testing Strategies

The advent of Web Services and their role in realizing SOA are changing
the Internet to a platform of application collaboration and integration. This
will change the traditional design, build, test, launch, and retire software
life cycle. The change will be more profound once companies start to realize
the importance of orchestrating loosely coupled services into coarse-grained
business services as a way of quickly developing business solutions.

As enterprises adopt SOA principles, the traditional test after development
approach to software testing will no longer work. Instead, software projects
in enterprises will be based on agile approaches [48]. Accordingly, software
development will require developers to work closely with their clients to iden-
tify their needs. Developers will produce code that is tested and evaluated
by the customers and the process is repeated until the project is done. This

406 A. Barbir et al.

approach requires a change in the way test code is developed and will result
in developing the test code as part of the software development process [48].

In the Web Services world, dynamic binding allows developers to define
service centric systems as a workflow of invocations to abstract interfaces.
The interfaces are then bound to concrete services before or during workflow
execution. Testing techniques that require the pre-identification of system
components cannot be used to test these workflows [47]. The ability to use
dynamic bindings in a workflow raises the need to test a composite service
partner link for all possible endpoints [47]. The problem can be very com-
plex since the endpoint can be dynamically generated or unknown at testing
time [47].

Currently, Web Services testing is a discipline at its early stages of study
by the academic and industrial communities [38]. Some approaches in the
R&D community [42, 43] have suggested the possibility of augmenting the
functionality of a Universal Description, Discovery and Integration (UDDI)
service broker with logic to permit a testing step before a service is regis-
tered. The aim of the testing step is to ensure that the logic of the regis-
tered service is error free. This approach focuses on requiring Web Services
to include well-defined test suites that can be run by the enhanced UDDI,
or the inclusion of Graph Transformation Rules that allow the automatic
derivation of meaningful test cases that can be used to evaluate the behav-
ior of the service when invoked. This approach require that Web Services
providers implement interfaces that increase the service testability by bringing
the service into a known state from which a specified sequence of tests can be
performed.

A modification of this approach is presented in [38]. In their work, the
authors propose a UDDI extension mechanism to verify that a Web Service can
correctly cooperate with other services. This is done by checking that a correct
sequence of invocations to the service results in a correct interaction of the
service with services from other providers. The proposed framework extends
the UDDI registry role from a passive service directory to an accredited testing
entity that performs service validation before registering a service.

Mei et al. in [46] propose a framework to automate the testing process
of Web Services. This framework is designed to generate test data according
to the description of Web Services in an extended version of Web Services
Description Language (WSDL). The work extends WSDL with contract in-
formation, including pre-conditions and post-conditions. From the basic in-
formation and the contract information, test data for a Web Service can be
generated. Relational expressions appearing in the pre-conditions are used to
partition the range of each input parameter into several sub-ranges. For each
parameter, the technique randomly selects a value from a sub-range together
with the boundary values between sub-ranges. The different combinations of
the values for the parameters become the initial generated test data which is
used for the automatic execution of the Web Service under test. For composed
Web Services, the framework can intercept and record the inputs from each

14 Challenges of Testing Web Services 407

Web Service to be used for future regression test. The framework specifies two
ways to acquire test data. The first way is to use a test data generator; the sec-
ond way is to record the runtime information while executing an application
that invokes the service under test.

Benharref et al. [34] proposes architecture based on passive testing tech-
niques (using observers) for detecting faults in Web Services. The observers
are designed as Web Services that makes them platform independent. Their
architecture enables the testing of deployed Web Services by independent third
parties.

Tsai et al. [38] proposes an XML-based, object-oriented framework to test
Web Services. The framework supports test execution and test scenario man-
agement, consisting of a test master and a test engine. The test master enables
developers to identify test scenarios, perform dependency, completeness and
consistency analysis. The test engine interacts with the Web Services under
test and provides tracing information. XML perturbation testing techniques,
such as discussed in [43, 44, 45], can also be conducted in the framework of
Tsai as given in [38].

Testing strategies are even more complex when Web Services security is
also taken into consideration. Security challenges when testing Web Services
and the need for interoperability at the SOAP message security level are
addressed in a subsequent section.

14.4.2 Web Services Middleware

Web Services Middleware [37], also known as Web Services Management
(WSM), is a distributed infrastructure that acts like enforcement points. WSM
can be either a gateway that handles traffic for multiple Web Services or agents
co-resident on systems running a given Web Service.

The presence of the WSM infrastructure [37] is often transparent to a given
Web Service and to any software invoking that service. In actual deployment
scenarios, a WSM would appear like a standard service consumer to a Web
Service and a Web Service to the consuming application. The WSM uses
standard Web Services technology to communicate with the Web Service and
the software consuming that service.

WSM infrastructure addresses key areas that are related to Web Services;
in particular, security, system management, and service virtualization. Inter-
operability of Web Services at the WSDL, SOAP, and SOAP message–level
security can also be addressed in the WSM.

Figure 14.3 provides an overview of Web Services Management frame-
work’s functional components. Components can communicate with each other.
For clarity, the communication lines are omitted from Fig. 14.3. Not all com-
ponents need to be present in WSM infrastructure. The following components
are included in Fig. 14.3:

• Access control component enforces access control policies that may include
the capability to authenticate and authorize Web Services’ clients.

408 A. Barbir et al.

Life Cycle Management

Service Provisioning

Security

Event Management

Monitoring

Audit/Logging

Access Control

Mediation

W
O
R
K

F
L
O
W

V
I
R
T
U
A
I
Z
A
T
I
O
N

Interoperability

Tools

Life Cycle Management

Service Provisioning

Security

Event Management

Monitoring

Audit/Logging

Access Control

Mediation

W
O
R
K

F
L
O
W

V
I
R
T
U
A
I
Z
A
T
I
O
N

Interoperability

Tools

Fig. 14.3. WSM architecture

• Audit/logging logs requests, responses, various events, and session infor-
mation.

• Event management handles events that are related to Web Services. For
example, alerts can be sent based on pre-set conditions.

• Interoperability component is responsible for insuring interoperability that
may include many layers such as the WSDL, SOAP, and SOAP message
security layer.

• Life cycle manger manages the development, deployment, registering, and
testing stages of services.

• Mediation component enables Web Services federation through the en-
forcement of federation policies.

• Monitoring component monitors events from all deployed Web Services.
• Security component is a Policy Enforcement Point (PEP). It addresses

security-related issues across services that may include secure communica-
tion channels, authentication, authorization, privacy, trust, integrity, con-
fidentiality, federation, delegation, and auditing.

• Workflow manager creates, tests, and manages the logical flows of Web
Services.

• Service provisioning defines system behavior policies and the interactions
of the Web Services. It can be used to specify how Web Services clients
can subscribe to a given service. It can also be used to specify the rules
for client authentication and authorization before they can access Web
Services.

14 Challenges of Testing Web Services 409

• Virtualization component creates and manages virtual endpoints for Web
Services. These endpoints can be dynamically associated with physical
endpoints to manage fail-over, provide load balancing, and concurrently
manage multiple versions or invocations of a Web Service.

The tools are presented as separate components to emphasize the need not
to be locked into vendor-specific tool set that can lead to limited testing func-
tionality of the WSM infrastructure. Selecting the right tools is critical for the
task of testing Web Services. It is important to note that Web Services impose
specialized testing challenges for test tools. These tools need to be able to em-
ulate realistic usage scenarios. They should enable developers to create the
ability to rapidly test Web Services for functionality, performance, reliability,
scalability, and security. Since service re-use and service availability are essen-
tial to achieving robust SOA implementations, automated regression testing
is necessary in order to guarantee secure, reliable, and complaint services.

The use of an agile software development methodology requires the testing
process to be capable of detecting errors early in the development cycle. This
requires the flexibility to address known usage scenarios as well as unantici-
pated use cases. Most errors are caused when a system component is used in
an unexpected manner. Improperly tested code, executed in a way that the
developer did not intend, is often the primary culprit for security vulnerability.

The WSM framework allows developers to perform fault management,
configuration, accounting, performance, and security aspects of service man-
agement. Fault management includes fault detection, localization, and repair.
Passive or active testing techniques can be used for fault detection. Active
testing is based on the generation and the application of specific test cases
while passive testers just observe the interaction between a tested system and
its clients. The introduction of WSM into a corporation’s infrastructure al-
lows developers to concentrate on developing the services while letting the
WSM handle non-application, context-specific security needs, manageability,
and other aspects of the service. Developers need to note that Web Services’
gateway solutions usually do not have access to application context. Devel-
opers still need to perform tests that check the content of XML messages
since attackers can embed malicious content in the XML documents that pass
straight through the WSM software to the service interface of the application.

The use of a WSM framework allows practical implementations of Web
Services where providers can develop Web Services Service Level Agreements
(WSLAs) that the clients can use as contracts when invoking the services. In
traditional terminology, SLAs represent a formal contract between a service
provider and a client guaranteeing quantifiable network performance at de-
fined levels. These types of SLAs are network centric and generally deal with
packet flows across a network. At the Web Services level, a WSLA is more
concerned with message flows that span the end-to-end business transaction.
These are both depicted in Fig. 14.4. WSLAs can be used to provide QoS
that is based on the contract they have agreed upon when they subscribed

410 A. Barbir et al.

Legacy Systems

WSM Back End
Systems

Legacy Systems

Back End
Systems

Provider A

Provider B

Client

SLA

Network

Packets

Message

Web Service

Legacy Systems

WSM Back End
Systems

Legacy Systems

Back End
Systems

Provider A

Provider B

Client

SLA

Network

Packets

Message

Web Service

Fig. 14.4. Client’s view of SLA testing for Web Services

to services. Clients can develop testing strategies that stress the WSLA to
ensure that the service provider has met the contracted QoS commitment.

