

Test and Analysis of Web Services

Luciano Baresi · Elisabetta Di Nitto (Eds.)

With 140 Figures and 15 Tables

Test and Analysis
of Web Services

ABC

Editors

Luciano Baresi
Politecnico di Milano
Dipto. Elettronica Informazione
Piazza Leonardo da Vinci 32
20133 Milano
Italy
baresi@elet.polimi.it

Elisabetta Di Nitto
Politecnico di Milano
Dipto. Elettronica Informazione
Piazza Leonardo da Vinci 32
20133 Milano
Italy
dinitto@elet.polimi.it

Library of Congress Control Number: 2007929741

ACM Computing Classification: H.4, D.2, C.2.4, C.4

ISBN 978-3-540-72911-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting by the editors
Production: Integra Software Services Pvt. Ltd., Puducherry, India
Cover Design: KünkelLopka, Heidelberg

Printed on acid-free paper 45/3180/Integra 5 4 3 2 1 0

To the contributors of this monograph
and to our super heros

Preface

Web services provide a well-known and language-independent infrastructure
for integrating heterogeneous components. Their neutral XML-based stan-
dards, along with supporting technology, help us federate components im-
plemented using different programming languages and running on different
platforms into a single, coherent system. Web services are a key breakthrough
to support the openness, heterogeneity, and flexibility of modern software
systems, but there is still a big gap between the underpinnings of the ar-
chitectural style and its supporting technology. The architectural style em-
bodies dynamism and flexibility, while supporting technologies are still static
and rigid. If we concentrate on the main standards proposed to implement
the service oriented paradigm, they tend to emphasize interoperability rather
than the capability to accommodate seamless changes at runtime. In contrast,
many research initiatives are pushing toward the runtime discovery of ser-
vices and then their dynamic selection. These approaches assume that service
discovery—maybe based on some ontologies—can happen while the applica-
tion executes and thus any possible fault or need to change the intermediaries
can be dealt with while the system evolves. These ideas move toward the con-
cept of self-healing systems, but also pose new and challenging requirements
for the validation of applications heavily based on Web services.

In this monograph, we thoroughly analyze this problem and we try to
address its many facets. First of all, since Web service compositions are inher-
ently distributed systems, their validation must not only consider the func-
tional correctness of the different elements, but also tackle the usual problems
behind distribution. The composition (of Web services) must not only be fast
enough, to properly support users, but also be trustable, secure, and reliable.
All these aspects, just to mention the most important ones, tend to widen the
usual idea of validation where functional and non-functional quality dimen-
sions have the same importance for the actual use of the application. Some
problems, which were usually addressed before releasing the application, must
now be considered while the application executes. The design-time validation
of these applications in most cases can only provide some necessary conditions

VIII Preface

for the actual correctness of the application, while the sufficient conditions
must in many cases be studied at runtime.

Given this wide spectrum, and also the relative novelty of the field (i.e., the
testing and analysis of Web services), we have tried to conceive a monograph
that addresses the different aspects of the field by presenting some state-
of-the-art analyses and some interesting approaches proposed by significant
research groups—both from industry and academia—worldwide. The different
contributions are organized around three main dimensions: (1) static analysis,
to acquire significant insights on how the system is supposed to behave, (2)
conventional testing techniques, to sample the actual behavior of the system,
(3) monitoring, to probe how the system behaves in operation and recovers
from anomalous situations if needed. The final part emphasizes specifically
the importance of non-functional cross-cutting aspects in the context of web
service compositions.

We invite the reader to see this book as a first attempt to provide an
organized presentation of what web service validation means in these days.
We did our best to cover all the different dimensions, but we are also aware
that the novelty and freshness of the field may have produced new and further
approaches during the elaboration of this volume. We do hope, indeed, that
this initial contribution will pave the road for a more complete and organic
book on the subject.

Finally, we warmly thank all the contributors, whose work and ideas are
the contents of this volume, the reviewers, who contributed to improve the
quality of the different chapters by providing fundamental and constructive
advices, and, last but not least, Springer, for their support to the project and
for trusting us.

Milan, Luciano Baresi
March 2007 Elisabetta Di Nitto

Contents

1 Introduction
Luciano Baresi and Elisabetta Di Nitto . 1

Part I Analysis

2 Specifying and Monitoring Service Flows: Making Web
Services Process-Aware
W.M.P. van der Aalst and M. Pesic . 11

3 Analyzing Conversations: Realizability, Synchronizability,
and Verification
Tevfik Bultan, Xiang Fu and Jianwen Su . 57

4 WS-Engineer: A Model-Based Approach to Engineering
Web Service Compositions and Choreography
Howard Foster, Sebastian Uchitel, Jeff Magee and Jeff Kramer 87

5 Model Checking with Abstraction for Web Services
Natasha Sharygina and Daniel Kröning . 121

Part II Testing

6 Unit Testing BPEL Compositions
Daniel Lübke . 149

7 A Model-Driven Approach to Discovery, Testing
and Monitoring of Web Services
Marc Lohmann, Leonardo Mariani and Reiko Heckel 173

X Contents

8 Web Services Regression Testing
Massimiliano Di Penta, Marcello Bruno, Gianpiero Esposito,
Valentina Mazza and Gerardo Canfora . 205

Part III Monitoring

9 Run-Time Monitoring in Service-Oriented Architectures
Carlo Ghezzi and Sam Guinea . 237

10 Monitoring WS-Agreements: An Event Calculus–Based
Approach
Khaled Mahbub and George Spanoudakis . 265

11 Assumption-Based Composition and Monitoring of Web
Services
Marco Pistore and Paolo Traverso . 307

Part IV Reliability, Security, and Trust

12 Reliability Modeling and Analysis of Service-Oriented
Architectures
Vittorio Cortellessa and Vincenzo Grassi . 339

13 Vulnerability Analysis of Web-Based Applications
Marco Cova, Viktoria Felmetsger and Giovanni Vigna 363

14 Challenges of Testing Web Services and Security in SOA
Implementations
Abbie Barbir, Chris Hobbs, Elisa Bertino, Frederick Hirsch
and Lorenzo Martino . 395

15 ws-Attestation: Enabling Trusted Computing on Web
Services
Sachiko Yoshihama, Tim Ebringer, Megumi Nakamura, Seiji Munetoh,
Takuya Mishina and Hiroshi Maruyama . 441

Index . 471

1

Introduction

Luciano Baresi and Elisabetta Di Nitto

Politecnico di Milano – Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32 – I20133 Milano (Italy) baresi|dinitto@elet.polimi.it

The service-oriented approach is becoming more and more popular to integrate
highly heterogeneous systems. Web services are the natural evolution of con-
ventional middleware technologies to support web-based and enterprise-level
integration, but the paradigm also serves as basis for other classes of systems
such as ambient computing and automotive applications, which require high
degree of flexibility and dynamism of configurations. In this scenario, complex
applications can be obtained by discovering and composing existing services.
The resulting composition can have the following characteristics:

• It assembles operations supplied by different services, which are owned by
different providers.

• Since each provider is in charge of independently maintaining its services,
service implementations can change “freely” outside the control of the
composition and of its owner.

• Different executions of the same composition can bind to different service
instances offering similar operations.

In the case the execution of a composition fails to work, the simple shutdown
of the system is not a good solution, in general. The execution environment
should be able to select new services and even to reorganize their composition
if a perfect match does not exist.

The importance of non-functional requirements while setting the compo-
sition is another key feature of these systems. Bandwidth, availability, trust-
worthiness, and many other quality dimensions are as important as functional
aspects. Such requirements require Service Level Agreements [3, 1] or QoS con-
tracts to be negotiated, established, and enforced between service consumers
and providers. This is to be true even in case a service does not have full
control on the component services it exploits.

The aforementioned characteristics of service-oriented applications make
their validation a continuous process that often runs in parallel with execu-
tion. In fact, it is not possible to clearly distinguish—as it happens for more
traditional applications—between the pre-deployment validation of a system

2 L. Baresi and E. Di Nitto

and its use, nor it is possible to guarantee that the checks passed at a certain
time will be passed at a different time as well.

The required continuous validation process has to provide the following
key features:

• It has to offer a methodology that embraces the different facets that are
relevant for service-centric systems (e.g., functional, load, and stress test-
ing, but also SLA and security checks).

• It has to provide probes as a part of the standard execution environment
in order to continuously monitor the satisfaction of QoS parameters and
to offer proper test oracles.

• It has to control the mechanisms to support dynamic binding and replan-
ning of compositions to obtain the same functionality with a different set
of services (e.g., two subsequent invocations might become a single call to
a different service).

1.1 Aims and Goals

This monograph aims at becoming the starting point for both researchers and
practitioners in the field of service-oriented architecture validation and verifi-
cation approaches. Researchers will find a neat and comprehensive survey of
existing approaches, while practitioners will find techniques and tools to im-
prove their current practice and deliver quality service-oriented applications.

Specifically, the monograph aims at providing the following:

• A picture of what validating service-oriented applications means today.
• A comprehensive survey of existing approaches and tools for validating

service-oriented applications.
• Detailed guidelines for the actual validation of service-oriented systems.
• References and scenarios for future research (and supporting tools) in the

field.

In order to better understand the context in which validation and verifica-
tion techniques for web services have to work, in Sect. 1.2 of this chapter we
define the main concepts that are relevant to the service-oriented domain. In
Sect. 1.3 we describe an application example that will be used to introduce the
various issues tackled in the book. Finally, Sect. 1.4 discusses some challenges
for verification and validation in the reference domain, and Sect. 1.5 presents
the structure of the rest of the book.

1.2 Main Concepts Within the Service-Oriented Context

The area of service-oriented architectures is quite young and has attracted
the interest of researchers and practitioners coming from different areas: web-
based applications, middleware, software engineering, information systems,

1 Introduction 3

component-based systems, etc. In order to define the various concepts, we
adopt a specific conceptualization that we are defining within the context of
a European project called SeCSE [2].

Figure 1.1 shows the main concepts of the domain and the relationships
between them. A Service is a Resource available on the network. It is imple-
mented by a Software System and is able to execute some Operations through
which it serves some Service Requests. Thus, while in general services could
also be provided by non-software components (e.g., by human beings), we
particularly focus our attention here on software services.

A Service can be characterized by one or more Service Descriptions usu-
ally stored in some Service Registry. The various Service Descriptions can
provide different views on the same Service. This is useful when a Service
Provider wants to offer to different Service Consumers some specialized view
on the Service itself. Service Descriptions are usually composed of the spec-
ification (both syntactical and semantical) of the abilities of a service. This
Service Specification is usually compiled by the same Service Developer imple-
menting the Service. In addition, a Service Description can contain Additional
Information on the Service that are collected while the Service is executing.
This information usually concerns the behavior of the service as they are ex-
perienced during operation. This can be obtained through monitoring, as a
result of a verification activity, or it can be simply inserted by the Service
Consumer in terms of qualitative data about the efficacy of the Service. Veri-
fication, monitoring, or informal validation of a Service all aim at assessing if
some Service Properties hold for the service and/or its Operations. The Ad-
ditional Information can be used by consumers to assess if a Service actually
behaves as expected based on its specifications.

System

Software System

Abstract Service

Service Provider

Service Developer

Service Specification

defines

Service Property

Service Request

0..*

0..*

defines

Service Registry

Operation
0..*0..*

predicate...

Concrete

Service

0..*

0..*

+server

is serve...

1..*1

performs

implements

0..*0..*

is concretized by

1..*

provides

Service

1..*

develops

0..*

0..*
predicates on

Service Description

1..*

1

1

has

0..*

1..*

is described by

Facet

1..*

0..*

is defined by

1..*

1..*

specifies

Service Consumer

1..* expresses

0..*

1..*

searches

1..*

invokes
exploits

Service Certifier

1..*

certifies

Service Additional Information

0..*

1

has

1..*

0..*

is defined by

0..*

defines

0..*

defines

Fig. 1.1. Main concepts of service-oriented systems

4 L. Baresi and E. Di Nitto

Stateless Service

Simple Service

Current Service State

Stateful Service

1

1

has

Composite Service

Abstract Service Concrete Service
0..* 0..*is concretized by

Conversational Service

Service Composition Service Stateless/Stateful Services

{complete, disjoint}

Abstract/Concrete Services

{complete, disjoint}

Simple/composed Services

{complete, disjoint}

Fig. 1.2. Classification of services

A Service Composition is a special kind of Software System that is im-
plemented by composing various Services. A Composite Service is, in turn, a
Service Composition that behaves like a Service (it offers some Operations to
its consumers, usually associated with some Service Descriptions and is able
to serve some Service Requests). Services, either simple or composite, can
also be orthogonally classified as Stateful, in case they keep a conversational
state, or Stateless in the opposite case. Moreover, they can also be Concrete in
case they are associated to an actual implementation or Abstract in case they
simply represent an idea of service. Abstract Services, even if not executable,
can still be very useful since they allow a service composition to be developed
even if the binding to actual services is delayed to runtime. These classes of
services are shown in Fig. 1.2.

1.3 Running Example

The proposal of a common scenario is intended to highlight the main issues
we focus on in this monograph. To this end, the proposed scenario is general
enough to accommodate the different facets embedded in modern applica-
tions based on web services, and to provide sufficient requirements for the
applicability of approaches proposed in the subsequent chapters.

Next generation vehicles will be equipped with haptic devices to allow
drivers interact with on-board services (e.g., the infotainment system), with

1 Introduction 5

the environment that surrounds the vehicle, and with the remote services
associated with the user (e.g., the personal organizer).

In this context, John wants to plan a trip with his wife, to celebrate his
new car. He starts planning the trip in his office with a laptop. He starts
searching for a nice location: it must be close enough to where he lives (say,
within 100 miles), by a lake and close to mountains. Moreover, John wants a
nice and confortable hotel, where they can rest and enjoy the fitness center.
After finding the place, he makes a reservation for a room for the weekend, but
since he has to run home, he does not wait for the confirmation from the hotel.

The confirmation message from the hotel arrives on John’s mobile while he
is returning home. As soon as John acknowledges the reservation, the hotel
withdraws the agreed amount of money from his credit card. At home, he
describes the almost planned trip to his wife and they start searching for
good restaurants and places to see close to the chosen location. Again, they
reserve tickets for a couple of museums, and also reserve a table in a nice
restaurant by the lake for lunch on Saturday.

The day after, while waiting for his wife, John starts downloading on the
haptic device the plan he had created using his laptop and the reservations
done at home. Before leaving, they also need a map and a good service to iden-
tify the best itinerary to reach the place. Thus, they decide to exploit a simple
and cheap map service offering the resolution supported by the haptic device,
and asks the itinerary planning service for the fastest way to reach the target.

After the first hour on the highway, the vehicles that move in the opposite
direction report on a traffic jam that is ahead of them. If they keep following
the planned itinerary, they would be jammed after a few miles. They have
to leave the highway, but none of them knows the surroundings. To avoid
getting lost, they ask the device to find an alternative path to reach the
place. The device then needs to interact with a new (local) service to obtain
a new contingency plan to bypass the traffic jam. Such a local service can
provide as a result a map with different resolutions at different costs. Given
the characteristics of the display, the device automatically negotiates the best
resolution that can be displayed and asks the credit card company to pay for
it. Since the lowest resolution offered by the service is still too high for the
capabilities of the display, the device needs a further service to filter the map.

Everything works fine, and after the detour John and his wife can rejoin
the highway and reach the hotel. All the highway fees are paid automatically
through the toll system, which in turn interacts with the credit card company
for the actual payments.

Before resting and enjoying the environment, John needs to find a parking
lot. The hotel has no garage and he needs to find an alternative solution.
Once more, John exploits the haptic device to solve the problem. The system
highlights a garage not too far from the hotel and asks him if he wants to
make a reservation. The garage offers different options and John negotiates
the cheapest one. John parks the car and now he is ready to join his wife for
the weekend.

6 L. Baresi and E. Di Nitto

1.4 Challenges

From the analysis of the example presented in the previous section various
interesting issues arise. In particular, we notice that services can be contextual;
for instance, John and his wife have used different map services in different
locations. We also notice that some services are actually stateful and are able
to maintain a conversational state that allow the user to interact with them
through different steps. An example of this is the service that has allowed John
to prepare a plan for his trip and to download it on its device the day after.
Services are not necessarily for free. Some of them should to be paid (e.g., the
map service). Of course in these cases, QoS Contracts, their negotiation (e.g.,
to select the right download resolution), and the consequent verification are
of paramount importance.

Services can be composed together to obtain the desired result. Such a
composition can be achieved both through a design level activity or at run-
time, as in the case of the composition of the map service and the filter.
Indeed, even when a service composition is defined at design time, still, the
selection of the component services to be used and their consequent binding
to the composition can happen either at deployment time or, dynamically,
at runtime, and it can be modified over time depending on various circum-
stances. In fact, if for any reason a bound service is not anymore available, the
simple shutdown of the system is not the solution, in general. The execution
environment should be able to select new services and even to reorganize the
Composition to find a solution that uses what is available, if a perfect match
does not exist.

All the aforementioned aspects make services quite unique elements in
the domain of software and introduce new challenges concerning their verifi-
cation and validation. Indeed, distributed ownership of services makes these
challenges even more difficult to achieve. This happens whenever a Service
Provider decides to modify a component service after a Service Composition
has been deployed. Changes in the Service Specification of this service com-
ponent might make it become useless for the composition, or might require
re-coding some parts of the composition to make up for the changes. Changes
in its implementation, leaving Service Specifications untouched, might be re-
garded as either good or bad thing. For example, if a map service is improved
by augmenting the resolution of the maps it provides, in general this will be
regarded as an advantage, but it could turn out to be a problem in the con-
text of portable clients, where the limited display would not allow the user to
exploit the benefits of the higher resolution. This resolution, instead, would
result even in more costs for the same service. Providers might also change
the set of Services they offer, and the un-deployment of Services might leave
“holes” in those Compositions that use them.

In general, if Services enter and leave the environment in an unpredictable
fashion, this makes reasoning on a system in its entirety very difficult. It
is not possible to clearly distinguish—as it happens for more traditional

1 Introduction 7

applications—between the pre-deployment validation of a system and its use.
This is why continuous approaches to analysis, testing, and monitoring of
service-oriented systems appear to be more and more relevant.

1.5 Structure of the Book

Consistently with the issues we have identified, the book is focused on pre-
senting some relevant approaches within three different, but related aspects
of verification. These aspects concern the following:

1. Analysis techniques applied to some formal model of a service or of a
service composition (see Part I). As we will see, these techniques are ex-
ploited during the design phase but, as in the case of the work by van der
Aalst and Pesic, they can also support the runtime monitoring part.

2. Testing techniques (see Part II). The ones that we will consider in the book
focus on a variety of testing aspects ranging from unit testing of service
compositions to regression testing of simple and composite services.

3. Monitoring techniques aiming at continuously checking the execution of
a composition (see Part III). As we will see, monitoring can have vari-
ous objectives (e.g., check if the functionality provided by a service offers
a correct result vs check if the availability of the service fulfills the re-
quirements defined in the established SLA) and can be achieved in many
different ways. Also, the program used to monitor a composition can be
automatically generated at design time.

Among the other aspects to be verified on a service-oriented system, there are
some that result to be more critical than others and therefore deserve more
attention. We cite here reliability, security, and trust that will be specifically
addressed in the last part of the book (see Part IV).

References

1. Andrieux A. et al.: Web Services Agreement Specification. Global Grid Fo-
rum, May 2004, available from: http://www.gridforum.org/Meetings/GGF11/

Documents/draft-ggf-graap-agreement.pdf

2. M. Di Penta D. Distante M. Zuccalà M. Colombo, E. Di Nitto. Speaking a Com-
mon Language: A Conceptual Model for Describing Service-Oriented Systems. In
Proceedings of the 3rd International Conference on Service Oriented Computing,
Amsterdam, The Netherlands, December 2005.

3. R. Kearney R. King A. Keller D. Kuebler H. Ludwig M. Polan M. Spreitzer
A. Youssef A. Dan, D. Davis. Web services on demand: Wsla-driven automated
management,. IBM Systems Journal, 43(1):136–158, March 2004. Special Issue
on Utility Computing.

Part I

Analysis

2

Specifying and Monitoring Service Flows:
Making Web Services Process-Aware

W.M.P. van der Aalst and M. Pesic

Department of Technology Management, Eindhoven University of Technology,
P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl,m.pesic@tm.tue.nl

Abstract. BPEL has emerged as the de-facto standard for implementing processes
based on web services while formal languages like Petri nets have been proposed as
an “academic response” allowing for all kinds of analysis. Although languages such
as BPEL and Petri nets can be used to describe service flows, they both tend to
“overspecify” the process and this does not fit well with the autonomous nature of
services. Therefore, we propose DecSerFlow as a Declarative Service Flow Language.
By using a more declarative style, there is no need to overspecify service flows.
The declarative style also makes DecSerFlow an ideal language for monitoring web
services, i.e., using process mining techniques it is possible to check the conformance
of service flows by comparing the DecSerFlow specification with reality. This can
be used to expose services that do not follow the rules of the game. This is highly
relevant given the autonomous nature of services.

2.1 Introduction

Web services, an emerging paradigm for architecting and implementing busi-
ness collaborations within and across organizational boundaries, are currently
of interest to both software vendors and scientists [4]. In this paradigm, the
functionality provided by business applications is encapsulated within web
services: software components described at a semantic level, which can be
invoked by application programs or by other services through a stack of Inter-
net standards including HTTP, XML, SOAP [23], WSDL [24], and UDDI [22].
Once deployed, web services provided by various organizations can be inter-
connected in order to implement business collaborations, leading to composite
web services.

Today, workflow management systems are readily available [7, 58, 68] and
workflow technology is hidden in many applications, e.g., ERP, CRM, and
PDM systems. However, their application is still limited to specific industries
such as banking and insurance. Since 2000, there has been a growing in-
terest in web services. This resulted in a stack of Internet standards (HTTP,

12 W.M.P. van der Aalst and M. Pesic

XML, SOAP, WSDL, and UDDI) which needed to be complemented by a pro-
cess layer. Several vendors proposed competing languages, e.g., IBM proposed
WSFL (Web Services Flow Language) [57] building on FlowMark/MQSeries
and Microsoft proposed XLANG (Web Services for Business Process Design)
[84] building on Biztalk. BPEL [18] emerged as a compromise between both
languages.

The Business Process Execution Language for Web Services (BPEL4WS,
or BPEL for short) has become the de-facto standard for implementing pro-
cesses based on web services [18]. Systems such as Oracle BPEL Process Man-
ager, IBM WebSphere Application Server Enterprise, IBM WebSphere Studio
Application Developer Integration Edition, and Microsoft BizTalk Server 2004
support BPEL, thus illustrating the practical relevance of this language. Al-
though intended as a language for connecting web services, its application is
not limited to cross-organizational processes. It is expected that in the near
future a wide variety of process-aware information systems [30] will be realized
using BPEL. Whilst being a powerful language, BPEL is difficult to use. Its
XML representation is very verbose and readable only to the trained eye. It
offers many constructs and typically things can be implemented in many ways,
e.g., using links and the flow construct or using sequences and switches. As
a result, only experienced users are able to select the right construct. Several
vendors offer a graphical interface that generates BPEL code. However, the
graphical representations are a direct reflection of the BPEL code and are not
intuitive to end-users. Therefore, BPEL is closer to classical programming
languages than, e.g., the more user-friendly workflow management systems
available today.

In discussions, Petri nets [78] and Pi calculus [67] are often mentioned as
two possible formal languages that could serve as a basis for languages such
as BPEL. Some vendors claim that their systems are based on Petri nets or Pi
calculus and other vendors suggest that they do not need a formal language to
base their system on. In essence, there are three “camps” in these discussions:
the “Petri net camp,” the “Pi calculus” (or process algebra) camp, and the
“Practitioners camp” (also known as the “No formalism camp”). This was
the reason for starting the “Petri nets and Pi calculus for business processes”
working group [76] in June 2004. More than two years later the debate is still
ongoing and it seems unrealistic that consensus on a single language will be
reached.

This chapter will discuss the relation between Petri nets and BPEL and
show that today it is possible to use formal methods in the presence of lan-
guages like BPEL. However, this will only be the starting point for the results
presented in this chapter. First of all, we introduce a new language DecSer-
Flow. Second, we show that process mining techniques can be very useful
when monitoring web services.

The language DecSerFlow is a Declarative Service Flow Language, i.e., it
is intended to describe processes in the context of web services. The main
motivation is that languages like BPEL and Petri nets are procedural by

2 Specifying and Monitoring Service Flows 13

nature, i.e., rather than specifying “what” needs to happen these languages
describe “how” things need to be done. For example, it is not easy to specify
that anything is allowed as long as the receipt of a particular message is never
followed by the sending of another message of a particular type. DecSerFlow
allows for the specification of the “what” without having to state the “how.”
This is similar to the difference between a program and its specification. (For
example, one can specify what an ordered sequence is without specifying an
algorithm to do so.)

In a service-oriented architecture, a variety of events (e.g., messages being
sent and received) are being logged [6, 73]. This information can be used for
process mining purposes, i.e., based on some event log it is possible to discover
processes or to check conformance [14, 13]. The goal of process discovery is
to build models without a priori knowledge, i.e., based on sequences of events
one can look for the presence or absence of certain patterns and deduce some
process model from it. For conformance checking, there has to be an initial
model. One can think of this model as a “contract” or “specification” and it
is interesting to see whether the parties involved stick to this model. Using
conformance checking it is possible to quantify the fit (fewer deviations result
in a better fit) and to locate “problem areas” where a lot of deviations take
place.

In this chapter we will show that there is a clear link between more declar-
ative languages such as DecSerFlow and process mining. In order to do so, it
is important to look at the roles that process specifications can play in the
context of web services [94, 95]:

• DecSerFlow can be used as a global model, i.e., interactions are described
from the viewpoint of an external observer who oversees all interactions
between all services. Such a model is also called a choreography model.
Note that such a global model does not need to be executable. However,
the model is still valuable as it allows for conformance checking, i.e., by
observing interactions it is possible to detect deviations from the agreed
upon choreography model. Here DecSerFlow is competing with languages
such as the Web Services Choreography Description Language (WS-CDL)
[54].

• DecSerFlow can be used as a local model, i.e., the model that is used to
specify, implement, or configure a particular service. Here DecSerFlow is
competing with languages such as BPEL [18].

As discussed in [94, 95], it is interesting to link global and local models.
Relating global models (that are produced by analysts to agree on interaction
scenarios from a global perspective) to local models (that are produced during
system design and handed on to implementers) is a powerful way of ensuring
that services can work together. Although DecSerFlow can be used at both
levels, we will argue that it is particularly useful at the global level. Moreover,
we will show that global models can be used to check conformance using
process mining techniques.

14 W.M.P. van der Aalst and M. Pesic

The remainder of this chapter is organized as follows. Section 2.2 describes
the “classical approach” to processes in web services, i.e., Petri nets and BPEL
are introduced and pointers are given to state-of-the-art mappings between
them. Section 2.3 first discusses the need for a more declarative language and
then introduces the DecSerFlow language. In Sect. 2.4 the focus shifts from
languages to the monitoring of services. Finally, there is a section on related
work (Sect. 2.5) and a conclusion (Sect. 2.6).

2.2 Classical Approaches: BPEL and Petri Nets

Before we introduce the DecSerFlow, we focus on two more traditional lan-
guages for the modeling of service flows, i.e., Petri nets and BPEL. Petri nets
are more at the conceptual level and can serve only as a theoretical basis for
the modeling and analysis of service flows. BPEL is emerging as the de-facto
standard for implementing processes based on web services. In this section,
we also discuss the link between Petri nets and BPEL and present two tools:
one to map Petri nets onto BPEL and another to map BPEL onto Petri
nets.

2.2.1 Petri Nets

Petri nets [78] were among the first formalisms to capture the notion of con-
currency. They combine an intuitive graphical notation with formal seman-
tics and a wide range of analysis techniques. In recent years, they have been
applied in the context of process-aware information systems [30], workflow
management [7, 9], and web services [64].

To illustrate the concept of Petri nets we use an example that will be used
in the remainder of this chapter. This example is inspired by electronic book-
stores such as Amazon and Barnes and Noble and taken from [16]. Figure 2.1
shows a Petri-net that will be partitioned over four partners: (1) the customer,
(2) the bookstore (e.g., Amazon or Barnes and Noble), (3) the publisher, and
(4) the shipper. As discussed in Sect. 2.1, Fig. 2.1 can be considered as a
global model, i.e., interactions are described from the viewpoint of an external
observer who oversees all interactions between all services.

The circles in Fig. 2.1 represent places and the squares represent transi-
tions. Initially, there is one token in place start and all other places are empty
(we consider one book order in isolation [7]). Transitions are enabled if there
is a token on each of input places. Enabled transitions can fire by removing
one token from each input place and producing one token for each output
place. In Fig. 2.1, transition place c order is enabled. When it fires one token
is consumed and two tokens are produced. In the subsequent state (also called
marking) transition handle c order is enabled. Note that transitions rec acc
and rec decl are not enabled because only one of their input places is marked
with a token.

2 Specifying and Monitoring Service Flows 15

place_c_order handle_c_order

c_order

handle_c_order

place_b_order

b_order

eval_b_order

b_accept

b_reject

b_decline

rec_decl
c_decline

decide

c_accept

alt_publ

b_confirm

c_confirm

s_request

req_shipment

s_decline

s_confirm

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

book_to_s

book_to_c

notification

ship_info

send_bill

bill

payment

pay

rec_acc

rec_book
rec_bill

handle_payment

c_reject

start

end

Fig. 2.1. A Petri net describing the process as agreed upon by all four parties (i.e.,
the global model)

Figure 2.1 represents an inter-organizational workflow that is initiated
by a customer placing an order (activity place c order). This customer or-
der is sent to and handled by the bookstore (activity handle c order). The
electronic bookstore is a virtual company which has no books in stock.
Therefore, the bookstore transfers the order of the desired book to a publisher

16 W.M.P. van der Aalst and M. Pesic

(activity place b order). We will use the term “bookstore order” to refer to the
transferred order. The bookstore order is evaluated by the publisher (activ-
ity eval b order) and either accepted (activity b accept) or rejected (activity
b reject). In both cases an appropriate signal is sent to the bookstore. If the
bookstore receives a negative answer, it decides (activity decide) to either
search for an alternative publisher (activity alt publ) or to reject the customer
order (activity c reject). If the bookstore searches for an alternative publisher,
a new bookstore order is sent to another publisher, etc. If the customer re-
ceives a negative answer (activity rec decl), then the workflow terminates. If
the bookstore receives a positive answer (activity c accept), the customer is in-
formed (activity rec acc) and the bookstore continues processing the customer
order. The bookstore sends a request to a shipper (activity req shipment), the
shipper evaluates the request (activity eval s req) and either accepts (activity
s accept) or rejects (activity b reject) the request. If the bookstore receives a
negative answer, it searches for another shipper. This process is repeated until
a shipper accepts. Note that, unlike the unavailability of the book, the unavail-
ability of a shipper cannot lead to a cancellation of the order. After a shipper
is found, the publisher is informed (activity inform publ), the publisher pre-
pares the book for shipment (activity prepare b), and the book is sent from the
publisher to the shipper (activity send book). The shipper prepares the ship-
ment to the customer (activity prepare s) and actually ships the book to the
customer (activity ship). The customer receives the book (activity rec book)
and the shipper notifies the bookstore (activity notify). The bookstore sends
the bill to the customer (activity send bill). After receiving both the book
and the bill (activity rec bill), the customer makes a payment (activity pay).
Then the bookstore processes the payment (activity handle payment) and the
inter-organizational workflow terminates.

The Petri net shown in Fig. 2.1 is the so-called “WF-net” (WorkFlow-net)
because it has one input place (start) and one output place (end) and all
places’ transitions are on a path from start to end. Using tools such as Woflan
[88] or ProM [29], we can show that the process is sound [2, 7]. Figure 2.2
shows a screenshot of the Woflan plug-in of ProM. Soundness means that each
process instance can terminate without any problems and that all parts of the
net can potentially be activated. Given a state reachable from the marking
with just a token in place start, it is always possible to reach the marking with
one token place end. Moreover, from the initial state it is possible to enable
any transition and to mark any place. Using ProM it is possible to prove that
the Petri net shown in Fig. 2.1 is sound, cf. Fig. 2.2.

One can think of the Petri net shown in Fig. 2.1 as the contract between the
customer, the bookstore, the publisher, and the shipper (i.e., global model).
Clearly, there are many customers, publishers, and shippers. Therefore, the
Petri net should be considered as the contract between all customers, publish-
ers, and shippers. However, since we model the processing of an order for a
single book, we can assume, without loss of generality, that only one customer,
one publisher, and at most one shipper (at any time) are involved. Note that

2 Specifying and Monitoring Service Flows 17

Fig. 2.2. Two analyses plug-in of ProM indicate that the Petri net shown in Fig. 2.1
is indeed sound. The top window shows some diagnostics related to soundness. The
bottom window shows part of the state space

Fig. 2.1 abstracts from a lot of relevant things. However, given the purpose of
this chapter, we do not add more details.

Figure 2.3 shows the same process but now all activities are partitioned
over the four parties involved in the ordering of a book. It shows that each of
the parties is responsible for a part of the process. In terms of web services,
we can think of each of the four large-shaded rectangles as a service. The
Petri-net fragments inside these rectangles can be seen as specifications of the
corresponding services (i.e., local models).

It is interesting to point out that in principle multiple shippers could be
involved, i.e., the first shipper may decline and then another shipper is con-
tacted, etc. However, at any point in time, at most one shipper is involved in
each process instance. Another interesting aspect is the correlation between
the various processes of the partners. There may be many instances of the
process shown in area labeled bookstore in Fig. 2.3. However, each instance
is unique and messages passed over the places connecting the bookstore to
the other partners refer to a particular process instance. In general, it is a
non-trivial problem to correlate messages to process instances. See [6, 73] for
a more detailed discussion on correlation.

We will refer to whole diagram shown in Fig. 2.3 as the choreography or
orchestration model of the four services.

2.2.2 BPEL

BPEL [18] supports the modeling of two types of processes: executable and
abstract processes. An abstract (not executable) process is a business protocol,

18 W.M.P. van der Aalst and M. Pesic

place_c_order handle_c_order
c_order

handle_c_order

place_b_order

b_order
eval_b_order

b_accept
b_reject

b_decline

rec_decl
c_decline

decide

c_accept

alt_publ

b_confirm

c_confirm

s_request

req_shipment

s_decline

s_confirm

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

book_to_s

book_to_c

notification

ship_info

send_bill

bill

payment

pay

rec_acc

rec_book
rec_bill

handle_payment

c_reject

customer bookstore

publisher

shipper

start

end

Fig. 2.3. The process as partitioned over (1) the customer, (2) the bookstore, (3)
the publisher, and (4) the shipper (i.e., four local models and their interconnections)

2 Specifying and Monitoring Service Flows 19

specifying the message exchange behavior between different parties without
revealing the internal behavior of any one of them. This abstract process views
the outside world from the perspective of a single organization or (composite)
service. An executable process views the world in a similar manner; however,
things are specified in more detail such that the process becomes executable,
i.e., an executable BPEL process specifies the execution order of a number
of activities constituting the process, the partners involved in the process,
the messages exchanged between these partners, and the fault and exception
handling required in cases of errors and exceptions.

In terms of Fig. 2.3, we can think of abstract BPEL as the language to
specify one service, i.e., describing the desired behavior of a single Petri-net
fragment (e.g., shipper). Executable BPEL on the other hand can be used as
the means to implement the desired behavior.

A BPEL process itself is a kind of flow-chart, where each element in the
process is called an activity. An activity is either a primitive or a structured
activity. The set of primitive activities contains invoke, invoking an operation
on a web service; receive, waiting for a message from an external source; reply,
replying to an external source; wait, pausing for a specified time; assign, copy-
ing data from one place to another; throw, indicating errors in the execution;
terminate, terminating the entire service instance; and empty, doing nothing.

To enable the presentation of complex structures the following structured
activities are defined: sequence, for defining an execution order; switch, for con-
ditional routing; while, for looping; pick, for race conditions based on timing or
external triggers; flow, for parallel routing; and scope, for grouping activities
to be treated by the same fault-handler. Structured activities can be nested
and combined in arbitrary ways. Within activities executed in parallel the ex-
ecution order can further be controlled by the usage of links (sometimes also
called control links, or guarded links), which allows the definition of directed
graphs. The graphs too can be nested but must be acyclic.

