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Preface

Web services provide a well-known and language-independent infrastructure
for integrating heterogeneous components. Their neutral XML-based stan-
dards, along with supporting technology, help us federate components im-
plemented using different programming languages and running on different
platforms into a single, coherent system. Web services are a key breakthrough
to support the openness, heterogeneity, and flexibility of modern software
systems, but there is still a big gap between the underpinnings of the ar-
chitectural style and its supporting technology. The architectural style em-
bodies dynamism and flexibility, while supporting technologies are still static
and rigid. If we concentrate on the main standards proposed to implement
the service oriented paradigm, they tend to emphasize interoperability rather
than the capability to accommodate seamless changes at runtime. In contrast,
many research initiatives are pushing toward the runtime discovery of ser-
vices and then their dynamic selection. These approaches assume that service
discovery—maybe based on some ontologies—can happen while the applica-
tion executes and thus any possible fault or need to change the intermediaries
can be dealt with while the system evolves. These ideas move toward the con-
cept of self-healing systems, but also pose new and challenging requirements
for the validation of applications heavily based on Web services.

In this monograph, we thoroughly analyze this problem and we try to
address its many facets. First of all, since Web service compositions are inher-
ently distributed systems, their validation must not only consider the func-
tional correctness of the different elements, but also tackle the usual problems
behind distribution. The composition (of Web services) must not only be fast
enough, to properly support users, but also be trustable, secure, and reliable.
All these aspects, just to mention the most important ones, tend to widen the
usual idea of validation where functional and non-functional quality dimen-
sions have the same importance for the actual use of the application. Some
problems, which were usually addressed before releasing the application, must
now be considered while the application executes. The design-time validation
of these applications in most cases can only provide some necessary conditions
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for the actual correctness of the application, while the sufficient conditions
must in many cases be studied at runtime.

Given this wide spectrum, and also the relative novelty of the field (i.e., the
testing and analysis of Web services), we have tried to conceive a monograph
that addresses the different aspects of the field by presenting some state-
of-the-art analyses and some interesting approaches proposed by significant
research groups—both from industry and academia—worldwide. The different
contributions are organized around three main dimensions: (1) static analysis,
to acquire significant insights on how the system is supposed to behave, (2)
conventional testing techniques, to sample the actual behavior of the system,
(3) monitoring, to probe how the system behaves in operation and recovers
from anomalous situations if needed. The final part emphasizes specifically
the importance of non-functional cross-cutting aspects in the context of web
service compositions.

We invite the reader to see this book as a first attempt to provide an
organized presentation of what web service validation means in these days.
We did our best to cover all the different dimensions, but we are also aware
that the novelty and freshness of the field may have produced new and further
approaches during the elaboration of this volume. We do hope, indeed, that
this initial contribution will pave the road for a more complete and organic
book on the subject.

Finally, we warmly thank all the contributors, whose work and ideas are
the contents of this volume, the reviewers, who contributed to improve the
quality of the different chapters by providing fundamental and constructive
advices, and, last but not least, Springer, for their support to the project and
for trusting us.

Milan, Luctano Baresi
March 2007 Elisabetta Di Nitto
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Introduction

Luciano Baresi and Elisabetta Di Nitto

Politecnico di Milano — Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32 — 120133 Milano (Italy) baresi|dinitto@elet.polimi.it

The service-oriented approach is becoming more and more popular to integrate
highly heterogeneous systems. Web services are the natural evolution of con-
ventional middleware technologies to support web-based and enterprise-level
integration, but the paradigm also serves as basis for other classes of systems
such as ambient computing and automotive applications, which require high
degree of flexibility and dynamism of configurations. In this scenario, complex
applications can be obtained by discovering and composing existing services.
The resulting composition can have the following characteristics:

e It assembles operations supplied by different services, which are owned by
different providers.

e Since each provider is in charge of independently maintaining its services,
service implementations can change “freely” outside the control of the
composition and of its owner.

e Different executions of the same composition can bind to different service
instances offering similar operations.

In the case the execution of a composition fails to work, the simple shutdown
of the system is not a good solution, in general. The execution environment
should be able to select new services and even to reorganize their composition
if a perfect match does not exist.

The importance of non-functional requirements while setting the compo-
sition is another key feature of these systems. Bandwidth, availability, trust-
worthiness, and many other quality dimensions are as important as functional
aspects. Such requirements require Service Level Agreements [3, 1] or QoS con-
tracts to be negotiated, established, and enforced between service consumers
and providers. This is to be true even in case a service does not have full
control on the component services it exploits.

The aforementioned characteristics of service-oriented applications make
their validation a continuous process that often runs in parallel with execu-
tion. In fact, it is not possible to clearly distinguish—as it happens for more
traditional applications—between the pre-deployment validation of a system
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and its use, nor it is possible to guarantee that the checks passed at a certain
time will be passed at a different time as well.

The required continuous validation process has to provide the following
key features:

e It has to offer a methodology that embraces the different facets that are
relevant for service-centric systems (e.g., functional, load, and stress test-
ing, but also SLA and security checks).

e It has to provide probes as a part of the standard execution environment
in order to continuously monitor the satisfaction of QoS parameters and
to offer proper test oracles.

e It has to control the mechanisms to support dynamic binding and replan-
ning of compositions to obtain the same functionality with a different set
of services (e.g., two subsequent invocations might become a single call to
a different service).

1.1 Aims and Goals

This monograph aims at becoming the starting point for both researchers and

practitioners in the field of service-oriented architecture validation and verifi-

cation approaches. Researchers will find a neat and comprehensive survey of

existing approaches, while practitioners will find techniques and tools to im-

prove their current practice and deliver quality service-oriented applications.
Specifically, the monograph aims at providing the following:

A picture of what validating service-oriented applications means today.
A comprehensive survey of existing approaches and tools for validating
service-oriented applications.

Detailed guidelines for the actual validation of service-oriented systems.

References and scenarios for future research (and supporting tools) in the
field.

In order to better understand the context in which validation and verifica-
tion techniques for web services have to work, in Sect. 1.2 of this chapter we
define the main concepts that are relevant to the service-oriented domain. In
Sect. 1.3 we describe an application example that will be used to introduce the
various issues tackled in the book. Finally, Sect. 1.4 discusses some challenges
for verification and validation in the reference domain, and Sect. 1.5 presents
the structure of the rest of the book.

1.2 Main Concepts Within the Service-Oriented Context

The area of service-oriented architectures is quite young and has attracted
the interest of researchers and practitioners coming from different areas: web-
based applications, middleware, software engineering, information systems,
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component-based systems, etc. In order to define the various concepts, we
adopt a specific conceptualization that we are defining within the context of
a European project called SeCSE [2].

Figure 1.1 shows the main concepts of the domain and the relationships
between them. A Service is a Resource available on the network. It is imple-
mented by a Software System and is able to execute some Operations through
which it serves some Service Requests. Thus, while in general services could
also be provided by non-software components (e.g., by human beings), we
particularly focus our attention here on software services.

A Service can be characterized by one or more Service Descriptions usu-
ally stored in some Service Registry. The various Service Descriptions can
provide different views on the same Service. This is useful when a Service
Provider wants to offer to different Service Consumers some specialized view
on the Service itself. Service Descriptions are usually composed of the spec-
ification (both syntactical and semantical) of the abilities of a service. This
Service Specification is usually compiled by the same Service Developer imple-
menting the Service. In addition, a Service Description can contain Additional
Information on the Service that are collected while the Service is executing.
This information usually concerns the behavior of the service as they are ex-
perienced during operation. This can be obtained through monitoring, as a
result of a verification activity, or it can be simply inserted by the Service
Consumer in terms of qualitative data about the efficacy of the Service. Veri-
fication, monitoring, or informal validation of a Service all aim at assessing if
some Service Properties hold for the service and/or its Operations. The Ad-
ditional Information can be used by consumers to assess if a Service actually
behaves as expected based on its specifications.

ServiceRegistry|—
9

x

Service Developer

devglops

defines

Service Provider
. provides
Ar ,
* * * 0.* * -
Abstract Service |- 0. Cgf‘“?‘e 1 1 [Gperation 9" "Service Property
_ | is ized by | senice [™performs  L——— predicate...

0.

0. .
Server 1 Service Certifier
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Fig. 1.1. Main concepts of service-oriented systems
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A Service Composition is a special kind of Software System that is im-
plemented by composing various Services. A Composite Service is, in turn, a
Service Composition that behaves like a Service (it offers some Operations to
its consumers, usually associated with some Service Descriptions and is able
to serve some Service Requests). Services, either simple or composite, can
also be orthogonally classified as Stateful, in case they keep a conversational
state, or Stateless in the opposite case. Moreover, they can also be Concrete in
case they are associated to an actual implementation or Abstract in case they
simply represent an idea of service. Abstract Services, even if not executable,
can still be very useful since they allow a service composition to be developed
even if the binding to actual services is delayed to runtime. These classes of
services are shown in Fig. 1.2.

1.3 Running Example

The proposal of a common scenario is intended to highlight the main issues
we focus on in this monograph. To this end, the proposed scenario is general
enough to accommodate the different facets embedded in modern applica-
tions based on web services, and to provide sufficient requirements for the
applicability of approaches proposed in the subsequent chapters.

Next generation vehicles will be equipped with haptic devices to allow
drivers interact with on-board services (e.g., the infotainment system), with
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the environment that surrounds the vehicle, and with the remote services
associated with the user (e.g., the personal organizer).

In this context, John wants to plan a trip with his wife, to celebrate his
new car. He starts planning the trip in his office with a laptop. He starts
searching for a nice location: it must be close enough to where he lives (say,
within 100 miles), by a lake and close to mountains. Moreover, John wants a
nice and confortable hotel, where they can rest and enjoy the fitness center.
After finding the place, he makes a reservation for a room for the weekend, but
since he has to run home, he does not wait for the confirmation from the hotel.

The confirmation message from the hotel arrives on John’s mobile while he
is returning home. As soon as John acknowledges the reservation, the hotel
withdraws the agreed amount of money from his credit card. At home, he
describes the almost planned trip to his wife and they start searching for
good restaurants and places to see close to the chosen location. Again, they
reserve tickets for a couple of museums, and also reserve a table in a nice
restaurant by the lake for lunch on Saturday.

The day after, while waiting for his wife, John starts downloading on the
haptic device the plan he had created using his laptop and the reservations
done at home. Before leaving, they also need a map and a good service to iden-
tify the best itinerary to reach the place. Thus, they decide to exploit a simple
and cheap map service offering the resolution supported by the haptic device,
and asks the itinerary planning service for the fastest way to reach the target.

After the first hour on the highway, the vehicles that move in the opposite
direction report on a traffic jam that is ahead of them. If they keep following
the planned itinerary, they would be jammed after a few miles. They have
to leave the highway, but none of them knows the surroundings. To avoid
getting lost, they ask the device to find an alternative path to reach the
place. The device then needs to interact with a new (local) service to obtain
a new contingency plan to bypass the traffic jam. Such a local service can
provide as a result a map with different resolutions at different costs. Given
the characteristics of the display, the device automatically negotiates the best
resolution that can be displayed and asks the credit card company to pay for
it. Since the lowest resolution offered by the service is still too high for the
capabilities of the display, the device needs a further service to filter the map.

Everything works fine, and after the detour John and his wife can rejoin
the highway and reach the hotel. All the highway fees are paid automatically
through the toll system, which in turn interacts with the credit card company
for the actual payments.

Before resting and enjoying the environment, John needs to find a parking
lot. The hotel has no garage and he needs to find an alternative solution.
Once more, John exploits the haptic device to solve the problem. The system
highlights a garage not too far from the hotel and asks him if he wants to
make a reservation. The garage offers different options and John negotiates
the cheapest one. John parks the car and now he is ready to join his wife for
the weekend.
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1.4 Challenges

From the analysis of the example presented in the previous section various
interesting issues arise. In particular, we notice that services can be contextual;
for instance, John and his wife have used different map services in different
locations. We also notice that some services are actually stateful and are able
to maintain a conversational state that allow the user to interact with them
through different steps. An example of this is the service that has allowed John
to prepare a plan for his trip and to download it on its device the day after.
Services are not necessarily for free. Some of them should to be paid (e.g., the
map service). Of course in these cases, QoS Contracts, their negotiation (e.g.,
to select the right download resolution), and the consequent verification are
of paramount importance.

Services can be composed together to obtain the desired result. Such a
composition can be achieved both through a design level activity or at run-
time, as in the case of the composition of the map service and the filter.
Indeed, even when a service composition is defined at design time, still, the
selection of the component services to be used and their consequent binding
to the composition can happen either at deployment time or, dynamically,
at runtime, and it can be modified over time depending on various circum-
stances. In fact, if for any reason a bound service is not anymore available, the
simple shutdown of the system is not the solution, in general. The execution
environment should be able to select new services and even to reorganize the
Composition to find a solution that uses what is available, if a perfect match
does not exist.

All the aforementioned aspects make services quite unique elements in
the domain of software and introduce new challenges concerning their verifi-
cation and validation. Indeed, distributed ownership of services makes these
challenges even more difficult to achieve. This happens whenever a Service
Provider decides to modify a component service after a Service Composition
has been deployed. Changes in the Service Specification of this service com-
ponent might make it become useless for the composition, or might require
re-coding some parts of the composition to make up for the changes. Changes
in its implementation, leaving Service Specifications untouched, might be re-
garded as either good or bad thing. For example, if a map service is improved
by augmenting the resolution of the maps it provides, in general this will be
regarded as an advantage, but it could turn out to be a problem in the con-
text of portable clients, where the limited display would not allow the user to
exploit the benefits of the higher resolution. This resolution, instead, would
result even in more costs for the same service. Providers might also change
the set of Services they offer, and the un-deployment of Services might leave
“holes” in those Compositions that use them.

In general, if Services enter and leave the environment in an unpredictable
fashion, this makes reasoning on a system in its entirety very difficult. It
is not possible to clearly distinguish—as it happens for more traditional
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applications—between the pre-deployment validation of a system and its use.
This is why continuous approaches to analysis, testing, and monitoring of
service-oriented systems appear to be more and more relevant.

1.5 Structure of the Book

Consistently with the issues we have identified, the book is focused on pre-
senting some relevant approaches within three different, but related aspects
of verification. These aspects concern the following:

1. Analysis techniques applied to some formal model of a service or of a
service composition (see Part I). As we will see, these techniques are ex-
ploited during the design phase but, as in the case of the work by van der
Aalst and Pesic, they can also support the runtime monitoring part.

2. Testing techniques (see Part IT). The ones that we will consider in the book
focus on a variety of testing aspects ranging from unit testing of service
compositions to regression testing of simple and composite services.

3. Monitoring techniques aiming at continuously checking the execution of
a composition (see Part III). As we will see, monitoring can have vari-
ous objectives (e.g., check if the functionality provided by a service offers
a correct result vs check if the availability of the service fulfills the re-
quirements defined in the established SLA) and can be achieved in many
different ways. Also, the program used to monitor a composition can be
automatically generated at design time.

Among the other aspects to be verified on a service-oriented system, there are
some that result to be more critical than others and therefore deserve more
attention. We cite here reliability, security, and trust that will be specifically
addressed in the last part of the book (see Part IV).

References
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Specifying and Monitoring Service Flows:
Making Web Services Process-Aware

W.M.P. van der Aalst and M. Pesic

Department of Technology Management, Eindhoven University of Technology,
P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl,m.pesic@tm.tue.nl

Abstract. BPEL has emerged as the de-facto standard for implementing processes
based on web services while formal languages like Petri nets have been proposed as
an “academic response” allowing for all kinds of analysis. Although languages such
as BPEL and Petri nets can be used to describe service flows, they both tend to
“overspecify” the process and this does not fit well with the autonomous nature of
services. Therefore, we propose DecSerFlow as a Declarative Service Flow Language.
By using a more declarative style, there is no need to overspecify service flows.
The declarative style also makes DecSerFlow an ideal language for monitoring web
services, i.e., using process mining techniques it is possible to check the conformance
of service flows by comparing the DecSerFlow specification with reality. This can
be used to expose services that do not follow the rules of the game. This is highly
relevant given the autonomous nature of services.

2.1 Introduction

Web services, an emerging paradigm for architecting and implementing busi-
ness collaborations within and across organizational boundaries, are currently
of interest to both software vendors and scientists [4]. In this paradigm, the
functionality provided by business applications is encapsulated within web
services: software components described at a semantic level, which can be
invoked by application programs or by other services through a stack of Inter-
net standards including HTTP, XML, SOAP [23], WSDL [24], and UDDI [22].
Once deployed, web services provided by various organizations can be inter-
connected in order to implement business collaborations, leading to composite
web services.

Today, workflow management systems are readily available [7, 58, 68] and
workflow technology is hidden in many applications, e.g., ERP, CRM, and
PDM systems. However, their application is still limited to specific industries
such as banking and insurance. Since 2000, there has been a growing in-
terest in web services. This resulted in a stack of Internet standards (HTTP,
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XML, SOAP, WSDL, and UDDI) which needed to be complemented by a pro-
cess layer. Several vendors proposed competing languages, e.g., IBM proposed
WSFL (Web Services Flow Language) [57] building on FlowMark/MQSeries
and Microsoft proposed XLANG (Web Services for Business Process Design)
[84] building on Biztalk. BPEL [18] emerged as a compromise between both
languages.

The Business Process Ezxecution Language for Web Services (BPELAWS,
or BPEL for short) has become the de-facto standard for implementing pro-
cesses based on web services [18]. Systems such as Oracle BPEL Process Man-
ager, IBM WebSphere Application Server Enterprise, IBM WebSphere Studio
Application Developer Integration Edition, and Microsoft BizTalk Server 2004
support BPEL, thus illustrating the practical relevance of this language. Al-
though intended as a language for connecting web services, its application is
not limited to cross-organizational processes. It is expected that in the near
future a wide variety of process-aware information systems [30] will be realized
using BPEL. Whilst being a powerful language, BPEL is difficult to use. Its
XML representation is very verbose and readable only to the trained eye. It
offers many constructs and typically things can be implemented in many ways,
e.g., using links and the flow construct or using sequences and switches. As
a result, only experienced users are able to select the right construct. Several
vendors offer a graphical interface that generates BPEL code. However, the
graphical representations are a direct reflection of the BPEL code and are not
intuitive to end-users. Therefore, BPEL is closer to classical programming
languages than, e.g., the more user-friendly workflow management systems
available today.

In discussions, Petri nets [78] and Pi calculus [67] are often mentioned as
two possible formal languages that could serve as a basis for languages such
as BPEL. Some vendors claim that their systems are based on Petri nets or Pi
calculus and other vendors suggest that they do not need a formal language to
base their system on. In essence, there are three “camps” in these discussions:
the “Petri net camp,” the “Pi calculus” (or process algebra) camp, and the
“Practitioners camp” (also known as the “No formalism camp”). This was
the reason for starting the “Petri nets and Pi calculus for business processes”
working group [76] in June 2004. More than two years later the debate is still
ongoing and it seems unrealistic that consensus on a single language will be
reached.

This chapter will discuss the relation between Petri nets and BPEL and
show that today it is possible to use formal methods in the presence of lan-
guages like BPEL. However, this will only be the starting point for the results
presented in this chapter. First of all, we introduce a new language DecSer-
Flow. Second, we show that process mining techniques can be very useful
when monitoring web services.

The language DecSerFlow is a Declarative Service Flow Language, i.e., it
is intended to describe processes in the context of web services. The main
motivation is that languages like BPEL and Petri nets are procedural by



2 Specifying and Monitoring Service Flows 13

nature, i.e., rather than specifying “what” needs to happen these languages
describe “how” things need to be done. For example, it is not easy to specify
that anything is allowed as long as the receipt of a particular message is never
followed by the sending of another message of a particular type. DecSerFlow
allows for the specification of the “what” without having to state the “how.”
This is similar to the difference between a program and its specification. (For
example, one can specify what an ordered sequence is without specifying an
algorithm to do so.)

In a service-oriented architecture, a variety of events (e.g., messages being
sent and received) are being logged [6, 73]. This information can be used for
process mining purposes, i.e., based on some event log it is possible to discover
processes or to check conformance [14, 13]. The goal of process discovery is
to build models without a priori knowledge, i.e., based on sequences of events
one can look for the presence or absence of certain patterns and deduce some
process model from it. For conformance checking, there has to be an initial
model. One can think of this model as a “contract” or “specification” and it
is interesting to see whether the parties involved stick to this model. Using
conformance checking it is possible to quantify the fit (fewer deviations result
in a better fit) and to locate “problem areas” where a lot of deviations take
place.

In this chapter we will show that there is a clear link between more declar-
ative languages such as DecSerFlow and process mining. In order to do so, it
is important to look at the roles that process specifications can play in the
context of web services [94, 95]:

e DecSerFlow can be used as a global model, i.e., interactions are described
from the viewpoint of an external observer who oversees all interactions
between all services. Such a model is also called a choreography model.
Note that such a global model does not need to be executable. However,
the model is still valuable as it allows for conformance checking, i.e., by
observing interactions it is possible to detect deviations from the agreed
upon choreography model. Here DecSerFlow is competing with languages
such as the Web Services Choreography Description Language (WS-CDL)
[54].

e DecSerFlow can be used as a local model, i.e., the model that is used to
specify, implement, or configure a particular service. Here DecSerFlow is
competing with languages such as BPEL [18].

As discussed in [94, 95|, it is interesting to link global and local models.
Relating global models (that are produced by analysts to agree on interaction
scenarios from a global perspective) to local models (that are produced during
system design and handed on to implementers) is a powerful way of ensuring
that services can work together. Although DecSerFlow can be used at both
levels, we will argue that it is particularly useful at the global level. Moreover,
we will show that global models can be used to check conformance using
process mining techniques.



14 W.M.P. van der Aalst and M. Pesic

The remainder of this chapter is organized as follows. Section 2.2 describes
the “classical approach” to processes in web services, i.e., Petri nets and BPEL
are introduced and pointers are given to state-of-the-art mappings between
them. Section 2.3 first discusses the need for a more declarative language and
then introduces the DecSerFlow language. In Sect. 2.4 the focus shifts from
languages to the monitoring of services. Finally, there is a section on related
work (Sect. 2.5) and a conclusion (Sect. 2.6).

2.2 Classical Approaches: BPEL and Petri Nets

Before we introduce the DecSerFlow, we focus on two more traditional lan-
guages for the modeling of service flows, i.e., Petri nets and BPEL. Petri nets
are more at the conceptual level and can serve only as a theoretical basis for
the modeling and analysis of service flows. BPEL is emerging as the de-facto
standard for implementing processes based on web services. In this section,
we also discuss the link between Petri nets and BPEL and present two tools:
one to map Petri nets onto BPEL and another to map BPEL onto Petri
nets.

2.2.1 Petri Nets

Petri nets [78] were among the first formalisms to capture the notion of con-
currency. They combine an intuitive graphical notation with formal seman-
tics and a wide range of analysis techniques. In recent years, they have been
applied in the context of process-aware information systems [30], workflow
management [7, 9], and web services [64].

To illustrate the concept of Petri nets we use an example that will be used
in the remainder of this chapter. This example is inspired by electronic book-
stores such as Amazon and Barnes and Noble and taken from [16]. Figure 2.1
shows a Petri-net that will be partitioned over four partners: (1) the customer,
(2) the bookstore (e.g., Amazon or Barnes and Noble), (3) the publisher, and
(4) the shipper. As discussed in Sect. 2.1, Fig. 2.1 can be considered as a
global model, i.e., interactions are described from the viewpoint of an external
observer who oversees all interactions between all services.

The circles in Fig. 2.1 represent places and the squares represent transi-
tions. Initially, there is one token in place start and all other places are empty
(we consider one book order in isolation [7]). Transitions are enabled if there
is a token on each of input places. Enabled transitions can fire by removing
one token from each input place and producing one token for each output
place. In Fig. 2.1, transition place ¢ order is enabled. When it fires one token
is consumed and two tokens are produced. In the subsequent state (also called
marking) transition handle ¢ order is enabled. Note that transitions rec acc
and rec decl are not enabled because only one of their input places is marked
with a token.
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Fig. 2.1. A Petri net describing the process as agreed upon by all four parties (i.e.,
the global model)

Figure 2.1 represents an inter-organizational workflow that is initiated
by a customer placing an order (activity place ¢ order). This customer or-
der is sent to and handled by the bookstore (activity handle ¢ order). The
electronic bookstore is a virtual company which has no books in stock.
Therefore, the bookstore transfers the order of the desired book to a publisher
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(activity place b order). We will use the term “bookstore order” to refer to the
transferred order. The bookstore order is evaluated by the publisher (activ-
ity eval b order) and either accepted (activity b accept) or rejected (activity
b reject). In both cases an appropriate signal is sent to the bookstore. If the
bookstore receives a negative answer, it decides (activity decide) to either
search for an alternative publisher (activity alt publ) or to reject the customer
order (activity ¢ reject). If the bookstore searches for an alternative publisher,
a new bookstore order is sent to another publisher, etc. If the customer re-
ceives a negative answer (activity rec decl), then the workflow terminates. If
the bookstore receives a positive answer (activity ¢ accept), the customer is in-
formed (activity rec acc) and the bookstore continues processing the customer
order. The bookstore sends a request to a shipper (activity req shipment), the
shipper evaluates the request (activity eval s req) and either accepts (activity
s accept) or rejects (activity b reject) the request. If the bookstore receives a
negative answer, it searches for another shipper. This process is repeated until
a shipper accepts. Note that, unlike the unavailability of the book, the unavail-
ability of a shipper cannot lead to a cancellation of the order. After a shipper
is found, the publisher is informed (activity inform publ), the publisher pre-
pares the book for shipment (activity prepare b), and the book is sent from the
publisher to the shipper (activity send book). The shipper prepares the ship-
ment to the customer (activity prepare s) and actually ships the book to the
customer (activity ship). The customer receives the book (activity rec book)
and the shipper notifies the bookstore (activity notify). The bookstore sends
the bill to the customer (activity send bill). After receiving both the book
and the bill (activity rec bill), the customer makes a payment (activity pay).
Then the bookstore processes the payment (activity handle payment) and the
inter-organizational workflow terminates.