Stress testing WSLA requires interoperability of the Web Services at the
WSDL, UDDI, SOAP, and SOAP message–level security. The Basic Pro-
file (BP) [11] from the Web Services Interoperability Organization (WS-I)
provides a profile for enhancing interoperability at the SOAP level. In addi-
tion, WS-I has developed the Basic Security Profile (BSP) [11] for enhancing
interoperability at the SOAP message–level security. In a subsequent section,
we will take a closer look at the BSP.

14.4.3 Stake Holders Testing Perspectives and Levels

Many players can get involved when a Web Services consumer invokes a Web
Service. The stakeholders are the end-user or client, service developer, service
provider, service integrator, and service broker (certifier) [47]. Testing scope,
strategies, techniques, and perspective will vary based on the stakeholder.
Each stakeholder must deal with different requirements and issues [47].

The client or end-user expects any application to perform in a satisfactory
manner. An important aim of the service provider is to provide reliable ser-
vices; the service provider will focus on functional testing in order to ensure
the minimum number of failures. The service provider cannot anticipate the
details of how the service will be combined with all other services. Hence, al-
though the service developer can perform some non-functional testing of the
developed services, these tests are limited since the service developer lacks

14 Challenges of Testing Web Services 411

exposure to the infrastructure of the end-to-end message flow. In general,
the service developer will focus on performing service functional testing that
can be based on common techniques that are used in component or subsystem
testing [47]. The provider will need to perform tests on the WSDL, UDDI, and
SOAP layers. Tests based on mutation strategies [44, 45, 46, 47] are important
for the service developer in order to detect faults. The developer will need to
perform regression testing if any of the components of the service change. The
developer may need to provide an interface to the service to allow the service
provider, integrator, or certifier to test the service in an SLA scenario.

The main focus of the service provider is to ensure that the service meets
the claims as stated by the service developer. The aim is to be sure it can
meet the requirements of a WSLA. The service provider can use the same
testing techniques as the service developer. However, load testing the ser-
vice may also be an option in order to gain confidence in its WSLA con-
formance. From the service provider point of view, non-functional testing
of the service has limited value since it does not include the end customer
infrastructure.

The role of service integrator is to test its services that can be used in a
composite fashion by consumers in order to ensure that the original design
(functional and nonfunctional) objectives are met at invocation time [47]. Dy-
namic binding adds complexity to the service integrator testing scope, strate-
gies, and capabilities. At runtime, dynamic binding adds uncertainty since the
bound service can be one of many possible services. From the point of view
of a service workflow, the service integrator has no control over the service in
use, since it can change over its deployed lifetime. To increase confidence in
the testing process, the service integrator will need to invoke the service in
order to gain insight on how it will behave in the real world. Testing from this
perspective will result in additional costs to the service integrator. The use of
service emulators and stubs can reduce this cost, but do not fully replace the
need for the actual invocation of the services under test. The service integra-
tor may invoke more sophisticated test generation strategies. Pre-conditions,
post-conditions, and genetic algorithm testing ([43, 44, 45, 46, 47]) can be used
to create test oracles. Stress testing WSLA (at least with focus on the infras-
tructure components or sub-systems that the integrator can control) should
be performed in order to get better understanding of whether the service will
meet the QoS requirements of the contract.

The service certifier can be used by the service developer, provider, or
integrator to help test and find faults. The service certifier can also be the
service broker. The service certifier can play an important role in reducing
the number of players involved in testing a service and as a result can reduce
the overall cost of testing. However, the service certifier still lacks visibility of
how the service will be composed with other services and lacks access to the
infrastructure of the end-to-end message flow. The service certifier may invoke
more sophisticated test generation strategies on the service. Pre-conditions,
post-conditions, and genetic algorithm [47] testing can be used to create test

412 A. Barbir et al.

oracles for a given service. Due to dynamic binding and the lack of visibility
of network and infrastructure factors that can affect the performance of a
service, the service certifier may not be able to guarantee the QoS claims of
a WSLA.

14.5 Interoperability as an Enhancement for Testability

The framework for security standard development postulates a layered ap-
proach, such that every upper layer standard can re-use and extend the spec-
ification of lower-layer standards. However, the specifications of the standard
at a given layer (e.g., WS-Policy) are sometimes developed by a standardiza-
tion body different from that specifying the standard at the other layer (e.g.,
SAML). Thus, the two involved standard specifications are not always syn-
chronized. Such situation requires an activity of verification and alignment of
the specifications, which involves further iterations within each standardiza-
tion body.

Due to the role played by SOAP messages and by SOAP message secu-
rity, interoperability of different WS-Security implementation is crucial. For
this reason, WS-I has developed the Basic Security Profile (BSP) [11] to pro-
vide clarifications and constraints in order to enhance the interoperability
of WS-Security implementations. The BSP extends the profiles created by
the WS-I SOAP Basic Profile (BP) [11] by adding interoperability guidelines
for security. BSP 1.0 profiles WSS 1.0 and is available on the WS-I pub-
lic site. BSP 1.1 profiles WSS 1.1 and should be available to the public in
the near future. In this chapter, we use the term BSP to mean both BSP
1.0 and 1.1

SOAP messages are composed of XML elements. Using WS-Security tech-
niques, these elements may be signed, encrypted, or signed and encrypted.
The elements can be referenced from other elements. Each element within a
SOAP message may be processed by an intermediary that can add more data
and sign and encrypt the incremental data and/or the combined data. For
example, in an order processing chain of events, one intermediary can assign
an order number and sign the associated element. Another intermediary can
check credit worthiness of the consumer and either signs only the credit data
or the whole order data, and so forth.

14.5.1 BSP Usage Scenarios

The BSP adds security to the following three basic Message Exchange Patterns
(MEPs) that were adapted from the scenarios defined for the Basic Profile [11]:

1. One-way: A SOAP message is sent, potentially through intermediaries, to
a SOAP receiver. No response message is returned (Fig. 14.5).

14 Challenges of Testing Web Services 413

SOAP//HTTP
Sender ReceiverSOAP//HTTP
Sender Receiver

Fig. 14.5. One-way SOAP message

2. Synchronous request/response: A SOAP message (the request) is sent, po-
tentially through intermediaries, to an ultimate SOAP receiver. A SOAP
message (the response) is sent by the request’s ultimate SOAP receiver
through the reverse path followed by the request to the request’s initial
SOAP sender (Fig. 14.6).

3. Basic callback: A SOAP message (the request) is sent, potentially through
intermediaries, to an ultimate SOAP receiver, and an acknowledgment
message is returned in the manner of synchronous request/response. The
request contains information that indicates an endpoint for a SOAP node,
where the response should be sent. The request’s ultimate SOAP receiver
sends the response to that SOAP node, which returns an acknowledgment
message in the manner of synchronous request/response (Fig. 14.7).

14.5.2 BSP Strength of Requirements

The BSP focuses on improving interoperability by strengthening requirements
when possible and constraining flexibility and extensibility when appropriate.
The BSP limits the set of common functionality that vendors must implement
and thus enhances the chances for interoperability. This in return reduces the
complexities for the testing of Web Services security.

The guiding principles enumerated in the BSP declare that there is no
guarantee interoperability, that the profile should “do no harm,” that it makes
testable statements when possible, and focus on interoperability. The BSP
committee worked so that enhancing interoperability does not create new
security threats.

SOAP//HTTP

SOAP//HTTP

Sender Receiver
SOAP//HTTP

SOAP//HTTP

Sender Receiver

Fig. 14.6. Synchronous request/response

414 A. Barbir et al.

SOAP//HTTP Request: Initial

SOAP//HTTP Request: Final

SOAP//HTTP Response: Ack

SOAP//HTTP Response: Ack

Sender Receiver

SOAP//HTTP Request: Initial

SOAP//HTTP Request: Final

SOAP//HTTP Response: Ack

SOAP//HTTP Response: Ack

Sender Receiver

Fig. 14.7. Basic callback

It is not the intent of the profile to define security best practices. However,
when multiple options exist, the profile considers known security weaknesses
and makes choices that reduce the risks and reduces choice thus enhancing
interoperability. The Profile speaks to interoperability at the Web Services
layer only; it assumes that interoperability of lower-layer protocols (e.g., TCP,
HTTP) and technologies (e.g., encryption and signature algorithms) are ad-
equate and well understood. The Basic Security Profile restates selected re-
quirements from the WS-Security Errata rather than including the entire Er-
rata by reference, preferring interoperability over strict conformance.

The profile includes requirement statements about two kinds of artifacts:
SECURE ENVELOPE and SECURE MESSAGE. A SECURE ENVELOPE
is a SOAP envelope that has been subjected to integrity and/or confiden-
tiality protection. A SECURE MESSAGE expands the scope of the SE-
CURE ENVELOPE to include protocol elements transmitted with the
SECURE ENVELOPE that have been subjected to integrity and/or confi-
dentiality protection (an example is SOAP messages with attachments).

14.5.3 BSP Conformance

In order to conform to the BSP, any artifact that contains a construct that
is addressed in the profile must conform to any statements that constrain its
use. Conformant receivers are not required to accept all possible conformant
messages. Conformance applies to deployed instances of services. Since major
portions of the BSP may or may not apply in certain circumstances, individual
URIs may be used to indicate conformance to parts of the BSP including the
core profile or additional sections of the BSP for Username token, X.509 token,
and SOAP messages with attachments.

