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Abstract. In this chapter, we present a framework that we have developed to sup-
port the monitoring of service level agreements (SLAs). The agreements that can
be monitored by this framework are expressed in an extension of WS-Agreement
that we propose. The main characteristic of the proposed extension is that it uses
an event calculus–based language, called EC-Assertion, for the specification of the
service guarantee terms in a service level agreement that need to be monitored at
runtime. The use of EC-Assertion for specifying service guarantee terms provides
a well-defined semantics to the specification of such terms and a formal reasoning
framework for assessing their satisfiability. The chapter describes also an imple-
mentation of the framework and the results of a set of experiments that we have
conducted to evaluate it.

10.1 Introduction

The ability to set up and monitor service level agreements (SLAs) has been in-
creasingly recognized as one of the essential preconditions for the deployment
of web services [28]. Service level agreements are set through collaboration be-
tween service consumers and service producers in order to specify the terms
under which a service that is offered to the former by the latter is to be de-
ployed and the quality properties that it should satisfy under these terms.
The ability to monitor the compliance of the provision of a service against a
service level agreement at runtime is crucial from the point of view of both
the service consumer and the service producer.

In the case of service consumers, monitoring service level agreements is
necessary due to the need to check if the terms of an agreement are satis-
fied in a specific operational setting (i.e., the set of the running instances of
the services involved in the agreement and the computational resources that
these services are deployed on or they use to communicate), identify the con-
sequences that the violation of certain terms in an agreement might have onto
their systems, and request the application of any penalties that an agreement
prescribes for the violated service provision terms.
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For service providers, the monitoring of the provision of a service against
the terms specified in an agreement is necessary in order not only to gather
evidence regarding the provision, which may be necessary if a dispute with a
service consumer arises over the provision, but also to identify problems with
the delivery of the service and take action before an agreement is violated. For
instance, if an agreement requires that on average a service should respond
within N time units over a specific time period, monitoring the performance
of the service may spot a performance deviation early enough to give the
provider an opportunity to address the problem (by adding, for instance, an
extra server at runtime or reducing the level of provision of the same service
to other consumers who do not have strictprovision terms).

In this chapter, we describe a framework that we have developed to sup-
port the monitoring of functional and quality of service requirements which
are specified as part of service level agreements. This framework can moni-
tor the provision of services to service-based software systems (referred to as
“SBS” systems, see Fig. 10.1). A for our framework is a system that deploys
one or more external web services which are coordinated by a composition
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process that is expressed in BPEL [1]. This composition process provides
the required system functionality by calling operations in the external web
services, receiving and processing the results that these services return, and
accepting and/or responding to requests from them. It should be noted that
the external services which are deployed by an SBS system may be inter-
acting directly with third-party services without the intervention of this sys-
tem. Such interactions are not taken into account during monitoring. Thus,
all the external services of an SBS system are effectively treated as atomic
services.

The service level agreements that can be monitored by the framework
that we present in this chapter are expressed using an extension of WS-
Agreement [2] that we have defined for this purpose. This extension sup-
ports the description of (a) the operational context of an agreement, (b)
the policy for monitoring an agreement, and (c) the functional and qual-
ity requirements for the service which is regulated by the agreement and
need to be monitored (i.e., the guarantee terms in the terminology of WS-
Agreement). The extensions of WS-Agreement that we have introduced to
support (a) and (b) have been directly integrated into the XML schema that
defines this language. To support the specification of (c), we have developed
a new language in which service guarantee terms are specified in terms of
(i) events which signify the invocation of operations of a service by the com-
position process of an SBS system and returns from these executions, (ii)
events which signify calls of operations of the composition process of an SBS
system by external services and returns from these executions, and (iii) the
effects that events of either of the above kinds have on the state of an SBS
system or the services that it deploys (e.g., change of the values of system
variables). This language has been defined by a separate XML schema and is
called . EC-Assertion. It is based on (EC) [34] which is a first-order temporal
logic language. Specifications of service guarantee terms in EC-Assertion can
be developed independently of WS-Agreement and subsequently referred to
by it.

The events which are used in the specification of the service description
and guarantee terms in an agreement are restricted to those which can be
observed during the execution of the composition process of an SBS system.
This set of events is determined by a static analysis of the BPEL composition
process of this system that is performed by our framework.

The choice of event calculus (EC) as the language for specifying the ser-
vice guarantee terms in an agreement has been motivated by the need for
(a) expressing the properties to be monitored in a formal language allowing
the specification of temporal constraints and (b) being able to monitor an
agreement using a well-defined reasoning process based on the inference rules
of first-order logic (this criterion has also led to the choice of event calculus
instead of another temporal logic language).

Our monitoring framework has been designed with the objective to sup-
port service level agreements. The term “non-intrusive monitoring” in this
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context signifies a form of monitoring that is carried out by a computational
entity that is external to the system that is being monitored, is carried out
in parallel with the operation of this system and does not intervene with
this operation in any form. Given this definition, non-intrusive monitoring
excludes approaches which perform monitoring by weaving code that im-
plements the required checks inside the code of the system that is being
monitored (e.g., monitoring oriented programming [10] or SBS monitoring
by code weaved into BPEL processes [5]). It also excludes approaches which,
despite deploying external entities in order to perform the required checks,
require the instrumentation of the source code of the monitored system in
order to generate the runtime information that is necessary for the checks
(e.g., [19, 33]).

The framework that we present in this chapter is non-intrusive as it is
based on events which are captured during the operation of an SBS sys-
tem without the need to instrument its composition process or the code of
the services that it deploys and is performed by a reasoning engine that
is separate from the system that is being monitored and operates paral-
lel with it. Furthermore, our framework can monitor different types of de-
viations from service guarantee terms including: (a) violations of terms by
the recorded behavior of a system and (b) violations of service guaran-
tee terms by the expected behavior of the system. These types of devia-
tions were originally defined in [36] and are discussed in this chapter. Ad-
ditional forms of violations that can be detected by the framework are
described in [36].

The framework that we discuss in this chapter was originally developed to
support the monitoring of functional service requirements outside the context
of WS-Agreement and the main formal characteristics of the original form of
the framework have been presented in [36]. Hence, in this chapter, our focus is
to discuss how this framework can be used to support the monitoring of WS-
Agreement and introduce the extensions to this standard that enable the use
of our framework for this purpose. Furthermore, in this chapter, we present
an extension of the specification language of the framework that is based on
the use of internal and external operations in event calculus formulas which
enable the specification and monitoring of wider range of quality of service
requirements.

The rest of the chapter is structured as follows. In Sect. 10.2, we briefly
introduce our monitoring framework. In Sect. 10.3, we describe the extensions
that we have introduced to WS-Agreement in order to specify the service guar-
antee terms that can be monitored at runtime and policies for performing this
monitoring. In Sect. 10.4 we describe the monitoring process that is realized
by the framework. In Sect. 10.5, we discuss the prototype that we have de-
veloped to implement the framework. In Sect. 10.6, we present the results of
an experimental evaluation of the framework. In Sect. 10.7, we review related
work. Finally, in Sect. 10.8, we conclude with an overview of our approach
and directions for future work.
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10.2 Overview of Monitoring Framework

Our framework assumes that the deployment platform of a service-based sys-
tem is an environment that executes the composition process of the system and
can provide the events that will be used during monitoring (see the component
Service Based System Execution Environment in Fig. 10.1). The framework
itself consists of a monitoring manager, an event receiver, a monitor, an event
database, a deviation database, and a monitoring console.

The monitoring manager is the component that has responsibility for initi-
ating, coordinating, and reporting the results of the monitoring process. Once
it receives a request for starting a monitoring activity as specified by the mon-
itoring policy of an agreement, it checks whether it is possible to monitor the
service guarantee terms of the agreement as specified in this policy (i.e., given
the BPEL process of the SBS system that is identified in the policy and the
event reporting capabilities indicated by the type of the execution environ-
ment of the SBS system). If the service guarantee terms can be monitored, it
starts the event receiver to capture events from the SBS execution environ-
ment and passes to it the events that should be collected. It also sends to the
monitor the formulas to be checked.

The event receiver polls the event port of the SBS execution environment
at regular time intervals as specified in the monitoring policy in order to get
the stream of events sent to this port. After receiving an event, the event
receiver identifies its type and, if it is relevant to the service guarantee terms
of the agreement being monitored, it records the event in the event database
of the framework. All the events which are not relevant to monitoring are
ignored.

The monitor retrieves the events which are recorded in the database dur-
ing the operation of the SBS system in the order of their occurrence, derives
(subject to the monitoring mode of an agreement) other possible events that
may have happened without being recorded (based on assumptions set for an
SBS system in an agreement and its behavioral properties), and checks if the
recorded and derived events are compliant with the requirements being moni-
tored. In cases where the recorded and derived events are not consistent with
service guarantee terms in an agreement, the monitor records the deviation
in a deviation database.

The monitoring manager polls the deviation database of the framework at
regular time intervals to check if there have been any deviations detected with
respect to a given monitoring policy and reports them to the port specified
by the monitoring policy.

The behavioral properties extractor takes as input the BPEL process of the
SBS system to be monitored and generates a specification of the behavioral
properties of this system in event calculus. As a by-product of this extrac-
tion, it also identifies the primitive events which can be observed during the
runtime operation of the SBS systems. These events are used by the monitor-
ing manager to check whether the formulas specified in an agreement can be
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monitored at runtime. They are also used by the assumptions editor of the
framework (see below) as primitive constructs for specifying the service guar-
antee terms that are to be monitored in cases where the service consumers
and producers wish to specify these terms using the framework.

Finally, the framework incorporates a monitoring console that gives access
to the monitoring service to human users. The console incorporates a terms
editor that supports the specification of the service guarantee terms of an
agreement in the high level syntax of our event calculus–based language, and
a deviation viewer that displays the deviations from the monitored require-
ments. The terms editor provides a form-based interface that enables the user
to select events extracted from the BPEL process of an SBS system and com-
bine them in order to specify the formulas that define the service guarantee
terms of an agreement.

10.3 Specification of Service Level Agreements

10.3.1 Overview of WS-Agreement

WS-Agreement is a standard developed by the Global Grid Form for specifying
agreements between service providers and service consumers and a protocol
for creating and monitoring such agreements at runtime [2]. The objective of
a WS-Agreement specification is to define the guarantee terms that should
be satisfied during the provision of a service. WS-Agreement is defined as an
XML schema. An agreement drawn using WS-Agreement has two sections:
the Context section and the Terms section.

The Context section specifies the consumer and the provider of the service
that have created the agreement (i.e., the parties of the agreement) and other
general properties of the agreement including, e.g., its duration and any links
that it may have to other agreements.

The Terms section of a WS-Agreement specifies the service that the agree-
ment is about and the objectives that the provision of this service should fulfill.
This section is divided into two subsections: the Service Description Terms
and Service Guarantee Terms. The service description terms constitute the
basic building block of an agreement and define the functionalities of the ser-
vice that is to be delivered under the agreement. An agreement may contain
any number of service description terms. The guarantee terms specify assur-
ances on service quality that need to be monitored and enforced during the
provision of a service.

