
12

Reliability Modeling and Analysis
of Service-Oriented Architectures

Vittorio Cortellessa1 and Vincenzo Grassi2

1 Universita’ dell’Aquila, cortelle@di.univaq.it
2 Universita’ di Roma Torvergata, vgrassi@info.uniroma2.it

Abstract. Service selection and composition are central activities in service-oriented
computing, and the prediction of the QoS attributes of a Service-Oriented Architec-
ture (SOAs) plays a key role to appropriately drive these activities. Software com-
position driven by QoS criteria (e.g., optimization of performance, maximization of
reliability) has been mostly studied in the Component-Based Software Engineering
domain, whereas methodological approaches are not well established in the service-
oriented area. Indeed, prediction methodologies for service-oriented systems should
be supported by automated and efficient tools to remain compliant with the require-
ment that most of the activities connected with service discovery and composition
must be performed automatically. Moreover, the adopted implementation should
respect the autonomy and independence of each provider of the services we want to
include in our analysis. In this chapter we focus on the modeling and analysis of the
reliability attribute in Service-Oriented Architectures, with particular emphasis on
two aspects of this problem: (i) the mathematical foundations of reliability model-
ing of a Service-Oriented Architecture as a function of the reliability characteristics
of its basic elements and (ii) the automatization of service composition driven by
reliability criteria.

12.1 Introduction

Designing and building software systems by composition is one of the dis-
tinguishing features of the component-based and service-oriented approaches.
Several methodologies and techniques have been proposed to drive the assem-
bly of software systems from pre-existing components/services [16]. In partic-
ular, in the domain of software services, the automation of service discovery,
selection and composition plays a key role to fully enable a service-oriented
vision.

However, current proposals for the automated assembly of service-oriented
systems are mostly based on criteria related to functional features, such as
the minimal distance between the descriptions of required and offered services,



340 V. Cortellessa and V. Grassi

despite the high relevance that QoS attributes (such as performance and avail-
ability) may have in this type of systems.

In a service market vision, the delivered QoS plays an important role in
determining the success of a service provider [6]. In this respect, an impor-
tant issue is how to assess the QoS delivered by a service, for instance its
performance or dependability characteristics. Delivering QoS on the Internet
is by itself a critical and significant challenge, because of its dynamic and
unpredictable nature. Assessing the delivered QoS of Service-Oriented Archi-
tectures (SOAs) is even more challenging, given the emphasis on dynamically
binding service requests with the available services and resources in a given
context.

QoS attributes are undeniably harder to take into account with respect to
functional ones also because they relate to factors that rarely enter the soft-
ware development process, such as the operational profile. Approaches have
been introduced for service selection and assembly that also consider QoS
attributes, but the selection is based, in best cases, on intelligent agents, in
most other cases on empirical estimations and/or on the developers’ experi-
ence, thus lacking model-based automated support [20]. It is also true that
special skills are often required to model QoS attributes of software systems,
due to the mathematical aspects and modeling intricacies that must be often
faced in this domain.

In the context of SOA-based applications, the QoS assessment involves
both monitoring the actual QoS experienced by a client, and predicting the
QoS that could be experienced in some context. In particular, QoS prediction
may play a crucial role either to drive the selection of services to be assem-
bled to fulfill a given request, or to foresee potential QoS problems caused
by changes in the application environment and to support corrective actions
(e.g., re-binding to a different service provider). In other words, the ability
of predicting QoS would allow to answer crucial questions on SOA, such as
“What the reliability of my service-oriented architecture would be if I select
this given set of services?” or “How would the performance of my architecture
be affected from replacing a certain service with another one?”

A real breakthrough in this area would therefore be brought from the
introduction of modeling techniques that allow to predict QoS properties of
an SOA on the basis of features of the services involved, thus in practice
extending the mechanisms successfully applied to functional aspects.

Modeling the overall QoS of an SOA-based application on the basis of
properties of the component services may require very different efforts, de-
pending on the QoS property we are interested in. In this respect, an inter-
esting classification of QoS properties has been presented in [10] in the field
of component-based software systems. Most of the ideas presented in [10] can
be applied to the SOA domain.

However, a main issue for the QoS analysis of SOA is the parameter estima-
tion. The properties of basic services are not easily made available from service
providers. Thus, monitoring/estimation techniques are needed to “populate”



12 Reliability Modeling and Analysis of Service-Oriented Architectures 341

QoS models with values of basic service characteristics (such as the probability
of failure). In Sect. 12.3.2 we shortly discuss this aspect.

In this chapter we focus on the modeling and the analysis of the reliability
property of SOA, with a special emphasis on two aspects of this problem:
(i) the mathematical foundations of reliability modeling of a service-oriented
architecture as a function of the reliability characteristics of its basic elements
and (ii) the automatization of service composition activity driven by reliability
criteria.

According to the classification in [10], based on the capability of assembling
a system-level model starting from characteristics of basic elements (such as
components or services), the reliability is defined as an usage-dependent at-
tribute, i.e., an attribute which is determined by the system usage profile. This
means, in the SOA domain, that the service developers and assemblers must
predict as far as possible the use of the service in different systems, which
may not yet exist. A second problem is the transfer of the usage profile from
the assembly (or from the system) to the service. Even if the usage profile on
the assembly level is specified, the usage profile for the services is not easily
determined especially when the assembly is not known.

The chapter is structured as follows: in Sect. 12.2 we shortly introduce
the basic concepts of reliability theory; in Sect. 12.3 we discuss specific issues
of reliability in SOA and review related work; in Sect. 12.4 we introduce a
model for reliability of SOA along with an algorithm for its evaluation, then
in Sect. 12.5 we propose an implementation of this algorithm complying with
the SOA principles of decentralization and autonomy; in Sect. 12.6 we use the
example described in the Introduction of this book to present an application
of our reliability model, and finally in Sect. 12.7 we provide some conclusions.

12.2 Software Reliability Basics

Reliability is a specific aspect of the broader concept of dependability [3].
Other dependability aspects are, e.g., availability and safety. Reliability specif-
ically refers to the continuity of the service delivered by a system. In this
respect, two basic definitions of reliability can be found in the literature: (i)
the probability that the system performs its required functions under stated
conditions for a specified period of time [19] and (ii) the probability that
the system successfully completes its task when it is invoked (also known as
“reliability on demand”) [12].

The definition in (i) refers in particular to “never ending” systems that
must operate correctly over all the duration time of a given mission (e.g., the
on-board flight control system of an airplane that should not fail during the
enitre duration of a flight). The definition in (ii) refers to systems offering
services that, once invoked, must be successfully completed.