The BSP includes statements that are interoperability requirements as
well as statements that are security considerations. The normative require-
ment statements are identified by numbers prefixed with the letter ‘R’, e.g.,
Raaaa where aaaa is the statement number. These statements contain one
requirement level keyword (i.e., “MUST”) and one conformance target. Ex-
amples of BSP conformance targets include the following:

SECURE ENVELOPE: A SOAP envelope that contains sub-elements
that have been subjected to integrity and/or confidentiality protection.

14 Challenges of Testing Web Services 415

A message is considered conformant when all of its contained artifacts are
conformant with all statements in the BSP that are related to them. Use
of artifacts for which there are no statements in the Basic Security Profile
does not affect conformance.

SECURE MESSAGE: Protocol elements that have WS-Security applied
to them. Protocol elements include a primary SOAP envelope and option-
ally associated SOAP attachments.

SENDER: Software that generates a message according to the protocol(s)
associated with it. A sender is considered conformant when all of the
messages it produces are conformant and its behavior is conformant with
all statements related to SENDER in BSP.

RECEIVER: Software that consumes a message according to the proto-
col(s) associated with it. A receiver is considered conformant when it is
capable of consuming conformant messages containing the artifacts that
it supports and its behavior is conformant with all statements related to
RECEIVER in the BSP.

In BSP, certain statements are considered clarifying statements. The intent
of these statements is to eliminate confusion about the intended interpretation
of a requirement from an underlying specification. Clarifying requirements
are identified by adding a suffix of a superscript letter ‘C’, i.e. RxxxxC, where
xxxx is the requirement number. Additional consideration statements are also
identified by numbers prefixed by the letter ‘C’, i.e. Cyyyy, where yyyy is
the statement number. These statements are non-normative and are used to
provide clarification in order to eliminate confusion.

14.5.4 BSP Testability

The security consideration statements provide guidance that is not strictly
interoperability related but are testable best practices for security. It was
considered valuable to include these statements so that testing tool designers
can have the option of flagging potentially insecure practices. It is not feasible
to provide a comprehensive list of security considerations and not all security
considerations can easily be converted into testable statements. A complete
security analysis must be conducted on specific solutions based on the BSP
and underlying standards, based on a risk analysis of the application using
BSP technologies.

Even a fully standard compliant application may not interoperate with
another when the set of functionality supported is disjoint. For example, while
a sender may encrypt using one of three specific algorithms prescribed by the
BSP, a receiver may expect a different one of the three. Certain agreements
must be made using mechanisms currently out of scope for the profile.

416 A. Barbir et al.

14.5.5 Example of BSP Profiling

This section provides an example of BSP profiling with respect to SOAP
Message Security. BSP allows limited flexibility and extensibility in the appli-
cation of security to messages. Since no security policy description language
or negotiation mechanism is within the scope of the profile, BSP expects that
the sender and receiver can agree out of band over which mechanisms and
choices should be used for message exchanges including which security tokens
can be used. The next sections provide selected examples of the profiling in
the BSP. The reader can check [11] for the complete profile.

WSS 1.1 allows a Binary Security Token for the option of specifying its
Value Type, but requires that it specifies its encoding type. Base64Binary is
the only acceptable value. The Profile restricts the Value Type to one of those
specified by a security token profile and requires its specification. Note that
this token profile need not be one of the OASIS WSS profiles, although that is
preferred when possible. The listing below provides an example of the profiled
usage of Binary Security Token.

Correct:

<wsse:BinarySecurityToken wsu:Id=’SomeCert’
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3"
EncodingType="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#Base64
Binary">

lui+Jy4WYKGJW5xM3aHnLxOpGVIpzSg4V486hHFe7sHET/uxxVBovT7JV
1A2RnWSWkXm9jAEdsm/...
</wsse:BinarySecurityToken>

14.5.6 BSP Security Considerations

This section lists a number of security considerations as specified by the BSP
that should be taken into account when using one or more of the technologies
discussed in this section.

Use of the SOAPAction in protected messages can result in security risks.
The SOAPAction header can expose sensitive information about a SOAP mes-
sage such as the URI of the service, or the context of the transaction. If the
SOAPAction header is used for routing messages, there is a possibility that an
attacker can modify the header value to direct the message to a different re-
ceiver. This can defeat a replay detection mechanism based on the assumption
that the message would always be routed to the same place.

Additional risks can occur if multiple intermediaries are present. For ex-
ample, one intermediary can be designed to select the set of its processing
steps based on the value of SOAPAction or application/soap+xml. A second

14 Challenges of Testing Web Services 417

intermediary (such as a security gateway) can base its processing on the mes-
sage content (which could be secured through XML signatures). An attacker
can manage to trick the security gateway by allowing illegal operations by
modifications in HTTP headers. To remedy the situation, the BSP requires
that SOAPAction attribute of a soapbind:operation element to either be
omitted or have as its value an empty string.

BSP uses time-based mechanisms to prevent replay attacks. These mecha-
nisms will be ineffective unless the system clocks of the various network nodes
are synchronized. The BSP assumes that time synchronization is performed.

For messages that are signed using a Security Token that binds a pub-
lic verification key with other claims, and if specific processing is performed
based on those claims, the BSP requires that the Security Token itself be
part of the signature computation. This can be achieved by putting child
ds:Reference element whose URI attribute contains a shorthand XPointer
reference to the wsse:SecurityTokenReference that specifies the Security
Token into the ds:SignedInfo element of a signature. If a ds:SignedInfo
contains one or more ds:Reference children whose URI attribute contains a
shorthand XPointer reference to a wsse:SecurityTokenReference that uses
a potentially ambiguous mechanism to refer to the Security Token (e.g., KeyI-
dentifier) then it is recommended that the content of the Security Token be
signed either directly or using the Security Token Dereferencing Transform.
This approach can help to protect against post-signature substitution of the
Security Token with one that binds the same key to different claims.

When a key is provided in band within a Security Token or for the purpose
of specifying a key to be used by another node for encrypting information to
be sent in a subsequent message, the profile recommends that the sender of the
key cryptographically bind the key to the message in which it is transmitted.
This can be done either by using the key to perform a Signature or HMAC
over critical elements of the message body or by including the key under a
signature covering critical elements of the message body that uses some other
key. If a key is sent in a message that the receiver is expected to encrypt data
in some future message, there is a risk that an attacker could substitute some
other key and thereby be able to read unauthorized data. This is true even if
the key is contained in a signed certificate, but is not bound to the current
message in some way. If the future encryption key is used to sign the initial
request, the receiver can determine by verifying the signature that the key
is the one intended. Readers can consult [11] for more detailed security risk
analysis.

14.6 Strategies for Testing Web Services Security

Testing developed and deployed secure Web Services applications is a chal-
lenge. Security is an ongoing process as opposed to a one-time development
task. Developers should start with the security of the application in mind from

418 A. Barbir et al.

the origin concept of the service and during the development, deployment, and
maintenance phases.

The major concerns in testing the security of Web Services are the lack
of security testing standards and specifications. For a given service at the
functional level, input manipulation, information disclosure, and DoS consti-
tute the most common vulnerabilities against a service [45]. Testing strategies
should emphasize testing for these vulnerabilities. Common defense techniques
involve the use of strategies based on integrity and confidentiality to counter
these threats.

The WSM framework allows developers to perform fault detection, con-
figuration testing of security aspects of Web Service. Passive or active testing
techniques can be used for fault detection. As stated before, the incorporation
of WSM into Web Services infrastructure allows developers to concentrate on
developing the services while letting the WSM handle the non-application spe-
cific context security tasks, manageability, and other aspects of the services.

The following sections provide an approach for testing security for Web
Services. In this approach, the WSM plays an integral part, where layer sep-
aration between the service and its security is established.

14.6.1 Web Services Security Fault Model

Effective testing of Web Services security requires the development of a fault
model covering all interaction aspects of the service and spanning all the Web
Services layers that include UDDI, WSDL, and SOAP. The fault model should
encompass the entire group of stakeholders as discussed in Section 14.2. The
fault model is assumed to be part of the security component of the WSM. In
effect, the model builds on the generic fault model for Web Services security
as proposed in [45].

The fault model [45] must address threats to the UDDI that includes in-
formation disclosure, availability, DoS attacks, and unauthorized access. At-
tackers could use UDDI’s published WSDL to obtain information about Web
Services and use the information to carry out the attack [45]. Attackers could
use scanning and parameter mutation techniques to search for unpublished
backdoor capabilities of the services in order to gain unauthorized access to
resources and data. Buffer overflow and other types of attacks can also be
used.

The fault model should consider the effect of intermediaries on a client’s
messages. The presence of intermediaries introduces threats to these messages.
For example, an attacker may take over an intermediary and launch man-in-
the-middle attacks. The attacker may redirect the messages to a different
destination causing the equivalent of a DoS attack on the service [45].

At the service provider, integrator or certifier level, the fault model takes
into consideration that Web Services could spread over multiple tiers [45].
Services on these tiers could be exposed as Web Services. Exposed Web Ser-
vices could interact with infrastructure components that include mail servers,

14 Challenges of Testing Web Services 419

application servers, file systems, and various databases [45]. Web Services
security may be affected if any of these infrastructure components are com-
promised. The advent of Web Services has the effect of forcing developers to
re-think which components of a system should be trusted or which components
should be considered vulnerable.

In this work, XML firewalls are viewed as an integral component of the Web
Services fault model. The XML firewall can perform deep inspection of the
messages with the ability to inspect data for XML conformance and exploits.
XML firewalls can protect against attacks that do not require application
context. In Fig. 14.8, the extended model from [45] is depicted.

