
11

Assumption-Based Composition
and Monitoring of Web Services

Marco Pistore and Paolo Traverso

ITC-IRST
Via Sommarive 18, Povo, 38050 Trento, Italy
[pistore,traverso]@itc.it

Abstract. We propose an approach to the automated synthesis and the run-time
monitoring of web service compositions. Automated synthesis, given a set of existing
component services that are modeled in the BPEL language, and given a compo-
sition requirement, generates a new BPEL process that, once deployed, interacts
with the components to satisfy the requirement. The composition requirement ex-
presses assumptions under which component services are supposed to participate in
the composition, as well as conditions that the composition is expected to guaran-
tee. Run-time monitoring matches the actual behaviors of the service compositions
against the assumptions expressed in the composition requirement, and reports vi-
olations. We describe the implementation of the proposed approach, which exploits
efficient synthesis techniques, and discuss its scalability and practical applicability.

11.1 Introduction

Service composition is one of the key ideas underlying web services and service-
oriented applications: composed services perform new functionalities by inter-
acting with component services that are available on the web. The automated
synthesis of composed services is one of the key tasks that can significantly
support the design and development of service-oriented applications. Given a
set of component services and a description of the interaction protocols that
one has to follow in order to exploit them (e.g., in BPEL [3]), and given a
composition requirement, the problem is to automatically synthesize a com-
posed service that, once deployed, interacts with the components to satisfy
the requirements.

Beyond composition requirements and component descriptions, in real life
scenarios, key elements of the problem are the so-called choreographic assump-
tions, i.e., assumptions under which the component services are supposed to
participate in the composition. Such assumptions may not be necessarily en-
coded in the descriptions of each component service. For instance, an assump-
tion between an on-line shop and an electronic payment service can represent
the agreement that the bank will always accept to process a request for a

308 M. Pistore and P. Traverso

money transfer, even if the interaction protocol may allow for a refusal of the
request from the bank. Similarly, a reasonable agreement may be that it is
always possible to cancel an order before paying for it, even if the interface
description of the service may allow for a refusal of cancellations even before
paying. Together with the description of the interactions with the available
components, the choreographic assumptions constitute, therefore, the envi-
ronment in which the composed service has to operate. As a consequence, the
automated synthesis task should take them into account.

Beyond influencing the synthesis at design time, assumptions should also
be monitored at run-time. Run-time monitoring should match the actual be-
haviors of service compositions against the assumptions, and report viola-
tions. This is a compelling requirement in service-oriented applications, which
are most often developed by composing services that are made available by
third parties, and which are autonomously developed and managed. Moreover,
monitors are also needed to detect those problems that can emerge only at
run-time. This is the case, for instance, of situations that, even if admissible
in general at design time, must be promptly revealed when they happen, e.g.,
the fact that a bank refuses to transfer money to a partner on-line shop, even
if this was part of an agreement.

While there have been several works on the automated synthesis of web
services, see, e.g., [33, 27, 12, 41, 37], and several works on monitoring web
services, see, e.g., [5, 30], much less emphasis has been devoted to the problem
of the “assumption-based synthesis and monitoring of web services,” i,e., to
the problem of automatically generating composed services by possibly taking
into account assumptions at design time, which are then monitored at run-
time.

In this chapter, we address this problem: given a formal composition re-
quirement, given a set of component service descriptions in BPEL, and given
a set of choreographic assumptions expressed in temporal logic, we synthe-
size automatically an executable BPEL process that, once deployed, satisfies
the composition requirement, as well as a set of Java monitors that report
at run-time possible assumption violations. The automated generation of the
composed BPEL process takes into account the choreographic assumptions
during the synthesis, by discarding behaviors that violate them during the
search for a solution. We synthesize a composed service that is not supposed
to work and to satisfy the requirements in the case some assumptions are vio-
lated. A first advantage of this assumption-based synthesis is that the search
for a solution may be simpler and scale up to more complex problems than
the previous approach, since assumptions can be used to prune the search
space (see, e.g., [2]). But, more important, this approach is mandatory in the
case the composition only exists under the choreographic assumptions. This
means that the assumptions are so crucial that, if they are violated, the com-
position does not make sense. In these cases, assumption-based synthesis and
monitoring is the only viable solution.

11 Assumption-Based Composition and Monitoring of Web Services 309

The chapter is structured as follows. We start with a motivating example
(Sect. 11.2) and with a conceptual architecture for automated composition
and monitoring (Sect. 11.3). The next two sections describe our approach
to assumption-based synthesis (Sect. 11.4) and monitoring (Sect. 11.5). We
conclude with an evaluation of the approach (Sect. 11.6) and an analysis of
related works (Sect. 11.7).

11.2 Motivating Example

As motivating example, we consider a virtual travel agency (VTA) that offers
a transportation and accommodation service to clients, by interacting with
three external services: one for booking flights, another for booking hotel
rooms, and a third one for managing the payment (Fig. 11.1). When the
agency receives a request from a client for a travel to a given location and
period of time, it contacts the flight service. If available flights are found, the
flight service returns an offer including the cost. Similarly, the agency contacts
the hotel service and asks for a hotel room for the period of permanence in
the desired location. If flight and hotel are both available, then the agency
prepares and sends to the client an aggregated offer, which includes travel and
accommodation, and sends it to the client. If the client decides to accept the
offer, then she/he sends payment information (e.g., the credit card number) to
the agency, which starts the payment procedure interacting with the payment
service. Eventually, the flight and hotel services will receive a confirmation of
the payment, and will emit electronic tickets that the agency will forward to
the client.

In this chapter, we assume that BPEL [17] is used to describe the behavior
of the involved services. BPEL provides an operational description of the
(stateful) behavior of web services on top of the service interfaces defined
in their WSDL specifications. A BPEL description identifies the partners of
a service, its internal variables, and the operations that are triggered upon
the invocation of the service by some of the partners. Operations include
assigning variables, invoking other services and receiving responses, forking

VTA

Payment

Hotel

Flight

Fig. 11.1. The virtual travel agency example

310 M. Pistore and P. Traverso

parallel threads of execution, and non-deterministically picking one amongst
different courses of actions. Standard imperative constructs such as if-then-
else, case choices, and loops, are also supported.

BPEL can describe a web service at two different levels of abstraction.
An executable BPEL model describes the actual behavior of a participant in
a business process in terms of the internal activities and of the interactions
undertaken with the partners. In an abstract BPEL model, instead, only the
interface behavior of a service is described. That is, only the flow of mes-
sages exchanged with the other parties is defined, without revealing internal
behaviors.

In this example, flight, hotel, and payment services are the external ser-
vices. We assume, therefore, that their abstract BPEL specifications are avail-
able and can be downloaded from the web. These specifications describe the
interaction protocols that the agency is expected to respect when interacting
with the external services. In Fig. 11.2 we see the graphical descriptions of
the BPEL processes for the flight, the hotel, and the payment service. We
also assume that the protocol that the VTA follows in the interactions with
the client is given as an abstract BPEL specification, which we also repre-
sent in Fig. 11.2. This protocol has to be considered an additional input to
the composition, as it defines the interactions with the fourth partner of the
VTA, namely its user. Notice that, in Fig. 11.2, transitions whose labels start
with a “?” correspond to inputs received by the service, while labels starting
with a “!” denote outputs of the service. Labels starting neither with “?” nor
with “!” are internal actions of the protocol and correspond, for instance, to
decisions or other private computations.