Both definitions can be applied to systems at whatever level of granularity
(e.g., a distributed software system, a software component, a software service,



342 V. Cortellessa and V. Grassi

etc.), whose correctness can be unambiguously specified. A correct behavior is
intended here as a “failure-free” one, where the system produces the expected
output for each input following the system specifications.3

However, “failure-free” only refers to what can be observed at the system
output level. A system may in fact experience a certain degree of incorrectness
without showing any failure. This assertion is easily understandable on the
basis of three fundamental reliability concepts: fault , error , and failure. A
fault is a wrong statement introduced somewhere in the software.4 An error is
an unexpected state in which a system may enter upon executing a fault (e.g.,
an internal variable assumes an unexpected value). A failure occurs when an
error propagates up to the system output (e.g., an output variable assumes
an unexpected value).

The presence of a fault in a system does not necessarily imply that the
system eventually experiences an error. In fact, a wrong statement might not
be executed, even in a very long interval of time, due to the structure of
the code and the sequence of inputs given. And, even if executed, the wrong
statement could not originate any unexpected value of the internal variables.5

Moreover, a system in an erroneous state does not necessarily manifest a
failure, because the error may be masked from the operations that are executed
between the erroneous state and the output production.

Failures can be classified with respect to different attributes. With respect
to the way a failure manifests itself, they can be partitioned as follows:

• Regular failure—A failure that manifests itself as an unexpected value of
any system output.

• Crash failure—A failure that immediately brings the system to stop its
elaboration; systems that only account for this type of failure are also
known as fail-and-stop systems.

• Looping failure—A failure that prevents the system to produce any (cor-
rect or incorrect) output; this type of failure is particularly problematic
because it may take some time to assess that the system has failed under
such a failure.

With respect to their severity, failures can be partitioned as follows:

• Repairable failure—A failure that can be somehow repaired without restart-
ing the whole system.

• Unrepairable failure—A failure that requires the system to be restarted to
restore its correct behavior.

3 We assume readers are familiar with basics of reliability theory; however, we
redirect those interested to details on this topic to [19].

4 For sake of tractability, we consider in this chapter only software faults, even
though the reliability of SOAs may be affected by hardware faults as well.

5 For example, both statements y = x ∗ 2 and y = x2 produce the result y = 4
when x = 2.



12 Reliability Modeling and Analysis of Service-Oriented Architectures 343

Each reliability model undergoes several hypotheses on the types of failures
that the modeled system can experience. Obviously, the less restrictive the
hypotheses are the more complicated is the model formulation. Note, however,
that the attributes specified above are not independent of each other, e.g., a
crash failure cannot be repairable.

12.3 Specific Reliability Issues in SOA

Reliability models of modular software systems aim at formulating the re-
liability of the whole system as a function of the reliabilities of the basic
elements. This idea is behind models for object-oriented, component-based,
service-based systems and, in general, any system that can be viewed as an
assembly of basic elements.

In this section we discuss specific issues for the modeling and estimation
of the service reliability in SOA-based systems.

First of all, we note that the definition (ii) of reliability on demand given in
Sect. 12.2 appears more suitable than definition (i) within the SOA domain,
since it finely matches with the expectation and the degree of trustworthiness
a user may have about a service. On the basis of this definition of reliability,
in the following subsections we discuss, respectively, of

• the additional information that must be provided to support reliability
analysis of SOAs;

• the estimation of this information in an SOA environment;
• the viewpoint that can be assumed in the SOA reliability analysis (i.e.,

client vs provider viewpoint);
• the failure model that we adopt in the modeling of SOA reliability.

In the last subsection of this section, we review existing work that is related
to this chapter topic. Given the lack of specific reliability models for service-
based systems, we take a wider view on software systems that are built by
assembling basic elements, such as components.

12.3.1 Information to Support SOA Reliability Analysis

In an SOA environment, services are expected to publish information needed
to correctly invoke them over the network. This information, expressed by
a suitable language like WSDL [30], includes the name of the provided op-
erations, and the name and type of their input and output parameters. To
support predictive analysis of some QoS attribute like the service reliability,
each service must also publish QoS-related information.

This raises the question about which information should be published to
better support QoS predictive analysis. In this perspective, it is important to
note that a basic principle of the SOA paradigm is that each composition of



344 V. Cortellessa and V. Grassi

services may become itself a service that can be recursively used to build other
services. As a consequence, it is useful to distinguish two kinds of service:

1. Atomic service that does not require any other service or resource to
carry out its own task; this includes, e.g., not only the services offered by
basic processing and communication resources, but also “self-contained”
software services strictly tied to a particular computing environment and
that cannot be re-deployed;

2. Composite service, realized as a composition of other selected services that
it requires to carry out its own tasks; the glue logic of this composition
may be expressed using workflow description languages like BPEL [31].

From the reliability prediction viewpoint (but the same consideration holds
for other QoS attributes), the basic difference between these two kinds of ser-
vices is that the provider of an atomic service can publish complete reliability
information that can be directly used by the clients to figure out the service
reliability, while the provider of a composite service is only aware of reliability
information concerning the part of the service implementation which is under
his/her direct control (we call it as the service internal segment). This in-
formation must be combined with the reliabilities of the other (dynamically)
selected services to get the overall service reliability.

In order to properly combine these reliabilities, attention must be paid to
give the right weight to the reliability of each single service: a rarely invoked
service has obviously a smaller impact on the reliability of the invoking service
than a frequently used one. Hence, besides knowing which services are required
by a composite service, we must also take into account how they are used (i.e.,
we must know the service operational profile).

Therefore, to support the reliability prediction of a service composition,
we need the following information on each service6:

• Internal reliability (both atomic and composite services), i.e., a reliability
measure that expresses the probability of successfully completing some
task considering only the internal segment of the service; in the case of
an atomic service it corresponds to the actual service reliability, whereas
in the case of a composite service it must be suitably combined with the
reliabilities of the invoked services;

• Service usage profile (composite services only), i.e., a description of the
pattern of external service requests expressed in a stochastic form (also
known as operational profile); e.g., if a certain service may invoke two
alternative services for completing its task (depending on the user inputs)
then the probability of each service invocation is an element of the service
usage profile.

6 In Sect. 12.5 we present an architecture in which providers have three alternative
approaches to disclose this information.