As indicated in Sect. 2.1, BPEL builds on IBM’s WSFL (Web Services
Flow Language) [57] and Microsoft’s XLANG (Web Services for Business Pro-
cess Design) [84] and combines the features of a block-structured language in-
herited from XLANG with those for directed graphs originating from WSFL.
As a result, simple things can be implemented in two ways. For example, a se-
quence can be realized using the sequence or flow elements (in the latter case
links are used to enforce a particular order on the parallel elements), a choice
based on certain data values can be realized using the switch or flow elements,
etc. However, for certain constructs one is forced to use the block-structured
part of the language, e.g., a deferred choice [8] can only be modeled using the
pick construct. For other constructs one is forced to use links, i.e., the more
graph-oriented part of the language, e.g., two parallel processes with a one-
way synchronization require a link inside a flow. In addition, there are very
subtle restrictions on the use of links: “A link MUST NOT cross the boundary
of a while activity, a serializable scope, an event handler or a compensation
handler... In addition, a link that crosses a fault-handler boundary MUST

20 W.M.P. van der Aalst and M. Pesic

be outbound, i.e., it MUST have its source activity within the fault handler
and its target activity within a scope that encloses the scope associated with
the fault handler. Finally, a link MUST NOT create a control cycle, i.e., the
source activity must not have the target activity as a logically preceding activ-
ity, where an activity A logically precedes an activity B if the initiation of B
semantically requires the completion of A. Therefore, directed graphs created
by links are always acyclic” (see p. 64 in [18]). All of this makes the language
complex for end-users. A detailed or complete description of BPEL is beyond
the scope of this chapter. For more details, the reader is referred to [18] and
various web sites such as the web site of the OASIS technical committee on
WS-BPEL [70].

2.2.3 BPEL2PN and PN2BPEL

As shown, both BPEL and Petri nets can be used to describe the process-
aspect of web services. There are several process engines supporting Petri nets
(e.g., COSA, YAWL, etc.) or BPEL (e.g., Oracle BPEL, IBM WebSphere,
etc.). BPEL currently has strong industry support while Petri nets offer a
graphical language and a wide variety of analysis tools (cf. Fig. 2.2). Therefore,
it is interesting to look at the relation between the two. First of all, it is possible
to map BPEL onto Petri nets for the purpose of analysis. Second, it is possible
to generate BPEL on the basis of Petri nets, i.e., mapping a graphical, more
conceptual, language onto a textual language for execution purposes.

Several tools have been developed to map BPEL onto Petri nets (see
Sect. 2.5). As a example, we briefly describe the combination formed by
BPEL2PNML and WofBPEL developed in close collaboration with QUT [72].
BPEL2PNML translates BPEL process definitions into Petri nets represented
in the Petri Net Markup Language (PNML). WofBPEL, built using Woflan
[88], applies static analysis and transformation techniques to the output pro-
duced by BPEL2PNML. WofBPEL can be used (1) to simplify the Petri net
produced by BPEL2PNML by removing unnecessary silent transitions and (2)
to convert the Petri net into the so-called “WorkFlow net” (WF-net) which
has certain properties that simplify the analysis phase. Although primarily
developed for verification purposes, BPEL2PNML and WofBPEL have also
been used for conformance checking using abstract BPEL processes [6].

Few people have been working on the translation from Petri nets to BPEL.
In fact, [9] is the only work we are aware of that tries to go from (colored)
Petri nets to BPEL. Using our ProM tool [29] we can export a wide variety of
languages to CPN Tools. For example, we can load Petri-net models coming
from tools such as Protos, Yasper, and WoPeD, EPCs coming from tools such
as ARIS, ARIS PPM, and EPC Tools, and workflow models coming from tools
such as Staffware and YAWL, and automatically convert the control-flow in
these models to Petri nets. Using our ProM tool this can then be exported
to CPN Tools where it is possible to do further analysis (state space analy-
sis, simulation, etc.). Moreover, WF-nets in CPN Tools can be converted into
BPEL using WorkflowNet2BPEL4WS [9, 55]. To illustrate this, consider the

2 Specifying and Monitoring Service Flows 21

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
name="shipper" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.xmlsoap.org/ws/2003/03/business-
process/ http://schemas.xmlsoap.org/ws/2003/03/business-process/"
targetNamespace="http://shipper">
 <sequence name="Sequence_F3">
 <receive name="eval_s_req" />
 <switch name="Switch_F2">

<case condition="bpws:getVariableData('accept', 'accept', '//type')!=1">
 <invoke name="s_reject" />
</case>
<case condition="bpws:getVariableData('accept', 'accept', '//type')=1">
 <sequence name="Sequence_F1">

 <invoke name="s_accept" />
 <receive name="prepare_s" />
 <invoke name="ship" />
 <invoke name="notify" />

 </sequence>
</case>

 </switch>
</sequence>

</process>

Fig. 2.4. The Petri net describing the service offered by the shipper is mapped
onto BPEL code using WorkflowNet2BPEL4WS, a tool to automatically translate
colored Petri nets into BPEL template code

shipper service shown in Fig. 2.3. The WF-net corresponding to the shipper
process was modeled using the graphical editor of the COSA workflow man-
agement system. This was automatically converted by Woflan to ProM. Us-
ing ProM the process was automatically exported to CPN Tools. Then using
WorkflowNet2BPEL4WS the annotated WF-net was translated into BPEL
template code. Figure 2.4 shows both the annotated WF-net in CPN Tools
(left) and the automatically generated BPEL template code (right).

The availability of the tools and systems mentioned in this section makes
it possible to support service flows, i.e., the process-aspect of web services,
at the design, analysis, and enactment levels. For many applications, BPEL,
Petri nets, or a mixture of both provide a good basis for making web services
“process-aware.” However, as indicated in Sect. 2.1, the focus of this chapter
is on DecSerFlow. Section 2.3 introduces DecSerFlow and shows that it is a
truly declarative language which addresses the problem of overspecification
typically resulting from the procedural languages described in this section.
After introducing the language we focus on the monitoring of service flows
(Sect. 2.4) specified in terms of DecSerFlow.

2.3 DecSerFlow

The goal of this section is to provide a “fresh view” on process support in the
context of web services. We first argue why a more declarative approach is
needed and then introduce a concrete language: DecSerFlow.

2.3.1 The Need for More Declarative Languages

Petri nets and BPEL have in common that they are highly procedural, i.e.,
after the execution of a given activity the next activities are scheduled.1 Seen
1 Note that both BPEL and Petri nets support the deferred choice pattern [8], i.e.,

it is possible to put the system in a state where several alternative activities are

22 W.M.P. van der Aalst and M. Pesic

from the viewpoint of an execution language the procedural nature of Petri
nets and BPEL is not a problem. However, unlike the modules inside a clas-
sical system, web services tend to be rather autonomous and an important
challenge is that all parties involved need to agree on an overall global pro-
cess. Currently, terms like choreography and orchestration are used to refer
to the problem of agreeing on a common process. Some researchers distin-
guish between choreography and orchestration, e.g., “In orchestration, there’s
someone—the conductor—who tells everybody in the orchestra what to do
and makes sure they all play in sync. In choreography, every dancer follows
a pre-defined plan—everyone independently of the others.” We will not make
this distinction and simply assume that choreographies define collaborations
between interacting parties, i.e., the coordination process of interconnected
web services all partners need to agree on. Note that Fig. 2.3 can be seen as
an example of a choreography.

Within the Web Services Choreography Working Group of the W3C, a
working draft defining version 1.0 of the Web Services Choreography Descrip-
tion Language (WS-CDL) has been developed [54]. The scope of WS-CDL
is defined as follows: “Using the Web Services Choreography specification, a
contract containing a global definition of the common ordering conditions and
constraints under which messages are exchanged is produced that describes,
from a global viewpoint, the common and complementary observable behav-
ior of all the parties involved. Each party can then use the global definition
to build and test solutions that conform to it. The global specification is in
turn realized by a combination of the resulting local systems, on the basis of
appropriate infrastructure support. The advantage of a contract based on a
global viewpoint as opposed to any one endpoint is that it separates the over-
all global process being followed by an individual business or system within a
domain of control (an endpoint) from the definition of the sequences in which
each business or system exchanges information with others. This means that,
as long as the observable sequences do not change, the rules and logic followed
within a domain of control (endpoint) can change at will and interoperability
is therefore guaranteed” [54]. This definition is consistent with the definition
of choreography just given. Unfortunately, like most standards in the web
services stack, CDL is verbose and complex. Somehow the essence as shown
in Fig. 2.3 is lost. Moreover, the language again defines concepts such as
“sequence,” “choice,” and “parallel” in some ad hoc notation with unclear
semantics. This suggests that some parts of the language are an alternative
to BPEL while they are not.

However, the main problem is that WS-CDL, like Petri nets and BPEL,
is not declarative. A choreography should allow for the specification of the
“what” without having to state the “how”. This is similar to the difference

enabled but the selection is made by the environment (cf. the pick construct in
BPEL). This allows for more flexibility. However, it does not change the fact that
in essence both Petri nets and BPEL are procedural.

2 Specifying and Monitoring Service Flows 23

between the implementation of a program and its specification. For example,
it is close to impossible to describe that within a choreography two messages
exclude one another. Note that such an exclusion constraint is not the same as
making a choice! To illustrate this, assume that there are two actions A and
B. These actions can correspond to exchange of messages or some other type
of activity which is relevant for the choreography. The constraint that “A and
B exclude one another” is different from making a choice between A or B.
First of all, A and B may be executed multiple times, e.g., the constraint is
still satisfied if A is executed five times while B is not executed at all. Second,
the moment of choice is irrelevant to the constraint. Note that the modeling
of choices in a procedural language forces the designer to indicate explicit
decision points which are evaluated at explicit decision times. Therefore, there
is a tendency to overspecify things.

Therefore, we propose a more declarative approach based on temporal logic
[61, 74] as described in the following subsection.

2.3.2 DecSerFlow: A Declarative Service Flow Language

Languages such as Linear Temporal Logic (LTL) [41, 45, 46] allow for more
declarative style of modeling. These languages include temporal operators
such as nexttime (©F), eventually (�F), always (�F), and until (F �G), cf.
Table 2.1. However, such languages are difficult to read. Therefore, we define
a graphical syntax for the typical constraints encountered in service flows.
The combination of this graphical language and the mapping of this graphical
language to LTL forms the Declarative Service Flow (DecSerFlow) Language.
We propose DecSerFlow for the specification of a single service, simple service
compositions, and more complex choreographies.

Developing a model in DecSerFlow starts with creating activities. The no-
tion of an activity is like in any other workflow-like language, i.e., an activity
is atomic and corresponds to a logical unit of work. However, the nature of
the relations between activities in DecSerFlow can be quite different than in

Table 2.1. Brief explanation of the basic LTL temporal operators

name notation explanation

nexttime ©F F has to hold at the next state, e.g., [A,F,B,C,D,E],
[A,F,F,F,F,F,B,C,D,E], [F,F,F,F,A,B,C,D,E], etc.

eventually �F F has to hold eventually, e.g., [F,A,B,C,D,E],
[A,B,C,F,D,E], [ABFCDFEF], etc.

always �F F has to always hold, e.g., [F,F,F,F,F,F].
until F � G G holds at the current state or at some future state,

and F has to hold until G holds. When G holds
F does not have to hold any more. Examples are
[G,A,B,C,D,E], [F,G,A,B,C,D,E], [F,F,F,F,G,A,B,C,D,E],
[F,F,F,F,G,A,B,G,F,C,D,E,F,G], etc.

24 W.M.P. van der Aalst and M. Pesic

traditional procedural workflow languages (like Petri nets and BPEL). For
example, places between activities in a Petri net describe causal dependencies
and can be used to specify sequential, parallel, alternative, and iterative rout-
ing. By using such mechanisms, it is both possible and necessary to strictly
define how the flow will be executed. We refer to the relations between activ-
ities in DecSerFlow as constraints. Each of the constraints represents a policy
(or a business rule). At any point in time during the execution of a service,
each constraint evaluates to true or false. This value can change during the
execution. If a constraint has the value true, the referring policy is fulfilled.
If a constraint has the value false, the policy is violated. The execution of a
service is correct (according to the DecSerFlow model) at some point in time
if all constraints (from the DecSerFlow model) evaluate to true. Similarly, a
service has completed correctly if at the end of the execution all constraints
evaluate to true. The goal of the execution of any DecSerFlow model is not
to keep the values of all constraints true at all times during the execution.
A constraint which has the value false during the execution is not considered
an error. Consider, e.g., the LTL expression �(A −→ �B) where A and B
are activities, i.e., each execution of A is eventually followed by B. Initially
(before any activity is executed), this LTL expression evaluates to true. After
executing A the LTL expression evaluates to false and this value remains false
until B is executed. This illustrates that a constraint may be temporarily vi-
olated. However, the goal is to end the service execution in a state where all
constraints evaluate to true.

To create constraints in DecSerFlow, we use constraint templates. Each
constraint template consists of a formula written in LTL and a graphical
representation of the formula. An example is the “response constraint” which
is denoted by a special arc connecting two activities A and B. The semantics
of such an arc connecting A and B are given by the LTL expression �(A −→
�B), i.e., any execution of A is eventually followed by B. We have developed a
starting set of constraint templates and we will use these templates to create a
DecSerFlow model for the electronic bookstore example. This set of templates
is inspired by a collection of specification patterns for model checking and
other finite-state verification tools [32]. Constraint templates define various
types of dependencies between activities at an abstract level. Once defined,
a template can be reused to specify constraints between activities in various
DecSerFlow models. It is fairly easy to change, remove, and add templates,
which makes DecSerFlow an “open language” that can evolve and be extended
according to the demands from different domains. There are three groups
of templates: (1) “existence,” (2) “relation,” and (3) “negation” templates.
Because a template assigns a graphical representation to an LTL formula, we
will refer to such a template as a formula.

Before giving an overview of the initial set of formulas and their notation,
we give a small example explaining the basic idea. Figure 2.5 shows a Dec-
SerFlow model consisting of four activities: A, B, C, and D. Each activity is
tagged with a constraint describing the number of times the activity should

2 Specifying and Monitoring Service Flows 25

A B

C

 [](A => <> B), i.e.,
every A is eventually

followed by B

D

1..*

20..*

0..*

B is executed
twice

<> D, i.e., D is
executed at least once

<>D => <>C, i.e., if D is
executed at least once, C is
also executed at least once.

if A is executed at
least once, C is
never executed
and vice versa.

A can be executed
an arbitrary

number of times

Fig. 2.5. A DecSerFlow model showing some example notations. (Note that the
temporal operators � and � are denoted as <> and [])

be executed, these are the so-called “existence formulas.” The arc between
A and B is an example of a “relation formula” and corresponds to the LTL
expression discussed before: �(A −→ � B). The connection between C and
D denotes another relation formula: � D −→ � C, i.e., if D is executed at
least once, C is also executed at least once. The connection between A and
C denotes a “negation formula” (the LTL expression �(A) ⇔ ¬(�(B)) is
not shown in diagram but will be explained later). Note that it is not easy
to provide a classical procedural model (e.g., a Petri net) that allows for all
behavior modeled in Fig. 2.5.

Existence Formulas

Figure 2.6 shows the so-called “existence formulas”. These formulas define the
cardinality of an activity. For example, the first formula is called existence and
its visualization is shown (i.e., the annotation “1..∗” above the activity). This
indicates that A is executed at least once. Formulas existence2, existence3,
and existenceN all specify a lower bound for the number of occurrences of A.
It is also possible to specify an upper bound for the number of occurrences of
A. Formulas absence, absence2, absence3, and absenceN are also visualized by
showing the range, e.g., “0...N” for the requirement absenceN+1. Similarly, it
is possible to specify the exact number of occurrences as shown in Fig. 2.6,
e.g., constraint exactlyN (A : activity) is denoted by an N above the activity
and specifies that A should be executed exactly N times.

Table 2.2 provides the semantics for each of the notations shown in
Fig. 2.6, i.e., each formula is expressed in terms of an LTL expression. Formula
existence(A : activity) is defined as �(A), i.e., A has to hold eventually which
implies that in any full execution of the process A occurs at least once. Formula
existenceN (A : activity) shows how it is possible to express a lower bound N
for the number of occurrences of A in a recursive manner, i.e., existenceN (A) =
�(A ∧ ©(existenceN−1 (A))). Formula absenceN (A : activity) can be defined

26 W.M.P. van der Aalst and M. Pesic

0

A

2..*

A

3..*

A

N..*

A

0..2

A

0..N

A

0..1

A

2

A

N

A

1

A

N..*

A

0..N

A

N

A

A

1..*

existence(A : activity)

existence2(A : activity)

existence3(A : activity)

existence N(A : activity)

absence(A : activity)

absence2(A : activity)

absence3(A : activity)

absence N+1(A : activity)

exactly1(A : activity)

exactly2(A : activity)

exactly N(A : activity)

Fig. 2.6. Notations for the “existence formulas”

as the inverse of existenceN (A). Together they can be combined to express
that for any full execution, A should be executed a prespecified number N ,
i.e., exactlyN (A) = existenceN (A) ∧ absenceN+1 (A).

Relation Formulas

Figure 2.7 shows the so-called “relations formulas.” While an “existence for-
mula” describes the cardinality of one activity, a “relation formula” defines
relation(s) (dependencies) between multiple activities. Figure 2.7 shows only
binary relationships (i.e., between two activities); however, in DecSerFlow
there are also notations involving generalizations to three or more activities,
e.g., to model an OR-split. For simplicity, however, we first focus on the bi-
nary relationships shown in Fig. 2.7. All relation formulas have activities A
and B as parameters and these activities are also shown in the graphical rep-
resentation. The line between the two activities in the graphical representa-
tion is unique for the formula, and reflects the semantics of the relation. The
existence response formula specifies that if activity A is executed, activity

2 Specifying and Monitoring Service Flows 27

Table 2.2. Existence formulas

name of formula LTL expression

existence(A : activity) �(A)
existence2 (A : activity) �(A ∧ ©(existence(A)))
existence3 (A : activity) �(A ∧ ©(existence2 (A)))

.
existenceN (A : activity) �(A ∧ ©(existenceN−1 (A)))

absence(A : activity) �(¬A)
absence2 (A : activity) ¬existence2 (A)
absence3 (A : activity) ¬existence3 (A)

.
absenceN (A : activity) ¬existenceN (A)

exactly1 (A : activity) existence(A) ∧ absence2 (A)
exactly2 (A : activity) existence2 (A) ∧ absence3 (A)

.
exactlyN (A : activity) existenceN (A) ∧ absenceN+1 (A)

existence_response(A, B)

co_existence(A, B)

response(A, B)

precedence(A, B)

succession(A, B)

alternate_response(A, B)

alternate_precedence(A, B)

alternate_succession(A, B)

chain_response(A, B)

chain_precedence(A, B)

chain_succession(A, B) BA

A B

BA

A B

A B

BA

A B

A B

A B

A B

A B

Fig. 2.7. Notations for the “relation formulas”

28 W.M.P. van der Aalst and M. Pesic

B also has to be executed (at any time, i.e., either before or after activity
A is executed). According to the co-existence formula, if one of the activities
A or B is executed, the other one has to be executed also. While the first
two formulas do not consider the order of activities, formulas response, prece-
dence, and succession do consider the ordering of activities. Formula response
requires that every time activity A executes, activity B has to be executed
after it. Note that this is a very relaxed relation of response, because B does
not have to execute straight after A, and another A can be executed be-
tween the first A and the subsequent B. For example, the execution sequence
[B,A,A,A,C,B] satisfies the formula response. The formula precedence requires
that activity B is preceded by activity A, i.e., it specifies that if activity B
was executed, it could not have been executed until activity A was executed.
According to this formula, the execution sequence [A,C,B,B,A] is correct. The
combination of the response and precedence formulas defines a bi-directional
execution order of two activities and is called succession. In this formula,
both response and precedence relations have to hold between the activities
A and B. Thus, this formula specifies that every activity A has to be fol-
lowed by an activity B and there has to be an activity A before every activity
B. For example, the execution sequence [A,C,A,B,B] satisfies the succession
formula.

Formulas alternate response, alternate precedence, and alternate succession
strengthen the response, precedence, and succession formulas, respectively. If
activity B is alternate response of activity A, then after the execution of an
activity A activity B has to be executed and between the execution of each
two activities A at least one activity B has to be executed. In other words,
after activity A there must be an activity B, and before that activity B there
cannot be another activity A. The execution sequence [B,A,C,B,A,B] satisfies
the alternate response. Similarly, in the alternate precedence every instance of
activity B has to be preceded by an instance of activity A and the next in-
stance of activity B cannot be executed before the next instance of activity
A is executed. According to the alternate precedence, the execution sequence
[A,C,B,A,B,A] is correct. The alternate succession is a combination of the al-
ternate response and alternate precedence and the sequence [A,C,B,A,B,A,B]
would satisfy this formula.

Even more strict ordering relations are specified by the last three con-
straints shown in Fig. 2.7: chain response, chain precedence, and chain suc-
cession. These require that the executions of the two activities (A and B) are
next to each other. According to the chain response constraint the first activ-
ity after activity A has to be activity B and the execution [B,A,B,C,A,B]
would be correct. The chain precedence formula requires that the activ-
ity A is the activity directly preceding any B and, hence, the sequence
[A,B,C,A,B,A] is correct. Since the chain succession formula is the combi-
nation of the chain response and chain precedence formulas, it requires that
activities A and B are always executed next to each other. The execution
sequence [A,B,C,A,B,A,B] is correct with respect to this formula.

2 Specifying and Monitoring Service Flows 29

Table 2.3. Relation formulas

name of formula LTL expression

existence response(A : activity , B : activity) �(A) ⇒ �(B)
co existence(A : activity ,B : activity) �(A) ⇔ �(B)

response(A : activity , B : activity) �(A ⇒ �(B))
precedence(A : activity ,B : activity) �(B) ⇒ ((¬B) � A)
succession(A : activity , B : activity) response(A, B) ∧ precedence(A, B)

alternate response(A : activity , B : activity) �(A ⇒ ©((¬A) � B))
alternate precedence(A : activity , B : activity) precedence(A, B) ∧

�(B ⇒ ©(precedence(A, B)))
alternate succession(A : activity , B : activity) alternate response(A, B) ∧

alternate precedence(A, B)

chain response(A : activity , B : activity) �(A ⇒ ©(B))
chain precedence(A : activity ,B : activity) �(©(B) ⇒ A)
chain succession(A : activity , B : activity) �(A ⇔ ©(B))

Table 2.3 shows the formalization of the “relations formulas” depicted in
Fig. 2.7. existence response(A,B) is specified by �(A) ⇒ �(B) indicating
that some occurrence of A should always imply an occurrence of B either be-
fore or after A. co existence(A,B) means that the existence of one implies the
existence of the other and vice versa, i.e., �(A) ⇔ �(B). response(A,B) is
defined as �(A ⇒ �(B)). This means that at any point in time where activity
A occurs there should eventually be an occurrence of B. precedence(A,B) is
similar to response but now looking backward, i.e., if B occurs at all, then
there should be no occurrence of B before the first occurrence of A. This is
formalized as �(B) ⇒ ((¬B) � A). Note that we use the � (until) operator
here: (¬B)�A means that A holds (i.e., occurs) at the current state or at some
future state, and ¬B has to hold until A holds. When A holds ¬B does not
have to hold any more (i.e., B may occur). succession(A,B) is defined by com-
bining both into response(A,B) ∧ precedence(A,B). alternate response(A,B)
is defined as �(A ⇒ ©((¬A) � B)), i.e., any occurrence of A implies that in
the next state and onward no A may occur until a B occurs. In other words,
after activity A there must be an activity B, and before that activity B occurs
there cannot be another activity A. alternate precedence(A,B) is a bit more
complicated: �((B ∧ ©(�(B))) ⇒ ©(A�B)). This implies that at any point
in time where B occurs and at least one other occurrence of B follows, an
A should occur before the second occurrence of B. alternate succession(A,B)
combines both into alternate response(A,B) ∧ alternate precedence(A,B).
chain response(A,B) is defined as �(A ⇒ ©(B)) indicating that any oc-
currence of A should be directly followed by B. chain precedence(A,B) is
the logical counterpart: �(©(B) ⇒ A). chain succession(A,B) is defined as
�(A ⇔ ©(B)) and specifies that any occurrence of A should be directly fol-
lowed by B and any occurrence of B should be directly preceded by A.

30 W.M.P. van der Aalst and M. Pesic

Negation Formulas

Figure 2.8 shows the “negation formulas,” which are the negated versions
of the “relation formulas.” (Ignore the grouping of constraints on the right-
hand side of Fig. 2.8 for the moment. Later, we will show that the eight
constraints can be reduced to three equivalence classes.) The first two formu-
las negate the existence response and co existence formulas. The neg exist-
ence response formula specifies that if activity A is executed activity then B
must never be executed (not before nor after activity A). The neg co existence
formula applies neg existence response from A to B and from B to A. It
is important to note that the term “negation” should not be interpreted
as the “logical negation,” e.g., if activity A never occurs, then both exis-
tence response(A,B) and neg existence response(A,B) hold (i.e., one does not
exclude the other). The neg response formula specifies that after the execu-
tion of activity A, activity B cannot be executed any more. According to
the formula neg precedence, activity B cannot be preceded by activity A. The
last three formulas are negations of formulas chain response, chain precedence,
and chain succession. neg chain response specifies that A should never be fol-
lowed directly by B. neg chain precedence specifies that B should never be pre-
ceded directly by A. neg chain succession combines both neg chain response
and neg chain precedence. Note that Fig. 2.8 does not show “negation formu-
las” for the alternating variants of response, precedence, and succession. The
reason is that there is no straightforward and intuitive interpretation of the
converse of an alternating response, precedence, or succession.

neg_chain_succession(A, B)

neg_chain_precedence(A, B)

neg_chain_response(A, B)

neg_succession(A, B)

neg_precedence(A, B)

neg_response(A, B)

neg_co_existence(A, B)

neg_existence_response(A, B) A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

Fig. 2.8. Notations for the “negations formulas”

2 Specifying and Monitoring Service Flows 31

Table 2.4. Negation formulas (formulas grouped together are equivalent)

name of formula LTL expression

neg existence response(A : activity , B : activity) �(A) ⇒ ¬(�(B))
neg co existence(A : activity , B : activity) neg existence response(A, B) ∧

neg existence response(B , A)

neg response(A : activity , B : activity) �(A ⇒ ¬(�(B)))
neg precedence(A : activity , B : activity) �(�(B) ⇒ (¬A))
neg succession(A : activity , B : activity) neg response(A, B) ∧

neg precedence(A, B)

neg chain response(A : activity , B : activity) �(A ⇒ ©(¬(B)))
neg chain precedence(A : activity ,B : activity) �(©(B) ⇒ ¬(A))
neg chain succession(A : activity , B : activity) neg chain response(A, B) ∧

neg chain precedence(A, B)

Table 2.4 shows the LTL expressions of the notations shown in Fig. 2.8.
Table 2.4 also shows that some of the notions are equivalent, i.e., neg co
existence and neg existence response are equivalent and similarly the next
two pairs of three formulas are equivalent. Note that a similar grouping
is shown in Fig. 2.8 where a single representation for each group is sug-
gested. neg existence response(A,B) is defined as �(A) ⇒ ¬(�(B)). How-
ever, since the ordering does not matter, neg existence response(A,B) =
neg existence response(A,B) and hence coincides with neg co existence(A,B).
neg response(A,B) is defined as �(A ⇒ ¬(�(B))), i.e., after any occurrence
of A, B may never happen (or formulated alternatively: any occurrence of
B should take place before the first A). neg precedence(A,B) is defined as
�(�(B) ⇒ (¬A)), i.e., if B occurs in some future state, then A cannot
occur in the current state. It is easy to see that neg precedence(A,B) =
neg response(A,B) because both state that no B should take place af-
ter the first A (if any). Since neg succession(A,B) combines both, also
neg succession(A,B) = neg response(A,B). The last three formulas are nega-
tions of formulas chain response, chain precedence, and chain succession. It is
easy to see that they are equivalent, neg chain response(A,B) = neg chain
precedence(A,B) = neg chain succession(A,B).

Figures 2.7 and 2.8 and the corresponding formalizations show only binary
relationships. However, these can easily be extended to deal with more activ-
ities. Consider, e.g., the response relationship, i.e., response(A,B) = �(A ⇒
�(B)). This can easily be extended to response(A,B ,C) = �(A ⇒ (�(B) ∨
�(C)), i.e., every occurrence of A is eventually followed by an occurrence of B
or C. This can also be extended to a choice following A of N alternatives, i.e.,
response(A,A1 ,A2 , . . . ,AN) = �(A ⇒ (�(A1) ∨ �(A2) ∨ . . . ∨ �(AN))).
Many of the other formulas can be generalized in a similar fashion and rep-
resented graphically in an intuitive manner. For example, response(A,B ,C),
i.e., A is eventually followed by an occurrence of B or C, is depicted by multiple

32 W.M.P. van der Aalst and M. Pesic

arcs that start from the same dot. Similarly, it is possible to have a precedence
constraint where different arrows end in the same dot indicating that at least
one of the preceding activities should occur before the subsequent activity is
executed.

DecSerFlow is an extendible language, i.e., designers can add their own
graphical notations and provide their semantics in terms of LTL. For ex-
ample, one can add constraints similar to the control-flow dependencies in
classical languages such as Petri nets, EPCs, etc. and draw diagrams similar
to the diagrams provided by these languages. However, the aim is to have
a relatively small set of intuitive notations. In this chapter we show only a
core set. Figure 2.9 assists in reading diagrams using this core notation. When
extending the language with new constraints, it is important to use a set of
drawing conventions as shown in Fig. 2.9. For example, a dot connected to
some activity A means that “A occurs” and is always associated to some kind
of connection, a line without some arrow means “occurs at some point in
time,” an arrow implies some ordering relation, two short vertical lines depict
a negation, etc. Note that Fig. 2.9 also shows the response(A,A1 ,A2 , . . . ,AN)
constraint described earlier, i.e., A is followed by at least one of its successors.

2.3.3 The amazon.com Example in DecSerFlow

In this subsection, we revisit the amazon.com example to show how DecSer-
Flow language can be used to model services. For this purpose, we will model

N..M

A

On top the lower -bound (N) and
upper-bound (M) are spec ified.

A B

The dot shows how to read the constraint,
i.e., it means “suppose that A occurs”.

The type of connection describes the type of constraint (in
this case “existence response”) and should be interpreted
depending on the location of the dot.

If A occurs, then also B should occur (at any
time), i.e.,

A B

Two dots, i.e., read the “existence response” constraint
from both sides, i.e.,

A B

The arrow should be interpreted as “is followed
by” or “is preceded by” (in this case both).

A B

The negation symbol inverses the meaning of the
connection, i.e., in this case “is NOT followed by”
and “is NOT preceded by”.

A

AN

A1

A2

Most of the binary constraints
can be extended to constraints
involving an arbitrary number of
activities.

...

Fig. 2.9. Explanation of the graphical notation

2 Specifying and Monitoring Service Flows 33

the customer service using existence, relation, and negation formulas. In this
way, we will use the defined templates for formulas, apply them to activities
from our example and thus create real constraints in our DecSerFlow model.
In addition to this model of a single service, we will also show how the com-
munication between services can be presented with DecSerFlow by modeling
the communication of the customer service with other services. We start by
removing all arcs and places from the example model. This results in an ini-
tial DecSerFlow model populated only by unconnected activities. Next, we
create necessary constraints for the customer. Adding constraints to the rest
of the model is straightforward and easy but not necessary for illustrating the
DecSerFlow language.

Figure 2.10 shows the new model with DecSerFlow constraints for the
customer. We added existence constraints for all activities which can be seen
as cardinality specifications above activities. Activity place c order has to
be executed exactly one time. Activities rec acc and rec decl can be executed
zero or one time, depending on the reply of the bookstore. Similarly, activities
rec book, rec bill, and pay can be executed at most one time.

Every occurrence of place c order is eventually followed by at least one
occurrence of rec acc or rec decl, as indicated by the non-binary relationship
also shown in Fig. 2.9. However, it is possible that both activities are executed,
and to prevent this we add the neg co existence constraint between activities
rec acc and rec decl. So far, we have managed to make sure that after activity
place c order one of the activities rec acc and rec decl will execute in the ser-
vice. One problem remains to be solved – we have to specify that none of the
activities rec acc and rec decl can be executed before activity place c order.
We achieve this by creating two precedence constraints: (1) the one between
the activities place c order and rec acc, making sure that activity rec acc can
be executed only after activity place c order was executed and (2) the one be-
tween activities place c order and rec decl, making sure that activity rec decl
can be executed only after activity place c order was executed. It is impor-
tant to note that the constraints related to place c order, rec acc, and rec decl
together form a “classical choice”. It may seem rather clumsy that four con-
straints are needed to model a simple choice. However, (1) the four constraints
can be merged into a single notation and LTL formula that can be re-used in
other diagrams and (2) it is a nice illustration of how procedural languages
like Petri nets and BPEL tend to overspecify things. In fact, in a classical
language one would not only implicitly specify four elementary constraints
but would typically need to specify the data conditions. In DecSerFlow one
can add these conditions, but one does not need to do so, i.e., one can drop
any of the four constraints involving place c order, rec acc, and rec decl and
still interpret the resulting set of constraints in a meaningful way.

The next decision to be made is the dependency between the activities
rec acc and rec book. In the old model, we had a clear sequence between these
two activities. However, due to some problems or errors in the bookstore
it might happen that, although the order was accepted (activity rec acc is

34 W.M.P. van der Aalst and M. Pesic

handle_c_orderhandle_c_order

place_b_order eval_b_order

b_accept
b_rejectdecide

c_accept

alt_publ

req_shipment

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

send_bill

handle_payment

c_reject

customer bookstore

publisher

shipper

res p
on

s erespo
nse

place_c_order
1

rec_acc
0..1

rec_decl
0..1

pay
0..1

rec_bill
0..1

rec_book
0..1

p
rec e

de
nce

pre
ce

de
nce

pre
ce

d
en

ce

e
xi

st
e

n
ce

_
re

sp
on

se

neg_co_existence

succession

succession

succession

precedence

precedence

succession

precedence

Fig. 2.10. DecSerFlow model

executed), the book does not arrive (activity rec book is not executed). How-
ever, we assume that the book will not arrive before the order was accepted.
The constraint precedence between the activities rec acc and rec book specifies
that activity rec book can be executed only after activity rec acc is executed.
The old model specified that the bill arrives after the book. This may not
be always true. Since the bill and the book are shipped by different services
through different channels, the order of their arrival might vary. For example,
it might happen that the shipper who sends the book is closer to the location

2 Specifying and Monitoring Service Flows 35

of the customer and the bookstore is on another continent, or the other way
around. In the first scenario the book will arrive before the bill, and in the
second one the bill will arrive before the book. Therefore, we choose not to cre-
ate an ordering constraint between the activities rec book and rec bill. Even
more, our DecSerFlow model accepts the error when the bill arrives even
without the book being sent. This could happen in the case of an error in
the bookstore when a declined order was archived as accepted, and the bill
was sent without the shipment of the book. However, we assume that every
bookstore that delivers a book, also sends a bill for the book. We specify this
with the existence response constraint between the rec book activity and the
rec bill activity. This constraint forces that if activity rec book is executed,
then activity rec bill must have been executed before or will be executed after
activity rec book. Thus, if the execution of activity rec book exists, then the
execution of activity rec bill also exists. The constraint precedence between
the activities rec bill and pay means that the customer will pay only after the
bill is received. However, after the bill is received the customer does not nec-
essarily pay, like in the old model. It might happen that the received book was
not the one that was ordered or it was damaged. In these cases, the customer
can decide not to pay the bill.

Besides for the modeling of a single service, DecSerFlow language can as
well be used to model the communication between services. In Fig. 2.10, we
can see how constraints specify the communication of the customer with the
bookstore and the shipper. First, the succession constraint between activities
place c order and handle c order specifies that after activity place c order ac-
tivity handle c order has to be executed, and that activity handle c order can
be executed only after activity place c order. This means that every order of
a customer will be handled in the bookstore, but the bookstore will handle
the order only after it is placed. The same holds (constraint succession) for
the pairs of activities (c accept, rec acc), (c reject, rec decl), and (pay, han-
dle payment). The relations between the pairs of activities (ship, rec book)
and (send bill, rec bill) are more relaxed than the previous relations. These
two relations are not succession, but precedence. We can only specify that
the book will be received after it is sent, but we cannot claim that the book
that was sent will indeed be received. It might happen that the shipment is
lost or destroyed before the customer receives the book. The same holds for
the bill. Because of this, we create the two precedence constraints. The first
precedence constraint is between activity ship and rec book to specify that
activity rec book can be executed only after activity ship was executed. The
second one is between the activities send bill and rec bill, according to which
activity rec bill can be executed only after activity send bill is executed.