When automated web service composition techniques like those described
in [41] are applied in this framework, the executable BPEL process of the VTA
is generated automatically starting from the abstract BPEL specifications of
the component services and from a composition requirement that specifies the
goal of the composite process. In our example, the composition requirement
specifies that the goal of the agency is to “sell holiday packages,” i.e., to find a
suitable flight and a suitable hotel for the client, and to manage the payment
procedure. Achieving this goal means leading the interaction protocols with
flight, hotel, payment service, and client to the successful final states (the
states marked with SUCC in Fig. 11.2). However, there are cases in which the
goal “sell holiday packages” cannot be achieved by the VTA: it might be that
there are no flights or rooms available, the client may not accept the offer,
the payment procedure may fail, etc. In all these cases, the VTA should at
least guarantee that there are “no pending commitments” at the end of the
execution: i.e., the VTA has to avoid the cases where a flight or a room are
booked, if the client has not accepted or is not able to pay for them. If one
of the interaction protocol fails, then we have to guarantee that all of them
terminate in failure states (i.e., final states not marked with SUCC). The
composition requirement for the VTA is hence something like “do whatever

11 Assumption-Based Composition and Monitoring of Web Services 311

VTA CLIENT PROTOCOLPAYMENT SERVICE PROTOCOL

! ack

SUCCFAIL

SUCC

! cancel_vacation

NA

check_cc

? payment_request(cc,amount)

START START

! vacation_request(from,to,date)

? vacation_not_avail
? offer(f_info,h_info,cost)

decide_buy

! payment_info(cc)

! nack

? tickets(f−ticket,h_ticket)

FAIL

CANCELLED
? payment_failed

FLIGHT BOOKING PROTOCOL

? flight_request(from,to,date)

check_flight_avail

? cancel_flight

CANCELLED

NA

START

! flight_not_avail ! flight_offer(info,cost)

! canc_refused

decide_cancel

! flight_ticket(e−ticket)

SUCC

! flight_canc_accepted

NA

START

HOTEL BOOKING PROTOCOL

? hotel_request(loc,date)

check_hotel_avail

! hotel_not_avail ! hotel_offer(info,cost)

! hotel_ticket(e−ticket)

SUCC

CANCELLED

? confirm_hotel
? cancel_hotel

Fig. 11.2. Abstract BPEL protocols

possible to ‘sell holiday packages,’ but if something goes wrong guarantee that
there are ‘no pending commitments’.”

In Fig. 11.3 we report a possible executable BPEL process that implements
the VTA and satisfies the composition requirement just described. One can
notice that the BPEL process behaves as an orchestrator that interacts with
the flight, the hotel, the payment services, and the user according to the

312 M. Pistore and P. Traverso

 ? vacation_request(from,to,date)

 ! flight_request(from,to,date)

 ! hotel_request(to,date)! vacation_not_avail

? flight_not_avail

? hotel_not_avail

? flight_offer(f_info,f_cost)

? hotel_offer(h_info,h_cost)

! vacation_not_avail

? payment_info(cc)

 ! payment_request(cc,f_cost+h_cost)

! offer(f_info,h_info, f_cost+h_cost)

? ack

! tickets(f−ticket,h_ticket)

? flight_ticket(f−ticket)

! confirm_hotel

? hotel_ticket(h−ticket)

? nack

! payment_failed

! cancel_hotel

! cancel_flight

? flight_canc_accepted

VTA COMPOSITE SERVICE

? cancel_vacation

Fig. 11.3. Composite BPEL process for the VTA

protocols in Fig. 11.2, and directs and interleaves these interaction is a suitable
way, in order to guarantee the achievement of the composition requirement.

In many cases, it is necessary or convenient to restrict the behaviors of
the external services (hotel, flight, payment) with additional assumptions on
their behaviors which are not implied by the abstract BPEL specifications.
This is the case also for our scenario. Indeed, consider the behavior of the
Flight service in case of a cancellation request: the BPEL specification simply

11 Assumption-Based Composition and Monitoring of Web Services 313

specifies that the request can be accepted or refused by the service. However,
we may know, for instance from a service level agreement, that the flight can-
cellation is granted whenever the payment of the requested flight has not yet
been done. We remark that the composition reported in Fig. 11.3 is based
on this assumption: when a cancel flight is issued by the VTA, the only
expected outcome is an approval of the cancellation. More in general, without
this assumption, it would not be possible for the VTA to achieve its composi-
tion requirement: indeed, if a flight offer has been obtained, but the user is not
interested in the package returned by the VTA, then it would be impossible
for the VTA to guarantee the possibility of canceling it, as requested by the
“avoid pending commitments” requirement.

Besides being used to restrict the possible behaviors of the component
services, our framework exploits these assumptions at run-time. Assumption
monitors, which can be automatically generated from the specification of the
assumptions, are executed in parallel with the composed BPEL process so as
to check if the assumptions are respected during execution. Indeed, if the flight
service violates our assumption, and refuses to cancel a flight even before the
payment, the violation has to be detected and reported, since it will prevent
the VTA from achieving its goal.

Monitoring is not limited to those assumptions that we use to restrict the
valid behaviors at composition time. Indeed, it may be useful to have moni-
tors also for additional assumptions that we did not exploit for generating the
composition. Consider, for instance, the assumptions that rooms are guaran-
teed to be available if the request is done sufficiently in advance, or that flight
availability is guaranteed for VIP clients, or also that the payment procedure
will always succeed for “gold” credit cards, etc. These assumptions do not
need to be exploited to obtain a correct composition. Still, it is important for
the VTA to monitor them, since their violation may lead to loose clients.

Finally, an implicit assumption of the VTA on the component processes
is that they respect the flow of interactions described in their abstract BPEL
specification. This violation can happen, for instance, due to evolutions in the
implementations of the external services, or also due to malicious external
parties. In our framework, domain monitors, which detect violations of the
specified protocols in the actual interactions with external services, can be
automatically generated from the abstract BPEL specifications.

11.3 The Framework

Figure 11.4 depicts the design-time and run-time environments in our frame-
work.

11.3.1 Design-Time Environment

The Design-Time Environment has two main components, a Composer and
a Monitor Generator. The Composer can be used to automatically generate

314 M. Pistore and P. Traverso

Console AdminAdmin Extended
Console

M
ediator

Queue
Manager

Engine

RTM

Process Monitor
Inventory

Process
Instance Instance

Monitor

Generator
Monitor
Domain

Monitor
Generator

Inventory

Assumptions Component Services

Assumptions

Goal
Composition

E
nv

iro
nm

en
t

Process

M
on

ito
rin

g
E

nv
iro

nm
en

t
R

un
−

T
im

e
E

xe
cu

tio
n/

Manager

BPEL

D
es

ig
n−

T
im

e
Composer

Fig. 11.4. Design-time and run-time execution/monitoring environments

the executable BPEL processes implementing the composed service. It takes
in as input the component services and a composition goal. The component
services are abstract BPEL specifications that are available on the web, and
they can be seen as the environment the composed service has to interact
with. The composition goal specifies requirements on the composed service.
The composer can also take advantage of assumptions about the behavior of
component services, in order to prune the search for a composed service. The
composition task performed by the Composer is further analyzed in Sect. 11.4.

The second component of the Design-Time Environment is the Monitor
Generator, which is composed of a core component, the Domain Monitor
Generator, and the Assumption Monitor Generator, which is built upon the
generator of domain monitors. The algorithms run by these modules are de-
scribed in detail in Sect. 11.5.

11.3.2 Run-Time Environment

The Run-Time Execution/Monitoring Environment runs in parallel executable
BPEL processes (for instance, the composite services generated at design time)
and Java monitors (also possibly generated by the monitor generator). In
our approach, monitors observe BPEL process behaviors by intercepting the
input/output messages that are received/sent by the processes, and signal
some misbehavior or, more in general, some situation or event of interest. In
Fig. 11.4, the components on the left-hand side constitute the BPEL process
execution environment, while the monitor run-time environment consists of
the components on the right-hand side. For the BPEL process execution en-
vironment, we have chosen a standard engine for executing BPEL processes.