12 Reliability Modeling and Analysis of Service-Oriented Architectures 345

12.3.2 Estimation of Additional Information

In an ideal scenario, the internal reliability of a service shall be associated
to the service description at the time the provider publishes the service on a
registry. On the contrary, the service usage profile is a very domain-dependent
information, therefore it cannot be a priori estimated.

However, in a more realistic scenario, the information described in
Sect. 12.3.1 can be estimated by monitoring the service activity.

In particular, with regard to the service usage profile, the structure of the
composite service workflow (expressed with a service composition language
like BPEL) provides information about the possible invocation patterns of
external services. To estimate the probability of different patterns, we must
basically monitor the relative frequencies of the different branches at each
workflow branching point, and collect such data over an adequate number of
different invocations of the composite service.

On the other hand, the internal reliability can be estimated as the ratio
between the number of service invocations and the number of failures that
occur. We point out that, in the case of a composite service, the failures
that should be recorded at a composite service site are those generated by
the internal segment of the service. Collecting failure statistics about the used
external services could not be significant, as at different time instants we could
bind to different implementations of the same abstract service and, given the
autonomy principle of the SOA environment, we are not generally aware of
these changes.

However, methods for the estimation of the probability of failure of soft-
ware components and the usage profile (in component-based systems) have
been reviewed in [12], and are extensively discussed in [11].

12.3.3 Client vs Provider Viewpoint of Reliability

We may adopt two different perspectives in the assessment of the reliabil-
ity of a service in an SOA framework, depending on whether we look at
services from the client or provider viewpoint. This is generally not an is-
sue in traditional distributed systems, where the network and other envi-
ronment components are under the control of a single organization. On the
contrary, in an SOA environment, the reliability information published by a
service provider is likely to concern only what can be observed at the ser-
vice site and does not include information about the reliability of the net-
work infrastructure used to access the service, which is generally out of the
provider control. On the other hand, from the perspective of the client of
a service, this information must be integrated into the overall reliability as-
sessment procedure, as the used network infrastructure may greatly affect
the reliability perceived by the user. Neglecting this information could lead
to poor predictions about the overall reliability of a service. We point out,



346 V. Cortellessa and V. Grassi

however, that all the above considerations can be extended to other QoS
attributes.

In some cases, a reference to the network used to access a remote service
could be explicitly expressed in the workflow of a composite service, e.g., when
the latter explicitly intends to use networking functionalities offered through
some service-oriented interface (like in OSA/Parlay [29]) by a network service
provider. This could facilitate the inclusion of network reliability information
in the overall reliability model, assuming that a network service publishes its
reliability information like any other service. If the network services needed
to access remote services are not explicitly mentioned in a composite service
workflow, their use should be made explicit at the reliability modeling level.
However, the assignment of a meaningful reliability value to the network ser-
vices could be more problematic in this case, as it could not be clear at the
composite service level which kind of network is going to be used (possibly
some kind of “best effort” network).

However, if the provider does not publish any data about the service
reliability then the client can refer to trusted third-parties to collect this
information [5].

12.3.4 Failure Models for SOA

As reported in Sect. 12.2, failures can be classified as regular, crash, and
looping failures according to the way they manifest themselves, while they
can be classified as repairable or non-repairable failures according to their
severity.

Crash failures are the simplest ones to model from the reliability viewpoint,
as they lead to the complete system failure as soon as they occur. In this
respect, it is worth noting that it has been argued, based on an analysis of
existing systems, that components and services for Internet-based systems
should be designed to be “crash-only” [7].

On the other hand, regular failures causes the generation of incorrect out-
put values. As discussed in Sect. 12.2, the incorrect output generated by an
inner service invoked within the workflow of a composite service does not gen-
erally imply the overall failure of the composite service itself. This is due to
the possibility that the inner service failure does not propagate up to the com-
posite service outputs because some other service on the path to the output
is able to mask the error. Hence, to include regular failures in the reliability
analysis of SOA-based systems would require to take into account the error
maskability factor, i.e., the capability for a service to map an incorrect input
to a correct output. This factor can be ignored by assuming that any regular
failure occurring in an inner service always propagates to the composite ser-
vice outputs. This simplifies the analysis but could lead to overly pessimistic
estimations of the overall reliability.

With regard to the failure repairability we note that, given the definition
of reliability on demand that we have adopted, repairable failures are not



12 Reliability Modeling and Analysis of Service-Oriented Architectures 347

actually a concern. Indeed, a repairable failure does not prevent, by definition,
the correct termination of a service, and hence does not affect its reliability on
demand. Nevertheless, it may affect other quality attributes like the service
performance (because the repair leads to a “degraded” mode of operation) or
availability (because of service interruption during the repair).

Finally, we point out that many existing reliability analysis methodologies
for service- or component-based systems rely on the assumption of indepen-
dence among the system components. When applying these methodologies in
an SOA framework we must be careful about the validity of such an assump-
tion. Indeed, it may happen that originally independent services are assembled
in such a way that they exploit some common service, so becoming no longer
independent. However, considering the impact of service sharing on reliability
is not an easy task.

12.3.5 Related Work

The scientific literature has produced several interesting approaches to the
modeling of reliability in modular software systems based on characteristics
of modular units. Most of them can be somehow adapted to the case of service-
based systems, but the adaptation may bring to loose peculiarities of SOA like
the ones discussed in the previous subsections. Due to the lack of specific ap-
proaches for SOA, in this subsection we briefly present the major contributions
in the wider field of modular software systems.

Hence, the originality of this chapter with respect to the existing work is
to build a reliability model for SOA that takes into account the specifics of
service-based systems.

A thorough review of reliability modeling in the field of software archi-
tectures can be found in [12], where architectural models are partitioned as
follows: (i) path-based models, where the reliability of an assembly of com-
ponents is calculated starting from the reliability of architectural paths; (ii)
state-based models, where the reliability is calculated starting from the relia-
bility of system states and from the transition probabilities among states.7

One of the main differences between these two types of models emerges
when the control flow graph of the application contains loops. State-based
models analytically account for the infinite number of paths that might exist
due to loops. Path-based models require instead an explicit enumeration of
the considered paths; hence, to avoid an infinite enumeration, the number of
paths must be somehow restricted, e.g., to the ones observed experimentally
during the testing phase or by limiting the depth traversal of each path. In
this respect, the methodology we propose in Sect. 12.4 adopts a state-based
model.

As said in Sect. 12.3.4, the impact of service sharing on SOA reliability may
be consistent, even though modeling this aspect is not an easy task. In fact, it
7 Quite often state transitions are triggered by the control flow between system

components.