14.6.2 General Testability Guidelines

An application or service may consist of a single functional component or mul-
tiple sets of local or networked components. Security is a multifaceted process
consisting of mechanisms that cover network security elements, application
level security systems, authentication systems, and cryptography systems. In
a layered security approach, these mechanisms are developed independently
at different OSI layers and are expected to be combined together to secure
the deployed services in a useful manner.

For all phases of the application development life-cycle, it is important to
identify security-related threats and vulnerabilities. This requires that devel-
opers embrace the use of systematic security design methodologies with well
thought-out implementation processes.

WSM

Security

Provider

Broker

Client
Messages

Find Publish

WSDL

XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML
Firewall

Messages

WSM

Security

Provider

Broker

Client
Messages

Find Publish

WSDL

XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML
Firewall

Messages
XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML
Firewall

Messages

Fig. 14.8. Fault model

420 A. Barbir et al.

Architects should ensure that all aspects of application security are consid-
ered at early design stage in a structured manner. Best practices for applying
security should be put in place before starting an application design pro-
cess. It is important to be proactive in checking and verifying the security
design for risks, tradeoffs, security policies, and defensive strategies ahead of
the completion of the application design phase. During the deployment and
production phases, it is good practice to adopt reactive security measures to
ensure service stability and recovery in the event of a security breach.

Organizations can minimize the effort of testing for security of the devel-
oped applications by following strategies that reduce the factors that need to
be tested. A crude but effective approach for minimizing the scope of testing
is to pursue some of the following steps:

1. Create a set of use case scenarios that can accommodate the majority of
services to be exposed as Web Services.

2. Determine the security boundaries of these services. Identify which ser-
vices are internal and which are external.

3. Determine the overall security requirements of the service, including
threats, risks, and vulnerabilities (internal and external).

4. Determine the set of messages to be exchanged by each service.
5. Determine the security requirements of each message. This can vary, de-

pending on whether the message is internal or external.
6. Determine the resources that are required or can be accessed by each

service and the type of access mechanism allowed.
7. Take a close look at the organization current network infrastructure and

determine what is currently available to support the security requirements
for these services. It is preferable to try to re-use existing security infras-
tructure (such as LDAP directories or PKI systems [10]) to support the
security requirements of the services.

8. Determine if any specific applications must be either developed in house,
out-sourced, or purchased to fulfill the security needs or other functionality
of the new Web Services.

9. Determine the impact of the new services on the management, auditing,
and logging facilities in the network and the applications.

10. Take a close look at the organization’s security policy and integrate the
new requirements to it.

11. Build the new services using secure code practices and standard-based
technologies. Developers need to be conservative in the use of features
in this step. Developers need to identify the minimum set of capabilities
that would be specified to meet the security requirements so far identified.
Minimizing the extent of supported services from SOAP message security
reduces the testing scope and reduces overall vulnerabilities.

Developers can generate test suits for testing the new security mechanisms
for the developed services. If the use case scenarios were broadly chosen then
they should be able to incorporate new services where developers can re-use

14 Challenges of Testing Web Services 421

the test patterns. However, developers need to understand that using regular
Web testing tools is not appropriate for testing Web Services. Web Services
testing requires understanding of the unique security issues related to them,
including XML, SOAP, WSDLs, and other WS standards.

14.6.3 Testing Strategies for Web Services Security

Testing strategies should conduct forcing errors tests to ensure that the error
messages that are returned by the service do not reveal information about
the service [45]. Testing for man-in-the-middle attacks should be used in the
event that intermediaries are expected to be in the data path. Data origin
authentication techniques can be used to remedy this threat. Authentication
bypass tests should be conducted to ensure that only authorized requests are
processed by the service.

At the UDDI, testing should be constructed that includes WSDL scanning
and parameter tampering to detect vulnerabilities in the exposed service. Mu-
tation tests techniques can be used to test for parameter tampering. Buffer
overflow tests can also be used in this step. Tests should also include sanity
checks on the UDDI to ensure that hackers cannot access services that should
not be made public. These tests are similar to file or directory traversal attacks
in web applications [45]. WSDL scanning tests must be conducted to ensure
that hackers cannot access unpublished transactional methods by playing on
variations of the published ones. It is really a bad practice when developers
provide unpublished methods as a backdoor technique for invoking the ser-
vice by insiders. This practice leaves the service vulnerable to the persistent
attacker.

The above-mentioned testing steps need to be repeated if configuration of
the system or the security mechanism is changed. For this reason, tests should
be repeated if the system configuration is changed [45]. Testing cannot guar-
antee an error-prone implementation. Testing is used to increase the level of
confidence that the service will operate according to its design objectives. Test
oracles should be saved and used in regression testing for the modified service.

14.6.4 Testing Strategies for Web Services Application Data

This section addresses functional testing strategies for Web Services security
from the developer’s point of view, with a focus on testing security related to
message data passed to applications. The testing strategy aims at addressing
the vulnerabilities as specified by the fault model of the previous section. The
aim is to perform tests that involve application context–type attacks. Some
examples of these types of attacks are given next, from [45].

1. Cross-site scripting: In this type of attack, the hacker embeds a script
into an XML document. The aim here is that the script will be stored
(for example, in a database) and then served to an unsuspecting client

422 A. Barbir et al.

Web browser. The script can then execute in the client’s browser and can
perform tasks on the behalf of the attacker. For example, the script can
steal sensitive information such as credit card numbers or passwords from
the unsuspecting client. Variation on this type of attack occurs when a
hacker embeds in an XML document a script, such as a shell script. The
attacker hopes that the script will be executed on the targeted system.
If the code executes, the attacker can perform unauthorized operation on
the compromised system. Possible counter measures include proper data
parsing and validation and to scan for all possible attack patterns and
the use of application layer countermeasures, such as Web application
firewalls.

2. XPath exploits: This is a form of XML injection attack. In this type
of attack, a hacker aiming for illegally accessing data from a database
injects malicious input into an XML document. The attacker aims to
get the data to be part of a dynamically created XPath query against
an XML document in a native XML database. An example of malicious
input for XPath exploits is OR 1=1. This expression, when executed in
the content of an XML document will always be true and can return data
to the attacker. Possible counter measures include proper data parsing
and validation and to scan for all possible attack patterns and the use of
application layer countermeasures, such as Web application firewalls.

3. SQL injection exploits: In this attack, a hacker injects malicious input
disguised as data into an application via an XML document or Web form,
with the hope that the input will end up in a WHERE clause of a SQL
query that is executed against a backend database. The hackers hope to
gain access to data in an unauthorized fashion. The main vulnerability
that enables Web Service enabled databases to be attacked in this fash-
ion is the insecure practice of configuring the backend systems to accept
and execute valid SQL queries received from any user with the necessary
access privileges. Possible counter measures include proper data parsing
and validation and to scan for all possible attack patterns and the use of
application layer countermeasures, such as Web application firewalls.

4. Buffer overflow exploits: These exploits are targeted atWeb Service com-
ponents that store input data in memory. These attacks succeed when
the Web Service component does not adequately check the size to ensure
that it is not larger than the allocated memory buffer that will receive
it. Possible counter measures include the use of programming languages
that perform input validation such as JAVA. The employment of appropri-
ate memory management techniques that protect memory segments that
are allocated for code form data overwrite can also be used as a counter
measure to this threat.

Developing remedies for the above threats requires the practice of safe
coding technique and the training of the developers in safe code practice. In
some cases, there will be a need to have the code inspected by independent

14 Challenges of Testing Web Services 423

security professionals to ensure that the code can pass tests performed to
detect these threats. Buffer overflow attacks usually target endpoints [45].
Tests must be conducted to ensure that the endpoint is capable of filtering
out large data loads. Hence, testing with large data load must be conducted
by developers to gain confidence that the service will survive such attacks.

Mutation-based test techniques can play an important role in detecting
vulnerabilities in the code for threats 1 to 3. Mutation test strategies change,
or mutate, inputs to the Web Service under test. By applying these changes
to input messages, testers can check whether these mutations produce ob-
servable effects on the service outputs. Based on the observed behavior, faults
in the service can be detected and the offending code can be fixed. The test
oracles must be saved and then used to perform regression testing when any
modifications have been performed on the service. Testing for script injection
exploits may require the identification of the operating system commands in
the language that is used to implement the system. These commands can then
be imbedded in the validation tests.

14.6.5 Securing an Application: Case Study

To illustrate some of the points of the above-stated approach, consider a fic-
titious book selling company that has stores nation wide. The company has
two warehouses for storing book supplies. For a given book, the company will
contact the supplier to re-order copies if a minimum threshold is reached. For
the purpose of this example,the company deals with only one supplier. The
company needs to develop a web application based on a Web Service to be
used by the store employees to query the warehouses for the availability of
a given book. The company will use a Web Service to re-order a book once
the threshold is met. This example is based on the same concepts of use-case
scenarios developed in WS-I to illustrate usage of the BSP profile [11].

Case Study Functional Overview

An employee uses a web-based application that invokes a Web Service to inter-
act with the retailer application. For simplicity, the retailer service manages
stock in the two warehouses (Fig. 14.9). If Warehouse A cannot fulfill an order,
the retailer service checks Warehouse B. When a warehouse’s inventory of a
book falls below a defined threshold, the retailer service orders more books
from the supplier. The example consists of the following:

1. Client Web Service: A web-based application that provides a user inter-
face. The web client application invokes the client Web Service to get
catalogue information and submit an order for a book to the retail ser-
vice. It also sends to the Retail service a one-way store update statement
frequently.