The Petri net shown in Fig. 2.1 is the so-called “WF-net” (WorkFlow-net)
because it has one input place (start) and one output place (end) and all
places’ transitions are on a path from start to end. Using tools such as Woflan
[88] or ProM [29], we can show that the process is sound [2, 7]. Figure 2.2
shows a screenshot of the Woflan plug-in of ProM. Soundness means that each
process instance can terminate without any problems and that all parts of the
net can potentially be activated. Given a state reachable from the marking
with just a token in place start, it is always possible to reach the marking with
one token place end. Moreover, from the initial state it is possible to enable
any transition and to mark any place. Using ProM it is possible to prove that
the Petri net shown in Fig. 2.1 is sound, cf. Fig. 2.2.

One can think of the Petri net shown in Fig. 2.1 as the contract between the
customer, the bookstore, the publisher, and the shipper (i.e., global model).
Clearly, there are many customers, publishers, and shippers. Therefore, the
Petri net should be considered as the contract between all customers, publish-
ers, and shippers. However, since we model the processing of an order for a
single book, we can assume, without loss of generality, that only one customer,
one publisher, and at most one shipper (at any time) are involved. Note that
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Fig. 2.2. Two analyses plug-in of ProM indicate that the Petri net shown in Fig. 2.1
is indeed sound. The top window shows some diagnostics related to soundness. The
bottom window shows part of the state space

Fig. 2.1 abstracts from a lot of relevant things. However, given the purpose of
this chapter, we do not add more details.

Figure 2.3 shows the same process but now all activities are partitioned
over the four parties involved in the ordering of a book. It shows that each of
the parties is responsible for a part of the process. In terms of web services,
we can think of each of the four large-shaded rectangles as a service. The
Petri-net fragments inside these rectangles can be seen as specifications of the
corresponding services (i.e., local models).

It is interesting to point out that in principle multiple shippers could be
involved, i.e., the first shipper may decline and then another shipper is con-
tacted, etc. However, at any point in time, at most one shipper is involved in
each process instance. Another interesting aspect is the correlation between
the various processes of the partners. There may be many instances of the
process shown in area labeled bookstore in Fig. 2.3. However, each instance
is unique and messages passed over the places connecting the bookstore to
the other partners refer to a particular process instance. In general, it is a
non-trivial problem to correlate messages to process instances. See [6, 73] for
a more detailed discussion on correlation.

We will refer to whole diagram shown in Fig. 2.3 as the choreography or
orchestration model of the four services.

2.2.2 BPEL

BPEL [18] supports the modeling of two types of processes: executable and
abstract processes. An abstract (not executable) process is a business protocol,
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Fig. 2.3. The process as partitioned over (1) the customer, (2) the bookstore, (3)
the publisher, and (4) the shipper (i.e., four local models and their interconnections)
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specifying the message exchange behavior between different parties without
revealing the internal behavior of any one of them. This abstract process views
the outside world from the perspective of a single organization or (composite)
service. An executable process views the world in a similar manner; however,
things are specified in more detail such that the process becomes executable,
i.e., an executable BPEL process specifies the execution order of a number
of activities constituting the process, the partners involved in the process,
the messages exchanged between these partners, and the fault and exception
handling required in cases of errors and exceptions.

In terms of Fig. 2.3, we can think of abstract BPEL as the language to
specify one service, i.e., describing the desired behavior of a single Petri-net
fragment (e.g., shipper). Frecutable BPEL on the other hand can be used as
the means to implement the desired behavior.

A BPEL process itself is a kind of flow-chart, where each element in the
process is called an activity. An activity is either a primitive or a structured
activity. The set of primitive activities contains invoke, invoking an operation
on a web service; receive, waiting for a message from an external source; reply,
replying to an external source; wait, pausing for a specified time; assign, copy-
ing data from one place to another; throw, indicating errors in the execution;
terminate, terminating the entire service instance; and empty, doing nothing.

To enable the presentation of complex structures the following structured
activities are defined: sequence, for defining an execution order; switch, for con-
ditional routing; while, for looping; pick, for race conditions based on timing or
external triggers; flow, for parallel routing; and scope, for grouping activities
to be treated by the same fault-handler. Structured activities can be nested
and combined in arbitrary ways. Within activities executed in parallel the ex-
ecution order can further be controlled by the usage of links (sometimes also
called control links, or guarded links), which allows the definition of directed
graphs. The graphs too can be nested but must be acyclic.

As indicated in Sect. 2.1, BPEL builds on IBM’s WSFL (Web Services
Flow Language) [57] and Microsoft’s XLANG (Web Services for Business Pro-
cess Design) [84] and combines the features of a block-structured language in-
herited from XLANG with those for directed graphs originating from WSFL.
As a result, simple things can be implemented in two ways. For example, a se-
quence can be realized using the sequence or flow elements (in the latter case
links are used to enforce a particular order on the parallel elements), a choice
based on certain data values can be realized using the switch or flow elements,
etc. However, for certain constructs one is forced to use the block-structured
part of the language, e.g., a deferred choice [8] can only be modeled using the
pick construct. For other constructs one is forced to use links, i.e., the more
graph-oriented part of the language, e.g., two parallel processes with a one-
way synchronization require a link inside a flow. In addition, there are very
subtle restrictions on the use of links: “A link MUST NOT cross the boundary
of a while activity, a serializable scope, an event handler or a compensation
handler... In addition, a link that crosses a fault-handler boundary MUST
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be outbound, i.e., it MUST have its source activity within the fault handler
and its target activity within a scope that encloses the scope associated with
the fault handler. Finally, a link MUST NOT create a control cycle, i.e., the
source activity must not have the target activity as a logically preceding activ-
ity, where an activity A logically precedes an activity B if the initiation of B
semantically requires the completion of A. Therefore, directed graphs created
by links are always acyclic” (see p. 64 in [18]). All of this makes the language
complex for end-users. A detailed or complete description of BPEL is beyond
the scope of this chapter. For more details, the reader is referred to [18] and
various web sites such as the web site of the OASIS technical committee on
WS-BPEL [70].

2.2.3 BPEL2PN and PN2BPEL

As shown, both BPEL and Petri nets can be used to describe the process-
aspect of web services. There are several process engines supporting Petri nets
(e.g., COSA, YAWL, etc.) or BPEL (e.g., Oracle BPEL, IBM WebSphere,
etc.). BPEL currently has strong industry support while Petri nets offer a
graphical language and a wide variety of analysis tools (cf. Fig. 2.2). Therefore,
it is interesting to look at the relation between the two. First of all, it is possible
to map BPEL onto Petri nets for the purpose of analysis. Second, it is possible
to generate BPEL on the basis of Petri nets, i.e., mapping a graphical, more
conceptual, language onto a textual language for execution purposes.

Several tools have been developed to map BPEL onto Petri nets (see
Sect. 2.5). As a example, we briefly describe the combination formed by
BPEL2PNML and WofBPEL developed in close collaboration with QUT [72].
BPEL2PNML translates BPEL process definitions into Petri nets represented
in the Petri Net Markup Language (PNML). WofBPEL, built using Woflan
[88], applies static analysis and transformation techniques to the output pro-
duced by BPEL2PNML. WofBPEL can be used (1) to simplify the Petri net
produced by BPEL2PNML by removing unnecessary silent transitions and (2)
to convert the Petri net into the so-called “WorkFlow net” (WF-net) which
has certain properties that simplify the analysis phase. Although primarily
developed for verification purposes, BPEL2PNML and WofBPEL have also
been used for conformance checking using abstract BPEL processes [6].

Few people have been working on the translation from Petri nets to BPEL.
In fact, [9] is the only work we are aware of that tries to go from (colored)
Petri nets to BPEL. Using our ProM tool [29] we can export a wide variety of
languages to CPN Tools. For example, we can load Petri-net models coming
from tools such as Protos, Yasper, and WoPeD, EPCs coming from tools such
as ARIS, ARIS PPM, and EPC Tools, and workflow models coming from tools
such as Staffware and YAWL, and automatically convert the control-flow in
these models to Petri nets. Using our ProM tool this can then be exported
to CPN Tools where it is possible to do further analysis (state space analy-
sis, simulation, etc.). Moreover, WF-nets in CPN Tools can be converted into
BPEL using WorkflowNet2BPEL4WS [9, 55]. To illustrate this, consider the
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<?xml version="1.0" encoding="UTF-8"?>
tp://schemas.xmlsoap.org/ws/2003/03/business-process/"
=== name="shipper" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.xmlsoap.org/ws/2003/03/business-
O—-r_v- process/ http://schemas.xmlsoap.org/ws/2003/03/business-process/"
targetNamespace="http://shipper">
<sequence name="Sequence_F3">
<receive name="eval_s_req" />
<switch name="Switch_F2">

<case condition="bpws:getVariableData('accept', ‘accept’, "//type')!=1">
<invoke name="s_reject" />
</case>

<case condition="bpws:getVariableData(‘'accept', ‘accept’, '//type')=1">
<sequence name="Sequence_F1">
<invoke name="s_accept" />
<receive name="prepare_s" />
<invoke name="ship" />
<invoke name="notify" />
<Isequence>
| »/,,« ke </case>
@ </switch>
</sequence>
</process>

Fig. 2.4. The Petri net describing the service offered by the shipper is mapped
onto BPEL code using WorkflowNet2BPEL4WS, a tool to automatically translate
colored Petri nets into BPEL template code

shipper service shown in Fig. 2.3. The WF-net corresponding to the shipper
process was modeled using the graphical editor of the COSA workflow man-
agement system. This was automatically converted by Woflan to ProM. Us-
ing ProM the process was automatically exported to CPN Tools. Then using
WorkflowNet2BPEL4WS the annotated WF-net was translated into BPEL
template code. Figure 2.4 shows both the annotated WF-net in CPN Tools
(left) and the automatically generated BPEL template code (right).

The availability of the tools and systems mentioned in this section makes
it possible to support service flows, i.e., the process-aspect of web services,
at the design, analysis, and enactment levels. For many applications, BPEL,
Petri nets, or a mixture of both provide a good basis for making web services
“process-aware.” However, as indicated in Sect. 2.1, the focus of this chapter
is on DecSerFlow. Section 2.3 introduces DecSerFlow and shows that it is a
truly declarative language which addresses the problem of overspecification
typically resulting from the procedural languages described in this section.
After introducing the language we focus on the monitoring of service flows
(Sect. 2.4) specified in terms of DecSerFlow.

2.3 DecSerFlow

The goal of this section is to provide a “fresh view” on process support in the
context of web services. We first argue why a more declarative approach is
needed and then introduce a concrete language: DecSerFlow.

2.3.1 The Need for More Declarative Languages

Petri nets and BPEL have in common that they are highly procedural, i.e.,
after the execution of a given activity the next activities are scheduled.! Seen

! Note that both BPEL and Petri nets support the deferred choice pattern 8], i.e.,
it is possible to put the system in a state where several alternative activities are
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from the viewpoint of an execution language the procedural nature of Petri
nets and BPEL is not a problem. However, unlike the modules inside a clas-
sical system, web services tend to be rather autonomous and an important
challenge is that all parties involved need to agree on an overall global pro-
cess. Currently, terms like choreography and orchestration are used to refer
to the problem of agreeing on a common process. Some researchers distin-
guish between choreography and orchestration, e.g., “In orchestration, there’s
someone—the conductor—who tells everybody in the orchestra what to do
and makes sure they all play in sync. In choreography, every dancer follows
a pre-defined plan—everyone independently of the others.” We will not make
this distinction and simply assume that choreographies define collaborations
between interacting parties, i.e., the coordination process of interconnected
web services all partners need to agree on. Note that Fig. 2.3 can be seen as
an example of a choreography.

Within the Web Services Choreography Working Group of the W3C, a
working draft defining version 1.0 of the Web Services Choreography Descrip-
tion Language (WS-CDL) has been developed [54]. The scope of WS-CDL
is defined as follows: “Using the Web Services Choreography specification, a
contract containing a global definition of the common ordering conditions and
constraints under which messages are exchanged is produced that describes,
from a global viewpoint, the common and complementary observable behav-
ior of all the parties involved. Each party can then use the global definition
to build and test solutions that conform to it. The global specification is in
turn realized by a combination of the resulting local systems, on the basis of
appropriate infrastructure support. The advantage of a contract based on a
global viewpoint as opposed to any one endpoint is that it separates the over-
all global process being followed by an individual business or system within a
domain of control (an endpoint) from the definition of the sequences in which
each business or system exchanges information with others. This means that,
as long as the observable sequences do not change, the rules and logic followed
within a domain of control (endpoint) can change at will and interoperability
is therefore guaranteed” [54]. This definition is consistent with the definition
of choreography just given. Unfortunately, like most standards in the web
services stack, CDL is verbose and complex. Somehow the essence as shown
in Fig. 2.3 is lost. Moreover, the language again defines concepts such as
“sequence,” “choice,” and “parallel” in some ad hoc notation with unclear
semantics. This suggests that some parts of the language are an alternative
to BPEL while they are not.

However, the main problem is that WS-CDL, like Petri nets and BPEL,
is not declarative. A choreography should allow for the specification of the
“what” without having to state the “how”. This is similar to the difference

enabled but the selection is made by the environment (cf. the pick construct in
BPEL). This allows for more flexibility. However, it does not change the fact that
in essence both Petri nets and BPEL are procedural.
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between the implementation of a program and its specification. For example,
it is close to impossible to describe that within a choreography two messages
exclude one another. Note that such an exclusion constraint is not the same as
making a choice! To illustrate this, assume that there are two actions A and
B. These actions can correspond to exchange of messages or some other type
of activity which is relevant for the choreography. The constraint that “A and
B exclude one another” is different from making a choice between A or B.
First of all, A and B may be executed multiple times, e.g., the constraint is
still satisfied if A is executed five times while B is not executed at all. Second,
the moment of choice is irrelevant to the constraint. Note that the modeling
of choices in a procedural language forces the designer to indicate explicit
decision points which are evaluated at explicit decision times. Therefore, there
is a tendency to overspecify things.

Therefore, we propose a more declarative approach based on temporal logic
[61, 74] as described in the following subsection.

2.3.2 DecSerFlow: A Declarative Service Flow Language

Languages such as Linear Temporal Logic (LTL) [41, 45, 46] allow for more
declarative style of modeling. These languages include temporal operators
such as nexttime (OF), eventually (OF), always (OF), and until (F UG), cf.
Table 2.1. However, such languages are difficult to read. Therefore, we define
a graphical syntax for the typical constraints encountered in service flows.
The combination of this graphical language and the mapping of this graphical
language to LTL forms the Declarative Service Flow (DecSerFlow) Language.
We propose DecSerFlow for the specification of a single service, simple service
compositions, and more complex choreographies.

Developing a model in DecSerFlow starts with creating activities. The no-
tion of an activity is like in any other workflow-like language, i.e., an activity
is atomic and corresponds to a logical unit of work. However, the nature of
the relations between activities in DecSerFlow can be quite different than in

Table 2.1. Brief explanation of the basic LTL temporal operators

name notation explanation

nexttime OF F has to hold at the next state, e.g., [A,F,B,C,D,E],
[A,F,F.F,F,F,B,C,D,E], [F,F,F,F,A,B,C,D,E], etc.

eventually OF F  has to hold eventually, e.g., [F,AB,C,D,E],
[A,B,C,F,D,E], [ABFCDFEF], etc.

always oF F has to always hold, e.g., [F,F,F,F,F,F].

until FuG G holds at the current state or at some future state,

and F has to hold until G holds. When G holds
F does not have to hold any more. Examples are
[G,A,B,C,D,E], [F,G,A,B,C,D,E], [F,F,F,F,G,A,B,C,D,E],
[F,F,F,F,G,A,B,G,F,C,D,E,F,GJ, etc.
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traditional procedural workflow languages (like Petri nets and BPEL). For
example, places between activities in a Petri net describe causal dependencies
and can be used to specify sequential, parallel, alternative, and iterative rout-
ing. By using such mechanisms, it is both possible and necessary to strictly
define how the flow will be executed. We refer to the relations between activ-
ities in DecSerFlow as constraints. Each of the constraints represents a policy
(or a business rule). At any point in time during the execution of a service,
each constraint evaluates to true or false. This value can change during the
execution. If a constraint has the value true, the referring policy is fulfilled.
If a constraint has the value false, the policy is violated. The execution of a
service is correct (according to the DecSerFlow model) at some point in time
if all constraints (from the DecSerFlow model) evaluate to ¢rue. Similarly, a
service has completed correctly if at the end of the execution all constraints
evaluate to true. The goal of the execution of any DecSerFlow model is not
to keep the values of all constraints true at all times during the execution.
A constraint which has the value false during the execution is not considered
an error. Consider, e.g., the LTL expression O(A — <B) where A and B
are activities, i.e., each execution of A is eventually followed by B. Initially
(before any activity is executed), this LTL expression evaluates to true. After
executing A the LTL expression evaluates to false and this value remains false
until B is executed. This illustrates that a constraint may be temporarily vi-
olated. However, the goal is to end the service execution in a state where all
constraints evaluate to true.

To create constraints in DecSerFlow, we use constraint templates. Each
constraint template consists of a formula written in LTL and a graphical
representation of the formula. An example is the “response constraint” which
is denoted by a special arc connecting two activities A and B. The semantics
of such an arc connecting A and B are given by the LTL expression O(A —
OB), i.e., any execution of A is eventually followed by B. We have developed a
starting set of constraint templates and we will use these templates to create a
DecSerFlow model for the electronic bookstore example. This set of templates
is inspired by a collection of specification patterns for model checking and
other finite-state verification tools [32]. Constraint templates define various
types of dependencies between activities at an abstract level. Once defined,
a template can be reused to specify constraints between activities in various
DecSerFlow models. It is fairly easy to change, remove, and add templates,
which makes DecSerFlow an “open language” that can evolve and be extended
according to the demands from different domains. There are three groups
of templates: (1) “existence,” (2) “relation,” and (3) “negation” templates.
Because a template assigns a graphical representation to an LTL formula, we
will refer to such a template as a formula.

Before giving an overview of the initial set of formulas and their notation,
we give a small example explaining the basic idea. Figure 2.5 shows a Dec-
SerFlow model consisting of four activities: A, B, C, and D. Each activity is
tagged with a constraint describing the number of times the activity should
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A can be executed (A =><>B), ie.,
an arbitrary ) every A is eventually )
number of times | N followed by B | Bis executed
- N twice
0.* 2

<>D =><>C,i.e,ifDis
.| executed at least once, C is
also executed at least once.

) <>D,ie,Dis
A executed at least once

Fig. 2.5. A DecSerFlow model showing some example notations. (Note that the
temporal operators ¢ and O are denoted as <> and [ ])

if A is executed at
least once, C is
never executed
and vice versa.

be executed, these are the so-called “existence formulas.” The arc between
A and B is an example of a “relation formula” and corresponds to the LTL
expression discussed before: O( A — <& B ). The connection between C' and
D denotes another relation formula: & D — <& C, ie., if D is executed at
least once, C' is also executed at least once. The connection between A and
C denotes a “negation formula” (the LTL expression ¢(A) < —(<O(B)) is
not shown in diagram but will be explained later). Note that it is not easy
to provide a classical procedural model (e.g., a Petri net) that allows for all
behavior modeled in Fig. 2.5.

FExistence Formulas

Figure 2.6 shows the so-called “existence formulas”. These formulas define the
cardinality of an activity. For example, the first formula is called existence and
its visualization is shown (i.e., the annotation “l..x” above the activity). This
indicates that A is executed at least once. Formulas existence2, existences,
and existencey all specify a lower bound for the number of occurrences of A.
It is also possible to specify an upper bound for the number of occurrences of
A. Formulas absence, absence2, absence3, and absencey are also visualized by
showing the range, e.g., “0...IN” for the requirement absencepy 1. Similarly, it
is possible to specify the exact number of occurrences as shown in Fig. 2.6,
e.g., constraint exactlyy (A : activity) is denoted by an N above the activity
and specifies that A should be executed exactly N times.

Table 2.2 provides the semantics for each of the notations shown in
Fig. 2.6, i.e., each formula is expressed in terms of an LTL expression. Formula
existence(A : activity) is defined as ©(A), i.e., A has to hold eventually which
implies that in any full execution of the process A occurs at least once. Formula
existencey (A : activity) shows how it is possible to express a lower bound N
for the number of occurrences of A in a recursive manner, i.e., ezistencey (4) =
O(A A O(existencen—1(A))). Formula absencen (A : activity) can be defined
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Fig. 2.6. Notations for the “existence formulas”

as the inverse of existencen (A). Together they can be combined to express
that for any full execution, A should be executed a prespecified number N,
ie., exactlyy(A) = existencen (A) N absencent1(A).

Relation Formulas

Figure 2.7 shows the so-called “relations formulas.” While an “existence for-
mula” describes the cardinality of one activity, a “relation formula” defines
relation(s) (dependencies) between multiple activities. Figure 2.7 shows only
binary relationships (i.e., between two activities); however, in DecSerFlow
there are also notations involving generalizations to three or more activities,
e.g., to model an OR-split. For simplicity, however, we first focus on the bi-
nary relationships shown in Fig. 2.7. All relation formulas have activities A
and B as parameters and these activities are also shown in the graphical rep-
resentation. The line between the two activities in the graphical representa-
tion is unique for the formula, and reflects the semantics of the relation. The
existence response formula specifies that if activity A is executed, activity
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Table 2.2.

name of formula

existence(A : activity)
ezistence2(A : activity)
existence3(A : activity)

existencen (A : activity)

absence(A : activity)
absence2(A : activity)
absence3(A : activity)

absencen (A : activity)

exactlyl (A : activity)
ezactly2(A : activity)

exactlyn (A : activity)

Existence formulas
LTL expression
O(A)
O(A

)
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Fig. 2.7. Notations for the “relation formulas”
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B also has to be executed (at any time, i.e., either before or after activity
A is executed). According to the co-ezistence formula, if one of the activities
A or B is executed, the other one has to be executed also. While the first
two formulas do not consider the order of activities, formulas response, prece-
dence, and succession do consider the ordering of activities. Formula response
requires that every time activity A executes, activity B has to be executed
after it. Note that this is a very relaxed relation of response, because B does
not have to execute straight after A, and another A can be executed be-
tween the first A and the subsequent B. For example, the execution sequence
[B,A,A,A,C,BJ satisfies the formula response. The formula precedence requires
that activity B is preceded by activity A, i.e., it specifies that if activity B
was executed, it could not have been executed until activity A was executed.
According to this formula, the execution sequence [A,C,B,B,A] is correct. The
combination of the response and precedence formulas defines a bi-directional
execution order of two activities and is called succession. In this formula,
both response and precedence relations have to hold between the activities
A and B. Thus, this formula specifies that every activity A has to be fol-
lowed by an activity B and there has to be an activity A before every activity
B. For example, the execution sequence [A,C,A,B,B] satisfies the succession
formula.

Formulas alternate response, alternate precedence, and alternate succession
strengthen the response, precedence, and succession formulas, respectively. If
activity B is alternate response of activity A, then after the execution of an
activity A activity B has to be executed and between the execution of each
two activities A at least one activity B has to be executed. In other words,
after activity A there must be an activity B, and before that activity B there
cannot be another activity A. The execution sequence [B,A,C,B,A,B] satisfies
the alternate response. Similarly, in the alternate precedence every instance of
activity B has to be preceded by an instance of activity A and the next in-
stance of activity B cannot be executed before the next instance of activity
A is executed. According to the alternate precedence, the execution sequence
[A,C,B,A,B,A] is correct. The alternate succession is a combination of the al-
ternate response and alternate precedence and the sequence [A,C,B,A,B,A,B]
would satisfy this formula.