11 Assumption-Based Composition and Monitoring of Web Services 315

Among the existing BPEL engines, we chose Active BPEL [1] for our experi-
ments, since it is available as open source, and since it implements a modular
architecture that is easy to extend. From a high-level point of view, the Ac-
tive BPEL run-time environment can be seen as composed of four parts. A
Process Inventory contains all the BPEL processes deployed on the engine.
A set of Process Instances consists of the instances of BPEL processes that
are currently in execution. The BPEL Engine is the most complex part of
the run-time environment, and consists of different modules (including the
Process Manager, the Queue Manager, the Process Logger, and the Alarm
Manager), which are responsible for the different aspects of the execution of
the BPEL processes. The Process Manager creates and terminates process in-
stances, and the Queue Manager is responsible for dispatching incoming and
outgoing messages. The Admin Console provides web pages for checking and
controlling the status of the engine and of the process instances.

The Run-Time Monitoring Environment is composed of four parts (see
Fig. 11.4). The Monitor Inventory and the Monitor Instances are the coun-
terparts of the corresponding components of the BPEL engine: the former
contains all the monitor classes deployed in the engine, while the latter is the
set of instances of these classes that are currently in execution. Each monitor
class is associated to a specific BPEL process, while each monitor instance is
associated to a specific process instance. Each monitor class is a Java class
that implements the methods described in Fig. 11.5. The Run-Time Monitor
(RTM) is responsible to support the life-cycle (creation and termination) and
the evolution of the monitor instances. The Mediator allows the RTM to in-
teract with the Queue Manager and the Process Logger of the BPEL engine
and to intercept input/output messages as well as other relevant events such
as the creation and termination of process instances. The Extended Admin
Console is an extension of the Active BPEL Admin Console that presents,

• init(): init method, executed when an instance of the monitor is created
• evolve(BpelMsg message): handles a message, updating the state of the monitor

instance
• terminate(): handles the notification of a process termination event
• isValid(): returns true if the monitor instance is in a valid state (i.e., no mis-

behavior has been detected)
• getErrorString(): returns an error string if the monitor instance is in an invalid

state
• getProcessName(): returns the name of the BPEL process associated to the

monitor
• getPropertyName(): returns the (short) property name of the monitor
• getPropertyDescription(): returns the description of the property checked by

the monitor

Fig. 11.5. Methods of a monitor Java class

316 M. Pistore and P. Traverso

along with other information on the BPEL processes, the information on the
status of the corresponding monitors.

The monitor life-cycle is influenced by three relevant events: the process
instance creation, the input/output of messages, and the termination of the
process instance. When the RTM receives a message for the Mediator, it tries
to find a match with the already instantiated monitors. If a match is found, the
message is dispatched to all the matching monitor instances through method
evolve. If no match is found, then a new process instance has been created in
the BPEL engine, and hence a set of monitor instances specific for that process
instance is created by the RTM and initialized through the method init. For
each message, the Mediator provides also information on the process instance
receiving/sending the message, as well as on the BPEL process corresponding
to the instance. The information on the BPEL process is used to select the
relevant set of monitors to be instantiated for that process. The process ter-
mination is captured via a termination event, the event is dispatched, through
the invocation of method terminate, to all the monitor instances associated
to the process instance.

11.4 Assumption-Based Composition of Web Services

In this section we describe the theory underlying the assumption-based Com-
poser of Fig. 11.4 exploiting a general framework for the automated composi-
tion of web services.

11.4.1 An Automated Composition Framework

The work in [41] (see also [42, 37]) presents a formal framework for the au-
tomated composition of web services which is based on planning techniques:
component services define the planning domain, composition requirements
are formalized as a planning goal, and planning algorithms are used to gener-
ate the composite service. The framework of [41] differs from other planning
frameworks since it assumes an asynchronous, message-based interaction be-
tween the domain (encoding the component services) and the plan (encoding
the composite service). We now recall the most relevant features of the frame-
work defined in [41].

The planning domain is modeled as a state transition system (STS from
now on) which describes dynamic systems that can be in one of their possible
states (some of which are marked as initial states) and can evolve to new
states as a result of performing some actions. Actions are distinguished in
input actions, which represent the reception of messages, output actions, which
represent messages sent to external services, and a special action τ called
internal action. The action τ is used to represent internal evolutions that are
not visible to external services, i.e., the fact that the state of the system can
evolve without producing any output, and independently from the reception of

11 Assumption-Based Composition and Monitoring of Web Services 317

inputs. A transition relation describes how the state can evolve on the basis
of inputs, outputs, or of the internal action τ . Finally, a labeling function
associates to each state the set of properties Prop that hold in the state.
These properties will be used to define the composition requirements.

Definition 1 [State transition system (STS)] A state transition system Σ is
a tuple 〈S,S0, I,O,R,L〉 where

• S is the finite set of states
• S0 ⊆ S is the set of initial states
• I is the finite set of input actions
• O is the finite set of output actions
• R ⊆ S × (I ∪ O ∪ {τ}) × S is the transition relation
• L : S → 2Prop is the labeling function.

A state s is said to be final if there is no transition starting from s (i.e.,
∀a ∈ (I ∪ O ∪ {τ}), ∀s′ ∈ S.(s, a, s′) /∈ R).

The automated synthesis problem consists in generating a state transition
system Σc that, once connected to Σ, satisfies the composition requirement
ρ. We now recall the definition of the state transition system describing the
behavior of Σ when connected to Σc.

Definition 2 (controlled system) Let Σ = 〈S,S0, I,O,R,L〉 and Σc =
〈Sc,S0

c ,O, I,Rc,L∅〉 be two state transition systems, where L∅(sc) = ∅ for all
sc ∈ Sc. The STS Σc�Σ, describing the behaviors of system Σ when controlled
by Σc, is defined as

Σc � Σ = 〈Sc × S,S0
c × S0, I,O,Rc � R,L〉

where

• 〈(sc, s), τ, (s′c, s)〉 ∈ (Rc � R) if 〈sc, τ, s
′
c〉 ∈ Rc

• 〈(sc, s), τ, (sc, s
′)〉 ∈ (Rc � R) if 〈s, τ, s′〉 ∈ R

• 〈(sc, s), a, (s′c, s
′)〉 ∈ (Rc � R), with a �= τ , if 〈sc, a, s′c〉 ∈ Rc and

〈s, a, s′〉 ∈ R.

Notice that we require that the inputs of Σc coincide with the outputs of
Σ and vice versa. Notice also that, although the systems are connected so
that the output of one is associated to the input of the other, the resulting
transitions in Rc � R are labeled by input/output actions. This allows us to
distinguish the transitions that correspond to τ actions of Σc or Σ from those
deriving from communications between Σc and Σ. Finally, notice that we
assume that the plan has no labels associated to the states.

In an automated synthesis problem, we need to generate a Σc that guar-
antees the satisfaction of a composition requirement ρ. This is formalized by
requiring that the controlled system Σc � Σ must satisfy the goal ρ, written
as Σc � Σ |= ρ. In [41], ρ is formalized using EaGLe, a requirement language
which allows to specify conditions of different strengths (like “try” and “do”),

318 M. Pistore and P. Traverso

and preferences among different (e.g., primary and secondary) requirements.
EaGLe operators are similar to CTL [24] operators, but their semantics,
formally defined in [21], takes into account the notion of preference and the
handling of failure when subgoals cannot be achieved.

For example, the EaGLe formalization of the composition requirement
for the VTA example discussed in Sect. 11.2 is the following:

TryReach

c.SUCC ∧ f.SUCC ∧ h.SUCC ∧ p.SUCC

Fail DoReach

(c.NA ∨ c.FAIL ∨ c.CANCELLED) ∧
(f.NA ∨ f.CANCELLED ∨ f.START) ∧
(h.NA ∨ h.CANCELLED ∨ h.START) ∧
(p.FAIL ∨ p.START)

Where c is the client, f the flight, h the hotel, and p the payment services and
propositions like c.SUCC correspond to require that the client has reached the
state marked with SUCC according to the interaction protocols in Fig. 11.2.1

The goal is of the form “TryReach c Fail DoReach d.” TryReach c requires
a service that tries to reach condition c, in our case the condition “sell holiday
packages.” During the execution of the service, a state may be reached from
which it is not possible to reach c, e.g., since the product is not available.
When such a state is reached, the requirement TryReach c fails and the
recovery condition DoReach d, in our case “no pending commitments” is
considered.