The agreement life cycle that is envisaged by WS-Agreement expects that
an agreement initiator sends an agreement template to the service consumer.
This template is defined by adding a new section to the agreement structure
described above, called Creation Constraints. This new section contains con-
straints on possible values of terms for creating the agreement. The consumer
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fills in the template and sends it back to the initiator as an offer. Subse-
quently, the initiator notifies the consumer of the acceptance or rejection of
the agreement depending on the availability of resources, the service costs,
etc. The monitoring of an agreement that has been confirmed is expected to
start when at least one of the services which are involved in the agreement is
running.

10.3.2 Extensions of WS-Agreement

In its original form, WS-Agreement does not support the specification of poli-
cies determining the deployment context in which the provision of services will
be monitored, and who will have responsibility for providing the information
that will be necessary for assessing whether the guarantee terms of the agree-
ment are satisfied. Also, it does not specify where the results of monitoring
should be reported. This is problematic in cases where the agents who have
responsibility for the monitoring of an agreement are expected to actively
report deviations from it rather than waiting to be asked if deviations have
occurred (i.e., notification of deviations in a push mode). Furthermore, WS-
Agreement does not specify a language for defining the service description and
service guarantee terms of an agreement or an operation protocol that would
enable the monitoring of an agreement in the push mode described above.
The choice of the language for the specification of the service description and
service guarantee terms of an agreement is left to the concrete implementa-
tions of the standard as the language for the specification of these terms may
need to vary for different domains. Our extensions to WS-Agreement address
these limitations of the standard.

Specification of the Context of an Agreement

Our first extension to WS-Agreement is concerned with the specification of
policies for monitoring an agreement. A policy, in our proposal, specifies the
following:

• The composition process of the SBS system that deploys the services which
are the subject of the agreement.

• The source of the runtime information which will enable the monitoring
of the agreement.

• The way in which the monitoring of the agreement is to be performed
including the mode, regularity, and timing of monitoring.

• The recipient of the results of the monitoring process.

To enable the specification of monitoring policies, we have extended WS-
Agreement by a complex XML type, called MonitoringPolicyType. A graphical
view of this type is shown in Fig. 10.2. According to MonitoringPolicyType,
the description of the monitoring policy of an agreement includes the following
elements:
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Fig. 10.2. MonitoringPolicyType – Specification of agreement monitoring policies

1. processSpecificationType. This element is used to identify the BPEL com-
position process of the SBS system that deploys the service(s) which the
agreement is concerned with and the WSDL files of all the services that
this process uses but are not regulated by the agreement (called third-
party services in the following). The references to the WSDL specifica-
tions of third-party services in a monitoring policy is important as the
behavior of these services may interfere with the service(s) regulated by
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the agreement and, therefore, the guarantee terms in an agreement may
need to be conditioned upon the satisfiability of conditions for third-party
services. A processSpecification includes (a) an element called bpelFile
that contains a reference to the BPEL file specifying the composition
process in the context of which the agreement is to be monitored, and
(b) an element called wsdlFiles that contains references to the list of
the WSDL files that specify the services deployed by the composition
process.

2. monitoringModeType. Elements of this type are used to specify the way of
reporting the results of monitoring an agreement (i.e., the mode of report-
ing); the kind of events that are used to check whether the agreement’s
guarantee terms are satisfied; and the source of the events which are used
to check an agreement. The results of monitoring may be reported in a
pullMode or a pushMode. In the former mode, the client of the monitor has
to check the status of the guarantee terms of the agreement. In the push-
Mode, the monitor reports the detected deviations to the client. When the
pushMode is selected the destination where deviations should be reported
(i.e., the deviationDestination element in Fig. 10.2) must also be specified.
The specification of a deviation destination includes (a) an element called
ipAddress that is of type string and is used to specify the IP address of
the client where the deviation reports will be sent, (b) an element called
port of type int which specifies the port in the client where the deviation
reports should be sent, and (c) an element called pushingInterval of type
long that defines the time interval between the generation of consecutive
deviation reports. The type of the events used in monitoring is specified by
the element eventsType that is of type eventType. Currently, our extension
supports two types of events: recorded or derived events. Recorded events
are events which are generated during the execution of the composition
process of an SBS system. Derived events are events which are generated
from recorded events.1

3. eventSourceType. An event source is described by (a) an element called
bpelEngineName of type string which is used to specify the type of the
BPEL engine, i.e., the execution environment of the service centric system,
(b) an element called ipAddress of type string that is used to specify the
IP address of the execution environment, and (c) an element called port
of type int that specifies the port where the runtime events will be sent
by the event source.

Overall, a monitoring policy is specified as part of the context of an agree-
ment. The new definition of the context type in WS-Agreement that includes
the element monitoringPolicy which allows the specification and attachment
of a monitoring policy to the context of an agreement is shown in Fig. 10.3.

1 In the monitoring framework that we have developed to support the runtime
checking of WS-Agreements, derived events are generated by deduction (see
Sect. 10.4.1).
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Original Form of WS-Agreement Extended Form of WS-Agreement
<xs:complexType name="AgreementContextType"> 

<xs:sequence> 
<xs:element name="AgreementInitiator" 

 type="xs:anyType" minOccurs="0"/> 
<xs:element name="AgreementProvider" 

 type="xs:anyType" minOccurs="0"/> 
<xs:element   
   name="AgreementInitiatorIsServiceConsumer"    
   type="xs:boolean" default="true" 
minOccurs="0"/> 
<xs:element name="TerminationTime" 

 type="xs:dateTime" minOccurs="0"/> 
<xs:element name="RelatedAgreements" 

 type="wsag:RelatedAgreementListType" 
 minOccurs="0"/> 

<xs:any namespace="##other" 
 processContents="lax" minOccurs="0" 
 maxOccurs="unbounded"/> 

</xs:sequence> 
<xs:anyAttribute namespace="##other"/> 

</xs:complexType> 

<xs:complexType name="AgreementContextType"> 
<xs:sequence> 
<xs:element name="AgreementInitiator" 

 type="xs:anyType" minOccurs="0"/> 
<xs:element name="AgreementProvider" 

 type="xs:anyType" minOccurs="0"/> 
<xs:element    
  name="AgreementInitiatorIsServiceConsumer" 

 type="xs:boolean" default="true" 
minOccurs="0"/> 
<xs:element name="TerminationTime" 

 type="xs:dateTime" minOccurs="0"/> 
<xs:element name="RelatedAgreements" 

 type="wsag:RelatedAgreementListType" 
 minOccurs="0"/> 

<xs:any namespace="##other" 
 processContents="lax" minOccurs="0" 
 maxOccurs="unbounded"/> 

<xs:element name="monitoringPolicy"  
 type="MonitoringPolicyType 
 minOccurs="0" maxOccurs="1" /> 
</xs:sequence> 
<xs:anyAttribute namespace="##other"/> 
</xs:complexType> 

Fig. 10.3. Extended definition of AgreementContextType in WS-Agreement

Specification of Service Description and Service Guarantee Terms

WS-Agreement defines a service guarantee term as a term that specifies “an
assurance to the service consumer on the service quality and/or resource avail-
ability offered by the service provider” (see p. 16 in [2]). In our framework,
this definition is refined to include functional and quality of service (QoS)
requirements for the constituent services of an SBS system. Functional and
QoS requirements may be associated with

• qualifying conditions conditions that must be met for a requirement to be
satisfied and enforced if it is not (as defined in [2])

• assumptions specifying how the behavior of an SBS system and its con-
stituent services affects the state of the system and therefore the satisfia-
bility of the requirements.

At runtime, the monitor of a WS-Agreement checks whether the func-
tional and QoS requirements that are defined as service guarantee terms in
the agreement are satisfied. During monitoring, any assumptions that may
have been specified for service guarantee terms are also used to generate ad-
ditional information about the effect of the behavior of an SBS system and
its constituent services. The identification of this effect is necessary as it may
affect the satisfiability of the service guarantee terms.

Service guarantee terms along with their qualifying conditions and assump-
tions are specified in our framework using an XML schema that is based on
event calculus, called EC-Assertion. In the following, we give an overview of
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event calculus and EC-Assertion how it is used in our monitoring framework
to specify service guarantee terms, qualifying conditions, and assumptions for
WS-Agreements.

10.3.3 Overview of Event Calculus

The event calculus (EC) is a first-order temporal formal language that can be
used to specify properties of dynamic systems which change over time. Such
properties are specified in terms of events and fluents.

An event in EC is something that occurs at a specific instance of time (e.g.,
invocation of an operation) and may change the state of a system. Fluents are
conditions regarding the state of a system and are initiated and terminated
by events. A fluent may, e.g., signify that a specific system variable has a
particular value at a specific instance of time.

The occurrence of an event is represented by the predicate Happens(e, t,-
R(t1, t2)). This predicate signifies that an instantaneous event e occurs at
some time t within the time range R(t1, t2). The boundaries of R(t1, t2) can
be specified by using either time constants or arithmetic expressions over the
time variables of other predicates in an EC formula.

The initiation of a fluent is signified by the EC predicate Initiates(e, f, t)
whose meaning is that a fluent f starts to hold after the event e at time t. The
termination of a fluent is signified by the EC predicate Terminates(e, f, t)
whose meaning is that a fluent f ceases to hold after the event e occurs
at time t. An EC formula may also use the predicates Initially(f) and
HoldsAt(f, t) to signify that a fluent f holds at the start of the operation
of a system and that f holds at time t, respectively.

Special Types of Fluents and Events

EC-Assertion is based on event calculus but uses special types of events and
fluents to specify service guarantee terms, and their qualifying conditions and
assumptions. More specifically, the fluents in EC-Assertion have the form

valueOf(fluent expression, value expression) (10.1)

The meaning of the expression 10.1 is that the fluent signified by flu-
ent expression has the value value expression. Furthermore, in this expression:

• fluent expression denotes a typed SBS system variable or a list of such
variables. fluent expression may be an
– internal variable that represents a variable of the composition process

of an SBS system, or
– external variable that is introduced by the creators of a service level

agreement to represent the state of an SBS system at runtime.
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If fluent expression has the same name as a variable in the SBS system
composition process then it denotes this variable, has the same name with
it, and is treated as an internal variable. In all other cases, fluent expression
denotes an external variable and its type is determined by the type of
value expression as described below.

• value expression is a term that either represents an EC variable or signifies
a call to an operation that returns an object of some type. The operation
called by value expression may be an internal operation that is provided by
the monitoring framework or an operation that is provided by an external
web service. If value expression signifies a call to an operation, it can take
one of the following two forms:
(i) oc : S : O( Oid, P1, ..., Pn) that signifies the invocation of an operation

O in an external service S.
(ii) oc : self : O( Oid, P1, ..., Pn) that signifies the invocation of the built-

in operation O of the monitor.
In these forms,
– Oid is a variable whose value identifies the exact instance of O’s invo-

cation within a monitoring session, and
– P1, ..., Pn are variables that indicate the values of the input parame-

ters of the operation O at the time of its invocation.