Figure 2.10 shows how DecSerFlow language can be used to specify ser-
vices. While the old Petri-net model specified the strict sequential relations
between activities, with DecSerFlow we were able to create many different
relations between the activities in a more natural way. For the illustration, we
developed constraints only for the customer service and its communication

36 W.M.P. van der Aalst and M. Pesic

with other services, but developing of the rest of the model is as easy and
straightforward.

2.3.4 Mapping DecSerFlow Onto Automata

DecSerFlow can be used in many different ways. Like abstract BPEL it can be
used to specify services but now in a more declarative manner. However, like
executable BPEL we can also use it as an execution language. The DecSerFlow
language can be used as an execution language because it is based on LTL
expressions. Every constraint in a DecSerFlow model has both a graphical
representation and a corresponding parameterized LTL formula. The graphical
notation enables a user-friendly interface and masks the underlying formula.
The formula, written in LTL, captures the semantics of the constraint. The
core of a DecSerFlow model consists of a set of activities and a number of LTL
expressions that should all evaluate to true at the end of the model execution.

Every LTL formula can be translated into an automaton [26]. Algorithms
for translating LTL expressions into automata are given in [40, 92]. The pos-
sibility to translate an LTL expression into an automaton and the algorithms
to do so have been extensively used in the field of model checking [26]. More-
over, the initial purpose for developing such algorithms comes from the need
to, given a model, check if certain properties hold in the model. The SPIN
tool [50] can be used for the simulation and exhaustive formal verification of
systems, and as a proof approximation system. SPIN uses an automata theo-
retic approach for the automatic verification of systems [86]. To use SPIN, the
system first has to be specified in the verification modeling language Promela
(PROcess MEta LAnguage) [50]. SPIN can verify the correctness of require-
ments, which are written as LTL formulas, in a Promela model using the
algorithms presented in [40, 48, 49, 51, 52, 86, 77, 91]. When checking the
correctness of an LTL formula, SPIN first creates an automaton for the nega-
tion of the formula. If the intersection of this automaton and the system model
automaton is empty, the model is correct with respect to the requirement de-
scribed in LTL. When the system model does not satisfy the LTL formula,
the intersection of the model and the automaton for the negated formula will
not be empty, i.e., this intersection is a counterexample that shows how the
formula is violated. The approach based on the negation of the formula is
quicker, because the SPIN runs verification until the first counterexample is
found. In the case of the formula itself, the verifier would have to check all
possible scenarios to prove that a counterexample does not exist.

Unlike SPIN, which generates an automaton for the negation of the for-
mula, we can execute a DecSerFlow model by constructing an automaton for
the formula itself. We will use a simple DecSerFlow model to show how pro-
cesses can be executed by translating LTL formulas into automata. Figure 2.11
shows a DecSerFlow model with three activities: curse, pray, and bless. The
only constraint in the model is the response constraint between activity curse
and activity pray, i.e., response(curse, pray) = �(curse ⇒ �(pray)). This

2 Specifying and Monitoring Service Flows 37

curse prayresponse bless

Fig. 2.11. A simple model in DecSerFlow

constraint specifies that if a person curses, she/he should eventually pray af-
ter this. Note that there is no restriction on the execution of the activities
pray and bless. There are no existence constraints in this model, because all
three activities can be executed an arbitrary number of times.

Using the example depicted in Fig. 2.11, we briefly show the mapping of
LTL formulas onto automata [40], which is used for execution of DecSerFlow
models. Automata consists of states and transitions. By executing activities
of DecSerFlow model, we fire transitions and thus change state of the related
automaton. Automaton can be in an accepting or not-accepting state. If the
automaton is in an accepting state after executing a certain trace (of DecSer-
Flow activities), the trace fulfills the related LTL formula. If the automaton
is not in an accepting state after executing a certain trace, the trace violates
the related LTL formula. Automata created by the algorithm presented in
[40] deal with infinite traces and cannot be used for execution of finite traces
like DecSerFlow traces. Therefore, a variation of this algorithm that enables
work with finite traces is used [41]. A more detailed introduction to automata
theory and the creation of Büchi automata from LTL formulas is out of scope
of this article and we refer the interested reader to [26, 40, 41, 48].

Figure 2.12 shows a graph representation of the automaton which is gen-
erated for the response constraint [40].2 Automaton states are represented as
nodes, and transitions as edges. An initial state is represented by an incoming
edge with no source node. An accepting state is represented as a node with a
double-lined border. The automaton in Fig. 2.12 has two states: p1 and p2.
State p1 is both the initial and accepting state. Note that such automaton
can also be generated for a DecSerFlow model with multiple constraints, i.e.,
for more than one LTL formula, by constructing one big LTL formula as a
conjunction of each of the constraints.

p2p1 p2

bless

pray pray

curse curse,bless

Fig. 2.12. Automaton for the formula response

2 Note that the generated automaton is a non-deterministic automaton. For reasons
of simplicity, we use a deterministic automaton with the same results.

38 W.M.P. van der Aalst and M. Pesic

Note that for illustration purposes, we only show a simplified automaton
in Fig. 2.12. Any LTL expression is, actually, translated into a automaton,
i.e, a non-deterministic automaton for infinite words. An automaton is deter-
ministic if in each state there is exactly one transition for each possible input.
In case of a deterministic automaton, we can simply change the state of the
automata when executing an activity. To check the correctness of the execu-
tion, we check if the current state is an accepting one. In non-deterministic
automata, there can be multiple transitions from a given state for a given
possible input. In case of a DecSerFlow model, the fact that we are deal-
ing with non-deterministic automata means that executing an activity might
transfer an automaton to more that one next state—a set of possible states.
To check the correctness of the execution, we need to check if the current set
of possible states contains at least one accepting state. Another issue when
executing automata for DecSerFlow models is the fact that we assume that
every execution will be completed at some point of time, i.e., an execution
of a DecSerFlow model is a finite one. The original algorithm for creating
automata from LTL expressions generates automata for infinite words, i.e.,
for infinite executions [40]. That creates problems because the criteria for de-
ciding which states are accepting are different for finite and infinite words.
Therefore, we use a modified version of the original algorithm [41], which was
constructed for verification of finite software traces. We use the Java PathEx-
plorer (JPAX), a runtime verification tool, as a basis [41]. The algorithm in
JPAX assumes that the system will start the execution, and does not consider
empty traces. To allow an empty execution of a DecSerFlow model, we add an
invisible activity init and a constraint initiate that specifies that activity init
has to be executed as the first activity in the model. We automatically exe-
cute activity init at the beginning of the enactment of a DecSerFlow model.
Another small complication is that in the JPAX implementation of [41], the
© operator is slightly weaker (if there is no next step, ©F evaluates to true
by definition). This can be modified easily by redefining ©F to (©F ∧ �F).

The mapping for LTL constraints onto automata allows for the guidance of
people, e.g., it is possible to show whether a constraint is in an accepting state
or not. Moreover, if the automaton of a constraint is not in an accepting state,
indicate whether it is still possible to reach an accepting state. To do this, we
can color the constraints green (in accepting state), yellow (accepting state
can still be reached), or red (accepting state cannot be reached anymore).
Using the automaton, some engine could even enforce a constraint, i.e., the
automaton could be used to drive a classical workflow engine [7].

2.3.5 Using DecSerFlow to Relate Global and Local Models

In the first part of the chapter, we distinguished between global and local
models. In the global model, interactions are described from the viewpoint
of an external observer who oversees all interactions between all services.
Local models are used to specify, implement, or configure particular services.

2 Specifying and Monitoring Service Flows 39

Clearly, both types of models can be represented using DecSerFlow. Moreover,
as just shown, it is possible to construct an automaton to enact a DecSerFlow
specification. This seems particularly relevant for local models. As we will
see in the next section, both global and local models can be used for mon-
itoring services. For example, given a DecSerFlow specification we can also
check whether each party involved in a choreography actually sticks to the
rules agreed upon. The ProM framework offers the so-called “LTL-checker”
to support this (cf. Sect. 2.4.2). However, before focusing on the monitoring of
service flows, we briefly discuss the relevance of DecSerFlow in relating global
and local models.

Using DecSerFlow both global and local models can be mapped onto LTL
expressions and automata. This allows for a wide range of model checking
approaches. For example, it is possible to check if the constraints in the lo-
cal model are satisfied by the global model and vice versa. Note that the set
of activities in both models does not need to be the same. However, given
the logical nature of DecSerFlow this is not a problem. Also, note that the
different notions of inheritance of dynamic behavior can be used in this con-
text [2] (e.g., map activities onto τ actions). The only constraints that seem
problematic in this respect are chained relation formulas, i.e., chain response,
chain precedence, and chain succession. These use the “nexttime” (©F) op-
erator whose interpretation depends on the context, i.e., from a global per-
spective an activity in one service may be followed by an activity in another
service thus violating some “nexttime” constraint. Nevertheless, it seems that
the LTL foundation of DecSerFlow offers a solid basis for comparing global
and local models and generating templates for local models from some parti-
tioned global model.

2.4 Monitoring Service Flows

DecSerFlow can be used to create both local and global models. As shown
in the previous section, these models can be used to specify a (part of some)
service flow and to enact it. In this section, we show that DecSerFlow can also
be used in the context of monitoring service flows.

In a service-oriented architecture, and also in classical enterprise systems,
a variety of events (e.g., messages being sent and received) are being logged.
This information can be used for process mining purposes, i.e., based on some
event log some knowledge is extracted. In the context of service flows an
obvious starting point is the interception of messages exchanged between the
various services. For example, SOAP messages can be recorded using TCP
Tunneling techniques [6] or, if middleware solutions such as IBM’s Websphere
are used, different events are logged in a structured manner [73]. Although
possible, it is typically not easy to link events (e.g., SOAP messages) to process
instances (cases) and activities. However, as pointed out by many researchers,
the problem of correlating messages needs to be addressed anyway. Hence, in

40 W.M.P. van der Aalst and M. Pesic

the remainder, we assume that it is possible to obtain an event log where each
event can be linked to some process instance and some activity identifier.

2.4.1 Classification of Process Mining

Assuming that we are able to monitor activities and/or messages being ex-
changed, a wide range of process mining techniques comes into reach. Before
we focus on the relation between DecSerFlow and process mining, we provide
a basic classification of process mining approaches. This classification is based
on whether there is an a priori model (e.g., a DecSerFlow specification) and,
if so, how it is used.

• Discovery: There is no a priori model, i.e., based on an event log some
model is constructed. For example, using the α algorithm [15] a process
model can be discovered based on low-level events. There exist many tech-
niques to automatically construct process models (e.g., in terms of a Petri
net) based on some event log [15, 17, 27, 28, 89]. Recently, process mining
research also started to target the other perspectives (e.g., data, resources,
time, etc.). For example, the technique described in [11] can be used to
construct a social network.

• Conformance: There is an a priori model. This model is compared with
the event log, and discrepancies between the log and the model are ana-
lyzed. For example, there may be a process model indicating that purchase
orders of more than 1 million require two checks. Another example is the
checking of the so-called “four-eyes” principle. Conformance checking may
be used to detect deviations, to locate and explain these deviations, and to
measure the severity of these deviations. An example is the conformance
checker described in [79] which compares the event log with some a priori
process model expressed in terms of a Petri net.

• Extension: There is an a priori model. This model is extended with a new
aspect or perspective, i.e., the goal is not to check conformance but to
enrich the model. An example is the extension of a process model with
performance data, i.e., some a priori process model is used to project the
bottlenecks on. Another example is the decision miner described in [80]
which takes an a priori process model and analyzes every choice in the
process model. For each choice the event log is consulted to see which
information is typically available the moment the choice is made. Then
classical data mining techniques are used to see which data elements in-
fluence the choice. As a result, a decision tree is generated for each choice
in the process.

Figure 2.13 illustrates the classification just given in the context of DecSer-
Flow. The figure shows different web services together realizing a service flow.
A DecSerFlow can be used to specify the whole service flow (global model)
or individual services (local models). As shown in Fig. 2.13, we assume that
we are able to record events which are stored on some event log. Given such

2 Specifying and Monitoring Service Flows 41

web servicesservice flow

DecSerFlow
model

event
logs

specifies
global model

discovery

records
events, e.g.,

via SOAP
messages

specifies/
implements
local model

supports/
controls

extension

conformance

Fig. 2.13. Overview of the various process mining approaches related to DecSerFlow

an event log, the three types of process mining (discovery, conformance, and
extension) become possible.

Discovery in the context of DecSerFlow would mean that, based on the
event log, we discover a DecSerFlow model, i.e., by analyzing the log different
constraints are discovered. For example, if an activity is always followed by
another, this can be easily be deduced from the log. Currently, there exist
many process discovery approaches [15, 17, 27, 28, 89]. Although none of
them is tailored toward DecSerFlow, it is easy to modify these to yield a
(partial) DecSerFlow model. Note that ordering relations discovered by the α
algorithm [15] can easily be visualized in DecSerFlow.

Conformance checking requires an a priori DecSerFlow model, e.g., a global
model showing the overall service flow. This model can easily be compared
with the event logs, i.e., each constraint in the DecSerFlow specification is
mapped onto an LTL expression and it is easy to check whether the LTL ex-
pression holds for a particular process instance. Hence it is possible to classify
process instances into conforming or non-conforming for each constraint. This
way it is possible to show where and how frequent deviations occur. More-
over, the (non-)conforming process instances can be investigated further using
other process mining techniques, e.g., to discover the typical features of cases
that deviate.

The third type of process mining also requires an a priori DecSerFlow
model. However, now the model is extended with complementary information.
For example, performance data are projected onto the DecSerFlow model or
decision trees are generated for decision points in the process.

As suggested by Fig. 2.13, DecSerFlow can be used in combination
with various process mining approaches. It is important to note that the

42 W.M.P. van der Aalst and M. Pesic

autonomous nature of services, the declarative style of modeling (avoiding any
overspecification), and process mining fit well together. The autonomous na-
ture of services allows services to operate relatively independently. In many
cases it is not possible to enforce control. At best one can agree on a way
of working (the global model) and hope that the other parties involved will
operate as promised. However, since it is often not possible to control other
services, one can only observe, detect deviations, and monitor performance.

In the remainder of this section, we discuss some of the features of ProM
[29]: a process mining framework offering plug-ins for discovery, conformance,
and extension.

2.4.2 Linking DecSerFlow to the ProM LTL Checker

The ProM framework [29] is an open-source infrastructure for process mining
techniques. ProM is available as open source software (under the Common
Public License, CPL) and can be downloaded from [75]. It has been applied to
various real-life processes, ranging from administrative processes and health-
care processes to the logs of complex machines and service processes. ProM is
plug-able, i.e., people can plug-in new pieces of functionality. Some of the plug-
ins are related to model transformations and various forms of model analysis
(e.g., verification of soundness, analysis of deadlocks, invariants, reductions,
etc.). Most of the plug-ins, however, focus on a particular process mining
technique. Currently, there are more than 100 plug-ins of which about half
are mining and analysis plug-ins.

Starting point for ProM are event logs in MXML format. The MXML
format is system independent and using ProMimport it is possible to extract
logs from a wide variety of systems, i.e., systems based on products such
as SAP, Peoplesoft, Staffware, FLOWer, WebSphere, YAWL, ADEPT, ARIS
PPM, Caramba, InConcert, Oracle BPEL, Outlook, etc. and tailor-made sys-
tems. It is also possible to load and/or save a variety of models, e.g., EPCs
(i.e., event-driven process chains in different formats, e.g., ARIS, ARIS PPM,
EPML, and Visio), BPEL (e.g., Oracle BPEL, Websphere), YAWL, Petri nets
(using different formats, e.g., PNML, TPN, etc.), CPNs (i.e., colored Petri nets
as supported by CPN Tools), and Protos.

One of the more than 100 plug-ins offered by ProM is the so-called “LTL
checker” [3]. The LTL checker offers an environment to provide parameters for
predefined parameterized LTL expressions and check these expressions with
respect to some event log in MXML format. For each process instance, it is
determined whether the LTL expression holds or not, i.e., given an LTL expres-
sion all process instances are partitioned into two classes: conforming and non-
conforming. We have predefined 60 typical properties one may want to verify
using the LTL checker (e.g., the 4-eyes principle) [3]. These can be used with-
out any knowledge of the LTL language. In addition the user can define new
sets of properties. These properties may be application specific and may refer
to data. Each property is specified in terms of an LTL expression. Formulas

2 Specifying and Monitoring Service Flows 43

may be parameterized, are reusable, and carry explanations in HTML format.
This way both experts and novices may use the LTL checker.

Recall that each model element of the DecSerFlow is mapped onto an LTL
expression. Therefore, it is possible to use the ProM LTL checker to assess the
conformance of a DecSerFlow model in the context of a real log. All notations
defined in Figs. 2.6, 2.7, and 2.8 map directly onto LTL expressions that can
be stored and loaded into ProM. Currently, we do not yet provide a direct
connection between the DecSerFlow editor and the ProM LTL checker. Hence,
it is not yet possible to visualize violations on the DecSerFlow editor. However,
it is clear that such integration is possible.

2.4.3 Other Process Mining Techniques in ProM

Clearly, the LTL checker is one of the most relevant plug-ins of ProM in the
context of DecSerFlow. However, the LTL checker plug-in is only one of more
than 100 plug-ins. In this subsection, we show some other plug-ins relevant
to process mining of service flows. First, we show some plug-ins related to
process discovery. Then, we show the ProM conformance checker that has
been successfully used in the context of (BPEL) service flows.

The basic idea of process discovery is to derive a model from some event
log. This model is typically a process model. However, there are also techniques
to discover organization models, social networks, and more data-oriented mod-
els such as decision trees. To illustrate the idea of process mining consider the
log shown in Table 2.5. Such a log could have been obtained by monitoring
the SOAP messages the shipper service in Fig. 2.3 exchanges with it its en-
vironment. Note that we do not show the content of the message. Moreover,
we do not show additional header information (e.g., information about sender
and receiver).

Using process mining tools such as ProM, it is possible to discover a process
model as shown in Fig. 2.14. The figure shows the result of three alternative
process discovery algorithms: (1) the α miner shows the result in terms of a
Petri net, (2) the multi-phase miner shows the result in terms of an EPC,
and (3) the heuristics miner shows the result in terms of a heuristics net.3

They are all able to discover the shipper service as specified in Fig. 2.3. Note
that Fig. 2.14 shows the names of the messages rather than the activities
because this is the information shown in Table 2.5. Note that the algorithms
used in Fig. 2.14 can easily be modified to generate DecSerFlow models, i.e.,
constraints imposed by, e.g., a Petri net can be mapped onto DecSerFlow
notations.

For process discovery, we do not assume that there is some a priori model,
i.e., without any initial bias we try to find the actual process by analyzing some
event log. However, in many applications there is some a priori model. For

3 Note that ProM allows for the mapping from one format to the other if needed.
Fig. 2.14 shows the native format of each of the three plug-ins.

44 W.M.P. van der Aalst and M. Pesic

Table 2.5. An event log

case identifier activity identifier time data

order290166 s request 2006-04-02T08:38:00 ...

order090504 s request 2006-04-03T12:33:00 ...

order290166 s confirm 2006-04-07T23:55:00 ...

order261066 s request 2006-04-15T06:43:00 ...

order160598 s request 2006-04-19T20:13:00 ...

order290166 book to s 2006-05-10T07:31:00 ...

order290166 book to c 2006-05-12T08:43:00 ...

order160598 s confirm 2006-05-20T07:01:00 ...

order210201 s request 2006-05-22T09:20:00 ...

order261066 s confirm 2006-06-08T10:29:00 ...

order290166 notification 2006-06-13T14:44:00 ...

order160598 book to s 2006-06-14T16:56:00 ...

order261066 book to s 2006-07-08T18:01:00 ...

order090504 s decline 2006-07-12T09:00:00 ...

order261066 book to c 2006-08-17T11:22:00 ...

order210201 s decline 2006-08-18T12:38:00 ...

order160598 book to c 2006-08-25T20:42:00 ...

order261066 notification 2006-09-27T09:51:00 ...

order160598 notification 2006-09-30T10:09:00 ...

Fig. 2.14. The output of three process discovery algorithms supported by ProM
when analyzing the event log shown in Table 2.5

2 Specifying and Monitoring Service Flows 45

example, we already showed that ProM’s LTL checker can be used to check
the conformance of a DecSerFlow model. However, ProM is not limited to
DecSerFlow and can also be used to check the conformance of a specification
in terms of abstract BPEL, EPC, or Petri nets. To illustrate this, assume that
we add an additional process instance to Table 2.5 where the notification is
sent before the book is shipped to the customer (i.e., in Fig. 2.3 activity notify
takes place before activity ship).

If we assume there is some a priori model in terms of a Petri net, we
can use the conformance checker plug-in of ProM. Figure 2.15 shows the
result of this analysis (top-right corner). It shows that the fitness is 0.962 and
also highlights the part of the model where the deviation occurs (the place
connecting ship/book to c and notify/notification). An event log and Petri net
“fit” if the Petri net can generate each trace in the log. In other words, the
Petri net describing the choreography should be able to “parse” every event
sequence observed by monitoring, e.g., SOAP messages. In [79] it is shown
that it is possible to quantify fitness as a measure between 0 and 1. The
intuitive meaning is that a fitness close to 1 means that all observed events
can be explained by the model (in the example about 96 percent). However,
the precise meaning is more involved since tokens can remain in the network
and not all transactions in the model need to be logged [79].

Unfortunately, a good fitness does not only imply conformance, e.g., it
is easy to construct Petri nets that are able to parse any event log (cor-
responding to a DecSerFlow model without any constraints, i.e., a model
described by true). Although such Petri nets have a fitness of 1 they do

Fig. 2.15. Both the conformance checker plug-in and the LTL checker plug-in are
able to detect the deviation

46 W.M.P. van der Aalst and M. Pesic

not provide meaningful information. Therefore, we use a second dimension:
appropriateness. Appropriateness tries to capture the idea of Occam’s razor,
i.e., “one should not increase, beyond what is necessary, the number of entities
required to explain anything.” Appropriateness tries to answer the following
question: “Does the model describe the observed process in a suitable way”
and can it be evaluated from both a structural and a behavioral perspective?
To explain the concept in more detail, it is important to note that there are
two extreme models that have a fitness of 1. First of all, there is a model
that starts with a choice and then has one path per process instance, i.e., the
model simply enumerates all possibilities. This model is “overfitting” since it
is simply another representation of the log, i.e., it does not allow for more
sequences than those that were observed in the log. Therefore, it does not
offer a better understanding than what can be obtained by just looking at the
aggregated log. Secondly, there is the so-called “flower Petri net” [79] that can
parse any log, i.e., there is one state in which all activities are enabled. This
model is “underfitting” since it contains no information about the ordering of
activities. In [79] it is shown that a “good” process model should somehow be
minimal in structure to clearly reflect the described behavior, referred to as
structural appropriateness, and minimal in behavior in order to represent as
closely as possible what actually takes place, which will be called behavioral
appropriateness. The ProM conformance checker supports both the notion of
fitness and the various notions of appropriateness.

In [6] we have demonstrated that any (abstract) BPEL specification can
automatically be mapped onto a Petri net that can be used for conformance
checking using ProM’s conformance checker.

Figure 2.15 also shows the LTL checker plug-in while checking the response
property on book to c and notification. This check shows that indeed there is
one process instance where activity notify takes place before activity ship.
This example shows that it is possible to compare a DecSerFlow specification
and an event log and to locate the deviations.

2.5 Related Work

Since the early 1990s, workflow technology has matured [39] and several text-
books have been published, e.g., [7, 30]. Most of the available systems use
some proprietary process modeling language and, even if systems claim to
support some “standard,” there are often all kinds of system-specific exten-
sions and limitations. Petri nets have been used not only for the modeling
of workflows [7, 25, 30] but also for the orchestration of web services [65].
Like most proprietary languages and standards, Petri nets are highly proce-
dural. This is the reason why we introduced the DecSerFlow language in this
chapter.

Several attempts have been made to capture the behavior of BPEL [18] in
some formal way. Some advocate the use of finite state machines [35], others

2 Specifying and Monitoring Service Flows 47

process algebras [34], and yet others abstract state machines [33] or Petri nets
[71, 62, 83, 87]. (See [71] for a more detailed literature review.) For a detailed
analysis of BPEL based on the workflow patterns [8], we refer to [90]. Few
researchers have explored the other direction, e.g., translating (Colored) Petri
nets into BPEL [9].

The work presented in this chapter is also related to the choreography
language “Let’s Dance” [94, 95]. Let’s Dance is a language for modeling ser-
vice interactions and their flow dependencies. The focus of Let’s Dance is
not so much on the process perspective (although a process modeling nota-
tion is added); instead, it focuses on interaction patterns and mechanisms.
Similar to DecSerFlow it is positioned as an alternative to the Web Services
Choreography Description Language (WS-CDL) [54].

Clearly, this chapter builds on earlier work on process discovery, i.e., the
extraction of knowledge from event logs (e.g., process models [15, 17, 27, 37,
38, 47] or social networks [12]). For example, the well-known α algorithm [15]
can derive a Petri net from an event log. In [6] we used the conformance check-
ing techniques described in [79] and implemented in our ProM framework [29]
and applied this approach to SOAP messages generated from Oracle BPEL.
The notion of conformance has also been discussed in the context of security
[10], business alignment [1], and genetic mining [66].

It is impossible to give a complete overview of process mining here. There-
fore, we refer to a special issue of Computers in Industry on process mining [14]
and a survey paper [13]. Process mining can be seen in the broader context
of Business (Process) Intelligence (BPI) and Business Activity Monitoring
(BAM). In [43, 44, 81] a BPI toolset on top of HP’s Process Manager is de-
scribed. The BPI toolset includes the so-called “BPI Process Mining Engine.”
In [69] Zur Muehlen describes the PISA tool which can be used to extract
performance metrics from workflow logs. Similar diagnostics are provided by
the ARIS Process Performance Manager (PPM) [53]. The latter tool is com-
mercially available and a customized version of PPM is the Staffware Process
Monitor (SPM) [85] which is tailored toward mining Staffware logs.

The need for monitoring web services has been raised by other researchers.
For example, several research groups have been experimenting with adding
monitor facilities via SOAP monitors in Axis [19]. Reference [56] introduces
an assertion language for expressing business rules and a framework to plan
and monitor the execution of these rules. Reference [21] uses a monitoring
approach based on BPEL. Monitors are defined as additional services and
linked to the original service composition. Another framework for monitor-
ing the compliance of systems composed of web-services is proposed in [60].
This approach uses event calculus to specify requirements. Reference [59] is
an approach based on WS-Agreement defining the Crona framework for the
creation and monitoring of agreements. In [42, 31], Dustdar et al. discuss the
concept of web services mining and envision various levels (web service opera-
tions, interactions, and workflows) and approaches. Our approach fits in their
framework and shows that web-services mining is indeed possible. In [73] a

48 W.M.P. van der Aalst and M. Pesic

tool named the Web Service Navigator is presented to visualize the execution
of web services based on SOAP messages. The authors use message sequence
diagrams and graph-based representations of the system topology. Note that
also in [5] we suggested to focus less on languages like BPEL and more on
questions related to the monitoring of web services. In [6] we showed that it
is possible to translate abstract BPEL into Petri nets and SOAP messages
exchanged between services into event logs represented using the MXML for-
mat (i.e., the format used by our process mining tools). As a result, we could
demonstrate that it is possible to compare the modeled behavior (in terms of
a Petri net) and the observed behavior (in some event log). We used Oracle
BPEL and demonstrated that it is possible to monitor SOAP messages using
TCP Tunneling technique [6]. This comparison could be used for monitor-
ing deviations and to analyze the most frequently used parts of the service/
choreography.

This chapter discussed the idea of conformance checking by comparing the
observed behavior recorded in logs with some predefined model. This could
be termed “run-time conformance.” However, it is also possible to address
the issue of design-time conformance, i.e., comparing different process models
before enactment. For example, one could compare a specification in abstract
BPEL with an implementation using executable BPEL. Similarly, one could
check at design-time the compatibility of different services. Here one can use
the inheritance notions [2] explored in the context of workflow management
and implemented in Woflan [88]. Axel Martens et al. [62, 63, 64, 82] have
explored questions related to design-time conformance and compatibility us-
ing a Petri-net-based approach. For example, [63] focuses on the problem
of consistency between executable and abstract processes and [64] presents
an approach where for a given composite service the required other services
are generated. Also related is [36] where Message Sequence Charts (MSCs)
are compiled into the “Finite State Process” notation to describe and reason
about web service compositions.

2.6 Conclusion

This chapter focused on service flows from the viewpoint of both specifica-
tion/enactment and monitoring.

First, we discussed more traditional approaches based on Petri nets and
BPEL. We showed that Petri nets provide a nice graphical representation
and a wide variety of analysis techniques, and mentioned that BPEL has
strong industry support making it a viable execution platform. We also showed
that there are mappings from BPEL to Petri net for the purpose of analysis
(cf. BPEL2PNML and WofBPEL [72]). Moreover, it is possible to translate
graphical languages such a Petri nets to BPEL (cf. WorkflowNet2BPEL4WS
[55]). Using such techniques, it is also possible to translate languages such as
EPCs, BPMN, etc. to BPEL.

2 Specifying and Monitoring Service Flows 49

Although the first author has been involved in the development of these
tools and these tools are mature enough to be applied in real-life applications,
both Petri nets and BPEL are rather procedural and this does not fit well
with the autonomous nature of services. Therefore, we proposed a new, more
declarative language, DecSerFlow. Although DecSerFlow is graphical, it is
grounded in temporal logic. It can be used for the enactment of processes, but
it is particularly suited for the specification of a single service or a complete
choreography. In the last part of this chapter, the focus shifted from languages
to process mining. We showed that the combination of DecSerFlow and process
mining (conformance checking in particular) is useful in the setting of web
services. Moreover, we showed that DecSerFlow can be combined well with
the conformance-checking techniques currently implemented in ProM (cf. the
LTL checker plug-in).

DecSerFlow also seems to be an interesting proposal for linking global and
local models. If both the global model (i.e., the view on the process as seen by
some external observer) and one or more local models (i.e., the specification
or implementation of a single service or service composition) are modeled
in DecSerFlow, standard model checking techniques can be used to compare
both.

To conclude, we would like to mention that all of the presented analysis
and translation tools can be downloaded from various web sites: [75] (ProM),
[20] (BPEL2PNML and WofBPEL), and [93] (WorkflowNet2BPEL4WS).

References

1. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool
for Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings
of the 5th Workshop on Business Process Modeling, Development and Support
(BPMDS’04), volume 2 of Caise’04 Workshops, pages 138–145. Riga Technical
University, Latvia, 2004.

2. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270
(1-2):125–203, 2002.

3. W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining
and Verification of Properties: An Approach based on Temporal Logic. In
R. Meersman and Z. Tari et al., editors, On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE: OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE 2005, volume 3760 of Lecture Notes
in Computer Science, pages 130–147. Springer-Verlag, Berlin, 2005.

4. W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Web Service Com-
position Languages: Old Wine in New Bottles? In G. Chroust and C. Hofer,
editors, Proceeding of the 29th EUROMICRO Conference: New Waves in Sys-
tem Architecture, pages 298–305. IEEE Computer Society, Los Alamitos, CA,
2003.

5. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, H.M.W.
Verbeek, and P. Wohed. Life After BPEL? In M. Bravetti, L. Kloul, and

50 W.M.P. van der Aalst and M. Pesic

G. Zavattaro, editors, WS-FM 2005, volume 3670 of Lecture Notes in Computer
Science, pages 35–50. Springer-Verlag, Berlin, 2005.

6. W.M.P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H.M.W. Ver-
beek. Choreography Conformance Checking: An Approach based on BPEL
and Petri Nets (extended version). BPM Center Report BPM-05-25, BPMcen-
ter.org, 2005.

7. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT press, Cambridge, MA, 2002.

8. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

9. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the
Way: From Requirements via Colored Workflow Nets to a BPEL Implemen-
tation of a New Bank System Paper. In R. Meersman and Z. Tari et al.,
editors, On the Move to Meaningful Internet Systems 2005: CoopIS, DOA,
and ODBASE: OTM Confederated International Conferences, CoopIS, DOA,
and ODBASE 2005, volume 3760 of Lecture Notes in Computer Science, pages
22–39. Springer-Verlag, Berlin, 2005.

10. W.M.P. van der Aalst and A.K.A. de Medeiros. Process Mining and Security:
Detecting Anomalous Process Executions and Checking Process Conformance.
In N. Busi, R. Gorrieri, and F. Martinelli, editors, Second International Work-
shop on Security Issues with Petri Nets and other Computational Models (WISP
2004), pages 69–84. STAR, Servizio Tipografico Area della Ricerca, CNR Pisa,
Italy, 2004.

11. W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks
from Event Logs. Computer Supported Cooperative work, 14(6):549–593, 2005.

12. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Inter-
action Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, ed-
itors, International Conference on Business Process Management (BPM 2004),
volume 3080 of Lecture Notes in Computer Science, pages 244–260. Springer-
Verlag, Berlin, 2004.

13. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches.
Data and Knowledge Engineering, 47(2):237–267, 2003.

14. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Spe-
cial Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science
Publishers, Amsterdam, 2004.

15. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

16. W.M.P. van der Aalst and M. Weske. The P2P approach to Interorganizational
Workflows. In K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings
of the 13th International Conference on Advanced Information Systems Engi-
neering (CAiSE’01), volume 2068 of Lecture Notes in Computer Science, pages
140–156. Springer-Verlag, Berlin, 2001.

17. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from
Workflow Logs. In Sixth International Conference on Extending Database Tech-
nology, pages 469–483, 1998.

18. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business

2 Specifying and Monitoring Service Flows 51

Process Execution Language for Web Services, Version 1.1. Standards proposal
by BEA Systems, International Business Machines Corporation, and Microsoft
Corporation, 2003.

19. Apache Axis, http://ws.apache.org/axis/.
20. BABEL, Expressiveness Comparison and Interchange Facilitation Between

Business Process Execution Languages, http://www.bpm.fit.qut.edu.au/

projects/babel/tools/.
21. L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Composed Services.

In ICSOC ’04: Proceedings of the 2nd International Conference on Service Ori-
ented Computing, pages 193–202, New York, NY, USA, 2004. ACM Press.

22. T. Belwood and et al. UDDI Version 3.0. http://uddi.org/pubs/uddi_v3.

htm, 2000.
23. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen,

S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1. http:

//www.w3.org/TR/soap, 2000.
24. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services

Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.
25. P. Chrzastowski-Wachtel. A Top-down Petri Net Based Approach for Dy-

namic Workflow Modeling. In W.M.P. van der Aalst, A.H.M. ter Hofstede,
and M. Weske, editors, International Conference on Business Process Manage-
ment (BPM 2003), volume 2678 of Lecture Notes in Computer Science, pages
336–353. Springer-Verlag, Berlin, 2003.

26. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts and London, UK, 1999.

27. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

28. A. Datta. Automating the Discovery of As-Is Business Process Models: Prob-
abilistic and Algorithmic Approaches. Information Systems Research, 9(3):
275–301, 1998.

29. B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Wei-
jters, and W.M.P. van der Aalst. The ProM framework: A New Era in Process
Mining Tool Support. In G. Ciardo and P. Darondeau, editors, Application and
Theory of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science,
pages 444–454. Springer-Verlag, Berlin, 2005.

30. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware In-
formation Systems: Bridging People and Software through Process Technology.
Wiley & Sons, 2005.

31. S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining.
Technical Report TUV-1841-2004-16, Information Systems Institute, Vienna
University of Technology, Wien, Austria, 2004.

32. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in Property Specifi-
cations for Finite-State Verification. In ICSE ’99: Proceedings of the 21st in-
ternational conference on Software engineering, pages 411–420, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

33. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative
control flow. In D. Beauquier and E. Börger and A. Slissenko, editor, Proc.
12th International Workshop on Abstract State Machines, pages 131–151, Paris,
France, March 2005.

52 W.M.P. van der Aalst and M. Pesic

34. A. Ferrara. Web services: A process algebra approach. In Proceedings of the
2nd international conference on Service oriented computing, pages 242–251,
New York, NY, USA, 2004. ACM Press.

35. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS
business collaborations. In K. Bauknecht, M. Bichler, and B. Proll, editors,
Proceedings of the 5th International Conference on Electronic Commerce and
Web Technologies (EC-Web ’04), volume 3182 of Lecture Notes in Computer
Science, pages 79–94, Zaragoza, Spain, August 2004. Springer-Verlag, Berlin.

36. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web
Service Composition. In Proceedings of 18th IEEE International Conference
on Automated Software Engineering (ASE), pages 152–161, Montreal, Canada,
October 2003.