The definition of whether ρ is satisfied, which we omit for lack of space, is
defined on top of the executions that Σc � Σ can perform. Given this, we can
characterize formally an automated synthesis problem.

Definition 3 [Automated Synthesis] Let Σ be a state transition system, and
let ρ be an EaGLe formula defining a composition requirement. The auto-
mated synthesis problem for Σ and ρ is the problem of finding a state transi-
tion system Σc such that

Σc � Σ |= ρ.

The work in [41] shows how to adapt to this task the “Planning as Model
Checking” approach, which is able to deal with large non-deterministic do-
mains and with requirements expressed in EaGLe. It exploits powerful BDD-
based techniques [16] developed for Symbolic Model Checking [17] to efficiently
explore domain Σ during the construction of Σc.
1 Note that in the “no pending commitments” part of the composition goal we

allow the flight, the hotel, and the payment services to “terminate” in the START
state. This permits to skip calling some of the services (e.g., the payment service)
in case of failures in previous services (e.g., no flight is available).

11 Assumption-Based Composition and Monitoring of Web Services 319

11.4.2 BPEL Processes and Assumptions as STSs

The domain for the composition task corresponds to the BPEL specifications
of the component services and to the assumptions that we decide to enforce
in the composition and that, as a consequence, restricts the valid behaviors of
the BPEL components. We now show that BPEL processes and assumptions
can all be mapped to STSs.

In [41], we have defined a translation that associates a state transition
system to each component service, starting from its BPEL specification.
We omit the formal definition of the translation, which can be found at
http://www.astroproject.org.2 Intuitively, input actions of the STS represent
messages received from the component services, output actions are messages
sent to the component services, internal actions model assignments and other
operations which do not involve communications, and the transition relation
models the evolution of the service.

For what concerns the assumptions, we allow the user to specify them in
Linear Temporal Logic (LTL [24]).

Definition 4 (LTL) Let Prop be a property set and p ∈ Prop. LTL properties
on Prop are defined as follows:

φ ::= true | p | ¬φ | φ ∧ φ | Xφ | Fφ | G φ | φ1 U φ2 | φ1 W φ2.

Intuitively, the temporal operators above can be read as follows:

• Xφ means “φ will be true in the next state.”
• Fφ means “φ will be true eventually in the future.”
• G φ means “φ will be true for all the future states.”
• φ1Uφ2 means “φ2 will be eventually true, and φ1 will be true till that

moment.”
• φ1W φ2 means “φ1 will be true till φ2 becomes true or the history termi-

nates.”

In our context, the properties p ∈ Prop are atoms of the form s.q, where s
is the name of one of the component services and q is either an input/output
operation or one of the properties labeling the states of (STS modeling) s.

For example, the assumption that it is possible to cancel a flight until we
start the payment process can be formalized as the following LTL formula:
2 For the moment, the translation is restricted to a significant subset of the BPEL

languages. More precisely, we support all BPEL basic and structured activities,
like invoke, receive, sequence, switch, while, pick, and flow. Moreover, we support
restricted forms of assignments and correlations. The considered subset does not
deal at the moment with important BPEL constructs like scopes, fault, event, and
compensation handlers; while these constructs are often required in executable
BPEL implementation, we found the considered subset expressive enough for
describing the abstract BPEL interface of complex services in real applications
domains.

320 M. Pistore and P. Traverso

ACCEPTACCEPT

p.payment_request

p.payment_request

f.canc_flight_accepted
f.cancel_flight

f.canc_flight_accepted

Fig. 11.6. Example of STS corresponding to an assumption

(f.cancel flight ⇒ F f.canc flight accepted)) W p.payment request.

It says that, until a payment request received by the payment service p (output
payment request in the protocol of Fig. 11.2), if a flight cancellation request
is sent to the flight booking service f (message cancel flight according to the
interaction protocol of the flight), then an acknowledgement of the cancellation
will eventually be received (message canc flight accepted). Alternatively, the
same assumption can be written exploiting the labeling of the states of flight
and payment service:

G ((f.cancel flight ∧ p.START) ⇒ F (f.CANCELLED)).

It says that, if a flight cancellation request (message cancel flight) is received
when the payment procedure is still in its initial state (state labeled with
START in the protocol of the payment service), then the state where the flight
has been cancelled will eventually be reached (state labeled CANCELLED of
the interaction protocol of the flight).

Standard techniques [24] can be used to translate the LTL specification
of an assumption into an STS.3 For instance, Fig. 11.6 reports the graphical
description of the STS corresponding to property

(f.cancel flight ⇒ F f.canc flight accepted)) W p.payment request.

We remark that, despite the simplicity of this STS, its role is fundamental in
order to guarantee the feasibility of the composition.

11.4.3 Generating the Composed BPEL Process

We are ready to show how we can perform assumption-based composition
within the automated composition framework presented in Sect. 11.4.1. Given
n component services W1, ..., Wn and m assumptions A1, ..., Am that we want
to enforce, we encode each component service Wi as a STS ΣWi and each
assumption Ai as a STS ΣAi . The planning domain Σ for the automated

3 Notice that we are interested in finite executions of the web services, hence we
have to interpret the LTL assumptions on finite words. We can hence avoid the
difficulties in modeling acceptance conditions that arise when interpreting LTL
on infinite executions/words.

11 Assumption-Based Composition and Monitoring of Web Services 321

composition problem is the synchronized product of all these STSs. Formally,
Σ = ΣW1 ‖ ... ‖ ΣWn ‖ ΣA1 ‖ ... ‖ ΣAm .

The planning goal is obtained from the formalization ρ of the compo-
sition termination requirements expressed in EaGLe. This formula has to
be enriched to capture the fact that we require the conditions expressed
in goal ρ to be satisfied only for those executions that satisfy the enforced
assumptions, i.e., for those executions that terminate in a state where all
the automata ΣAi are in accepting states (e.g., the states marked as AC-
CEPT in the STS of Fig. 11.6). Consider, for instance, the requirement
ρ = TryReach c Fail DoReach d, and let us assume that property a ex-
presses the condition that all the automata ΣAi are in accepting states. Then
the modified goal is

ρa = TryReach (a ⇒ c) Fail DoReach (a ⇒ d).

Given the domain Σ and the planning goal ρc, we can apply the approach
presented in [41] to generate a controller Σc, which is such that Σc � Σ |= ρa.
Once the state transition system Σc has been generated, it is translated into
the executable BPEL implementation of the composite service. This trans-
lation is conceptually simple, but particular care has been put in its imple-
mentation (see http://www.astroproject.org) in order to guarantee that the
generated BPEL is of good quality, e.g., it is emitted as a structured program
that can be inspected and modified if needed.

11.5 Automatic Generation of Monitors

In this section we describe how monitors can be automatically generated from
the BPEL description of the component services and from the assumptions
specifying the properties to be monitored. As discussed in Sect. 11.2, we dis-
tinguish two kinds of monitors: domain monitors, which are responsible to
check whether the component services respect the protocols described in their
abstract BPEL specification, and assumption monitors, which check whether
the component services satisfy additional assumptions on their behavior.