Even more strict ordering relations are specified by the last three con-
straints shown in Fig. 2.7: chain response, chain precedence, and chain suc-
cession. These require that the executions of the two activities (A and B) are
next to each other. According to the chain response constraint the first activ-
ity after activity A has to be activity B and the execution [B,A,B,C,A,B]
would be correct. The chain precedence formula requires that the activ-
ity A is the activity directly preceding any B and, hence, the sequence
[A,B,C,A,B,A] is correct. Since the chain succession formula is the combi-
nation of the chain response and chain precedence formulas, it requires that
activities A and B are always executed next to each other. The execution
sequence [A,B,C,A,B,A,BJ is correct with respect to this formula.
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Table 2.3. Relation formulas

name of formula LTL expression

existence response(A : activity, B : activity) — O(A) = &(B)

co existence(A : activity, B : activity) O(A) & O(B)

response(A : activity, B : activity) O(A = <©(B))

precedence(A : activity, B : activity) O(B) = ((B)U A)

succession(A : activity, B : activity) response(A, B) N precedence(A, B)

alternate response(A : activity, B : activity)  O(A = o((-A) U B))
alternate precedence(A : activity, B : activity) precedence(A, B) A
O(B = O(precedence(A, B)))
alternate succession(A : activity, B : activity) alternate response(A, B) A
alternate precedence(A, B)

chain response(A : activity, B : activity) O(A = o(B))
chain precedence(A : activity, B : activity) O(o(B) = A)
chain succession(A : activity, B : activity) O(A & o(B))

Table 2.3 shows the formalization of the “relations formulas” depicted in
Fig. 2.7. existence response(A, B) is specified by ¢(A) = <O(B) indicating
that some occurrence of A should always imply an occurrence of B either be-
fore or after A. co existence(A, B) means that the existence of one implies the
existence of the other and vice versa, i.e., O(A4) & O(B). response(A, B) is
defined as O(A = <&(B)). This means that at any point in time where activity
A occurs there should eventually be an occurrence of B. precedence(A, B) is
similar to response but now looking backward, i.e., if B occurs at all, then
there should be no occurrence of B before the first occurrence of A. This is
formalized as &(B) = ((—B) U A). Note that we use the U (until) operator
here: (wB)U A means that A holds (i.e., occurs) at the current state or at some
future state, and —B has to hold until A holds. When A holds —=B does not
have to hold any more (i.e., B may occur). succession(A, B) is defined by com-
bining both into response(A, B) A precedence(A, B). alternate response(A, B)
is defined as O(A = O((—A) U B)), i.e., any occurrence of A implies that in
the next state and onward no A may occur until a B occurs. In other words,
after activity A there must be an activity B, and before that activity B occurs
there cannot be another activity A. alternate precedence(A, B) is a bit more
complicated: O((B A O(¢(B))) = o(AUB)). This implies that at any point
in time where B occurs and at least one other occurrence of B follows, an
A should occur before the second occurrence of B. alternate succession(A, B)
combines both into alternate response(A, B) A alternate precedence(A, B).
chain response(A, B) is defined as O(A = ©O(B)) indicating that any oc-
currence of A should be directly followed by B. chain precedence(A, B) is
the logical counterpart: O(O(B) = A). chain succession(A, B) is defined as
0O(A < 0(B)) and specifies that any occurrence of A should be directly fol-
lowed by B and any occurrence of B should be directly preceded by A.
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Negation Formulas

Figure 2.8 shows the “negation formulas,” which are the negated versions
of the “relation formulas.” (Ignore the grouping of constraints on the right-
hand side of Fig. 2.8 for the moment. Later, we will show that the eight
constraints can be reduced to three equivalence classes.) The first two formu-
las negate the existence response and co existence formulas. The neg exist-
ence response formula specifies that if activity A is executed activity then B
must never be executed (not before nor after activity A). The neg co existence
formula applies neg existence response from A to B and from B to A. It
is tmportant to mote that the term “negation” should not be interpreted
as the “logical negation,” e.g., if activity A never occurs, then both ezis-
tence response(A,B) and neg existence response(A,B) hold (i.e., one does not
exclude the other). The neg response formula specifies that after the execu-
tion of activity A, activity B cannot be executed any more. According to
the formula neg precedence, activity B cannot be preceded by activity A. The
last three formulas are negations of formulas chain response, chain precedence,
and chain succession. neg chain response specifies that A should never be fol-
lowed directly by B. neg chain precedence specifies that B should never be pre-
ceded directly by A. neg chain succession combines both neg chain response
and neg chain precedence. Note that Fig. 2.8 does not show “negation formu-
las” for the alternating variants of response, precedence, and succession. The
reason is that there is no straightforward and intuitive interpretation of the
converse of an alternating response, precedence, or succession.

neg_existence_response(A, B)

.
neg_co_existence(A, B)

neg_response(A, B) H
neg_precedence(A, B) > H
neg_succession(A, B) E
—
neg_chain_response(A, B) )
neg_chain_precedence(A, B) > === H
neg_chain_succession(A, B)
_J

Fig. 2.8. Notations for the “negations formulas”
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Table 2.4. Negation formulas (formulas grouped together are equivalent)
name of formula LTL expression

neg existence response(A : activity, B : activity) — O(A) = —(O(B))

neg co existence(A : activity, B : activity) neg existence response(A, B) A
neg existence response(B, A)

neg response(A : activity, B : activity) O(A = —(¢(B)))

neg precedence(A : activity, B : activity) O(>(B) = (—A4))

neg succession(A : activity, B : activity) neg response(A, B) A
neg precedence(A, B)

neg chain response(A : activity, B : activity) O(A = o(=(B)))

neg chain precedence(A : activity, B : activity) O(o(B) = —(4))

neg chain succession(A : activity, B : activity) neg chain response(A, B) A

neg chain precedence(A, B)

Table 2.4 shows the LTL expressions of the notations shown in Fig. 2.8.
Table 2.4 also shows that some of the notions are equivalent, i.e., neg co
eristence and neg existence response are equivalent and similarly the next
two pairs of three formulas are equivalent. Note that a similar grouping
is shown in Fig. 2.8 where a single representation for each group is sug-
gested. neg existence response(A, B) is defined as O(A4) = —(<(B)). How-
ever, since the ordering does not matter, neg eristence response(A, B) =
neg existence response(A, B) and hence coincides with neg co existence(A, B).
neg response(A, B) is defined as O(A = —(<(B))), i.e., after any occurrence
of A, B may never happen (or formulated alternatively: any occurrence of
B should take place before the first A). neg precedence(A, B) is defined as
O(S(B) = (—A4)), ie., if B occurs in some future state, then A cannot
occur in the current state. It is easy to see that neg precedence(A4,B) =
neg response(A, B) because both state that no B should take place af-
ter the first A (if any). Since neg succession(A, B) combines both, also
neg succession(A, B) = neg response(A, B). The last three formulas are nega-
tions of formulas chain response, chain precedence, and chain succession. It is
easy to see that they are equivalent, neg chain response(A, B) = neg chain
precedence(A,B) = neg chain succession(A, B).

Figures 2.7 and 2.8 and the corresponding formalizations show only binary
relationships. However, these can easily be extended to deal with more activ-
ities. Consider, e.g., the response relationship, i.e., response(A, B) = O(A =
<&(B)). This can easily be extended to response(A, B, C) = O(A = (&(B) V
&(C)), i.e., every occurrence of A is eventually followed by an occurrence of B
or C. This can also be extended to a choice following A of N alternatives, i.e.,
response(A, A;, Ag, ..., An) =0(4A = (O(41) V O(A2) V ...V O(AN))).
Many of the other formulas can be generalized in a similar fashion and rep-
resented graphically in an intuitive manner. For example, response(4, B, C),
i.e., A is eventually followed by an occurrence of B or C, is depicted by multiple
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arcs that start from the same dot. Similarly, it is possible to have a precedence
constraint where different arrows end in the same dot indicating that at least
one of the preceding activities should occur before the subsequent activity is
executed.

DecSerFlow is an extendible language, i.e., designers can add their own
graphical notations and provide their semantics in terms of LTL. For ex-
ample, one can add constraints similar to the control-flow dependencies in
classical languages such as Petri nets, EPCs, etc. and draw diagrams similar
to the diagrams provided by these languages. However, the aim is to have
a relatively small set of intuitive notations. In this chapter we show only a
core set. Figure 2.9 assists in reading diagrams using this core notation. When
extending the language with new constraints, it is important to use a set of
drawing conventions as shown in Fig. 2.9. For example, a dot connected to
some activity A means that “A occurs” and is always associated to some kind
of connection, a line without some arrow means “occurs at some point in
time,” an arrow implies some ordering relation, two short vertical lines depict
a negation, etc. Note that Fig. 2.9 also shows the response(A, A;, Az, ..., AN)
constraint described earlier, i.e., A is followed by at least one of its successors.

2.3.3 The amazon.com Example in DecSerFlow

In this subsection, we revisit the amazon.com example to show how DecSer-
Flow language can be used to model services. For this purpose, we will model

The .do! show“s how to read the consiurain!, On top the lower  -bound ( N) and
: i.e., it means “suppose that A occurs”. B upper-bound (M) are spec ified.

. The type of connection describes the type of constraint (in A
: . this case “existence response”) and should be interpreted 3

N.M

: +* | depending on the location of the dot.
R If A occurs, then also B should occur (at any
A B =" time), i.e., ()[A:l = O(B)
Most of the binary constraints
Two dots, i.e., read the “existence response” constraint can be extended to constraints
i .*"| from both sides, i.e., O(A) = O (B) involving an arbitrary number of
o ' activities.
The arrow should be interpreted as “is followed E A1
- *| by” or “is preceded by” (in this case both).
A 1B A A,
The negation symbol inverses the meaning of the
- connection, i.e., in this case ‘is NOT followed by”
et and “is NOT preceded by”.
et An
Al B » . .
O(A = (&A1) v O(da) v oo O(AN)))

Fig. 2.9. Explanation of the graphical notation
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the customer service using existence, relation, and negation formulas. In this
way, we will use the defined templates for formulas, apply them to activities
from our example and thus create real constraints in our DecSerFlow model.
In addition to this model of a single service, we will also show how the com-
munication between services can be presented with DecSerFlow by modeling
the communication of the customer service with other services. We start by
removing all arcs and places from the example model. This results in an ini-
tial DecSerFlow model populated only by unconnected activities. Next, we
create necessary constraints for the customer. Adding constraints to the rest
of the model is straightforward and easy but not necessary for illustrating the
DecSerFlow language.

Figure 2.10 shows the new model with DecSerFlow constraints for the
customer. We added existence constraints for all activities which can be seen
as cardinality specifications above activities. Activity place ¢ order has to
be executed exactly one time. Activities rec acc and rec decl can be executed
zero or one time, depending on the reply of the bookstore. Similarly, activities
rec book, rec bill, and pay can be executed at most one time.

Every occurrence of place ¢ order is eventually followed by at least one
occurrence of rec acc or rec decl, as indicated by the non-binary relationship
also shown in Fig. 2.9. However, it is possible that both activities are executed,
and to prevent this we add the neg co existence constraint between activities
rec acc and rec decl. So far, we have managed to make sure that after activity
place ¢ order one of the activities rec acc and rec decl will execute in the ser-
vice. One problem remains to be solved — we have to specify that none of the
activities rec acc and rec decl can be executed before activity place ¢ order.
We achieve this by creating two precedence constraints: (1) the one between
the activities place ¢ order and rec acc, making sure that activity rec acc can
be executed only after activity place ¢ order was executed and (2) the one be-
tween activities place ¢ order and rec decl, making sure that activity rec decl
can be executed only after activity place ¢ order was executed. It is impor-
tant to note that the constraints related to place ¢ order, rec ace, and rec decl
together form a “classical choice”. It may seem rather clumsy that four con-
straints are needed to model a simple choice. However, (1) the four constraints
can be merged into a single notation and LTL formula that can be re-used in
other diagrams and (2) it is a nice illustration of how procedural languages
like Petri nets and BPEL tend to overspecify things. In fact, in a classical
language one would not only implicitly specify four elementary constraints
but would typically need to specify the data conditions. In DecSerFlow one
can add these conditions, but one does not need to do so, i.e., one can drop
any of the four constraints involving place ¢ order, rec acc, and rec decl and
still interpret the resulting set of constraints in a meaningful way.

The next decision to be made is the dependency between the activities
rec acc and rec book. In the old model, we had a clear sequence between these
two activities. However, due to some problems or errors in the bookstore
it might happen that, although the order was accepted (activity rec acc is
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Fig. 2.10. DecSerFlow model

executed), the book does not arrive (activity rec book is not executed). How-
ever, we assume that the book will not arrive before the order was accepted.
The constraint precedence between the activities rec acc and rec book specifies
that activity rec book can be executed only after activity rec acc is executed.
The old model specified that the bill arrives after the book. This may not
be always true. Since the bill and the book are shipped by different services
through different channels, the order of their arrival might vary. For example,
it might happen that the shipper who sends the book is closer to the location
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of the customer and the bookstore is on another continent, or the other way
around. In the first scenario the book will arrive before the bill, and in the
second one the bill will arrive before the book. Therefore, we choose not to cre-
ate an ordering constraint between the activities rec book and rec bill. Even
more, our DecSerFlow model accepts the error when the bill arrives even
without the book being sent. This could happen in the case of an error in
the bookstore when a declined order was archived as accepted, and the bill
was sent without the shipment of the book. However, we assume that every
bookstore that delivers a book, also sends a bill for the book. We specify this
with the existence response constraint between the rec book activity and the
rec bill activity. This constraint forces that if activity rec book is executed,
then activity rec bill must have been executed before or will be executed after
activity rec book. Thus, if the execution of activity rec book exists, then the
execution of activity rec bill also exists. The constraint precedence between
the activities rec bill and pay means that the customer will pay only after the
bill is received. However, after the bill is received the customer does not nec-
essarily pay, like in the old model. It might happen that the received book was
not the one that was ordered or it was damaged. In these cases, the customer
can decide not to pay the bill.

Besides for the modeling of a single service, DecSerFlow language can as
well be used to model the communication between services. In Fig. 2.10, we
can see how constraints specify the communication of the customer with the
bookstore and the shipper. First, the succession constraint between activities
place ¢ order and handle ¢ order specifies that after activity place ¢ order ac-
tivity handle ¢ order has to be executed, and that activity handle ¢ order can
be executed only after activity place ¢ order. This means that every order of
a customer will be handled in the bookstore, but the bookstore will handle
the order only after it is placed. The same holds (constraint succession) for
the pairs of activities (¢ accept, rec acc), (¢ reject, rec decl), and (pay, han-
dle payment). The relations between the pairs of activities (ship, rec book)
and (send bill, rec bill) are more relaxed than the previous relations. These
two relations are not succession, but precedence. We can only specify that
the book will be received after it is sent, but we cannot claim that the book
that was sent will indeed be received. It might happen that the shipment is
lost or destroyed before the customer receives the book. The same holds for
the bill. Because of this, we create the two precedence constraints. The first
precedence constraint is between activity ship and rec book to specify that
activity rec book can be executed only after activity ship was executed. The
second one is between the activities send bill and rec bill, according to which
activity rec bill can be executed only after activity send bill is executed.

Figure 2.10 shows how DecSerFlow language can be used to specify ser-
vices. While the old Petri-net model specified the strict sequential relations
between activities, with DecSerFlow we were able to create many different
relations between the activities in a more natural way. For the illustration, we
developed constraints only for the customer service and its communication
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with other services, but developing of the rest of the model is as easy and
straightforward.

2.3.4 Mapping DecSerFlow Onto Automata

DecSerFlow can be used in many different ways. Like abstract BPEL it can be
used to specify services but now in a more declarative manner. However, like
executable BPEL we can also use it as an execution language. The DecSerFlow
language can be used as an execution language because it is based on LTL
expressions. Every constraint in a DecSerFlow model has both a graphical
representation and a corresponding parameterized LTL formula. The graphical
notation enables a user-friendly interface and masks the underlying formula.
The formula, written in LTL, captures the semantics of the constraint. The
core of a DecSerFlow model consists of a set of activities and a number of LTL
expressions that should all evaluate to true at the end of the model execution.

Every LTL formula can be translated into an automaton [26]. Algorithms
for translating LTL expressions into automata are given in [40, 92]. The pos-
sibility to translate an LTL expression into an automaton and the algorithms
to do so have been extensively used in the field of model checking [26]. More-
over, the initial purpose for developing such algorithms comes from the need
to, given a model, check if certain properties hold in the model. The SPIN
tool [50] can be used for the simulation and exhaustive formal verification of
systems, and as a proof approximation system. SPIN uses an automata theo-
retic approach for the automatic verification of systems [86]. To use SPIN, the
system first has to be specified in the verification modeling language Promela
(PROcess MEta LAnguage) [50]. SPIN can verify the correctness of require-
ments, which are written as LTL formulas, in a Promela model using the
algorithms presented in [40, 48, 49, 51, 52, 86, 77, 91]. When checking the
correctness of an LTL formula, SPIN first creates an automaton for the nega-
tion of the formula. If the intersection of this automaton and the system model
automaton is empty, the model is correct with respect to the requirement de-
scribed in LTL. When the system model does not satisfy the LTL formula,
the intersection of the model and the automaton for the negated formula will
not be empty, i.e., this intersection is a countererample that shows how the
formula is violated. The approach based on the negation of the formula is
quicker, because the SPIN runs verification until the first counterexample is
found. In the case of the formula itself, the verifier would have to check all
possible scenarios to prove that a counterexample does not exist.

Unlike SPIN, which generates an automaton for the negation of the for-
mula, we can execute a DecSerFlow model by constructing an automaton for
the formula itself. We will use a simple DecSerFlow model to show how pro-
cesses can be executed by translating LTL formulas into automata. Figure 2.11
shows a DecSerFlow model with three activities: curse, pray, and bless. The
only constraint in the model is the response constraint between activity curse
and activity pray, i.e., response(curse, pray) = O(curse = <O(pray)). This
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curse fesponse pray | | bless |

Fig. 2.11. A simple model in DecSerFlow

constraint specifies that if a person curses, she/he should eventually pray af-
ter this. Note that there is no restriction on the execution of the activities
pray and bless. There are no existence constraints in this model, because all
three activities can be executed an arbitrary number of times.

Using the example depicted in Fig. 2.11, we briefly show the mapping of
LTL formulas onto automata [40], which is used for execution of DecSerFlow
models. Automata consists of states and transitions. By executing activities
of DecSerFlow model, we fire transitions and thus change state of the related
automaton. Automaton can be in an accepting or not-accepting state. If the
automaton is in an accepting state after executing a certain trace (of DecSer-
Flow activities), the trace fulfills the related LTL formula. If the automaton
is not in an accepting state after executing a certain trace, the trace violates
the related LTL formula. Automata created by the algorithm presented in
[40] deal with infinite traces and cannot be used for execution of finite traces
like DecSerFlow traces. Therefore, a variation of this algorithm that enables
work with finite traces is used [41]. A more detailed introduction to automata
theory and the creation of Biichi automata from LTL formulas is out of scope
of this article and we refer the interested reader to [26, 40, 41, 48].

Figure 2.12 shows a graph representation of the automaton which is gen-
erated for the response constraint [40].? Automaton states are represented as
nodes, and transitions as edges. An initial state is represented by an incoming
edge with no source node. An accepting state is represented as a node with a
double-lined border. The automaton in Fig. 2.12 has two states: p1 and p2.
State pI is both the initial and accepting state. Note that such automaton
can also be generated for a DecSerFlow model with multiple constraints, i.e.,
for more than one LTL formula, by constructing one big LTL formula as a
conjunction of each of the constraints.

response(curse, pray) = O(curse = O(pray))

curse curse,bless

pray pray

Fig. 2.12. Automaton for the formula response

2 Note that the generated automaton is a non-deterministic automaton. For reasons
of simplicity, we use a deterministic automaton with the same results.
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Note that for illustration purposes, we only show a simplified automaton
in Fig. 2.12. Any LTL expression is, actually, translated into a automaton,
i.e, a non-deterministic automaton for infinite words. An automaton is deter-
ministic if in each state there is exactly one transition for each possible input.
In case of a deterministic automaton, we can simply change the state of the
automata when executing an activity. To check the correctness of the execu-
tion, we check if the current state is an accepting one. In non-deterministic
automata, there can be multiple transitions from a given state for a given
possible input. In case of a DecSerFlow model, the fact that we are deal-
ing with non-deterministic automata means that executing an activity might
transfer an automaton to more that one next state—a set of possible states.
To check the correctness of the execution, we need to check if the current set
of possible states contains at least one accepting state. Another issue when
executing automata for DecSerFlow models is the fact that we assume that
every execution will be completed at some point of time, i.e., an execution
of a DecSerFlow model is a finite one. The original algorithm for creating
automata from LTL expressions generates automata for infinite words, i.e.,
for infinite executions [40]. That creates problems because the criteria for de-
ciding which states are accepting are different for finite and infinite words.
Therefore, we use a modified version of the original algorithm [41], which was
constructed for verification of finite software traces. We use the Java PathEx-
plorer (JPAX), a runtime verification tool, as a basis [41]. The algorithm in
JPAX assumes that the system will start the execution, and does not consider
empty traces. To allow an empty execution of a DecSerFlow model, we add an
invisible activity init and a constraint initiate that specifies that activity init
has to be executed as the first activity in the model. We automatically exe-
cute activity init at the beginning of the enactment of a DecSerFlow model.
Another small complication is that in the JPAX implementation of [41], the
O operator is slightly weaker (if there is no next step, OF evaluates to true
by definition). This can be modified easily by redefining OF to (OF A OF).

The mapping for LTL constraints onto automata allows for the guidance of
people, e.g., it is possible to show whether a constraint is in an accepting state
or not. Moreover, if the automaton of a constraint is not in an accepting state,
indicate whether it is still possible to reach an accepting state. To do this, we
can color the constraints green (in accepting state), yellow (accepting state
can still be reached), or red (accepting state cannot be reached anymore).
Using the automaton, some engine could even enforce a constraint, i.e., the
automaton could be used to drive a classical workflow engine [7].

2.3.5 Using DecSerFlow to Relate Global and Local Models

In the first part of the chapter, we distinguished between global and local
models. In the global model, interactions are described from the viewpoint
of an external observer who oversees all interactions between all services.
Local models are used to specify, implement, or configure particular services.
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Clearly, both types of models can be represented using DecSerFlow. Moreover,
as just shown, it is possible to construct an automaton to enact a DecSerFlow
specification. This seems particularly relevant for local models. As we will
see in the next section, both global and local models can be used for mon-
itoring services. For example, given a DecSerFlow specification we can also
check whether each party involved in a choreography actually sticks to the
rules agreed upon. The ProM framework offers the so-called “LTL-checker”
to support this (cf. Sect. 2.4.2). However, before focusing on the monitoring of
service flows, we briefly discuss the relevance of DecSerFlow in relating global
and local models.

Using DecSerFlow both global and local models can be mapped onto LTL
expressions and automata. This allows for a wide range of model checking
approaches. For example, it is possible to check if the constraints in the lo-
cal model are satisfied by the global model and vice versa. Note that the set
of activities in both models does not need to be the same. However, given
the logical nature of DecSerFlow this is not a problem. Also, note that the
different notions of inheritance of dynamic behavior can be used in this con-
text [2] (e.g., map activities onto 7 actions). The only constraints that seem
problematic in this respect are chained relation formulas, i.e., chain response,
chain precedence, and chain succession. These use the “nexttime” (OF') op-
erator whose interpretation depends on the context, i.e., from a global per-
spective an activity in one service may be followed by an activity in another
service thus violating some “nexttime” constraint. Nevertheless, it seems that
the LTL foundation of DecSerFlow offers a solid basis for comparing global
and local models and generating templates for local models from some parti-
tioned global model.

2.4 Monitoring Service Flows

DecSerFlow can be used to create both local and global models. As shown
in the previous section, these models can be used to specify a (part of some)
service flow and to enact it. In this section, we show that DecSerFlow can also
be used in the context of monitoring service flows.

In a service-oriented architecture, and also in classical enterprise systems,
a variety of events (e.g., messages being sent and received) are being logged.
This information can be used for process mining purposes, i.e., based on some
event log some knowledge is extracted. In the context of service flows an
obvious starting point is the interception of messages exchanged between the
various services. For example, SOAP messages can be recorded using TCP
Tunneling techniques [6] or, if middleware solutions such as IBM’s Websphere
are used, different events are logged in a structured manner [73]. Although
possible, it is typically not easy to link events (e.g., SOAP messages) to process
instances (cases) and activities. However, as pointed out by many researchers,
the problem of correlating messages needs to be addressed anyway. Hence, in
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the remainder, we assume that it is possible to obtain an event log where each
event can be linked to some process instance and some activity identifier.

2.4.1 Classification of Process Mining

Assuming that we are able to monitor activities and/or messages being ex-
changed, a wide range of process mining techniques comes into reach. Before
we focus on the relation between DecSerFlow and process mining, we provide
a basic classification of process mining approaches. This classification is based
on whether there is an a priori model (e.g., a DecSerFlow specification) and,
if so, how it is used.

e Discovery: There is no a priori model, i.e., based on an event log some
model is constructed. For example, using the « algorithm [15] a process
model can be discovered based on low-level events. There exist many tech-
niques to automatically construct process models (e.g., in terms of a Petri
net) based on some event log [15, 17, 27, 28, 89]. Recently, process mining
research also started to target the other perspectives (e.g., data, resources,
time, etc.). For example, the technique described in [11] can be used to
construct a social network.

e Conformance: There is an a priori model. This model is compared with
the event log, and discrepancies between the log and the model are ana-
lyzed. For example, there may be a process model indicating that purchase
orders of more than €1 million require two checks. Another example is the
checking of the so-called “four-eyes” principle. Conformance checking may
be used to detect deviations, to locate and explain these deviations, and to
measure the severity of these deviations. An example is the conformance
checker described in [79] which compares the event log with some a priori
process model expressed in terms of a Petri net.

e FExtension: There is an a priori model. This model is extended with a new
aspect or perspective, i.e., the goal is not to check conformance but to
enrich the model. An example is the extension of a process model with
performance data, i.e., some a priori process model is used to project the
bottlenecks on. Another example is the decision miner described in [80]
which takes an a priori process model and analyzes every choice in the
process model. For each choice the event log is consulted to see which
information is typically available the moment the choice is made. Then
classical data mining techniques are used to see which data elements in-
fluence the choice. As a result, a decision tree is generated for each choice
in the process.