The internal operations which may be used in the specification of fluents
are shown in Table 10.1. Note also that a fluent is valid if and only if the type
of fluent expression is more general than the type of value expression. If flu-
ent expression is an external variable, the specification of its type is deduced
from the type of value expression in a fluent specification. In this case, if flu-
ent expression appears in different fluents that use different value expression
terms, the above type validity condition should be satisfied by the types of all
the relevant value expression terms. On the other hand, if fluent expression is
an internal variable, its type is determined by the specification of the variable
in the composition process of the SBS system that it refers to.

The calls to external and internal operations in fluents allow us to deploy
complex computations. As shown in Table 10.1, the internal operations of
EC-Assertion, for instance, can perform various arithmetic operations over
numbers and compute statistics of series of numerical values (e.g., compute
the average, median, and standard deviation of a series of values), manage
lists of primitive values and create new instances of object types which are
supported by EC-Assertion.

These operations are necessary for checking QoS requirements within the
reasoning process of the monitoring framework. The maintenance of lists of
primitive data values, for instance, is useful for recording multi-valued fluents
(e.g., recording the response times of a service operation). The operation avg
for instance, which computes the average value of a list of real or integer num-
ber, can be used to compute the average response time of a service operation.
During a monitoring session, when attempting to unify formulas which include
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Table 10.1. Built-in operations for specification and computation of service guar-
antee terms

Operation  Description 
add(n1:Real, n2:Real): Real This operation returns n1+n2 

sub(n1:Real, n2:Real): Real This operation returns n1-n2 

mul(n1:Real, n2:Real): Real This operation returns n1* n2 

div(n1:Real, n2:Real): Real This operation returns n1/n2 

append(a[]: list of <T>, e:T): list of <T> 
where T is Real, Int or String. 

This operation appends e to a[]. 

del(a[]: list of <T>, e:T): list of <T> 
where T is Real, Int or String. 

This operation deletes the first occurrence of e in a[]. 

delAll(a[]: list of <T>, e:T): list of <T> 
where T is Real, Int or String. 

This operation deletes all occurrences of e in a[]. 

size(a[]: list of <T>): Int 
where T is Real, Int or String. 

This operation returns the number of elements in a[]. 

max(a[]: list of <T>):<T> 
where T is Real, Int or String. 

This operation returns the maximum value in a[]. 

min(a[]: list of <T>):<T> 
where T is Real, Int or String. 

This operation returns the minimum value in a[]. 

sum(a[]: list of <T>):<T> 
where T is Real or Int. 

This operation returns the sum of the values in a[]. 

avg(a[]: list of <T>): <T> 
where T is Real or Int. 

This operation returns the average of the values in a[]. 

median(a[]: list of <T>):<T> 
where T is Real, Int or String. 

This operation returns the arithmetic median of the values in 
a[].

mode(a[]: list of <T>): <T> 
where T is Real, Int or String. 

This operation returns the most frequent element in a[]. 

new(type_name: String): 
ObjectIdentifier 

This operation creates a new object instance of type T and 
returns an atom that is a unique object identifier for this object. 

such calls, the EC variables which represent the operation parameters are uni-
fied first and then the monitor calls the relevant operation. If the operation
returns successfully with a return value that is compliant with the type of flu-
ent expression, this value becomes the binding of the term value expression.
Otherwise, unification fails. In Sect. 10.4.3, we give examples of monitoring
formulas that use built-in operations of the framework. (Table 10.1).

Events in our framework represent exchanges of messages between the
composition process of an SBS system and the services coordinated by it.
These messages either invoke operations or return results following the exe-
cution of an operation and – depending on their sender and receiver – they
can be of one of the following types:

1. Service operation invocation events—These events signify the invocation
of an operation in one of the partner services of an SBS system by its
composition process and are represented by terms of the form

ic : S : O( Oid, P1, ..., Pn) (10.2)

where O is the name of the invoked operation; S is the name of the
service that provides O, Oid is a variable identifying the exact instance
of O’s invocation within an execution of the SBS composition process, and
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P1, ..., Pn are variables indicating the values of the input parameters of
O at the time of its invocation.

2. Service operation reply events—These signify the return from the execu-
tion of an operation that has been invoked by the composition process of
an SBS in one of its partner services and are represented by terms of the
form

ir : S : O( Oid) (10.3)

where O, S, and Oid, are as defined in (1). Note that the values of the
output parameters of such operations (if any) are represented by fluents
which are initiated by the above event as discussed below.

3. SBS operation invocation events—These events signify the invocation of
an operation in the composition process of an SBS by one of its partner
services and are represented by terms of the form

rc : S : O( Oid) (10.4)

where S is the service that invokes O, and O, Oid are as defined in (1).
Note that the values of the input parameters of such operations (if any) are
represented by fluents which are initiated by the above event as discussed
below.

4. SBS operation reply events—These events signify the reply following the
execution of an operation that was invoked by a partner service in the
composition process of an SBS and are represented by terms of the form:

re : S : O( Oid, P1, ..., Pn) (10.5)

where S is the service that invoked O; P1, ..., Pn are variables that indi-
cate the values of the output parameters of O at the time of its return,
and O, Oid are as defined in (1).

EC-Assertion uses another type of events which signify the assignment of
a value to a variable used in the composition process of an SBS. These are
called assignment events and are represented by terms of the form

as : aname( Aid) (10.6)

where aname is the name of the assignment in the composition pro-
cess specification, and Aid is a variable whose value identifies the exact
instance of the assignment within an operational system session. An as-
signment event initiates a fluent that represents the value of the relevant
variable.

In addition to the EC predicates and event/fluent denoting terms that
were discussed above, formulas that express monitorable properties in EC-
Assertion can use the predicates < and = to express time conditions (the
predicate t1 < t2 is true if t1 is a time instance that occurred before t2, and
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the predicate t1 = t2 is true if t1 is a time instance that is equal to t2) and
to compare values of different variables. Also, an EC formula that expresses a
monitorable property must specify boundaries for the time ranges R(LB, UB)
which appear in the Happens predicates.

If the variable t in such predicates is existentially quantified, at least one
of LB and UB must be specified. These boundaries can be specified by using
(i) constant time indicators or (ii) arithmetic expressions of time variables t′

which appear in Happens predicates of the same formula provided that the
latter variables are universally quantified, and that appears in their scope.
If t is a universally quantified variable both LB and UB must be specified.
Happens predicates with unrestricted universally quantified time variables
take the form Happens(e, t, R(t, t)). These predicates express instantaneous
events. Furthermore, a formula is valid in our framework if the time variables
of all the predicates, which include existentially quantified non-time variables,
take values in time ranges with fixed boundaries. These restrictions guarantee
the ability to check the satisfiability of formulas. Furthermore, a specification
of requirements must also be compliant with the standard axioms of event
calculus. These axioms are shown in Fig. 10.4.

The axiom EC1 in Fig. 10.4 states that a fluent f is clipped (i.e., ceases
to hold) within the time range from t1 to t2, if an event e occurs at some time
point t within this range and e terminates f . The axiom EC2 states that a
fluent f is declipped (i.e., it comes into existence) at some time point within
the time range from t1 to t2, if event e occurs at some time point t, between
times t1 and t2 and fluent f starts to hold after event e at t. The axiom EC3
states that a fluent f holds at time t, if it is held at time 0 and has not been
terminated between 0 and t. The axiom EC4 states that a fluent f holds at
time t2, if an event e has occurred at some time point t1 before t2 which
initiated f at t1 and f has not been clipped between t1 and t2. The axiom
EC5 states that a fluent f does not hold at time t2, if there is an event e that
occurred at some time point t1 before t2 which terminated fluent f and this
fluent has not been declipped at any time point from t1 to t2. The axiom EC6
states that a fluent f holds at time t2, if it held at time t1 prior to t2 and has
not been terminated between t1 and t2. The axiom EC7 states that a fluent
f does not hold at time t2, if it did not hold at some time point t1 before t2

(EC1) Clipped(t1,f,t2)  ( e,t) Happens(e,t, (t1,t2))  Terminates(e,f,t) 
(EC2) Declipped(t1,f,t2)  ( e,t) Happens(e,t, (t1,t2))  Initiates(e,f,t) 
(EC3) HoldsAt(f,t)  Initially(f) ¬Clipped(0,f,t) 
(EC4) HoldsAt(f,t2)  ( e,t) Happens(e,t, (t1,t2))  Initiates(e,f,t) ¬Clipped(t,f,t2) 
(EC5) ¬HoldsAt(f,t2)  ( e,t) Happens(e,t, (t1,t2))  Terminates(e,f,t) ¬Declipped(t,f,t2) 
(EC6) HoldsAt(f,t2)  HoldsAt(f, t1)  t1 < t2 ¬Clipped(t1,f,t2) 
(EC7) ¬HoldsAt(f,t2) ¬HoldsAt(f, t1)  (t1 < t2) ¬Declipped(t1,f,t2) 
(EC8) Happens(e,t, (t1,t2))  (t1  t2)  (t1  t)  (t  t2) 

Fig. 10.4. Axioms of Event Calculus
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and f has not been declipped since then. Finally, the axiom EC8 states that
the time range in a Happens predicate is inclusive of its boundaries.

Examples of Specification of Service Guarantee Terms

In the following, we present examples of functional and QoS guarantee terms
that we can specify using EC-Assertion. Our examples are based on a simple
SBS system, called Quote Tracker Process (QTP), which we have implemented
to test the monitoring framework (see [31] for a specification of the BPEL
process and the services deployed by this system).

QTP allows a user to get a stock quote in US dollars given a stock symbol
from New York Stock Exchange (NYSE) and convert it to some other currency.
QTP uses a web service called Stock Quote Service (SQS) to get a quote for
stocks traded in the New York Stock Exchange using a NYSE symbol. It also
uses a second web service called Currency Exchange Service (CES) to get the
currency exchange rate between US dollars and a target currency, and a third
web service, called Simple Calculator Service (SCS), to convert the quote into
the target currency. QTP has been implemented as a BPEL process of QTP
and uses the services SQS and CES of XMethods. In our implementation, SCS
is a service that we have developed.

Fig. 10.5 shows specifications of functional and QoS properties for QTP
in the high-level logical syntax of EC-Assertion.

The formula F1 in Fig. 10.5, for instance, specifies a functional require-
ment for the CES service. According to this requirement, any request for the
exchange rate between two countries country1 and country2 that is sent
to CES within a specific time period T should return the same exchange
rate. This requirement is specified to ensure the consistency of the informa-
tion returned by CES. The EC-Assertion formula specifies this requirement
by stating that the results which are returned by any two invocations of the
operation getRate( ID, country2, country1) of the CES service that have
happened within a time period [t1, ..., t1 + T ] must be the same. The invoca-
tions of the operation getRate in this case are represented by the predicates
Happens(ic : CES : getRate( ID1, country2, country1), t1, R(t1, t1)) and
Happens(ic : CES : getRate( ID2, country2, country1), t3, R(t1, t1 + T ))
in the formula. The results of the invocations of getRate are represented by
the initiation of the external fluent variables Result1 and Result2. The as-
signment of values to these two fluent variables is expressed by the predicates

• Initiates(ir : CES : getRate(ID1), equalT o(Result1, result1), t2) and
• Initiates(ir : CES : getRate(ID2), equalT o(Result2, result2), t4).