11.5.1 Domain Monitors

Monitors can only observe messages that are exchanged among processes.
As a consequence, they cannot know exactly the internal state reached by
the evolution of a monitored external service. Non-observable behaviors of a
service (such as assign activities occurring in its abstract BPEL) are modeled
by τ -transitions, i.e., transitions from state to state that do not have any
associated input/output. From the point of view of the monitor, this kind
of evolutions of external services cannot be observed, and states involved
in such transitions are indistinguishable. Such sets of states are called belief

322 M. Pistore and P. Traverso

procedure build-mon()
MS = MT = MF = ∅
ms0 = {τ -closure(s0) : s0 ∈ S0}
build-mon-aux(ms0)

procedure build-mon-aux(B:Belief)
if B �∈ MS then

MS = MS ∪ {B}
if ∃s ∈ B. s is final then

MF = MF ∪ {B}
end if
for all m ∈ (I ∪ O) do

B′ = Evolve(B, m)
if B′ �= ∅ then

build-mon-aux(B′)
MT = MT ∪ {< B, m, B′ >}

end if
end for

end if

Fig. 11.7. The domain monitor generation algorithm

states, or simply beliefs [15]. We denote with τ -closure(s) the set of the states
reachable from s through a sequence of τ -transitions. The evolution of an
external service, as perceived by a monitor, is modeled by the evolution from
belief states to belief states.

Definition 5 (belief evolution) Let B ⊆ S be a belief on some STS Σ =
〈S,S0, I,O,R,L〉. We define the evolution of B on message m ∈ (I ∪ O) as
the belief Evolve(B, m), where

Evolve(B, m) = {s′ : ∃s ∈ B.∃s′′ ∈ S.〈s, m, s′′〉 ∈ R ∧ s′ ∈ τ-closure(s′′)}.

The generation of a domain monitor for an external abstract BPEL process
is based on the idea of beliefs and belief evolutions. The domain monitor gen-
eration algorithm (Fig. 11.7) incrementally generates the set MS of beliefs
starting from the initial belief ms0, by grouping together indistinguishable
states of the STS. The beliefs in MS are linked together with (non τ) tran-
sitions MT ⊆ MS × (I ∪O)×MS, as described by function Evolve. Beliefs
that contain at least one state that is final for the STS are considered possible
final states also for the domain monitor, and are stored in MF .

Once the algorithm in Fig. 11.7 has been executed, the Java code imple-
menting the domain monitor can be easily generated. A skeleton of this Java
code, parametric with respect to the set of beliefs MS, initial and final beliefs
ms0 and MF , and the belief transitions MT , is reported in Fig. 11.8.

In the Java code, the belief states in MS are used to trace the current sta-
tus of the evolution of the monitored BPEL process, using ms0 as initial state

11 Assumption-Based Composition and Monitoring of Web Services 323

and the transitions in MT to let the status of the monitor evolve whenever a
message is received. The final beliefs MF are exploited when a termination
event is received: indeed, if the process instance terminates and the monitor is
a belief that is not final, then a premature termination of the process instance
has occurred.

We remark that one can interpret the algorithm in Fig. 11.7 as a transfor-
mation of the STS in input, which is non-deterministic and contains τ tran-
sitions, into a new STS that is deterministic and is fully observable (i.e., that
does not contain τ transitions). Actually, the algorithm is an adaptation of
the standard power-set construction for transforming non-deterministic finite
automata into deterministic ones.

11.5.2 Assumption Monitors

The algorithm for the generation of assumption monitors takes as input the
(STSs corresponding to the) abstract BPEL processes of the external services
plus an assumption to be monitored. As already discussed in Sect. 11.4.2, we
express assumptions in LTL [24], using as propositional atoms the input/out-
put messages of the component services as well as the properties labeling the
states of the STSs modeling these services.

To build an assumption monitor, the corresponding LTL formula is mapped
onto an STS, which is then emitted as Java code.

The evolution of the assumption monitor depends on the input/output
messages received by the composite services, which are directly observable by
the monitor. However, it also depends on the evolution of the truth values
of those basic propositions labeling the states of the components STSs which
appear in the LTL formula. These truth values are computed by tracing the
evolution of the beliefs of the component services relevant to the formula,
similarly to what is described in Fig. 11.8 for the domain monitor. However,
it is possible in this case to simplify the “domain” monitor, by pruning out
parts of the protocol that are not relevant to tracing the evolution of the basic
propositions which appear in the formula. This prune is obtained by applying a
reduction algorithm inspired by the classical minimization algorithm for finite
state automata (Fig. 11.9). This algorithm builds a partition Π of the belief
states of the domain monitor, so that beliefs in the same class are considered
equivalent for monitoring the basic propositions P1, . . . , Pn we are interested
in. The initial partition consists of different classes corresponding to different
truth values of the basic propositions. This partition is then iteratively refined
by splitting a class into two parts, until a fixed point is reached. The splitting of
class C into the two classes split(C, m, C′) and C�split(C, m, C′) is performed
whenever there are some beliefs in C from which class C′ is reached performing
message m, while for other beliefs in C a class different from C′ is reached
performing x (see procedures “split” and “splittable” in Fig. 11.9). When a
stable partition is reached, the reduced monitor is obtained by merging beliefs
in the same class of the partition.

324 M. Pistore and P. Traverso

public class Monitor implements IMonitor {
 private enum MS { ... } // monitor states
 private MS _bs; // current monitor state
 private boolean is_valid = true;
 public void init() { _bs = ms0; }
 public boolean isValid() {

return is_valid;
 }
 private boolean isFinal() {

return (_bs in MF);
 }
 public void terminate()
 {

is_valid= is_valid && isFinal() ;
 }
 public String getErrorString()
 {

if(!isValid()){
 return "Protocol violation";
} else {
 return "No error";
}

 }
 public void evolve(BpelMsg msg)
 {

if (is_valid){
 if (exists <_bs,msg,next> in MT){

_bs = next;
 } else {

is_valid = false;
 }
}

 }
 public Monitor() { init(); }
 public String getProcessName() { ... }
 public String getPropertyName() { ... }
 public String getPropertyDescription() { ... }
}

Fig. 11.8. Skeleton of the domain monitor

procedure reduce-monitor(P1, . . . , Pn)
/* Building the initial partition */
for all PS ⊆ {P1, . . . , Pn} do

C = {B ∈ MS : ∀i = 1, . . . , n. (B|=Pi ⇔ Pi∈PS)}
if C �= ∅ then Π = Π ∪ {C} end if

end for
/* Refining the partition */
while ∃C, C′ ∈ Π. C �= C′ ∧ ∃m ∈ (I ∪ O). splittable(C, m, C′) do

Π = Π � {C} ∪ {split(C, m, C′), C � split(C, m, C′)}
end while
return Π

procedure split(C, m, C′)
return {B ∈ C : ∃B′ ∈ C′. < B, m, B′ >∈ MT }

procedure splittable(C, m,C′)
return ∅ �= split(C,m, C′) �= C

Fig. 11.9. The assumption monitor reduction algorithm

11 Assumption-Based Composition and Monitoring of Web Services 325

11.6 Experimental Evaluation

The performance of the automated composition task have been tested exper-
imentally, see, e.g., [41, 37, 42] in the case without assumptions. We have also
used the automated composition techniques on some real applications in the
field of e-government, telcos, and on-line banking. The experiments and the
applications have shown the feasibility and the scalability of the approach. We
have shown that the automated composition task takes a rather low amount
of time, and it is surely much faster than manual development of executable
BPEL composite processes. Moreover, the automatically generated BPEL is
of good quality. In some cases, we have asked experienced programmers to
develop manually the BPEL processes and we have compared the automati-
cally generated and the hand-written solutions. We have discovered that the
solutions often implement the same strategy and have a similar structure. The
main differences are mainly due to possible different styles of programming,
and the automatically generated code is reasonable and rather easy to read
and understand.

In this chapter, we report the performance of the automated construction
of monitors, as well as the overhead caused by the execution of monitors at
run-time. All experiments have been run on a 3 GHz Pentium 4 PC machine,
equipped with 1 GB memory, and running a Linux 2.6.7 operating system.