Figure 2.13 illustrates the classification just given in the context of DecSer-
Flow. The figure shows different web services together realizing a service flow.
A DecSerFlow can be used to specify the whole service flow (global model)
or individual services (local models). As shown in Fig. 2.13, we assume that
we are able to record events which are stored on some event log. Given such
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supports/ ,
controls

web services

records
events, e.g.,
specifies specifies/ via SOAP
global model implements messages
local model
discovery -
DecSerFlow | «—— » event
model conformance logs

extension

Fig. 2.13. Overview of the various process mining approaches related to DecSerFlow

an event log, the three types of process mining (discovery, conformance, and
extension) become possible.

Discovery in the context of DecSerFlow would mean that, based on the
event log, we discover a DecSerFlow model, i.e., by analyzing the log different
constraints are discovered. For example, if an activity is always followed by
another, this can be easily be deduced from the log. Currently, there exist
many process discovery approaches [15, 17, 27, 28, 89]. Although none of
them is tailored toward DecSerFlow, it is easy to modify these to yield a
(partial) DecSerFlow model. Note that ordering relations discovered by the «
algorithm [15] can easily be visualized in DecSerFlow.

Conformance checking requires an a priori DecSerFlow model, e.g., a global
model showing the overall service flow. This model can easily be compared
with the event logs, i.e., each constraint in the DecSerFlow specification is
mapped onto an LTL expression and it is easy to check whether the LTL ex-
pression holds for a particular process instance. Hence it is possible to classify
process instances into conforming or non-conforming for each constraint. This
way it is possible to show where and how frequent deviations occur. More-
over, the (non-)conforming process instances can be investigated further using
other process mining techniques, e.g., to discover the typical features of cases
that deviate.

The third type of process mining also requires an a priori DecSerFlow
model. However, now the model is extended with complementary information.
For example, performance data are projected onto the DecSerFlow model or
decision trees are generated for decision points in the process.

As suggested by Fig. 2.13, DecSerFlow can be used in combination
with various process mining approaches. It is important to note that the
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autonomous nature of services, the declarative style of modeling (avoiding any
overspecification), and process mining fit well together. The autonomous na-
ture of services allows services to operate relatively independently. In many
cases it is not possible to enforce control. At best one can agree on a way
of working (the global model) and hope that the other parties involved will
operate as promised. However, since it is often not possible to control other
services, one can only observe, detect deviations, and monitor performance.

In the remainder of this section, we discuss some of the features of ProM
[29]: a process mining framework offering plug-ins for discovery, conformance,
and extension.

2.4.2 Linking DecSerFlow to the ProM LTL Checker

The ProM framework [29] is an open-source infrastructure for process mining
techniques. ProM is available as open source software (under the Common
Public License, CPL) and can be downloaded from [75]. It has been applied to
various real-life processes, ranging from administrative processes and health-
care processes to the logs of complex machines and service processes. ProM is
plug-able, i.e., people can plug-in new pieces of functionality. Some of the plug-
ins are related to model transformations and various forms of model analysis
(e.g., verification of soundness, analysis of deadlocks, invariants, reductions,
etc.). Most of the plug-ins, however, focus on a particular process mining
technique. Currently, there are more than 100 plug-ins of which about half
are mining and analysis plug-ins.

Starting point for ProM are event logs in MXML format. The MXML
format is system independent and using ProMimport it is possible to extract
logs from a wide variety of systems, i.e., systems based on products such
as SAP, Peoplesoft, Staffware, FLOWer, WebSphere, YAWL, ADEPT, ARIS
PPM, Caramba, InConcert, Oracle BPEL, Outlook, etc. and tailor-made sys-
tems. It is also possible to load and/or save a variety of models, e.g., EPCs
(i.e., event-driven process chains in different formats, e.g., ARIS, ARIS PPM,
EPML, and Visio), BPEL (e.g., Oracle BPEL, Websphere), YAWL, Petri nets
(using different formats, e.g., PNML, TPN; etc.), CPNs (i.e., colored Petri nets
as supported by CPN Tools), and Protos.

One of the more than 100 plug-ins offered by ProM is the so-called “LTL
checker” [3]. The LTL checker offers an environment to provide parameters for
predefined parameterized LTL expressions and check these expressions with
respect to some event log in MXML format. For each process instance, it is
determined whether the LTL expression holds or not, i.e., given an LTL expres-
sion all process instances are partitioned into two classes: conforming and non-
conforming. We have predefined 60 typical properties one may want to verify
using the LTL checker (e.g., the 4-eyes principle) [3]. These can be used with-
out any knowledge of the LTL language. In addition the user can define new
sets of properties. These properties may be application specific and may refer
to data. Each property is specified in terms of an LTL expression. Formulas
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may be parameterized, are reusable, and carry explanations in HTML format.
This way both experts and novices may use the LTL checker.

Recall that each model element of the DecSerFlow is mapped onto an LTL
expression. Therefore, it is possible to use the ProM LTL checker to assess the
conformance of a DecSerFlow model in the context of a real log. All notations
defined in Figs. 2.6, 2.7, and 2.8 map directly onto LTL expressions that can
be stored and loaded into ProM. Currently, we do not yet provide a direct
connection between the DecSerFlow editor and the ProM LTL checker. Hence,
it is not yet possible to visualize violations on the DecSerFlow editor. However,
it is clear that such integration is possible.

2.4.3 Other Process Mining Techniques in ProM

Clearly, the LTL checker is one of the most relevant plug-ins of ProM in the
context of DecSerFlow. However, the LTL checker plug-in is only one of more
than 100 plug-ins. In this subsection, we show some other plug-ins relevant
to process mining of service flows. First, we show some plug-ins related to
process discovery. Then, we show the ProM conformance checker that has
been successfully used in the context of (BPEL) service flows.

The basic idea of process discovery is to derive a model from some event
log. This model is typically a process model. However, there are also techniques
to discover organization models, social networks, and more data-oriented mod-
els such as decision trees. To illustrate the idea of process mining consider the
log shown in Table 2.5. Such a log could have been obtained by monitoring
the SOAP messages the shipper service in Fig. 2.3 exchanges with it its en-
vironment. Note that we do not show the content of the message. Moreover,
we do not show additional header information (e.g., information about sender
and receiver).

Using process mining tools such as ProM, it is possible to discover a process
model as shown in Fig. 2.14. The figure shows the result of three alternative
process discovery algorithms: (1) the o miner shows the result in terms of a
Petri net, (2) the multi-phase miner shows the result in terms of an EPC,
and (3) the heuristics miner shows the result in terms of a heuristics net.?
They are all able to discover the shipper service as specified in Fig. 2.3. Note
that Fig. 2.14 shows the names of the messages rather than the activities
because this is the information shown in Table 2.5. Note that the algorithms
used in Fig. 2.14 can easily be modified to generate DecSerFlow models, i.e.,
constraints imposed by, e.g., a Petri net can be mapped onto DecSerFlow
notations.

For process discovery, we do not assume that there is some a priori model,
i.e., without any initial bias we try to find the actual process by analyzing some
event log. However, in many applications there is some a priori model. For

3 Note that ProM allows for the mapping from one format to the other if needed.
Fig. 2.14 shows the native format of each of the three plug-ins.
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Table 2.5. An event log

case identifier activity identifier time data
order290166 s request 2006-04-02T08:38:00
order090504 s request 2006-04-03T12:33:00
order290166 s confirm 2006-04-07T23:55:00
order261066 s request 2006-04-15T06:43:00
order160598 s request 2006-04-19T20:13:00
order290166 book to s 2006-05-10T07:31:00
order290166 book to ¢ 2006-05-12T08:43:00
order160598 s confirm 2006-05-20T07:01:00
order210201 s request 2006-05-22T09:20:00
order261066 s confirm 2006-06-08T10:29:00
order290166 notification 2006-06-13T14:44:00
order160598 book to s 2006-06-14T16:56:00
order261066 book to s 2006-07-08T18:01:00
order090504 s decline 2006-07-12T09:00:00
order261066 book to ¢ 2006-08-17T11:22:00
order210201 s decline 2006-08-18T12:38:00
order160598 book to ¢ 2006-08-25T20:42:00
order261066 notification 2006-09-27T09:51:00
order160598 notification 2006-09-30T10:09:00
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Fig. 2.14. The output of three process discovery algorithms supported by ProM
when analyzing the event log shown in Table 2.5
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example, we already showed that ProM’s LTL checker can be used to check
the conformance of a DecSerFlow model. However, ProM is not limited to
DecSerFlow and can also be used to check the conformance of a specification
in terms of abstract BPEL, EPC, or Petri nets. To illustrate this, assume that
we add an additional process instance to Table 2.5 where the notification is
sent before the book is shipped to the customer (i.e., in Fig. 2.3 activity notify
takes place before activity ship).

If we assume there is some a priori model in terms of a Petri net, we
can use the conformance checker plug-in of ProM. Figure 2.15 shows the
result of this analysis (top-right corner). It shows that the fitness is 0.962 and
also highlights the part of the model where the deviation occurs (the place
connecting ship/book to ¢ and notify/notification). An event log and Petri net
“fit” if the Petri net can generate each trace in the log. In other words, the
Petri net describing the choreography should be able to “parse” every event
sequence observed by monitoring, e.g., SOAP messages. In [79] it is shown
that it is possible to quantify fitness as a measure between 0 and 1. The
intuitive meaning is that a fitness close to 1 means that all observed events
can be explained by the model (in the example about 96 percent). However,
the precise meaning is more involved since tokens can remain in the network
and not all transactions in the model need to be logged [79].

Unfortunately, a good fitness does not only imply conformance, e.g., it
is easy to construct Petri nets that are able to parse any event log (cor-
responding to a DecSerFlow model without any constraints, i.e., a model
described by true). Although such Petri nets have a fitness of 1 they do
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Fig. 2.15. Both the conformance checker plug-in and the LTL checker plug-in are
able to detect the deviation
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not provide meaningful information. Therefore, we use a second dimension:
appropriateness. Appropriateness tries to capture the idea of Occam’s razor,
i.e., “one should not increase, beyond what is necessary, the number of entities
required to explain anything.” Appropriateness tries to answer the following
question: “Does the model describe the observed process in a suitable way”
and can it be evaluated from both a structural and a behavioral perspective?
To explain the concept in more detail, it is important to note that there are
two extreme models that have a fitness of 1. First of all, there is a model
that starts with a choice and then has one path per process instance, i.e., the
model simply enumerates all possibilities. This model is “overfitting” since it
is simply another representation of the log, i.e., it does not allow for more
sequences than those that were observed in the log. Therefore, it does not
offer a better understanding than what can be obtained by just looking at the
aggregated log. Secondly, there is the so-called “flower Petri net” [79] that can
parse any log, i.e., there is one state in which all activities are enabled. This
model is “underfitting” since it contains no information about the ordering of
activities. In [79] it is shown that a “good” process model should somehow be
minimal in structure to clearly reflect the described behavior, referred to as
structural appropriateness, and minimal in behavior in order to represent as
closely as possible what actually takes place, which will be called behavioral
appropriateness. The ProM conformance checker supports both the notion of
fitness and the various notions of appropriateness.

In [6] we have demonstrated that any (abstract) BPEL specification can
automatically be mapped onto a Petri net that can be used for conformance
checking using ProM’s conformance checker.

Figure 2.15 also shows the LTL checker plug-in while checking the response
property on book to ¢ and notification. This check shows that indeed there is
one process instance where activity notify takes place before activity ship.
This example shows that it is possible to compare a DecSerFlow specification
and an event log and to locate the deviations.

2.5 Related Work

Since the early 1990s, workflow technology has matured [39] and several text-
books have been published, e.g., [7, 30]. Most of the available systems use
some proprietary process modeling language and, even if systems claim to
support some “standard,” there are often all kinds of system-specific exten-
sions and limitations. Petri nets have been used not only for the modeling
of workflows [7, 25, 30] but also for the orchestration of web services [65].
Like most proprietary languages and standards, Petri nets are highly proce-
dural. This is the reason why we introduced the DecSerFlow language in this
chapter.

Several attempts have been made to capture the behavior of BPEL [18] in
some formal way. Some advocate the use of finite state machines [35], others
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process algebras [34], and yet others abstract state machines [33] or Petri nets
[71, 62, 83, 87]. (See [71] for a more detailed literature review.) For a detailed
analysis of BPEL based on the workflow patterns [8], we refer to [90]. Few
researchers have explored the other direction, e.g., translating (Colored) Petri
nets into BPEL [9].

The work presented in this chapter is also related to the choreography
language “Let’s Dance” [94, 95]. Let’s Dance is a language for modeling ser-
vice interactions and their flow dependencies. The focus of Let’s Dance is
not so much on the process perspective (although a process modeling nota-
tion is added); instead, it focuses on interaction patterns and mechanisms.
Similar to DecSerFlow it is positioned as an alternative to the Web Services
Choreography Description Language (WS-CDL) [54].

Clearly, this chapter builds on earlier work on process discovery, i.e., the
extraction of knowledge from event logs (e.g., process models [15, 17, 27, 37,
38, 47] or social networks [12]). For example, the well-known « algorithm [15]
can derive a Petri net from an event log. In [6] we used the conformance check-
ing techniques described in [79] and implemented in our ProM framework [29]
and applied this approach to SOAP messages generated from Oracle BPEL.
The notion of conformance has also been discussed in the context of security
[10], business alignment [1], and genetic mining [66].

It is impossible to give a complete overview of process mining here. There-
fore, we refer to a special issue of Computers in Industry on process mining [14]
and a survey paper [13]. Process mining can be seen in the broader context
of Business (Process) Intelligence (BPI) and Business Activity Monitoring
(BAM). In [43, 44, 81] a BPI toolset on top of HP’s Process Manager is de-
scribed. The BPI toolset includes the so-called “BPI Process Mining Engine.”
In [69] Zur Muehlen describes the PISA tool which can be used to extract
performance metrics from workflow logs. Similar diagnostics are provided by
the ARIS Process Performance Manager (PPM) [53]. The latter tool is com-
mercially available and a customized version of PPM is the Staffware Process
Monitor (SPM) [85] which is tailored toward mining Staffware logs.

The need for monitoring web services has been raised by other researchers.
For example, several research groups have been experimenting with adding
monitor facilities via SOAP monitors in Axis [19]. Reference [56] introduces
an assertion language for expressing business rules and a framework to plan
and monitor the execution of these rules. Reference [21] uses a monitoring
approach based on BPEL. Monitors are defined as additional services and
linked to the original service composition. Another framework for monitor-
ing the compliance of systems composed of web-services is proposed in [60].
This approach uses event calculus to specify requirements. Reference [59] is
an approach based on WS-Agreement defining the Crona framework for the
creation and monitoring of agreements. In [42, 31], Dustdar et al. discuss the
concept of web services mining and envision various levels (web service opera-
tions, interactions, and workflows) and approaches. Our approach fits in their
framework and shows that web-services mining is indeed possible. In [73] a
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tool named the Web Service Navigator is presented to visualize the execution
of web services based on SOAP messages. The authors use message sequence
diagrams and graph-based representations of the system topology. Note that
also in [5] we suggested to focus less on languages like BPEL and more on
questions related to the monitoring of web services. In [6] we showed that it
is possible to translate abstract BPEL into Petri nets and SOAP messages
exchanged between services into event logs represented using the MXML for-
mat (i.e., the format used by our process mining tools). As a result, we could
demonstrate that it is possible to compare the modeled behavior (in terms of
a Petri net) and the observed behavior (in some event log). We used Oracle
BPEL and demonstrated that it is possible to monitor SOAP messages using
TCP Tunneling technique [6]. This comparison could be used for monitor-
ing deviations and to analyze the most frequently used parts of the service/
choreography.

This chapter discussed the idea of conformance checking by comparing the
observed behavior recorded in logs with some predefined model. This could
be termed “run-time conformance.” However, it is also possible to address
the issue of design-time conformance, i.e., comparing different process models
before enactment. For example, one could compare a specification in abstract
BPEL with an implementation using executable BPEL. Similarly, one could
check at design-time the compatibility of different services. Here one can use
the inheritance notions [2] explored in the context of workflow management
and implemented in Woflan [88]. Axel Martens et al. [62, 63, 64, 82] have
explored questions related to design-time conformance and compatibility us-
ing a Petri-net-based approach. For example, [63] focuses on the problem
of consistency between executable and abstract processes and [64] presents
an approach where for a given composite service the required other services
are generated. Also related is [36] where Message Sequence Charts (MSCs)
are compiled into the “Finite State Process” notation to describe and reason
about web service compositions.

2.6 Conclusion

This chapter focused on service flows from the viewpoint of both specifica-
tion/enactment and monitoring.

First, we discussed more traditional approaches based on Petri nets and
BPEL. We showed that Petri nets provide a nice graphical representation
and a wide variety of analysis techniques, and mentioned that BPEL has
strong industry support making it a viable execution platform. We also showed
that there are mappings from BPEL to Petri net for the purpose of analysis
(cf. BPEL2PNML and WofBPEL [72]). Moreover, it is possible to translate
graphical languages such a Petri nets to BPEL (cf. WorkflowNet2BPEL4AWS
[55]). Using such techniques, it is also possible to translate languages such as
EPCs, BPMN, etc. to BPEL.
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Although the first author has been involved in the development of these
tools and these tools are mature enough to be applied in real-life applications,
both Petri nets and BPEL are rather procedural and this does not fit well
with the autonomous nature of services. Therefore, we proposed a new, more
declarative language, DecSerFlow. Although DecSerFlow is graphical, it is
grounded in temporal logic. It can be used for the enactment of processes, but
it is particularly suited for the specification of a single service or a complete
choreography. In the last part of this chapter, the focus shifted from languages
to process mining. We showed that the combination of DecSerFlow and process
mining (conformance checking in particular) is useful in the setting of web
services. Moreover, we showed that DecSerFlow can be combined well with
the conformance-checking techniques currently implemented in ProM (cf. the
LTL checker plug-in).

DecSerFlow also seems to be an interesting proposal for linking global and
local models. If both the global model (i.e., the view on the process as seen by
some external observer) and one or more local models (i.e., the specification
or implementation of a single service or service composition) are modeled
in DecSerFlow, standard model checking techniques can be used to compare
both.

To conclude, we would like to mention that all of the presented analysis
and translation tools can be downloaded from various web sites: [75] (ProM),
[20] (BPEL2PNML and WofBPEL), and [93] (WorkflowNet2BPEL4WS).
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Abstract. Conversations provide an intuitive and simple model for analyzing in-
teractions among composite web services. A conversation is the global sequence
of messages exchanged among the peers participating in a composite web service.
Interactions in a composite web service can be analyzed by investigating the tem-
poral properties of its conversations. Conversations can be specified in a top-down
or bottom-up manner. In a top-down conversation specification, the set of conver-
sations is specified first, without specifying the individual behaviors of the peers. In
a bottom-up conversation specification, on the other hand, behavior of each peer is
specified separately and the conversation set is defined implicitly as the set of con-
versations generated by these peers. For both top-down and bottom-up specification
approaches we are interested in the following: (1) Automatically verifying properties
of conversations and (2) investigating the effect of asynchronous communication on
the conversation behavior. These two issues are closely related since asynchronous
communication with unbounded queues increases the difficulty of automated verifi-
cation significantly.

In this chapter, we give an overview of our earlier results on analysis and verifica-
tion of conversations. We discuss two analysis techniques for identifying bottom-up
and top-down conversation specifications that can be automatically verified. Syn-
chronizability analysis identifies bottom-up conversation specifications for which the
conversation set remains the same for asynchronous and synchronous communica-
tion. Realizability analysis, on the other hand, identifies top-down conversation spec-
ifications which can be implemented by a set of finite state peers interacting with
asynchronous communication. We discuss sufficient conditions for synchronizability
and realizability analyses which are implemented in our Web Service Analysis Tool
(WSAT). WSAT can be used for verification of LTL properties of both top-down
and bottom-up conversation specifications.

3.1 Introduction

Web services provide a promising framework for development, integration,
and interoperability of distributed software applications. Wide-scale adoption
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of the web services technology in critical business applications will depend on
the feasibility of building highly dependable services. Web services technology
enables interaction of software components across organizational boundaries.
In such a distributed environment, it is critical to eliminate errors at the
design stage, before the services are deployed.

One of the important challenges in static analysis and verification of web
services is dealing with asynchronous communication. Asynchronous com-
munication makes most analysis and verification problems undecidable, even
when the behaviors of web services are modeled as finite state machines. In
this chapter, we give an overview of our earlier results on analysis and ver-
ification of interactions among web services in the presence of asynchronous
communication.

In our formal model, we assume that a composite web service consists of
a set of individual services (peers) which interact with each other using asyn-
chronous communication. In asynchronous communication, the sender and the
receiver of a message do not synchronize their send and receive actions. The
sender can send a message even when the receiver is not ready to receive that
message. When a message arrives, it is stored in the receiver’s message buffer.
Message buffers are typically implemented as FIFO queues, i.e., messages in a
message buffer are processed in the order they arrive. A message will wait in
the message buffer without being processed until it moves to the head of the
message buffer and the receiver becomes available to consume it by executing
a receive action.

Asynchronous communication is important for building robust web ser-
vices [5]. Since asynchronous communication does not require the sender and
the receiver to synchronize during message exchange, temporary pauses in
availability of the services and delays in the delivery of the messages can be
tolerated. In practice, asynchronous messaging is supported by message deliv-
ery platforms such as Java Message Service (JMS) [26] and Microsoft Message
Queuing Service (MSMQ) [32].

Although asynchronous communication improves the robustness of web
services, it also increases the complexity of design and verification of web
service compositions as demonstrated by the two examples below.

Ezample 1 Consider a small portion of the example from Chap. 1, where the
GPS device of the traveler automatically negotiates a purchase agreement with
two existing map service providers. Fig. 3.1a provides a top-down specification
of this composition. There are three peers, the traveler (T'), map provider 1
(M), and map provider 2 (Msz). Assume that before the composition starts,
a “call for bid” message has been broadcast to both map providers. The fi-
nite state machine in Fig. 3.1 describes the bidding process. Intuitively, the
protocol specifies that the first bidder will win the contract. Fig. 3.1b demon-
strates a sample implementation for all peers involved in the composition. For
each peer the sample implementation is generated by a projection operation.
Given a protocol (represented as a finite state machine) and a peer to project
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Fig. 3.1. An unrealizable design due to asynchronous communication

to, the projection operation replaces the transitions that are labeled with a
message that is neither sent nor received by the given peer by € edges, and
then minimizes the resulting automaton.

Now, let us consider whether this protocol is realizable, i.e., if there are im-
plementations for all peers, whose composition can generate exactly the same
set of global behaviors as specified by the protocol automaton in Fig. 3.1a.
If synchronous communication is used, the protocol can be executed without
any problem. Synchronous communication is similar to communicating with
telephone calls, but without answering machines. For a message exchange to
occur, the sender and the receiver both have to be on the phone at the same
time. With synchronous communication, the peer implementations shown in
Fig. 3.1b can generate exactly the conversation set as specified by Fig. 3.1a.
Notice that according to these implementations, at the beginning stage, both
map service providers call the traveler to bid. When the first bidder success-
fully makes the call, the traveler, according to the protocol, will not answer
any other calls. Hence the call by the second bidder will not go through and
the winner is decided. The second bidder will just stay in its initial state,
which is also one of its final states.

If we continue with the telephone analogy, asynchronous communication is
similar to communicating with answering machines where each phone call re-
sults in a message that is recorded to the answering machine of the callee.
The callee retrieves the messages from the answering machine in the or-
der they are received. If the peer implementations shown in Fig. 3.1b in-
teract with asynchronous communication, then the map service providers
do not have to synchronize their send actions with the traveler’s receive
actions. For example, if asynchronous communication is used, at the ini-
tial state, both map service providers can send out the bid messages. How-
ever, in such a scenario only one of them will successfully complete the
transaction, and the other will be stuck waiting for an answer and it will
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never reach a final state. To put it another way, if asynchronous commu-
nication is used then the composition of these three peers can generate a
global behavior that is not described in the protocol given in Fig. 3.1a. One
such undesired behavior can be described using the following sequence of
messages:

My — T :bidy; My — T :bide; T — My : agreement.

This behavior results with the map service provider 2 being stuck because
the traveler will never respond to his request. Again using the telephone
analogy, in this scenario, both map providers call the traveler and leave
a bid message in the traveler’s answering machine. However, based on its
state machine (shown on the right side of Fig. 3.1b) the traveler listens to
only the first bid message in its answering machine and calls back the map
provider that left the first message. The other map provider never hears
back from the traveler and is stuck at an intermediate state waiting for a
call.