The formula Q1 in Fig. 10.5 expresses a quality requirement for the CES
service of QTP . According to this requirement, the response time of the op-
eration getRate of CES should be less than 100 milliseconds (ms). The re-
sponse time in this formula is measured as the difference between the time
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of the receipt of the response of CES following the completion of the exe-
cution of getRate (this is signified by the time variable t2 of the predicate
Happens(ir : CES : getRate( ID1), t2, R(t1, t2)) which represents the return
of the operation in the formula) and the time when this operation was in-
voked in the service (this is signified by the time variable t1 of the predicate
Happens(ir : CES : getRate( ID1), t2, R(t1, t2)) which represents the call of
the operation in the formula).

A second quality requirement is expressed by the formula Q2 in Fig. 10.5.
The requirement that is expressed by this formula is that the average response
time of all the invocations of operation getQuote of the SQS service which take
place in the time range R(T 1, T 2) should be less than 100ms. Q2 expresses
this requirement by requiring the result of the calculation of the average of the
values stored in the list SQS get Quote RT [] to be less than 100ms. In Q2,
SQS get Quote RT [] is specified as an external fluent variable which is up-
dated every time that there is an invocation of getQuote followed by a return
from the execution of this operation. In these cases, the response time of each
invocation is appended to the list of values SQS get Quote RT []. The update
of the values of SQS get Quote RT [] is specified by the assumption A1 which

(F1) ( _ID1,_country1,_country2: String) (  t1: Time) 
         Happens(ic:CES:getRate(_ID1,_country2,_country1),t1, (t1,t1)) ^  ( t2:Time) ^ 
         Happens(ir:CES:getRate(_ID1),t2, (t1,t2)) ^  
         Initiates(ir:CES:getRate(_ID1),valueOf(Result1,_result1),t2) ^ ( t3:Time) ^ 
         Happens(ic:CES:getRate(_ID2, _country2, _country1),t3, (t1,t1+T)) ^ ( t4:Time) ^ 
         Happens(ir:CES:getRate(_ID2),t4, (t3,t4))) 
         Initiates(ir:CES:getRate(ID2),valueOf(Result2,_result2),t4)   _result1 = _result2 
(Q1) ( _ID,_country1,_country2: String) ( t1: Time) 
        Happens(ic:CES:getRate(_ID,_country1,_country2),t1, (t1,t1)) ^ ( t2:Time) ^  
         Happens(ir:CES:getRate(_ID),t2, (t1,t2))   oc:self:sub(t2,t1) < 100 
(Q2) (  t1: Time)   HoldsAt(valueOf(SQS_get_Quote_RT[],_resTime),t1)   oc:self:avg(_resTime]) < 100 
(A1) (  _ID, _symbol: String) (  t1: Time)  

Happens(ic:SQS:getQuote(_ID,_symbol),t1, (T1,T2)) ^ ( t2:Time) 
 Happens(ir:SQS:getQuote(_ID),t2, (t1,t2)) ^ HoldsAt(valueOf(SQS_get_Quote_RT[],_resTime),t2)  

 Initiates(ir:SQS:getQuote(_ID), valueOf(SQS_get_Quote_RT[], oc:self:append(_resTime, 
oc:self:sub(t2, t1)), t2)) 

(Q3) (  t1: Time) (t1 = T2+1) ^  
HoldsAt(valueOf(getQuote_responses,_resNumber), t1) ^ 

 HoldsAt(valueOf(getQuote_fails,_failsNumber), t1)  
oc:self:div(_resNumber, oc:self:add(_failsNumber,_resNumber)) > 0.999 

(A2) (  _ID, _symbol: String,  t1: Time)  
Happens(ic:SQS:getQuote(_ID,_symbol),t1, (T1,T2)) ^ ( t2:Time) 

 Happens(ir:SQS:getQuote(_ID),t2, (t1,t1+500)) ^ 
HoldsAt(valueOf(getQuote_responses,_resNumber),t2)  

 Initiates(ir:SQS:getQuote(_ID), valueOf(getQuote_responses, oc:self:add(_resNumber, 1), t2)) 
(A3) (  _ID, _symbol: String,  t1: Time)  

Happens(ic:SQS:getQuote(_ID,_symbol),t1, (T1,T2)) ^ ¬ ( t2:Time) 
 Happens(ir:SQS:getQuote(_ID),t2, (t1,t1+500)) ^ 

HoldsAt(valueOf(getQuote_fails,_failNumber),t2)  
 Initiates(ir:SQS:getQuote(_ID), valueOf(getQuote_fails, oc:self:add(_failNumber, 1), t2)) 

Fig. 10.5. Functional and Quality of Service requirements for the CES and SQS
services of QTP
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appends each new response time of getQuote to the list of values already in
SQS get Quote RT [] (see the fluent initiation predicate Initiates(ir : SQS :
getQuote( ID), valueOf(SQS get Quote RT [], oc : self : append( resT ime,
oc : self : sub(t2, t1)), t2)) in A1).

Formula Q3 in Fig. 10.5 expresses a second QoS requirement for the SQS
service. According to this formula, the requirement that should be guar-
anteed for this service is that rate of responses which are received within
500ms after an invocation of the operation getQuote of SQS should ex-
ceed 99.9%. This requirement is expressed by Q3 as a condition over the
values of the fluents getQuote responses and getQuote fails. These two flu-
ents keep the counters of cases where getQuote produced a response within
500ms following its invocation and cases where it did not, respectively. The
values of these two fluents are updated by deduction from the assumptions
A2 and A3, respectively. More specifically, from A2 it can be deduced that
the value of the fluent getQuote responses should be increased by one ev-
ery time that getQuote produces a response within 500ms after its invo-
cation. Similarly, from A3 it can be deduced that the value of the fluent
getQuote fails should be increased by one every time that getQuote does not
produce a response within 500ms from its invocation. Q3 uses the built-in
operations of EC-Assertion to calculate the ratio of the values of these two
fluents.

As noted earlier, the specification of the formulas in Fig. 10.5 is given in
the high-level logic-based syntax of EC-Assertion. Our framework supports
the transformation of the logic formulas which are specified in this logic-
based syntax into an XML-based representation following the schema that
defines EC-Assertion. This representation is generated by the editor of our
framework from the specification of the formula in the high-level EC syntax
automatically. Fig. 10.6 shows an extract of the representation of formula Q2
in EC-Assertion. The highlighted terms in the figure represent the specifi-
cation of the two Happens predicate in the formula. The description of the
full syntax of EC-Assertion is beyond the scope of this chapter. The speci-
fication of it, however, is available in [14] and a graphical representation of
the XML schema that defines EC-Assertion is given in the appendix of this
chapter.

Specification of Service Guarantee Terms

The specification of service guarantee terms using EC-Assertion is supported
by a refinement of the definition of the sub-elements QualifyingCondition
and ServiceLevelObjective in WS-Agreement.

The element QualifyingCondition in an agreement is used to specify a
precondition that should be satisfied for the enforcement of a service guar-
antee term [2]. The element ServiceLevelObjective is used to specify a con-
dition that must be met in order to satisfy a service guarantee. The type of
both these elements in the original form of WS-Agreement is xs : anyType
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<formula forChecking="true" formulaId="Q2"> 
  <quantification> 
   <quantifier>existential</quantifier> 
  <timeVariable> <varName>t1</varName> … </timeVariable> 
   </quantification> 
  <quantification> 
   <quantifier>existential</quantifier>  
    <timeVariable> <varName>t2</varName> … </timeVariable> 
  </quantification> 
  <body> 
  <predicate negated="false" unconstrained="true"> 
   <happens> 
    <ic_term> 
    <operationName>GetRate</operationName> <partnerName>CES</partnerName>  
    <id>_ID</id> <varName>_country1</varName> ...
  <varName>_country2</varName></varName>  
    </ic_term> 
    <timeVar> <varName>t1</varName> … </timeVar> 
    <fromTime> <time> <varName>t1</varName> … </time> </fromTime> 
    <toTime> <time> <varName>t1</varName> …</time> </toTime> 
   </happens> 
  </predicate> 
  <operator>and</operator>  
  <predicate negated="false" unconstrained="false"> 
  <happens> 
   <ir_term> 
    <operationName>getRate</operationName> <partnerName>CES</partnerName>  
  <id>_ID</id>  
   </rc_term> 
   <timeVar> <varName>t2</varName> … </timeVar> 
   <fromTime> <time> <varName>t1</varName> … </time> </fromTime> 
   <toTime> <time> <varName>t2</varName> … </time> </toTime> 
  </happens> 
  </predicate> 
  </body> 
  <head> 
  <relationalPredicate> <lessThan> 
   <operand1> <operationCall> <name>sub</name> <partner>self</partner>  
     <variable forMatching="false" …> <varName>t2</varName> … </variable> 
     <variable forMatching="false" …> <varName>t1</varName> … </variable> 
    </operationCall> 
   </operand1> 
   <operand2> <constant> <name>Vo</name> <value>1000</value> </constant>  </operand2> 
  </lessThan> ... 
  </relationalPredicate> 
  </head> 
  </formula>

Fig. 10.6. Extract of the representation of formula Q2 in EC-Assertion

(Fig. 10.7). In the extended form of WS-Agreement, the type of these elements
is ecQualifyingConditionType and ecServiceLevelObjectiveType, respectively.

ecQualifyingCondition is used to specify the precondition of a service guar-
antee term. ecQualifyingCondition is defined as a type with a single sub-
element, called formula, of type ecFormula, i.e., the type of EC formulas in
EC-Assertion.

ecServiceLevelObjectiveType is defined as a type with two sub-elements:
one sub-element called guaranteeFormula defines the condition that must be
met for the service guarantee term to be satisfied and the second sub-element
called assumption specifies the effects of the behavior on an SBS and its
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Extension for specifying GuaranteeTerms
Original Form Extended Form 
<xs:complexType name="GuaranteeTermType"> 
 <xs:complexContent> 

…
<xs:element  ref="wsag:QualifyingCondition"  

  minOccurs="0"/> 
<xs:element  ref="wsag:ServiceLevelObjective"/> 

…
</xs:complexContent> 

…
<xs:element name="GuaranteeTerm"  

  type="wsag:GuaranteeTermType"/> 
<xs:element name="QualifyingCondition"  

  type="xs:anyType"/> 
<xs:element name="ServiceLevelObjective"  

  type="xs:anyType"/> 
…

<xs:complexType name="GuaranteeTermType"> 
 <xs:complexContent> 

…
<xs:element  ref="wsag:QualifyingCondition"  

  minOccurs="0"/> 
<xs:element ref="wsag:ServiceLevelObjective"/> 

 … 
</xs:complexContent> 

…

<xs:element name="GuaranteeTerm"  
  type="wsag:GuaranteeTermType"/> 

<xs:element name="QualifyingCondition"  
  type="xs:ecQualifyingConditionType"/> 
<xs:element name="ServiceLevelObjective" 
 type="xs:ecServiceLevelObjectiveType"/> 

<xs:complexType 
 name="xs:ecQualifyingConditionType"> 
        <xs:sequence> 
            <xs:element name="formula"  
  type="ecas:ecFormula"  
  minOccurs="1"/> 
        </xs:sequence> 
</xs:complexType> 

<xs:complexType 
 name="ecServiceLevelObjectiveType"> 
        <xs:sequence> 
            <xs:element name="guaranteeFormula" 
  type="ecas:ecFormula" minOccurs="1" 
  maxOccurs="1"/> 
            <xs:element name="assumption"  
  type="ecas:ecFormula" minOccurs="0" 
  maxOccurs="unbounded"/> 
        </xs:sequence> 
</xs:complexType>

Fig. 10.7. Extensions in WS-Agreement for Specifying Service Guarantee Terms

constituent services which affect the satisfiability of a guaranteeFormula. The
type of both these elements is ecFormula, as shown in Fig. 10.7.