37. W. Gaaloul, S. Bhiri, and C. Godart. Discovering Workflow Transactional
Behavior from Event-Based Log. In R. Meersman, Z. Tari, W.M.P. van der
Aalst, C. Bussler, and A. Gal et al., editors, On the Move to Meaningful Internet
Systems 2004: CoopIS, DOA, and ODBASE: OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes
in Computer Science, pages 3–18, 2004.

38. W. Gaaloul and C. Godart. Mining Workflow Recovery from Event Based
Logs. In W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera,
editors, Business Process Management (BPM 2005), volume 3649, pages 169–
185. Springer-Verlag, Berlin, 2005.

39. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, 3:119–153, 1995.

40. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-The-Fly Auto-
matic Verification of Linear Temporal Logic. In Proceedings of the Fifteenth
IFIP WG6.1 International Symposium on Protocol Specification, Testing and
Verification XV, pages 3–18, London, UK, 1996. Chapman & Hall, Ltd.

41. D. Giannakopoulou and K. Havelund. Automata-based verification of tem-
poral properties on running programs. In ASE ’01: Proceedings of the 16th
IEEE international conference on Automated software engineering, page 412,
Washington, DC, USA, 2001. IEEE Computer Society.

42. R. Gombotz and S. Dustdar. On Web Services Mining. In M. Castellanos
and T. Weijters, editors, First International Workshop on Business Process
Intelligence (BPI’05), pages 58–70, Nancy, France, September 2005.

43. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan.
Business Process Intelligence. Computers in Industry, 53(3):321–343, 2004.

44. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Pro-
cess Quality through Exception Understanding, Prediction, and Prevention. In
P. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snod-
grass, editors, Proceedings of 27th International Conference on Very Large Data
Bases (VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

45. K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Proceed-
ings of the 16th IEEE International Conference on Automated Software Engi-
neering (ASE’01), pages 135–143. IEEE Computer Society Press, Providence,
2001.

46. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In
Proceedings of the 8th International Conference on Tools and Algorithms for the

2 Specifying and Monitoring Service Flows 53

Construction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture
Notes in Computer Science, pages 342–356. Springer-Verlag, Berlin, 2002.

47. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceed-
ings 11th European Conference on Machine Learning, volume 1810 of Lecture
Notes in Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

48. G.J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):
279–295, 1997.

49. G.J. Holzmann. An Analysis of Bitstate Hashing. Form. Methods Syst. Des.,
13(3):289–307, 1998.

50. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, Massachusetts, USA, 2003.

51. G.J. Holzmann and D. Peled. An Improvement in Formal Verification. In
FORTE 1994 Conference, Bern, Switzerland, 1994.

52. G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth-first search. In
The Spin Verification System, Proceedings of the 2nd Spin Workshop.), pages
23–32. American Mathematical Society, 1996.

53. IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, An-
alyze and Optimize Your Business Process Performance (whitepaper). IDS
Scheer, Saarbruecken, Gemany, http://www.ids-scheer.com, 2002.

54. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Ser-
vices Choreography Description Language, Version 1.0. W3C Working Draft
17-12-04, 2004.

55. K.B. Lassen and W.M.P. van der Aalst. WorkflowNet2BPEL4WS: A Tool
for Translating Unstructured Workflow Processes to Readable BPEL. BETA
Working Paper Series, WP 167, Eindhoven University of Technology, Eind-
hoven, 2006.

56. A. Lazovik, M. Aiello, and M. Papazoglou. Associating Assertions with Business
Processes and Monitoring their Execution. In ICSOC ’04: Proceedings of the
2nd International Conference on Service Oriented Computing, pages 94–104,
New York, NY, USA, 2004. ACM Press.

57. F. Leymann. Web Services Flow Language, Version 1.0, 2001.
58. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.

Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.
59. H. Ludwig, A. Dan, and R. Kearney. Crona: An Architecture and Library for

Creation and Monitoring of WS-agreements. In ICSOC ’04: Proceedings of
the 2nd International Conference on Service Oriented Computing, pages 65–74,
New York, NY, USA, 2004. ACM Press.

60. K. Mahbub and G. Spanoudakis. A Framework for Requirents Monitoring of
Service Based Systems. In ICSOC ’04: Proceedings of the 2nd International
Conference on Service Oriented Computing, pages 84–93, New York, NY, USA,
2004. ACM Press.

61. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1991.

62. A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli,
editor, Proceedings of the 8th International Conference on Fundamental Ap-
proaches to Software Engineering (FASE 2005), volume 3442 of Lecture Notes
in Computer Science, pages 19–33. Springer-Verlag, Berlin, 2005.

63. A. Martens. Consistency between executable and abstract processes. In Pro-
ceedings of International IEEE Conference on e-Technology, e-Commerce, and
e-Services (EEE’05), pages 60–67. IEEE Computer Society Press, 2005.

54 W.M.P. van der Aalst and M. Pesic

64. P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to
the SOA. In Proceedings of the 2nd South-East European Workshop on Formal
Methods 2005 (SEEFM05), Ohrid, Republic of Macedonia, 2005.

65. M. Mecella, F. Parisi-Presicce, and B. Pernici. Modeling E-service Orchestra-
tion through Petri Nets. In Proceedings of the Third International Workshop on
Technologies for E-Services, volume 2644 of Lecture Notes in Computer Science,
pages 38–47. Springer-Verlag, Berlin, 2002.

66. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Using
Genetic Algorithms to Mine Process Models: Representation, Operators and
Results. BETA Working Paper Series, WP 124, Eindhoven University of Tech-
nology, Eindhoven, 2004.

67. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK, 1999.

68. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin,
2004.

69. M. zur Mühlen and M. Rosemann. Workflow-based Process Monitoring and
Controlling - Technical and Organizational Issues. In R. Sprague, editor,
Proceedings of the 33rd Hawaii International Conference on System Science
(HICSS-33), pages 1–10. IEEE Computer Society Press, Los Alamitos, Califor-
nia, 2000.

70. OASIS Web Services Business Process Execution Language (WSBPEL)
TC, http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

wsbpel.
71. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede,

and H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-
BPEL. BPM Center Report BPM-05-15, BPMcenter.org, 2005.

72. C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas, and
A.H.M. ter Hofstede. WofBPEL: A Tool for Automated Analysis of BPEL
Processes. In B. Benatallah, F. Casati, and P. Traverso, editors, Proceedings of
Service-Oriented Computing (ICSOC 2005), volume 3826 of Lecture Notes in
Computer Science, pages 484–489. Springer-Verlag, Berlin, 2005.

73. W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J.F. Morar. Web
Services Navigator: Visualizing the Execution of Web Services. IBM Systems
Journal, 44(4):821–845, 2005.

74. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Annual Symposium on the Foundations of Computer Science, pages 46–57.
IEEE Computer Society Press, Providence, 1977.

75. Process Mining Home Page, http://www.processmining.org.
76. Process Modelling Group, http://process-modelling-group.org.
77. A. Puri and G.J. Holzmann. A Minimized automaton representation of reach-

able states. In Software Tools for Technology Transfer, volume 3. Springer-
Verlag, Berlin, 1993.

78. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1998.

79. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the
Fit and Appropriateness of Event Logs and Process Models. In C. Bussler et
al., editor, BPM 2005 Workshops (Workshop on Business Process Intelligence),

2 Specifying and Monitoring Service Flows 55

volume 3812 of Lecture Notes in Computer Science, pages 163–176. Springer-
Verlag, Berlin, 2006.

80. A. Rozinat and W.M.P. van der Aalst. Decision Mining in ProM. In S. Dustdar,
J.L. Faideiro, and A. Sheth, editors, International Conference on Business Pro-
cess Management (BPM 2006), volume 4102 of Lecture Notes in Computer
Science, pages 420–425. Springer-Verlag, Berlin, 2006.

81. M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process Cockpit.
In Proceedings of 28th International Conference on Very Large Data Bases
(VLDB’02), pages 880–883. Morgan Kaufmann, 2002.

82. B.H. Schlingloff, A. Martens, and K. Schmidt. Modeling and model checking
web services. Electronic Notes in Theoretical Computer Science: Issue on Logic
and Communication in Multi-Agent Systems, 126:3–26, mar 2005.

83. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s
thesis, Humboldt University, Berlin, Germany, 2004.

84. S. Thatte. XLANG Web Services for Business Process Design, 2001.
85. TIBCO. TIBCO Staffware Process Monitor (SPM). http://www.tibco.com,

2005.
86. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-

gram verification. In In Proceedings of the 1st Symposium on Logic in Computer
Science, pages 322–331, Cambridge, Massachusetts, USA, 1986.

87. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes us-
ing Petri Nets. In D. Marinescu, editor, Proceedings of the Second Interna-
tional Workshop on Applications of Petri Nets to Coordination, Workflow and
Business Process Management, pages 59–78. Florida International University,
Miami, Florida, USA, 2005.

88. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

89. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Mod-
els from Event-Based Data using Little Thumb. Integrated Computer-Aided
Engineering, 10(2):151–162, 2003.

90. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In I.Y.
Song, S.W. Liddle, T.W. Ling, and P. Scheuermann, editors, 22nd International
Conference on Conceptual Modeling (ER 2003), volume 2813 of Lecture Notes
in Computer Science, pages 200–215. Springer-Verlag, Berlin, 2003.

91. P. Wolper and D. Leroy. Reliable hashing without collision detection. In Proc.
5th Int. Conference on Computer Aided Verification, pages 59–70, 1993.

92. P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about Infinite Computation
Paths. In Proceedings of the 24th IEEE symposium on foundation of cumputer
science, pages 185–194, Tucson, Arizona, November 1983.

93. WorkflowNet2BPEL4WS, http://www.daimi.au.dk/~krell/

WorkflowNet2BPEL4WS/.
94. J.M. Zaha, A. Barros, M. Dumas, and A.H.M. ter Hofstede. Let’s Dance:

A Language for Service Behavior Modeling. QUT ePrints 4468, Faculty of
Information Technology, Queensland University of Technology, 2006.

95. J.M. Zaha, M. Dumas, A.H.M. ter Hofstede, A. Barros, and G. Dekker. Service
Interaction Modeling: Bridging Global and Local Views. QUT ePrints 4032,
Faculty of Information Technology, Queensland University of Technology, 2006.

3

Analyzing Conversations: Realizability,
Synchronizability, and Verification

Tevfik Bultan1, Xiang Fu2, and Jianwen Su1

1 Department of Computer Science, University of California, Santa Barbara, CA
93101, USA {bultan,su}@cs.ucsb.edu

2 School of Computer and Information Science, Georgia Southwestern State
University, 800 Wheatley Street, Americus, GA 31709, USA xfu@canes.gsw.edu

Abstract. Conversations provide an intuitive and simple model for analyzing in-
teractions among composite web services. A conversation is the global sequence
of messages exchanged among the peers participating in a composite web service.
Interactions in a composite web service can be analyzed by investigating the tem-
poral properties of its conversations. Conversations can be specified in a top-down
or bottom-up manner. In a top-down conversation specification, the set of conver-
sations is specified first, without specifying the individual behaviors of the peers. In
a bottom-up conversation specification, on the other hand, behavior of each peer is
specified separately and the conversation set is defined implicitly as the set of con-
versations generated by these peers. For both top-down and bottom-up specification
approaches we are interested in the following: (1) Automatically verifying properties
of conversations and (2) investigating the effect of asynchronous communication on
the conversation behavior. These two issues are closely related since asynchronous
communication with unbounded queues increases the difficulty of automated verifi-
cation significantly.

In this chapter, we give an overview of our earlier results on analysis and verifica-
tion of conversations. We discuss two analysis techniques for identifying bottom-up
and top-down conversation specifications that can be automatically verified. Syn-
chronizability analysis identifies bottom-up conversation specifications for which the
conversation set remains the same for asynchronous and synchronous communica-
tion. Realizability analysis, on the other hand, identifies top-down conversation spec-
ifications which can be implemented by a set of finite state peers interacting with
asynchronous communication. We discuss sufficient conditions for synchronizability
and realizability analyses which are implemented in our Web Service Analysis Tool
(WSAT). WSAT can be used for verification of LTL properties of both top-down
and bottom-up conversation specifications.

3.1 Introduction

Web services provide a promising framework for development, integration,
and interoperability of distributed software applications. Wide-scale adoption

58 T. Bultan et al.

of the web services technology in critical business applications will depend on
the feasibility of building highly dependable services. Web services technology
enables interaction of software components across organizational boundaries.
In such a distributed environment, it is critical to eliminate errors at the
design stage, before the services are deployed.

One of the important challenges in static analysis and verification of web
services is dealing with asynchronous communication. Asynchronous com-
munication makes most analysis and verification problems undecidable, even
when the behaviors of web services are modeled as finite state machines. In
this chapter, we give an overview of our earlier results on analysis and ver-
ification of interactions among web services in the presence of asynchronous
communication.

In our formal model, we assume that a composite web service consists of
a set of individual services (peers) which interact with each other using asyn-
chronous communication. In asynchronous communication, the sender and the
receiver of a message do not synchronize their send and receive actions. The
sender can send a message even when the receiver is not ready to receive that
message. When a message arrives, it is stored in the receiver’s message buffer.
Message buffers are typically implemented as FIFO queues, i.e., messages in a
message buffer are processed in the order they arrive. A message will wait in
the message buffer without being processed until it moves to the head of the
message buffer and the receiver becomes available to consume it by executing
a receive action.

Asynchronous communication is important for building robust web ser-
vices [5]. Since asynchronous communication does not require the sender and
the receiver to synchronize during message exchange, temporary pauses in
availability of the services and delays in the delivery of the messages can be
tolerated. In practice, asynchronous messaging is supported by message deliv-
ery platforms such as Java Message Service (JMS) [26] and Microsoft Message
Queuing Service (MSMQ) [32].

Although asynchronous communication improves the robustness of web
services, it also increases the complexity of design and verification of web
service compositions as demonstrated by the two examples below.

Example 1 Consider a small portion of the example from Chap. 1, where the
GPS device of the traveler automatically negotiates a purchase agreement with
two existing map service providers. Fig. 3.1a provides a top-down specification
of this composition. There are three peers, the traveler (T), map provider 1
(M1), and map provider 2 (M2). Assume that before the composition starts,
a “call for bid” message has been broadcast to both map providers. The fi-
nite state machine in Fig. 3.1 describes the bidding process. Intuitively, the
protocol specifies that the first bidder will win the contract. Fig. 3.1b demon-
strates a sample implementation for all peers involved in the composition. For
each peer the sample implementation is generated by a projection operation.
Given a protocol (represented as a finite state machine) and a peer to project

3 Analyzing Conversations 59

M1 � T:
bid1

M2 � T:
bid2

T � M1:
agreement1

T � M2:
agreement2

Conversation
Protocol

(a)

!bid1 (2)

?agreement1 (2)

(b)

M1 (M2)

?bid1 ?bid2

!agreement2
!agreement1

T

Fig. 3.1. An unrealizable design due to asynchronous communication

to, the projection operation replaces the transitions that are labeled with a
message that is neither sent nor received by the given peer by ε edges, and
then minimizes the resulting automaton.

Now, let us consider whether this protocol is realizable, i.e., if there are im-
plementations for all peers, whose composition can generate exactly the same
set of global behaviors as specified by the protocol automaton in Fig. 3.1a.
If synchronous communication is used, the protocol can be executed without
any problem. Synchronous communication is similar to communicating with
telephone calls, but without answering machines. For a message exchange to
occur, the sender and the receiver both have to be on the phone at the same
time. With synchronous communication, the peer implementations shown in
Fig. 3.1b can generate exactly the conversation set as specified by Fig. 3.1a.
Notice that according to these implementations, at the beginning stage, both
map service providers call the traveler to bid. When the first bidder success-
fully makes the call, the traveler, according to the protocol, will not answer
any other calls. Hence the call by the second bidder will not go through and
the winner is decided. The second bidder will just stay in its initial state,
which is also one of its final states.

If we continue with the telephone analogy, asynchronous communication is
similar to communicating with answering machines where each phone call re-
sults in a message that is recorded to the answering machine of the callee.
The callee retrieves the messages from the answering machine in the or-
der they are received. If the peer implementations shown in Fig. 3.1b in-
teract with asynchronous communication, then the map service providers
do not have to synchronize their send actions with the traveler’s receive
actions. For example, if asynchronous communication is used, at the ini-
tial state, both map service providers can send out the bid messages. How-
ever, in such a scenario only one of them will successfully complete the
transaction, and the other will be stuck waiting for an answer and it will

60 T. Bultan et al.

never reach a final state. To put it another way, if asynchronous commu-
nication is used then the composition of these three peers can generate a
global behavior that is not described in the protocol given in Fig. 3.1a. One
such undesired behavior can be described using the following sequence of
messages:

M1 → T : bid1; M2 → T : bid2; T → M1 : agreement.

This behavior results with the map service provider 2 being stuck because
the traveler will never respond to his request. Again using the telephone
analogy, in this scenario, both map providers call the traveler and leave
a bid message in the traveler’s answering machine. However, based on its
state machine (shown on the right side of Fig. 3.1b) the traveler listens to
only the first bid message in its answering machine and calls back the map
provider that left the first message. The other map provider never hears
back from the traveler and is stuck at an intermediate state waiting for a
call.

A conversation protocol specified as a finite state machine is realizable if
and only if it is realized by its projections to all peers [16]. Hence, the protocol
in Fig. 3.1 is not realizable.

Figure 3.1 is an example of how asynchronous communication complicates
the design of composite web services. In the next example given below, we dis-
cuss how asynchronous communication affects the complexity of verification.
This time we consider bottom-up specification of web services.

Example 2 Assume that the GPS device of the traveler needs to invoke the
service of the map service provider for a new map whenever the vehicle moves
one mile away from its old position. Fig. 3.2 presents two different sets of im-
plementations for the GPS device and the map service provider. Note that we
are assuming that the interaction mechanism is asynchronous communication.

The map provider replies to each request message (req) that the client
sends with a map data message (map); the interaction terminates when the
GPS device sends an end message. In Fig. 3.2a, the GPS device does not
wait for a map message from the provider after it sends a req message. In
the resulting global behavior, the req and map messages can be interleaved
arbitrarily, except that at any moment the number of req messages is greater
than or equal to the number of map messages. In Fig. 3.2b, the GPS device
waits for a map message before it sends the next req message. Now the question
is, which composition is easier to verify?

We can show that Fig. 3.2b is easier to verify because it falls into a cate-
gory of compositions called synchronizable web service compositions. A syn-
chronizable composition produces the same set of conversations under both
synchronous and asynchronous communication semantics. When all the peers
involved in a composition are finite state machines, their composition using
synchronous communication semantics is also a finite state machine. Hence,

3 Analyzing Conversations 61

GPS

!req ?map

!end

Map Provider

?req

!map?end

GPS

Map Provider

?req

!map?end

!req

?map!end

(a) (b)

Fig. 3.2. An unsynchronizable (a) and a synchronizable (b) design

the problem becomes a finite state verification problem and can be solved
using existing finite state model checking techniques and tools. On the other
hand, it is impossible to characterize the conversation set of the composition
in Fig. 3.2a using a finite-state machine because a finite-state machine can-
not keep track of the number of unacknowledged req messages, which can be
arbitrarily large.

In the rest of this chapter, we will present a survey of our earlier re-
sults on realizability and synchronizability of web services that can be used
for identifying realizable top-down web service specifications and synchro-
nizable bottom-up web service specifications, respectively. The technical de-
tails and proofs of these results can be found in our earlier publications
[8, 9, 14, 15, 16, 18, 20, 21]. Our goal in this chapter is to provide an
overview of our earlier results and explain how they can be applied to the
example discussed in Chap. 1. We will also briefly discuss how we integrated
these analysis techniques into an automated verification tool for web services
[19, 39].

The rest of the chapter is organized as follows. Section 3.2 presents our
conversation model which was originally proposed in [8]. Section 3.3 discusses
the synchronizability analysis presented in [15, 21]. Section 3.4 discusses the
realizability analysis from [14, 16]. Section 3.5 discusses the extensions of
the synchronizability and realizability analyses to protocols in which message
contents influence the control flow [18, 20]. Section 3.6 briefly describes the
Web Service Analysis Tool [39, 19]. Section 3.7 discusses the related work and
Sect. 3.8 lists our conclusions.

62 T. Bultan et al.

3.2 A Conversation-Oriented Model

In this section, we present a formal model for interacting web services
[8, 15, 16, 21]. We concentrate our discussion on static web service composi-
tions, where the composition structure is statically determined prior to the
execution of the composition and we assume that interacting web services do
not dynamically create communication channels or instantiate new business
processes.

We assume that a web service composition is a closed system where a finite
set of interacting (individual) web services, called peers, communicate with
each other via asynchronous messaging. In this section, we consider the prob-
lem of how to characterize the interactions among peers. We use the sequence
of send events to characterize a global behavior generated by the composition
of a set of peers. Based on this conversation model, Linear Temporal Logic
(LTL) can be used to express the desired properties of the system.

We will first introduce the notion of a composition schema, which speci-
fies the static interconnection pattern of a web service composition. Then we
discuss the specification of each peer, i.e., each participant of a web service
composition. Next we discuss how to characterize the interactions among the
peers, and introduce the notion of a conversation. Then we present some ob-
servations on conversation sets, which motivate the synchronizability analysis
presented in the next section.

3.2.1 Composition Architecture

There are two basic approaches for specifying a web service composition,
namely the top-down and bottom-up specification approaches. In the top-down
approach, the desired message exchange sequences among multiple peers are
specified, e.g., the IBM Conversation Support Framework for Business Process
Integration [22] and the Web Service Choreography Description Language
(WS-CDL) [40]. The bottom-up approach specifies the logic of individual peers
and then peers are composed and their global behaviors are analyzed. Many
industry standards, e.g., WSDL [41] and BPEL4WS [6], use this approach. In
our formalization, the bottom-up and top-down specification approaches have
different expressive power. Bottom-up approach is more expressive and can
be used to specify more complex interactions.

In order to explain our formal model, we will use an example derived from
the one discussed in Chap. 1 as our running example in this section.

Example 3 In this example there are three peers interacting with each other:
John, Agent, and Hotel. John wants to take a vacation. He has certain con-
straints about where he wants to go for vacation, so he sends a query to
his Agent stating his constraints and asking for advice. The Agent responds
to John’s query by sending him a suggestion. If John is not happy with
the Agent’s suggestion he sends another query requesting another sugges-
tion. Eventually, John makes up his mind and sends a reservation request to

3 Analyzing Conversations 63

Agent

Agent John Hotel
suggest

query

reserve

confirmComposition
Schema

...Conversation

John
!query

?suggest

!reserve

!query

?suggest
?confirm

Hotel

Input
Queue

G(query ⇒ F(confirm))
? LTL property

Conversation
Protocol

query

suggest

query suggest

reserve

G(query ⇒ F(confirm))
?

LTL property

confirm

!suggest

?query
?query

!suggest

!confirm

?reserve

Fig. 3.3. An example demonstrating our model

the hotel he picks. The hotel responds to John’s reservation request with a
confirmation message. Figure 3.3 shows both top-down and bottom-up speci-
fications of this example in our framework. Top part of Fig. 3.3 shows the set
of peers participating in this composition and the messages exchanged among
them. Middle part of Fig. 3.3 gives a top-down specification of the possible
interactions among these peers. Note that in this top-down specification the
behaviors of the individual peers are not given. Bottom part of Fig. 3.3, on the
other hand, is a bottom-up specification which gives behavioral descriptions
of all the peers participating in the composition. The interaction behavior is
implicitly defined as the set of interactions generated by these peers. In either
approach, we are interested in verifying LTL properties of interactions and
we model the interactions as conversations. Below we will use this example to
explain different components of our framework.

A composition schema specifies the set of peers and the set of messages
exchanged among peers [8, 21].

Definition 1 A composition schema is a tuple (P, M) where P ={p1, . . . , pn}
is the set of peer prototypes, and M is the set of messages. Each peer proto-
type pi = (M in

i , Mout
i) is a pair of disjoint sets of messages (M in

i ∩Mout
i = ∅),

where M in
i is the set of incoming messages, Mout

i is the set of outgoing
messages, and Mi = M in

i ∪ Mout
i is the set of messages of peer pi where⋃

i∈[1..n] M
in
i =

⋃
i∈[1..n] M

out
i = M . We assume that each message has a

64 T. Bultan et al.

unique sender and a unique receiver, and a peer cannot send a message back
to itself.

For example, top part of Fig. 3.3 shows a composition schema where the
set of peer prototypes are P = {Agent, John, Hotel}, and the set of messages
are M = {query, suggest, confirm, reserve}. The input and output messages
for peer prototypes are defined as M in

Agent = {query}, Mout
Agent = {suggest},

M in
John = {suggest, confirm}, Mout

John = {query, reserve}, M in
Hotel = {reserve},

and Mout
Hotel = {confirm}.

3.2.2 Top-Down vs Bottom-Up Specification

Conversation protocols correspond to top-down specification of interactions
among web services. Middle part of Fig. 3.3 (labeled conversation protocol)
shows a top-down specification for the interactions among a set of peers. We
define a conversation protocol as a finite state machine as follows.

Definition 2 Let S = (P, M) be a composition schema. A conversation pro-
tocol over S is a tuple R = 〈(P, M),A〉 where A is a finite state automaton
with alphabet M . We let L(R) = L(A), i.e., the language recognized by A.

The conversation protocol in Fig. 3.3 corresponds to a finite state automa-
ton with the set of states {s0, s1, s2, s3, s4, s5}, the initial state s0, the set of
final states {s5}, the alphabet {query, suggest, confirm, reserve}, and the set
of transitions {(s0, query, s1), (s1, suggest, s2), (s2, query, s3), (s3, suggest, s2),
(s2, reserve, s4), and (s4, confirm, s5)}.

Note that the language recognized by the conversation protocol in Fig. 3.3
can be characterized by the following regular expression:

query suggest (query suggest)∗ reserve confirm

A bottom-up specification consists of a set of finite state peers. Bottom
part of Fig. 3.3 shows the bottom-up specification of the same web service
composition. We call a bottom-up specification a web service composition
which is defined as follows.

Definition 3 A web service composition is a tupleW=〈(P, M), A1, . . . ,An〉,
where (P, M) is a composition schema, n = |P |, and Ai is the peer imple-
mentation for the peer prototype pi = (M in

i , Mout
i) ∈ P .

We assume that each peer implementation is given as a finite state machine.
Each peer implementation describes the control flow of a peer. Since peers
communicate with asynchronous messages, each peer is equipped with a FIFO
queue to store incoming messages. Formally, a peer implementation is defined
as follows.

3 Analyzing Conversations 65

Definition 4 Let S =(P, M) be a composition schema and pi =(M in
i , Mout

i) ∈
P be a peer prototype. A peer implementation Ai for a peer prototype pi is a
finite state machine with an input queue. Its message set is Mi = M in

i ∪Mout
i .

A transition between two states t1 and t2 in Ai can be one of the following
three types:

1. A send-transition of the form (t1, !m1, t2) which sends out a message m1 ∈
Mout

i (i.e., inserts the message to the input queue of the receiver).
2. A receive-transition of the form (t1, ?m2, t2) which consumes a message

m2 ∈ M in
i from the input queue of Ai.

3. An ε-transition of the form (t1, ε, t2).

Bottom part of Fig. 3.3 presents the peer implementations for the peer
prototypes shown at the top. For example, the peer implementation for
the peer Agent corresponds to a finite state machine with the set of states
{q0, q1, q2, q3}, the initial state q0, the set of final states {q2}, the message set
{query, suggest}, and the set of transitions {(q0, ?query, q1), (q1, !suggest, q2),
(q2, ?query, q3), and (q3, !suggest, q2)}. Similarly, the peer John corresponds to
a finite state machine with the set of states {t0, t1, t2, t3, t4, t5}, the initial state
t0, the set of final states {t5}, the message set {query, suggest, confirm, reserve},
and the set of transitions {(t0, !query, t1), (t1, ?suggest, t2), (t2, !query, t3),
(t3, ?suggest, t2), (t2, !reserve, t4), and (t4, ?confirm, t5)}. And finally, the peer
Hotel corresponds to a finite state machine with the set of states {r0, r1, r2},
the initial state r0, the set of final states {r2}, the message set {reserve, confirm},
and the set of transitions {(r0, ?reserve, r1) and (r1, !confirm, r2)}. We will use
these peer implementations for our running example for the rest of this section.

3.2.3 Conversations

A conversation is the sequence of messages exchanged among the peers during
an execution, recorded in the order they are sent. In order to formalize the
notion of conversations, we first need to define the configurations of a com-
posite web service and the derivation relation which specifies how the system
evolves from one configuration to another [8, 16, 21].

Definition 5 Let W = 〈(P, M),A1, . . . ,An〉 be a web service composition. A
configuration of W is a (2n)-tuple of the form

(Q1, t1, ..., Qn, tn),

where for each j ∈ [1..n], Qj ∈ (M in
j)∗, and tj ∈ Tj. Here tj and Qj denote

the local state and the queue contents of Aj, respectively.

Intuitively, a configuration records a snap-shot during the execution of
a web service composition by recording the local state and the FIFO queue
contents of each peer. For example, the initial configuration of our running
example is (ε, q0, ε, t0, ε, r0) where all the peers are in their initial states and all

66 T. Bultan et al.

the queues are empty. When the peer John takes the transition (t0, !query, t1),
the next configuration is (query, q0, ε, t1, ε, r0), i.e., in the next configuration
the message query is in the input queue of the peer Agent and the peer John
is in state t1. Then, the peer Agent can receive the query message by taking
the (q0, ?query, q1) transition which would lead to the following configuration:
(ε, q1, ε, t1, ε, r0), i.e., the message query is removed from the input queue of
the peer Agent and the peer Agent is now in state q1.

We can formalize this kind of evolution of the system from one config-
uration to another as a derivation relation using the transitions of the peer
implementations. A derivation step is an atomic and minimal step in a global
behavior generated by a web service composition. Given two configurations
c and c′, we say that c derives c′, written as c → c′, if it is possible to go
from configuration c to configuration c′ by one of the following three types of
derivation steps:

1. send action, where one peer sends out a message m to another peer (de-
noted as c

!m→ c′). The send action results in the state transition of the
sender, and the transmitted message is placed in the input queue of the
receiver.

2. receive action, where one peer consumes the message m that is at the head
of its input message queue (denoted as c

?m→ c′). The receive action results
in the state transition of the receiver and the removal of the consumed
message from the head of the receiver’s input queue.

3. ε action, where one peer takes an ε transition (denoted as c
ε→ c′). This

action results in the state transition of that peer; however, it does not
affect any of the message queues.

For our running example, two example derivations we discussed above can
be written as (ε, q0, ε, t0, ε, r0)

!query→ (query, q0, ε, t1, ε, r0)and(query, q0, ε, t1, ε, r0)
?query→ (ε, q1, ε, t1, ε, r0).

Now we can define a run of a web service composition as follows.

Definition 6 Let W = 〈(P, M),A1, . . . ,An〉 be a web service composition,
a sequence of configurations γ = c0c1 . . . ck is a run of W if it satisfies the
following conditions:

1. The configuration c0 = (ε, s1, . . . , ε, sn) is the initial configuration where
si is the initial state of Ai for each i ∈ [1..n], and ε is the empty word.

2. For each j ∈ [0..k − 1], cj → cj+1.
3. The configuration ck = (ε, t1, . . . , ε, tn) is a final configuration where ti is

a final state of Ai for each i ∈ [1..n].

We define the send sequence generated by γ, denoted by ss(γ), as the
sequence of messages containing one message for each send action (i.e., c

!m→ c′)
in γ, where the messages in ss(γ) are recorded in the order they are sent.

3 Analyzing Conversations 67

For example, a run of our running example would be 9

(ε, q0, ε, t0, ε, r0)
!query→ (query, q0, ε, t1, ε, r0)

?query→ (ε, q1, ε, t1, ε, r0)
!suggest→

(ε, q2, suggest, t1, ε, r0)
?suggest→ (ε, q2, ε, t2, ε, r0)

!reserve→ (ε, q2, ε, t4, reserve, r0)
?reserve→

(ε, q2, ε, t4, ε, r1)
!confirm→ (ε, q2, confirm, t4, ε, r2)

?confirm→ (ε, q2, ε, t5, ε, r2).

The send sequence generated by this run is query suggest reserve confirm.
Finally, we define the conversations as follows.

Definition 7 A word w over M (w ∈ M∗) is a conversation of web service
composition W if there exists a run γ such that w = ss(γ), i.e., a conversation
is the send sequence generated by a run. The conversation set of a web service
composition W, written as C(W), is the set of all conversations for W.

For example, the conversation set of our running example, the web ser-
vice composition at the bottom of Fig. 3.3, can be captured by the regular
expression:

query suggest (query suggest)∗ reserve confirm

.
Linear Temporal Logic can be used to characterize the properties of con-

versation sets in order to specify the desired system properties. The semantics
of LTL formulas can be adapted to conversations by defining the set of atomic
propositions as the power set of messages. For example, the composition in
Fig. 3.3 satisfies the LTL property: G(query ⇒ F(confirm)), where G and F
are temporal operators which mean “globally” and “eventually,” respectively.

Standard LTL semantics is defined on infinite sequences [11], whereas in
our definitions above we used finite conversations. It is possible to extend
the definitions above to infinite conversations and then use the standard LTL
semantics as in [14, 16]. We can also adapt the standard LTL semantics to
finite conversations by extending each conversation to an infinite string by
adding an infinite suffix which is the repetition of a special termination symbol.

Unfortunately, due to the asynchronous communication of web services,
LTL verification of conversations of web service compositions is
undecidable [16].

Theorem 1 Given a web service composition W and an LTL property φ,
determining if all the conversations of W satisfy φ is undecidable.

The proof is based on an earlier result on Communicating Finite State Ma-
chines (CFSMs) [7]. We can show that a web service composition is essentially
a system of CFSMs. It is known that CFSMs can simulate Turing Machines
[7]. Similarly, one can show that, given a Turing Machine TM it is possible
to construct a web service composition W that simulates TM and exchanges
a special message (say mt) once TM terminates. Thus, TM terminates if and

68 T. Bultan et al.

only if the conversations of W satisfy the LTL formula F(mt), which means
that “eventually message mt will be sent.” Hence, undecidability of the halt-
ing problem implies that verification of LTL properties of conversations of a
web service composition is an undecidable problem.

3.3 Synchronizability

Asynchronous communication among web services leads to the undecidabil-
ity of the LTL verification problem. If synchronous communication is used
instead of asynchronous communication, the set of configurations of a web
service composition would be a finite set, and it is well known that LTL
model checking is decidable for finite state systems. In this section, we discuss
the synchronizability analysis [15, 21] which identifies bottom-up web service
specifications which generate the same conversation set with synchronous and
asynchronous communication semantics. We call such web service composi-
tions synchronizable. We can verify synchronizable web service compositions
using the synchronous communication semantics, and the verification results
we obtain are guaranteed to hold for the asynchronous communication seman-
tics.

3.3.1 Synchronous Communication

To define synchronizability, we first have to define synchronous communica-
tion. Intuitively, synchronous communication requires that the sender and the
receiver of a message should take the send and the receive actions simultane-
ously to complete the message transmission. In other words, the send and the
receive actions of a message transmission form an atomic and non-interruptible
step. In the following, we define the synchronous global configuration and syn-
chronous communication semantics.

Given a web service composition W = 〈(P, M),A1, ...,An〉 where each
automaton Ai describes the behavior of a peer, the configuration of a web
service composition with respect to the synchronous semantics, called the syn-
configuration, is a tuple (t1, ..., tn), where for each j ∈ [1..n], tj ∈ Tj is the local
state of peer Aj . Notice that in a syn-configuration only the local automata
state of each peer is recorded—peers do not need message buffers to store the
incoming messages due to the synchronous communication semantics.

For two syn-configurations c and c′, we say that c synchronously derives c′,
written as c →syn c′, if c′ is the result of simultaneous execution of the send
and the receive actions for the same message by two peers, or the execution
of an ε action by a single peer.

The definition of the derivation relation between two syn-configurations is
different than the asynchronous case. In the synchronous case a send action
can only be executed concurrently with a matching receive action, i.e., sending
and receiving of a message occur synchronously. We call this semantics the

3 Analyzing Conversations 69

synchronous semantics of a web service composition and the semantics defined
in Sect. 3.2 is called the asynchronous semantics.

The definitions of a run, a send sequence, and a conversation for syn-
chronous semantics is similar to those of the asynchronous semantics given in
Sect. 3.2 (we will use “syn” as a prefix to distinguish between the synchronous
and asynchronous versions of these definitions when it is not clear from the
context). Given a web service composition W , let Csyn(W) denote the conver-
sation set under the synchronous semantics. Then synchronizability is defined
as follows.

Definition 8 A web service composition W is synchronizable if its conversa-
tion set remains the same when the synchronous semantics is used instead of
the asynchronous semantics, i.e., C(W) = Csyn(W).