In order to test the performance of the monitor generation, we have per-
formed two sets of experiments. In the first set, we test the automatic gener-
ation of domain monitors w.r.t. the complexity of the planning domain. We
report the results of the automatic generation w.r.t. the number of activities of
an abstract BPEL process in input to the monitor generation (Fig. 11.10). The
input BPEL is a generalized version of the hotel service which can perform
different kinds of reservations one after the other, thus increasing its number
of activities. We start the experiments from six activities, corresponding to the

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250

tim
e

(s
ec

on
ds

)

of BPEL activities

Fig. 11.10. Experiments with domain monitor generation

326 M. Pistore and P. Traverso

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140 160 180 200

re
du

ct
io

n
sc

al
e

of atoms in formula

Fig. 11.11. Experiments with assumption monitor reduction

activities of a very simple hotel service, and we scale up to 240, corresponding
to a service dealing with about 40 different kinds of reservations. On the ver-
tical axis, we report the monitor generation time in seconds. As expected, the
time for monitor construction increases regularly with the number of activi-
ties. The monitor generation however manages to deal with rather complex
BPEL specifications in a rather short time. The case of 100 activities takes 10
seconds, and we manage to automatically generate monitors for BPEL spec-
ifications with about 250 activities in 1000 seconds. In our example, BPEL
with 100 activities generate a monitor with more than 300 beliefs, while 250
activities correspond to about 1000 beliefs.

In Fig. 11.11 we report the results of our second set of experiments. Given
a service, we test the monitor reduction algorithm performance. In the hori-
zontal axis, we have the number of propositions in a set of randomly generated
assumption formulas of increasing complexity. The number of atoms in the
formula is indeed the parameter that can affect monitor reduction. In the
vertical axis, we report the average gain ratio in number of beliefs obtained
by performing the monitor reduction (a value of 0.25 means that the size of
the reduced automaton is 25% of the original). The reduction is significant.
Notice also that, as the number of atomic propositions in the formula grows,
the gain ratio stabilizes somewhere around 0.30. This corresponds to the fact
that about 70% of the states in the monitor are useful only for protocol mon-
itoring, but do not give any information for the monitoring of the specific
formula.

Figure 11.12 reports instead an experimental evaluation of the overhead
that can be caused by executing monitors in parallel to BPEL processes. We
measure the overhead at increasing number of monitors that check at run-time
a process: the number of monitors per process is reported on the horizontal
axis. The overhead is the time to run the processes without any monitor di-
vided by the time to run the processes with their monitors. Fig. 11.12 reports

11 Assumption-Based Composition and Monitoring of Web Services 327

Fig. 11.12. Experiments with monitor generation

four curves that measure the overhead with a different number of process in-
stances: 10, 30, 50, and 100. Notice that the overhead, even for a very high
number of monitors per process, is acceptable, and the decrease in perfor-
mances is not high. Consider the case of 10 process instances. We have 25%
overhead with 10 monitors for each instance. The execution with 40 running
monitors per process instances takes just twice the time required for running
processes without monitors. It is about three times with 100 monitors per
process instances (for a total of 1000 monitors running on the run-time envi-
ronment). Moreover, the overhead does not increase significantly by increasing
the number of process instances. In the case of more than 10 process instances,
the fact that results are not reported after a given number of monitors is due
to the fact that, in the setting we used for the experiments, the memory is
exhausted if more than 3000 monitor instances are running at the same time.
We are working to a more efficient implementation of the run-time monitoring
environment that solves this problem.

Overall, the experiments show that monitor generation can be done effi-
ciently also for complex component services and properties. Moreover, they
show that run-time checking does not reduce significantly performances, and
that this fact is independent of the load of the BPEL execution engine.

In conclusion, it turns out that both automated composition and run-time
monotoring manage to deal in practice with cases of a certain complexity, have
the potentiality to scale up to real applications, and can reduce significantly
the effort in the development process. We leave for the future an extensive
user evaluation dedicated to test the acceptance of the technology from the
point of view of the developers.

328 M. Pistore and P. Traverso

11.7 Conclusions and Related Work

As far as we know, the contribution described in this chapter presents several
elements of novelty. The work provides a uniform framework that integrates
the automatic generation of composed BPEL processes with the automated
generation of monitors. Moreover, the approaches to both composition and
monitoring present elements of novelty by themselves, as discussed in the
next two subsections.

11.7.1 Automated Composition of Web Services

In this chapter, we address the problem of automated composition in a
mediator-based architecture where, given a set of component services (defined
in our case as abstract BPEL processes), and a composition requirement, we
synthesize one new web service that acts as a mediator and implements the
composition by interacting with the component services. A different problem
is that of the automated composition in a peer-to-peer architecture, where,
given n component services and a composition requirement, the task is to
generate n distributed new executable BPEL processes, one for each compo-
nent, that interact with their own component and with the other new BPEL
processes that are generated. The extension of our approach to a peer-to-peer
automated composition is under study and development.

As far as we know, no other approaches provide the capability of taking
into account assumptions in the automated composition of web services. In
the following, we consider other approaches that have some relations with our
underlying technique for automated composition without assumptions.

Automata-Based Approaches

The approach presented in this chapter is based on the idea that published
abstract BPEL processes and composed executable BPEL processes can be
given semantics and can be translated to state transition systems.

In [9, 7, 8, 10], the authors describe web services in terms of their interac-
tions, e.g., with state machines. They do not provide an automated composi-
tion technique like the one described in this chapter.

In [27], a formal framework is defined for composing e-services from be-
havioral descriptions given in terms of automata. This approach considers
a problem that is fundamentally different from ours, since the e-composition
problem is seen as the problem of coordinating the executions of a given set of
available services, and not as the problem of generating a new composite web
service that interacts with the available ones. Solutions to the former problem
can be used to deduce restrictions on an existing (composition automaton
representing the) composed service. We generate (the automaton correspond-
ing to) the BPEL composed service, thus addressing directly the problem of
reducing time, effort, and errors in the development of composite web services.

11 Assumption-Based Composition and Monitoring of Web Services 329

In [11, 12], decision procedures for satisfiability are used to address the
problem of coordinating component services that are described as finite state
machines. The model used in [11, 12] is based on a finite alphabet of activity
names, and transitions labeled with activity names specify the process flow of
component services, while input and output messages are not modeled. In the
initial works, the model is limited to deterministic state transition systems,
while in [12], the framework is extended to non-deterministic finite state tran-
sition systems, corresponding to a “devilish” form of non-determinism. In this
setting, the so-called “realizability” problem, i.e., the problem of determining
the existence of a composition, can be solved as a satisfiability problem in
propositional dynamic logic. The work studies the complexity of this reduc-
tion. Similarly to the work in [27], in these works the e-service composition
problem is reduced to selecting among the activities that the component ser-
vices should perform, a problem that is fundamentally different from the one
addressed in this chapter, both in a mediator-based and in a peer-to-peer
architecture.

More in general, our work shares some ideas with work on the automata-
based synthesis of controllers (see, e.g., [43, 50]). Indeed, the composite service
can be seen as a module that controls an environment which consists of the
component services. However, the work on the synthesis of controllers is based
on rather different technical assumptions on the interaction with the environ-
ment (BPEL interactions are asynchronous), and on a different language for
expressing requirements, which cannot distinguish among primary and sec-
ondary requirements. Finally, this work has never been extended or applied
to deal with the problem of the synthesis of web services, and in particular of
BPEL processes.

Semantic Web Services

The semantic web community has used automated planning techniques to
address the problem of the automated discovery and composition of seman-
tic web services, e.g., based on owl-s [19] or wsmo [26] descriptions of in-
put/outputs and of preconditions/postconditions (see, e.g, [33, 32]). Two gen-
eral remarks are in order. First, while here we do not address the problem of
discovery (we assume the n component services are given), we tackle a form
of automated composition that is more complex than the one considered by
the semantic community, where usually services are atomic and compositions
are simply sequences of service invocations. In our problem, services do not
correspond to actions in the planning domain. Second, while here we do not
address the problem of the automated composition of web services with se-
mantic annotations, the approach can be extended to semantic web services
along the lines of the work presented in [49, 38]. In [40], semantic annotations
are kept separated from process descriptions, thus allowing for a practical and
incremental approach to the use of semantics.