348 V. Cortellessa and V. Grassi

falls under the more general problem of modeling error propagation in modular
software systems [1]. Most of the existing models do not consider the impact
of error propagation on the estimation of the system reliability due to the
extremely high complexity of finding closed-form formulations to the problem.

Models for the reliability estimation of a component-based system embed-
ding the error propagation and the error maskability factors have been recently
presented in [14] and [22], which are based on quite different failure models. In
[14] it is assumed that an error arising within a component does not cause an
immediate failure, but it can rather propagate to other components up to the
system output, unless it is masked before reaching the output. On the other
hand, in [22] it is assumed that each error arising within a component imme-
diately causes a system failure and, at the same time, it can also propagate to
other components affecting their failure probability. This latter failure model,
based on the contemporary assumption of immediate failure and propagation
to other components, deserves in our opinion further investigation about its
significance.

Quite interesting work has been done in other topics somehow related
to the SOA reliability. In particular, we provide several seminal references
for readers interested to the following topics: ontologies for QoS [21, 23, 27],
representing QoS in UML [28], monitoring QoS in SOA [4], and Service Level
Agreement in SOA [17, 18].

12.4 A Model for Predicting the Reliability of SOAs

Any reliability prediction methodology for SOA-based applications must be
compliant with the specific constraints and requirements of this environment.
In particular, this means that prediction methodologies must be implemented
by automated and efficient tools to remain compliant with the requirement
that most of the activities connected with service discovery and composition
must be performed automatically. Moreover, the implementation of a method-
ology should meet the openness and distribution characteristics of SOAs. This
implies that it should respect the autonomy of each provider of the services
involved in the reliability prediction.

In order to address these automation and efficiency issues, in this section
we tackle them by proposing an algorithmic reliability analysis methodology.
Assuming that, in general, an offered service is built as a composition of
other services, the methodology is based on the service assembly structure
and exploits reliability information published by each assembled service in its
description. In Sect. 12.5, we propose an architecture for the implementation
of this methodology that supports different degrees of autonomy among the
providers of the services involved in a composition. In this methodology, we
take into account all the SOA specific issues outlined in Sect. 12.3.

The failure model we adopt is the “fail-stop with no repair” model. Hence,
we only consider crash failures that occurs within a service component and



12 Reliability Modeling and Analysis of Service-Oriented Architectures 349

lead to the service interruption. The methodology can be applied as well to
regular failures that does not cause service interruption, under the hypothesis
that each error generated by a service always propagates up to the system
output.

We do not consider repairs because, as discussed in Sect. 12.3, they are
basically not relevant in the reliability on demand analysis. However, this
model does not imply that we are assuming repairs never occur within the
system. Simply, we are restricting our attention to those failures that cannot
be repaired, as our focus is on the system reliability.

A key element of this methodology is the definition of a suitable model for
the information associated with each service that concerns its internal relia-
bility, and, in case of a composite service, the pattern of requests addressed to
other services. We use a unique model to represent both these types of infor-
mation, and assume that the QoS-related information of a service is published
by means of an instance of this model.

12.4.1 A Model Based on Internal Reliability
and Service Usage Profile

The model is based on a probabilistic flow graph, where each node of the
graph models a “stage” of the service execution that must be completed be-
fore a transition to the next node can take place. Each stage may include
the request for one or more external services. The flow graph includes two
special nodes, a Start node that represents its entry point and an End node
with no outgoing transitions, representing the successful completion of the ser-
vice. This flow graph can be considered as a representation “distilled” from
some description of the service workflow (e.g., expressed using a language like
BPEL), and enriched with statistical information needed to support reliability
prediction.

Transitions from node to node of the flow graph follow the Markov prop-
erty, where p(i, j) denotes the probability that stage j is selected after the
completion of stage i. This kind of transition rule basically models (in a prob-
abilistic way) a sequential flow of control. We introduce other kinds of control
flows in our model by allowing more than one external service request to be
specified within each node. In this case, before a transition to the next stage
can take place, the service requests associated with node i must be com-
pleted according to a specified completion model. In the current version of
our methodology, we consider two possible completion models:

1. AND model – all the service requests included in node i must be completed
to enable a transition to the next stage.

2. OR model – at least one of the service requests included in node i must
be completed to enable a transition to the next stage.

The AND model allows to represent a request for the parallel execution of
a set of services, as expressed, e.g., “by the flow” control construct of BPEL



350 V. Cortellessa and V. Grassi

(corresponding to a fork-join execution pattern) [31]. The OR model allows
to represent a race among different service requests, as expressed, e.g., “by
the pick” control construct of BPEL (where one out of several activities is
non-deterministically selected) [31]. It can also be used to model the presence
of fault-tolerance features, where different instances of a service are tried until
at least one of them succeeds. We are planning to include in our methodology
other completion models (e.g., “k out of n”).

Besides the pattern of requests addressed to other services, we also embed
in this flow graph information about the internal reliability of a service, by
associating with each node i of the graph a failure probability intf(i), that
represents the probability of a failure occurrence during the execution of that
stage. This probability concerns only the internal segment of the service de-
scribed by the flow graph. In general, intf(i) may be expressed as a real valued
function of suitable parameters (e.g., the probability of a failure occurrence
when a processing service is invoked may depend on the number of operations
to be processed). The Start and End nodes have zero failure probability, as
they do not correspond to any real activity.

This flow graph can be used to model information on the reliability of
atomic as well as composite services. As the example in Fig. 12.1a shows,
an atomic service can be modeled by a flow graph consisting of only one
node (besides the Start and End nodes), which does not contain any request
for external services. Thus, the single node of this graph only reports an
intf value. In particular, the flow graph in Fig. 12.1a models the reliability
characteristics of a computing resource that offers a processing service. Figure
12.1b depicts an example of flow graph for a composite service that includes

Fig. 12.1. Representation of the internal failure probability and service usage pro-
file of a service by a probabilistic flow graph: (a) flow graph of an atomic service
(processing service with exponential failure rate depending on the number n of oper-
ations to be processed), (b) flow graph of a composite service (at node 2, nop is the
number of operations whose execution is requested to the two processing services)



12 Reliability Modeling and Analysis of Service-Oriented Architectures 351

requests for external services. It consists of two alternative stages 1 and 2,
followed by a final stage 3. At stage 1, no external service is requested: this
stage may model the execution of “locally implemented” operations, and the
corresponding value of intf(1) models their failure probability (i.e., 0.00001).
On the other hand, at stage 2 two external processing services are requested,
with an OR completion model. This stage may model the request for the
remote execution of some code provided by the service, where the value intf(2)
models the intrinsic failure probability of that code (i.e., 0.00015) that must
be combined with the failure probabilities of the selected processing services
to get the overall reliability. The OR completion model of this stage models
the use of a fault-tolerant approach in its design, since it is sufficient that
only one of the two service requests succeeds to make the invoking service
able to continue its execution. Finally, stage 3 models the request for another
external service (i.e., a database service in this example).