10.4 Monitoring Service Level Agreements

10.4.1 Types of Agreement Deviations

A broad distinction that is made by our monitoring framework is related
to the type of the events which are used in order to detect deviations from
service level guarantee terms. These events may be of two types: (1) Events
which have been captured during the operation of the system at runtime or
(2) events which are generated from recorded events by deduction. The use of
events of these two types also affects the characterisation of deviations from
service level agreements in our framework. More specifically, if monitoring is
based only on recorded events, it can detect only inconsistencies which are
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evidenced by violations of specific service guarantee terms by these recorded
events. If, on the other hand, monitoring is based on both recorded and derived
events, then the framework can also detect (a) inconsistencies which arise
from the expected system behavior, (b) cases of unjustified system behavior,
(c) possible inconsistencies evidenced from the expected system behavior, and
(d) possible cases of unjustified system behavior.

In the following, we focus only on inconsistencies caused by recorded events
and derived events. A description of the other types of inconsistencies that
can be detected by our framework is beyond the scope of this chapter and
may be found in [36].

10.4.2 Violations of Service Guarantee Terms by the Recorded
Behavior of SBS Systems

The recorded behavior of an SBS system S at time T , ER(T ), is defined
as a set of event, and fluent initiation or termination literals of the forms:
Happens(e, t, R(t, t)), Initiates(e, f, t), and Terminates(e, f, t) which have
been recorded during the operation of S and for which 0 ≤ t ≤ T . A violation
of a service guarantee term of the form f : H ⇒ B is caused by the recorded
behavior of a system at time T if the recorded behavior implies the negation
of the term, that is if

{ER(T ), ECa} |= ¬f

where

• |= signifies logical entailment using also the principle of negation as failure,
and

• ECa are the axioms of event calculus.

Assuming the log of the runtime events of QTP shown in Fig. 10.8,
the quality requirement Q1 that requires the response time of the operation
getRate of the service CES to be less than 100ms is violated at time T =
24657. This is because at this time point an event signifying the response from
the execution of this operation that was invoked at T = 24500 is received and
the time difference between the invocation and the response of the operation is
found to be 157ms (see the events L4 and L5 in the event log of Fig. 10.8 which
represent the invocation and response of the operation getRate, respectively).
The identification of the violation is identified since the events L4 and L5
imply the negation of Q1. This is because, following the unification of the
variables t2 and t1 of Q1 with the values 24657 and 24500 respectively, the
result of the execution of the built-in operation oc : self : sub(24657, 24500)
in the formula is not less than 100 as required by Q1.

Violations of Service Guarantee Terms by the Expected Behavior
of SBS Systems

The second type of deviations that can be detected in our framework are
violations of service guarantee terms by the expected behavior of an SBS
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system. The latter type of behavior includes the set of predicates that can
be derived by deductive reasoning from the recorded behavior of a system
using the formulas in the behavioral specification BS of the system and the
assumptions AS that have been specified for it. As defined in [36], a service
guarantee term of the form f : C ⇒ A is violated with the expected behavior
of a system at time T if

ER(T ), ECa, dep(AS ∪ BS , f) |= � f

where dep(AS∪BS , f) is the set of formulas g : B ⇒ H in the assumptions
AS defined for f and the service description terms of the SBS system (BS)
which f depends on. In this definition, inter-formula dependencies are defined
as follows. A formula f depends on a formula g : B ⇒ H if the head H of g has
a predicate L that unifies with some predicate K in the body C of f or with
some predicate K in the body B′′ of another formula g′ that f depends on.

The runtime events of Fig. 10.8 and the events that can be derived from
them given the assumptions of Fig. 10.5 and the axioms of event calculus
violate the QoS requirement Q2 of QTP at T = 26325. This is because at this
time point, the fluent vector variable SQS get Quote RT [] has two values (50
and 200), the average value of which is not less than 100. The violation in
this case is detected using the derived events and recorded events of QTP.
More specifically the relevant derived events in this case are the events which
update the value of the fluent (vector) variable SQS get Quote RT []. These
events are generated by deduction from the assumption A1. More specifically,
following the events L1 and L2, SQS get Quote RT [] is deduced by A1 to
include the value 50 and following the events L7 and L8 the same fluent
variable is deduced to include the value 200 too.

10.4.3 Monitoring Process

In the following, we describe the process by which our monitor checks for
violations of service guarantee terms. At runtime, the monitor generates and
maintains templates that represent different instantiations of the formulas

L1 : Happens(ic:SQS:getQuote(ID1,SX),23100, (23100,23100))  
L2 : Happens(ir:SQS:getQuote(ID1),2315, (23150,23150)) 
L3 : Initiates(ir:SQS:getQuote(ID1),valueOf(q,107),23150) 
L4 : Happens(ic:CES:getRate(ID2,US,UK),24500,R(24500, 24500)) 
L5 : Happens(ir:CES:getRate(ID2),24657,R(24657, 24657)) 
L6 : Initiates(ir:CES:getRate(ID2), valueOf(rate,1.77),24657) 
L7 : Happens(ic:SQS:getQuote(ID3,SY),26125, (26125,26125)) 
L8 : Happens(ir:SQS:getQuote(ID3),26325, (26325,26325)) 
L9 : Initiates(ir:SQS:getQuote(ID3),valueOf(q,54),26325) 
L10 : Happens(ic:CES:getRate(ID4,US,UK),27555,R(27555, 27555)) 
L11 : Happens(ir:CES:getRate(ID4),28000,R(28000, 28000) 
L12 : Initiates(ir:CES:getRate(ID4), valueOf(rate,1.77),28000) 

Fig. 10.8. Runtime events of QTP
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that specify the service guarantee terms of an agreement which should be
monitored. A template for a formula f stores the following:

• The identifier (Id) of f .
• A list of pairs (i, p) where i indicates a formula that depends on f , and p

indicates the predicate that creates the dependency.
• The variable binding (VB) computed for the template (i.e., the set of value

bindings of the variables of the formula represented by the template).
• For each predicate p in f

– The quantifier of its time variable (Q) and its signature (SG).
– The boundaries (LB, UB) of the time range within which p should

occur.
– The truth value (TV) of p. TV is defined to be UN if the truth value

of the predicate is not known yet, T if the predicate is known to be
true, and F if the predicate is known to be false.

– The source (SC) of the evidence for the truth value of p. The value of
SC is UN if the truth value has not been established yet, RE if the
truth value of the predicate has been established by a recorded event,
DE if the truth value of the predicate has been established by a derived
event, and NF if the truth value of the predicate has been established
by the principle of negation as failure.

– A time stamp (TS) indicating the time in which the truth value of p
was established.

The monitor creates two sets of templates for each formula: a set of devia-
tion templates which are used to check for violations of the formula, and a set
of derivation templates which are used to derive predicates from the formula.2

Both types of templates are updated by recorded and derived events.
Recorded events are captured by the event receiver and stored in the event
database of the framework (see Fig. 10.1). These events are processed by the
monitor in the exact order of their occurrence and used to update the truth
values of predicates in templates. When a new event is taken from the event
database, the monitor checks it against all the different templates to establish
if the event could be unified with a predicate in the template. In cases where
the event can be unified with a predicate in a template and the truth value of
the predicate has not been set yet, the template is updated. The form of the
update depends on whether the predicate has an existentially or a universally
quantified time variable.

More specifically, the truth value of a predicate with an existentially quan-
tified time variable—i.e. a predicate of the form (∃t)p(x, t) where t is in the
range R(t1, t2)—is set to T (true) as soon as the first event e that can be
unified with p occurs between t1 and t2. If no such event occurs at the distin-
guishable time points within R(t1, t2), the truth value of p is set to F (false).

2 Derivation templates are not generated if the mode of monitoring in a monitoring
policy is set to recorded events only (see Sect. 10.3).
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The absence of events unifiable with p is confirmed as soon as the first event
that cannot be unified with p occurs after t2. The truth value of a predicate
of the form � (∃p)(x, t) is established in the opposite way: as soon as an event
e that can be unified with p occurs between t1 and t2, the truth value of p is
set to F (false) and if no such events occur at the distinguishable time points
between t1 and t2, the truth value of p is set to T (true).

The truth value of a predicate with a universally quantified time variable—
i.e., a predicate of the form (∀t)p(x, t) where t must be in the range R(t1, t2)—
is set to F (false) as soon as an event which is not unifiable with p occurs
between t1 and t2, and to T (true) if all the events that occur at the distin-
guishable time points between t1 and t2 can be unified with p. The truth value
of predicates of the form � (∀t)p(x, t), where t must be in the range R(t1, t2),
is set to T (true) as soon as the first event that is not unifiable with p occurs
within the time range R(t1, t2) and F (false) if all the events at the distin-
guishable time points between t1 and t2 can be unified with p. The truth
value of predicates of the form (∀t)p(x, t), where t is unconstrained (i.e., it is
defined to be in a range of the form R(t, t)), is set to T (true) as soon as an
event that can be unified with the predicate is encountered.

As an example of this process, consider the check of the satisfiability of
the formula Q1 in Sect. 10.3. Initially, the template of this formula will have
the form shown in Fig. 10.9.