A conversation protocol specified as a finite state machine is realizable if
and only if it is realized by its projections to all peers [16]. Hence, the protocol
in Fig. 3.1 is not realizable.

Figure 3.1 is an example of how asynchronous communication complicates
the design of composite web services. In the next example given below, we dis-
cuss how asynchronous communication affects the complexity of verification.
This time we consider bottom-up specification of web services.

Example 2 Assume that the GPS device of the traveler needs to invoke the
service of the map service provider for a new map whenever the vehicle moves
one mile away from its old position. Fig. 3.2 presents two different sets of im-
plementations for the GPS device and the map service provider. Note that we
are assuming that the interaction mechanism is asynchronous communication.

The map provider replies to each request message (req) that the client
sends with a map data message (map); the interaction terminates when the
GPS device sends an end message. In Fig. 3.2a, the GPS device does not
wait for a map message from the provider after it sends a req message. In
the resulting global behavior, the req and map messages can be interleaved
arbitrarily, except that at any moment the number of req messages is greater
than or equal to the number of map messages. In Fig. 3.2b, the GPS device
waits for a map message before it sends the next req message. Now the question
is, which composition is easier to verify?

We can show that Fig. 3.2b is easier to verify because it falls into a cate-
gory of compositions called synchronizable web service compositions. A syn-
chronizable composition produces the same set of conversations under both
synchronous and asynchronous communication semantics. When all the peers
involved in a composition are finite state machines, their composition using
synchronous communication semantics is also a finite state machine. Hence,
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Fig. 3.2. An unsynchronizable (a) and a synchronizable (b) design

the problem becomes a finite state verification problem and can be solved
using existing finite state model checking techniques and tools. On the other
hand, it is impossible to characterize the conversation set of the composition
in Fig. 3.2a using a finite-state machine because a finite-state machine can-
not keep track of the number of unacknowledged req messages, which can be
arbitrarily large.

In the rest of this chapter, we will present a survey of our earlier re-
sults on realizability and synchronizability of web services that can be used
for identifying realizable top-down web service specifications and synchro-
nizable bottom-up web service specifications, respectively. The technical de-
tails and proofs of these results can be found in our earlier publications
[8, 9, 14, 15, 16, 18, 20, 21]. Our goal in this chapter is to provide an
overview of our earlier results and explain how they can be applied to the
example discussed in Chap. 1. We will also briefly discuss how we integrated
these analysis techniques into an automated verification tool for web services
[19, 39].

The rest of the chapter is organized as follows. Section 3.2 presents our
conversation model which was originally proposed in [8]. Section 3.3 discusses
the synchronizability analysis presented in [15, 21]. Section 3.4 discusses the
realizability analysis from [14, 16]. Section 3.5 discusses the extensions of
the synchronizability and realizability analyses to protocols in which message
contents influence the control flow [18, 20]. Section 3.6 briefly describes the
Web Service Analysis Tool [39, 19]. Section 3.7 discusses the related work and
Sect. 3.8 lists our conclusions.



62 T. Bultan et al.
3.2 A Conversation-Oriented Model

In this section, we present a formal model for interacting web services
[8, 15, 16, 21]. We concentrate our discussion on static web service composi-
tions, where the composition structure is statically determined prior to the
execution of the composition and we assume that interacting web services do
not dynamically create communication channels or instantiate new business
processes.

We assume that a web service composition is a closed system where a finite
set of interacting (individual) web services, called peers, communicate with
each other via asynchronous messaging. In this section, we consider the prob-
lem of how to characterize the interactions among peers. We use the sequence
of send events to characterize a global behavior generated by the composition
of a set of peers. Based on this conversation model, Linear Temporal Logic
(LTL) can be used to express the desired properties of the system.

We will first introduce the notion of a composition schema, which speci-
fies the static interconnection pattern of a web service composition. Then we
discuss the specification of each peer, i.e., each participant of a web service
composition. Next we discuss how to characterize the interactions among the
peers, and introduce the notion of a conversation. Then we present some ob-
servations on conversation sets, which motivate the synchronizability analysis
presented in the next section.

3.2.1 Composition Architecture

There are two basic approaches for specifying a web service composition,
namely the top-down and bottom-up specification approaches. In the top-down
approach, the desired message exchange sequences among multiple peers are
specified, e.g., the IBM Conversation Support Framework for Business Process
Integration [22] and the Web Service Choreography Description Language
(WS-CDL) [40]. The bottom-up approach specifies the logic of individual peers
and then peers are composed and their global behaviors are analyzed. Many
industry standards, e.g., WSDL [41] and BPEL4WS [6], use this approach. In
our formalization, the bottom-up and top-down specification approaches have
different expressive power. Bottom-up approach is more expressive and can
be used to specify more complex interactions.

In order to explain our formal model, we will use an example derived from
the one discussed in Chap. 1 as our running example in this section.

Ezample 3 In this example there are three peers interacting with each other:
John, Agent, and Hotel. John wants to take a vacation. He has certain con-
straints about where he wants to go for vacation, so he sends a query to
his Agent stating his constraints and asking for advice. The Agent responds
to John’s query by sending him a suggestion. If John is not happy with
the Agent’s suggestion he sends another query requesting another sugges-
tion. Eventually, John makes up his mind and sends a reservation request to
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Fig. 3.3. An example demonstrating our model

the hotel he picks. The hotel responds to John’s reservation request with a
confirmation message. Figure 3.3 shows both top-down and bottom-up speci-
fications of this example in our framework. Top part of Fig. 3.3 shows the set
of peers participating in this composition and the messages exchanged among
them. Middle part of Fig. 3.3 gives a top-down specification of the possible
interactions among these peers. Note that in this top-down specification the
behaviors of the individual peers are not given. Bottom part of Fig. 3.3, on the
other hand, is a bottom-up specification which gives behavioral descriptions
of all the peers participating in the composition. The interaction behavior is
implicitly defined as the set of interactions generated by these peers. In either
approach, we are interested in verifying LTL properties of interactions and
we model the interactions as conversations. Below we will use this example to
explain different components of our framework.

A composition schema specifies the set of peers and the set of messages
exchanged among peers [8, 21].

Definition 1 A composition schema is a tuple (P, M) where P={p1,...,pn}
is the set of peer prototypes, and M is the set of messages. Fach peer proto-
type pi = (M™, M"Y is a pair of disjoint sets of messages (M N Mt = (),
where M™ is the set of incoming messages, MP* is the set of outgoing
messages, and M; = M™ U MP" is the set of messages of peer p; where
Uier..nj Min = Uien. nj Mput = M. We assume that each message has a
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unique sender and a unique receiwer, and a peer cannot send a message back
to itself.

For example, top part of Fig. 3.3 shows a composition schema where the
set of peer prototypes are P = {Agent, John, Hotel}, and the set of messages
are M = {query,suggest, confirm, reserve}. The input and output messages
for peer prototypes are defined as MKE;ent = {query}, M,g\z;tent = {suggest},
n

Mjghn = {suggest, confirm}, M§u = {query, reserve}, Mlz;lote

and My | = {confirm}.

| = {reserve},

3.2.2 Top-Down vs Bottom-Up Specification

Conversation protocols correspond to top-down specification of interactions
among web services. Middle part of Fig. 3.3 (labeled conversation protocol)
shows a top-down specification for the interactions among a set of peers. We
define a conversation protocol as a finite state machine as follows.

Definition 2 Let S = (P, M) be a composition schema. A conversation pro-
tocol over S is a tuple R = ((P, M), A) where A is a finite state automaton
with alphabet M. We let L(R) = L(A), i.e., the language recognized by A.

The conversation protocol in Fig. 3.3 corresponds to a finite state automa-
ton with the set of states {so, s1, $2, $3, S4, S5}, the initial state sg, the set of
final states {s5}, the alphabet {query,suggest, confirm,reserve}, and the set
of transitions {(so, query, s1), (s1,suggest, s2), (s2,query, s3), (s3,suggest, s2),
(82, reserve, s4), and (sy, confirm, s5)}.

Note that the language recognized by the conversation protocol in Fig. 3.3
can be characterized by the following regular expression:

query suggest (query suggest)” reserve confirm

A bottom-up specification consists of a set of finite state peers. Bottom
part of Fig. 3.3 shows the bottom-up specification of the same web service
composition. We call a bottom-up specification a web service composition
which is defined as follows.

Definition 3 A web service composition is a tupleWW={((P, M), Ai,...,An),
where (P, M) is a composition schema, n = |P|, and A; is the peer imple-
mentation for the peer prototype p; = (M, M) € P.

We assume that each peer implementation is given as a finite state machine.
Each peer implementation describes the control flow of a peer. Since peers
communicate with asynchronous messages, each peer is equipped with a FIFO
queue to store incoming messages. Formally, a peer implementation is defined
as follows.
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Definition 4 Let S= (P, M) be a composition schema and p; = (M, M?*) €
P be a peer prototype. A peer implementation A; for a peer prototype p; is a
finite state machine with an input queue. Its message set is M; = M™UM?"t.
A transition between two states t1 and to in A; can be one of the following
three types:

1. A send-transition of the form (t1,!mq,t2) which sends out a message my €
Mput (i.e., inserts the message to the input queue of the receiver).

2. A receive-transition of the form (t1,7ma,te) which consumes a message
ma € M™ from the input queue of A;.

3. An e-transition of the form (t1,€,t2).

Bottom part of Fig. 3.3 presents the peer implementations for the peer
prototypes shown at the top. For example, the peer implementation for
the peer Agent corresponds to a finite state machine with the set of states
{490, 1,42, g3}, the initial state qq, the set of final states {¢2}, the message set
{query, suggest}, and the set of transitions {(qo, ?query, q1), (g1, !suggest, ¢2),
(g2, 7query, q3), and (g3, 'suggest, g2)}. Similarly, the peer John corresponds to
a finite state machine with the set of states {to, t1, t2, t3, t4, t5}, the initial state
to, the set of final states {5}, the message set {query, suggest, confirm, reserve},
and the set of transitions {(to,!query,t1), (t1,7suggest,t2), (t2,!query,ts),
(t3, 7suggest, ta), (t2,!reserve, t4), and (t4, 7confirm,¢5)}. And finally, the peer
Hotel corresponds to a finite state machine with the set of states {rg,r1,7r2},
the initial state ro, the set of final states {ro}, the message set {reserve, confirm},
and the set of transitions {(rq, ?reserve,r1) and (r1, lconfirm, r3)}. We will use
these peer implementations for our running example for the rest of this section.

3.2.3 Conversations

A conversation is the sequence of messages exchanged among the peers during
an execution, recorded in the order they are sent. In order to formalize the
notion of conversations, we first need to define the configurations of a com-
posite web service and the derivation relation which specifies how the system
evolves from one configuration to another [8, 16, 21].

Definition 5 Let W = (P, M), Ay, ..., A,) be a web service composition. A
configuration of W is a (2n)-tuple of the form

(Ql; tla cey Qn; tn)a

where for each j € [1.n], Q; € (M;")*, and t; € T;. Here t; and @Q); denote
the local state and the queue contents of A;, respectively.

Intuitively, a configuration records a snap-shot during the execution of
a web service composition by recording the local state and the FIFO queue
contents of each peer. For example, the initial configuration of our running
example is (€, qo, €, to, €, 7o) where all the peers are in their initial states and all
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the queues are empty. When the peer John takes the transition (¢o, !query, ¢1),
the next configuration is (query, qo, €, t1,€,70), i.e., in the next configuration
the message query is in the input queue of the peer Agent and the peer John
is in state t;. Then, the peer Agent can receive the query message by taking
the (qo, 7query, ¢1) transition which would lead to the following configuration:
(e,q1,€,t1,€,70), 1., the message query is removed from the input queue of
the peer Agent and the peer Agent is now in state ¢ .

We can formalize this kind of evolution of the system from one config-
uration to another as a derivation relation using the transitions of the peer
implementations. A derivation step is an atomic and minimal step in a global
behavior generated by a web service composition. Given two configurations
c and ¢/, we say that ¢ derives ¢/, written as ¢ — ¢, if it is possible to go
from configuration ¢ to configuration ¢’ by one of the following three types of
derivation steps:

1. send action, where one peer sends out a message m to another peer (de-

noted as ¢ % ¢ ). The send action results in the state transition of the
sender, and the transmitted message is placed in the input queue of the
receiver.

2. receive action, where one peer consumes the message m that is at the head

of its input message queue (denoted as ¢ e ). The receive action results
in the state transition of the receiver and the removal of the consumed
message from the head of the receiver’s input queue.

3. € action, where one peer takes an e transition (denoted as ¢ -~ ¢’). This
action results in the state transition of that peer; however, it does not
affect any of the message queues.

For our running example, two example derivations we discussed above can

. lquen
be written as (65 qo, €, to, €, TO) = (query7 qo, €, 11, €, ro)and (query, qo, €, 11, €, TO)

?,
?query
- (e,ql,e,tl,e,ro)-

Now we can define a run of a web service composition as follows.

Definition 6 Let W = ((P,M), A,..., A,) be a web service composition,
a sequence of configurations v = cocy...cp is a Tun of W if it satisfies the
following conditions:

1. The configuration co = (€, 81,.-.,€,8y,) s the initial configuration where
s; 1s the initial state of A; for each i € [1..n], and € is the empty word.

2. For each j € [0..k — 1], ¢;j — ¢j11.

3. The configuration cy, = (€,t1,...,€1ty,) is a final configuration where t; is
a final state of A; for each i € [1..n).

We define the send sequence generated by 7, denoted by ss(v), as the

.. . . m
sequence of messages containing one message for each send action (i.e., ¢ = ¢/)
in 7, where the messages in ss() are recorded in the order they are sent.
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For example, a run of our running example would be 9

?quer

lquery query Isuggest
(€5q0765t0567T0) - (qUEVy,qO,E,tl,E,TO) - (67Q1567t1765’r0) -

Ireserve

?suggest
- (E,QQ,E,tQ,E,TO) - (e,qg,e,t4,reserve,r0)

(61 q2, suggest, tla €, TO)
?reserve
—

Iconfirm . ‘?confirm
(65q2765t4567T1) - (e,qQ,conflrm,t4,e,T2) - (€5q2;€7t5567T2)'
The send sequence generated by this run is query suggest reserve confirm.
Finally, we define the conversations as follows.

Definition 7 A word w over M (w € M*) is a conversation of web service
composition W if there exists a run v such that w = ss(7y), i.e., a conversation
is the send sequence generated by a run. The conversation set of a web service
composition W, written as C(W), is the set of all conversations for W.

For example, the conversation set of our running example, the web ser-
vice composition at the bottom of Fig. 3.3, can be captured by the regular
expression:

query suggest (query suggest)” reserve confirm

Linear Temporal Logic can be used to characterize the properties of con-
versation sets in order to specify the desired system properties. The semantics
of LTL formulas can be adapted to conversations by defining the set of atomic
propositions as the power set of messages. For example, the composition in
Fig. 3.3 satisfies the LTL property: G(query = F(confirm)), where G and F
are temporal operators which mean “globally” and “eventually,” respectively.

Standard LTL semantics is defined on infinite sequences [11], whereas in
our definitions above we used finite conversations. It is possible to extend
the definitions above to infinite conversations and then use the standard LTL
semantics as in [14, 16]. We can also adapt the standard LTL semantics to
finite conversations by extending each conversation to an infinite string by
adding an infinite suffix which is the repetition of a special termination symbol.

Unfortunately, due to the asynchronous communication of web services,
LTL verification of conversations of web service compositions is

undecidable [16].

Theorem 1 Given a web service composition VW and an LTL property ¢,
determining if all the conversations of W satisfy ¢ is undecidable.

The proof is based on an earlier result on Communicating Finite State Ma-
chines (CFSMs) [7]. We can show that a web service composition is essentially
a system of CFSMs. It is known that CFSMs can simulate Turing Machines
[7]. Similarly, one can show that, given a Turing Machine T'M it is possible
to construct a web service composition W that simulates TM and exchanges
a special message (say m;) once T'M terminates. Thus, TM terminates if and
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only if the conversations of W satisfy the LTL formula F(m;), which means
that “eventually message m; will be sent.” Hence, undecidability of the halt-
ing problem implies that verification of LTL properties of conversations of a
web service composition is an undecidable problem.

3.3 Synchronizability

Asynchronous communication among web services leads to the undecidabil-
ity of the LTL verification problem. If synchronous communication is used
instead of asynchronous communication, the set of configurations of a web
service composition would be a finite set, and it is well known that LTL
model checking is decidable for finite state systems. In this section, we discuss
the synchronizability analysis [15, 21] which identifies bottom-up web service
specifications which generate the same conversation set with synchronous and
asynchronous communication semantics. We call such web service composi-
tions synchronizable. We can verify synchronizable web service compositions
using the synchronous communication semantics, and the verification results
we obtain are guaranteed to hold for the asynchronous communication seman-
tics.

3.3.1 Synchronous Communication

To define synchronizability, we first have to define synchronous communica-
tion. Intuitively, synchronous communication requires that the sender and the
receiver of a message should take the send and the receive actions simultane-
ously to complete the message transmission. In other words, the send and the
receive actions of a message transmission form an atomic and non-interruptible
step. In the following, we define the synchronous global configuration and syn-
chronous communication semantics.

Given a web service composition W = ((P, M), A;, ..., A,) where each
automaton A; describes the behavior of a peer, the configuration of a web
service composition with respect to the synchronous semantics, called the syn-
configuration, is a tuple (¢1, ..., t,), where for each j € [1..n], t; € T} is the local
state of peer A;. Notice that in a syn-configuration only the local automata
state of each peer is recorded—peers do not need message buffers to store the
incoming messages due to the synchronous communication semantics.

For two syn-configurations c and ¢’, we say that ¢ synchronously derives c’,
written as ¢ —gyn ¢, if ¢/ is the result of simultaneous execution of the send
and the receive actions for the same message by two peers, or the execution
of an € action by a single peer.

The definition of the derivation relation between two syn-configurations is
different than the asynchronous case. In the synchronous case a send action
can only be executed concurrently with a matching receive action, i.e., sending
and receiving of a message occur synchronously. We call this semantics the
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synchronous semantics of a web service composition and the semantics defined
in Sect. 3.2 is called the asynchronous semantics.

The definitions of a run, a send sequence, and a conversation for syn-
chronous semantics is similar to those of the asynchronous semantics given in
Sect. 3.2 (we will use “syn” as a prefix to distinguish between the synchronous
and asynchronous versions of these definitions when it is not clear from the
context). Given a web service composition W, let Cgyn (W) denote the conver-
sation set under the synchronous semantics. Then synchronizability is defined
as follows.

Definition 8 A web service composition VV is synchronizable if its conversa-
tion set remains the same when the synchronous semantics is used instead of
the asynchronous semantics, i.e., C(W) = Coyn(W).

Clearly, if a web service composition is synchronizable, then we can ver-
ify its interaction behavior using synchronous semantics (without any input
queues) and the results of the verification will hold for the behaviors of the
web service composition in the presence of asynchronous communication with
unbounded queues.

Given a web service composition W, its conversation set with respect to
synchronous semantics is always a subset of its conversation set with respect
to asynchronous semantics, i.e., Csyn(W) C C(W) [21]. In some cases the
containment relationship can be strict, i.e., there are web service compositions
that are not synchronizable. The following is an example.

Example 4 Consider a web service composition W in Fig. 3.4. Two peers A and
B can exchange two messages a (from A to B) and b (from B to A). The peer
implementation of A sends out a¢ and then waits for and consumes message
b from its input queue. Peer b sends out b first then receives a. Obviously,
if asynchronous semantics is used then there exists a run which generates
the conversation ab. However, note that, when synchronous semantics is used
there is no run which generates the same conversation, because at the initial
state both peers are trying to send out a message and neither of them can
get the co-operation of the other peer to complete the send operation. Based
on the definitions of the conversation sets, we have C(W) = {ab,ba} and
Csyn(W) = 0. Hence, W is not synchronizable.

A B

\t@ la ?b \t@ 'b ?a

Fig. 3.4. An example specification that is not synchronizable
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3.3.2 Synchronizability Analysis

We now present two conditions for identifying synchronizable web service
compositions. Together these conditions guarantee synchronizability, i.e., they
form a sufficient condition for synchronizability.

Synchronous compatible condition: If we construct the synchronous com-
position of a set of peers, the synchronous compatible condition requires that
for each syn-configuration ¢ that is reachable from the initial configuration,
if there is a peer which has a send transition for a message m from its local
state in ¢, then the receiver of m should have a receive transition for m either
from its local state in ¢ or from a configuration reachable from c via e-actions.

Note that the composition of A and B in Fig. 3.4 does not satisfy the syn-
chronous compatible condition. The initial syn-configuration cg of the compo-
sition can be represented as a tuple (si',sP), where s and s are the local
initial states of A and B respectively. Obviously, at ¢g peer A can send out a;
however, it is not able to because B is not in a state where it can receive the
message.

An algorithm for checking the synchronous compatible condition is given in
[21]. The basic idea in the algorithm is to construct a finite state machine that
is the product (i.e., the synchronous composition) of all peers. Each state (i.e.,
syn-configuration) of the product machine is a vector of local states of all peers.
During the construction, if we find a peer ready to send a message but the
corresponding receiver is not ready to receive it (either immediately or after
executing several e-actions), the composition is identified as not synchronous
compatible. If all states of the product machine are examined without finding a
violation of the synchronous compatible condition, then the algorithm returns
true. The worst case complexity of the algorithm is quadratic on the size of
the product and the size of the product is exponential in the number of peers.

Autonomous condition: A web service composition is autonomous if each
peer, at any moment, can do only one of the following: (1) terminate, (2) send
a message, or (3) receive a message.

To check the autonomous condition, we determinize each peer implementa-
tion and check that outgoing transitions for each non-final state are either all
send transitions or all receive transitions [21]. We also check that final states
have no outgoing transitions. The complexity of the algorithm can be expo-
nential in the size of the peers in the worst case due to the determinization
step.

In Fig. 3.1b, neither of the peer implementations of the map service
providers (M; and Ms) are autonomous because there is a transition orig-
inating from the initial state which is also a final state. However, the imple-
mentation of traveler (T) is autonomous.

In Fig. 3.2a the implementation of GPS is not autonomous, because at the
initial state the peer can send message req and receive message map.
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We now present the key result concerning the synchronizability analysis.
The proof for the following results can be found in [21].

Theorem 2 Let W = ((P,M), A1,..., Ay,) be a web service composition. If
W is synchronous compatible and autonomous, then for any conversation gen-
erated by W there exists a run which generates the same conversation in which
every send action is immediately followed by the corresponding receive action.

When the synchronous compatibility and autonomy conditions are satis-
fied by a web service composition, then for each conversation generated by
that composition, there is always a run which generates the same conversation
where each send action is immediately followed by the corresponding receive
action. By collapsing the pairs of send/receive actions for the same message,
we get a synchronous run which generates the same conversation. Then based
on Theorem 2 we get the following result.

Theorem 3 Let W = ((P,M), A1,..., Ay) be a web service composition. If
W is synchronous compatible and autonomous, then W is synchronizable.

Theorem 3 implies that web service compositions that satisfy the two syn-
chronizability conditions can be analyzed using the synchronous communica-
tion semantics and the verification results hold for asynchronous semantics.

Notice that synchronizability does not imply deadlock freedom. Think
about the following composition of two peers A and B, which exchange mes-
sages my (from A to B) and mqo (from B to A). If A accepts one word ?msg,
and B accepts one word ?mg, it is not hard to verify that the composition
of A and B is synchronizable; however, they are involved in a deadlock right
at the initial state since both peers are waiting for each other. Hence, be-
fore the LTL verification of a web service composition, designers may have to
check the composition for deadlocks. However, for synchronizable web service
compositions the deadlock check can be done using the synchronous semantics
(instead of the asynchronous semantics), since it is possible to show that [13] a
synchronizable web service composition has a run (with asynchronous seman-
tics) that leads to a deadlock if and only if it has a syn-run (with synchronous
semantics) that leads to a deadlock.

3.4 Realizability of Conversation Protocols

In this section, we discuss the realizability problem for top-down web service
specifications, i.e., conversation protocols [8, 16]. We also discuss the relation-
ship between synchronizability and realizability analyses.

Intuitively, realizability means that given a conversation protocol it can be
realized by some web service composition, i.e., the conversation set generated
by the web service composition is exactly the same as the language accepted
by the conversation protocol.
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Definition 9 Let S = (P, M) be a composition schema, and let the conversa-
tion protocol R and the web service composition VW both share the same schema
S. We say that W realizes R if C(W) = L(R). A conversation protocol R is
realizable if there exists a web service composition that realizes R.

Let us first consider the following question: Are all conversation protocols
realizable? The answer is negative as we show below.

Example 5 Figure 3.5 shows a conversation protocol over four peers A, B, C,
and D. The message alphabet consists of two messages: a (from A to B) and ¢
(from C to D). The protocol specifies a conversation set which consists of one
conversation only ({ac}). It is not hard to see that any peer implementation
which can generate the conversation ac can generate ca too, because there is
no way for peers A and C to coordinate their actions. Hence, the conversation
protocol shown in Fig. 3.5 is not realizable.