12.4.2 An Algorithm for Model Evaluation

Given this model, we can now present our evaluation methodology, where we
adopt a client-side perspective which means, as discussed in Sect. 12.3, that
we include in the reliability evaluation of a service also the reliability of the
network used by the client to access the service.

For this purpose, let us introduce the following notation:

• Relcli(S) – the probability that a service S is able to complete its task, as
seen by a client invoking S.

• Relpro(S) – the probability that a service S is able to complete its task,
as seen by the provider of S.

• Relnet(S) – the reliability of the network used to access a service S, when
it is invoked by a client.

• Pfail(i) – the probability of a failure occurrence before the completion of
stage i of a given service.

• p∗S(Start, End) – probability of reaching, in any number of steps, the End
state of the flow graph associated with S, starting from its Start state.8

Given this notation, the client-side reliability of a service S can be ex-
pressed as follows, once its provider-side reliability and the reliability of the
network used to access S are known:

Relcli(S) = Relnet(S) · Relpro(S) (12.1)

Using the flow graph model defined above, we can calculate Relpro(S) in
(12.1) as follows:

Relpro(S) = p∗S(Start, End) (12.2)

8 We remind that, under the fail-and-stop assumption, reaching the End node
means that there have been no failures in the execution path.



352 V. Cortellessa and V. Grassi

p∗S(Start, End) can be calculated by standard results from the Markov
processes theory [24]. However, to get a meaningful result, we must elaborate
transition probabilities on the flow graph before calculating p∗S(Start, End).
Indeed, each transition probability p(i, j) associated with an outgoing arc from
a node i is an information about how frequently a stage j is executed after a
stage i. For reliability prediction purposes, this information must be weighed
by the probability (1−Pfail(i)) that no failure occurs before the completion of
stage i. Hence, to calculate expression (12.2), we must first calculate Pfail(i)
for each stage i of the flow graph of S.

The calculation of Pfail(i) is immediate when i does not contain any re-
quest for external services. This is the case of a single-stage flow graph as-
sociated with an atomic service, whose Relpro(S) (given by (12.2)) can be
immediately calculated. In all other cases we enter a recursive process, as to
calculate Pfail(i) we must first calculate the reliability of all the services Sk

requested by S at stage i. In this respect, we point out that S is the “client”
of the services Sk. Hence, the reliability of the generic Sk to be used in the
evaluation of Pfail(i) is Relcli(Sk), which can be calculated using expressions
(12.1) and (12.2).

Once the Relcli(Sk) reliabilities are known, we can combine them with
intf(i), according to the completion model of i, to calculate the overall
Pfail(i). By adapting the results that we have presented in [13], Pfail(i) can
be expressed as follows for the OR completion model:

Pfail(i) = (12.3)

= 1 − (1 − intf(i))(1 −
∏

Sk

(1 − Relcli(Sk)))

= 1 − (1 − intf(i))(1 −
∏

Sk

(1 − Relnet(Sk) · Relpro(Sk)))

= 1 − (1 − intf(i))(1 −
∏

Sk

(1 − Relnet(Sk) · p∗Sk
(Start, End)))

For AND completion model we instead have

Pfail(i) = (12.4)

= 1 − (1 − intf(i))
∏

Sk

Relcli(Sk)

= 1 − (1 − intf(i))
∏

Sk

Relnet(Sk) · Relpro(Sk)

= 1 − (1 − intf(i))
∏

Sk

Relnet(Sk) · p∗Sk
(Start, End)

Expressions (12.3) and (12.4) hold under the assumption that all the Sk’s
requested at stage i are independent. As pointed out in Sect. 12.3, this assump-
tion could not hold in an SOA environment. However, taking into account all



12 Reliability Modeling and Analysis of Service-Oriented Architectures 353

the possible inter-dependencies is really challenging. In [13] we have analyzed
a restricted dependency scenario, where all the service requests at stage i are
actually invocations of the same service S′ offered by a single resource. This
scenario occurs, e.g., when we allocate n software components to the same pro-
cessing resource, thus requesting the same processing service offered by that
resource. Under this scenario, we have shown in [13] that expression (12.4) still
holds, with

∏
Sk

Relnet(Sk)·p∗Sk
(Start, End) = (Relnet(S′)·p∗S′(Start, End))n,

where n is the number of invocations of S′. On the contrary, expression (12.3)
is no longer valid, and must be substituted by the following expression:

Pfail(i) = 1 − (1 − intf(i))Relnet(S′) · p∗S′(Start, End) (12.5)

The intuition behind (12.5) follows from the stopping failure and no repair
assumptions. If all the Sk’s invocations are actually invocations of the same
service, then its failure prevents the possibility of trying other alternatives.
Hence, the “OR-reliability” of n invocations of S′ is equal to the simple reli-
ability of S′. Using (12.3) instead of (12.5) when this scenario occurs would
lead to an underestimation of the service reliability.

The recursive Algorithm 1 summarizes all the operations described above.
Given the flow graph fg(S) associated with a service S, the algorithm returns
the provider-side reliability of S.

Algorithm 1 Model evaluation algorithm: double Rel-pro-Alg(fg(S))
1: for each node i in fg(S) (except the Start and End nodes) do
2: if(i does not include any request for external services)
3: then Pfail(i) = intf(i)
4: else
5: for each Sk requested in i do
6: netk = reliability of the network used to invoke Sk

7: get fg(Sk)
8: rk = netk· Rel-pro-Alg(fg(S)) //recursive step
9: endfor

10: case CompletionModel:
11: OR : Pfail(i) = 1 − (1 − intf(i))(1 −

∏
k(1 − rk)) // expression

(12.3)
12: AND : Pfail(i) = 1 − (1 − intf(i))

∏
k rk // expression (12.4)

13: endcase
14: endif
15: for each outgoing transition from i to j with probability p(i, j) do
16: replace p(i, j) with (1 − Pfail(i)) · p(i, j)
17: endfor
18: endfor
19: return absorption probability in the End node of the discrete time Markov

process described by fg(S), calculated using standard Markov process solution
techniques



354 V. Cortellessa and V. Grassi

Step 11 of this algorithm relies on the independence assumption discussed
above. If this assumption does not hold and the conditions of the “single
service sharing” scenario occurs, then step 11 must be modified according to
expression (12.5). Step 8 is the recursive step. The recursive call returns the
provider-side reliability of Sk. To turn it into the client-side reliability (as it is
perceived at the S site), this reliability must be multiplied by the reliability of
the network used to access Sk. The bottom of the recursion is reached when S
is an atomic service. In this case, steps 5–13 are skipped, and the calculation
of step 19 is greatly simplified as fg(S) consists of only one node, plus the
Start and End nodes.