Then, when the event L4 in the even log of Fig. 10.8 occurs, the mon-
itor detects that it can be unified with the first predicate in the template
(i.e., the predicate Happens(ic : CES : getRate( ID, country1, country2),
t1, R(t1, t1))) and creates a new instance of the template in which the event
is unified with the predicate. Following the unification, in the new tem-
plate instance, which is shown in Fig. 10.10, the truth value of the pred-
icate Happens(ic : CES : getRate( ID, country1, country2), t1, R(t1, t1))
is set to T . This is because the time variable t1 of the predicate is uni-
versally quantified and unconstrained. Also, the source (SC) of this truth
value is set to RE (as the value was set due to a recorded event), the times-
tamp at which the truth value of the predicate was determined is set to
24500 (i.e., the timestamp of the event that was unified with the predicate)
and the lower (LB) and upper (UB) time boundaries of the time variable

Template-1 
ID Q1 
DP 
VB (_ID,?) (_country1,?) (_country2,?) (1, ?) (t2, ?) 
P Q SG TS LB UB TV SC 
1 Happens(ic:CES:getRate(_ID,_country1,_countr

y2),t1, (t1,t1))
t1 t1 t1 UN UN 

2 Happens(ir:CES:getRate(_ID),t2, (t1,t2)) t2 t1 t2 UN UN 
3  oc:self:sub(t2,t1) < 100 ? UN UN 

Fig. 10.9. Template for formula Q1
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Template-2 
ID Q1 
DP 
VB (_ID, ID2) (_country1,US) (_country2, UK) (t1, 24500) (t2, ?) 
P Q SG TS LB UB TV SC 
1 Happens(ic:CES:getRate(_ID,_country1,_countr

y2),t1, (t1,t1))
24500 24500 24500 T RE 

2 Happens(ir:CES:getRate(_ID),t2, (t1,t2)) t2 24500 t2 UN UN 
3  oc:self:sub(t2,t1) < 100 ? UN UN 

Fig. 10.10. Template for formula Q1 updated due to the event L4

of the predicate are both set to 24500. The update of the template due
to the event L4 also changes the variable binding of the template. More
specifically, the variables ID, country1, country2, and t1 of the predicate
Happens(ic : CES : getRate( ID, country1, country2), t1, R(t1, t1)) are
bound to the values ID2, US, UK, and 23500, respectively. Note also that
the lower boundary (LB) of t2 which is the time variable of the second predi-
cate in the template has been updated so as to be equal to the value bound to
t1 (i.e., 24500). As a result of the update of the lower bound of t2, the truth
value of the second predicate in the template will subsequently be updated
only by events that happen after t = 24500.

When the event L5 in the event log of Fig. 10.8 occurs the template
of Fig. 10.10 will be updated again. This is because L5 can be unified
with the second predicate in the template, i.e., the predicate Happens(ir :
CES : getRate( ID), t2, R(t1, t2)), and has taken place within the time
boundaries of this predicate (i.e., after 24500). The result of this update is
shown in Fig. 10.11. As shown in this figure, the truth value of the predicate
Happens(ir : CES : getRate( ID), t2, R(t1, t2)) is set to T , its timestamp
is set to 24657, and the source of the truth value of the predicate is set to
RE as the event that led to the update was again a recorded event. At this
point, the truth value of the only remaining predicate in the template (i.e., the
predicate oc : self : sub(t2, t1) < 100) can also be computed. This is because
oc : self : sub(t2, t1) < 100 is not a predicate with a time variable and all

Template-3 
ID Q1 
DP 
VB (_ID, ID2) (_country1,US) (_country2, UK) (t1, 24500) (t2, 24657) 
P Q SG TS LB UB TV SC 
1 Happens(ic:CES:getRate(_ID,_country1,_countr

y2),t1, (t1,t1))
24500 24500 24500 T RE 

2 Happens(ir:CES:getRate(_ID),t2, (t1,t2)) 24657 24500 24657 T RE 
3  oc:self:sub(t2,t1) < 100 UN UN 

Fig. 10.11. Template for formula Q1 updated due to the events L4 and L5
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its variables (t1 and t2) are bound to specific values in the current variable
binding of the template.

As the predicate oc : self : sub(t2, t1) < 100 refers to an operation (i.e.,
oc : self : sub(t2, t1)), to establish its truth value the monitor must execute
this operation. In this case, the monitor will call the operation oc : self : sub
using as parameters the values of the variables t2 and t1 and will substitute the
result of this call (i.e., 257) for the operation in the predicate “<” . Following
the substitution, the predicate “<” becomes “257 < 100” and consequently
its truth value is evaluated to F .

When the truth values of all predicates in a template have been deter-
mined, a check for possible formula violations is performed. This check is
carried out according to the following rules:

• If the truth value all the predicates in the template is T , the instance of
the formula represented by the template is satisfied.

• If the truth value of all the predicates in the body of the template is T and
the truth value of at least one predicate in the head is F and there is no
predicate in the template whose source is a derived event (i.e., DE), the
instance of the formula represented by the template is inconsistent with
the recorded behavior of the system.

• If the truth value of all the predicates in the body of the template is True
and the truth value of at least one predicate in the head of the template
is False and the source of at least one predicate in the template is a
derived event, the formula is inconsistent with the expected behavior of
the system.

The template checking process will be triggered following the update of the
truth value of the predicate oc : self : sub(t2, t1) < 100 in the template of
Fig. 10.11. This process will establish that the specific instance of the formula
Q1 that is expressed by the template has been violated and since the events
that have been taken into account in order to establish the truth values of
the predicates in the formula are all recorded events, the detected violation is
classified as a violation due to recorded behavior.

The monitor also generates derived events by deduction from event deriva-
tion templates. More specifically, if in an event derivation template the truth-
value of all the predicates in the body of the template is T and there is a
predicate p in the head of the template that has an unknown truth value but
whose variables are bound to specific values in the variable binding of the
template, the truth value of p is set to T and the monitor generates a derived
event as a copy of the bound form of p.

Derived events are used to update derivation templates in order to derive
further events and to detect deviations. In the update process for derived
events, the truth value of a predicate of the form (∃t)p(x, t)(¬(∃t)p(x, t)),
where t is in the range R(t1, t2) in a template, is set to T (F ) if there is a not-
negated derived event e that can be unified with p and the range R(t1′, t2′)
of e is within R(t1, t2). The truth value of a predicate of the form (∀t)p(x, t)
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(where t is in the range R(t1, t2)) with a yet unknown truth value is set
to T if there is a derived event e that can be unified with p and the range
R(t1, t2) is within the range R(t1′, t2′) of e. The truth value of a predicate
in a template of the form ¬(∀t)p(x, t) (where t is in the range R(t1, t2)) with
a yet unknown truth value is set to T if there is a derived negated event e
that can be unified with p and the range R(t1′, t2′) of e is within the range
R(t1, t2).

According to this process, the derivation template Template-4 shown in
Fig. 10.12 will be created from formula A1 at T = 23150. This template
will be created from an uninstantiated template of A1 following the events
L1 and L2 in Fig. 10.8. More specifically, the truth value of the predicate
Happens(ic : SQS : getQuote( ID, symbol), t1, R(T 1, T 2)) in Template-4
will be set to T due to the event L1 and the truth value of the pred-
icate Happens(ir : SQS : getQuote( ID), t2, R(t1, t2)) will be set to T
due the event L2 at t = 23150. At this time point, the truth value of
the predicate HoldsAt(valueOf(SQS get Quote RT [], resT ime), t2) in the
template can also be derived from axiom EC3 of event calculus and the
predicate Initially(valueOf(SQS get Quote RT [], []) which represents the
initial set of the response times of the operation get Quote. Thus, since
all the predicates in the body of the template Template-4 are true, the
monitor will use Template-4 to deduce the truth value of the predicate
Initiates(ir : SQS : getQuote( ID), valueOf(SQS get Quote RT [], oc :
self : append( resT ime, oc : self : sub(t2, t1)), t2)) in the head of the tem-
plate at T = 23150 deriving the following bounded form of this predicate:
Initiates(ir : SQS : getQuote( ID), valueOf(SQS get Quote RT [], [50]), 23-
150)). This bounded form is derived by first evaluating the term oc : self :
sub(23150, 23100), substituting its result (i.e., the value 50) into the term
oc : self : append( resT ime, oc : self : sub(t2, t1)) and finally evaluating the
latter term. The result of the latter evaluation is the list of values: [50]. This list
is substituted for the term oc : self : append( resT ime, oc : self : sub(t2, t1))
in the predicate.

Template-4 
ID A1 
DP Q2 
VB (_ID, ID1) (_symbol, SX) (_resTime, []) 
P Q SG TS LB UB TV SC 
1 Happens(ic:SQS:getQuote(_ID,_symbol),t1, 

(T1,T2))
23100 23100 23100 T RE 

2 Happens(ir:SQS:getQuote(_ID),t2, (t1,t2)) 23150 23150 23150 T RE 
3 HoldsAt(valueOf(SQS_get_Quote_RT[],_resTime)

, t2) 
23150 23150 23150 T DE 

4 Initiates(ir:SQS:getQuote(_ID), 
valueOf(SQS_get_Quote_RT[], 
oc:self:append(_resTime, oc:self:sub(t2, t1)), t2))

23150 23150 23150 UN UN 

Fig. 10.12. Template for formula A1
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Template 5
ID Q2 
DP 
VB (_resTime, [50]) 
P Q SG TS LB UB TV SC 
1 HoldsAt(valueOf(SQS_get_Quote_RT[], 

_resTime),t1)
23150 23150 23150 T DE 

2  oc:self:avg(_resTime]) < 100 23150 23150 23150 T DE 

Fig. 10.13. Template for formula Q2

Subsequently, from the derived predicate Initiates(ir : SQS : getQuote(-
ID), valueOf(SQS get Quote RT [], [50]), 23150)) and the axiom EC3 of

event calculus the predicate HoldsAt(valueOf(SQS get Quote RT [], [50]),-
23150) can also be derived. The latter predicate can then be used to update
a deviation template for the formula Q2. The template that results from this
update and the evaluation of the predicate oc : self : avg( resT ime]) < 100
in the formula is shown in Fig. 10.13. Thus, at T = 23150 the formula Q2 is
satisfied.

10.5 Implementation

Our framework has been implemented by a prototype written in JavaT M .
This prototype realizes the architecture of the framework that we discussed
in Sect. 10.2 and can monitor SBS systems whose composition process is
specified in BPEL. In the prototype, we have used the bpws4j BPEL process
execution engine [6]. This engine uses log4j [26] to generate logs of the events
during the execution of the composition process of an SBS. This event log is
fed into our framework in order to provide the runtime information that is
necessary for monitoring. The output of log4j is analyzed by the event receiver
of the prototype in order to extract the events which are taken into account
during the monitoring process.

Figure 10.14 shows a snapshot of the monitoring console of the prototype.
This snapshot was taken during a session of monitoring an implementation
of the SBS system that we described in Sect. 10.3. The upper left panel of
the monitoring console shows the formulas that express the service guarantee
terms in a WS-Agreement for this system. Using the console, the user of
our framework can select one or more of the formulas in an agreement to
monitor. Once selected, a formula appears in the lower left panel of the console.
In Fig. 10.14, the formula Q1 has been selected for monitoring and its EC
specification is shown in the lower left panel. When monitoring is activated,
the cases which violate and satisfy the selected formulas are shown in the
monitoring console (see upper right panel of the console in Fig. 10.14). The
user can select any of these cases in order to see the exact instantiation of
the formula (template) that underpins the case. This instantiation includes
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Fig. 10.14. Snapshot of Monitoring

the events that have been unified with the different predicates in the formula,
the source, and timestamp of each of these events and the truth values of the
predicates that the events have been unified with.