330 M. Pistore and P. Traverso

There is a large amount of literature addressing the problem of automated
composition of semantic web services. However, most of the approaches ad-
dress composition at the functional level (see, e.g. [35, 20]), and much less
emphasis has been devoted to the problem of process-level composition. In
[33], web service composition is achieved with user defined re-usable, cus-
tomizable, high-level procedures expressed in Golog. The approach is orthog-
onal to ours: Golog programs can express programming control constructs
for the generic composition of web service, while we automatically generate
plans that encode web service composition through programming control con-
structs. In [32], Golog programs are used to encode complex actions that can
represent DAML-S process models. However, the planning problem is reduced
to classical planning and sequential plans are generated for reachability goals.
In [34], the authors propose an approach to the simulation, verification, and
automated composition of web services based on a translation of DAML-S
to situation calculus and Petri Nets, so that it is possible to reason about,
analyze, prove properties of, and automatically compose web services. How-
ever, the automated composition is again limited to sequential composition
of atomic services for reachability goals, and does not consider the general
case of possible interleavings among processes and of extended business goals.
Moreover, Petri Nets are a rather expressive formalism, but algorithms that
analyze them have less chances to scale up to complex problems compared to
symbolic model-checking techniques.

The work in [31] is close in spirit to the general objective of [49, 38, 40] to
bridge the gap between the semantic web framework and the process model-
ing and execution languages proposed by industrial coalitions. However, [31]
focuses on a different problem, i.e., that of extending BPEL with semantic
web technology to facilitate web service interoperation, while the problem of
automated composition is not addressed.

Planning for Web Services

Different automated planning techniques have been proposed to tackle the
problem of service composition, see, e.g., [51, 22, 47]. However, none of these
can deal with the problem that we address in this chapter, where the plan-
ning domain is non-deterministic, partially observable, and asynchronous, and
goals are not limited to reachability conditions.

Other planning techniques have been applied to related but somehow or-
thogonal problems in the field of web services. The interactive composition
of information-gathering services has been tackled in [48] by using CSP tech-
niques. In [28] an interleaved approach of planning and execution is used;
planning techniques are exploited to provide viable plans for the execution
of the composition, given a specific query of the user; if these plans turn
out to violate some user constraints at run-time, then a re-planning task is
started. Works in the field of Data and Computational Grids are more and

11 Assumption-Based Composition and Monitoring of Web Services 331

more moving toward the problem of composing complex workflows by means
of planning and scheduling techniques [14].

Planning for the automated discovery and composition of semantic web
services, e.g., based on OWL-S, is used in [33, 32, 34]. These works do not
take into account behavioral descriptions of web service, like our approach
does with BPEL.

Our work is based on the idea of and extends the technique called “plan-
ning via symbolic model checking” [18, 13, 21, 2, 39], a framework that dif-
ferentiates from classical planning techniques since it can deal with planning
in non-deterministic domains, with partial observability, and with goals that
can express requirements with temporal and preference conditions. A detailed
discussion on how the planning via symbolic model checking approach must
be extended to deal with asynchronous domains that are constructed from
BPEL processes can be found in [41]. In [37], the approach is extended to
deal with large and possibly infinite ranges of data values that are exchanged
among services.

11.7.2 Run-Time Monitoring of Web Services

Run-time monitoring has been extensively studied in different areas of com-
puter science, such as distributed systems, requirement engineering, program-
ming languages, and aspect-oriented development, see, e.g., [23, 25, 36, 46].
There have been several proposals that deal with different aspects of the
monitoring of web services and distributed business processes, see, e.g.,
[45, 44, 4, 5, 29, 30]. A different but related topic is that of monitoring service
level agreements (SLAs), i.e., contracts on services between parties that are
signed to guarantee some quality of service, satisfy expectations, control costs,
and resources. Monitoring SLAs means monitoring their compliance and re-
acting properly if compliance is not satisfied. An extension of our framework
to the monitoring of SLAs is in our plans for future work.

Considering the problem of monitoring BPEL processes, an obvious alter-
native to our approach would be to code manually monitors in BPEL. The
developer should embed special-purpose controls in the BPEL process imple-
menting the business logic. However, this approach has several drawbacks. It
does not allow for a clear separation of the business logic from the monitor, it
does not allow for implementing monitors that capture misbehaviors caused
by BPEL execution engines, and finally but perhaps more importantly, this
task is time-consuming, error prone, requires programming effort, and does
not allow for an independent maintenance of the monitor functionality w.r.t.
the application layer. Similar problems exist in different frameworks based on
BPEL, see, e.g., BPELJ [6]. BPELJ allows the programmer to embed monitors
as Java code into BPEL processes.

The works closest to ours are those described in [4, 5] and in [29, 30]. We re-
fer to them as assertion-based monitoring and requirement-based monitoring.

332 M. Pistore and P. Traverso

Assertion-Based monitoring

In [4], monitors are specified as assertions that annotate the BPEL code.
Assertions can be specified either in the C# programming language or as
pre- or post-conditions expressed in the CLIX constraint language. Annotated
BPEL processes are then automatically translated to “monitored processes,”
i.e., BPEL processes that interleave the business processes with the monitor
functionalities. This approach allows for monitoring time-outs, runtime errors,
as well as functional properties.

In [5], Baresi and Guinea extend the work presented in [4] with the abil-
ity to perform “dynamic monitoring,” i.e., the ability to specify monitoring
rules that are dynamically selected at run-time, thus providing a capability to
dynamically activate/deactivate monitors, as well as to dynamically set the
degree of monitoring at run-time. Monitoring rules abstract web services into
UML classes that are used to specify constraints on the execution of BPEL
processes. In [5], assertions are specified in ws-col (Web Service Constraint
Language), a special purpose language that extends jml (Java Modeling Lan-
guage) with constructs to gather data from external sources. Monitoring rules
are defined with parameters that specify the degree of monitoring that has
to be performed at run-time. The user can instantiate dynamically these pa-
rameters at run-time, changing in this way the amount of monitoring that is
performed.

On the one hand, the approach described in [4, 5] provides some advantages
w.r.t. ours. First, monitors are themselves services implemented in BPEL. As
a consequence, they can run on standard BPEL engines without requiring any
modification. A further challenge could also be the possibility to apply com-
position techniques developed for the BPEL business logic to the monitoring
task. Second, annotations of BPEL processes with assertions constitute an
easy and intuitive way to specify monitor tasks. Finally, the approach is ex-
tend to dynamic monitoring, a feature that is not provided in our framework.

On the other hand, we allow for the monitoring of properties that depend
on the whole history of the execution path. These kinds of monitors would be
hard to express as assertions. Moreover, we allow for a clearer separation of
the business logic from the monitoring task than in [4, 5], since we generate
an executable monitor that is fully distinguished from the executable BPEL
that runs the business logic. Finally, our monitors can capture misbehaviors
generated by the internal mechanisms of the BPEL execution engine. For
instance, since there is no way to guarantee that a message is sent to a process
instance only when the instance is ready to consume it, in BPEL, messages
can be consumed in a different order from how they are received: indeed a
process may receive a message that it is not able to accept at the moment,
which can be followed by another message that can instead be consumed.
The first message can be consumed later on by the process, or may never
be consumed. This phenomenon, that we call message overpass, cannot be
captured by monitors based on assertions that annotate the BPEL code.

11 Assumption-Based Composition and Monitoring of Web Services 333

Requirement-Based monitoring

In the work described in [29, 30], Mahbub and Spanoudakis share with us the
idea to have a monitor that is clearly separated from the BPEL processes.
Another similarity is that the framework allows for specifying requirements
that represent either behavioral properties or assumptions to be monitored.