424 A. Barbir et al.

Internet

Employees

Client Web
Application

Client
Web

Service

Warehouse System

Warehouse A

Warehouse B

Retailer
Service

Book Supplier

Supplier
Web

Service
GetCatalog

SubmitOrder

SubmitPO

SubmitCon

SSL

SSL

Internet

Security Boundary

Security Boundary

Security BoundaryUpdateSt

InternetInternet

Employees

Client Web
Application

Client
Web

Service

Warehouse System

Warehouse A

Warehouse B

Retailer
Service

Book Supplier

Supplier
Web

Service
GetCatalog

SubmitOrder

SubmitPO

SubmitCon

SSL

SSL

InternetInternet

Security Boundary

Security Boundary

Security BoundaryUpdateSt

Fig. 14.9. Book service functional overview

2. Retailer service: A service invoking a Web Service that interacts with the
warehouse to determine the availability of book and the time to order
based on a given threshold.

3. Supplier service: An application that invokes a Web Service for accept-
ing purchase orders and provides callback functionality when the order is
fulfilled or an error occurs.

4. At a store, employees use the Web Client Application to view and
place orders for available books. A standard web browser that sup-
ports SSL is used. Employees are authenticated using a user ID and
password. The system does not have certificates that could be used for
authentication.

The company has existing X.509 certificate security capabilities. The com-
pany uses the Internet for connecting the stores to the retail application and
to communicate with the supplier. The company has a dedicated commu-
nication service with the warehouses and uses SSL for extra security. The
company would like to use SOAP message layer security for securing the
interactions.

SOAP Messages Usage Patterns

The use case scenario employs three usage patterns as follows:

1. One-way: Request messages are sent to a Web Service that does not issue
a corresponding response. For example, the store update message that is
sent to the retail service is a one-way exchange.

14 Challenges of Testing Web Services 425

2. Synchronous request/response: A SOAP request elicits a SOAP response.
3. Basic callback: A set of paired request/response messages to enable asyn-

chronous operation. The interchange between a retail service and the sup-
plier requires a callback pattern since the supplier cannot instantly re-
spond to the retail service request. The conventions used for callbacks
can vary. In this fictitious example, the following sequence of events
takes place:

• In an initial synchronous exchange, the retail service sends a purchase
order. The supplier validates the order and sends back an acknowledgment.

• In a follow-up exchange between the supplier and the retail callback ser-
vice, the supplier ships the goods and sends a shipping notice to the retail
service. The retail service then sends back an acknowledgment.

Security Requirements

For each of the systems and operations of the use case scenario, the security
requirements are specified for message integrity, authentication, and confiden-
tiality.

Message integrity. Message integrity is needed to ensure that messages
have not been altered in transit. For simplicity, attachments are not
considered. In order to support verification of message integrity, mes-
sages are signed. In order to improve on processing speed, digest values
are first calculated, and then these values are signed. Developers need
to determine which elements of the messages need a signature. For the
case under consideration, some or all of the following parts may need to
be signed:
• UsernameToken: The wsse:UsernameToken element in the WS Secu-

rity header containing the identity of the user who originally made the
purchase request.

• Timestamp: The wsu:Timestamp element added to the message when
it was created as defined in [12].

• Any custom SOAP headers such as a Start header that contains a
conversation ID element and a callback location element. The con-
versation ID is provided by the Retailer to the Supplier so that
the Supplier can include it in the Callback header responses
asynchronously.

• The Callback custom header which keeps the conversation ID apart
from the Start header.

• SOAP Body: The part of the SOAP message (e.g., soap:Body) that
contains the exchanged document (such as a purchase order).

Message integrity is implemented by creating a digital signature using
the sender’s private key over the elements that need to be signed. To
protect against dictionary attacks on plain text signature, the signature

426 A. Barbir et al.

is encrypted, meaning that a xenc:EncryptedData element replaces this
ds:Signature element in the message. Note that only the children of each
element are used by the signing algorithm. The element itself is not signed.

Authentication. Authentication is performed to allow the receiver to es-
tablish the message origin. It is a good practice for the recipient of a
message to authenticate the sender of a message. This is done by first
checking that the signed data in the message has been signed using the
public certificate whose private key was used to sign the message for mes-
sage integrity purposes and then checking the credentials in that public
certificate to determine the identity of the sender. If the sender includes
a wsse:BinarySecurityToken in the wsse:Security header, the token
contains the X.509 signing certificate.
The recipient should verify that it can trust the certificate issuer, and may
also need to compare the data in the content of the message that identifies
the sender, either in the SOAP header or in the payload, with the identity
as stated in the public certificate.
The identity of the original user may also be included, in a UsernameTo-
ken. If the username token is not used for authentication, a password is
not required.

Confidentiality. Confidentiality is required to conceal sensitive information
in messages. Not all parts of messages are necessarily sensitive, and in some
cases a message may not be considered sensitive at all, and thus there may
be no need for confidentiality. In this example, parts of the message that
are considered sensitive include the following:
• The SOAP Body since it could contain information such as order data,

which could aid competitors.
• The Signature element since in some cases the body of the message

can contain predictable variations, making it subject to guessing or
dictionary-based attacks. Encrypting the signature can prevent such
attacks.

• Custom headers such as the Start Header since it include the location
of the callback service.

Confidentiality is implemented by first deriving the xenc:EncryptedData
elements with the appropriate encryption algorithm and using the ap-
propriate public key. The xenc:EncryptedKey element is encrypted us-
ing a chosen encryption algorithm. The xenc:EncryptedKey element will
contain a security token reference to the public key information of the
X.509 certificate used for encrypting, along with DataReferences to the
xenc:EncryptedData elements. In this scenario the certificate itself is not
included since it is assumed to be already public. For the Soap Body and
the Start Header elements, only the children of the elements are encrypted.
For the Signature element, the whole element is encrypted.

14 Challenges of Testing Web Services 427

14.7 Crash-Only Web Services Design

In an SOA [53] environment, new Web Services are typically built by orches-
trating underlying services. In mission-critical applications, it is necessary
for both the underlying services and the composite service to advertise their
failure models. In general, failure models are complex and difficult to combine
but this section argues that the “crash-only software” architecture [49, 50, 51]
provides not only a simplifying coherence for designers, but also a paradigm
whose characteristics align particularly well with those of Web Services.

Within a Service-Oriented Architecture (SOA), new services are typically
created by orchestrating underlying services. Figure. 14.10 illustrates a par-
ticularly simple case when two underlying services, X and Y, are orchestrated
in some way to produce a new service, Z. In the general case, X and Y will
not be owned by the developer of Z, being services exposed by other service
providers.

To determine Z’s characteristics, so that WSLA guarantees can be offered
to customers, it is necessary to combine the characteristics of X and Y with
those of the additional logic provided by Z. To enable this, the characteristics
of X and Y must be known and although the SOA specifications make provi-
sion for X and Y to advertise their interface syntax, their behavior and their
contracts, no formal method has been proposed for defining many of the be-
havioral characteristics. For example, the performance, scaling, management,
security, privacy, availability, reliability, and many other models of X and Y
need to be known by the developer of Z in order to determine the service-level
agreements for the corresponding characteristics of Z. As a simple example,
consider privacy: X, Y, and Z may be implemented in different countries with
differing laws regarding privacy and security of data. For the developer of Z,
to ensure that the service complies with the local regulations and to be able
to offer reassurances to customers of Z about the privacy of their data, the
privacy policies of X and Y need to be available.

Fig. 14.10. Service orchestration

428 A. Barbir et al.

Each of the models listed above, and others, are needed but this section
addresses one particular model: the failure model. If the failure model of Z is
to be understood, the failure modes of X and Y have to be known. It may be,
e.g., that X supports a transactional model and rolls back its input following a
failure, guaranteeing that it returns to a sane state, putting the responsibility
for re-submission of inputs onto the consumer (Z). Y, on the other hand, may
buffer information and the precise state of an interaction may be difficult to
determine when a failure occurs.

To permit Z to determine necessary actions following the failure of X or Y
and to allow it to make claims about its own failure modes, a failure ontology
is required that could capture X’s and Y’s (and Z’s) failure semantics. This
section argues that the technique of “crash-only software” [50] is particularly
suited to the loosely coupled environment of SOAs, providing particularly
simple behavior that can be described and advertised in a formal manner. It
is unrealistic to expect all services to comply with this failure paradigm but
this work proposes that it forms the basis of the failure semantics for Web
Services.

14.7.1 Crash-Only Software

Studies (dating back to 1986 see [52]) support the view that failures in de-
ployed software are mainly caused by Heisenbugs [52], bugs caused by subtle
timing interactions between threads and tasks which are impervious to con-
ventional debugging, being non-reproducible and sensitive to tracing and other
observation. Reproducible bugs, the so-called “Bohrbugs,” are easier to detect
and fix during development and can largely be removed before shipment of a
final product.

It must be accepted that, in any software-based system, if Heisenbugs exist
then failures will occur. When they do, telecommunications and other high-
availability systems have been built to detect the failure, save state, shut down
the offending task and any other affected components (defined by some form
of failure tree) down gracefully, take whatever recovery action is required and
then restart the affected components.

The technique of crash-only argues that this is not only unnecessary but,
in many cases, counter-productive. Consumers of the services, it is argued,
must anticipate that their provider will, from time to time, crash cleanly
without the opportunity for sophisticated failure handling (perhaps because
of a power failure to the computer running the provider). Consumers must
therefore already have the capability of handling such a crash. If this is the
case, then consumers can always crash the component whenever any failure
occurs.