Figure 10.14 shows four violations of the formula Q1 which, as discussed
in Sect. 10.3, requires that the response time of the operation getRate of
the service Currency Exchange Service should always be less than 100ms.
These violations are identified as R-Q1-5, R-Q1-4, R-Q1-3, and R-Q1-2 in
Fig. 10.5. The user can select any of these violations to see the details of the
events that have caused it. The violation selected in the figure corresponds to
the instance R-Q1-2 of the formula. As shown in the lower right panel of the
figure, this violation has occurred since there was a call of the operation ge-
tRate (i.e., the event ic : getRate(Thread− 35, country2, country1), tR(t, t))
at T=1151666256272 and the response to this call (i.e., the event ir :
getRate(Thread − 35), tR(t, t)) occurred T = 1151666256272. Following the
unification of these two events with the Happens predicates in the body of
Q1, the monitor executed the operation oc : self.sub(t2, t1) in the head of the
formula and as the result of this operation was 360 ms the truth value of the
“<” predicate in the head of Q1 was evaluated to F and the whole formula
instance was violated.

The current implementation of the framework does not support the check-
ing of past EC formulas (a past EC formula is a formula in which a predicate
p that has a time variable which is constrained by the time variable of an
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unconstrained predicate q3 must occur before q). It also assumes that all the
non-time variables in formulas are universally quantified and does not support
the invocation of external operations in order to perform complex computa-
tions during the reasoning process (only invocations of built-in operations
are supported by the current implementation). Furthermore, based on our
implementation, we found that the impact of generating the events used for
monitoring onto the performance of the monitored system was about 18%
(i.e., the extra time that it takes from the BPEL engine to create an event
log). Currently, we are developing event captors which instead of using log4j
to generate events capture SOAP messages which are sent to and from the
BPEL execution engine and transform these messages into EC events before
sending them to the monitor. The impact of this alternative event capturing
solution on both the performance of the SBS system that is being monitored
and the monitoring process itself is to be evaluated.

10.6 Evaluation

10.6.1 Experimental Set Up

To evaluate the monitoring framework, we have carried out a series of exper-
iments. The objectives of these experiments were as follows:

1. To measure the efficiency of monitoring in terms of the average time that
it takes to detect a formula violation from the time that it occurred.

2. To establish whether performance is affected by the frequency and type
of the events which are taken into account and the size of the domains of
the non-time variables used in the formulas.

In our experiments, we used an implementation of a Car Rental System
(CRS) that is described in [12]. This system acts as a broker to car rental
companies enabling the hire of cars from different car parks. The system has
been implemented by a BPEL composition process that coordinates interac-
tions with different web services including (a) services which provide access
to information about the car fleet of different companies and the availability
of cars at different car parks and can make car rental reservations and (b)
services which operate as drivers of sensors installed at different car parks,
tracking car entries and departures.

Our experiments were based on simulations of the BPEL process of CRS.
In these simulations, we initially extracted the set of all the possible distinct
execution paths of the BPEL process of CRS and expressed them as formulas
in EC-Assertion. Then we generated different execution paths of the process
by selecting different formulas from the extracted formulas set and generating

3 A predicate p is constrained (unconstrained) if the range of its time variable is
(not) defined in terms of the values of other time variables.
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randomly events from each selected formula. The random generation of events
from a formula was controlled by the following parameters:

1. The size of the domain of the non-time variables in the formula (i.e., the
number of the distinct possible values of each variable).

2. The distribution of the values of the constrained time variables within the
formula.

3. The distribution of the time that elapses between the initial events of
each consecutively selected formulas or, equivalently, the distribution of
the values of the unconstrained time variables in the formulas.

Our experimental design covered two different factors that could affect the
performance of the monitoring process, namely:

• The frequency of events—To explore this factor, we ran simulations of high
and moderate event frequency. These two categories of event frequency
were controlled by the distribution of the time between the starting events
of two consecutively selected formulas in the simulations. In high event
frequency (HEF) simulations, the difference between the timestamps of
the starting events of two consecutively selected formulas had a normal
distribution with an average of 3 seconds and a standard deviation of 0.8
seconds. In moderate event frequency (MEF) simulations, the difference
between the timestamps of the starting events of two consecutively selected
formulas had a normal distribution with an average of 10 seconds and
a standard deviation of 0.8 seconds. In both simulation categories, the
timestamps of the constrained predicates in the formulas were distributed
according to the uniform distribution within the range defined by their
boundaries. Based on these parameters, in HEF simulations we generated
30,000 events per hour on average and in MEF simulations we generated
9,000 events per hour on average.

• The size of the domain—To explore this factor, we ran simulations using
large and small domain sizes denoted as LD and SD, respectively. In our
case study, we had three different domains for non-time variables, namely
customers, cars, and car parks. In LD simulations, we used sets of 200
customers, 80 cars, and 12 car parks. In SD simulations, we used sets of
50 customers, 20 cars, and 3 car parks (i.e., domains whose size was 1/4
of the size of the respective LD domain).

In total, we performed four different experiments in which we monitored
four functional requirements for CRS with an average of seven predicates per
formula. The experiments were categorized with respect to the previous two
differentiation factors as shown in Table 10.2. In each of these experiments, we
generated 30,000 events using the simulator of our framework (see Fig. 10.1)
and the parameter values that were described above and fed them into the
monitor which carried out the monitoring process. The number of events that
were used in our experiments corresponded to about 1 hour of operation of
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Table 10.2. Classification of experiments

MEF HEF

DL Exp 1 Exp 3
DS Exp 2 Exp 4

CRS in the case of HEF experiments and 3.3 hours of operation in the case
of MEF experiments.

In each experiment, we computed the in making a decision about possible
violations of a formula, called d-delay. d-delay was measured as:

d − delay =
∑

j=1,...,N

dj/N

In this formula, N is the number of the formula templates for which a
decision was made during the experiment and dj is the delay in making the
decision for a formula template j. dj was computed as

dj = T
Fj

E − maxi∈Fj (t
e(d)
i ) if T

Fj

E − maxi∈Fj (t
e(d)
i ) ≥ 0 (10.7)

dj = T
Fj

E − maxi∈Fj (t
M
i ) if T

Fj

E − maxi∈Fj (t
e(d)
i ) < 0 (10.8)

where

• tei is the time of occurrence of an event i as generated by the simulator
• T m

s is the starting time of the monitor
• T m

c is the current time of the monitor
• t

e(d)
i is the time of recording an event i in the monitor’s database; t

e(d)
i is

computed by the formula t
e(d)
i = (tei − te0) + T m

s where te0 is the time of
the first event that is generated by the simulator. t

e(d)
i is the relative time

of the occurrence of the event i after the occurrence of the first event that
is processed with the monitor and which is assumed to coincide with the
starting time of the monitoring process (i.e., T m

s )
• tMi is the time when the monitor retrieves an event i from its database to

process it
• T

Fj

S is the starting time of the decision procedure that the monitor executes
in order to check for violations after the truth values of the predicates in
the template j for a formula F have been established

• T
Fj

E is the completion time of the decision procedure that the monitor exe-
cutes in order to check for violations after the truth values of the predicates
in the template j for a formula F have been established

• i ranges over the events used to establish the truth values of the predicates
in a template Fj .
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Formula 10.7 above is used to compute the delay in making a decision
about a template in cases where the monitor starts checking this template
after the occurrence of all the events that were used to instantiate and set the
truth values of the predicates in the template. Formula 10.8 is used in cases
where the monitor is capable of checking a template before the last event that
was used to instantiate one of its predicates really occurred (this case was only
possible due to the use of simulations in which the time of the real occurrence
of an event could be after its generation by the simulator and its transmission
to the monitor).

Furthermore, for each of the four experiments we produced two sets of
results. The first set recorded the average delay in monitoring sessions using
only the events generated by the simulator (i.e., recorded events). The second
set included the average delay in monitoring sessions using both events gener-
ated by the simulator and additional events that were derived from them using
the monitored requirement formulas and assumptions (i.e., both recorded and
derived events).

10.6.2 Results

Tables 10.3 and 10.4 show the average d-delay in making decisions about the
satisfiability of monitored formulas that was measured in our experiments. The
average delay measures in Table 10.3 refer to monitoring sessions where only
the recorded events (i.e., the events generated by the simulator) were taken
into account. The average delay measures in Table 10.4 refer to monitoring
sessions where both the recorded events and events that could be derived from
them and assumptions by deduction were taken into account. The measures
appearing in both tables are in seconds.

The experimental results shown in Tables 10.3 and 10.4 demonstrate
that the frequency of events had a significant impact on the performance

Table 10.3. d-delay with recorded events

Exp 1 Exp 2 Exp 3 Exp 4

# Events Avg d-delay Avg d-delay Avg d-delay Avg d-delay

2500 0.06 0.62 0.03 0.04
5000 0.14 0.13 15.34 15.21
7500 0.21 0.20 185.95 210.22
10000 0.28 0.28 535.56 585.42
12500 0.36 0.36 1184.38 1195.02
15000 0.43 0.43 1896.70 2010.52
17500 105.56 66.29 2781.94 3034.48
20000 620.06 531.39 4121.51 4086.69
22500 1598.23 1397.85 5476.30 5590.25
25000 2993.66 2666.99 7003.27 7137.67
27500 4643.43 4343.57 9055.78 8838.63
30000 6493.96 6150.47 10671.60 11148.4
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Table 10.4. d-delay with mixed (recorded and derived) events

Exp 1 Exp 2 Exp 3 Exp 4

# Events Avg d-delay Avg d-delay Avg d-delay Avg d-delay

2500 49.47 44.70 61.04 68.90
5000 190.65 166.84 451.17 442.47
7500 380.23 342.41 1310.37 1380.84
10000 628.59 569.36 2650.79 2789.45
12500 1059.32 989.13 4420.99 4675.73
15000 1845.82 1744.56 6592.42 6971.83
17500 3205.74 3059.82 9435.23 9970.17
20000 5130.91 4926.66 12992.60 13366.00
22500 7624.29 7266.17 17063.41 17619.07
25000 10607.41 10134.35 21539.77 22325.48
27500 13976.86 13524.91 26647.47 27339.53
30000 17923.68 17452.27 31843.39 33171.97

of the monitor. The average decision delay increased linearly up to a certain
number of events and then it increased exponentially. In high event frequency
experiments, the exponential rise occurred earlier than in the moderate event
frequency (MEF) experiments. More specifically in MEF experiments where
only recorded events were used (i.e., Exp1 and Exp2), the exponential rise of
d-delay started in the range of 17,500–20,000 events as shown in Table 10.3
(i.e., the equivalent of about 1.9 hours of operation of CRS), whereas in the
recorded event HEF-experiments (i.e., Exp3 and Exp4) the exponential rise of
d-delay started in the range of 5,000–7,500 events (i.e., after about 0.2 hours of
operation of CRS). The same phenomenon was observed for the experiments
where we used both recorded and derived events as shown in Table 10.4.

Our experiments also showed that the size of the domains of the non-
time variables had no significant effect on the performance of the monitor.
This is evident from comparing the d-delay between Exp1 and Exp2 and
between Exp3 and Exp4 both in the case of experiments where only recorded
events were used (see Table 10.3) and in the case of experiments where both
recorded and derived events were used (see Table 10.4). The reason for the
absence of any effect of this factor is likely to have been due to the fact that
in our experiments the monitored formulas had predicates which had a small
number of shared variables. Thus, increments in the size of the domains of
these variables did not lead to a combinatorial proliferation in the number of
the templates (instances) of the formulas during the monitoring process.