Notice that the problem of realizability is also an issue for synchronous
communication semantics. For example, the protocol in Fig. 3.5 is not realiz-
able using synchronous semantics either. However, the asynchronous semantics
does introduce new complexities into this problem as discussed in [16, 21].

Below we will argue that realizability of conversation protocols can be
solved by extending the synchronizability analysis. First we need to intro-
duce notions of projection and join for peer implementations and conversation
protocols.

For a composition schema (P, M), the projection of a word w to the al-
phabet M; of the peer prototype p;, denoted by m;(w), is a subsequence of w
obtained by removing all the messages which are not in M;. When the pro-
jection operation is applied to a set of words the result is the set of words
generated by application of the projection operator to each word in the set.

For composition schema (P, M), let n = |P| and let Ly C M7,..., L, C
M}, the join operator is defined as follows:

JOIN(L1,...,Ly) ={w | we M*,Viec[l.n]: m(w) € L;}.

Let L = {ac} be the conversation set specified by the conversation protocol
in Fig. 3.5. ma(L) = {a}, 7p(L) = {a}, m7c¢(L) = {c}, and wp(L) = {c}. The

Conversation Protocol Composition Schema
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Fig. 3.5. A non-realizable protocol in both synchronous and asynchronous semantics
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join of all these peer projections will produce a larger conversation set:
JOIN(wa (L), 7p(L), 7c (L), 7p(L)) = {ac, ca}
We now introduce a third condition used in the realizability analysis.

Lossless join condition: A conversation protocol R is lossless join if L(R) =
JOIN(m1 (L(R)), ..., m(L(R))), where n is the number of peers involved in the
protocol.

The lossless join condition requires that a conversation protocol should
include all words in the join of its projections to all peers. An algorithm for
checking the lossless join property is given in [21]. Intuitively, the lossless join
property requires that the protocol should be realizable under synchronous
communication semantics. The algorithm simply projects the conversation
protocol to each peer prototype, and then constructs the product of all pro-
jections. If the resulting product is equivalent to the protocol, then the algo-
rithm reports that the lossless join property is satisfied. The algorithm can
be exponential in the size of the conversation protocol in the worst case due
to the equivalence check on two non-deterministic finite state machines.

The lossless join property is a necessary condition for the realizability of
conversation protocols. If synchronous semantics is used, it is the necessary
and sufficient condition. The following result connects the synchronizability
analysis and the realizability analysis.

Theorem 4 Given a conversation protocol R = ((P,M), A) where n = |P)|,
let W= ((P,M),As,...,A,) be a web service composition s.t. for each i €
[1..n], A; is the minimal deterministic FSA such that L(A;) = m(L(R)). If
W is synchronizable, and R is lossless join, then R is realized by W.

The proof of this property follows directly from Theorem 3 and the fact
that the synchronous composition of a set of peers accepts the join of their
languages. Theorem 4 demonstrates an interesting relationship between the
synchronizability analysis introduced in [21] and the realizability analysis in-
troduced in [16].

3.5 Message Contents

In the previous sections, we assumed that the contents of the messages were
abstracted away, i.e., in our formal model messages did not have any content.
This type of abstraction would be fine as long as the contents of the messages
do not influence the control flow of the peers. In practice, this assumption
may be too restrictive, i.e., contents of a message received by a peer may
influence the control flow of that peer. One natural question is, is it possible
to extend the analyses introduced in the earlier sections to an extended web
service model where messages have contents?
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To facilitate the technical discussions, let us extend the web service speci-
fication framework as follows. Assume that each peer in a web service compo-
sition is a guarded automaton instead of a standard finite state automaton. In
the guarded automata model, messages have contents. A message class defines
the structure of a message and a message is an instance of a message class.
Each transition is labeled with a message class and a guard. A guard is a re-
lational expression which evaluates to a boolean value. The building elements
of a guard are the attributes of messages. Only when the guard evaluates to
true, can the transition be fired (if the automaton is in its source state).

Ezxample 6 Figure 3.6 presents a modified version of the example given in
Fig. 3.3 by extending the messages with contents and the transitions with
guards. In Fig. 3.6 message classes req and map have an integer attribute
id. The guard of each transition is a boolean expression enclosed in a
pair of square brackets. For example, the send transition !req has a guard
“id" = id + 1.” This means that whenever a new req message is sent, its id
attribute is incremented by 1. Note that here the primed-variable id’ repre-
sents the “next value” of the attribute id. The receive transition ?req in the
map provider service requires that the ids of the incoming req messages must
monotonically increase. Obviously, the implementation of GPS satisfies this
requirement. Similarly, the guard of the send transition !map guarantees that
the id attribute of a map message must match that of the most recent req
message.

We call a web service composition a “guarded composition” if its peers are
specified using guarded automata. Similarly, we define the “guarded peer,”
“guarded protocol”, etc. Given a guarded automaton, if we remove the con-
tents of the messages and the guards of the transitions then we get a standard
finite state automaton. We call this resulting automaton the skeleton automa-
ton. Similarly, we use the name “skeleton peer,” “skeleton composition,” and
“skeleton protocol” to refer the skeleton of a guarded peer, guarded composi-
tion, and guarded protocol, respectively.

One natural conjecture is the following: Does the synchronizability of
a skeleton composition imply the synchronizability of the corresponding

GPS Map Provider
l ?req l
?map s 3,
[.d!’relqd u [true] [id’ >id]
AR tend ?end [truel !map
[true] [id’=req.id]

Fig. 3.6. An example with message contents
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guarded composition? The answer is negative as demonstrated by the fol-
lowing example.

Example 7 Figure 3.7 presents an example guarded composition that shows
that the above conjecture is false. The composition consists of two peers A
and B. Peer A can send a message a to B, and B can send a message b to
A. Both messages a and b have an integer attribute id which varies between
1 and 2. In the following, we use the notation a(1) to represent a message a
whose attribute id is 1. The composition produces two conversations a(1)b(2)
and b(2)a(1). In addition, to produce these two conversations, asynchronous
semantics has to be used. For example, to produce a(1)b(2), the message a(1)
has to stay in the input queue of peer B when b is sent out. Such a conversation
cannot be generated by synchronous composition of these two peers.

On the other hand, if we drop the message contents and guards of the
guarded automata in Fig. 3.7, we get two standard finite state automata,
which accept conversations {!la?b,?bla} and {!b7a,?alb}, respectively. The
composition of these two finite state automata peers are synchronizable.

Example 7 demonstrates that the synchronizability of the skeleton com-
position does not imply the synchronizability of the guarded composition.
Interestingly, if the skeleton composition is not synchronizable, it does not
imply that the guarded composition is not synchronizable either. Similar ob-
servations hold for conversation protocols. It is not possible to tell if a guarded
conversation protocol is realizable or not based on the realizability of its skele-
ton protocol. Examples and arguments for the above conclusions can be found
in [13, 18, 20].

Skeleton of a guarded composition, however, can still be used for syn-
chronizability analysis. The following theorem forms the basis of a skeleton
analysis for synchronizability of guarded compositions.

Theorem 5 A guarded web service composition is synchronizable if its skele-

ton satisfies the autonomous and synchronous compatible conditions.

A B
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Fig. 3.7. A counter-example for the conjecture on skeleton synchronizability
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Theorem 5 implies that if the skeletons of a guarded composition satisfies
the two sufficient synchronizability conditions, then the guarded composition
is guaranteed to be synchronizable. The proof of Theorem 5 is based on the
following observation. For any run of a guarded composition, we can find a
corresponding run of its skeleton composition, which traverses through the
same path (states and transitions) and has the same input queue contents
(disregarding message contents) at each peer. Since the skeleton composition
satisfies autonomous and synchronous compatible conditions, there exists an
equivalent execution of the skeleton composition in which each message is
consumed immediately after it is sent. From this execution of the skeleton
composition we can construct an execution for the guarded composition in
which each message is consumed immediately after it is sent. This leads to
the synchronizability of the guarded composition as shown in [13].

A similar skeleton analysis can be developed for guarded conversation pro-
tocols. A guarded conversation protocol is realizable if its skeleton satisfies the
autonomous, synchronous compatible, lossless join conditions, and a fourth
condition called “deterministic guards condition.” Intuitively, the determin-
istic guards condition requires that for each peer, according to the guarded
conversation protocol, when it is about to send out a message, the guard that
is used to compute the contents of the message is uniquely decided by the
sequence of message classes (note, not messages) exchanged by the peer in
the past. The details of this analysis can be found in [20].

Skeleton analysis sometimes can be inaccurate. Below we will discuss this
inaccuracy and techniques that can be used to refine the skeleton analysis.

Ezxample 8 Consider the modified composition of GPS and Map Provider in
Fig. 3.8. The composition is actually synchronizable. In GPS implementation,
the guard id = map.id in transition !req enforces that the sending of next req
message must wait for the last req message being matched by a corresponding
map message. Thus, the interaction of two services runs in lock-step fashion,
where the id attribute of req messages alternates between 0 and 1. However, the
skeleton analysis cannot reach the conclusion that the guarded composition
is synchronous, because the skeleton of GPS does not satisfy the autonomous
condition.

GPS Map Provider
lreq l . ?req l
[id = map.id A fmap [id’<> id]
id’=1-id] [eruel
?end [true] !map
!end [id’ =req. id]

[mapTid = req.idl

Fig. 3.8. An example on inaccuracy of skeleton analysis
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GPS Map Provider

lend ?req
[map.id = req.idl] [id’ <> id]l

[%d = ?map ?end [truel
id’=1] [truel

. e ®

\ lreq
‘map [id = 1 A
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————
lend
[map.id = req.idl

Fig. 3.9. A refined version of the guarded composition in Fig. 3.8

lreq
!map
[id’=req.id]

The inaccuracy of skeleton analysis can be fixed by a refined symbolic
analysis of guarded compositions. The basic idea is to symbolically explore the
configuration space of a guarded automaton, and split its states and remove
redundant transitions if necessary. The result is another guarded automaton
which generates the same set of conversations, but has more states.

Ezxample 9 For example, after applying the iterative symbolic analysis on the
GPS service in Fig. 3.8, we obtain the refined guarded automaton in Fig. 3.9.
The refined automaton splits the initial state to four different states. If we
examine the four non-final states (starting from the initial state and walk-
ing anti-clockwise), these states represent four different system configurations
where the id attributes of the latest copies of req and map messages are (0, 0),
(1,0), (1,1), and (0, 1), respectively. The refined automaton is equivalent to
the original GPS implementation in Fig. 3.8. If we apply the skeleton anal-
ysis on Fig. 3.9, we can now reach the conclusion that the composition is
synchronizable.

The algorithm for the iterative symbolic analysis can be found in [20].

3.6 Web Service Analysis Tool

The synchronizability and realizability analyses are implemented and inte-
grated to the Web Service Analysis Tool (WSAT) [19, 39]. WSAT accepts
web service specifications in popular web service description languages (such
as WSDL and BPEL4WS), system properties specified in LTL, and verifies if
the conversations generated conform to the LTL property.

Figure 3.10 shows the architecture of WSAT. WSAT uses Guarded Au-
tomata (GA) as an intermediate representation. A GA is a finite state machine
which sends and receives XML messages and has a finite number of XML
variables. The types of XML messages and variables are defined using XML
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Fig. 3.10. WSAT architecture

schema. In the GA representation used by WSAT, all the variable and message
types are bounded. Each send transition can have a guard, which is essentially
an assignment that determines the contents of the message being sent. Each
receive transition can also have a guard—if the message being received does
not satisfy the guard, the receive action is blocked. The GA representation is
capable of capturing both the control flow and data manipulation semantics
of web services. WSAT includes a translator from BPEL to GA that supports
bottom-up specification of web service compositions. It also includes a trans-
lator from top-down conversation protocol specifications to GA. Support for
other languages can be added to WSAT by integrating new translators to its
front end without changing the analysis and the verification modules.

Synchronizability and realizability analyses are implemented in WSAT.
When the analysis succeeds, LTL verification can be performed using the syn-
chronous communication semantics instead of asynchronous communication
semantics. When the analysis is not successful on the web service input, asyn-
chronous semantics is used and a partial verification is conducted for bounded
communication channels. WSAT also implements extensions to the synchro-
nizability and realizability analyses to handle the guards of the transitions in
the GA model [18]. Algorithms for translating XPath expressions to Promela
code are presented in [17] where model checker SPIN [24] is used at the back-
end of WSAT to check LTL properties.

We applied WSAT to a range of examples, including six conversation pro-
tocols converted from the IBM Conversation Support Project [25], five BPEL
services from BPEL standard and Collaxa.com, and the SAS example from
[17]. We applied the synchronizability or the realizability analysis to each ex-
ample, depending on whether the specification is bottom-up or top-down. As
reported in [21], only 2 of the 12 examples violate the conditions discussed in
this chapter (both violate the autonomous condition). This demonstrates that
the sufficient conditions used in the synchronizability and realizability analy-
ses are not too restrictive and that they are able to show the synchronizability
and realizability of practical web service applications.
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3.7 Related Work and Discussion

This section presents a survey of related work on modeling and analyzing web
services. Particularly, we are interested in the following four topics: (1) mod-
eling approaches for distributed systems, (2) description of global behaviors
in distributed systems, (3) realizability analysis, and (4) automated analysis
and verification of web services. At the end of this section we also present a
discussion about our approach, identifying its limitations and possible exten-
sions.

3.7.1 Modeling Approaches and Communication Semantics

Since the web service technology can be regarded as essentially a branch of
distributed systems, we include a discussion of earlier models for describing
interaction and composition of distributed systems. Traditionally, many mod-
eling approaches use synchronous communication semantics, where sender and
receiver of a message transmission have to complete the send and the receive
actions simultaneously. The typical examples include (but not limited to) CSP
[23], I/O automata [29], and interface automata [2].

In the models which use asynchronous communication semantics, FIFO
queue is the most commonly used message buffer. Communicating Finite
State Machines (CFSM) were proposed in early 1980s as a simple model with
asynchronous communication semantics [7]. Brand et al. showed that CFSM
can simulate Turing Machines [7]. Other related modeling approaches for dis-
tributed systems include Codesign Finite State Machine model [10], Kahn
Process Networks [27], m-Calculus [30], and Microsoft Behave! Project [37].
Most of them, e.g., m-Calculus and Behave! Project, use or support simulation
of asynchronous communication semantics.

3.7.2 Modeling Global Behaviors

In the conversation model, a global behavior is modeled as a sequence of send
events. In many other modeling approaches, e.g., Message Sequence Charts
(MSCs) [31], both send and receive events are captured. Such different mod-
eling perspectives can lead to differences in the expressive power and in the
difficulty of analysis and verification problems. We now briefly compare the
conversation model and the MSC model [4]. This section is a summary of the
more detailed discussion given in [21].

MSC model [31] is a widely used specification approach for distributed sys-
tems. A comparison with the basic MSC model would not be fair since using
the MSC model one can specify only a fixed number of message traces. Instead,
we compare our model with the more expressive MSC graphs [4], which are
finite state automata that are constructed by composing basic MSCs. MSC
graphs use asynchronous communication semantics. There are other MSC ex-
tensions such as the high-level MSC (LMSC) [38]. However, hMSC is mainly
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used for studying infinite traces and the composition model used in [38] is syn-
chronous. Therefore, the MSC graph is a more suitable model for comparison.

An MSC consists of a finite set of peers, where each peer has a single
sequence of send /receive events. We call that sequence the event order of that
peer. There is a bijective mapping that matches each pair of send and receive
events. Given an MSC M, its language L(M) is the set of linearizations of
all events that follow the event order of each peer. Essentially, L(M) captures
the “join” of local views from each peer. A formal definition of MSC can be
found in [4].

An MSC graph [4] is a finite state automaton where each node of the
graph (i.e., each state of the automaton) is associated with an MSC. Given
an MSC graph G, a word w is accepted by G, if and only if there exists an
accepting path in G where w is a linearization of the MSC that is the result
of concatenating the MSCs along that path.

The main difference between the MSC graph framework and the
conversation-oriented framework is the fact that the MSC model specifies
the ordering of the receive events whereas the conversation model does not.
In the conversation model the timing of a receive event is considered to be a
local decision of the receiving peer and is not taken into account during the
analysis of interactions among multiple peers.

Conversation protocols and MSC graphs are incomparable in terms of their
expressive power [21]. For example, it is possible to construct two MSC graphs
with different languages but identical conversation sets. This implies that there
are interactions that can be differentiated using MSC graphs but not using
conversation protocols. On the other hand, there are interactions which can
be specified using a conversation protocol but cannot be specified with any
MSC graph. Hence, expressiveness of MSC graphs and conversation protocols
are incomparable. It is also possible to show that the expressive power of
the MSC graphs and the bottom-up specified web service compositions are
incomparable [21].

One natural question is, which approach is better? Both approaches have
pros and cons. In the conversation model the ordering of receive events is like
a “don’t care” condition which can simplify the specification of interactions.
On the other hand, realizability problem in the conversation model can be
more severe since we focus on global ordering of send events. For example,
the non-realizable conversation protocol {as—,p bc—4} cannot be specified
using MSCs.

The different modeling perspectives on global behaviors leads to different
realizability analysis techniques. Alur et al. investigated the weak and safe re-
alizability problems for sets of MSCs and the MSC graphs [3, 4]. They showed
that determining realizability of a set of MSCs is decidable; however, it is not
decidable for MSC graphs. They gave one sufficient and necessary condition for
realizability of MSC graphs. The sufficient and necessary condition looks very
similar to the lossless join condition in the realizability analysis on the conver-
sation model. However, there are key differences: (1) In the MSC model, the
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condition is both sufficient and necessary whereas in the conversation model
lossless join is a sufficient condition only and (2) it is undecidable to check
the condition for MSC graphs. Alur et al. introduced another condition called
boundedness condition, which ensures that during the composition of peers the
queue length will not exceed a certain preset bound (on the size of the MSC
graph). This condition excludes some of the realizable designs. Note that the
realizability conditions in the conversation model do not require queue length
to be bounded. However, notice that the realizability analysis on conversa-
tion model does not subsume the realizability analysis on MSC graphs. There
are examples which can pass the realizability analysis on MSC graphs but are
excluded by the realizability analysis we presented for the conversation model.

3.7.3 Realizability and Synchronizability

Interest in the realizability problem dates back to 1980s (see [1, 35, 36]).
However, the realizability problem means different things in different contexts.
For example, in [1, 35, 36], realizability problem is defined as whether a peer
has a strategy to cope with the environment no matter how the environment
decides to move. The concept of realizability studied in this chapter is rather
different. We are investigating realizability in a closed system that consists
of multiple peers interacting with each other. Our definition of realizability
requires that the implementation generates exactly the same set of global
behaviors as specified by the protocol. A closer notion to the realizability
problem in this chapter is the “weak realizability” of MSC graphs studied in
[4]. Different communication assumptions can lead to different realizability
analysis. For example, realizability problem for high-level MSC is studied in
[38].

To the best of our knowledge, synchronizability analysis was first proposed
in [15]. The relationship between synchronizability (for bottom-up specifica-
tions) and realizability (for top-down specifications) was discussed in [21].

3.7.4 Verification of Web Services

Application of automated verification techniques to web services has been an
active area. Narayanan et al. [34] modeled web services as Petri Nets and in-
vestigated the simulation, verification, and composition of web services using
the Petri-net model. Foster et al. [12] used LTSA (Labeled Transition System
Analyzer) to verify BPEL web services using synchronous communication se-
mantics and MSC model. Nakajima [33] proposed an approach in which a given
web service flow specified in WSFL was verified using the model checker SPIN.
The approach presented by Kazhamiakin et al. [28] determined the simplest
communication mechanism necessary to verify a web service composition, and
then verifies the composition using that communication mechanism. Hence, if
a web service is not synchronizable it is analyzed using asynchronous commu-
nication semantics.
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3.7.5 Discussion

We conclude this section with a discussion of possible limitations of the pre-
sented framework and possible extensions.

We believe that an important limitation of the presented analyses tech-
niques is the fact that they do not handle dynamic service creation or es-
tablishment of dynamic connections among different services. In the model
discussed here we assume that interacting web services do not dynamically
create communication channels or instantiate new business processes. Since
dynamic service discovery is an important component of service oriented com-
puting, in order to make the approach presented in this chapter applicable to
a wider class of systems, it is necessary to handle dynamic instantiation of
peers and communication channels. Extending synchronizability and realiz-
ability analyses to such specifications is a promising research direction.

So far we have only applied the presented analysis techniques to protocols
with a modest number of states. This is due to the fact that most web service
composition examples we have found do not have a large number of control
states. In the future, it would be interesting to investigate the scalability
of the presented techniques for specifications with large number of states.
Generally, we believe that the presented techniques will be scalable as long as
the specifications are deterministic, and, therefore, the cost of determinization
can be avoided.

Currently, we do not have an implementation of symbolic synchronizabil-
ity and realizability analyses for handling specifications in which message con-
tents influence the control flow. At this point, the WSAT tool only performs
skeleton analyses for the guarded automata specifications. This makes the
synchronizability and realizability analyses conditions quite restrictive, and
using symbolic techniques can relax these conditions. However, it is necessary
to find a symbolic representation for XML data in order to implement sym-
bolic analyses, which could be a difficult task. If successful, such a symbolic
representation can also be used for symbolic verification of web services as
opposed to the explicit state model checking approach we are currently using.

Finally, the synchronizability and realizability conditions presented in this
chapter are sufficient conditions and it could be possible to relax them. Finding
necessary and sufficient conditions for synchronizability and realizability of
conversations is an open problem.

3.8 Conclusions

Conversations are a useful model for specification of interactions among web
services. By analyzing conversations of web services one can investigate prop-
erties of the interactions among them. However, asynchronous communication
semantics makes verification and analysis of conversations difficult. We dis-
cussed two techniques that can be used to overcome the difficulties that arise
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in verification due to asynchronous communication. Synchronizability anal-
ysis identifies web service compositions for which the conversation behavior
does not change when different communication mechanisms are used. Using
the synchronizability analysis one can verify properties of conversations using
the simpler synchronous communication semantics without giving up the ben-
efits of asynchronous communication. Realizability analysis is used to make
sure that for top-down web service specifications asynchronous communica-
tion does not create unintended behaviors. Realizable conversation protocols
enable analysis and verification of conversation properties at a higher level of
abstraction without considering the asynchronous communication semantics.
As we discussed, it is also possible to extend synchronizability and realizabil-
ity analyses to specifications in which message contents influence the control
flow.
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Abstract. In this chapter, we describe a model-based approach to the analysis of
service interactions for web service choreography and their coordinated composi-
tions. The move towards implementing web service choreography requires both de-
sign time verification and execution time validation of these service interactions to
ensure that service implementations fulfil requirements of multiple interested part-
ners before such compositions and choreographies are deployed for use. The approach
employs several formal analysis techniques and perspectives, and applies these to
the domain of web service choreographies and the compositional implementations
that each role in these choreographies must satisfy. Our approach models the ser-
vice interaction designs of choreographies (in the form of Message Sequence Charts),
the service choreography descriptions (in WS-CDL — the Web Service Choreogra-
phy Description Language) and the service composition processes (in BPEL4AWS —
the Business Process Language for Web Services). We translate models between
UML and Web service specifications using the Finite State Process algebra nota-
tion. Where interactions deviate from choreography rules, the interaction sequences
can be shown back to the user of the approach in an easy and accessible way, in the
UML form. The described approach is supported by a suite of cooperating tools, for-
mal modelling, simulation, animation and providing verification results from chore-
ographed web service interactions. The tool suite and related papers are available
for download at http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer.

4.1 Introduction

Distributed software systems, and the interactions between components within
these systems, can exhibit a high level of complexity and lead to difficulty in
the assessment of what system behaviour is possible in multiple scenarios [18].
Constraining such a system requires us to fully understand the behaviour of
the system and place controls on which sets of activities a system can per-
form. A distributed software system also encourages system evolution, by
offering reusable services so that other systems may also include components
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from each other without fully reengineering solutions. Web services (compo-
nents interfaced using XML and standard Internet protocols) are one such
software architecture to exhibit this need for control, combining the flexi-
bility and reach of the Internet, the principles of reusability, with that of
conventional distributed systems engineering practices. Recent attempts to
standardise descriptions of web service interactions in a Web Services Ar-
chitecture (WS-A) [2] appear to concentrate only on the vocabulary, whilst
the emerging overall process is difficult to assess or verify. Some of the current
common standards for these descriptions are illustrated in Fig. 4.1, with the re-
lated WS-A layer element and with a connection to a related Software Process
Analysis (SPA) [5] area. We believe the complexity in designing web service
compositions to satisfy choreography policies can be eased by modelling the
required composition processes in an accessible and concise notation which
can then be used to verify and validate, not only web service workflows but
expected behaviour over cross-domain services (to form the choreography).
In this chapter, we describe an approach, known simply as “WS-Engineer”,
which specifically addresses adding semantic representation to web service
compositions and choreography elements of the standards stack illustrated
above, and extends a tool to support a mechanical aid for verification and val-
idation of these processes. Whilst standards evolve, and debate grows around
where standards fit in service architecture, we see the Business Execution Lan-
guage for Web services (BPEL4WS) [1] and the Web Services Choreography
Description Language (WS-CDL) [21] complementing each other in service
composition development with one as a local service interaction process and
the other as a global cross-enterprise service interaction policy. We trans-
late service design and implementation models between UML and web service
specifications using the Finite State Process [28, 29] algebra notation. Where
interactions deviate from choreography rules, the interaction sequences can be
shown back to the user of the approach in an easy and accessible way, again
using the UML form. We discuss the issues with a software engineering per-
spective, describe how our approach to tackle these issues can be undertaken
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in testing web service in various scenarios and describe the assumptions and
limitations which forms our continued work.