Clearly, if a web service composition is synchronizable, then we can ver-
ify its interaction behavior using synchronous semantics (without any input
queues) and the results of the verification will hold for the behaviors of the
web service composition in the presence of asynchronous communication with
unbounded queues.

Given a web service composition W , its conversation set with respect to
synchronous semantics is always a subset of its conversation set with respect
to asynchronous semantics, i.e., Csyn(W) ⊆ C(W) [21]. In some cases the
containment relationship can be strict, i.e., there are web service compositions
that are not synchronizable. The following is an example.

Example 4 Consider a web service composition W in Fig. 3.4. Two peers A and
B can exchange two messages a (from A to B) and b (from B to A). The peer
implementation of A sends out a and then waits for and consumes message
b from its input queue. Peer b sends out b first then receives a. Obviously,
if asynchronous semantics is used then there exists a run which generates
the conversation ab. However, note that, when synchronous semantics is used
there is no run which generates the same conversation, because at the initial
state both peers are trying to send out a message and neither of them can
get the co-operation of the other peer to complete the send operation. Based
on the definitions of the conversation sets, we have C(W) = {ab, ba} and
Csyn(W) = ∅. Hence, W is not synchronizable.

!a ?b

A

!b ?a

B

Fig. 3.4. An example specification that is not synchronizable

70 T. Bultan et al.

3.3.2 Synchronizability Analysis

We now present two conditions for identifying synchronizable web service
compositions. Together these conditions guarantee synchronizability, i.e., they
form a sufficient condition for synchronizability.

Synchronous compatible condition: If we construct the synchronous com-
position of a set of peers, the synchronous compatible condition requires that
for each syn-configuration c that is reachable from the initial configuration,
if there is a peer which has a send transition for a message m from its local
state in c, then the receiver of m should have a receive transition for m either
from its local state in c or from a configuration reachable from c via ε-actions.

Note that the composition of A and B in Fig. 3.4 does not satisfy the syn-
chronous compatible condition. The initial syn-configuration c0 of the compo-
sition can be represented as a tuple (sA

1 , sB
1), where sA

1 and sB
1 are the local

initial states of A and B respectively. Obviously, at c0 peer A can send out a;
however, it is not able to because B is not in a state where it can receive the
message.

An algorithm for checking the synchronous compatible condition is given in
[21]. The basic idea in the algorithm is to construct a finite state machine that
is the product (i.e., the synchronous composition) of all peers. Each state (i.e.,
syn-configuration) of the product machine is a vector of local states of all peers.
During the construction, if we find a peer ready to send a message but the
corresponding receiver is not ready to receive it (either immediately or after
executing several ε-actions), the composition is identified as not synchronous
compatible. If all states of the product machine are examined without finding a
violation of the synchronous compatible condition, then the algorithm returns
true. The worst case complexity of the algorithm is quadratic on the size of
the product and the size of the product is exponential in the number of peers.

Autonomous condition: A web service composition is autonomous if each
peer, at any moment, can do only one of the following: (1) terminate, (2) send
a message, or (3) receive a message.

To check the autonomous condition, we determinize each peer implementa-
tion and check that outgoing transitions for each non-final state are either all
send transitions or all receive transitions [21]. We also check that final states
have no outgoing transitions. The complexity of the algorithm can be expo-
nential in the size of the peers in the worst case due to the determinization
step.

In Fig. 3.1b, neither of the peer implementations of the map service
providers (M1 and M2) are autonomous because there is a transition orig-
inating from the initial state which is also a final state. However, the imple-
mentation of traveler (T) is autonomous.

In Fig. 3.2a the implementation of GPS is not autonomous, because at the
initial state the peer can send message req and receive message map.

3 Analyzing Conversations 71

We now present the key result concerning the synchronizability analysis.
The proof for the following results can be found in [21].

Theorem 2 Let W = 〈(P, M),A1, . . . ,An〉 be a web service composition. If
W is synchronous compatible and autonomous, then for any conversation gen-
erated by W there exists a run which generates the same conversation in which
every send action is immediately followed by the corresponding receive action.

When the synchronous compatibility and autonomy conditions are satis-
fied by a web service composition, then for each conversation generated by
that composition, there is always a run which generates the same conversation
where each send action is immediately followed by the corresponding receive
action. By collapsing the pairs of send/receive actions for the same message,
we get a synchronous run which generates the same conversation. Then based
on Theorem 2 we get the following result.

Theorem 3 Let W = 〈(P, M),A1, . . . ,An〉 be a web service composition. If
W is synchronous compatible and autonomous, then W is synchronizable.

Theorem 3 implies that web service compositions that satisfy the two syn-
chronizability conditions can be analyzed using the synchronous communica-
tion semantics and the verification results hold for asynchronous semantics.

Notice that synchronizability does not imply deadlock freedom. Think
about the following composition of two peers A and B, which exchange mes-
sages m1 (from A to B) and m2 (from B to A). If A accepts one word ?m2,
and B accepts one word ?m1, it is not hard to verify that the composition
of A and B is synchronizable; however, they are involved in a deadlock right
at the initial state since both peers are waiting for each other. Hence, be-
fore the LTL verification of a web service composition, designers may have to
check the composition for deadlocks. However, for synchronizable web service
compositions the deadlock check can be done using the synchronous semantics
(instead of the asynchronous semantics), since it is possible to show that [13] a
synchronizable web service composition has a run (with asynchronous seman-
tics) that leads to a deadlock if and only if it has a syn-run (with synchronous
semantics) that leads to a deadlock.

3.4 Realizability of Conversation Protocols

In this section, we discuss the realizability problem for top-down web service
specifications, i.e., conversation protocols [8, 16]. We also discuss the relation-
ship between synchronizability and realizability analyses.

Intuitively, realizability means that given a conversation protocol it can be
realized by some web service composition, i.e., the conversation set generated
by the web service composition is exactly the same as the language accepted
by the conversation protocol.

72 T. Bultan et al.

Definition 9 Let S = (P, M) be a composition schema, and let the conversa-
tion protocol R and the web service composition W both share the same schema
S. We say that W realizes R if C(W) = L(R). A conversation protocol R is
realizable if there exists a web service composition that realizes R.

Let us first consider the following question: Are all conversation protocols
realizable? The answer is negative as we show below.

Example 5 Figure 3.5 shows a conversation protocol over four peers A, B, C,
and D. The message alphabet consists of two messages: a (from A to B) and c
(from C to D). The protocol specifies a conversation set which consists of one
conversation only ({ac}). It is not hard to see that any peer implementation
which can generate the conversation ac can generate ca too, because there is
no way for peers A and C to coordinate their actions. Hence, the conversation
protocol shown in Fig. 3.5 is not realizable.

Notice that the problem of realizability is also an issue for synchronous
communication semantics. For example, the protocol in Fig. 3.5 is not realiz-
able using synchronous semantics either. However, the asynchronous semantics
does introduce new complexities into this problem as discussed in [16, 21].

Below we will argue that realizability of conversation protocols can be
solved by extending the synchronizability analysis. First we need to intro-
duce notions of projection and join for peer implementations and conversation
protocols.

For a composition schema (P, M), the projection of a word w to the al-
phabet Mi of the peer prototype pi, denoted by πi(w), is a subsequence of w
obtained by removing all the messages which are not in Mi. When the pro-
jection operation is applied to a set of words the result is the set of words
generated by application of the projection operator to each word in the set.

For composition schema (P, M), let n = |P | and let L1 ⊆ M∗
1 , . . . , Ln ⊆

M∗
n, the join operator is defined as follows:

join(L1, . . . , Ln) = {w | w ∈ M∗, ∀i ∈ [1..n] : πi(w) ∈ Li}.

Let L = {ac} be the conversation set specified by the conversation protocol
in Fig. 3.5. πA(L) = {a}, πB(L) = {a}, πC(L) = {c}, and πD(L) = {c}. The

Conversation Protocol

Peer A

Peer D

Peer B

Peer C

a

c

Composition Schema

A � B : a

C � D : c

Fig. 3.5. A non-realizable protocol in both synchronous and asynchronous semantics

3 Analyzing Conversations 73

join of all these peer projections will produce a larger conversation set:

join(πA(L), πB(L), πC(L), πD(L)) = {ac, ca}

We now introduce a third condition used in the realizability analysis.

Lossless join condition: A conversation protocol R is lossless join if L(R) =
join(π1(L(R)), . . . , πn(L(R))), where n is the number of peers involved in the
protocol.

The lossless join condition requires that a conversation protocol should
include all words in the join of its projections to all peers. An algorithm for
checking the lossless join property is given in [21]. Intuitively, the lossless join
property requires that the protocol should be realizable under synchronous
communication semantics. The algorithm simply projects the conversation
protocol to each peer prototype, and then constructs the product of all pro-
jections. If the resulting product is equivalent to the protocol, then the algo-
rithm reports that the lossless join property is satisfied. The algorithm can
be exponential in the size of the conversation protocol in the worst case due
to the equivalence check on two non-deterministic finite state machines.

The lossless join property is a necessary condition for the realizability of
conversation protocols. If synchronous semantics is used, it is the necessary
and sufficient condition. The following result connects the synchronizability
analysis and the realizability analysis.

Theorem 4 Given a conversation protocol R = 〈(P, M),A〉 where n = |P |,
let W = 〈(P, M),A1, . . . ,An〉 be a web service composition s.t. for each i ∈
[1..n], Ai is the minimal deterministic FSA such that L(Ai) = πi(L(R)). If
W is synchronizable, and R is lossless join, then R is realized by W.

The proof of this property follows directly from Theorem 3 and the fact
that the synchronous composition of a set of peers accepts the join of their
languages. Theorem 4 demonstrates an interesting relationship between the
synchronizability analysis introduced in [21] and the realizability analysis in-
troduced in [16].

3.5 Message Contents

In the previous sections, we assumed that the contents of the messages were
abstracted away, i.e., in our formal model messages did not have any content.
This type of abstraction would be fine as long as the contents of the messages
do not influence the control flow of the peers. In practice, this assumption
may be too restrictive, i.e., contents of a message received by a peer may
influence the control flow of that peer. One natural question is, is it possible
to extend the analyses introduced in the earlier sections to an extended web
service model where messages have contents?

74 T. Bultan et al.

To facilitate the technical discussions, let us extend the web service speci-
fication framework as follows. Assume that each peer in a web service compo-
sition is a guarded automaton instead of a standard finite state automaton. In
the guarded automata model, messages have contents. A message class defines
the structure of a message and a message is an instance of a message class.
Each transition is labeled with a message class and a guard. A guard is a re-
lational expression which evaluates to a boolean value. The building elements
of a guard are the attributes of messages. Only when the guard evaluates to
true, can the transition be fired (if the automaton is in its source state).

Example 6 Figure 3.6 presents a modified version of the example given in
Fig. 3.3 by extending the messages with contents and the transitions with
guards. In Fig. 3.6 message classes req and map have an integer attribute
id. The guard of each transition is a boolean expression enclosed in a
pair of square brackets. For example, the send transition !req has a guard
“id′ = id + 1.” This means that whenever a new req message is sent, its id
attribute is incremented by 1. Note that here the primed-variable id′ repre-
sents the “next value” of the attribute id. The receive transition ?req in the
map provider service requires that the ids of the incoming req messages must
monotonically increase. Obviously, the implementation of GPS satisfies this
requirement. Similarly, the guard of the send transition !map guarantees that
the id attribute of a map message must match that of the most recent req
message.

We call a web service composition a “guarded composition” if its peers are
specified using guarded automata. Similarly, we define the “guarded peer,”
“guarded protocol”, etc. Given a guarded automaton, if we remove the con-
tents of the messages and the guards of the transitions then we get a standard
finite state automaton. We call this resulting automaton the skeleton automa-
ton. Similarly, we use the name “skeleton peer,” “skeleton composition,” and
“skeleton protocol” to refer the skeleton of a guarded peer, guarded composi-
tion, and guarded protocol, respectively.

One natural conjecture is the following: Does the synchronizability of
a skeleton composition imply the synchronizability of the corresponding

!req
[id’=id+1]

GPS

?map
[true]

!end
[true]

Map Provider

?req
[id’>id]

!map
[id’=req.id]

?end [true]

Fig. 3.6. An example with message contents

3 Analyzing Conversations 75

guarded composition? The answer is negative as demonstrated by the fol-
lowing example.

Example 7 Figure 3.7 presents an example guarded composition that shows
that the above conjecture is false. The composition consists of two peers A
and B. Peer A can send a message a to B, and B can send a message b to
A. Both messages a and b have an integer attribute id which varies between
1 and 2. In the following, we use the notation a(1) to represent a message a
whose attribute id is 1. The composition produces two conversations a(1)b(2)
and b(2)a(1). In addition, to produce these two conversations, asynchronous
semantics has to be used. For example, to produce a(1)b(2), the message a(1)
has to stay in the input queue of peer B when b is sent out. Such a conversation
cannot be generated by synchronous composition of these two peers.

On the other hand, if we drop the message contents and guards of the
guarded automata in Fig. 3.7, we get two standard finite state automata,
which accept conversations {!a?b, ?b!a} and {!b?a, ?a!b}, respectively. The
composition of these two finite state automata peers are synchronizable.

Example 7 demonstrates that the synchronizability of the skeleton com-
position does not imply the synchronizability of the guarded composition.
Interestingly, if the skeleton composition is not synchronizable, it does not
imply that the guarded composition is not synchronizable either. Similar ob-
servations hold for conversation protocols. It is not possible to tell if a guarded
conversation protocol is realizable or not based on the realizability of its skele-
ton protocol. Examples and arguments for the above conclusions can be found
in [13, 18, 20].

Skeleton of a guarded composition, however, can still be used for syn-
chronizability analysis. The following theorem forms the basis of a skeleton
analysis for synchronizability of guarded compositions.

Theorem 5 A guarded web service composition is synchronizable if its skele-
ton satisfies the autonomous and synchronous compatible conditions.

!a
[id’=1]

A

?b
[true]

?b
[false]

!a
[id’=2]

?a
[false]

B

!b
[id’=1]

!b
[id’=2]

?a
[true]

Fig. 3.7. A counter-example for the conjecture on skeleton synchronizability

76 T. Bultan et al.

Theorem 5 implies that if the skeletons of a guarded composition satisfies
the two sufficient synchronizability conditions, then the guarded composition
is guaranteed to be synchronizable. The proof of Theorem 5 is based on the
following observation. For any run of a guarded composition, we can find a
corresponding run of its skeleton composition, which traverses through the
same path (states and transitions) and has the same input queue contents
(disregarding message contents) at each peer. Since the skeleton composition
satisfies autonomous and synchronous compatible conditions, there exists an
equivalent execution of the skeleton composition in which each message is
consumed immediately after it is sent. From this execution of the skeleton
composition we can construct an execution for the guarded composition in
which each message is consumed immediately after it is sent. This leads to
the synchronizability of the guarded composition as shown in [13].

A similar skeleton analysis can be developed for guarded conversation pro-
tocols. A guarded conversation protocol is realizable if its skeleton satisfies the
autonomous, synchronous compatible, lossless join conditions, and a fourth
condition called “deterministic guards condition.” Intuitively, the determin-
istic guards condition requires that for each peer, according to the guarded
conversation protocol, when it is about to send out a message, the guard that
is used to compute the contents of the message is uniquely decided by the
sequence of message classes (note, not messages) exchanged by the peer in
the past. The details of this analysis can be found in [20].

Skeleton analysis sometimes can be inaccurate. Below we will discuss this
inaccuracy and techniques that can be used to refine the skeleton analysis.

Example 8 Consider the modified composition of GPS and Map Provider in
Fig. 3.8. The composition is actually synchronizable. In GPS implementation,
the guard id = map.id in transition !req enforces that the sending of next req
message must wait for the last req message being matched by a corresponding
map message. Thus, the interaction of two services runs in lock-step fashion,
where the id attribute of req messages alternates between 0 and 1. However, the
skeleton analysis cannot reach the conclusion that the guarded composition
is synchronous, because the skeleton of GPS does not satisfy the autonomous
condition.

!req
[id = map.id ∧

id’=1-id]

GPS

?map
[true]

!end
[map.id = req.id]

Map Provider

?req
[id’<> id]

!map
[id’=req.id]

?end [true]

Fig. 3.8. An example on inaccuracy of skeleton analysis

3 Analyzing Conversations 77

!req
[id = 1 ∧
id’=0]

GPS Map Provider

?req
[id’<> id]

!map
[id’=req.id]

?end [true]

!req
[id = 0 ∧
id’=1]

?map
[true]

?map
[true]

!end
[map.id = req.id]

!end
[map.id = req.id]

Fig. 3.9. A refined version of the guarded composition in Fig. 3.8

The inaccuracy of skeleton analysis can be fixed by a refined symbolic
analysis of guarded compositions. The basic idea is to symbolically explore the
configuration space of a guarded automaton, and split its states and remove
redundant transitions if necessary. The result is another guarded automaton
which generates the same set of conversations, but has more states.

Example 9 For example, after applying the iterative symbolic analysis on the
GPS service in Fig. 3.8, we obtain the refined guarded automaton in Fig. 3.9.
The refined automaton splits the initial state to four different states. If we
examine the four non-final states (starting from the initial state and walk-
ing anti-clockwise), these states represent four different system configurations
where the id attributes of the latest copies of req and map messages are (0, 0),
(1, 0), (1, 1), and (0, 1), respectively. The refined automaton is equivalent to
the original GPS implementation in Fig. 3.8. If we apply the skeleton anal-
ysis on Fig. 3.9, we can now reach the conclusion that the composition is
synchronizable.

The algorithm for the iterative symbolic analysis can be found in [20].

3.6 Web Service Analysis Tool

The synchronizability and realizability analyses are implemented and inte-
grated to the Web Service Analysis Tool (WSAT) [19, 39]. WSAT accepts
web service specifications in popular web service description languages (such
as WSDL and BPEL4WS), system properties specified in LTL, and verifies if
the conversations generated conform to the LTL property.

Figure 3.10 shows the architecture of WSAT. WSAT uses Guarded Au-
tomata (GA) as an intermediate representation. A GA is a finite state machine
which sends and receives XML messages and has a finite number of XML
variables. The types of XML messages and variables are defined using XML

78 T. Bultan et al.

BPEL
to

GA
Guarded
automata

GA to Promela
(bounded queue)

BPEL

Web
Services

Promela

Synchronizability
Analysis

GA to Promela
(synchronous

communication)

Intermediate
Representation

Conversation
Protocol

Front End

Realizability
Analysis

Guarded
automaton

skip

GA
parser

success

failure

GA to Promela
(single process,

no communication)

success

failure

Analysis Back End

(bottom-up)

(top-down)

Verification
Languages

Fig. 3.10. WSAT architecture

schema. In the GA representation used by WSAT, all the variable and message
types are bounded. Each send transition can have a guard, which is essentially
an assignment that determines the contents of the message being sent. Each
receive transition can also have a guard—if the message being received does
not satisfy the guard, the receive action is blocked. The GA representation is
capable of capturing both the control flow and data manipulation semantics
of web services. WSAT includes a translator from BPEL to GA that supports
bottom-up specification of web service compositions. It also includes a trans-
lator from top-down conversation protocol specifications to GA. Support for
other languages can be added to WSAT by integrating new translators to its
front end without changing the analysis and the verification modules.

Synchronizability and realizability analyses are implemented in WSAT.
When the analysis succeeds, LTL verification can be performed using the syn-
chronous communication semantics instead of asynchronous communication
semantics. When the analysis is not successful on the web service input, asyn-
chronous semantics is used and a partial verification is conducted for bounded
communication channels. WSAT also implements extensions to the synchro-
nizability and realizability analyses to handle the guards of the transitions in
the GA model [18]. Algorithms for translating XPath expressions to Promela
code are presented in [17] where model checker SPIN [24] is used at the back-
end of WSAT to check LTL properties.

We applied WSAT to a range of examples, including six conversation pro-
tocols converted from the IBM Conversation Support Project [25], five BPEL
services from BPEL standard and Collaxa.com, and the SAS example from
[17]. We applied the synchronizability or the realizability analysis to each ex-
ample, depending on whether the specification is bottom-up or top-down. As
reported in [21], only 2 of the 12 examples violate the conditions discussed in
this chapter (both violate the autonomous condition). This demonstrates that
the sufficient conditions used in the synchronizability and realizability analy-
ses are not too restrictive and that they are able to show the synchronizability
and realizability of practical web service applications.

3 Analyzing Conversations 79

3.7 Related Work and Discussion

This section presents a survey of related work on modeling and analyzing web
services. Particularly, we are interested in the following four topics: (1) mod-
eling approaches for distributed systems, (2) description of global behaviors
in distributed systems, (3) realizability analysis, and (4) automated analysis
and verification of web services. At the end of this section we also present a
discussion about our approach, identifying its limitations and possible exten-
sions.

3.7.1 Modeling Approaches and Communication Semantics

Since the web service technology can be regarded as essentially a branch of
distributed systems, we include a discussion of earlier models for describing
interaction and composition of distributed systems. Traditionally, many mod-
eling approaches use synchronous communication semantics, where sender and
receiver of a message transmission have to complete the send and the receive
actions simultaneously. The typical examples include (but not limited to) CSP
[23], I/O automata [29], and interface automata [2].

In the models which use asynchronous communication semantics, FIFO
queue is the most commonly used message buffer. Communicating Finite
State Machines (CFSM) were proposed in early 1980s as a simple model with
asynchronous communication semantics [7]. Brand et al. showed that CFSM
can simulate Turing Machines [7]. Other related modeling approaches for dis-
tributed systems include Codesign Finite State Machine model [10], Kahn
Process Networks [27], π-Calculus [30], and Microsoft Behave! Project [37].
Most of them, e.g., π-Calculus and Behave! Project, use or support simulation
of asynchronous communication semantics.

3.7.2 Modeling Global Behaviors

In the conversation model, a global behavior is modeled as a sequence of send
events. In many other modeling approaches, e.g., Message Sequence Charts
(MSCs) [31], both send and receive events are captured. Such different mod-
eling perspectives can lead to differences in the expressive power and in the
difficulty of analysis and verification problems. We now briefly compare the
conversation model and the MSC model [4]. This section is a summary of the
more detailed discussion given in [21].

MSC model [31] is a widely used specification approach for distributed sys-
tems. A comparison with the basic MSC model would not be fair since using
the MSC model one can specify only a fixed number of message traces. Instead,
we compare our model with the more expressive MSC graphs [4], which are
finite state automata that are constructed by composing basic MSCs. MSC
graphs use asynchronous communication semantics. There are other MSC ex-
tensions such as the high-level MSC (hMSC) [38]. However, hMSC is mainly

80 T. Bultan et al.

used for studying infinite traces and the composition model used in [38] is syn-
chronous. Therefore, the MSC graph is a more suitable model for comparison.

An MSC consists of a finite set of peers, where each peer has a single
sequence of send/receive events. We call that sequence the event order of that
peer. There is a bijective mapping that matches each pair of send and receive
events. Given an MSC M , its language L(M) is the set of linearizations of
all events that follow the event order of each peer. Essentially, L(M) captures
the “join” of local views from each peer. A formal definition of MSC can be
found in [4].

An MSC graph [4] is a finite state automaton where each node of the
graph (i.e., each state of the automaton) is associated with an MSC. Given
an MSC graph G, a word w is accepted by G, if and only if there exists an
accepting path in G where w is a linearization of the MSC that is the result
of concatenating the MSCs along that path.

The main difference between the MSC graph framework and the
conversation-oriented framework is the fact that the MSC model specifies
the ordering of the receive events whereas the conversation model does not.
In the conversation model the timing of a receive event is considered to be a
local decision of the receiving peer and is not taken into account during the
analysis of interactions among multiple peers.

Conversation protocols and MSC graphs are incomparable in terms of their
expressive power [21]. For example, it is possible to construct two MSC graphs
with different languages but identical conversation sets. This implies that there
are interactions that can be differentiated using MSC graphs but not using
conversation protocols. On the other hand, there are interactions which can
be specified using a conversation protocol but cannot be specified with any
MSC graph. Hence, expressiveness of MSC graphs and conversation protocols
are incomparable. It is also possible to show that the expressive power of
the MSC graphs and the bottom-up specified web service compositions are
incomparable [21].

One natural question is, which approach is better? Both approaches have
pros and cons. In the conversation model the ordering of receive events is like
a “don’t care” condition which can simplify the specification of interactions.
On the other hand, realizability problem in the conversation model can be
more severe since we focus on global ordering of send events. For example,
the non-realizable conversation protocol {aA→B bC→A} cannot be specified
using MSCs.

The different modeling perspectives on global behaviors leads to different
realizability analysis techniques. Alur et al. investigated the weak and safe re-
alizability problems for sets of MSCs and the MSC graphs [3, 4]. They showed
that determining realizability of a set of MSCs is decidable; however, it is not
decidable for MSC graphs. They gave one sufficient and necessary condition for
realizability of MSC graphs. The sufficient and necessary condition looks very
similar to the lossless join condition in the realizability analysis on the conver-
sation model. However, there are key differences: (1) In the MSC model, the

3 Analyzing Conversations 81

condition is both sufficient and necessary whereas in the conversation model
lossless join is a sufficient condition only and (2) it is undecidable to check
the condition for MSC graphs. Alur et al. introduced another condition called
boundedness condition, which ensures that during the composition of peers the
queue length will not exceed a certain preset bound (on the size of the MSC
graph). This condition excludes some of the realizable designs. Note that the
realizability conditions in the conversation model do not require queue length
to be bounded. However, notice that the realizability analysis on conversa-
tion model does not subsume the realizability analysis on MSC graphs. There
are examples which can pass the realizability analysis on MSC graphs but are
excluded by the realizability analysis we presented for the conversation model.

3.7.3 Realizability and Synchronizability

Interest in the realizability problem dates back to 1980s (see [1, 35, 36]).
However, the realizability problem means different things in different contexts.
For example, in [1, 35, 36], realizability problem is defined as whether a peer
has a strategy to cope with the environment no matter how the environment
decides to move. The concept of realizability studied in this chapter is rather
different. We are investigating realizability in a closed system that consists
of multiple peers interacting with each other. Our definition of realizability
requires that the implementation generates exactly the same set of global
behaviors as specified by the protocol. A closer notion to the realizability
problem in this chapter is the “weak realizability” of MSC graphs studied in
[4]. Different communication assumptions can lead to different realizability
analysis. For example, realizability problem for high-level MSC is studied in
[38].

To the best of our knowledge, synchronizability analysis was first proposed
in [15]. The relationship between synchronizability (for bottom-up specifica-
tions) and realizability (for top-down specifications) was discussed in [21].

3.7.4 Verification of Web Services

Application of automated verification techniques to web services has been an
active area. Narayanan et al. [34] modeled web services as Petri Nets and in-
vestigated the simulation, verification, and composition of web services using
the Petri-net model. Foster et al. [12] used LTSA (Labeled Transition System
Analyzer) to verify BPEL web services using synchronous communication se-
mantics and MSC model. Nakajima [33] proposed an approach in which a given
web service flow specified in WSFL was verified using the model checker SPIN.
The approach presented by Kazhamiakin et al. [28] determined the simplest
communication mechanism necessary to verify a web service composition, and
then verifies the composition using that communication mechanism. Hence, if
a web service is not synchronizable it is analyzed using asynchronous commu-
nication semantics.

82 T. Bultan et al.

3.7.5 Discussion

We conclude this section with a discussion of possible limitations of the pre-
sented framework and possible extensions.

We believe that an important limitation of the presented analyses tech-
niques is the fact that they do not handle dynamic service creation or es-
tablishment of dynamic connections among different services. In the model
discussed here we assume that interacting web services do not dynamically
create communication channels or instantiate new business processes. Since
dynamic service discovery is an important component of service oriented com-
puting, in order to make the approach presented in this chapter applicable to
a wider class of systems, it is necessary to handle dynamic instantiation of
peers and communication channels. Extending synchronizability and realiz-
ability analyses to such specifications is a promising research direction.

So far we have only applied the presented analysis techniques to protocols
with a modest number of states. This is due to the fact that most web service
composition examples we have found do not have a large number of control
states. In the future, it would be interesting to investigate the scalability
of the presented techniques for specifications with large number of states.
Generally, we believe that the presented techniques will be scalable as long as
the specifications are deterministic, and, therefore, the cost of determinization
can be avoided.

Currently, we do not have an implementation of symbolic synchronizabil-
ity and realizability analyses for handling specifications in which message con-
tents influence the control flow. At this point, the WSAT tool only performs
skeleton analyses for the guarded automata specifications. This makes the
synchronizability and realizability analyses conditions quite restrictive, and
using symbolic techniques can relax these conditions. However, it is necessary
to find a symbolic representation for XML data in order to implement sym-
bolic analyses, which could be a difficult task. If successful, such a symbolic
representation can also be used for symbolic verification of web services as
opposed to the explicit state model checking approach we are currently using.

Finally, the synchronizability and realizability conditions presented in this
chapter are sufficient conditions and it could be possible to relax them. Finding
necessary and sufficient conditions for synchronizability and realizability of
conversations is an open problem.

3.8 Conclusions

Conversations are a useful model for specification of interactions among web
services. By analyzing conversations of web services one can investigate prop-
erties of the interactions among them. However, asynchronous communication
semantics makes verification and analysis of conversations difficult. We dis-
cussed two techniques that can be used to overcome the difficulties that arise

3 Analyzing Conversations 83

in verification due to asynchronous communication. Synchronizability anal-
ysis identifies web service compositions for which the conversation behavior
does not change when different communication mechanisms are used. Using
the synchronizability analysis one can verify properties of conversations using
the simpler synchronous communication semantics without giving up the ben-
efits of asynchronous communication. Realizability analysis is used to make
sure that for top-down web service specifications asynchronous communica-
tion does not create unintended behaviors. Realizable conversation protocols
enable analysis and verification of conversation properties at a higher level of
abstraction without considering the asynchronous communication semantics.
As we discussed, it is also possible to extend synchronizability and realizabil-
ity analyses to specifications in which message contents influence the control
flow.

References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifica-
tions of reactive systems. In Proc. of 16th Int. Colloq. on Automata, Languages
and Programming, volume 372 of LNCS, pages 1–17. Springer Verlag, 1989.

2. L. D. Alfaro and T. A. Henzinger. Interface automata. In Proc. 9th Annual
Symp. on Foundations of Software Engineering, pages 109–120, 2001.

3. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.
In Proc. 22nd Int. Conf. on Software Engineering, pages 304–313, 2000.

4. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In Proc. 28th Int. Colloq. on Automata, Languages, and Programming,
pages 797–808, 2001.

5. Adam Bosworth. Loosely speaking. XML & Web Services Magazine, 3(4),
April 2002.

6. Business Process Execution Language for Web Services (Version 1.0). http:

//www.ibm.com/developerworks/library/ws-bpel, 2002.
7. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal

of the ACM, 30(2):323–342, 1983.
8. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: A new ap-

proach to design and analysis of e-service composition. In Proc. 12th Int. World
Wide Web Conf., pages 403–410, May 2003.

9. T. Bultan, X. Fu, and J. Su. Analyzing conversations of web services. IEEE
Internet Computing, 10(1):18–25, 2006.

10. M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, H. Hsieh, and A. San giovanni
Vincentelli. A formal specification model for hardware/software codesign. In
Proc. Intl. Workshop on Hardware-Software Codesign, October 1993.

11. E.M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

12. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web
service compositions. In Proc. 18th IEEE Int. Conf. on Automated Software
Engineering Conference, pages 152–163, 2003.

13. X. Fu. Formal Specification and Verification of Asynchronously Communicating
Web Services. PhD thesis, University of California, Santa Barbara, 2004.

84 T. Bultan et al.

14. X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for spec-
ification and verification of reactive electronic services. In Proc. 8th Int.
Conf. on Implementation and Application of Automata, volume 2759 of LNCS,
pages 188–200, 2003.

15. X. Fu, T. Bultan, and J. Su. Analysis of interacting web services. In Proc. 13th
Int. World Wide Web Conf., pages 621 – 630, New York, May 2004.

16. X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specifica-
tion and analysis of reactive electronic services. Theoretical Computer Science,
328(1-2):19–37, November 2004.

17. X. Fu, T. Bultan, and J. Su. Model checking XML manipulating software.
In Proc. 2004 ACM/SIGSOFT Int. Symp. on Software Testing and Analysis,
pages 252–262, July 2004.

18. X. Fu, T. Bultan, and J. Su. Realizability of conversation protocols with mes-
sage contents. In Proc. 2004 IEEE Int. Conf. on Web Services, pages 96–203,
July 2004.

19. X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal analysis of web service
compositions. In Proc. 16th Int. Conf. on Computer Aided Verification, volume
3114 of LNCS, pages 510–514, July 2004.

20. X. Fu, T. Bultan, and J. Su. Realizability of conversation protocols with mes-
sage contents. International Journal of Web Services Research (JWSR), 2(4):
68–93, 2005.

21. X. Fu, T. Bultan, and J. Su. Synchronizability of conversations among
web services. IEEE Transactions on Software Engineering, 31(12):1042–1055,
December 2005.

22. J. E. Hanson, P. Nandi, and S. Kumaran. Conversation support for business
process integration. In Proc. of 6th IEEE Int. Enterprise Distributed Object
Computing Conference, 2002.

23. C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, 1978.

24. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, Massachusetts, 2003.

25. IBM. Conversation Support Project. http://www.research.ibm.com/

convsupport/.
26. Java Message Service. http://java.sun.com/products/jms/.
27. G. Kahn. The semantics of a simple language for parallel programming. In

Proc. IFIP 74, pages 471–475. North-Holland, 1974.
28. Raman Kazhamiakin, Marco Pistore, and Luca Santuari. Analysis of commu-

nication models in web service compositions. In Proc. of 15th World Wide Web
Conference (WWW), pages 267–276, 2006.

29. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. In Proc. 6th ACM Symp. Principles of Distributed Computing,
pages 137–151, 1987.

30. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

31. Message Sequence Chart (MSC). ITU-T, Geneva Recommendation Z.120, 1994.
32. Microsoft Message Queuing Service. http://www.microsoft.com/

windows2000/technologies/communications/msmq/default.mspx.
33. Shin Nakajima. Model checking verification for reliable web service. In Proc. of

the 1st International Symposium on Cyber Worlds (CW 2002), pages 378–385,
November 2002.

3 Analyzing Conversations 85

34. S. Narayanan and S. McIlraith. Simulation, verification and automated com-
position of web services. In Proc. International World Wide Web Conference
(WWW), 2002.

35. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symp. Principles of Programming Languages, pages 179–190, 1989.

36. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In Proc. 16th Int. Colloq. on Automata, Languages, and Programs, volume 372
of LNCS, pages 652–671, 1989.

37. S. K. Rajamani and J. Rehof. A behavioral module system for the pi-calculus.
In Proc. 8th Static Analysis Symposium, pages 375–394, July 2001.

38. S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration of scenario-based
specifications and behavior models using implied scenarios. ACM Transactions
on Software Engineering and Methodology, 13(1):37–85, 2004.

39. Web Service Analysis Tool (WSAT). http://www.cs.ucsb.edu/~su/WSAT.
40. Web Service Choreography Description Language (WS-CDL). http://www.w3.

org/TR/ws-cdl-10/, 2005.
41. Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/

wsdl, March 2001.

4

WS-Engineer: A Model-Based Approach
to Engineering Web Service Compositions

and Choreography

Howard Foster, Sebastian Uchitel, Jeff Magee and Jeff Kramer

Distributed Software Engineering Group, Department of Computing,
Imperial College London, 180 Queen’s Gate, London, United Kingdom
{h.foster,s.uchitel,j.magee,j.kramer}@imperial.ac.uk

Abstract. In this chapter, we describe a model-based approach to the analysis of
service interactions for web service choreography and their coordinated composi-
tions. The move towards implementing web service choreography requires both de-
sign time verification and execution time validation of these service interactions to
ensure that service implementations fulfil requirements of multiple interested part-
ners before such compositions and choreographies are deployed for use. The approach
employs several formal analysis techniques and perspectives, and applies these to
the domain of web service choreographies and the compositional implementations
that each role in these choreographies must satisfy. Our approach models the ser-
vice interaction designs of choreographies (in the form of Message Sequence Charts),
the service choreography descriptions (in WS-CDL – the Web Service Choreogra-
phy Description Language) and the service composition processes (in BPEL4WS –
the Business Process Language for Web Services). We translate models between
UML and Web service specifications using the Finite State Process algebra nota-
tion. Where interactions deviate from choreography rules, the interaction sequences
can be shown back to the user of the approach in an easy and accessible way, in the
UML form. The described approach is supported by a suite of cooperating tools, for-
mal modelling, simulation, animation and providing verification results from chore-
ographed web service interactions. The tool suite and related papers are available
for download at http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer.