Our experiments also demonstrated that the use of mixed events had a
significant effect on d-delay. Table 10.5 shows the ratio of the average d-delay
of mixed events over the average d-delay of recorded only events that was
measured in different experiments after processing 10,000, 20,000, and 30,000
events. In both MEF and HEF experiments, this ratio decreased as more
events were being processed going down to less than 3 at 30,000 events. This
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Table 10.5. Mixed vs recorded events d-delay ratio

# Events Exp 1 Exp 2 Exp 3 Exp 4

10,000 2197.85 2033.42 4.95 4.76
20,000 8.27 9.27 3.15 3.27
30,000 2.76 2.84 2.98 2.98

was due to the fact that at 30,000 events the monitor had been saturated with
events and substantial delays were being observed for recorded events alone
anyway. At the initial states of monitoring (10,000 events), however, the use of
mixed events (i.e., deduction in the monitoring process) caused a substantial
difference in d-delay which in the case of HEF experiments was almost 5-fold
and in the case of MEF experiments (Exp1 and Exp2) reached a ratio of
more than 2,000. The reason for the latter ratio was that monitoring based
on recorded events only in the case of MEP experiments was very efficient
up to 10,000 events (d-delay in this case was less than 0.3 seconds). These
results clearly demonstrate, as expected, that the use of deduction affects
substantially the efficiency and, therefore, the applicability of the monitoring
process.

Also, our experimental results have demonstrated that the average delay
in the detection of a formula deviation was substantial after some time. This
confirmed the results of a smaller scale experimentation that have been re-
ported in [29, 36]. The observed decision delays suggest that monitoring can
be deployed only for certain types of properties where the timeliness in the
detection of a deviation is not critical for a system (e.g., monitoring of long-
term performance properties of a system) and exclude time critical properties
(e.g., safety).

10.7 Related Work

The importance of being able to specify and monitor agreements between
providers and consumers of web services setting the objectives that the services
should satisfy and the penalties that may arise when they fail to do so is widely
recognized in industry and academia [2, 5, 23]. As a result of this recognition,
several standards and approaches have emerged, in addition to WS-Agreement
that we overviewed in Sect. 10.3.1.

WSLA (Web Service Level Agreement) is another framework that can
be used to specify a service level agreement between a service provider and
service consumer and the obligations of the two parties [23, 28]. This frame-
work provides an XML-based language for specifying quality objectives only
(e.g., service performance and throughput) without covering functional re-
quirements. A web service level agreement is agreed and signed by both par-
ties (known as signatory parties) through negotiation. Signatory parties may
monitor directly the agreement or employ one or more third parties (known as
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supporting parties) to monitor it. The WS-Agreement -based framework that
we have described in this chapter provides support for the specification of the
entire range of quality properties that can be specified in WSLA.

WS-Policy is a W3C standard that provides an XML-based language for
expressing the capabilities, requirements, and general characteristics of enti-
ties in an SBS system [3]. WS-Policy focuses on the provision of operators
for combining assertions that specify the above characteristics into policies
and the specification of qualifiers indicating the circumstances under which
an assertion has to be met. However, it does not provide the equivalent of a
full logic–based language that would be required in order to express arbitrary
logical conditions regarding the capabilities and requirements of services in a
service-based system and does not support the specification of assertions that
should hold over specific periods of time. Thus, it does not have the expressive
power that is necessary in order to express the entire range of service guar-
antee terms that might be required as part of a WS-Agreement. It would not,
for instance, be possible to express the functional requirement F1 in Fig. 10.5
using WS-Policy.

Baresi et al. [5] have developed a monitoring tool that supports the
monitoring of assertions inserted into the composition process of an SBS sys-
tem. This work also assumes composition processes specified in BPEL. An
assertion is checked by a call to an external service and the execution of the
composition process waits until the monitor returns the result of the check.
Then, the execution of the composition process may continue or be aborted
with the raise of an exception depending on whether the assertion has been
violated. The main difference between the work of Baresi et al. and our frame-
work is that the latter cannot perform preventive monitoring in which the
violation of a certain property can block the execution of a system operation
as [5]. However, our approach is not intrusive to the normal operation of an
SBS system and, therefore, the monitoring that it can perform does not affect
the performance of the monitored system. Furthermore, our approach makes
it possible to monitor more than one service guarantee terms not in isola-
tion (as in [5]) but jointly and complex service guarantee terms which involve
conditions over time.

Baresi et al. [4] have also used the WS-Policy framework to support the
monitoring of security properties for BPEL processes. In this approach the
constraints to be monitored are expressed in WS-Policy and WS-PolicyAtta-
chment is used to attach the policy to a particular context of the BPEL pro-
cess. Monitoring is performed using the approach described in [5], i.e., given
the specification of the constraints to be monitored in WS-Policy and WS-
PolicyAttachment, a process weaver instruments the BPEL process to make
it invoke an external service at runtime that checks the relevant constraints.

Another approach for monitoring SBS systems has been developed by
Robinson [33]. In this approach, requirements are expressed in KAOS and an-
alyzed to identify obstacles for them (i.e., conditions under which the require-
ments can be violated). Obstacles are identified by negating a requirement
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formula R and then identifying all the primitive events that can imply ¬R
through a regressive analysis of formulas that ¬R depends on. If an obstacle
is observable (i.e., it corresponds to a pattern of events that can be observed
at runtime), it is assigned to an agent for monitoring it. At runtime, an event
adaptor translates web service requests and replies expressed as SOAP mes-
sages into events and a broadcaster forwards these events to the obstacle
monitoring agents, which are registered as event listeners to the broadcaster.

Farrell et al. [17] have developed an ontology to capture aspects of service
level agreements agreed between service provider and consumer. This work
is concerned with the monitoring of properties related to computational re-
sources used by services such as computational power, storage, and network
bandwidth. A service level agreement in this approach is specified in terms of
an ontology that includes (i) contract management norms defining the effects
of contract events on the contract state, (ii) obligation norms that define the
actions a party has to perform in case of violation/fulfillment of contract man-
agement norms, and (iii) privilege norms that define non-contractual actions
that the parties of an agreement are permitted to perform. Contracts in [17]
are specified in an XML-based language called CTXML that has a semantics
grounded on event calculus. Their framework is supported by a query execu-
tion engine that checks whether a CTXML contract is satisfied at runtime.
The contract deviations that can be detected in the framework of Farrell et al.
are similar to the inconsistencies caused by the recorded behavior of a system
in our framework.

Ludwig et al. [28] have developed architecture for a middleware that can
be used to create and monitor WS-Agreements, called Cremona. Cremona
has a Java library that implements the protocol for creating service level
agreements as defined by WS-Agreement. It also proposes the use of monitors
that can check the status of the service guarantee terms in an agreement.
These monitors are seen in [28] as domain-specific components that can gather
primitive information from the systems that provide and/or use a service
and use it to evaluate the status of service guarantee terms. As no further
information is available to us regarding the implementation of such monitors,
we are unable to compare them with the monitoring framework described in
this chapter.

Runtime requirements monitoring has been the focus of different strands
of requirements engineering research since the late 1990s. Most of the existing
techniques (e.g., [19]) express requirements in the KAOS framework [13] as
high-level goals that must be achieved by a system. These goals are mapped
onto events that must be monitored at runtime. Typically, the existing ap-
proaches assume that the events to be monitored are generated by special
statements, which must be inserted in the code of a system for this purpose
(i.e., instrumentation) [32]. Note, however, that instrumentation cannot be
always applied to SBS systems since typically SBS system providers are not
the owners of the services deployed by the system.
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The acquisition of information about the environment of a system during
monitoring is even more difficult and most of the approaches do not address
this problem. As a solution to this problem, which is prominent in highly
dynamic settings (e.g., in mobile computing), Capra et al. [9] have suggested
the use of reflective middleware. Such middleware could maintain metadata
about an application and its execution context and give dynamic access to
this information upon request. In this approach, applications can influence
the middleware behavior by changing their own profile based on the reflected
information provided by the middleware. The reflective approach is also used
in the monitoring framework proposed in [11, 15, 20].

Recently, there has also been work that is concerned with the runtime
verification of program behavior [7, 8, 22, 24]. Work in this area focuses on
the development of framework for emitting and tracing program events during
the execution of a program and verifying them at runtime against properties
specified in some formal language, typically a variant of temporal logic. Events
normally correspond to change values of program variables at the start or end
of method executions. Work in this area focuses on the runtime verification
of Java programs and the deployed runtime events are generated either by
instrumentation [22, 24] or by using Java debugger interface [7, 8]. These
approaches are more close to debugging or perpetual testing of Java programs
rather than monitoring high-level user requirements.

10.8 Conclusions and Directions for Future Work

In this chapter, we presented a framework that we have developed to sup-
port the monitoring of service level agreements. The agreements that can be
monitored are expressed in an extension of WS-Agreement that we have de-
scribed in this chapter. The main characteristic of this extension is that it
uses an event calculus–based language, called EC-Assertion, for the specifica-
tion of the service guarantee terms that constitute the core of a service level
agreement and specify the conditions regulating the provision of services that
should be monitored at runtime. The use of EC-Assertion for specifying ser-
vice guarantee terms provides a well-defined semantics to the specification of
such terms and a formal reasoning framework for assessing their satisfiability.

EC-Assertion enables the specification of complex service guarantee terms
using full first-order logic formulas as well as conditions about time which
are necessary for the specification of not only behavioral but also quality of
service guarantees. It also enables the use of well-understood reasoning proce-
dures for the assessment of the satisfiability of service level agreements by our
framework. In addition to these characteristics, it should be noted that EC-
Assertion defines special events and operations which can be used in event cal-
culus formulas to enable the specification of complex service guarantee terms.
The use of internal and external operations in formulas enables the delegation
of computations of complex data functions which are often required for the



10 Monitoring WS-Agreements: An Event Calculus–Based Approach 303

specification of service guarantee terms to computational entities outside the
main reasoning engine which checks the satisfiability of the terms.

The monitoring framework that supports the proposed extension of WS-
Agreement has been evaluated in a series of experiments that we reported in
this chapter. These experiments have shown that the adoption of non intrusive
monitoring approach of our framework introduces some delay in the detection
of the deviations for an agreement but does not affect the performance of the
system which is being monitored significantly.

Beyond performance, it should be noted that, although our framework is
expressive enough to support a wide spectrum of monitorable service guar-
antee terms, we appreciate that the use of EC-Assertion for the specification
of such terms may be difficult for users who are not familiar with formal lan-
guages. To address this point, we are investigating the development of patterns
that specify generic service guarantee terms in EC-Assertion and an editor
to support the automatic generation of instances of these patterns for specific
SBS systems. An initial set of such patterns which specify generic security
properties, including confidentiality, integrity, and availability properties, in
EC-Assertion has been developed by Spanoudakis et al. [35]. The extension
of this set is the subject of the ongoing work.

Further ongoing work on the framework focuses on its further experimental
evaluation and the introduction of capabilities for probabilistic reasoning as
part of the monitoring process.
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