This crash-only semantic has several advantages:

• It defines simpler macroscopic behavior with fewer externally visible states.
• It reduces the outage time of the provider by removing all shutting-down

time.

14 Challenges of Testing Web Services 429

• It simplifies the failure model significantly by reducing the size of the
recovery state table. In particular, crashing can be invoked from outside
the software of the provider. Recovery from a failed state is notoriously
difficult and the crash-only paradigm coerces the system into a known
state without attempting recovery, reducing substantially the complexity
of the provider code.

• It simplifies testing by reducing the failure combinations that have to be
verified.

If software is to crash cleanly more often, then it should also be written in
such a way as to reload quickly [51].

14.7.2 Crash-Only Software and Web Services

Candea in [50] lists the properties required of a crash-only system and these
can be abstracted remarkably well to match those of Web Services as described
in [53]:

• Components have externally enforced boundaries. This is an implementa-
tion recommendation but one supported by the virtual machine concept
used on many Web Service systems.

• All interactions between components have a timeout. This is implicit in
any loosely coupled Web Services interaction.

• All resources are leased to the service rather than being permanently allo-
cated. This is an implementation recommendation but clearly one which
it is useful to follow in any implementation, particularly a Web Services
one.

• Requests are entirely self-describing. For crash-only services, this requires
that the request carries information about idempotency and time-to-live.
The work in [50] maps this request to a REST1-like [54] environment but
the comments are equally applicable to a true SOAP-defined Web Service.

• All important non-volatile state is managed by dedicated state stores.

In Section 14.2 of this chapter, in effect, the WSM performs runtime gov-
ernance. The WSM is enabled in an SOA environment by having access to the
service description of the invoked service and being in a position to intercept
and decode all incoming requests.

Deliberately induced crashes are a useful technique for software rejuvena-
tion (see [55]) and this requires detection of periods of low usage of the service.
Runtime governance is an obvious candidate for recognizing such periods and
causing the restarts.

The description of crash-only software in [50] assumes, when recast us-
ing SOA terminology, that the providers (X and Y in Fig.14.10) will exhibit
crash-only failure behavior but that consumers, having failed to obtain timely

1 Representational State Transfer.

430 A. Barbir et al.

or correct service, can initiate the crash. This is acceptable only when the con-
sumer and provider, although loosely coupled, are within one trust domain.
This is clearly not generally the situation with Web Services.

One common function of the WSM software layer is the monitoring of
response times from the service to ensure that the consumer is getting the
level of service paid for. This provides the perfect location for invocation of
the power-off switch provided by crash-only software that switch is external
to the service, relying in no way on continued correct operation of the service
code, and its operation is idempotent, ensuring that the decision to kill the
server does not require knowledge of internal state.

Crash-only design principles can be used as a starting point in the de-
sign of Web Services (we term them crash-only Web Services). In this aspect,
the service can be designed in such a fashion that the state of the service
that identifies critical information is always stored in the system even in the
event of a crash. The same crash-only design principles are extended at the
service level whereby, e.g., in business process interaction, information such
as the status of an order is stored in a non-volatile state [50]. Tree tech-
niques as defined in [49] and [50] can be used to identify the data compo-
nents from a service that should be stored and be available when the service
is crashed.

The use of crash-only systems combined with crash-only Web Services
in combination with a reliable SOAP stack can enhance on the availability
of a Web Service and reduces the complexity of its testing. Crash-only Web
Services can be re-started quickly and with a known state. In [56] a SOAP
reliable transport protocol is described (WSRM). The protocol allows a relia-
bility agent to acknowledge the receipt of SOAP messages to the Web Services
consumer. Reliability in WSRM is used to ensure that the messages are deliv-
ered to the targeted server (application server). The reliability agent can be
implemented at the Web Services end point in Fig. 14.11.

For systems with hardware redundancy, by using crash-only techniques,
SOAP WSRM can be extended in order to produce an always available Web
Service (although at reduced WSLA if and when a service is forced to crash)
from the provider’s and consumer’s point of view. The architecture is de-
picted in Fig. 14.11. Here, the components of the system are designed using
crash-only, which means that re-booting is fast and reliable. The Web Ser-
vices end point is used as the gateway between the Web Services consumer
and provider. At runtime, the system stores all of its important data innon-
volatile states. The WSRM agent acknowledges the receipt of the SOAP mes-
sages to the consumer only after a confirmation is received from the system
that the important data is safely stored in the system. The recovery agent
monitors the operation of the Web Services. If the agent determines that the
Web Service is misbehaving (due to fault in the code or any other reason,
actually the cause need not be known or investigated), then the agent will
instruct the stall proxy to delay the acknowledgment of the SOAP messages
to the consumer. The stall proxy will basically ensure that the session is

14 Challenges of Testing Web Services 431

Crash -Only
Application

Server

Stall Proxy

Web Service
Consumer

Web Services
Endpoint

Recovery
Agent

Crash-Only
Backend

Crash-Only
Backend

Crash-only
WSM

InternetInternet

Reliable SOAP Protocol

WSRM

Crash -Only
Application

Server

Stall Proxy

Web Service
Consumer

Web Services
Endpoint

Recovery
Agent

Crash-Only
Backend

Crash-Only
Backend

Crash-only
WSM

InternetInternet

Reliable SOAP Protocol

WSRM

Fig. 14.11. Architecture of crash-only reliable Web Services

kept alive. The system is re-started (multiple sub-component reboots may be
needed see [49] and [50] for details). When the system is back up again, the
WSRM agent can request the transmission of the last set of lost messages from
the consumer.

The above approach provides for the capability of extending the SOAP
WSRM protocol to enhance on the availability and reliability at the service
level. Testing scope is also minimized.

14.8 Research Proposals and Open Research Issues

Despite such intense research and development efforts, current Web Service
technology does not yet provide the flexibility needed to “tailor” a Web Ser-
vice according to preferences of the requesting clients. At the same time, Web
Service providers demand enhanced adaptation capabilities in order to adapt
the provisioning of a Web Service to dynamic changes of the Web Service en-
vironment according to their own policies. Altogether, these two requirements
call for policy-driven access controls model and mechanisms, extended with
negotiation capabilities. Models and languages to specify access and manage-
ment control policies have been widely investigated in the area of distributed
systems [3].

Standardization bodies have also proposed policy-driven standard access
control models [1]. The main goals of such models are to separate the access
control mechanism from the applications and to make the access control mech-
anism itself easily configurable according to different, easily deployable access
control policies. The characteristics of open web environments, in which the

432 A. Barbir et al.

interacting parties are mostly unknown to each other, have lead to the devel-
opment of the trust negotiation approach as a suitable access control model
for this environment [4, 5].

Trust negotiation itself has been extended with adaptive access control,
in order to adapt the system to dynamically changing security conditions.
Automated negotiation is also being actively investigated in different applica-
tion domains, such as e-business. However, a common key requirement that
has been highlighted is the need of a flexible negotiation approach that en-
ables the system to dynamically adapt to changing conditions. In addition,
the integration of trust negotiation techniques with Semantic Web technolo-
gies, such as semantic annotations and rule-oriented access control policies,
has been proposed. In such approaches, the resource under the control of
the access control policy is an item on the Semantic Web, with its salient
properties represented as RDF properties. RDF metadata, managed as facts
in logic programming, are associated with a resource and are used to de-
termine which policies are applicable to the resource. When extending a
Web Service with negotiation capabilities, the invocation of a Web Service
has to be managed as the last step of a conversation between the client
and the Web Service itself. The rules for such a conversation are defined
by the negotiation protocol itself. Such a negotiation protocol should be de-
scribed and made publicly available in a similar way as a Web Service op-
eration is publicly described through WSDL declarations. An XML-based,
machine-processable negotiation protocol description allows an electronic
agent to automatically generate the messages needed to interact with the
Web Service.

The client and the Web Service must be equipped with a negotiation en-
gine that evaluates the incoming messages, takes decisions, and generates the
outgoing messages according to the agreed upon protocol. The models already
proposed for peer-to-peer negotiations assume that both parties are equipped
with the same negotiation engine that implements the mutually understood
negotiation protocol. This assumption might not, however, be realistic and
may prevent the wide adoption of negotiation-enhanced, access-control model
and mechanisms.

In the remainder of this section, we present a short overview of a system,
addressing those requirements, and then we discuss open research issues.

14.8.1 Ws-AC1: An Adaptive Access Control System
for Web Services

In order to address the adaptation and negotiation requirements, we propose
the use of a system that supports Web Service access control model and an
associated negotiation protocol as given in [6]. The proposed model, referred
to as Web Service Access Control Version 1 (Ws-AC1, for short) is based on
a declarative and highly expressive access control policy language.

14 Challenges of Testing Web Services 433

Such language allows one to specify authorizations containing conditions
and constraints not only against the Web Service parameters but also against
the identity attributes of the party requesting the service and context pa-
rameters that can be bound, e.g., to a monitor of the Web Service operating
environment. An additional distinguishing feature of Ws-AC1 is the range of
object-protection granularity it supports. Under Ws-AC1 the Web Service se-
curity administrator can specify several access control policies for the same
service, each one characterized by different constraints for the service param-
eters, or can specify a single policy that applies to all the services in a set.
In order to support such granularity, we introduce the notion of service class
to group Web Services. To the best of our knowledge, Ws-AC1 is the first
access-control model developed specifically for Web Services characterized by
articulated negotiation capabilities. A model like Ws-AC1 has important ap-
plications, especially when dealing with privacy of identity information of
users and with dynamic application environments. In order to represent the
negotiation protocol, an extension to the Web Services Description Language
standard has also been developed.