4.1 Introduction

Distributed software systems, and the interactions between components within
these systems, can exhibit a high level of complexity and lead to difficulty in
the assessment of what system behaviour is possible in multiple scenarios [18].
Constraining such a system requires us to fully understand the behaviour of
the system and place controls on which sets of activities a system can per-
form. A distributed software system also encourages system evolution, by
offering reusable services so that other systems may also include components

88 H. Foster et al.

from each other without fully reengineering solutions. Web services (compo-
nents interfaced using XML and standard Internet protocols) are one such
software architecture to exhibit this need for control, combining the flexi-
bility and reach of the Internet, the principles of reusability, with that of
conventional distributed systems engineering practices. Recent attempts to
standardise descriptions of web service interactions in a Web Services Ar-
chitecture (WS-A) [2] appear to concentrate only on the vocabulary, whilst
the emerging overall process is difficult to assess or verify. Some of the current
common standards for these descriptions are illustrated in Fig. 4.1, with the re-
lated WS-A layer element and with a connection to a related Software Process
Analysis (SPA) [5] area. We believe the complexity in designing web service
compositions to satisfy choreography policies can be eased by modelling the
required composition processes in an accessible and concise notation which
can then be used to verify and validate, not only web service workflows but
expected behaviour over cross-domain services (to form the choreography).

In this chapter, we describe an approach, known simply as “WS-Engineer”,
which specifically addresses adding semantic representation to web service
compositions and choreography elements of the standards stack illustrated
above, and extends a tool to support a mechanical aid for verification and val-
idation of these processes. Whilst standards evolve, and debate grows around
where standards fit in service architecture, we see the Business Execution Lan-
guage for Web services (BPEL4WS) [1] and the Web Services Choreography
Description Language (WS-CDL) [21] complementing each other in service
composition development with one as a local service interaction process and
the other as a global cross-enterprise service interaction policy. We trans-
late service design and implementation models between UML and web service
specifications using the Finite State Process [28, 29] algebra notation. Where
interactions deviate from choreography rules, the interaction sequences can be
shown back to the user of the approach in an easy and accessible way, again
using the UML form. We discuss the issues with a software engineering per-
spective, describe how our approach to tackle these issues can be undertaken

Fig. 4.1. Web Service Architecture, Standards and Software Process Analysis Links

4 WS-Engineer: Model-Based WS Compositions and Choreography 89

in testing web service in various scenarios and describe the assumptions and
limitations which forms our continued work.

4.2 Background

Web service compositions and choreography provide additional layers above
basic service invocation whereby collaborative client scenarios enables the
differing uses of these services in a wider cross-enterprise domain. This is
seen as an important element of making web services viable for wide spread
use, and to provide a closer representation of business transactions in cross-
domain enterprises. The effect of using earlier architecture styles has been
prone to issues of semantic failure and difficulties in providing the necessary
compensation handling sequences [3]. This has been attributed to the strict
binding of services with specific technologies. Where previously designers of a
workflow had to work very closely with the developers of the technical solution,
we now have a mechanism to support technology-independent workflow service
invocation. This provides an opportunity for the designers to concentrate on
exactly what is required from a workflow without hindrance from technical
limitations and implementation effort. One key part of the verification in
this context is to check the trace equivalence with reference to the actions
of the design specification, and specifically how sequencing multiple service
conversations is achieved. Whilst there have been other attempts to use model-
checking techniques for reliable web service verification, such as in [13, 31, 32],
there has been little published on the process of using Message Sequence
Charts (MSCs) [19] for service composition specifications and combining these
with composition implementations to verify and validate service behaviour
against those specified in the requirements. In our previous work [9, 12, 10],
we have discussed how to model web service compositions, built using the
standard of BPEL4WS, and more recently the translation of WS-CDL.

4.2.1 Web Service Behaviour Analysis

Web service behaviour analysis consists of analysing two aspects of the web
service architecture style. A web service formally exhibits its identity and per-
missible interactions through an interface definition in the form of the Web
Service Description Language (WSDL) [4]. Within the implementation for a
web service, however, the actual behaviour of its interactions is defined (i.e. the
sequence and occurrence). The coordination of a service’s behaviour is formed
from the basic operations of requesting, receiving a new request, replying to
a partner or receiving the reply from a request and this forms the basis for
service conversations as part of its behaviour towards an overall goal. Stan-
dards elaborate the specification of how, what and when these interactions
can occur. The layers above a basic service are described with service com-
positions, choreography, transactions and policies. Behaviour analysis of the

90 H. Foster et al.

service interactions described using these standards aims to provide a tool to
expose potential problems or inconsistencies using properties of interest (such
as service process deadlocks, process liveness and interaction compatibility).

4.2.2 Related Work

To date, web service behaviour analysis has largely focused on the interac-
tions between services from the viewpoint that service logic is checked for
completeness using safety and liveness properties (e.g. absence of deadlock)
and that interaction cycles are completed between partners (a form of in-
teraction compatibility). One of the earlier proposals for formal analysis of
composition implementations was given in [31] for the DAML-S “semantic
web” ontology to provide a mark-up language for content and capabilities
of web services. They extend semantics to evaluate web service compositions
described in DAML-S. Whilst their technique is useful to reference particular
properties of compositions in verification, the practical nature of this work
does not relate directly to those standards defined in Sect. 4.2.1. The author
of this work has also provided analysis of compositions in terms of those im-
plemented in the Web Service Flow Language (WSFL) [26] and implements
a mapping between WSFL and Promela (the language of the SPIN tool) [31].
The work is a good example of translating service composition descriptions
as the technique can be undertaken against more recent service specifications;
however, the work is not complete enough to give a thorough covering of anal-
ysis topics in service composition analysis as the range of properties analysed
is limited. More recently, analysis of web service composition specifications
has increased the use of modelling techniques for formal verification, includ-
ing that of BPEL to Petri Nets [34], for control logic checking of BPEL and
describes addition analysis for isolating “redundant messages” that are not
necessary if a certain activity has been performed. This appears to be an ad-
vantage for efficiency in composition processing although the level of benefit
of this ability is difficult to measure. Alternatively, [16] uses Petri net-based
models to represent web service composition flows independently of a partic-
ular specification. In this work the authors define a “web service algebra” (in
BNF-like notation). However, there is a little coverage of how this maps to
current standard web service composition languages (such as BPEL4WS or
WS-CDL). In [35] web service compositions are described in the Language
of Temporal Ordering Specifications (LOTOS). The authors extend a map-
ping between the algebra and the BPEL4WS by providing rules for partial
two-way process, but again there is no easily accessible mechanism for web
service engineers to perform this analysis. Fu [13] provides an analysis tool
based upon translation of BPEL4WS descriptions to Promela and analysed
using the SPIN tool. They also apply limited XPath expressions for state
variable access analysis. We summarise the comparison of related work in
Table 4.1. We illustrate the coverage of verification with properties defined
in process (traditional properties for process models) and those properties

4 WS-Engineer: Model-Based WS Compositions and Choreography 91

Table 4.1. Comparison of related work with analysis techniques and tools

Web Service Languages Properties
Specifications and Tools (Process & Service)

Nakajima [31] WSFL SPIN,
Promela

Process: Reachability, deadlock freedom.

Ouyang [34] BPEL4WS Petri-Net,
PNML,
WofBPEL

Process: Reachability, deadlock freedom.
Service: Message redundancy checking

Salaün [35] BPEL4WS LOTOS Process: Reachability, deadlock freedom.
Service: Equivalence by observation of
external behaviour.

Fu [13] BPEL4WS “WSAT”
as SPIN &
Promela

Process: Reachability, deadlock freedom.
Synchronous and Asynchronous
interaction simulation, Data analysis
through XPath models.
Service: LTSA, Message Sequence Charts

Foster [11] WSDL,
BPEL4WS,
WS-CDL,
Interaction
Logs

Finite
State
Process

Process: Capabilities of LTSA (safety,
progress, fluents).
Service: Compatibility, obligations,
runtime analysis of Composition
Interaction logs

aimed specifically at addressing the service oriented aspects of compositions
(including interactions, their compatibility and choreography).

In comparison to these related works, the strength of our approach is to
consolidate the use and analysis of specifications for web service compositions,
and in particular those from interface through to policy specifications (refer to
Fig. 4.1) and allow the engineers to verify that designs and implementations
exhibit the appropriate safety and liveness in all use cases using an accessi-
ble method by way of describing Message Sequence Charts (for interactions).
Substantial work has been carried out in the area of behaviour model syn-
thesis from scenario-based specifications. Variants to the scenario language
presented above have been studied, of particular interest are those that are
more expressive such as [7, 24]. In addition, various synthesis algorithms that
include different assumptions than those described above have been studied,
e.g. [22, 6]. Surveys of the area can be found in [23, 38].

As our approach is built on proven and widely used tools (such as LTSA)
we are also able to leverage additional analysis in the form of Fluents (time-
varying properties of the world) [39] which are true at particular time-points
if they have been initiated by an event occurrence at some earlier time point,
and not terminated by another event occurrence in the meantime. We believe
that this, along with the work described in this chapter, greatly facilitates
those in the role of web service engineers to construct appropriate and correct
compositions, whilst upholding choreography obligations through defining the
necessary interactions prior to deployment in the service environment.

92 H. Foster et al.

4.3 The WS-Engineer Approach

Our approach (illustrated in Fig. 4.2) considers analysis of a web service com-
position process from two viewpoints. Firstly, process model verification can
be used to identify parts of the service behaviour that have been implemented
incorrectly, or can exhibit unexpected behaviour results. Secondly, validation
can be used to determine whether the engineered solution is suitable for spec-
ified requirements. The approach is undertaken as follows: A designer, given
a set of web service requirements, specifies a series of MSCs or WS-CDL
documents to describe how the services will be used and to model how each
service requests or receives a reply in a series of service scenarios. The re-
sulting set of scenarios is synthesised to generate a behavioural model, in the
form of a state transition system. The service implementation is undertaken
by a BPEL4WS engineer, who builds the BPEL4WS process from either spec-
ification or requirements. The BPEL4WS specification is used to generate a
second behavioural model (transition system) by a process of abstracting the
BPEL4WS, with respect to data, to yield a model of interaction. Validation
and verification consists of comparing and observing states of these two tran-
sition systems.

The approach can assist in determining whether the implementation con-
tains all the specified scenarios and whether any additional scenarios implied
by the implementation are acceptable to the end-user. In addition, checks can
be made on the models with respect to desirable general global properties
such as absence of deadlock and liveness (using model-checking). Feedback to
the user is in the form of UML style MSCs. The aim is to hide the underlying
Labelled Transition System (LTS) representations and let the user view only
the BPLE4WS implementations and the MSCs as a simple intuitive and visual

Fig. 4.2. Engineering web service compositions in the WS-Engineer approach

4 WS-Engineer: Model-Based WS Compositions and Choreography 93

formalism accessible to most engineers [37]. The verification approach is from
an abstract behavioural specification using the MSC notation and WS-CDL
definitions. The approach uses the UML [33] style design of these sequences
away from a technical implementation, and evaluates their transitional state
and behaviour locally before deploying any parts of the workflow, and realis-
ing the true effect of the process flow. The verification side, of the approach
aims to provide a mechanism to support such questions as, can the imple-
mentation (such as defined in the BPEL4WS standard) fulfil the interaction
requirements and did we build the process interactions correctly? The second
viewpoint is from that of validation. The focus of validation is clarifying the
understanding of requirements against that of the web service composition
implementation. Some questions help us identify the validation areas that the
approach can assist with in this. For example, has the implementer under-
stood the needs of all expected clients, their intended use of the process and
in all possible contexts? Ultimately, the result of validation is to ensure that
the right process was built. Validation allows the designers and also prospec-
tive users of the process to step through the model and determine whether
the design is fit for their requirements. Validation of web service composition
specification models are a useful step prior to verification of implemented web
service compositions, such that designers and users can evaluate a modal as
representing an equal view of their requirements.

MSCs form the service interaction design specifications, whilst WS-CDL
describes the global service obligations policy. In a similar way to traditional
obligation policies, which specify those activities a subject must or must not
do to a set of target objects [27], a service obligation policy describes the
service interactions which are permissible between partners for one or more
given collaboration goals. In the domain of web services, the objects are ser-
vices, providers and clients that interact with sequence or with a concurrent
communication protocol. Note that both WS-CDL and MSC are illustrated as
composition and choreography specifications, as they can be used to describe
both partial local and full global service interaction policies. In essence, the
WS-CDL and MSC specifications can be used as a design specification for
service interactions, for which BPEL4WS or other implementation specifica-
tions can be used to implement service processes. Collectively, our analysis
approach offers reasoning techniques for the following service-oriented verifi-
cation properties:

• Safety of workflow processes in service composition processes.
• Complete cycles of interactions between service partners.
• Compatibility of interactions between service partners.
• Obligations analysis of partner compositions in service choreography.

4.3.1 FSP, LTS and Behaviour Models

Our approach uses an intermediate representation to undertake analysis of
web service compositions and choreography. The FSP notation [28, 29] is de-
signed to be easily machine readable, and thus provides a preferred language

94 H. Foster et al.

to specify abstract workflows. FSP is a textual notation (technically a process
calculus) for concisely describing and reasoning about concurrent programs.
The constructed FSP can be used to model the exact transition of workflow
processes through a modelling tool such as the Labelled Transition System
Analyzer (LTSA) [23], which provides a compilation of an FSP into a state
machine and provides a resulting Labelled Transition System (LTS). State
transition systems with a finite number of states and transitions can be repre-
sented as directed graphs. There are at least two basic types of state transition
systems: labelled or unlabelled. An LTS is a directed graph with labels at-
tached to each state transition to represent a semantic progress in a process
behaviour model. LTSA is a tool which provides a means to construct and
analyse complex LTS models of finite state process specifications. This tool,
which is fully explained in [28], provides us with an opportunity to model
workflows prior to implementation and deployment testing, and with an MSC
editor and synthesis extensions [37] to easily model a scenario-based design
specification, which can increase the expectation that process composition will
provide the necessary path of invocation in all states specified (e.g. reliably
by eliminating deadlock situations). With process animator extensions, the
tool can also provide a facilitator in simulating workflow specifications for
validation.

Each FSP expression E can be mapped onto a finite LTS using a series of
operators. FSP has two keywords that are used just before the definition of a
process and that force LTSA to perform a complex operation on the process.
The first keyword, minimal, makes LTSA construct the minimal LTS with re-
spect to strong semantic equivalence. The second, deterministic, makes LTSA
construct the minimal LTS with respect to trace equivalence. If there are no
traces leading to END states that are proper prefixes of other traces, then
deterministic preserves END states. This means that a trace in the original
process leads to an END state if and only if the trace leads to an END state in
the determinised process. Throughout the chapter we compare different LTSs
to see if the behaviour they model is the same. Various notions of equivalence
can be used to compare LTSs, including strong and weak equivalence [30] and
trace and failures-divergence equivalence [17]. In the context of this chapter,
we use two different equivalences. The first is trace equivalence, where two
LTSs are considered equivalent if they are capable of producing the same set
of traces. We use this to compare different LTSs that provide the behaviour
specified in a MSC specification. Note that the fact that a state is an error or
end states is not relevant in the definitions of these equivalences. The second
equivalence (strong) is used in the context of some of the proofs in the ver-
ification parts. It is a much stronger equivalence relation than that of trace
equivalence and, as such, it preserves many behavioural properties [30].

A summary of the operators for FSP is given as follows.

• Action prefix “− > ”: (x− > P) describes a process that initially engages
in the action x and then behaves as described by the auxiliary process P.

4 WS-Engineer: Model-Based WS Compositions and Choreography 95

• Choice “|”: (x− > P |y− > Q) describes a process which initially engages
in either x or y, and whose subsequent behaviour is described by auxiliary
processes P or Q, respectively.

• Recursion: the behaviour of a process may be defined in terms of itself,
in order to express repetition.

• End state “END”: describes a process that has terminated successfully
and cannot perform any more actions.

• Sequential composition “; ”: (P ; Q) where P is a process with an END
state, describes a process that behaves as P and when it reaches the END
state of P starts behaving as the auxiliary process Q.

• Parallel composition “||”: (P ||Q) describes the parallel composition of
processes P and Q.

• Trace equivalence minimisation “deterministic”: deterministic P de-
scribes the minimal trace equivalent process to P. If no terminating traces
are proper prefixes of other traces, then it also preserves END states.

• Strong semantic equivalence minimisation “minimal”: minimal P
describes the minimal strong semantic equivalent process to P.

4.4 A Vacation Planning Example

The vacation planning example is based upon the scenario set out as an in-
troduction to this monograph, in Chap. 1. John, the main partner in this
collaboration, can be seen as a partner of the wider service-oriented archi-
tecture. Although service-oriented architectures (SOA) are much more than
the services they encompass (with change management, security and moni-
toring being a few examples of other factors in an SOA) the scenario suggests
a series of services interacting to fulfil all of John’s trip requirements. In
this case, we highlight the need for Hotel services (finding by location and
characteristics), Route services (route planning services providing, e.g., the
quickest route avoiding current traffic problems), and Site services, locating
interest and historical sites given a location, route or specific range of inter-
ests. Figure 4.3 illustrates a partial SOA view for these interacting services to
fulfil John’s requests. We consider the problem of engineering the interactions
between services as part of a growing problem domain, which is practically
constrained through processes and descriptions of interaction policies.

In Fig. 4.3, the problem domain (1) consists of choreography policies
(2) and key composition services (3) fulfilling obligations as part of the ser-
vice interactions. Other partner services (4) facilitate the composition services
to achieve the detailed functional requirements needed. John is fortunate to
have access to a vacation planning service (one of the key composition ser-
vices) which aids the number of requests he has to make. In testing, a ma-
jor issue is how we provide such key compositions and service interaction
policies such that John and other partners with possibly differing scenarios
are provided with sufficient interaction sequences to accomplish the problem

96 H. Foster et al.

Fig. 4.3. Partial service-oriented architecture for vacation planning services

requiring a solution. We now consider the design, implementation and analysis
steps to consider the issues based around the example.

4.5 Modelling Service Compositions and Choreography

4.5.1 Service Design Specifications

The scenario-based design approach has been a popular technique to capture
user requirements by way of storytelling [20]. This method provides a concise
yet simple tool for painting a picture of how actors (clients), components
and messages are composed together to complete one or more system goals.
It has commonly been used in the past for actual interactions by system
users [14], the actors can also represent any agent or service that interacts
with the system being described by way of activities. The messages and their
sequences that pass between components in a process can be described by
way of a MSC or similar Sequence Chart notation in the Unified Modelling
Language (UML) [33]. MSCs are part of building a set of scenarios of partial
system behaviour [38]. As an example, we illustrate a scenario in Fig. 4.4 for
the activities required by a client (John) who requires a composition of service
calls to resolve particular vacation planning needs. A higher-level sequence
chart (hMSC) can be used to sequence basic sequence charts (bMSC) together
(as a choice or sequence).

A web service composition design can be seen as a composed process con-
sisting of various scenarios which when combined together provides a complete

4 WS-Engineer: Model-Based WS Compositions and Choreography 97

Fig. 4.4. Composition and choreography design as high-level (left) and basic
(right) sequence charts

set of sequence paths describing all possible paths through a service compo-
sition design. We relate the concepts of scenarios to web service compositions
using a mapping between the elements of message sequence charts and those
in building a standards-based web service composition in Table 4.2. Each of
the elements of the MSC (defined by ITU) is described in relation to elements
of web service compositions and web service choreography (defined by OASIS
for BPEL4WS and W3C for WS-CDL respectively).

MSCs are visual aids to design requirements specifications for web service
compositions, yet their combined behaviour (as a set of partial stories in a
complete composition behaviour model) is still difficult to analyse by human
observation alone. The process of synthesising these MSC scenarios to a La-
belled Transition System (LTS), which are state transition systems (consisting
of states and labels) used in the study of computation, provides a way to com-
putationally and mechanically analyse these scenarios to determine whether
the behaviour specified is desirable given a complete system behaviour model.
A formal syntax and semantics for MSCs is described in [38, 37] using the
FSP notation, whilst a corresponding algorithm to synthesise MSCs to a LTS
based upon these definitions is described in [36]. For the sequence chart illus-
trated previously in Fig. 4.4, a representative LTS is illustrated in Fig. 4.5.
Note that full service interaction labels have been reduced for clarity of la-
bel reading where “cli” is for Client, “rou” is for Route Service, “hot” is for
Hotel Service, “sit. . . ” is for Sites Service and “Vac. . . ” is for the Vacation
Planning service.

4.5.2 Assumptions and Limitations

We have made some assumptions here about the example. For instance, the
use of a central “vacation planning service” is a key process to the model
of scenarios. However, it is likely that individual services may also be called

98 H. Foster et al.

Table 4.2. A sub-set of web service compositions and choreography as MSC
elements

MSC
Element

ITU Definition Web Service Web Service
ChoreographyCompositions

Higher
Level
MSC
(hMsc)

Describes high level
sequence of partial
interaction behaviour

Links several
compositions or
episodes together to
form complete system
behaviour

Defines a sequence of
process compositions and
overall choreography
behaviour in wider
context

Basic
MSC
(bMSC)

Describes a partial
behaviour of a system
between instances

A composition MSC is
used to describe a
single participant view
of the overall message
exchanges

A choreography MSC is
used to describe a single
scenario of the overall
web service collaboration
and participant message
exchanges

Instance Names blocks,
processes or services
of a system

Relates to partners in
a composition, as seen
from a local process
perspective. Specific
process name may also
be included in the
instance title

Partners in choreography.
Local partner services or
compositions are created
upon a signified request

Messages A relation between an
instance output and
input. The message
exchange can be split
into two messages for
input and output
events.

Communication
between composition
partners or internal
process components.
Messages are mapped
to activities in the
local composition

Communication between
all partners in
choreography. Messages
are related directly to an
abstract process of web
service calls between
services and the
compositions (as services)

by the client, away from the central composition. This broadens the scope
of interactions between services and the possible alternative paths through
a series of service calls, particularly where calls are made concurrently in
which alternative invocations and replies will increase the complexity of paths
through the possible service call sequences. Related to this, there is also the
limitation of the “state space explosion” problem [40], where the size of the
state machines generated grows exponentially with the number of states and
transitions produced (i.e. the number of request and reply combinations mod-
elled for each interaction in the service context). Advances in computing and
model-checking technology, however, may provide ease to this resource issue.
The scenario illustrated represents one such basic scenario in a composition
and choreography of service calls, yet there is the possibility of many others,
and indeed there are also implied scenarios (which can be exhibited from all
possible traces of alternative scenarios).

4 WS-Engineer: Model-Based WS Compositions and Choreography 99

F
ig

.
4
.5

.
L
T

S
o
f
d
es

ig
n

sp
ec

ifi
ca

ti
o
n

fo
r

va
ca

ti
o
n

p
la

n
n
in

g
se

rv
ic

e
ex

a
m

p
le

100 H. Foster et al.

4.6 Implementations of Service Compositions

Let us suppose we take each of the actors in the design specifications con-
structed in Sect. 4.5.1, and we are required to build these in such a way that
the interactions are fulfilled for all the varying service usage scenarios desired.
In a similar way to analysing these interactions as part of a design, building
them can be equally as complex. Later in this chapter, we will describe how
our approach provides a suitable mechanism to analyse compositions, built
in the standard of BPEL4WS to support verification of these built processes
against service interaction design specifications. We begin by providing a series
of examples in BPEL4WS related to the vacation planning example used pre-
viously and to describe how these are modelled in the preparation for analysis.

4.6.1 The BPEL4WS Specification

The structure of a BPEL4WS process specification is illustrated in Fig. 4.6.
BPEL4WS is an XML schema with constructs for basic interaction actions,
structured process flow, and fault and compensation handling. State of mes-
sages (and other data) can be held in local variables and used to build other
messages, or to determine a path of action through the process. To define
complete business interactions, a formal description of the message exchange
protocols used by business processes in their interactions can be implemented
for BPEL4WS as a private process with a public interaction summary added to
the service WSDL document. The definition of such public business protocols
involves precisely specifying the mutually visible message exchange behaviour
of each of the parties involved in the protocol, without revealing their internal
implementation. There are two good reasons to separate the public aspects of

Fig. 4.6. Basic BPEL4WS process structure and activity groups

4 WS-Engineer: Model-Based WS Compositions and Choreography 101

business process behaviour from internal or private aspects. One is that busi-
nesses may not wish to reveal all their internal decision-making and data man-
agement to their business partners. The other is that, even where this is not the
case, separating public from private process provides the freedom to change
private aspects of the process implementation without affecting the public
business protocol. The viewpoint of interaction analysis in this work, how-
ever, is aimed at the designers and the implementers of the compositions and
it is therefore necessary to analyse the private process and how its logical parts
define the behaviour of what the composition execution may actually perform.

A private process is implemented in BPEL4WS using a series of XML con-
structs (described later in this section) for basic logic, structural and concur-
rent activities in a separate document. This document forms the executable
process which we use as source for private process modelling. In the later
stages of analysis in our work, both public and private processes are col-
lated to support a complete interaction analysis. In our previously reported
work [9, 12, 10], we have discussed modelling a service process as defined by
a service composition, implemented in the standard of BPEL4WS. A process
consists of a series of BPEL4WS activity statements, specifying the interac-
tions between services and local logic to manipulate message data for these
interactions. Let us first consider the vacation planning service as described
in Sect. 4.4. An example BPEL4WS process for coordinating the route and
hotel services as part of John’s preferences is illustrated in Fig. 4.7. The (xml
tree) structure forms a concurrent sequence of interactions between route and
hotel services.

The receive construct initiates the planning process by accepting a new
request from a partner (in the example this is John’s vacation request). Con-
currently, marked as a flow construct, the service composition invokes a route
planning service and a hotel locator service. When all replies are received back
from the partnered services, the process replies to the original request. The
remaining composition service interactions are built in a similar way.

4.6.2 BPEL4WS to Finite State Process Models

The BPEL4WS service compositions are then translated into the FSP no-
tation, where the semantics of BPEL4WS specifications are given equivalent

Fig. 4.7. BPEL4WS process structure for concurrent interactions within vacation
planning service

102 H. Foster et al.

// BPEL4WS translation to FSP
// Sequences ——–
RECEIVEJOHN = (john vs rec preferences− >END).
REPLYJOHN = (vs john rep preferences− >END).
ROUTE REQ = (vs rs inv getroutes− >END).
ROUTE REP = (rs vs rec getroutes− >END).
ROUTE SEQ = ROUTE REQ; ROUTE REP; END.
HOTELS REQ = (vs hs inv gethotelsbylocation−>END).
HOTELS REP = (hs vs rec gethotelsbylocation−>END).
HOTELS SEQ = HOTELS REQ; HOTELS REP; END.
|| VPLANFLOW = (ROUTE SEQ || HOTELS SEQ).
VPLANSEQ = RECEIVEJOHN ; VPLANFLOW ; REPLYJOHN; END.
// Parallel composition process —————–
|| VS BPELModel = (VPLANSEQ).

Fig. 4.8. LTS of vacation planning service composition

representation as processes in FSP (Fig. 4.8). In FSP, processes are defined
using the − > operator, sequences are represented using the sequence oper-
ator of ; and concurrent processes are defined using the parallel composition
operator ||. The abstraction from the BPEL4WS is based upon modelling
the sequence of interactions in the process, and enumerating the conditional
elements which affect the possible paths of execution depending on values
within messages. A full guide of mapping BPEL4WS to FSP is given in [8].
A graphical LTS for the FSP is illustrated in Fig. 4.9.

4.6.3 Synchronisation Models of Composition Interactions

Note that the BPEL examples given previously involved several “partnered”
service interaction cycles (invoke, invoke/receive and reply). A secondary step
is required to build a synchronisation model between interactions of the com-
positions. In this way, we are examining the pattern of invoking a partner
process, the receiving activity of the partner process and the reply message
back to the requestor process. To achieve this, we add a port connector pro-
cess between the compositions by analysing how they interact, from the view-
point of each individual composition. The synchronised interactions can be
represented in FSP by using the notion of a connector, which encapsulates
the interaction between the components of the architecture. In [28] this is
implemented in FSP as a monitor, allowing us to combine the concepts of
information hiding and synchronisation. Transition semantics are labelled us-
ing the service interaction invoker and receiver partner names, the composi-
tional construct name (i.e. “invoke” or “receive”), and by the operation be-
ing requested. These provide us with a set of labelled process transitions,
such as “vacationservice hotelservice invoke gethotelsbylocation”. If there is
more than one invoke in the sender process, then this can be sequentially
numbered. The labelled transitions can then be synchronised together by

4 WS-Engineer: Model-Based WS Compositions and Choreography 103

F
ig

.
4
.9

.
L
T

S
o
f
B

P
E

L
4
W

S
im

p
le

m
en

ta
ti
o
n

fo
r

va
ca

ti
o
n

p
la

n
n
in

g
se

rv
ic

e

104 H. Foster et al.

searching for the relevant receive activity given an invoke transition. With
further analysis we can align the invoke operation with the receive opera-
tion defined, through a search of related partner interface definitions (de-
fined in the WSDL specification). The result of modelling these compositions,
and applying port connector models between compositions, is that we have
a complete model representing the implementation of services carrying out
one or many roles within the specification given earlier. This model repre-
sents the source for analysing the behaviour of the implementations against
the choreography design and implementations which we discuss in Sect. 4.8.4.
Figure 4.10 illustrates synchronised compositions between vacation and hotel
services.

4.6.4 Assumptions and Limitations

Amongst the assumptions in our semantic mappings of BPEL4WS to FSP,
we have considered that a process lifecycle begins at the first receive activity
specified in the process document. The possibility of multiple start points as
part of a series of receive activities (discussed earlier) would affect the order
in which activities are executed. We anticipate the mapping would be evolved
to consider this in our future work. Our mapping is also currently limited in
the translation of variables, in that we are mapping on the basis of a static
representation (to values enumerated based upon occurrence of conditional
variable comparisons). To provide some flexibility in determining how the
values of variables affect the process execution path, we add further mapping
to enumerate static values within the process. The mapping does not consider
translating event handling, as part of an activity scope. Such a mapping would,
however, take a form similar to the fault and compensation handling although
the semantics behind event handling are much more towards a time-based
simulation basis. We are seeking to evolve the methods described here to
ease these limitations and provide a closer representation of a BPEL process
model.

Fig. 4.10. LTS of vacation and hotel service synchronised port interactions

4 WS-Engineer: Model-Based WS Compositions and Choreography 105

4.7 Descriptions of Service Choreography

The choreography rules of the service interactions can be implemented in the
WS-CDL specification language, and then potentially executed on a choreog-
raphy engine. As part of this specification, the engineer can build the necessary
interactions as control flows (resembling traditional structured control), work
units (scoped repeatable activity sets) or basic activities (an interaction or
a call to perform another choreography set for example). The interactions
specified must be part of agreed “cross-service” scenarios. Whilst the imple-
mentation of service compositions (implemented as an example in BPEL4WS
in the previous section) could be developed with local logic and carried out
by individual development teams, the specification must be agreed concisely
between groups, and the behaviour specified between services must not only
be compatible but also adhere to the choreography rules set. We examine here
how the specifications, in WS-CDL form, are translated and modelled as a set
of processes.

4.7.1 The WS-CDL Specification

WS-CDL provides a specification and language for defining rules of chore-
ographed web service interactions. WS-CDL provides a layer above BPEL4WS
coordinating partner interactions. A choreography package is created for
each specification instance that is attributed to one or more logical sce-
narios. Within this package, the partners, roles and relationships (in terms
of relationship types – such as “buyer or seller” roles) are specified for
all exchanges between services participating in the interaction scenarios. A
choreography subsection of the specification then details a group of physi-
cal interactions between partners and data exchanges as messages are sent
or received. The structure of a WS-CDL package is illustrated in Fig. 4.11.
The interaction construct is the key activity to expressing that an exchange
of messages between two partners should occur. This interaction can be ex-
pressed as a request (to a partner of the choreography), a response (from
a partner in the choreography) and a request–response (expecting a re-
ply from a request between two partners). Although an information vari-
able is defined as part of the exchange, WS-CDL also provides channels
to describe a shareable variable storage in which partner requests or re-
sponses may be passed along. The control-flow aspects of the specification
are represented by the three constructs of sequence, parallel and choice.
These subsequently represent a sequential process and parallel composition of
processes or a selective guarded process on one or more conditional elements
respectively.

Although these constructs are also represented in BPEL4WS, in WS-CDL
the basis for choice is dependent on the guard in question and whether that
guard is data-driven (evaluation is based upon data values) or event-driven

106 H. Foster et al.

Fig. 4.11. WS-CDL specification structure

(that some event has occurred during the choreography). In addition, a work-
unit represents a scoped block of activities which can be repeated and ex-
pressed as non-blocking or blocking (depending on whether the work-unit
should wait for certain variables to become available). A guard encompasses
the work-unit and when evaluated to true, the work-unit process is under-
taken. Fault and exception handling is also provided in the form of designated
work-units. These can be activated if a particular exception is discovered (such
as an interaction failure in which the sending of a message did not succeed or
an application failure in the result of receiving a message which raises some
application level exception). Under normal choreography running, a finaliser
work-unit can be defined to perform some “end of choreography” activities
(e.g. a final interaction which can be undertaken only when a choreography
group has been completed). Referring back to the vacation planning example,
we can see that a policy is needed as to when and how the services can interact
to provide a solution for John. In this case an example is when he has to pay
the highway fees through the toll system. There is a need to coordinate the
interactions between vehicle, John’s credit card company and Highway Toll
services. For example, John may only be allowed to proceed if the payment
has been debited from John’s credit card account successfully and that he is in
the appropriately registered vehicle for the toll system. A choreography policy
would define the interactions between John (as the client), the toll system and
John’s credit card company. A scenario for this choreography is illustrated (in
part) as WS-CDL in Fig. 4.12.

4 WS-Engineer: Model-Based WS Compositions and Choreography 107

Fig. 4.12. WS-CDL description for partial toll system interactions

Further scenarios would introduce a choice of responses; e.g., to respond
with a non-authorised vehicle requesting use of the highway. One or many WS-
CDL choreography descriptions can be built to represent different aspects of
the service-oriented interaction goals. For example, the partial toll system
interactions described above can be included in the wider transaction policy
for tracking the movements of vehicles using the highways.

4.7.2 WS-CDL to Finite State Process Models

As with the translation from BPEL4WS to FSP, we provide a translation
between WS-CDL and FSP processes by way of abstracting the choreogra-
phy sets and interactions contained within these sets. The process considers
each construct in the choreography tree and maps the construct with asso-
ciated actions to represent the information contained within the construct’s
children. The process is iterative for each child in each tree of the chore-
ography specification. For example, the choreography policy defined previ-
ously is translated into a set of processes to define each of the interactions
as a set of invoke, receive, reply and synchronised invoke reply (invrep) pro-
cesses. This is sequenced in FSP to represent the ordering of an invocation
and replying to an exchange. In Fig. 4.13 we have also listed the FSP for
this translation. Note that each interaction in a choreography group is built
on the basis of a synchronised service connection. The sequence construct
in WS-CDL is translated to a parallel composition in FSP using its ——
operator, whereby the CHOREOGRAPHY1 SEQ process composes the se-
quences of interaction 1 and 2. Finally, another composition forms the group
for the choreography (CDLArchitectureModel). Compiling this FSP into an
LTS provides us with a model of the concurrent interaction rules for this
choreography. With conditional choreography interaction rules, based upon
the choice construct in WS-CDL, the FSP guarded variable operators pro-
vide a mechanism to represent alternative choices possible in the choreography
model. This is similar to the representation for the switch..case construct in
BPEL4WS.

108 H. Foster et al.

// CDL Interaction Process
// Sequences ——–
REQVETVA = (vehicle tollvehauth request authorisation− >END).
REQTSCB = (tollvehauth centralbank request reqpayment− >END).
RESVETVA = (tollvehauth respond authorisation− >END).
CHOREOGRAPHY1 SEQ = REQVETVA; REQTSCB; RESVETVA; END.
// CDL Choreography Process ——–
|| CDLArchitectureModel = (CHOREOGRAPHY1 SEQ).

Fig. 4.13. Sample FSP process model for concurrent interactions of vacation plan-
ning service composition

4.7.3 Assumptions and Limitations

We currently consider modelling the choreography only from a perspective of
abstracting the behaviour defined based upon the interaction blocks in the
specification. The choreography specification contains a far greater depth to
define when and how events should occur, and if they influence a change in
interaction behaviour. Our approach uses a simple model of general interaction
paths which, in the case of the example given previously, is suitable to provide
early yet partial verification results to the engineers.