12.5 Analyzing Reliability in the SOA Framework

In this section we discuss issues concerning the implementation, in an SOA
environment, of the methodology presented in Sect. 12.4.

The methodology relies on the assumption that each provider of a compos-
ite service collects and publishes information concerning the service internal
structure that consists of (i) the external services it exploits, (ii) how they are
glued together, and (iii) how frequently they are invoked. In Sect. 12.4 we have
presented a data structure (i.e., a flow graph) which able to represent all this
information. We remark here that the construction of such a data structure
can be completely automated. Indeed, with regard to the flow graph structure
(i.e., nodes and edges that connect them), it can be easily extracted from the
executable workflow description of a composite service. For example, if the
workflow is expressed in BPEL, which is an XML-based language, we can use
XML navigation libraries, like JDom [32], to implement this algorithm. With
regard to the flow graph parameters (i.e., branching probabilities and internal
failure probability at each node), they can be estimated through monitoring
activities, as discussed in Sect. 12.3.2.

However, according to the decentralization and autonomy principles of
the SOA paradigm, the provider of a composite service (which could be in
turn required to build a new composition) might want to adopt different
transparency policies in revealing this information and in selecting the services
his/her own service requires. In the following we present an architecture that
implements the methodology described above, still remaining compliant with
the SOA autonomy and decentralization principles.9 For this purpose, we
identify three possible policies that cover the spectrum of different autonomy
degrees (from high to low):

1. No transparency—The provider reveals only information about the overall
(possibly parametric) service reliability. This policy implies that it is up
to the provider to select the services to be assembled when the service
is invoked, and to calculate the resulting reliability. A provider adopting

9 The content of this section is based on results presented in [15].



12 Reliability Modeling and Analysis of Service-Oriented Architectures 355

this policy wants to maintain full autonomy in the selection of services
required by his/her service, without disclosing any information about its
architecture.

2. Partial transparency—The provider reveals both the service internal reli-
ability and its usage profile of other external services, but autonomously
decides the external services to select. This policy implies that it is up
to the provider to select the services to be assembled, while it is up
to the invoker of the composite service to calculate its overall reliabil-
ity. A provider adopting this policy wants to maintain full autonomy
in the selection of services required by his/her service, but does not
want to bear the burden of evaluating the resulting overall reliability
(maybe because he/she selects services according to different criteria than
reliability).

3. Total transparency—The provider reveals both the internal reliability and
the usage profile of the service, indicating only the kind of services that
should be selected, without actually selecting them. This policy implies
that it is totally up to the user of the composite service to select the ser-
vices to be assembled and to calculate the resulting reliability. A provider
adopting this policy actually provides only a service template consisting of
some glue logic that connects services to be selected, and does not want
to bear the burden of both selecting those services and evaluating the
resulting reliability.

Figure 12.2 illustrates the SOA compliant architecture in which we propose
to implement the reliability prediction methodology of Sect. 12.4. The building
blocks of this architecture are

• an implementation of the Rel-pro-Alg() (which, in an SOA environment,
could be itself defined as a particular type of service, called RelServ in
Fig. 12.2);

• an operation GetFlowGraph(S) that returns the flow graph describing the
behavior of a service S. Note that this operation could be included within
the ones offered in a Web accessible S interface; it is the responsibil-
ity of the S provider to build and parameterize the flow graph, using
his/her knowledge of the S structure and the results of monitoring the S
execution.

A client of a service S who wants to get a prediction about the service
reliability must first call the GetFlowGraph(S) operation, and then invoke the
RelServ service, passing to it the obtained flow graph as a parameter. The
result returned by RelServ must then be combined with the reliability of the
network the client uses to access S, according to expression (12.1).

In this architecture, the fulfillment of the three different policies listed
above is guaranteed by the implementation of the GetFlowGraph(S) operation
(which is under the control of the S provider) as follows:



356 V. Cortellessa and V. Grassi

Fig. 12.2. The RelServ service architecture. The path (2b, 3b, 4b, 5b) describes
the distributed part of this architecture (scenario b): the request from RelServ to
get the flow graph of Si1 causes the invocation of another instance of the reliability
prediction service (RelServ k); the flow graph returned to RelServ is actually the
“collapsed” version of the “true” flow graph, so that RelServ gets no knowledge
about Si1 except for its overall reliability. The path (2c, 3c) describes the internally
recursive realization of RelServ (scenario c): the reliability of Si2 is recursively
calculated by RelServ itself, since only the usage profile of Si2 is returned to RelServ ;
in this way, RelServ gets knowledge about the internal realization of Si2

a) S is an atomic service – GetFlowGraph(S) returns the (single node) flow
graph associated with S ;

b) S is a composite service whose provider adopts a “no transparency” pol-
icy – GetFlowGraph(S) builds and returns a flow graph consisting of a
single stage that expresses the overall reliability of S; this “collapsed” flow
graph is built by “privately” invoking a (possibly different) instance of
RelServ (i.e., RelServk in Fig. 12.2). In this way, the invoker of GetFlow-
Graph(S) gets only information about the overall S reliability;

c) S is a composite service whose provider adopts a “partial or total trans-
parency” policy – GetFlowGraph(S) returns the “true” flow graph describ-
ing the internal structure of S. In this way, the invoker of GetFlowGraph(S)
gets information about the internal reliability and usage profile of S.