The main reason of that choice is that, although the Web Services Chore-
ography Description Language (WS-CDL) is the emerging standard for rep-
resenting Web Services interactions, WS-CDL is oriented to support a more
complex composition of Web Services in the context of a business process
involving multiple parties.

Ws-AC1 is an implementation-independent, attribute-based, access-control
model for Web Services, providing mechanisms for negotiation of service pa-
rameters. InWs-AC1 the requesting agents (also referred to as subjects) are
entities (human being or software agents). Subjects are identified by means
of identity attributes qualifying them, such as name, birth date, credit card
number, and passport number.Identity attributes are disclosed within access
requests invoking the desired service. Access requests to a Web Service (also
referred to as provider agent) are evaluated with respect to access control poli-
cies. Note that in its initial definition,Ws-AC1 does not distinguish between
the Web Service and the different operations it provides, i.e., it assumes that
a Web Service provides just a single operation. Such a model can be applied
to the various operations provided by a Web Service without any extension.
Access control policies are defined in terms of the identity attributes of the
requesting agent and the set of allowed service parameters values. Both iden-
tity attributes and service parameters are further differentiated in mandatory
and optional ones. For privacy and security purposes, access control policies
are not published along with the service description but are internal to the
Ws-AC1 system. Ws-AC1 also allows one to specify multiple policies at dif-
ferent levels of granularity. It is possible to associate fine-grained policies with
a specific service as well with several services. To this end, it is possible to
group different services in one or more classes and to specify policies referring
to a specific service class, thus reducing the number of policies that need to
be specified by a policy administrator. A policy for a class of services is then

434 A. Barbir et al.

applied to all the services of that class, unless policies associated with the
specific service(s) are defined.

Moreover, in order to adapt the provision of the service to dynamically
changing conditions, the Ws-AC1 policy language allows one to specify con-
straints, dynamically evaluated, over a set of environment variables, referred
to as context, as well as over service parameters. The context is associ-
ated with a specific service implementation and it might consist of moni-
tored system variables, such as the system load. The access control process
of Ws-AC1 is organized into two main sequential phases. The first phase
deals with the identification of the subject requesting the service. The sec-
ond phase, executed only if the identification succeeds, verifies the service
parameters specified by the requesting agent against the authorized service
parameters.

The identification phase is adaptive, in that the provider agent might even-
tually require the requesting agent to submit additional identity attributes in
addition to those originally submitted. Such an approach allows the provider
agent to adapt the service provisioning to dynamic situations;for example,
after a security attack, the provider agent might require additional identity
attributes to the requesting agents. In addition, to enhance the flexibility of
access control, the service parameter verification phase can trigger a negoti-
ation process. The purpose of this process is to drive the requesting agent
toward the specification of an access request compliant with the service spec-
ification and policies. The negotiation consists in an exchange of messages
between the two negotiating entities in order to limit, fix, or propose the au-
thorized parameters the requesting agent may use. The negotiation of service
parameters allows the provider agent to tailor the service provisioning to the
requesting agent preferences or, at the opposite, to enforce its own preferred
service provisioning conditions.

14.8.2 Open Research Issues

Even though Ws-Ac1 provides an initial solution to the problem of adaptive
access control mechanisms for Web Services, many issues need to be investi-
gated. A first issue is related to the development of models and mechanisms
supporting a comprehensive characterization of Web Services that we refer to
as Web Service profiles. Such a characterization should be far more expressive
than conventional approaches, like those based on UDDI registries or OWL.
The use of such profiles would allow one to specify more expressive policies,
taking into account various features on Web Services, and to better support
adaptation.

The second issue is related to taking into account the conversational nature
of Web Services, according to which interacting with real world Web Services
involves generally a sequence of invocations of several of their operations, re-
ferred to as conversation. Most proposed approaches, like Ws-AC1, assume
a single-operation model where operations are independent from each other.

14 Challenges of Testing Web Services 435

Access control is either enforced at the level of the entire Web Service or at
the level of single operations. In the first approach, the Web Service could
ask, in advance, the client to provide all the credentials associated with all
operations of that Web Service. This approach guarantees that a subject will
always arrive at the end of whichever conversation. However, it has the draw-
back that the subject will become aware of all policies on the base of which
access control is enforced. In several cases, policies need to be maintained
confidentially and disclosed only upon some initial verification of the identity
of the client has been made. Another drawback is that the client may have
to submit more credentials than needed. An alternative strategy is to require
only the credentials associated with the next operation that the client wants
to perform. This strategy has the advantage of asking from the subject only
the credentials necessary to gain access to the requested operation. However,
the subject is continuously solicited to provide credentials for each transition.
In addition, after several steps, the client may reach a state where it cannot
progress because of the lack of credentials. It is thus important to devise strate-
gies to balance the confidentiality of the policies with the maximization of the
service completion. A preliminary approach to such strategies has been re-
cently developed [2]; the approach is based on the notion of k-trustworthiness
where k can be seen as the level of trust that a Web Service has on a client at
any point of their interaction. The greater the level of trust associated with
a client, the greater is the amount of information about access control poli-
cies that can be disclosed to this client, thus allowing the client to determine
early in the conversation process if it has all necessary credentials to satisfy
the access control policies. Such approach needs, however, to be extended by
integrating it with an exception-based mechanism tailored to support access
control enforcement. In particular, in a step-by-step approach, whenever a
client cannot complete a conversation because of the lack of authorization,
some alternative actions and operations are taken by the Web Service.

A typical action would be to suspend the execution of the conversation,
ask the user to acquire the missing credentials, and then resume the execution
of the conversation; such a process would require investigating a number of
issues, such as determining the state information that need to be maintained,
and whether revalidation of previous authorizations is needed when resuming
the execution.

A different action would be to determine whether alternative operations
can be performed to replace the operation that the user cannot execute be-
cause of the missing authorization. We would like to develop a language ac-
cording to which one can express the proper handling of error situations arising
from the lack of authorization.

The third issue is related to security in the context of composite services;
in such a case, a client may be willing to share its credentials or other sensitive
information with a service but not with other services that can be invoked
by the initial service. To handle such requirement, different solutions may be
adopted, such as declaring the possible services that may be invoked by the

436 A. Barbir et al.

initial service or associating privacy policies with the service description, so
that a client can specify its own privacy preferences. Other relevant issues
concern workflow systems. Such systems represent an important technology
supporting the deployment of business processes consisting of several Web
Services and their security is thus crucial. Even though some initial solutions
have been proposed, such as the extension of the WS-BPEL [9] standards with
role-based access control [7], more comprehensive solutions are required, sup-
porting adaptive access control and sophisticated access-control constraints.

Finally, the problem of secure access to all information needed to use
services, such as information stored by UDDI registries, needs to be addressed.
To date, solutions have been developed to address the problem of integrity
through the use of authenticated data structures [8]. However, work is needed
to address the problem of suitable access control techniques to assure the
confidentiality and privacy of such information in order to support its selective
sharing among multiple parties.

14.9 Conclusion

Testing Web Services and security in an SOA environment is a discipline that
is still in its infancy. Experience gained from Web Development can be used as
a guiding principle for the development of testing strategies in the SOA world
at large. There are still many open areas that still need to be worked on. For
example, there are no standard mechanisms to share management information
between the various service providers. Faults in the Web Services stack are
more centered toward the SOAP message level. Current standards are not
designed with fault management in mind. Regression tests need enhancement,
coverage, and speed improvement to be able to cope with the testing scope of
composite services.

References

1. OASIS eXtensible Access Control Markup Language 2 (XACML) Version 2.0
OASIS Standard, 1 Feb 2005.

2. M. Mecella, M. Ouzzani, F. Paci, E. Bertino. Access Control Enforcement
for Conversational-based Services. Proceedings of 2006 WWW Conference,
Edimburgh, Scotland, May 23-26, 2006.

3. N. Damianou ,N. Dulay, E. Lupu and M. Sloman. The Ponder Policy Specifica-
tion Language. Proceedings of the 2nd IEEE International Workshop on Policies
for Distributed Systems and Networks, 2001.

4. T. Yu, M. Winslett, K. Seamons. Supporting Structured Credentials and Sensi-
tive Policies through Interoperable Strategies for Automated Trust Negotiation.
ACM Transactions on Information and System Security, Vol. 6, No. 1, February
2003.

5. E. Bertino, E. Ferrari, A.C. Squicciarini. X -TNL: An XML-based Language
for Trust Negotiations. Proceedings of the 4th IEEE International Workshop on
Policies for Distributed Systems and Networks, 2003.

14 Challenges of Testing Web Services 437

6. E.Bertino, A.C. Squicciarini, L.Martino, F. Paci. An Adaptive Access Control
Model for Web Services. International Journal of Web Service Research, (3),
27-60 July-September 2006.

7. E.Bertino, B.Carminati, E.Ferrari. Merkle Tree Authentication in UDDI Reg-
istries. International Journal of Web Service Research, 1(2): 37-57(2004).