4.8 Analysis Through Verification and Validation

In analysis, we consider two views of analysis using verification and validation
techniques. Verification is achieved through the use of formal software process
model checking techniques, but we evaluate specific topics of our approach for
web service compositions by wrapping and applying these techniques under
the notions of deadlock freedom and safety and progress property analysis.
We can check the behaviour of a composition or choreography is deadlock
free (i.e. that there are no states with no outgoing transitions). In a finite
state model (such as the models we produced from design specification and
implementations in Sects. 4.6.2 and 4.7.2), a deadlock state is a state with no
outgoing transitions in these models. A process in such a state can engage in no
further actions. The deadlock states we are interested in are those that arise
from a parallel composition of concurrent activities in a single BPEL4WS
composition, a number of interacting BPEL4WS compositions and one or
many compositions against that of their MSC design specifications or WS-
CDL policy obligations.

Whilst the models synthesised from the MSC design of a web service com-
position are focused on service interactions, the implementation may also in-
clude additional representation in the form of conditions and constraints (also
known as links in BPEL4WS). The naming scheme of the MSC message inter-
actions is also likely to be differing to that of the implementation specification
naming standards for interaction activities. It is necessary to abstract these ad-
ditional representations away from the implementation by hiding or mapping

4 WS-Engineer: Model-Based WS Compositions and Choreography 109

them in the model composition. The common elements of the models produced
for both the design and the implementation of web service compositions are
the interaction activities. In essence, our preparation focuses on abstraction
of interaction processes, applying a concise labelling scheme to the implemen-
tation specification, hiding implementation specific activities which are not
based upon direct interaction messages and identifying a mapping between
activities specified in the implementation and the design. We highlight some
of the core verification opportunities in our approach as the following topics.

• Design and implementation equivalence – between MSC, WS-CDL and
BPEL4WS.

• Composition process analysis – between multiple BPEL4WS processes.
• Process interaction compatibility – interface and interactions compatibility

between partners in a service-oriented architecture.
• Partner obligations analysis – checking roles of services against specifica-

tions.

4.8.1 Design and Implementation Equivalence

The essence of this verification is to prove that a property exists in the
composition modelling of combined implementation and design models. This
combined model is used as source for the trace equivalence verification. Fur-
thermore, any additional behaviour can be fed back to the implementer as
counter examples. It is also the case that by definition of trace equivalence,
the MSC design can be checked against that of the implementation. However,
this may appear less useful in the design approach of web service composi-
tions, but essentially this also provides a technique for future re-engineering
and checking against existing compositions where the implementation is the
initial requirements in focus. In summary, the equivalence verification may
also be used to check that a MSC design specification exhibits the behaviour
of a BPEL4WS implementation. We continue to use the Vacation Planning
service composition example for ease of following the approach steps, and to
illustrate how this verification is undertaken with the composition models.

We begin with the synthesised models of the MSC design and the
BPEL4WS compositions (as illustrated in Sects. 4.5.1 and 4.6.2 respectively).
The models are then combined using an architecture composition, with a map-
ping between models based upon service partner names, the activity construct
(invoke, receive, etc.) and the from and to roles – where from is the sending
partner and to is the receiving partner. In Fig. 4.14 the MSC and BPEL
models are combined (CheckBPEL) and a property is declared as that of the
deterministic MSC process.

Although we have built models of both MSC and BPEL4WS activities,
we are interested in the minimal trace equivalence in both these models. To
specify this in FSP, we use the deterministic operation on the given MSC
model and include abstracting the endAction transition as it is not included

110 H. Foster et al.

// FSP Code for equivalence checking of MSC specification and BPEL4WS
// compositions with property that BPEL4WS implementation should uphold
// activities of MSC design —
// CDL Interaction Process
MSC ArchitectureModel = MSC model FSP
BPEL ArchitectureModel = BPEL model FSP + mappings . . .
deterministic || DetMSC = MSC ArchitectureModel.
property || Bis MSCBPEL = DetMSC.
|| CheckBPEL = (Bis MSCBPEL || BPEL ArchitectureModel).

Fig. 4.14. FSP code for equivalence verification of BPEL4WS against MSC models

in the BPEL4WS model. If we pass this model through an LTS analyzer, the
analysis of the combined model results in a property violation as illustrated
in Fig. 4.15.

The reason for this violation is that the BPEL4WS service composition
for the vacation planning service permits the concurrent execution of both
getroutes of the routeservice and gethotelsbylocation of the hotelservice. The
MSC design does not specify that this is an expected scenario. The service
engineer and designer may need to consider whether this is applicable to their
composition offered. To correct this violation, either the BPEL4WS composi-
tion or MSC design is updated to reflect the actual requirements needed

4.8.2 Composition Process Analysis

By specifying particular properties of interest, engineers can check whether a
web service composition can reach a particular state in terms of its obligations
in more general cases (over that of individual scenarios used in Sect. 4.7). This
assists in building reusable service-oriented architectures, for which a policy
states obligations in which web service choreography may be undertaken. We
describe the model checking techniques for general properties of the composi-
tion models under two different types in our approach, categorised as follows:

1. Safety – providing assurance that the composition is checked for partial
correctness of transitions for a given property within the model, e.g. that
a partner service invocation is always logged following an failure.

// Trace run example of MSC over BPEL4WS equivalence
Trace to property violation in Bis MSCBPEL:
john vacationservice receive preferences
vacationservice routeservice invoke getroutes
vacationservice hotelservice invoke gethotelsbylocation

Fig. 4.15. Trace run example of trace equivalence of MSC and BPEL4WS models

4 WS-Engineer: Model-Based WS Compositions and Choreography 111

2. Progress – providing assurance against starvation of progress in the com-
position, such that, whatever state the composition is in, an activity will
always be executed, e.g., that a reply is always sent back to the original
requester.

For both property types, we can reuse the model building steps described
for trace equivalence (Sect. 4.8.1) but excluding the design specification re-
quirement. The building step requirements for including one or many processes
is dependent on the source in question or, in other words, whether it is that
the property must be tested on one composition or over a choreographed do-
main of processes. In this section, we simplify the examples by concentrating
on one composition to illustrate how each of the property checks is carried out
in analysis. In safety analysis of the compositions, we are seeking to assist the
engineer to specify properties (or activities in the composition) that should be
upheld in the composition. For example, the engineer may want to revisit the
requirements for the service to be provided and note a series of conditional
processing dependent on a sequence of activities having been carried out. To
model check this and perform a safety analysis, we can use the FSP syntax of
property to describe the safety property of interest in our model. A safety
property defines a deterministic process that asserts that any trace including
actions in the alphabet of the process P is accepted by P. The property syntax
for a check that “John can receive route information before hotels. . . ” is listed
in Fig. 4.16. Performing an analysis on the process “BPEL PropertyCheck”
will highlight a trace to property violation, where this property cannot be
upheld in the current version of the composition.

Progress analysis is similarly specified by activity properties, but the focus
is on those properties which will eventually happen (such as the example given
previously that a reply will always be given back to a client from a service). In
FSP, the syntax for defining progress properties uses the progress keyword. A
progress P = a1, a2 . . . an defines a progress property P which asserts that in
an infinite execution of a target system, at least one of the actions a1, a2an

will be executed infinitely often. This definition allows us to specify a range
of progress properties, with the condition that at least one must be upheld
in a service composition. By way of example, we use the vacation planning
service model to check whether a route is always located for a client’s request,
as illustrated in Fig. 4.17.

// Property to safety check that Client can receive partial
//(route) planning information before hotel information —
property ROUTEREPLY = (vacationservice routeservice invoke getroutes− >
vacationservice john reply preferences − >
vacationservice hotelservice invoke gethotelsbylocation−>END)
// Compose composition architecture model with property —
|| BPEL PropertyCheck = (BPEL VacationService —— ROUTEREPLY).

Fig. 4.16. FSP for Safety Check of Client Receive Route Planning Information

112 H. Foster et al.

// Property to safety check that the Client can always
// receive a reply from the vacation planning service —
progress ALWAYSREPLY = (vacationservice john reply preferences− >END)
// Compose composition architecture model with property —
|| BPEL PropertyCheck = (BPEL VacationService || ALWAYSREPLY).

Fig. 4.17. FSP code for progress property that a reply to a client is always made

4.8.3 Process Interaction Compatibility

Compatibility verification is an important aspect of behaviour requirements
between different clients of compositions. Clients will likely anticipate dif-
ferent behaviour depending on their individual requests and therefore the
composition must be tested against various scenarios to reflect these differ-
ent sequences of activities. There is also an assumption that a web service
composition will work in any process environment (not just the original de-
velopment domain). A greater level of assurance in compatibility can be given
if interacting services are checked whether a composition exhibits the correct
behaviour for its own use. Web service compositions can also be seen as the
implementation layer of a multi-stakeholder distributed system (MSDS) [15].
An MSDS is defined as “a distributed system in which subsets of the nodes
are designed, owned, or operated by distinct stakeholders. The nodes of the
system may, therefore, be designed or operated in ignorance of one another,
or with different, possibly conflicting goals.” The focus is on interaction with
multiple parties and the behaviour could be somewhat ad hoc depending on
the requirements of the partner services. However, three basic levels of com-
patibility for component compositions have been previously reported in [25].
These are defined as interface, behaviour and input–output (data) compatibil-
ity. Whilst input–output data compatibility is of interest, it is not the main
focus of this verification work. We would, however, expect a related growth of
data analysis work to monitor and analyse service messages. We now apply
the first two of the concepts discussed for compatibility, and describe interface
compatibility specifically for web service compositions as the activity of corre-
lating invocations against receiving and message replies between partner pro-
cesses, such that invoke, receive and reply activities are synchronised. Given a
series of service implementations (in the form of BPEL4WS processes), the ap-
proach elaborates on the interaction mappings between processes and further
inputs from port connectors between interaction activities in these processes.
In Fig. 4.18 two such interaction connector models are illustrated for the
Client VactionService and VacationService RouteService interaction cycles.

To check that interactions are compatible with those specified in the
BPEL4WS compositions, we compose the port connector and BPEL4WS
models and map the interactions from composition to port connector (as il-
lustrated in Fig. 4.19).

Compiling “CompatibilityModel” and performing an analysis of the pro-
cess provides a trace to a property violation as illustrated in Fig. 4.20. The

4 WS-Engineer: Model-Based WS Compositions and Choreography 113

Fig. 4.18. Port connectors for service interactions between client with vacation
services (top) and vacation with route services (bottom)

// FSP code for parallel composition of BPEL4WS service and interaction
// port connectors —
——CompatibilityModel = (CLIENT BPELModel || CLIENT VS PORT MAPPING ||
VS BPELModel || VS ROUTESERVICE PORT MAPPING || ROUTESER-
VICE BPELModel).

Fig. 4.19. FSP code for parallel composition of BPEL4WS services and port
connectors

// Trace run example from Compatibility Verification of Client,
// Vacation Planning and Route Service Compositions —
Trace to property violation in CompatibilityModel:
john vacationservice receive preferences
vacationservice routeservice invoke getroutes
routeservice vacationservice reply getroutes

Fig. 4.20. Trace run example of compatibility in service interaction models

114 H. Foster et al.

reason for this trace is that a violation was located at the point in which the
routeservice is supposed to reply to the vacation planning service. The engi-
neer can check the composition to ensure that a reply is indeed given in all
cases (and, in particular, within the scope to fulfil this scenario).

4.8.4 Partner Obligations Analysis

Service obligation verification provides a service engineer and any part-
nered services to check the suitability of service conversations in composition
implementations against that of the obligations policy. This obligations check
discovers if the conversations between compositions fulfils the rules set in
the choreography specification. To compose a model for checking a series of
interacting service compositions requires that the “interaction verification”
(discussed in Sect. 4.8.3) has been successful. An example undertakes these
two steps to illustrate how the models are built and analysed. The steps
to check for obligations verification is for checking composition interactions
against those specified in the WS-CDL implementation. Given a series of in-
teracting models formed from BPEL4WS implementations (such as that used
previously for service interaction compatibility analysis), the approach can be
used to check that the possible interactions exhibited by these compositions
fulfils the rules specified in the choreography sets. An example of the vacation
trip services is as follows. Given three models of interacting services, in this
case the Client (John), Client’s Vehicle and Toll services, a composed model
of interactions is compiled. This composed model is then used as a property
against the choreography policy. A property check can reveal whether the ser-
vice composition interactions comply with the rules set out in the choreogra-
phy by equivalent interaction traces. Furthermore, any additional interactions
which are exhibited between the partners in the compositions are highlighted
back to the engineer. In Fig. 4.21, we have given the FSP for building a deter-
ministic model of the WS-CDL model and then specified this as the property
for analysis against the BPEL4WS models.

The other interactions in the TollService are “silent” to the obligations
checking. Interestingly, we can also reverse this approach to check which other
traces are permissible given the composition model as a property to check
against the WS-CDL.

// Trace run example of compatibility in service interaction models —
// WS-CDL property against BPEL4WS models —
|| WSBPEL Arch = (BPEL John || BPEL VehicleService || BPEL TollServices).
|| WSCDL Arch = CDLArchitectureModel.
deterministic || DetModel = WSCDL Arch.
property || P DetCDL = DetModel.
|| CheckObligations = (P DetCDL —— WSBPEL Arch).

Fig. 4.21. Trace run example of compatibility in service interaction models

4 WS-Engineer: Model-Based WS Compositions and Choreography 115

4.9 Summary of Results

Using the WS-Engineer approach, we have examined a series of web service
compositions for a vacation planning SoA example and compared them against
service choreography rules as outlined in either MSCs or WS-CDL descrip-
tions. In the SOA example for the Vacation Planning services, we examined
the processes that may be constructed to assist in service interactions, and
how these can exhibit properties which may lead to a lesser quality of ser-
vice when used by service clients. Although the elements of service-oriented
architectures are much more than simply the interactions (security, service
configuration management being some others), we have used model checking
to exhibit early warnings in the design and implementation phases of ser-
vice components. For example, this particularly highlighted design decisions
lead to a breach of conformance to service choreographies. The verification
approach for specifying obligation policies, building web service compositions
and implementing policies in WS-CDL has been built into a tool which is
described in Sect. 4.10.

4.10 Tool Support

The tool we have developed (Fig. 4.22) to complement this approach is built
to extend the existing LTSA tool suite [28] written by Jeff Magee of Impe-
rial College London. LTSA uses the FSP to specify behaviour models. From
the FSP description, the tool generates a LTS model. The user can animate
the LTS by stepping through the sequences of actions it models, and model-
check the LTS for various properties, including deadlock freedom, safety and
progress properties. The MSC extension builds on this introducing a graphi-
cal editor for MSCs and by generating an FSP specification from a scenario
description [37]. FSP code is generated for the architecture, trace and con-
straint models described previously. LTSA model checking capabilities (for
safety and liveness checks) are then used to detect implied scenarios. The tool
is available for download from http://www.ws-engineer.net

4.11 Conclusions and Future Work

Our main contribution in our work is to provide an approach which, when im-
plemented within the tool, provides a mechanical verification of properties of
interest to both designers and implementers of web service compositions. The
use of a formal, well-defined, process algebra (in this case FSP) provided a se-
mantic mapping between the composition implementation (in the BPEL4WS
specification for web service compositions and WS-CDL for service chore-
ography policies), and we were fortunate to leverage some work previously

116 H. Foster et al.

F
ig

.
4
.2

2
.

T
h
e

W
S
-E

n
g
in

ee
r

to
o
l
w

it
h

su
p
p
o
rt

in
g

w
eb

se
rv

ic
e

co
m

p
o
si
ti
o
n

ed
it
o
rs

a
n
d

v
ie

w
s

4 WS-Engineer: Model-Based WS Compositions and Choreography 117

reported in [38] for the synthesis of design specifications, in the form of mes-
sage sequence charts, to the same process algebra. These two representations
as models form the basis to provide rich model-based verification. We plan
to expand the approach to consider dynamic analysis of policies for service
interactions in service choreography and also the analysis of service composi-
tion deployments on distributed architectures. In this chapter, we presented
an approach towards our goals in the form of a static analysis tool to test
service designs (in the form of MSCs), service composition implementations
(for equal requirements in BPEL4WS) and service choreography policies (for
service partner obligations analysis). The approach provides an extendable
framework in which further properties can be defined and implemented to
assist in an efficient, mechanical service testing and analysis tool set.

References

1. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte,
Ivana Trickovic, and Sanjiva Weerawarana. Business process execution language
for web services version 1.1, 2004.

2. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Cham-
pion, Chris Ferris, and David Orchard. Web services architecture (ws-a) - w3c
working group note 11 february 2004, 2004.

3. O. Bukhres and C.J. Crawley. Failure handling in transactional workflows
utilizing corba 2.0. In 10th ERCIM Database Research Group Workshop on
Heterogeneous Information Management, Prague, 1996.

4. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web services description language (wsdl) 1.2, 2003.

5. Jonathan E. Cook. Software process analysis: integrating models and data.
SIGSOFT Softw. Eng. Notes, 25(1):44, 2000.

6. Christophe Damas, Bernard Lambeau, Pierre Dupont, and Axel van Lam-
sweerde. Generating annotated behavior models from end-user scenarios. IEEE
Trans. Software Eng., 31(12):1056–1073, 2005.

7. W. Damm and D. Harel. “LSCs: Breathing Life into Message Sequence
Charts.”. FMSD, 19(1):45–80, 2001.

8. Howard Foster. A Rigorous Approach to Engineering Web Service Composi-
tions. PhD thesis, Univeristy of London, Imperial College London, UK, Jan
2006.

9. Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Compatibility
for web service choreography. In 3rd IEEE International Conference on Web
Services (ICWS), San Diego, CA, 2004a. IEEE.

10. Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Tool sup-
port for model-based engineering of web service compositions. In 3rd
IEEE International Conference on Web Services (ICWS2005), Orlando, FL,
2005. IEEE.

11. Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Ws-
engineer:tool support for model-based engineering of web service compositions

118 H. Foster et al.

and choreography. In IEEE International Conference on Software Engineering
(ICSE2006), Shanghai, China, 2006. IEEE.

12. Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer, and Michael Hu. Us-
ing a rigorous approach for engineering web service compositions: A case study.
In 2nd IEEE International Conference on Services Computing (SCC2005),
Orlando, FL, 2005. IEEE.

13. Xiang Fu, Tevfik Bultan, and Jianswen Su. Wsat: A tool for formal analysis of
web services. In 16th International Conference on Computer Aided Verification
(CAV), Boston, MA, 2004.

14. Peter Graubmann. Describing interactions between msc components: the msc
connectors. The International Journal of Computer and Telecommunications
Networking, 42(3):323–342, 2003.

15. Robert J. Hall. Open modeling in multi-stakeholder distributed systems: Model-
based requirements engineering for the 21st century. In Proc. First Workshop on
the State of the Art in Automated Software Engineering,, U.C. Irvine Institute
for Software Research, 2003.

16. Rachid Hamadi and Boualem Benatallah. A petri net-based model for web
services composition. In 3rd IEEE International Conference On Web Services
(ICWS), San Diego, CA, 2004.

17. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, New Jersey, 1985.

18. Tad Hogg and Bernardo A. Huberman. Controlling chaos in distributed
systems. IEEE Transactions on Systems Management and Cybernetics, 21:
1325–1332, 1991.

19. ITU. Message sequence charts. Technical report, Recommendation Z.120, Inter-
national Telecommunications Union. Telecommunication Standardisation Sec-
tor, 1996.

20. I Jacobson, J Rumbaugh, and G Booch. The Unified Software Development
Process. Addison-Wesley, Harlow, UK, 1999.

21. Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher, and
Yves Lafon. Web services choreography description language version 1.0 - w3c
working draft 17 december 2004, 2004.

22. Kai Koskimies and Erkki Mäkinen. Automatic synthesis of state machines from
trace diagrams. Software Practice and Experience, 24(7):643–658, 1994.

23. I Krüger. Distributed system design with message sequence charts. PhD thesis,
Technische Universität, 2000.

24. Ingolf Krüger. Capturing overlapping, triggered, and preemptive collaborations
using mscs. In Mauro Pezzè, editor, FASE, volume 2621 of Lecture Notes in
Computer Science, pages 387–402. Springer, 2003.

25. A. Larrson and I. Crnkovic. New challenges for configuration management. In
Software Configuration Management Workshop, Toulouse, France, 1999.

26. Frank Leymann. Web services flow language (wsfl 1.0). Technical report, IBM
Academy Of Technology, 2001.

27. E. C. Lupu and M. S. Sloman. Conflict analysis for management policies.
In Proceedings of the 5th IFIP/IEEE International Symposium on Integrated
Network management IM’97, San Diego, CA, 1997.

28. J. Magee and J. Kramer. Concurrency - State Models and Java Programs. John
Wiley, 1999.

4 WS-Engineer: Model-Based WS Compositions and Choreography 119

29. Jeff Magee, Jeff Kramer, and D. Giannakopoulou. Analysing the behaviour
of distributed software architectures: a case study. In 5th IEEE Workshop on
Future Trends of Distributed Computing Systems, Tunisia, 1997.

30. R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.
31. Shin Nakajima. Model-checking verification for reliable web service. In OOP-

SLA 2002 Workshop on Object-Oriented Web Services, Seattle, Washington,
2002.

32. Srini Narayanan and Shela A. Mcllraith. Simulation, verification and auto-
mated composition of web services. In Eleventh International World Wide
Web Conference (WWW-11), Honolulu, Hawaii, 2002.

33. OMG. Unified modelling language. Technical report, Object Modelling Group,
2002.

34. C. Ouyang, W.v.d Aalst, S. Breutel, M. Dumas, A.t. Hofstede, and H. Verbeek.
Formal semantics and analysis of control flow in ws-bpel (revised version) bpm-
05-15. Technical report, BPMcenter. org, 2005.

35. G. Salalün, L. Bordeaux, and M. Schaerf. Describing and reasoning on web
servicesusing process algebra. In 3rd IEEE International Conference On Web
Services (ICWS), San Diego, CA, 2004.

36. S Uchitel, J.Magee, and J.Kramer. Detecting implied scenarios in message
sequence chart specifications. In 9th European Software Engineering Confer-
ece and 9th ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (ESEC/FSE’01), Vienna, Austria, 2001.

37. S. Uchitel and J. Kramer. A workbench for synthesising behaviour models from
scenarios. In the 23rd IEEE International Conference on Software Engineering
(ICSE’01), Toronto, Canada, 2001.

38. S. Uchitel, J. Kramer, and J. Magee. “Incremental Elaboration of Scenario-
Based Specifications and Behaviour Models using Implied Scenarios”. ACM
TOSEM, 13(1), 2004.

39. Sebastian Uchitel, Robert Chatley, Jeff Kramer, and Jeff Magee. Fluent-based
animation: exploiting the relation between goals and scenarios for requirements
validation. Requirements Engineering Journal, 10(4), 2005.

40. A Valmari. The state explosion problem. In Lectures on Petri nets: advances
in Petri nets, volume 6, Berlin,Heidelberg, 1998. Springer-Verlang.

5

Model Checking with Abstraction
for Web Services

Natasha Sharygina1 and Daniel Kröning2

1 University of Lugano, Informatics Department, Lugano, Switzerland and
Carnegie Mellon University, School of Computer Science, Pittsburgh, USA

2 ETH Zürich, Computer Systems Institute, Switzerland

Abstract. Web services are highly distributed programs and, thus, are prone to
concurrency-related errors. Model checking is a powerful technique to identify flaws
in concurrent systems. However, the existing model checkers have only very limited
support for the programming languages and communication mechanisms used by
typical implementations of web services. This chapter presents a formalization of
communication semantics geared for web services, and an automated way to ex-
tract formal models from programs implementing web services for automatic formal
analysis. The formal models are analyzed by means of a symbolic model checker
that implements automatic abstraction refinement. Our implementation takes one
or more PHP5 programs as input, and is able to verify joint properties of these
programs running concurrently.

5.1 Introduction

Web services are instantiations of service-oriented architectures, where a ser-
vice is a function that is well defined, self-contained and does not depend on
the context or state of other services [1]. They are designed to be published,
accessed and used via intranet or Internet. The elements of the design are (1)
a service provider, which offers some service; (2) a service broker who main-
tains a catalog of available services; and (3) service requesters which seek for
a service from the service broker, and then attach to the service provider by
composing the offered services with its own components. A web service offers
an arbitrary complex functionality, which is described in a global system struc-
ture. Examples of web services include information systems such as map or
travel services, e-commerce systems such as web shops, travel agencies, stock
brokers, etc. Clearly, it is essential to enforce security and safety requirements
in the development of such systems.

Web services are typically implemented in a very distributed manner and,
thus, are prone to errors caused by the distribution. They often involve mul-
tiple parties. As an example, consider an online shop that accepts charges
to a credit card as form of payment. The parties involved are the users or

122 N. Sharygina and D. Kröning

customers, the vendor itself, and back-office service providers, e.g., the pay-
ment clearing service. The authorization of the payment is given by a service
company for credit card transactions, whereas the “shopping basket” and
warehousing are implemented by the vendor. It is easy to imagine another
party involved in a transaction, e.g., a company that performs the actual
shipment.

Each party typically employs a large set of machines for the purpose of load
sharing. The safety and security requirements are often global, i.e., require
reasoning about multiple parties and may involve more than one server at
each party.

A typical scenario is depicted in Fig. 5.1. A merchant is operating three
hosts (e.g., for redundancy or load-balancing reasons). Two of these hosts
(‘Host 1’ and ‘Host 2’) are used to run a web server, e.g., Apache. The web
server itself is split up into multiple processes, T1, . . . , T4. The web server
processes have joint access to a shared database, e.g., using the SQL protocol.
This database is assumed to be the only form of communication between
the server processes. The server processes may contact a third party, e.g.,
to authorize a payment. Incoming client requests are modeled by means of
processes T5 and T6.

Analyzing software that implements such services, therefore, requires rea-
soning about many programs running in parallel. Concurrent software is noto-
riously error-prone. Approaches based on testing often fail to find important
concurrency bugs.

Database

Host 1 Host 2

Client(s)

HTTP HTTP

SQL

HTTP/SOAP

Host 3

T5

T6

T1 T2 T3 T4

T7

Fig. 5.1. A typical scenario —A merchant operating multiple machines offering a
service to multiple clients, and communicating with a third party

5 Model Checking with Abstraction for Web Services 123

Model checking [2, 3] is a formal verification technique. It has been shown
to be especially useful for verifying concurrency-related properties, and iden-
tifying bugs related to process schedules. In the context of web services, there
are manifold properties that model checking can be used to verify:

• Safety properties, e.g., that no exceptions are thrown by the code, that
the code is free of data races, or that certain security properties hold.

• Liveness properties, e.g., that the code does not get into a state in which
it deadlocks or livelocks.

However, model checking suffers from the state explosion problem. In case
of BDD-based symbolic model checking, this problem manifests itself in the
form of unmanageably large BDDs [4]. In case of concurrent software, the
state–space explosion problem comes from two sources: (1) The model checker
has to consider manifold interleavings between the threads, and (2) software
usually operates on a very large set of data variables.

The principal technique to address the first problem is partial order re-
duction [5]. The principal method for addressing the large amount of data is
abstraction. Abstraction techniques reduce the state space by mapping the
set of states of the actual, concrete system to an abstract and smaller set of
states in a way that preserves the relevant behaviors of the system. The use of
abstraction on transition systems is formalized by the abstract interpretation
framework [6].

Predicate abstraction [7, 8] is one of the most popular and widely ap-
plied methods for systematic abstraction of programs. It abstracts data by
only keeping track of certain predicates on the data. Each predicate is rep-
resented by a Boolean variable in the abstract program, while the original
data variables are eliminated. Verification of a software system with predicate
abstraction consists of constructing and evaluating a finite-state system that
is an abstraction of the original system with respect to a set of predicates.

Typically, this abstract program is created using Existential Abstrac-
tion [9]. This method defines the instructions in the abstract program so
that it is guaranteed to be a conservative over-approximation of the original
program for reachability properties. Thus, in order to show that no erroneous
state is reachable, it is sufficient to show that the abstract model does not
contain it.

The drawback of such a conservative abstraction is that when model check-
ing of the abstract program fails, it may produce a counterexample that does
not correspond to any counterexample of the original program. This is usually
called a spurious counterexample. When a spurious counterexample is encoun-
tered, refinement is performed by adjusting the set of predicates in a way that
eliminates this counterexample from the abstract program. This process is
iterated until either a counterexample is found, or the property is shown. The
actual steps of the loop follow the counterexample guided abstraction refine-
ment (CEGAR) framework.

124 N. Sharygina and D. Kröning

The CEGAR framework has been implemented in most software model
checking tools (e.g., Slam [10, 11], MAGIC [12], BLAST [13], SatAbs [14]).
The existing software Model Checkers, however, are not readily applicable for
most programs implementing web services. This is due to the fact that the
existing tools lack support for the programming languages and the communi-
cation primitives used for web services.

A number of programming languages has been designed specifically for
implementing web services. The commonly used programming languages for
web-applications are WSDL, BPEL, PHP [15], and ASP [16]. While in general
their goal is to provide the programming constructs for the implementation
of web services, they differ in the level at which they address the web service
operations. For example, BPEL [17] has been developed to specify interaction
protocols (synchronous and asynchronous) between web services. BPEL is
also a high-level language for implementing web service applications, and is
supported by the most industrial players in the field (IBM, Oracle, BEA). It is
designed for specifying the communication among service participants and its
users. Its disadvantage is that it does not support the low-level implementation
details of the service functionality.

Among the programming languages that support low-level details of web
service implementations are ASP and PHP. ASP (Active Server Pages) is
based on either Visual Basic Script or JScript. ASP is a proprietary system
that is natively implemented only on Microsoft Internet Information Server
(IIS). There are attempts of implementations of ASP on other architectures,
e.g., InstantASP from Halcyon and Chili!Soft ASP. Formal models of ASP
scripts are difficult to generate as ASP permits full access to the WIN32 API,
which offers an enormous amount of functions.

The other commonly used programming language for web applications is
PHP, a scripting language specialized for the generation of HTML, server-
side JAVA, Microsoft’s ASPx, and more recently, C# as part of .NET. PHP
is an interpreted programming language that has a C-like syntax. The most
commonly used platform for PHP is the Apache web server, but there are
implementations for IIS-based servers as well.

A large number of tools and techniques for modeling and model checking
BPEL processes have been developed (see e.g., [18, 19, 20, 21, 22, 23, 24,
25]). They focus on analyzing the interaction protocols, the orchestration,
and the composition of web services. They are not applicable, however, to
verifying the actual applications that implement the web services due to the
restrictions of the BPEL notation. As far as the verification of the actual
implementations of web services, there are no tools available yet. Moreover,
to the best of our knowledge there are no implementations of the abstraction-
refinement framework available for any of the languages that are typically
used for implementations of web services.

While there are model checkers for concurrent Java, the concurrency is
assumed to be implemented using the Java thread interface. Communication
between the processes is assumed to be implemented by means of shared

5 Model Checking with Abstraction for Web Services 125

data. In contrast to that, programs implementing web services are usually
single threaded. The concurrency arises from the fact that there are multi-
ple instances of the same single-threaded program running. Communication
between the processes is typically implemented by either

1. TCP sockets using protocols such as HTML or XML, or
2. shared databases using query languages such as SQL.

Note that the two communication primitives above have different seman-
tics: in the context of web services, communication through a TCP socket is
usually done in a synchronous, blocking way i.e., after sending data, the send-
ing process usually waits for an acknowledgment by the receiver and, thus, is
blocked until the receiving process accepts and processes the message.

In contrast to that, database accesses are usually performed independently
by each process. Blocking is avoided in order to obtain scalability in the num-
ber of database clients. While the SQL protocol itself is blocking, the com-
munication between processes through a shared database has asynchronous
semantics. Thus, the interleavings of competing accesses to the database be-
come relevant.

Returning to the scenario described above (Fig. 5.1), shared databases are
usually only accessible within the realm of a single party. Links to external
parties (clients, third-party service providers) are typically implemented using
synchronizing protocols such as SOAP.

Formal reasoning about global properties of web services requires identi-
fication and modeling of both of these communication primitives. In particu-
lar, support is needed for both synchronions and asynchronous inter-process
communication. None of the existing software model checkers provides such
support.

We propose to use Labeled Kripke Structures (LKS) as means of modeling
web services: LKSs are directed graphs in which states are labeled with atomic
propositions and transitions are labeled with actions. The synchronization
semantics is derived from CSP (Communicating Sequential Processes), i.e.,
processes synchronize on shared events and proceed independently on local
ones. The formalism supports shared variables. Once the formal model is
extracted from the implementation, the web service becomes amenable to
formal analysis by means of model checking [26].

5.1.1 Contribution

This chapter addresses a problem of verifying the applications that implement
the web services and develops techniques for modeling and verification of low-
level languages used for the implementation of web services.

We formalize the semantics of a PHP-like programming language for web
services by means of labeled Kripke structures. We use a computational model
that allows both synchronizing and interleaving communication. Previous
models are limited to either synchronous or asynchronous inter-process com-
munication. Once the model is obtained, automatic predicate abstraction is

126 N. Sharygina and D. Kröning

applied to formally analyze the web services. Manual and, thus error-prone
generation of models is no longer needed.

We implement the technique described above in a tool called SatAbs. It
is able to check safety properties of a combination of multiple PHP scripts. It
uses the Zend 2 engine as a front-end for PHP. The abstract model is computed
using SAT, and analyzed using a symbolic model checker that features partial
order reduction.

5.1.2 Related Work

Formal models for synchronization mechanisms have been thoroughly ex-
plored. For example, CSP [30] and the calculus of communicating systems
(CCS for short) [31] were introduced in the same years and influenced one
another throughout their development. CSP and CCS allow the description
of systems in terms of component processes that operate independently, and
interact with each other solely through different synchronization mechanisms.
In CSP, two processes must synchronize on any identically named action (i.e.,
by means of shared actions) that both are potentially capable of performing.
Moreover, any number of processes may interact on a single shared action.
In CCS, processes may interact on two complementary actions (e.g., a and
a, respectively input and output action over a shared channel named a), and
only bi-party interaction is supported.

Both CSP and CCS do not provide a way to directly represent and rea-
son about dynamic communications topologies and migrating computational
agents, which are an important aspect of many modern systems. Some people
see this as a major drawback of their theory. The pi-calculus [32] arose as a
generalization of CCS [31]. In the pi-calculus, processes not only synchronize
on two input/output actions over a shared channel, lent also send data along
those channels.

This chapter builds on work described in [26], where SAT-based predicate
abstraction is applied to a SystemC design. SystemC is a description language
based on C++ that is used to model both hardware and software components
of embedded designs. The concurrency primitives of SystemC are modeled
using the state/event-based notation introduced in [33]. As in this work, the
modeling framework consists of labeled Kripke structures.

The combined state-based and event-based notation has been explored
by a number of researchers. De Nicola and Vaandrager [34], for instance, in-
troduced ‘doubly labeled transition systems’, which are very similar to our
LKSs. Kindler and Vesper [35] used a state/event-based temporal logic for
Petri nets. Abstraction-based model checking is not reported for these formal-
izations. Huth et al. [36] also proposed a state/event framework, and defined
rich notions of abstraction and refinement. In addition, they provided ‘may’
and ‘must’ modalities for transitions, and showed how to perform efficient
three-valued verification on such structures.

5 Model Checking with Abstraction for Web Services 127

Most of the related work on formal analysis of web services consists of
verifying a formal description of the web service using a model checker. For
example, in [27] the authors propose translating models described in BPEL
into Promela and check the web service flow with the SPIN model-checker.
Another example of modeling and model checking of BPEL protocols is [18].
It uses Petri-nets for modeling and verification of coordination of the BPEL
processes.

In [28], a similar approach uses NuSMV. The verification of Linear
Temporal First-Order properties of asynchronously communicating web ser-
vices is studied in [29]. The peers receive input from their users and asyn-
chronous messages from other peers. The authors developed a special purpose
model checker [29] that allows verification of Web applications specified in
WebML.

Among other major techniques for analyzing web services there are works
of Bultan and others. This group developed a formal model for interactions
of composite web services supported by techniques for analysis of such inter-
actions [25, 24, 23, 39, 22]. Kramer et al. [40] defined a model-based approach
to verifying process interactions for coordinated web service compositions.
The approach uses finite state machine representations of web service or-
chestrations and assigns semantics to the distributed process interactions.
Pistore et al. proposed techniques for the automated synthesis of compos-
ite web services from abstract BPEL components [20], and verification of
Web service compositions defined by sets of BPEL processes [19]. The mod-
eling techniques are adopted for representing the communications among the
services participating in the composition. Indeed, these communications are
asynchronous and buffered in the existing execution frameworks, while most
verification approaches assume a synchronous communication model for effi-
ciency reasons.