We point out that the flow graph fg(S), that RelServ receives as input
to calculate the reliability of a service S, must explicitly specify the services
that S invokes during its execution. This information is necessary to contact
these services and get the corresponding reliability information (i.e., step 7
of the Algorithm 1). These services are determined by means of a suitable
selection procedure. If the provider of S adopts a “no transparency” or “par-
tial transparency” policy, then this selection is carried out by the provider.
Otherwise, it must be carried out by the one that is requesting the evaluation
of the S reliability. In both cases, this procedure must in general be carried



12 Reliability Modeling and Analysis of Service-Oriented Architectures 357

out each time we want to evaluate the reliability of S. Indeed, given the dy-
namic nature of an SOA environment, the same abstract service (i.e., the type
of inner service required at a certain stage of execution of a composite ser-
vice) could be bound to different concrete services (i.e., Internet accessible
implementations of an abstract service). This is due to the possibility that
either previously accessible concrete services could be no longer available, or
new concrete services could have emerged. A discussion on how to set up a
service selection procedure is beyond the scope of this chapter, and a quite
rich literature exists about this topic [2, 8, 9, 25, 26]. We only remark that
the reliability analysis methodology presented here can be used to support
such a selection procedure, by comparing the reliability of different available
concrete services.

Given this implementation of the GetFlowGraph(S) operation, we get a
mixed recursive/distributed implementation of the recursive algorithm Rel-
pro-Alg() of Sect. 12.4. The distributed implementation occurs when RelServ
executes step 6 of Rel-pro-Alg() under the scenario b described above, since
this in general involves a call, on behalf of GetFlowGraph(), to a different
RelServ instance. The true recursion occurs when step 6 is executed under
scenario c; in this case RelServ must first solve the Markov processes as-
sociated with the services invoked by S, before solving the Markov process
associated with S.

Finally, it is worth noting that, in this architecture, if a single-node flow
graph is received as a result of a GetFlowGraph(S) call, then there is no
need to be aware whether this is occurring under scenario a or b. Hence,
besides allowing a service provider to select the preferred autonomy level, this
architecture allows also to not revealing the autonomy policy that has been
actually selected, thus preserving the “privacy” of each provider.

12.6 A Case Study

In this section we apply our modeling framework to a slightly modified and
simplified version of the scenario outlined in the introductive chapter of this
book. In particular, we consider the “travel planning” part of this scenario.

We assume that John, to plan his trip, invokes an Internet accessible Trip-
Planner service. This service allows John to specify his preferences and con-
straints about the trip, and supports him in an interactive way in the selection
and booking of everything he could need during this trip.

Figure 12.3 shows a possible workflow of this service. As shown, Trip-
Planner invokes several other services to carry out its task. Given the user
preferences and constraints, it first invokes a specialized HotelSelection ser-
vice that returns a possible list of hotels for the site of interest, with their
corresponding features. Looking at these features, John selects an hotel. As
the information provided by HotelSelection could not be up to date, Trip-
Planner checks (by contacting the HotelInfo service of that hotel) whether



358 V. Cortellessa and V. Grassi

TripPlanner(preferences, constraints) (S1):

invoke HotelSelection(preferences, constraints) [S2]

get hotel from hotelList

invoke HotelInfo(hotel, preferences, constraints) [S3]

ok ?
no

invoke HotelReservation(hotel, room) [S4]

yes

no

invoke ResturantSelection(hotel) [S5]

yes

yes

no

invoke RestaurantReservation(restaurant, date, n)
[S8]

get restaurant from
restaurantList

invoke AttracriontReservation(attraction, date, n)
[S9]

get attraction from
attractionList

yes

no

displayplan

credit card
error

ok ?

other ?

invoke AttractiontSelection(hotel) [S6]

more ?

Fig. 12.3. A workflow for the TripPlanner service



12 Reliability Modeling and Analysis of Service-Oriented Architectures 359

the listed features are really present (e.g., the swimming pool, even if present,
could be closed). When a selection has been finalized, TripPlanner invokes
the HotelReservation service of the selected hotel to make a reservation, pro-
viding the John’s credit card number. HotelReservation, in turn, invokes the
CreditCardManager service of the credit card company to check whether the
card is valid. In the positive case, the booking is completed and TripPlanner
asks John whether he wants to reserve some attractions or restaurants in the
site he is going to visit. Also in this case, TripPlanner relies on two special-
ized services (i.e., RestaurantSelection and AttractionSelection) to get a list of
possible attractions and restaurants close to the hotel that has been selected.
Given these lists, John selects one or more attractions or restaurants. After
that, TripPlanner displays the complete trip plan.

Figure 12.4 depicts the workflows of other services invoked in the Trip-
Planner scenario. TripPlanner is in fact a composite service that exploits
other services. One of the invoked services (i.e., HotelReservation) is, in turn,
a composite service, as it invokes another service to carry out its task.

To predict the reliability of a given composition of such services, the
provider of each of such services has to “distill” from its workflow the flow
graph described in Sect. 12.4, parameterizing it with suitable transition prob-
abilities and failure probabilities (possibly estimated through a monitoring
activity).

Figure 12.5 depicts possible flow graphs associated with some of the ser-
vices included in our scenario. For example, we can see that most (except
the last one) of the stages in TripPlanner flow graph have an internal failure
probability equal to zero. This means that the reliability of this service will
mostly depend on the reliability of the services it invokes and of the network
it uses to contact them. For example, we could assume that John starts his
session with TripPlanner while he stays at work (thus using a reliable wired

Hotel Selection (preferences,constraints) (S2):

prepare hotel List

return hotel List

Restaurant Selection (site) (S5):

prepare restaurant List prepare attraction List

return restaurant List return attraction List

Attraction Selection (site) (S6):

Hotel Reservation (hotel,room) (S4):

invoke Credit Card Manager (card_no,amount)[S7]

return result

Credit Card Manager (card_no,amount) (S7):

check account

return check status

Fig. 12.4. Workflows of services invoked from TripPlanner



360 V. Cortellessa and V. Grassi

Fig. 12.5. Flowgraphs of services in the TripPlanner scenario

Internet connection), but he completes the last part of the session (attrac-
tion and restaurants reservation) while he is going back home using public
transportation (thus using a less reliable wireless connection).

Given this scenario, the Algorithm 1 can be executed on the flow graphs
shown in Fig. 12.5 to retrieve at what extent the reliability of the wireless
network affects the overall reliability of the system.

12.7 Conclusions

In this chapter, we have introduced the problem of modeling and analyzing
reliability of Service-Oriented Architectures. We have raised the main issues
related to this problem that fall, on one hand, in the general problem of
composing QoS attributes in modular software systems and, on the other end,
in the specific constraints and requirements of the SOA environment such as
automation support and provider autonomy.

Upon introducing very basic reliability concepts, we have presented a
model for SOA reliability and an algorithm to evaluate our model. Finally, we
have described a service implementation of our methodology.