4.2 Background

Web service compositions and choreography provide additional layers above
basic service invocation whereby collaborative client scenarios enables the
differing uses of these services in a wider cross-enterprise domain. This is
seen as an important element of making web services viable for wide spread
use, and to provide a closer representation of business transactions in cross-
domain enterprises. The effect of using earlier architecture styles has been
prone to issues of semantic failure and difficulties in providing the necessary
compensation handling sequences [3]. This has been attributed to the strict
binding of services with specific technologies. Where previously designers of a
workflow had to work very closely with the developers of the technical solution,
we now have a mechanism to support technology-independent workflow service
invocation. This provides an opportunity for the designers to concentrate on
exactly what is required from a workflow without hindrance from technical
limitations and implementation effort. One key part of the verification in
this context is to check the trace equivalence with reference to the actions
of the design specification, and specifically how sequencing multiple service
conversations is achieved. Whilst there have been other attempts to use model-
checking techniques for reliable web service verification, such as in [13, 31, 32],
there has been little published on the process of using Message Sequence
Charts (MSCs) [19] for service composition specifications and combining these
with composition implementations to verify and validate service behaviour
against those specified in the requirements. In our previous work [9, 12, 10],
we have discussed how to model web service compositions, built using the
standard of BPEL4WS, and more recently the translation of WS-CDL.

4.2.1 Web Service Behaviour Analysis

Web service behaviour analysis consists of analysing two aspects of the web
service architecture style. A web service formally exhibits its identity and per-
missible interactions through an interface definition in the form of the Web
Service Description Language (WSDL) [4]. Within the implementation for a
web service, however, the actual behaviour of its interactions is defined (i.e. the
sequence and occurrence). The coordination of a service’s behaviour is formed
from the basic operations of requesting, receiving a new request, replying to
a partner or receiving the reply from a request and this forms the basis for
service conversations as part of its behaviour towards an overall goal. Stan-
dards elaborate the specification of how, what and when these interactions
can occur. The layers above a basic service are described with service com-
positions, choreography, transactions and policies. Behaviour analysis of the
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service interactions described using these standards aims to provide a tool to
expose potential problems or inconsistencies using properties of interest (such
as service process deadlocks, process liveness and interaction compatibility).

4.2.2 Related Work

To date, web service behaviour analysis has largely focused on the interac-
tions between services from the viewpoint that service logic is checked for
completeness using safety and liveness properties (e.g. absence of deadlock)
and that interaction cycles are completed between partners (a form of in-
teraction compatibility). One of the earlier proposals for formal analysis of
composition implementations was given in [31] for the DAML-S “semantic
web” ontology to provide a mark-up language for content and capabilities
of web services. They extend semantics to evaluate web service compositions
described in DAMI-S. Whilst their technique is useful to reference particular
properties of compositions in verification, the practical nature of this work
does not relate directly to those standards defined in Sect. 4.2.1. The author
of this work has also provided analysis of compositions in terms of those im-
plemented in the Web Service Flow Language (WSFL) [26] and implements
a mapping between WSFL and Promela (the language of the SPIN tool) [31].
The work is a good example of translating service composition descriptions
as the technique can be undertaken against more recent service specifications;
however, the work is not complete enough to give a thorough covering of anal-
ysis topics in service composition analysis as the range of properties analysed
is limited. More recently, analysis of web service composition specifications
has increased the use of modelling techniques for formal verification, includ-
ing that of BPEL to Petri Nets [34], for control logic checking of BPEL and
describes addition analysis for isolating “redundant messages” that are not
necessary if a certain activity has been performed. This appears to be an ad-
vantage for efficiency in composition processing although the level of benefit
of this ability is difficult to measure. Alternatively, [16] uses Petri net-based
models to represent web service composition flows independently of a partic-
ular specification. In this work the authors define a “web service algebra” (in
BNF-like notation). However, there is a little coverage of how this maps to
current standard web service composition languages (such as BPEL4AWS or
WS-CDL). In [35] web service compositions are described in the Language
of Temporal Ordering Specifications (LOTOS). The authors extend a map-
ping between the algebra and the BPEL4WS by providing rules for partial
two-way process, but again there is no easily accessible mechanism for web
service engineers to perform this analysis. Fu [13] provides an analysis tool
based upon translation of BPEL4WS descriptions to Promela and analysed
using the SPIN tool. They also apply limited XPath expressions for state
variable access analysis. We summarise the comparison of related work in
Table 4.1. We illustrate the coverage of verification with properties defined
in process (traditional properties for process models) and those properties
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Table 4.1. Comparison of related work with analysis techniques and tools

Web Service Languages Properties
Specifications and Tools (Process & Service)

Nakajima [31] WSFL SPIN, Process: Reachability, deadlock freedom.
Promela
Ouyang [34] BPEL4WS Petri-Net, Process: Reachability, deadlock freedom.
PNML, Service: Message redundancy checking
WofBPEL
Salaiin [35] BPEL4WS  LOTOS  Process: Reachability, deadlock freedom.
Service: Equivalence by observation of
external behaviour.
Fu [13] BPEL4WS  “WSAT” Process: Reachability, deadlock freedom.
as SPIN & Synchronous and Asynchronous
Promela  interaction simulation, Data analysis
through XPath models.
Service: LTSA, Message Sequence Charts

Foster [11] WSDL, Finite Process: Capabilities of LTSA (safety,
BPEL4WS, State progress, fluents).
WS-CDL, Process Service: Compatibility, obligations,
Interaction runtime analysis of Composition
Logs Interaction logs

aimed specifically at addressing the service oriented aspects of compositions
(including interactions, their compatibility and choreography).

In comparison to these related works, the strength of our approach is to
consolidate the use and analysis of specifications for web service compositions,
and in particular those from interface through to policy specifications (refer to
Fig. 4.1) and allow the engineers to verify that designs and implementations
exhibit the appropriate safety and liveness in all use cases using an accessi-
ble method by way of describing Message Sequence Charts (for interactions).
Substantial work has been carried out in the area of behaviour model syn-
thesis from scenario-based specifications. Variants to the scenario language
presented above have been studied, of particular interest are those that are
more expressive such as [7, 24]. In addition, various synthesis algorithms that
include different assumptions than those described above have been studied,
e.g. [22, 6]. Surveys of the area can be found in [23, 38].

As our approach is built on proven and widely used tools (such as LTSA)
we are also able to leverage additional analysis in the form of Fluents (time-
varying properties of the world) [39] which are true at particular time-points
if they have been initiated by an event occurrence at some earlier time point,
and not terminated by another event occurrence in the meantime. We believe
that this, along with the work described in this chapter, greatly facilitates
those in the role of web service engineers to construct appropriate and correct
compositions, whilst upholding choreography obligations through defining the
necessary interactions prior to deployment in the service environment.
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4.3 The WS-Engineer Approach

Our approach (illustrated in Fig. 4.2) considers analysis of a web service com-
position process from two viewpoints. Firstly, process model verification can
be used to identify parts of the service behaviour that have been implemented
incorrectly, or can exhibit unexpected behaviour results. Secondly, validation
can be used to determine whether the engineered solution is suitable for spec-
ified requirements. The approach is undertaken as follows: A designer, given
a set of web service requirements, specifies a series of MSCs or WS-CDL
documents to describe how the services will be used and to model how each
service requests or receives a reply in a series of service scenarios. The re-
sulting set of scenarios is synthesised to generate a behavioural model, in the
form of a state transition system. The service implementation is undertaken
by a BPEL4WS engineer, who builds the BPEL4WS process from either spec-
ification or requirements. The BPEL4WS specification is used to generate a
second behavioural model (transition system) by a process of abstracting the
BPEL4WS, with respect to data, to yield a model of interaction. Validation
and verification consists of comparing and observing states of these two tran-
sition systems.

The approach can assist in determining whether the implementation con-
tains all the specified scenarios and whether any additional scenarios implied
by the implementation are acceptable to the end-user. In addition, checks can
be made on the models with respect to desirable general global properties
such as absence of deadlock and liveness (using model-checking). Feedback to
the user is in the form of UML style MSCs. The aim is to hide the underlying
Labelled Transition System (LTS) representations and let the user view only
the BPLE4WS implementations and the MSCs as a simple intuitive and visual
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formalism accessible to most engineers [37]. The verification approach is from
an abstract behavioural specification using the MSC notation and WS-CDL
definitions. The approach uses the UML [33] style design of these sequences
away from a technical implementation, and evaluates their transitional state
and behaviour locally before deploying any parts of the workflow, and realis-
ing the true effect of the process flow. The verification side, of the approach
aims to provide a mechanism to support such questions as, can the imple-
mentation (such as defined in the BPEL4AWS standard) fulfil the interaction
requirements and did we build the process interactions correctly? The second
viewpoint is from that of validation. The focus of validation is clarifying the
understanding of requirements against that of the web service composition
implementation. Some questions help us identify the validation areas that the
approach can assist with in this. For example, has the implementer under-
stood the needs of all expected clients, their intended use of the process and
in all possible contexts? Ultimately, the result of validation is to ensure that
the right process was built. Validation allows the designers and also prospec-
tive users of the process to step through the model and determine whether
the design is fit for their requirements. Validation of web service composition
specification models are a useful step prior to verification of implemented web
service compositions, such that designers and users can evaluate a modal as
representing an equal view of their requirements.

MSCs form the service interaction design specifications, whilst WS-CDL
describes the global service obligations policy. In a similar way to traditional
obligation policies, which specify those activities a subject must or must not
do to a set of target objects [27], a service obligation policy describes the
service interactions which are permissible between partners for one or more
given collaboration goals. In the domain of web services, the objects are ser-
vices, providers and clients that interact with sequence or with a concurrent
communication protocol. Note that both WS-CDL and MSC are illustrated as
composition and choreography specifications, as they can be used to describe
both partial local and full global service interaction policies. In essence, the
WS-CDL and MSC specifications can be used as a design specification for
service interactions, for which BPEL4AWS or other implementation specifica-
tions can be used to implement service processes. Collectively, our analysis
approach offers reasoning techniques for the following service-oriented verifi-
cation properties:

e Safety of workflow processes in service composition processes.

e Complete cycles of interactions between service partners.

e Compatibility of interactions between service partners.

e Obligations analysis of partner compositions in service choreography.

4.3.1 FSP, LTS and Behaviour Models

Our approach uses an intermediate representation to undertake analysis of
web service compositions and choreography. The FSP notation [28, 29] is de-
signed to be easily machine readable, and thus provides a preferred language
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to specify abstract workflows. FSP is a textual notation (technically a process
calculus) for concisely describing and reasoning about concurrent programs.
The constructed FSP can be used to model the exact transition of workflow
processes through a modelling tool such as the Labelled Transition System
Analyzer (LTSA) [23], which provides a compilation of an FSP into a state
machine and provides a resulting Labelled Transition System (LTS). State
transition systems with a finite number of states and transitions can be repre-
sented as directed graphs. There are at least two basic types of state transition
systems: labelled or unlabelled. An LTS is a directed graph with labels at-
tached to each state transition to represent a semantic progress in a process
behaviour model. LTSA is a tool which provides a means to construct and
analyse complex LTS models of finite state process specifications. This tool,
which is fully explained in [28], provides us with an opportunity to model
workflows prior to implementation and deployment testing, and with an MSC
editor and synthesis extensions [37] to easily model a scenario-based design
specification, which can increase the expectation that process composition will
provide the necessary path of invocation in all states specified (e.g. reliably
by eliminating deadlock situations). With process animator extensions, the
tool can also provide a facilitator in simulating workflow specifications for
validation.

Each FSP expression E can be mapped onto a finite LTS using a series of
operators. FSP has two keywords that are used just before the definition of a
process and that force LTSA to perform a complex operation on the process.
The first keyword, minimal, makes LTSA construct the minimal LTS with re-
spect to strong semantic equivalence. The second, deterministic, makes LTSA
construct the minimal LTS with respect to trace equivalence. If there are no
traces leading to END states that are proper prefixes of other traces, then
deterministic preserves END states. This means that a trace in the original
process leads to an END state if and only if the trace leads to an END state in
the determinised process. Throughout the chapter we compare different LTSs
to see if the behaviour they model is the same. Various notions of equivalence
can be used to compare LTSs, including strong and weak equivalence [30] and
trace and failures-divergence equivalence [17]. In the context of this chapter,
we use two different equivalences. The first is trace equivalence, where two
LTSs are considered equivalent if they are capable of producing the same set
of traces. We use this to compare different LTSs that provide the behaviour
specified in a MSC specification. Note that the fact that a state is an error or
end states is not relevant in the definitions of these equivalences. The second
equivalence (strong) is used in the context of some of the proofs in the ver-
ification parts. It is a much stronger equivalence relation than that of trace
equivalence and, as such, it preserves many behavioural properties [30].

A summary of the operators for FSP is given as follows.

e Action prefix “— > ": (x— > P) describes a process that initially engages
in the action z and then behaves as described by the auxiliary process P.
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e Choice “|”: (x— > Ply— > Q) describes a process which initially engages
in either x or y, and whose subsequent behaviour is described by auxiliary
processes P or (), respectively.

e Recursion: the behaviour of a process may be defined in terms of itself,
in order to express repetition.

e End state “END”: describes a process that has terminated successfully
and cannot perform any more actions.

e Sequential composition “”: (P; Q) where P is a process with an END
state, describes a process that behaves as P and when it reaches the END
state of P starts behaving as the auxiliary process Q.

e Parallel composition “||”: (P||Q) describes the parallel composition of
processes P and Q.

e Trace equivalence minimisation “deterministic’: deterministic P de-
scribes the minimal trace equivalent process to P. If no terminating traces
are proper prefixes of other traces, then it also preserves END states.

e Strong semantic equivalence minimisation “minimal”: minimal P
describes the minimal strong semantic equivalent process to P.

4.4 A Vacation Planning Example

The vacation planning example is based upon the scenario set out as an in-
troduction to this monograph, in Chap. 1. John, the main partner in this
collaboration, can be seen as a partner of the wider service-oriented archi-
tecture. Although service-oriented architectures (SOA) are much more than
the services they encompass (with change management, security and moni-
toring being a few examples of other factors in an SOA) the scenario suggests
a series of services interacting to fulfil all of John’s trip requirements. In
this case, we highlight the need for Hotel services (finding by location and
characteristics), Route services (route planning services providing, e.g., the
quickest route avoiding current traffic problems), and Site services, locating
interest and historical sites given a location, route or specific range of inter-
ests. Figure 4.3 illustrates a partial SOA view for these interacting services to
fulfil John’s requests. We consider the problem of engineering the interactions
between services as part of a growing problem domain, which is practically
constrained through processes and descriptions of interaction policies.

In Fig. 4.3, the problem domain (1) consists of choreography policies
(2) and key composition services (3) fulfilling obligations as part of the ser-
vice interactions. Other partner services (4) facilitate the composition services
to achieve the detailed functional requirements needed. John is fortunate to
have access to a vacation planning service (one of the key composition ser-
vices) which aids the number of requests he has to make. In testing, a ma-
jor issue is how we provide such key compositions and service interaction
policies such that John and other partners with possibly differing scenarios
are provided with sufficient interaction sequences to accomplish the problem
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Fig. 4.3. Partial service-oriented architecture for vacation planning services

requiring a solution. We now consider the design, implementation and analysis
steps to consider the issues based around the example.

4.5 Modelling Service Compositions and Choreography

4.5.1 Service Design Specifications

The scenario-based design approach has been a popular technique to capture
user requirements by way of storytelling [20]. This method provides a concise
yet simple tool for painting a picture of how actors (clients), components
and messages are composed together to complete one or more system goals.
It has commonly been used in the past for actual interactions by system
users [14], the actors can also represent any agent or service that interacts
with the system being described by way of activities. The messages and their
sequences that pass between components in a process can be described by
way of a MSC or similar Sequence Chart notation in the Unified Modelling
Language (UML) [33]. MSCs are part of building a set of scenarios of partial
system behaviour [38]. As an example, we illustrate a scenario in Fig. 4.4 for
the activities required by a client (John) who requires a composition of service
calls to resolve particular vacation planning needs. A higher-level sequence
chart (hMSC) can be used to sequence basic sequence charts (bMSC) together
(as a choice or sequence).

A web service composition design can be seen as a composed process con-
sisting of various scenarios which when combined together provides a complete



4 WS-Engineer: Model-Based WS Compositions and Choreography 97

‘ Client ‘ WacationSerice RouteService ‘HmelSewice ‘SnesService
1
Mo preferences
1| routeprefs
1
1 H
i sites
1
1
K )
: gethatelskylocation
SttesinDistance [; - E
! availablehotels
o
i 1
H
bookvacation |}
[
H 1 L -
@ L I L—

Fig. 4.4. Composition and choreography design as high-level (left) and basic
(right) sequence charts

set of sequence paths describing all possible paths through a service compo-
sition design. We relate the concepts of scenarios to web service compositions
using a mapping between the elements of message sequence charts and those
in building a standards-based web service composition in Table 4.2. Each of
the elements of the MSC (defined by ITU) is described in relation to elements
of web service compositions and web service choreography (defined by OASIS
for BPEL4AWS and W3C for WS-CDL respectively).

MSCs are visual aids to design requirements specifications for web service
compositions, yet their combined behaviour (as a set of partial stories in a
complete composition behaviour model) is still difficult to analyse by human
observation alone. The process of synthesising these MSC scenarios to a La-
belled Transition System (LTS), which are state transition systems (consisting
of states and labels) used in the study of computation, provides a way to com-
putationally and mechanically analyse these scenarios to determine whether
the behaviour specified is desirable given a complete system behaviour model.
A formal syntax and semantics for MSCs is described in [38, 37] using the
FSP notation, whilst a corresponding algorithm to synthesise MSCs to a LTS
based upon these definitions is described in [36]. For the sequence chart illus-
trated previously in Fig. 4.4, a representative LTS is illustrated in Fig. 4.5.
Note that full service interaction labels have been reduced for clarity of la-
bel reading where “cli” is for Client, “rou” is for Route Service, “hot” is for
Hotel Service, “sit... ” is for Sites Service and “Vac... ” is for the Vacation
Planning service.

4.5.2 Assumptions and Limitations

We have made some assumptions here about the example. For instance, the
use of a central “vacation planning service” is a key process to the model
of scenarios. However, it is likely that individual services may also be called
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Table 4.2. A sub-set of web service compositions and choreography as MSC
elements

MSC ITU Definition Web Service Web Service
Element Compositions Choreography
Higher Describes high level  Links several Defines a sequence of
Level sequence of partial compositions or process compositions and
MSC interaction behaviour episodes together to  overall choreography
(hMsc) form complete system behaviour in wider
behaviour context
Basic Describes a partial A composition MSC is A choreography MSC is
MSC behaviour of a system used to describe a used to describe a single
(bMSC) between instances single participant view scenario of the overall
of the overall message web service collaboration
exchanges and participant message
exchanges
Instance Names blocks, Relates to partners in Partners in choreography.
processes or services a composition, as seen Local partner services or
of a system from a local process compositions are created

perspective. Specific ~ upon a signified request
process name may also

be included in the

instance title

Messages A relation between an Communication Communication between
instance output and  between composition all partners in
input. The message  partners or internal choreography. Messages

exchange can be split process components.  are related directly to an
into two messages for Messages are mapped abstract process of web
input and output to activities in the service calls between
events. local composition services and the
compositions (as services)

by the client, away from the central composition. This broadens the scope
of interactions between services and the possible alternative paths through
a series of service calls, particularly where calls are made concurrently in
which alternative invocations and replies will increase the complexity of paths
through the possible service call sequences. Related to this, there is also the
limitation of the “state space explosion” problem [40], where the size of the
state machines generated grows exponentially with the number of states and
transitions produced (i.e. the number of request and reply combinations mod-
elled for each interaction in the service context). Advances in computing and
model-checking technology, however, may provide ease to this resource issue.
The scenario illustrated represents one such basic scenario in a composition
and choreography of service calls, yet there is the possibility of many others,
and indeed there are also implied scenarios (which can be exhibited from all
possible traces of alternative scenarios).
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4.6 Implementations of Service Compositions

Let us suppose we take each of the actors in the design specifications con-
structed in Sect. 4.5.1, and we are required to build these in such a way that
the interactions are fulfilled for all the varying service usage scenarios desired.
In a similar way to analysing these interactions as part of a design, building
them can be equally as complex. Later in this chapter, we will describe how
our approach provides a suitable mechanism to analyse compositions, built
in the standard of BPEL4WS to support verification of these built processes
against service interaction design specifications. We begin by providing a series
of examples in BPEL4WS related to the vacation planning example used pre-
viously and to describe how these are modelled in the preparation for analysis.

4.6.1 The BPEL4WS Specification

The structure of a BPEL4WS process specification is illustrated in Fig. 4.6.
BPEL4WS is an XML schema with constructs for basic interaction actions,
structured process flow, and fault and compensation handling. State of mes-
sages (and other data) can be held in local variables and used to build other
messages, or to determine a path of action through the process. To define
complete business interactions, a formal description of the message exchange
protocols used by business processes in their interactions can be implemented
for BPEL4WS as a private process with a public interaction summary added to
the service WSDL document. The definition of such public business protocols
involves precisely specifying the mutually visible message exchange behaviour
of each of the parties involved in the protocol, without revealing their internal
implementation. There are two good reasons to separate the public aspects of

Process
[ _

y \ A \ 4 A Y
0 0 0 (U]
Partners Variables Correlation- Fault- Compensation - Activity
sets Handlers handlers :
.. Catch /
Activity CatchAll

Fig. 4.6. Basic BPEL4WS process structure and activity groups
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business process behaviour from internal or private aspects. One is that busi-
nesses may not wish to reveal all their internal decision-making and data man-
agement to their business partners. The other is that, even where this is not the
case, separating public from private process provides the freedom to change
private aspects of the process implementation without affecting the public
business protocol. The viewpoint of interaction analysis in this work, how-
ever, is aimed at the designers and the implementers of the compositions and
it is therefore necessary to analyse the private process and how its logical parts
define the behaviour of what the composition execution may actually perform.

A private process is implemented in BPEL4WS using a series of XML con-
structs (described later in this section) for basic logic, structural and concur-
rent activities in a separate document. This document forms the executable
process which we use as source for private process modelling. In the later
stages of analysis in our work, both public and private processes are col-
lated to support a complete interaction analysis. In our previously reported
work [9, 12, 10], we have discussed modelling a service process as defined by
a service composition, implemented in the standard of BPEL4AWS. A process
consists of a series of BPELAWS activity statements, specifying the interac-
tions between services and local logic to manipulate message data for these
interactions. Let us first consider the vacation planning service as described
in Sect. 4.4. An example BPEL4WS process for coordinating the route and
hotel services as part of John’s preferences is illustrated in Fig. 4.7. The (xml
tree) structure forms a concurrent sequence of interactions between route and
hotel services.

The receive construct initiates the planning process by accepting a new
request from a partner (in the example this is John’s vacation request). Con-
currently, marked as a flow construct, the service composition invokes a route
planning service and a hotel locator service. When all replies are received back
from the partnered services, the process replies to the original request. The
remaining composition service interactions are built in a similar way.

4.6.2 BPEL4WS to Finite State Process Models
The BPEL4WS service compositions are then translated into the FSP no-

tation, where the semantics of BPEL4AWS specifications are given equivalent

receive [—partner="john" operation="preferences"»

partner="routeservice" operation="getRoutes">

partner="hotelservice" operation="gethotelsbylocation"

parner="hotelservice" operation="gethotelshylocation"

partner="john" operation="preferences"

Fig. 4.7. BPEL4WS process structure for concurrent interactions within vacation
planning service
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// BPEL4WS translation to FSP
// Sequences
RECEIVEJOHN = (john vs rec preferences— >END).

REPLYJOHN = (vs john rep preferences— >END).

ROUTE REQ = (vs rs inv getroutes— >END).

ROUTE REP = (rs vs rec getroutes— >END).

ROUTE SEQ = ROUTE REQ; ROUTE REP; END.

HOTELS REQ = (vs hs inv gethotelsbylocation— >END).

HOTELS REP = (hs vs rec gethotelsbylocation— >END).

HOTELS SEQ = HOTELS REQ; HOTELS REP; END.

|| VPLANFLOW = (ROUTE SEQ || HOTELS SEQ).

VPLANSEQ = RECEIVEJOHN ; VPLANFLOW ; REPLYJOHN; END.
// Parallel composition process

|| VS BPELModel = (VPLANSEQ).