8. E.Bertino, J.Crampton, F.Paci. Access Control and Authorization Constraints
for WS-BPEL. Submitted for publication.

9. OASIS Web Services Business Process Execution Language Version 2.0. Com-
mittee Specification, 31 January 2007

10. Schwarz, J, Bret Hartman B., Nadalin A, Kaler C., F. Hirsch, and Morrison S,
, Security Challenges, Threats and Countermeasures Version 1.0, WS-I, May,
2005, http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf

11. Barbir, A. Gudgin M and McIntosh M., , Basic Security Profile Version 1.0,
WS-I, May 2005, http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-
05-12.html

12. Nadalin, A., Kaler C., Hallam-Naker, P., Monzillo R., Web Services Se-
curity: SOAP Message Security 1.0, (WS-Security 2004), OASIS, March
2004, http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0.pdf

13. Web Services Security: SOAP Message Security 1.1, (WS-Security 2004),
OASIS, February 2006, http://www.oasis-open.org/committees/download.php
/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

14. Nadalin, A., Kaler C., Hallam-Naker, P., Monzillo R.,, Web Services Se-
curity: UsernameToken Profile 1.1,OASIS, February 2006, http://www.oasis-
open.org/committees/download.php/16782/wss-v1.1-spec-os-Username Token-
Profile.pdf

15. Nadalin, A., Kaler C., Hallam-Naker, P., Monzillo R., Web Services
Security: X.509 Certificate Token Profile 1.1, OASIS, February 2006,
http://www.oasis-open. org/committees/download. php/16785/wss-v1.1-spec-
os-x509TokenProfile.pdf

16. Monzillo R., Kaler C., Nadalin A., Hallam-Naker, P.,., Web Services Secu-
rity: SAML Token Profile 1.1, OASIS, February 2006, http://www.oasis-open.
org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf

17. Nadalin, A., Kaler C., Hallam-Naker, P., Monzillo R.,, Web Ser-
vices Security: Kerberos Token Profile 1.1, OASIS, February 2006,
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-
os-KerberosTokenProfile.pdf

18. Monzillo R., Kaler C., Nadalin A., Hallam-Naker, P., Web Services Secu-
rity: Rights Expression Language (REL) Token Profile 1.1, OASIS, February
2006, http://www.oasis-open.org/committees/download.php/16687/oasis-wss-
rel-token-profile-1.1.pdf

19. Hirsch, F., Web Services Security: SOAP Messages with Attach-
ments (SwA) Profile 1.1, OASIS, February 2006, http://www.oasis-
open.org/committees/download.php/16672/wss-v1.1-spec-os-SwAProfile.pdf

20. Signature Syntax and Processing, W3C Recommendation February 2002,
http://www.w3.org/TR/xmldsig-core/

21. XML Encryption Syntax and Processing, W3C Recommendation December
2002, http://www.w3.org/TR/xmlenc-core/

22. Nortel Unified Security Framework for corporate and government security, Nor-
tel, http://www.nortel.com/solutions/security/collateral/nn104120-051705.pdf

438 A. Barbir et al.

23. SOAP Version 1.2 Part 1: Messaging Framework, W3C, June 2003,
http://www.w3.org/TR/soap12-part1/

24. Simple Object Access Protocol (SOAP) 1.1, W3C Note, May 2000,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

25. Rescorla E., HTTP Over TLS, RFC 2818, May 2000.
26. Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001,

http://www.w3.org/TR/wsdl
27. Bloomberg, J., Schmelzer, R, Service Orient or Be Doomed!: How Service Ori-

entation Will Change Your Business, SBN: 0-471-79224-1, Wiley, May 2006.
28. Boyer, J., Exclusive XML Canonicalization Version 1.0, W3C, July 2002,

http://www.w3.org/TR/xml-exc-c14n/
29. Bray, T., Extensible Markup Language (XML) 1.0 (Third Edition), W3C,

February 2004, http://www.w3.org/TR/REC-xml/
30. The Transport Layer Security (TLS) Protocol,Version 1.1, RFC 4346, April

2006.
31. Demchenko, Y.,, Web Services and Grid Security Vulnerabilities and Threats

Analysis and Model, Grid Computing Workshop, 2005.
32. Nakamura, Y., Model-Driven Security Based on a Web Services Security Ar-

chitecture, Proceedings of the 2005 IEEE International Conference on Services
Computing (SCC’05), 2005.

33. Tarhini et al., Regression Testing Web Services-based Applications, Computer
Systems and Applications, March 8, Page(s):163 - 170, 2006.

34. Benharref A. et al, A Web Service Based-Architecture for Detecting Faults
in Web Services, IFIP/IEEE International Symposium on Integrated Network
Management 2005.

35. Bhoj, P. , Management of new Federated Services, Integrated Network Manage-
ment V., 1997.

36. Weiping He, Recovery in Web Service Applications, Proceedings of the 2004
IEEE International Conference on e-Technology, e-Commerce and e-Service
(EEE’04), 2004.

37. Papazoglou, M. and Heuvel, W., Web Services Management: A Survey, IEEE
Internet Computing, November 2005.

38. Bertolino A. and Polini A., The Audition Framework for Testing Web Ser-
vices Interoperability, Proceedings of the 2005 31st EUROMICRO Conference
on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05),
2005. 30. Karjoth, G., Service-oriented Assurance: Comprehensive Security by
Explicit Assurances, Publications of the Network Security and Cryptography
Group, 2005.

39. Tsai, W., Ray Paul R., Weiwei S. and Cao Z.,, Coyote: An XML-Based Frame-
work for Web Services Testing, 7th IEEE International Symposium on High
Assurance Systems Engineering (HASE’02), 2002.

40. Yuan Rao, Y., Feng, O, Han, J., and Li, Z.,, SX-RSRPM: A Security Integrated
Model For Web Services, Proceedings of the Third International Conference on
Machine Learning and Cybernetics, Shanghai, 26-29 August 2004.

41. Bruno, M., Gerardo, C., and Di Penta, M., Using Test Cases as Contract to En-
sure Service Compliance across Releases, Proc. 3rd Int’l Conf. Service Oriented
Computing (ICSOC 2005), LNCS 3826, Springer, 2005, pp. 87-100.

42. Tsai, W., Paul, R, Cao, Z., L. Yu, L., A. Saimi, A. and B. Xiao, B., . Verification
of Web Services using an enhanced UDDI server. In Proc. of WORDS 2003,
pages 131-138, Jan., 15-17 2003. Guadalajara, Mexico.

14 Challenges of Testing Web Services 439

43. Tsai, W., Paul R., Wei S. and Cao Z. Scenario-based Web Service testing
with distributed agents. IEICE Transaction on Information and System, E86-
D(10):2130-2144, 2003.

44. Xu, W., Offutt, J., Juan Luo, J., Testing Web Services by XML Perturbation,
Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering (ISSRE’05), 2005.

45. Yu, W., Supthaweesuk, P., and Aravind, D. Trustworthy Web Services Based
on Testing, Proceedings of the 2005 IEEE International Workshop on Service-
Oriented System Engineering (SOSE’05), 2005.

46. Mei H. and Zhang L., A Framework for Testing Web Services and Its Supporting
Tool, Proceedings of the 2005 IEEE International Workshop on Service-Oriented
System Engineering (SOSE’05), 2005.

47. Canfora G. and Di Penta M., Testing Services and Service-Centric Systems:
Challenges and Opportunities, IT Pro Published by the IEEE Computer Society,
April 2006.

48. Zapthink, www.zapthink.org
49. Fox A. and D. Patterson D., When does fast recovery trump high reliability?

In 2nd Workshop on Evaluating and Architecting Systems for Dependability
(EASY), 2002.

50. Candea G. and A. Fox A., Crash-only software. In 9th Workshop on Hot Topics
in Operating Systems, 2003.

51. Candea G. Et, Microreboot-a technique for cheap recovery. In Proceedings of
the 6th Symposium on Operating Systems Design and Implementation, 2004.

52. Gray J., Why do computers stop and what can be done about it? In 5th Sym-
posium on Reliability in Distributed Systems, 1986.

53. OASIS SOA Reference Model TC. Reference model for service-oriented archi-
tecture 1.0. Technical report, OASIS, 2006.

54. Fielding, R., Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. Dissertation. University Of California, Irvine, 2000.

55. K. Vaidyanathan, K. et al., Analysis and implementation of software rejuvena-
tion in cluster systems. In SIGMETRICS ’01: Proceedings of the 2001 ACM
SIGMETRICS international conference on Measurement and modeling of com-
puter systems, pages 62-71, New York, NY, USA, 2001. ACM Press.

56. OASIS (www.oasis-open.org) Web Services Reliable Exchange Technical Com-
mitte (WS-SX). 49. W3C (www.w3.org) WS-Policy WG.

57. IBM; The Enterprise Privacy Authorization Language (EPAL 1.1) - Reader’s
Guide to the Documentation.

58. OASIS eXtensible Access Control Markup Language 2 (XACML) Version 2.0
OASIS Standard, 1 Feb 2005.

59. T. Yu, M. Winslett, K. Seamons. Supporting Structured Credentials and Sensi-
tive Policies through Interoperable Strategies for Automated Trust Negotiation.
ACM Transactions on Information and System Security, Vol. 6, No. 1, February
2003.

60. OASIS (www.oasis-open.org) WS-BPEL TC.
61. Mecella, M., Ouzzani, M., Paci, F., Bertino, E. Access Control Enforcement for

Conversation-based Web Services. Proceedings of the 2006 WWW Conference,
Edinburgh, Scotland, May 23-26, 2006.

62. Bertino, E., Crampton J.,, and Paci F. Access Control and Authorization Con-
straints for WS-BPEL. Submitted for publication.

440 A. Barbir et al.

63. Bertino, E., B. Carminat, and E. Ferrari, E. Merkle Tree Authentication in
UDDI Registries. International Journal of Web Service Research, 1(2): 37-57
(2004).

64. Liberty Alliance Project - Introduction to the Liberty Alliance Identity Archi-
tecture Revision 1.0 March, 2003