We have tried to open a window on the actual possibility of pursuing
model-based automated prediction of QoS attributes in SOAs. In fact we
retain that these practices have not yet entered the development and assembly



12 Reliability Modeling and Analysis of Service-Oriented Architectures 361

process mostly for lack of automated supports, and we hope that the research
community will spend more efforts in future in this direction, because very
good results can be at hand in the next few years in the field of model-based
QoS in SOAs.

References

1. H. Ammar , D. Nassar, W. Abdelmoez, M. Shereshevsky, A. Mili, “A Frame-
work for Experimental Error Propagation Analysis of Software Architecture
Specifications”, Proc. of International Symposium on Software Reliability En-
gineering (ISSRE’02), 2002.

2. Ardagna, D., Pernici, B., “Global and Local QoS Guarantee in Web Service
Selection”, Proc. of Business Process Management Workshop, 2005.

3. A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr, “Basic Concepts and Tax-
onomy of Dependable and Secure Computing”, IEEE Trans. on Dependable
and Secure Computing, Vol.1, no.1, January-March 2004, pp. 11–33.

4. L. Baresi, C. Ghezzi, S, Guinea, “Smart monitors for composed services”, Proc.
of 2nd International Conference on Service Oriented Computing (ICSOC’04),
2004.

5. B. Bhusha, J. Hall, P. Kurtansky, B. Stiller, “Operations Support System
for End-to-End QoS Reporting and SLA Violation Monitoring in Mobile Ser-
vices Environment”, Quality of Service in the Emerging Networking Panorama,
LNCS 3266, 2004.

6. R. Buyya, D. Abramson, J. Giddy, H. Stockinger, “Economic models for re-
source management and scheduling in Grid computing”, Concurrency and Com-
putation: Practice and Experience, Vol. 14, 2002, pp. 1507–1542.

7. G. Candea, A. Fox, “Crash-only software”, Proc. of the 9th Workshop on Hot
Topics in Operating Systems, 2003.

8. Canfora, G., Di Penta, M., Esposito, R., Villani, M. L., “An Approach for QoS-
aware Service Composition Based on Genetic Algorithms”, Proc. of Genetic and
Computation Conference, 2005.

9. F. Casati, M. Castellanos, U. Dayal, M.C. Shan, “Probabilistic, Context-
sensitive, and Goal-oriented Service Selection”, Proc. of 2nd International Con-
ference on Service Oriented Computing (ICSOC’04), 2004.

10. I. Crnkovic, M. Larsson, O. Preiss, “Concerning Predictability in Depend-
able Component-Based Systems: Classification of Quality Attributes”, Proc.
of Workshop on Architecting Dependable Systems (WADS’04), 2004.

11. S. Gokhale, W.E. Wong, J.R. Horgan, K. Trivedi, An analytical approach to
architecture-based software performance and reliability prediction, Performance
Evaluation, n.58 (2004), pp. 391–412.

12. K. Goseva-Popstojanova, A.P. Mathur, K.S. Trivedi, “Architecture-based ap-
proach to reliability assessment of software systems”, Performance Evaluation,
no. 45 (2001), pp. 179–204.

13. V. Grassi, “Architecture-based Reliability Prediction for Service-oriented Com-
puting”, Architecting Dependable Systems III (R. de Lemos, A. Romanovsky,
C. Gacek Eds.), LNCS 3549, Springer-Verlag, 2005, pp. 279–299.



362 V. Cortellessa and V. Grassi

14. V. Grassi, V. Cortellessa, “Embedding error propagation in reliability modeling
of component-based software systems”, Proc. of International Conference on
Quality of Software Architectures (NetObjectDays’05), 2005.

15. Grassi, V., Patella, S., “Reliability Prediction for Service-Oriented Comput-
ing Environments”, IEEE Internet Computing, Volume 10, Issue 3 (2006),
pp. 43–49.

16. Inverardi, P., Scriboni, S., “Connectors Synthesis for Deadlock-Free
Component-Based Architectures”, Proc. of Automated Software Engineering
Conference (ASEÃ01), 2001.

17. H. Ludwig, A. Keller, A. Dan, R. Franck, and R.P. King, “Web Service Level
Agreement (WSLA) Language Specification”, IBM Corporation, July 2002.

18. Ludwig, H., Dan, A., Kearney, R. Cremona, “An Architecture and Library
for Creation and Monitoring of WS-Agreements”, Proc. of 2nd international
conference on service oriented computing (ICSOC’04), 2004.

19. M.R. Lyu (Editor), “Handbook of Software Reliability Engineering”, IEEE
Computer Society Press, 1996.

20. Maximilien, E.M., Singh, M.P., “Toward Autonomic Web Services Trust and
Selection”, Proc. of International Conference on Service Oriented Computing
(ICSOC’04), 2004.

21. I.V. Papaioannou, D.T. Tsesmetzis, I.G. Roussaki, M.E. Anagnostou, “A QoS
Ontology Language for Web-Services”, Proc. of the 20th International Confer-
ence on Advanced Information Networking and Applications (AINA’06), Vol. 1,
2006.

22. P. Popic, D. Desovski, W. Abdelmoez, B. Cukic, “Error propagation in the
reliability analysis of component based systems”, Proc. of International Sym-
posium on Software Reliability Engineering (ISSREÃ05), 2005.

23. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller, “A Concept for QoS
Integration in Web Services”, Proc. of the 4th International Conference on Web
Information Systems Engineering Workshops (WISEWÃ03), 2003.

24. H.C. Tijms, “Stochastic models: an algorithmic approach”, John Wiley and
Sons, 1994.

25. Yu, T. and Lin, K. J., “Service Selection Algorithms for Web Services with
End-to-End QoS Constraints”, Journal of Information Systems and E-Business
Management, vol.3, no.2, July 2005.

26. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.,
“QoS-Aware Middleware for Web Services Composition”, IEEE Trans. Software
Engineering, vol.30, no.5, August 2004.

27. C. Zhou, L.T. Chia, B.S. Lee, “DAML-QoS Ontology for Web Services”, Proc.
of IEEE International Conference on Web Services, 2004.

28. “UML Profile for Modeling Quality of Service and Fault Tolerance Character-
istics and Mechanisms”, OMG Adopted Specification, ptc/2004-06-01, 2004.

29. “Parlay Web Services Overview”, The Parlay Group: Web Services Working
Group, Version 1.0, Oct. 2002, on line at: www.parlay.org.

30. “Web Services Description Language 1.1”, W3C Note, March 2001,
http://www.w3.org/TR/wsdl.

31. “Business Process Execution Language for Web Services 1.1”, http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/.

32. www.jdom.org