Fig. 4.8. LTS of vacation planning service composition

representation as processes in FSP (Fig. 4.8). In FSP, processes are defined
using the — > operator, sequences are represented using the sequence oper-
ator of ; and concurrent processes are defined using the parallel composition
operator ||. The abstraction from the BPELAWS is based upon modelling
the sequence of interactions in the process, and enumerating the conditional
elements which affect the possible paths of execution depending on values
within messages. A full guide of mapping BPEL4WS to FSP is given in [§].
A graphical LTS for the FSP is illustrated in Fig. 4.9.

4.6.3 Synchronisation Models of Composition Interactions

Note that the BPEL examples given previously involved several “partnered”
service interaction cycles (invoke, invoke/receive and reply). A secondary step
is required to build a synchronisation model between interactions of the com-
positions. In this way, we are examining the pattern of invoking a partner
process, the receiving activity of the partner process and the reply message
back to the requestor process. To achieve this, we add a port connector pro-
cess between the compositions by analysing how they interact, from the view-
point of each individual composition. The synchronised interactions can be
represented in FSP by using the notion of a connector, which encapsulates
the interaction between the components of the architecture. In [28] this is
implemented in FSP as a monitor, allowing us to combine the concepts of
information hiding and synchronisation. Transition semantics are labelled us-
ing the service interaction invoker and receiver partner names, the composi-
tional construct name (i.e. “invoke” or “receive”), and by the operation be-
ing requested. These provide us with a set of labelled process transitions,
such as “wvacationservice hotelservice invoke gethotelsbylocation”. If there is
more than one invoke in the sender process, then this can be sequentially
numbered. The labelled transitions can then be synchronised together by
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searching for the relevant receive activity given an invoke transition. With
further analysis we can align the invoke operation with the receive opera-
tion defined, through a search of related partner interface definitions (de-
fined in the WSDL specification). The result of modelling these compositions,
and applying port connector models between compositions, is that we have
a complete model representing the implementation of services carrying out
one or many roles within the specification given earlier. This model repre-
sents the source for analysing the behaviour of the implementations against
the choreography design and implementations which we discuss in Sect. 4.8.4.
Figure 4.10 illustrates synchronised compositions between vacation and hotel
services.

4.6.4 Assumptions and Limitations

Amongst the assumptions in our semantic mappings of BPELAWS to FSP,
we have considered that a process lifecycle begins at the first receive activity
specified in the process document. The possibility of multiple start points as
part of a series of receive activities (discussed earlier) would affect the order
in which activities are executed. We anticipate the mapping would be evolved
to consider this in our future work. Our mapping is also currently limited in
the translation of variables, in that we are mapping on the basis of a static
representation (to values enumerated based upon occurrence of conditional
variable comparisons). To provide some flexibility in determining how the
values of variables affect the process execution path, we add further mapping
to enumerate static values within the process. The mapping does not consider
translating event handling, as part of an activity scope. Such a mapping would,
however, take a form similar to the fault and compensation handling although
the semantics behind event handling are much more towards a time-based
simulation basis. We are seeking to evolve the methods described here to
ease these limitations and provide a closer representation of a BPEL process
model.

ws_hs_irev_gethotelsbylocation

hs_ws_rep_gethotelshylocation ws_hs_irnw_gethotelsbylocation ws_hs_rec_gethotelsbylocation

wvs_hs_rec_gethotelsbylocation hs_ws_rec_gethotelsbylocation hs_ws_rep_gethotelsbylocation
hs_ws_rec_gethotelsbylocation

Fig. 4.10. LTS of vacation and hotel service synchronised port interactions
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4.7 Descriptions of Service Choreography

The choreography rules of the service interactions can be implemented in the
WS-CDL specification language, and then potentially executed on a choreog-
raphy engine. As part of this specification, the engineer can build the necessary
interactions as control flows (resembling traditional structured control), work
units (scoped repeatable activity sets) or basic activities (an interaction or
a call to perform another choreography set for example). The interactions
specified must be part of agreed “cross-service” scenarios. Whilst the imple-
mentation of service compositions (implemented as an example in BPEL4WS
in the previous section) could be developed with local logic and carried out
by individual development teams, the specification must be agreed concisely
between groups, and the behaviour specified between services must not only
be compatible but also adhere to the choreography rules set. We examine here
how the specifications, in WS-CDL form, are translated and modelled as a set
of processes.

4.7.1 The WS-CDL Specification

WS-CDL provides a specification and language for defining rules of chore-
ographed web service interactions. WS-CDL provides a layer above BPEL4WS
coordinating partner interactions. A choreography package is created for
each specification instance that is attributed to one or more logical sce-
narios. Within this package, the partners, roles and relationships (in terms
of relationship types — such as “buyer or seller” roles) are specified for
all exchanges between services participating in the interaction scenarios. A
choreography subsection of the specification then details a group of physi-
cal interactions between partners and data exchanges as messages are sent
or received. The structure of a WS-CDL package is illustrated in Fig. 4.11.
The interaction construct is the key activity to expressing that an exchange
of messages between two partners should occur. This interaction can be ex-
pressed as a request (to a partner of the choreography), a response (from
a partner in the choreography) and a request-response (expecting a re-
ply from a request between two partners). Although an information vari-
able is defined as part of the exchange, WS-CDL also provides channels
to describe a shareable variable storage in which partner requests or re-
sponses may be passed along. The control-flow aspects of the specification
are represented by the three constructs of sequence, parallel and choice.
These subsequently represent a sequential process and parallel composition of
processes or a selective guarded process on one or more conditional elements
respectively.

Although these constructs are also represented in BPEL4WS, in WS-CDL
the basis for choice is dependent on the guard in question and whether that
guard is data-driven (evaluation is based upon data values) or event-driven
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Fig. 4.11. WS-CDL specification structure

(that some event has occurred during the choreography). In addition, a work-
unit represents a scoped block of activities which can be repeated and ex-
pressed as non-blocking or blocking (depending on whether the work-unit
should wait for certain variables to become available). A guard encompasses
the work-unit and when evaluated to true, the work-unit process is under-
taken. Fault and exception handling is also provided in the form of designated
work-units. These can be activated if a particular exception is discovered (such
as an interaction failure in which the sending of a message did not succeed or
an application failure in the result of receiving a message which raises some
application level exception). Under normal choreography running, a finaliser
work-unit can be defined to perform some “end of choreography” activities
(e.g. a final interaction which can be undertaken only when a choreography
group has been completed). Referring back to the vacation planning example,
we can see that a policy is needed as to when and how the services can interact
to provide a solution for John. In this case an example is when he has to pay
the highway fees through the toll system. There is a need to coordinate the
interactions between vehicle, John’s credit card company and Highway Toll
services. For example, John may only be allowed to proceed if the payment
has been debited from John’s credit card account successfully and that he is in
the appropriately registered vehicle for the toll system. A choreography policy
would define the interactions between John (as the client), the toll system and
John’s credit card company. A scenario for this choreography is illustrated (in
part) as WS-CDL in Fig. 4.12.
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Fig. 4.12. WS-CDL description for partial toll system interactions

Further scenarios would introduce a choice of responses; e.g., to respond
with a non-authorised vehicle requesting use of the highway. One or many WS-
CDL choreography descriptions can be built to represent different aspects of
the service-oriented interaction goals. For example, the partial toll system
interactions described above can be included in the wider transaction policy
for tracking the movements of vehicles using the highways.

4.7.2 WS-CDL to Finite State Process Models

As with the translation from BPEL4WS to FSP, we provide a translation
between WS-CDL and FSP processes by way of abstracting the choreogra-
phy sets and interactions contained within these sets. The process considers
each construct in the choreography tree and maps the construct with asso-
ciated actions to represent the information contained within the construct’s
children. The process is iterative for each child in each tree of the chore-
ography specification. For example, the choreography policy defined previ-
ously is translated into a set of processes to define each of the interactions
as a set of invoke, receive, reply and synchronised invoke reply (invrep) pro-
cesses. This is sequenced in FSP to represent the ordering of an invocation
and replying to an exchange. In Fig. 4.13 we have also listed the FSP for
this translation. Note that each interaction in a choreography group is built
on the basis of a synchronised service connection. The sequence construct
in WS-CDL is translated to a parallel composition in FSP using its
operator, whereby the CHOREOGRAPHY1 SEQ process composes the se-
quences of interaction 1 and 2. Finally, another composition forms the group
for the choreography (CDLArchitectureModel). Compiling this FSP into an
LTS provides us with a model of the concurrent interaction rules for this
choreography. With conditional choreography interaction rules, based upon
the choice construct in WS-CDL, the FSP guarded variable operators pro-
vide a mechanism to represent alternative choices possible in the choreography
model. This is similar to the representation for the switch..case construct in

BPEL4WS.
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// CDL Interaction Process
// Sequences
REQVETVA = (vehicle tollvehauth request authorisation— >END).
REQTSCB = (tollvehauth centralbank request reqpayment— >END).
RESVETVA = (tollvehauth respond authorisation— >END).
CHOREOGRAPHY1 SEQ = REQVETVA; REQTSCB; RESVETVA; END.
// CDL Choreography Process
|| CDLArchitectureModel = (CHOREOGRAPHY1 SEQ).

Fig. 4.13. Sample FSP process model for concurrent interactions of vacation plan-
ning service composition

4.7.3 Assumptions and Limitations

We currently consider modelling the choreography only from a perspective of
abstracting the behaviour defined based upon the interaction blocks in the
specification. The choreography specification contains a far greater depth to
define when and how events should occur, and if they influence a change in
interaction behaviour. Our approach uses a simple model of general interaction
paths which, in the case of the example given previously, is suitable to provide
early yet partial verification results to the engineers.

4.8 Analysis Through Verification and Validation

In analysis, we consider two views of analysis using verification and validation
techniques. Verification is achieved through the use of formal software process
model checking techniques, but we evaluate specific topics of our approach for
web service compositions by wrapping and applying these techniques under
the notions of deadlock freedom and safety and progress property analysis.
We can check the behaviour of a composition or choreography is deadlock
free (i.e. that there are no states with no outgoing transitions). In a finite
state model (such as the models we produced from design specification and
implementations in Sects. 4.6.2 and 4.7.2), a deadlock state is a state with no
outgoing transitions in these models. A process in such a state can engage in no
further actions. The deadlock states we are interested in are those that arise
from a parallel composition of concurrent activities in a single BPEL4WS
composition, a number of interacting BPEL4AWS compositions and one or
many compositions against that of their MSC design specifications or WS-
CDL policy obligations.

Whilst the models synthesised from the MSC design of a web service com-
position are focused on service interactions, the implementation may also in-
clude additional representation in the form of conditions and constraints (also
known as links in BPEL4WS). The naming scheme of the MSC message inter-
actions is also likely to be differing to that of the implementation specification
naming standards for interaction activities. It is necessary to abstract these ad-
ditional representations away from the implementation by hiding or mapping
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them in the model composition. The common elements of the models produced
for both the design and the implementation of web service compositions are
the interaction activities. In essence, our preparation focuses on abstraction
of interaction processes, applying a concise labelling scheme to the implemen-
tation specification, hiding implementation specific activities which are not
based upon direct interaction messages and identifying a mapping between
activities specified in the implementation and the design. We highlight some
of the core verification opportunities in our approach as the following topics.

e Design and implementation equivalence — between MSC, WS-CDL and
BPEL4WS.
Composition process analysis — between multiple BPEL4WS processes.
Process interaction compatibility — interface and interactions compatibility
between partners in a service-oriented architecture.

e Partner obligations analysis — checking roles of services against specifica-
tions.

4.8.1 Design and Implementation Equivalence

The essence of this verification is to prove that a property exists in the
composition modelling of combined implementation and design models. This
combined model is used as source for the trace equivalence verification. Fur-
thermore, any additional behaviour can be fed back to the implementer as
counter examples. It is also the case that by definition of trace equivalence,
the MSC design can be checked against that of the implementation. However,
this may appear less useful in the design approach of web service composi-
tions, but essentially this also provides a technique for future re-engineering
and checking against existing compositions where the implementation is the
initial requirements in focus. In summary, the equivalence verification may
also be used to check that a MSC design specification exhibits the behaviour
of a BPEL4WS implementation. We continue to use the Vacation Planning
service composition example for ease of following the approach steps, and to
illustrate how this verification is undertaken with the composition models.

We begin with the synthesised models of the MSC design and the
BPEL4WS compositions (as illustrated in Sects. 4.5.1 and 4.6.2 respectively).
The models are then combined using an architecture composition, with a map-
ping between models based upon service partner names, the activity construct
(invoke, receive, etc.) and the from and to roles — where from is the sending
partner and to is the receiving partner. In Fig. 4.14 the MSC and BPEL
models are combined (CheckBPEL) and a property is declared as that of the
deterministic MSC process.

Although we have built models of both MSC and BPEL4WS activities,
we are interested in the minimal trace equivalence in both these models. To
specify this in FSP, we use the deterministic operation on the given MSC
model and include abstracting the endAction transition as it is not included
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// FSP Code for equivalence checking of MSC specification and BPEL4WS
// compositions with property that BPEL4WS implementation should uphold
// activities of MSC design —

// CDL Interaction Process

MSC ArchitectureModel = MSC model FSP

BPEL ArchitectureModel = BPEL model FSP + mappings ...

deterministic || DetMSC = MSC ArchitectureModel.

property || Bis MSCBPEL = DetMSC.

|| CheckBPEL = (Bis MSCBPEL || BPEL ArchitectureModel).

Fig. 4.14. FSP code for equivalence verification of BPEL4AWS against MSC models

in the BPEL4WS model. If we pass this model through an LTS analyzer, the
analysis of the combined model results in a property violation as illustrated
in Fig. 4.15.

The reason for this violation is that the BPELAWS service composition
for the vacation planning service permits the concurrent execution of both
getroutes of the routeservice and gethotelsbylocation of the hotelservice. The
MSC design does not specify that this is an expected scenario. The service
engineer and designer may need to consider whether this is applicable to their
composition offered. To correct this violation, either the BPELAWS composi-
tion or MSC design is updated to reflect the actual requirements needed

4.8.2 Composition Process Analysis

By specifying particular properties of interest, engineers can check whether a
web service composition can reach a particular state in terms of its obligations
in more general cases (over that of individual scenarios used in Sect. 4.7). This
assists in building reusable service-oriented architectures, for which a policy
states obligations in which web service choreography may be undertaken. We
describe the model checking techniques for general properties of the composi-
tion models under two different types in our approach, categorised as follows:

1. Safety — providing assurance that the composition is checked for partial
correctness of transitions for a given property within the model, e.g. that
a partner service invocation is always logged following an failure.

// Trace run example of MSC over BPEL4WS equivalence
Trace to property violation in Bis MSCBPEL.:

john vacationservice receive preferences

vacationservice routeservice invoke getroutes
vacationservice hotelservice invoke gethotelsbylocation

Fig. 4.15. Trace run example of trace equivalence of MSC and BPEL4WS models
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2. Progress — providing assurance against starvation of progress in the com-
position, such that, whatever state the composition is in, an activity will
always be executed, e.g., that a reply is always sent back to the original
requester.

For both property types, we can reuse the model building steps described
for trace equivalence (Sect. 4.8.1) but excluding the design specification re-
quirement. The building step requirements for including one or many processes
is dependent on the source in question or, in other words, whether it is that
the property must be tested on one composition or over a choreographed do-
main of processes. In this section, we simplify the examples by concentrating
on one composition to illustrate how each of the property checks is carried out
in analysis. In safety analysis of the compositions, we are seeking to assist the
engineer to specify properties (or activities in the composition) that should be
upheld in the composition. For example, the engineer may want to revisit the
requirements for the service to be provided and note a series of conditional
processing dependent on a sequence of activities having been carried out. To
model check this and perform a safety analysis, we can use the FSP syntax of
property to describe the safety property of interest in our model. A safety
property defines a deterministic process that asserts that any trace including
actions in the alphabet of the process P is accepted by P. The property syntax
for a check that “John can receive route information before hotels. .. ” is listed
in Fig. 4.16. Performing an analysis on the process “BPEL PropertyCheck”
will highlight a trace to property violation, where this property cannot be
upheld in the current version of the composition.

Progress analysis is similarly specified by activity properties, but the focus
is on those properties which will eventually happen (such as the example given
previously that a reply will always be given back to a client from a service). In
FSP, the syntax for defining progress properties uses the progress keyword. A
progress P = aj,as...a, defines a progress property P which asserts that in
an infinite execution of a target system, at least one of the actions a1, as ... .a,
will be executed infinitely often. This definition allows us to specify a range
of progress properties, with the condition that at least one must be upheld
in a service composition. By way of example, we use the vacation planning
service model to check whether a route is always located for a client’s request,
as illustrated in Fig. 4.17.

// Property to safety check that Client can receive partial

//(route) planning information before hotel information —

property ROUTEREPLY = (vacationservice routeservice invoke getroutes— >
vacationservice john reply preferences — >

vacationservice hotelservice invoke gethotelsbylocation— >END)

// Compose composition architecture model with property —

|| BPEL PropertyCheck = (BPEL VacationService —— ROUTEREPLY).

Fig. 4.16. FSP for Safety Check of Client Receive Route Planning Information
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// Property to safety check that the Client can always

// receive a reply from the vacation planning service —

progress ALWAYSREPLY = (vacationservice john reply preferences— >END)
// Compose composition architecture model with property —

|| BPEL PropertyCheck = (BPEL VacationService || ALWAYSREPLY).

Fig. 4.17. FSP code for progress property that a reply to a client is always made
4.8.3 Process Interaction Compatibility

Compatibility verification is an important aspect of behaviour requirements
between different clients of compositions. Clients will likely anticipate dif-
ferent behaviour depending on their individual requests and therefore the
composition must be tested against various scenarios to reflect these differ-
ent sequences of activities. There is also an assumption that a web service
composition will work in any process environment (not just the original de-
velopment domain). A greater level of assurance in compatibility can be given
if interacting services are checked whether a composition exhibits the correct
behaviour for its own use. Web service compositions can also be seen as the
implementation layer of a multi-stakeholder distributed system (MSDS) [15].
An MSDS is defined as “a distributed system in which subsets of the nodes
are designed, owned, or operated by distinct stakeholders. The nodes of the
system may, therefore, be designed or operated in ignorance of one another,
or with different, possibly conflicting goals.” The focus is on interaction with
multiple parties and the behaviour could be somewhat ad hoc depending on
the requirements of the partner services. However, three basic levels of com-
patibility for component compositions have been previously reported in [25].
These are defined as interface, behaviour and input—output (data) compatibil-
ity. Whilst input—output data compatibility is of interest, it is not the main
focus of this verification work. We would, however, expect a related growth of
data analysis work to monitor and analyse service messages. We now apply
the first two of the concepts discussed for compatibility, and describe interface
compatibility specifically for web service compositions as the activity of corre-
lating invocations against receiving and message replies between partner pro-
cesses, such that invoke, receive and reply activities are synchronised. Given a
series of service implementations (in the form of BPEL4AWS processes), the ap-
proach elaborates on the interaction mappings between processes and further
inputs from port connectors between interaction activities in these processes.
In Fig. 4.18 two such interaction connector models are illustrated for the
Client VactionService and VacationService RouteService interaction cycles.

To check that interactions are compatible with those specified in the
BPEL4WS compositions, we compose the port connector and BPEL4WS
models and map the interactions from composition to port connector (as il-
lustrated in Fig. 4.19).

Compiling “CompatibilityModel” and performing an analysis of the pro-
cess provides a trace to a property violation as illustrated in Fig. 4.20. The
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route_ws_rep_getroutes ws_route_ire_getroutes ws_route_rec_getroutes
ws_route_rec_getroutes route_ws_rec_getroutes route_ws_rep_getroutes

route_ws_rec_getroutes

Fig. 4.18. Port connectors for service interactions between client with vacation
services (top) and vacation with route services (bottom)

// FSP code for parallel composition of BPEL4WS service and interaction

// port connectors —
——CompatibilityModel = (CLIENT BPELModel || CLIENT VS PORT MAPPING ||
VS BPELModel || VS ROUTESERVICE PORT MAPPING || ROUTESER-

VICE BPELModel).

Fig. 4.19. FSP code for parallel composition of BPEL4AWS services and port
connectors

// Trace run example from Compatibility Verification of Client,
// Vacation Planning and Route Service Compositions —
Trace to property violation in CompatibilityModel:

john vacationservice receive preferences

vacationservice routeservice invoke getroutes
routeservice vacationservice reply getroutes

Fig. 4.20. Trace run example of compatibility in service interaction models
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reason for this trace is that a violation was located at the point in which the
routeservice is supposed to reply to the vacation planning service. The engi-
neer can check the composition to ensure that a reply is indeed given in all
cases (and, in particular, within the scope to fulfil this scenario).

4.8.4 Partner Obligations Analysis

Service obligation verification provides a service engineer and any part-
nered services to check the suitability of service conversations in composition
implementations against that of the obligations policy. This obligations check
discovers if the conversations between compositions fulfils the rules set in
the choreography specification. To compose a model for checking a series of
interacting service compositions requires that the “interaction verification”
(discussed in Sect. 4.8.3) has been successful. An example undertakes these
two steps to illustrate how the models are built and analysed. The steps
to check for obligations verification is for checking composition interactions
against those specified in the WS-CDL implementation. Given a series of in-
teracting models formed from BPEL4WS implementations (such as that used
previously for service interaction compatibility analysis), the approach can be
used to check that the possible interactions exhibited by these compositions
fulfils the rules specified in the choreography sets. An example of the vacation
trip services is as follows. Given three models of interacting services, in this
case the Client (John), Client’s Vehicle and Toll services, a composed model
of interactions is compiled. This composed model is then used as a property
against the choreography policy. A property check can reveal whether the ser-
vice composition interactions comply with the rules set out in the choreogra-
phy by equivalent interaction traces. Furthermore, any additional interactions
which are exhibited between the partners in the compositions are highlighted
back to the engineer. In Fig. 4.21, we have given the FSP for building a deter-
ministic model of the WS-CDL model and then specified this as the property
for analysis against the BPEL4WS models.

The other interactions in the TollService are “silent” to the obligations
checking. Interestingly, we can also reverse this approach to check which other
traces are permissible given the composition model as a property to check
against the WS-CDL.

// Trace run example of compatibility in service interaction models —

// WS-CDL property against BPEL4WS models —

|| WSBPEL Arch = (BPEL John || BPEL VehicleService || BPEL TollServices).
|| WSCDL Arch = CDLArchitectureModel.

deterministic || DetModel = WSCDL Arch.

property || P DetCDL = DetModel.

|| CheckObligations = (P DetCDL —— WSBPEL Arch).

Fig. 4.21. Trace run example of compatibility in service interaction models



4 WS-Engineer: Model-Based WS Compositions and Choreography 115

4.9 Summary of Results

Using the WS-Engineer approach, we have examined a series of web service
compositions for a vacation planning SoA example and compared them against
service choreography rules as outlined in either MSCs or WS-CDL descrip-
tions. In the SOA example for the Vacation Planning services, we examined
the processes that may be constructed to assist in service interactions, and
how these can exhibit properties which may lead to a lesser quality of ser-
vice when used by service clients. Although the elements of service-oriented
architectures are much more than simply the interactions (security, service
configuration management being some others), we have used model checking
to exhibit early warnings in the design and implementation phases of ser-
vice components. For example, this particularly highlighted design decisions
lead to a breach of conformance to service choreographies. The verification
approach for specifying obligation policies, building web service compositions
and implementing policies in WS-CDL has been built into a tool which is
described in Sect. 4.10.

4.10 Tool Support

The tool we have developed (Fig. 4.22) to complement this approach is built
to extend the existing LTSA tool suite [28] written by Jeff Magee of Impe-
rial College London. LTSA uses the FSP to specify behaviour models. From
the FSP description, the tool generates a LTS model. The user can animate
the LTS by stepping through the sequences of actions it models, and model-
check the LTS for various properties, including deadlock freedom, safety and
progress properties. The MSC extension builds on this introducing a graphi-
cal editor for MSCs and by generating an FSP specification from a scenario
description [37]. FSP code is generated for the architecture, trace and con-
straint models described previously. LTSA model checking capabilities (for
safety and liveness checks) are then used to detect implied scenarios. The tool
is available for download from http://www.ws-engineer.net

4.11 Conclusions and Future Work

Our main contribution in our work is to provide an approach which, when im-
plemented within the tool, provides a mechanical verification of properties of
interest to both designers and implementers of web service compositions. The
use of a formal, well-defined, process algebra (in this case FSP) provided a se-
mantic mapping between the composition implementation (in the BPEL4WS
specification for web service compositions and WS-CDL for service chore-
ography policies), and we were fortunate to leverage some work previously
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reported in [38] for the synthesis of design specifications, in the form of mes-
sage sequence charts, to the same process algebra. These two representations
as models form the basis to provide rich model-based verification. We plan
to expand the approach to consider dynamic analysis of policies for service
interactions in service choreography and also the analysis of service composi-
tion deployments on distributed architectures. In this chapter, we presented
an approach towards our goals in the form of a static analysis tool to test
service designs (in the form of MSCs), service composition implementations
(for equal requirements in BPEL4WS) and service choreography policies (for
service partner obligations analysis). The approach provides an extendable
framework in which further properties can be defined and implemented to
assist in an efficient, mechanical service testing and analysis tool set.
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