The framework allows for extracting automatically the behavioral prop-
erties from the abstract BPEL specification of component services. Require-
ments to be monitored are expressed in event-calculus, and the specified events
are observed at run-time and stored in a database. An algorithm based on in-
tegrity constraint checking is then used to analyze the database and perform
a run-time checking of the specified behavioral properties and assumptions.

The technical setting of this work is very different from ours. It is based
on event calculus rather than linear temporal logic and on constraint checking
rather than model checking.

References

1. ActiveBPEL. The Open Source BPEL Engine - http://www.activebpel.org.
2. A. Albore and P. Bertoli. Generating Safe Assumption-Based Plans for Partially

Observable, Nondeterministic Domains. In Proc. AAAI, 2004.
3. T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weeravarana. Business
Process Execution Language for Web Services (version 1.1), 2003.

4. L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Composed Services.
In Proc. of Int. Conf. on Service-Oriented Computing, 2004.

5. L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL Processes.
In Proc. of Int. Conf. on Service-Oriented Computing, 2005.

6. BEA and IBM. BPELJ: BPEL for Java - http://www-
106.ibm.com/developerworks /webservices/library/ws-bpel.

7. B. Benatallah, F. Casati, H. Skogsrud, and F. Toumani. Abstracting and En-
forcing Web Service Protocols. Int. Journal of Cooperative Information Systems,
2004.

8. B. Benatallah, F. Casati, and F. Toumani. Analysis and Management of Web
Services Protocols. In ER, 2004.

9. B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and man-
aging web service protocols. Data Knowl. Eng., 58(3), 2006.

10. B. Benatallah, F. Casati, F. Toumani, and R. Hamadi. Conceptual Modeling of
Web Service Conversations. In CAiSE, 2003.

11. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Au-
tomatic composition of E-Services that export their behaviour. In Proc. IC-
SOC’03, 2003.

12. D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella. Composition
of Services with Nondeterministic Behaviours. In B. Benatallah, F. Casati,
and P. Traverso, editors, Proceedings of the Third International Conference on
Service-Oriented Computing (ICSOC’05). Lecture Notes in Computer Science
LNCS 3826. Springer, 2005.

334 M. Pistore and P. Traverso

13. P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in Nondeterministic
Domains under Partial Observability via Symbolic Model Checking. In Proc.
IJCAI’01, 2001.

14. Jim Blythe, Ewa Deelman, and Yolanda Gil. Planning for Workflow Construc-
tion and Maintenance on the Grid. In Proceedings of ICAPS’03 Workshop on
Planning for Web Services, Trento, Italy, June 2003.

15. B. Bonet and H. Geffner. Planning with Incomplete Information as Heuristic
Search in Belief Space. In Proc. AIPS’00, 2000.

16. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Survey, 24(3):293–318, 1992.

17. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In CAV, 2002.

18. A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and
Strong Cyclic Planning via Symbolic Model Checking. Artificial Intelligence,
147(1-2):35–84, 2003.

19. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services. In
Technical White paper (OWL-S version 1.0), 2003.

20. I. Constantinescu, B. Faltings, and W. Binder. Typed Based Service Composi-
tion. In Proc. WWW2004, 2004.

21. U. Dal Lago, M. Pistore, and P. Traverso. Planning with a Language for Ex-
tended Goals. In Proc. AAAI’02, 2002.

22. D. Mc Dermott. The Planning Domain Definition Language Manual. Technical
Report 1165, Yale Computer Science University, 1998. CVC Report 98-003.

23. A. Dingwall-Smith and A. Finkelstein. From Requirements to Monitors by way
of Aspects. In Int. Conf. on Aspect-Oriented Software Development, 2002.

24. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics.
Elsevier, 1990.

25. M. Feather and S. Fickas. Requirements Monitoring in Dynamic Environment.
In Int. Conf. on Requirements Engineering, 1995.

26. The Web Service Modeling Framework. SDK WSMO working group -
http://www.wsmo.org/.

27. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look Behind
the Curtain. In Proc. PODS’03, 2003.

28. A. Lazovik, M. Aiello, and Papazoglou M. Planning and Monitoring the Execu-
tion of Web Service Requests. In Proc. of the 1st International Conference on
Service-Oriented Computing (ICSOC’03), 2003.

29. K. Mahbub and G. Spanoudakis. A Framework for Requirements Monitoring of
Service Based Systems. In Int. Conf. on Service-Oriented Computing (ICSOC),
2004.

30. K. Mahbub and G. Spanoudakis. Run-Time Monitoring of Requirements for
Systems Composed of Web-Services: Initial Implementation and Evaluation Ex-
perience. In Int. Conf. on Web Services (ICWS), 2005.

31. D. Mandell and S. McIlraith. Adapting BPEL4WS for the Semantic Web: The
Bottom-Up Approach to Web Service Interoperation. In Proc. of 2nd Interna-
tional Semantic Web Conference (ISWC03), 2003.

32. S. McIlraith and R. Fadel. Planning with Complex Actions. In Proc. NMR’02,
2002.

11 Assumption-Based Composition and Monitoring of Web Services 335

33. S. McIlraith and S. Son. Adapting Golog for composition of semantic web
Services. In Proc. KR’02, 2002.

34. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Com-
position of Web Services. In Proc. WWW2002, 2002.

35. M. Paolucci, K. Sycara, and T. Kawamura. Delivering Semantic Web Services.
In Proc. WWW2003, 2002.

36. D.K. Peters. Deriving Real-Time Monitors for System Requirements Documen-
tation. In Int. Symp. on Requirements Engineering - Doctoral Symposium, 1997.

37. M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition
of Web Services by Planning at the Knowledge Level. In Proc. Int. Joint Conf.
on Artificial Intelligence (IJCAI), 2005.

38. M. Pistore, P. Roberti, and P. Traverso. Process-level compositions of executable
web services: on-the-fly versus once-for-all compositions. In Proc. ESWC’05,
2005.

39. M. Pistore, D. Shaparau, and P. Traverso. Contingent Planning with Goal
Preferences. In Proc. AAAI’06, 2006.

40. M. Pistore, L. Spalazzi, and P. Traverso. A Minimalist Approach to Semantic
Annotations for Web Processes Compositions. In Proc. ESWC’06, 2006.

41. M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Ser-
vices by Planning in Asynchronous Domains. In Proc. Int. Conf. on Automated
Planning and Scheduling (ICAPS), 2005.

42. M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis
of Composite BPEL4WS Web Services. In IEEE Int. Conf. on Web Services
(ICWS), 2005.

43. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In Proc. ICALP’89, 1989.

44. W. Robinson. Monitoring Web Service Requirements. In IEEE Int. Conference
on Requirement Engineering, 2003.

45. A. Sahai, V. Machiraju, A. van Morsel, and F. Casati. Automated SLA Moni-
toring for Web Services. In Int. Workshop on Distributed Systems: Operations
and Management, 2002.

46. K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient Decentralized Monitoring
of Safety in Distributed Systems. In Proc. of ICSE, 2004.

47. M. Sheshagiri, M. desJardins, and T. Finin. A Planner for Composing Services
Described in DAML-S. In Proc. AAMAS’03, 2003.

48. Snehal Thakkar, Craig Knoblock, and Jose Luis Ambite. A View Integration Ap-
proach to Dynamic Composition of Web Services. In Proceedings of ICAPS’03
Workshop on Planning for Web Services, Trento, Italy, June 2003.

49. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services
into Executable Processes. In Proc. Int. Semantic Web Conference (ISWC),
2004.

50. M. Y. Vardi. An automata-theoretic approach to fair realizability and synthesis.
In Proc. CAV’95, 1995.

51. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web
Services Composition using SHOP2. In Proc. ISWC’03, 2003.