In [37] at least the interface specification is verified at the source code
level using Java PathFinder. The SPIN model-checker is used for the behav-
ior verification of the asynchronously communicating peers (bounded mes-
sage queues). A language for specifying web service interfaces is presented
in [38]. None of the above techniques uses automated abstraction-based ver-
ification and, thus, are less competitive in verification of large-scale web
systems.

5.1.3 Outline

We provide background information on PHP and related languages and
predicate abstraction in Sect. 5.2. We explain the computational model in
Sect. 5.3 and formalize the semantics of the subset of PHP we handle.
Section 5.4 provides details on how to abstract the generated model and how
to verify it.

128 N. Sharygina and D. Kröning

5.2 Background

5.2.1 Implementations of Web Services

A web service is a system that provides an interface defined in terms of XML
messages and that can be accessed over the Internet [41]. It is intended for
machine-to-machine interaction.

Such a service is usually embedded in an application server. The applica-
tion server is a program that runs in an infinite loop and waits until a client
connects via a socket (by means of bidirectional communication over the In-
ternet) to a specified port. In order to process several requests simultaneously,
each incoming request is handled by a new thread from a thread pool. Thus,
there might be multiple instances of the same code running concurrently.

There are three main XML-based standards that define the web services
architecture: the Universal Description, Discovery and Integration (UDDI)
protocol is used to publish and discover web services, which are specified in
the Web Service Description Language (WSDL). The communication between
web services is defined by the Simple Object Access Protocol (SOAP).

There are three major roles within the web service architecture (Fig. 5.2):

1. Service provider—The service provider implements the service and makes
it available on the Internet.

2. Service requester—The client that connects to the web service.
3. Service broker—This is a logically centralized directory of services where

service providers can publish their services together with a service descrip-
tion. The service requester can search for services in this directory.

We restrict the presentation to service providers and requesters, i.e., we
assume that services are addressed statically by the requesters. Since there
are XML tools for nearly every operating system and every programming
language, web services are independent from the machine architecture, the
operating system, and the programming language. We use PHP syntax to
present our formalism. The formalism is applicable to similar languages for
web services as well with minor modifications specific to the syntax of those
languages.

WSDLWSDL

SOAP
Service Requester Service Provider

Service Broker

Fig. 5.2. Web service actors and protocols

5 Model Checking with Abstraction for Web Services 129

5.2.2 Synchronous Communication

Synchronous communication within web services is characterized by the client
being blocked until the service request has been processed.

Example 1 An example of synchronous communication is a credit card service
used in an e-commerce application: when the customer checks out his shopping
cart, the credit card service is invoked and the application then waits for
the approval or denial of the credit card transaction (Fig. 5.3). Figures 5.4
and 5.5 show an example of how a client and a server might be implemented,
respectively.

5.2.3 Asynchronous Communication

Asynchronous communication is used when the program cannot wait for the
receiver to acknowledge that the data was received. As an example, consider
the part of the e-commerce application that maintains a shopping basket. This
shopping basked is typically stored in persistent memory, e.g., a database. The
information is typically accessed by multiple processes over the lifetime of the
interaction with the client and, in a sense, communicated from one instance
of the server process to the next.

The time that passes between the accesses to the basket are arbitrary.
Synchronization between the time the data is sent (stored) and received (read)
is not desired. Also, note that the order of operations becomes important: as
an example, assume that a customer simultaneously issues a request to add an
item of a particular type to the basket and, independently, another request to
remove all items of that same type. The final result (none or one item of that
type) depends on the order in which the database transactions are processed.3

credit card web servicee−commerce application

Fig. 5.3. Synchronous communication

3 Synchronous communication, as described above, may in principle be imple-
mented by means of a database. However, the resulting implementation would
need to rely on polling and, thus, is very unlikely to scale.

130 N. Sharygina and D. Kröning

1 $ c l i e n t = new
2 SoapCl ient (‘ ‘ http : // example . net / soap /urn : c r ed i t ca r d . wsdl ”) ;
3 i f ($ c l i en t −>deb i t ($cardnumber , $amount)) {
4 // t r an s ac t i on approved
5 // . . .
6 } e l s e {
7 // t r an s ac t i on f a i l e d
8 // . . .
9 }

Fig. 5.4. Example of SOAP client code

We assume that a shared database is the only means to exchange data
among the processes in a non-synchronizing way, i.e., we do not model local,
shared files that can be written into, or the like. The database is expected to
guarantee a specific level of atomicity in the form of transactions. The different
transactions from the various processes accessing the database are assumed
to interleave arbitrarily. The issue of ordering is captured by the concept of
races . The shopping-basked described above is an instance of such a race. Such
races often represent erroneous behavior. Bugs caused by race conditions are
a well-known problem of any system with asynchronous concurrency and are
very difficult to detect by means of testing.

5.2.4 Predicate Abstraction

The abstraction refinement process using predicate abstraction has been pro-
moted by the success of the Slam project at Microsoft Research, which aims
at verifying partial correctness of Windows device drivers [10]. The algorithm
starts with a coarse abstraction, and if it is found that an error-trace reported
by the model checker is not realistic, the error trace is used to refine the ab-
stract program, and the process proceeds until no spurious error traces can

1 c l a s s CreditCardTransact ion {
2 funct ion deb i t ($cardnumber , $amount) {
3 // deb i t money from c r e d i t card and re turn e r r o r code
4 // . . .
5 r e tu rn $succe s s ;
6 }
7 }
8
9 $ s e r v e r = new SoapServer (” c r ed i t c a rd . wsdl ”) ;

10 $server−>s e tC l a s s (” CreditCardTransact ion ”) ;
11 $server−>handle () ;

Fig. 5.5. Example of SOAP server code

5 Model Checking with Abstraction for Web Services 131

be found. The actual steps of the loop follow the counterexample guided ab-
straction refinement (CEGAR) paradigm and depend on the abstraction and
refinement techniques used. Assume that a program M consists of compo-
nents M1, . . . , Mn executing concurrently. The verification procedure checks
if a property ϕ holds for M by using the following three-step iterative process:

1. Abstract: Create an abstraction M̂ such that if M has a bug, then so does
M̂ . This can be done component-wise without constructing the full state
space of M .

2. Verify: Check if a property ϕ holds for M̂ . If yes, report success and exit.
Otherwise, let Ĉ be a counterexample that indicates where ϕ fails in M̂ .

3. Refine: Check if Ĉ is a valid counterexample with respect to M . This
step is called simulation. Again, this can be done component-wise. If Ĉ
corresponds to a real behavior then the algorithm reports the flaw and a
fragment of each Mi that shows why the property is not satisfied (M �|= ϕ).
Otherwise, Ĉ is spurious, and M̂ is refined using Ĉ to obtain a more precise
abstraction. The algorithm continues with Step 1.

Existential Abstraction

The goal of abstraction is to compute an abstract model M̂ from the concrete
model M such that the size of the state-space is reduced and the property of
interest is preserved. We denote the set of abstract states by Ŝ. A concrete
state is mapped to an abstract state by means of an abstraction function,
which we denote by α : S −→ Ŝ. We also extend the definition of α to sets of
states: Given a set S′ ⊆ S, we denote {ŝ ∈ Ŝ | ∃s ∈ S′.α(s) = ŝ} by α(S′).

We restrict the presentation to reachability properties . The goal, therefore,
is to compute an abstraction that preserves reachability: any program location
that is reachable in M must be reachable in M̂ . Existential abstraction is a
form of abstraction that preserves reachability [9].

Definition 1 (Existential Abstraction [9]) Given an abstraction function
α : S −→ Ŝ, a model M̂ = (Ŝ, Ŝ0, R̂) is called an Existential Abstraction of
M = (S, S0, R) (here Ŝ0, S0, R̂, R are the initial states and transitions func-
tions of M̂ and M respectively) iff the following conditions hold:

1. The abstract model can make a transition from an abstract state ŝ to ŝ′ iff
there is a transition from s to s′ in the concrete model and s is abstracted
to ŝ and s′ is abstracted to ŝ′:

∀ŝ, ŝ′ ∈ (Ŝ × Ŝ).(R̂(ŝ, ŝ′) ⇐⇒
(∃s, s′ ∈ (S × S).R(s, s′)∧
α(s) = ŝ ∧ α(s′) = ŝ′))

(5.1)

2. An abstract state ŝ ∈ Ŝ is an initial state iff there exists an initial state s
of M that is abstracted to ŝ:

∀ŝ ∈ Ŝ.(ŝ ∈ Ŝ0 ⇐⇒ ∃s ∈ S0.α(s) = ŝ) (5.2)

132 N. Sharygina and D. Kröning

Existential abstraction is a conservative abstraction with respect to reach-
ability properties, which is formalized as follows.

Theorem 1 Let M̂ denote an existential abstraction of M , and let φ denote
a reachability property. If φ holds on M̂ , it also holds on M :

M̂ |= φ =⇒ M |= φ

Thus, for an existential abstraction M̂ and any program location l that
is not reachable in the abstract model M̂ , we may safely conclude that
it is also unreachable in the concrete model M . Note that the converse
does not hold, i.e., there may be locations that are reachable in M̂ but
not in M .

Notation

We denote the set of program locations by L. In program verification, the
abstract transition relation R̂ is typically represented using a partitioning,
similarly to the concrete transition relation R. The abstract transition relation
for program location l ∈ L is denoted by R̂l(ŝ, ŝ′), and the program location
of an abstract state ŝ by ŝ.	.

R̂(ŝ, ŝ′) ⇐⇒
∧

l∈L

(s.	 = l −→ R̂l(ŝ, ŝ′)) (5.3)

The computation of R̂ follows the structure of the partitioning according
to the program locations, i.e., R̂ is generated by computing R̂l from Rl for
each location l ∈ L separately. The following sections describe algorithms for
computing R̂l.

Predicate Abstraction

There are various possible choices for an abstraction function α. Predicate
abstraction is one possible choice. It is one of the most popular and widely
applied methods for systematic abstraction of programs and was introduced
by Graf and Säıdi [7]. An automated procedure to generate predicate abstrac-
tions was introduced by Colón and Uribe [8]. Predicate abstraction abstracts
data by keeping track only of certain predicates on the data. The predicates
are typically defined by Boolean expressions over the concrete program vari-
ables. Each predicate is then represented by a Boolean variable in the abstract
program, while the original data variables are eliminated. Verification of a
software system by means of predicate abstraction entails the construction
and evaluation of a system that is an abstraction of the original system with
respect to a set of predicates.

5 Model Checking with Abstraction for Web Services 133

We denote the set of Boolean values by B := {T, F}. Let P := {π1, . . . , πn}
denote the set of predicates. An abstract state ŝ ∈ Ŝ consists of the program
location and a valuation of the predicates, i.e., Ŝ = L × B

n. We denote the
vector of predicates by ŝ.π. We denote the value of predicate i by ŝ.πi. The
abstraction function α(s) maps a concrete state s ∈ S to an abstract state
ŝ ∈ Ŝ:

α(s) := 〈s.	, π1(s), . . . , πn(s)〉 (5.4)

Example 2 As an example, consider the following program statement, where
i denotes an integer variable:

i++;

This statement translates to the following concrete transition relation Rl(s, s′):

Rl(s, s′) ⇐⇒ s′.i = s.i + 1

Assume that the set of predicates consists of π1 ⇐⇒ i = 0 and π2 ⇐⇒
even(i), where even(i) holds iff i is an even number. With n = 2 predicates,
there are (2n)2 = 16 potential abstract transitions. A näıve way of computing
R̂ is to enumerate the pairs ŝ and ŝ′ and to check (5.1) for each pair separately.
As an example, the transition from ŝ = (l, F, F) to ŝ′ = (l, F, F) corresponds
to the following formula over concrete states:

∃s, s′. ¬s.i = 0 ∧ ¬even(s .i) ∧
s′.i = s.i + 1 ∧
¬s′.i = 0 ∧ ¬even(s ′.i)

(5.5)

This formula can be checked by means of a decision procedure. For in-
stance, an automatic theorem prover such as Simplify [42] can be used if a
definition of even(i) is provided together with (5.5). Since (5.5) does not have
any solution, this abstract transition is not in R̂l. Figure 5.6 shows the ab-
stract transitions for the program statement above, and one corresponding
concrete transition (i.e., a satisfying assignment to (5.1)) for each possible
abstract transition.

Abstract Transition Concrete Transition

ŝ.π1 ŝ.π2 ŝ′.π1 ŝ′.π2 s s′

F F F T s.i = 1 s′.i = 2
F F T T s.i = −1 s′.i = 0
F T F F s.i = 2 s′.i = 3
T T F F s.i = 0 s′.i = 1

Fig. 5.6. Example for existential abstraction: Let the concrete transition relation
Rl(s, s

′) be s′.i = s.i + 1 and let π1 ⇐⇒ i = 0 and π2 ⇐⇒ even(i). The table
lists the transitions in R̂l and an example for a corresponding concrete transition

134 N. Sharygina and D. Kröning

5.3 Extracting Formal Models of Web Services

5.3.1 Computational Model

A labeled Kripke structure [33] (LKS for short) is a 7-tuple (S, Init , P,L, T, Σ, E)
with S a finite set of states, Init ⊆ S a set of initial states, P a finite set of
atomic state propositions, L : S → 2P a state-labeling function, T ⊆ S × S
a transition relation, Σ a finite set (alphabet) of events (or actions), and
E : T → (2Σ \ {∅}) a transition-labeling function. We write s

A−→ s′ to mean
that (s, s′) ∈ T and A ⊆ E(s, s′).4 In case A is a singleton set {a}, we write

s
a−→ s′ rather than s

{a}−→ s′. Note that both states and transitions are
‘labeled’, the former with sets of atomic propositions, and the latter with
non-empty sets of actions.

A path π = 〈s1, a1, s2, a2, . . .〉 of an LKS is an alternating infinite sequence
of states and actions subject to the following: for each i � 1, si ∈ S, ai ∈ Σ,
and si

ai−→ si+1.
The language of an LKS M , denoted L(M), consists of the set of maximal

paths of M whose first state lies in the set Init of initial states of M .

5.3.2 Abstraction

Let M = (S, Init , P,L, T, Σ, E) and M̂ = (SM̂ , InitM̂ , PM̂ ,LM̂ , TM̂ , ΣM̂ , EM̂)
be two LKSs. We say that M̂ is an abstraction of M , written M � M̂ , iff

1. PM̂ ⊆ P .
2. ΣM̂ = Σ.
3. For every path π = 〈s1, a1, . . .〉 ∈ L(M) there exists a path π′ =

〈s′1, a′
1, . . .〉 ∈ L(M̂) such that, for each i � 1, a′

i = ai and LM̂ (s′i) =
L(si) ∩ PM̂ .

In other words, M̂ is an abstraction of M if the ‘propositional’ language
accepted by M̂ contains the ‘propositional’ language of M , when restricted
to the atomic propositions of M̂ . This is similar to the well-known notion of
‘existential abstraction’ for Kripke structures in which certain variables are
hidden [43].

Two-way abstraction defines an equivalence relation ∼ on LKSs: M ∼ M ′

iff M � M ′ and M ′ � M . We shall be interested in LKSs only up to ∼-
equivalence.

5.3.3 Parallel Composition

Many properties of web services can only be verified in the context of mul-
tiple processes. We expect that large amounts of data have to be passed be-
tween those processes. We, therefore, modify the notion of parallel composition
4 By keeping with standard mathematical practice, we write E(s, s′) rather than

the more cumbersome E((s, s′)).

5 Model Checking with Abstraction for Web Services 135

in [33] to allow communication through shared variables. The shared variables
are used to model both communication through a database and the data that
is passed over sockets.

Let M1 = (S1, Init1, P1,L1, T1, Σ1, E1) and M2 = (S2, Init2, P2,L2, T2, Σ2, E2)
be two LKSs. We assume M1 and M2 share the same state space, i.e.,
S = S1 = S2, P = P1 = P2, and L = L1 = L2. We denote by s

A−→i s′

the fact that Mi can make a transition from s to s′.
The parallel composition of M1 and M2 is given by M1 ‖ M2 = (S, Init1 ∩

Init2, P,L, T, Σ1 ∪Σ2, E), where T and E are such that s
A−→ s′ iff A �= ∅ and

one of the following holds:

1. A ⊆ Σ1 \ Σ2 and s
A−→1 s′,

2. A ⊆ Σ2 \ Σ1 and s
A−→2 s′, or

3. A ⊆ Σ1 ∩ Σ2 and s
A−→1 s′ and s

A−→2 s′.

In other words, components must synchronize on shared actions and pro-
ceed independently on local actions. This notion of parallel composition is
similar to the definition used for CSP; see also [44].

5.3.4 Transforming PHP into an LKS

We assume that there is a set of services Σ, each with its own implementation.
The programs are assumed not to have explicitly generated threads. Instead,
we assume that nσ identical copies of the service σ ∈ Σ are running in parallel.

For the verification of the web service, we first construct a formal model
for it. We use LKSs for modeling the processes involved in the service. If the
source code of a component is not available, e.g., in the case of a third-party
service, we assume that an LKS summarizing the interface of the service is
written manually, using a (possibly informal) specification of the service as a
guide.

If the source code of the component is available, we compute a formal
model of the program automatically. The first step is to parse and type-
check the PHP program. Our scanner and parser is based on the scanner and
parser of the Zend Engine, version 2.0.5 The Zend engine is also used by most
execution environments for PHP.

The type-checking phase is complicated by the fact that the PHP language
is typically interpreted and, thus, variables in PHP scripts may have multiple
types, to be determined at run-time. We address this problem by introducing
multiple ‘versions’ of each variable, one for each type that the variable might
have. A new variable is added that stores the actual type that the program
variable has at a given point in time.

5 The Zend engine is available freely at http://www.zend.com/

136 N. Sharygina and D. Kröning

The next step is to further pre-process the program. Object construction
and destruction is replaced by corresponding calls to the construction and de-
struction methods, respectively.6 Side effects are removed by syntactic trans-
formations, and the control flow statements (if, while, etc.) are transformed
into guarded goto statements. As PHP permits method overloading, we per-
form a standard value-set analysis in order to obtain the set of methods that
a method call may resolve to. This is identical to the way function pointers
are handled in a programming language such as ANSI-C. The guarded goto-
program is essentially an annotated control flow graph (CFG). The CFG is
then transformed into an LKS, which is straightforward.

We formalize the semantics of a fragment of PHP using an LKS Mσ for
each service σ ∈ Σ. The behavior of the whole system is given by the parallel
composition Mσ

1 || . . . ||Mσ
nσ for all services σ, i.e., all copies of all services are

composed.
The only point of synchronization of processes is assumed to be a call using

SOAP or the like. For each thread i of service σ, we define a synchronization
event ωσ

i . We also define local actions τσ
i for all σ ∈ Σ and i ∈ {1, . . . , nσ}.

The τσ
i events are used exclusively by thread i of service σ. If the thread is

clear from the context, we simply write s
τ−→ s′ for a local transition of the

tread.

Notation

The global state space S = S1 = . . . = Sn is spanned by the data and
variables for all services and a program counter PCσ

i for each thread. Thus,
a state s ∈ S is a pair (V , PC) consisting of a vector V for the program
variables and a vector PC for the PCs. Given a state s ∈ S, we denote the
projection of the value of PCi from s as s.PCi.

The execution of a statement by thread i increases the PC of thread i,
while the other PCs remain unchanged. Let νi(σ) be a shorthand for PC

′

with PC′
i = PCi + 1 and PC′

j = PCj for all j �= i.

Initialization

We define the set of initial states Init as the set of states s ∈ S such that the
PCs are set to the start of each thread. The initialization of the variables is
assumed to be performed as part of the program.

Transition Relation

The transition relation of LKS Mi is defined by a case split on the in-
struction that is to be executed. There are four different statements: assign-
ments, guarded gotos, requests, and acknowledgments. Assignments are used
to model reading and writing of program variables and transactions on data in

6 In the case of PHP, only a very limited form of destruction is performed.

5 Model Checking with Abstraction for Web Services 137

the database. The guarded gotos model the control flow of the program. The
synchronizing calls to other web services, e.g., by means of SOAP as described
above, are modeled by means of two sync statements: the first sync statement
is used for the synchronization of the request, and the second sync statement
is used for the synchronization of the acknowledgment. The semantics of both
statements is identical.

Formally, let Pt(PC) denote the instruction pointed to by PC in thread
t. Let I be a shorthand for Pt(s.PCt).

• If I is a sync(σ) statement, the thread t non-deterministically chooses a
server thread i ∈ {1, . . . , nσ} and makes a ωσ

i -transition. No synchroniza-
tion with other threads is performed. Formally,

I = sync(σ); =⇒ s
ωσ

i−→t s′

with s′.V = s.V , s′.PC = νi(s.PC).
• If I is a statement that assigns the value of the expression e to the variable

x, the thread i makes a τ -transition and changes the global state accord-
ingly. Let s(e) denote the value of the expression e evaluated in state s.

I = x=e; =⇒ s
τ−→i s′

with s′.x = s(e), s′.y = s.y for y �= x, s′.PC = νi(s.PC). If the modifi-
cation of x triggers events that other threads are sensitive to, this can be
realized by an implicit notify statement after the assignment.

• If I is a guarded goto statement with guard g and target t, the thread i
makes a τ -transition and changes its PC accordingly:

I = if(g) goto t; =⇒ s
τ−→i s′

with s′.V = s.V , and

s′.PCj =
{

t : i = j ∧ s(g)
PCj + 1 : otherwise

5.4 Model Checking with Abstraction for Web Services

5.4.1 Existential Abstraction of Transition Systems with Events

For the verification of the web service, we first construct an abstract, formal
model for it. We assume that we have generated or written concrete LKSs as
described in Sect. 5.3.4. The concrete LKSs are then abstracted into abstract
LKSs. The labels on the states of the abstract LKSs correspond to predicates
that are used for predicate abstraction. As done in [45], we use SAT in order
to compute the abstraction of the instructions in the PHP programs. This

138 N. Sharygina and D. Kröning

section provides a short overview of the algorithm. For more information on
the algorithm, we refer the reader to [46, 45].

Recall that S denotes the (global) set of concrete states. Let α(s) with
s ∈ S denote the abstraction function. The abstract model makes an A-
transition from an abstract state ŝ to ŝ′ iff there is an A-transition from s to
s′ in the concrete model and s is abstracted to ŝ and s′ is abstracted to ŝ′.
Let T̂ denote this abstract transition relation. Formally,

ŝ
A−→ ŝ′ : ⇐⇒ ∃s, s′ ∈ S : s

A−→ s′ ∧
α(s) = ŝ ∧ α(s′) = ŝ′

(5.6)

This formula is transformed into conjunctive normal form (CNF) by re-
placing the bit-vector arithmetic operators by arithmetic circuits. Due to the
quantification over the abstract states this corresponds to an all-SAT instance.
For efficiency, one over-approximates T̂ by partitioning the predicates into
clusters [47]. The use of SAT for this kind of abstraction was first proposed
in [48]. We use Boolean programs [10] to represent the abstract models. In or-
der to represent the synchronizing events, a special sync instruction is added
to the language.

5.4.2 Thread-Modular Abstraction

The abstract models are built separately for each LKS corresponding to an in-
dividual PHP program, or thread of execution. The advantage of this approach
is that the individual programs are much smaller than the overall system de-
scription, which usually consists of multiple PHP scripts. After abstracting
the threads separately, we form the parallel composition of the abstract LKSs,
which can then be verified. The following formalizes our modular abstraction
approach.

Let M1 and M2 be two LKSs, and let π = 〈s1, a1, . . .〉 be an alternating
infinite sequence of states and actions of M1 ‖ M2. The projection π�Mi of
π on Mi consists of the (possibly finite) subsequence of 〈s1, a1, . . .〉 obtained
by simply removing all pairs 〈aj , sj+1〉 for which aj /∈ Σi. In other words, we
keep from π only those states that belong to Mi, and excise any transition
labeled with an action not in Mi’s alphabet.

We now record the following claim, which extends similar standard results
for the process algebra CSP [49] and LKSs [33].

Claim

1. Parallel composition is (well-defined and) associative and commutative
up to ∼-equivalence. Thus, in particular, no bracketing is required when
combining more than two LKSs.

2. Let M̂i denote the abstraction of Mi, and let M̂|| denote the abstraction
of the parallel composition of M1, . . . , Mn. Then M̂1|| . . . ||M̂n ∼ M̂||. In
other words, the composition of the abstract machines (M̂1, . . . , M̂n) is an
abstraction of the composition of the concrete machines (M1, . . . , Mn).

5 Model Checking with Abstraction for Web Services 139

For detailed related proofs of the compositional approach, we refer the
reader to [49, Chapter 2].

Claim 1 formalizes our thread-modular approach to abstraction. Simula-
tion and refinement can also be performed without building the transition
relation of the product machine. This is justified by the fact that the program
visible state variables (V and PC) are only changed by one thread on shared
transitions. Thus, abstraction, counterexample validation, and abstraction re-
finement can be conducted one thread at a time.

5.4.3 Abstraction-Refinement Loop

Once the abstract model is constructed, it is passed to the model checker
for the consistency check against the properties. We use the SatAbs model
checker [14], which implements the SAT-based predicate abstraction approach
for verification of ANSI-C programs. It employs a full counterexample-guided
abstraction refinement verification approach. Following the abstraction-refine-
ment loop, we iteratively refine the abstract model of the PHP program if it is
detected that the counterexample produced by the model checker cannot be
simulated on the original program. Since spurious counterexamples are caused
by existential abstraction and since SAT solvers are used to construct the
abstract models, we also use SAT for the simulation of the counterexamples.
Our verification tool forms a SAT instance for each transition in the abstract
error trace. If it is found to be unsatisfiable, it is concluded that the transition
is spurious. As described in [50], the tool then uses the unsatisfiable core of
the SAT instance for efficient refinement of the abstract model.

Clearly, the absence of individual spurious transitions does not guaran-
tee that the error trace is real. Thus, our model checker forms another SAT
instance. It corresponds to Bounded Model Checking (BMC) [51] on the orig-
inal PHP program following the control flow and thread schedule given by
the abstract error trace. If satisfiable, our tool builds an error trace from
the satisfying assignment, which shows the path to the error. A similar ap-
proach is used in [52] for DSP software. The counterexample is mapped back
to the program locations and syntax of the original PHP program in order
to provide a useful basis for error diagnosis. In particular, the counterexam-
ple trace includes values for all concrete variables that are assigned on the
path. If unsatisfiable, the abstract model is refined by adding predicates using
weakest preconditions. Again, we use the unsatisfiable core in order to select
appropriate predicates.

5.4.4 Object References and Dynamic Memory Allocation

The PHP language is based on C and C++ and, thus, makes frequent use of
dynamically allocated objects using the new operator. Also, it permits to take
the address of variables for building references. We support such constructs
by the following means:

140 N. Sharygina and D. Kröning

• We allow references and the (implicit) dereferencing operators within the
predicates.

• For each variable that may be assigned a reference, we have special pred-
icates that keep track of the size and a valid bit to track whether the
reference is NULL. It is set or cleared upon assignment. Each time the
pointer is dereferenced, we assert that the valid predicate holds. We de-
note the predicate by ζ(o), for any object o.

• During the construction of (5.6), we employ a standard, but control flow-
sensitive points-to analysis in order to obtain the set of variables a pointer
may point to. This is used to perform a case-split in order to replace the
pointer dereferencing operators. Dynamic objects are handled as follows:
we generate exactly as many instances as there are different points that
may alias to the same dynamic object.

This approach not only allows handing references within PHP programs,
but also efficiently manages the size of the generated CNF equations since it
avoids handling data that pointers do not point to.

Note that concurrency issues can be ignored during the alias analysis, as
references cannot be shared (practically) among processes. Thus, we can use
efficient and precise alias analysis algorithms for sequential programs.

Example

Figure 5.7 shows an example of predicate abstraction in the presence of
dynamically allocated objects. The left-hand side shows the code to be ab-
stracted, the right-hand side shows the predicates that hold after the execution
of the code. In order to show the last predicate, the equality of the two in-
teger fields is built, the following formula, where D1 and D2 denote the two
dynamic objects, and b3 denotes the Boolean variable corresponding to the
predicate p->n->i = p->i + 1:

p = &D1 ∧ D1.n = &D2 ∧
D′

2.p = D2.p ∧ D′
2.i = D1.i∧

(b3 ⇐⇒ (D′
2.i = D1.i + 1))

This formula is only valid for b3 = true, which shows the predicate.

class s {
var $n;

var $i;

}
...

$p=new s; ζ(∗p)
$p->n=new s; ζ(∗p), ζ(∗(p->n))
$p->n->i=$p->i+1; p->n->i = p->i + 1

Fig. 5.7. Example of abstraction in presence of dynamic objects

5 Model Checking with Abstraction for Web Services 141

5.4.5 Case Study

We have experimented with a set of PHP scripts in order to quantify
the performance of predicate abstraction on programs written in a script-
ing language. Two different scripts implement the two parts of the
service:

1. A front-end script handles client connections and interacts with them by
means of HTML forms. It maintains the user sessions and uses SOAP to
communicate with the back-end script.

2. The back-end script receives commands from the front-end script via
SOAP and stores transactions in a MySQL database.

The front-end and back-end scripts have about 4000 and 3000 lines of
code, respectively, not including in-line HTML. The property we check is an
assertion on the transaction records generated. It is enforced by the front-end
script (input data not compliant is rejected). For the purpose of verification,
we add an assertion that checks it in the back-end as well. We verify this
property for an unbounded number of client and front-end processes, and one
back-end process.

The main challenge when applying formal methods to scripting languages
such as PHP is to model the extensive library (as implemented by the PHP
execution environment). We have only completed that task to the point that
was required for the property described above to pass; a verification tool
of industrial relevance has to include an almost complete set of models for
all functions offered by the execution environment. Similar issues exist for
languages such as JAVA and C# as well, however. In particular, the direct
access to the SQL databases permitted by the PHP scripting language actually
requires statically analyzing SQL commands. Unfortunately, PHP does not
provide a suitable abstraction layer and, thus, the commands used to access
databases even depend on the vendor.

Our verification engine has been applied in the past to ANSI-C programs
of much larger size and higher complexity and, thus, typical scripts do not
pose a capacity challenge. The verification requires only five refinement itera-
tions, generating 120 predicates, and terminates within 51 seconds on a mod-
ern machine with 3.0 GHz. Most components of the abstraction-refinement
loop have linear run-time in the size of the programs. The only exception is
the verification of the abstract model, which may be exponential in practice.
However, in the case of PHP, this is rarely observed: as there is very lit-
tle interaction between the processes (when compared with C programs that
use shared-variable concurrency), the partial order reduction that our model
checker implements eliminates almost all interleavings between the threads,
and the complexity of verifying the abstract models becomes comparable to
that of checking sequential programs.

142 N. Sharygina and D. Kröning

5.5 Conclusion

This chapter formalizes the semantics of a PHP-like language for implement-
ing web services by means of labeled Kripke structures. The LKS notation
permits both synchronizing and non-synchronizing (interleaving) communica-
tion in the model. Both forms of communication are typical for web services.
While each form of communication can be replaced by the other one, doing
so typically results in a blowup of the model. The LKSs of the threads can be
analyzed formally by means of automatic predicate abstraction. These results
enable the verification of the applications that implement web services.

We have implemented these techniques in a tool called SatAbs. While our
implementation is currently limited to the verification of PHP5 scripts, the
method is also applicable to other programming languages used in this con-
text. It could be extended to handle systems that use multiple programming
languages, e.g., both PHP5 and JAVA, or PHP5 and C#.

Our implementation is able to show safety properties of a combination of
multiple PHP scripts running in parallel. Most steps of the analysis loop are
done in a thread-modular manner and, thus, the analysis scales in the number
of threads. The verification of the abstract (Boolean) model is the only part
of the analysis that examines the entire system.

Our implementation currently lacks support for liveness properties, despite
the fact that liveness is a property of high importance in the context of web
services. While predicate abstraction is in general suitable to prove liveness
properties, it has to be augmented with a generator for ranking functions in
order to prove termination of most loops [53]. Another future direction of
research is to extend the implementation to prove concealment properties,
e.g., that session IDs do not leak out.

Model checking for PHP or similar scripting languages possibly has ap-
plications beyond property checking. For example, the information obtained
about the reachable state-space could be exploited to efficiently compile a
PHP program (which is usually interpreted) into machine code.

References

1. Douglas K. Barry. Web services and service-oriented architectures. Morgan
Kaufmann, 2003.

2. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, December 1999.

3. Edmund M. Clarke and E. Allen Emerson. Synthesis of synchronization skele-
tons for branching time temporal logic. In Logic of Programs: Workshop, volume
131 of Lecture Notes in Computer Science. Springer, 1981.

4. Jerry R. Burch, Edmund M.Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and beyond. Information
and Computation, 98(2):142–170, 1992.

5 Model Checking with Abstraction for Web Services 143

5. Gerard J. Holzmann and Doron Peled. An improvement in formal verification.
In Dieter Hogrefe and Stefan Leue, editors, Formal Description Techniques VII,
Proceedings of the 7th IFIP WG6.1 International Conference on Formal De-
scription Techniques, Berne, Switzerland, 1994, volume 6 of IFIP Conference
Proceedings, pages 197–211. Chapman & Hall, 1995.

6. Patrik Cousot. Abstract interpretation. Symposium on Models of Programming
Languages and Computation, ACM Computing Surveys, 28(2):324–328, June
1996.

7. Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with
PVS. In O. Grumberg, editor, Proc. 9th International Conference on Computer
Aided Verification (CAV’97), volume 1254, pages 72–83. Springer, 1997.

8. Michael Colón and Thomás E. Uribe. Generating finite-state abstractions of
reactive systems using decision procedures. In Computer Aided Verification
(CAV), volume 1427 of Lecture Notes in Computer Science, pages 293–304.
Springer, 1998.

9. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. In POPL, 1992.

10. Thomas Ball and Sriram K. Rajamani. Boolean programs: A model and process
for software analysis. Technical Report 2000-14, Microsoft Research, February
2000.

11. Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of C programs. In PLDI 01: Programming
Language Design and Implementation, pages 203–213. ACM, 2001.

12. Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith.
Modular verification of software components in C. In ICSE, pages 385–395.
IEEE Computer Society, 2003.

13. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Software verification with BLAST. In Thomas Ball and Sriram K. Rajamani, ed-
itors, SPIN, volume 2648 of Lecture Notes in Computer Science, pages 235–239.
Springer, 2003.

14. Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.
SATABS: SAT-based predicated abstraction for ANSI-C. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 11th International Con-
ference (TACAS), volume 3440 of Lecture Notes in Computer Science, pages
570–574. Springer, 2005.

15. PHP: Hypertext preprocessor. http://www.php.net/.
16. http://www.asp.net/.
17. http://www.ibm.com/developerworks/library/specification/ws-bpel/.
18. Bernd-Holger Schlingloff, Axel Martens, and Karsten Schmidt. Modeling and

model checking web services. Electr. Notes Theor. Comput. Sci., 126:3–26, 2005.
19. Raman Kazhamiakin, Marco Pistore, and Luca Santuari. Analysis of commu-

nication models in web service compositions. In WWW ’06: Proceedings of the
15th international conference on World Wide Web, pages 267–276, New York,
NY, USA, 2006. ACM Press.

20. Marco Pistore, Paolo Traverso, Piergiorgio Bertoli, and Annapaola Marconi.
Automated synthesis of executable web service compositions from BPEL4WS
processes. In Ellis and Hagino [21], pages 1186–1187.

21. Allan Ellis and Tatsuya Hagino, editors. Proceedings of the 14th international
conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005
- Special interest tracks and posters. ACM, 2005.

144 N. Sharygina and D. Kröning

22. Tuba Yavuz-Kahveci, Constantinos Bartzis, and Tevfik Bultan. Action language
verifier, extended. In Kousha Etessami and Sriram K. Rajamani, editors, CAV,
volume 3576 of Lecture Notes in Computer Science, pages 413–417. Springer,
2005.

23. Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting BPEL web
services. In Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills,
editors, WWW, pages 621–630. ACM, 2004.

24. Xiang Fu, Tevfik Bultan, and Jianwen Su. Model checking XML manipulating
software. In George S. Avrunin and Gregg Rothermel, editors, ISSTA, pages
252–262. ACM, 2004.

25. Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation specifica-
tion: a new approach to design and analysis of e-service composition. In WWW,
pages 403–410, 2003.

26. Daniel Kroening and Natasha Sharygina. Formal verification of SystemC by au-
tomatic hardware/software partitioning. In Proceedings of MEMOCODE 2005,
pages 101–110. IEEE, 2005.

27. Shin Nakajima. Model-checking of safety and security aspects in web service
flows. In Nora Koch, Piero Fraternali, and Martin Wirsing, editors, Web En-
gineering - 4th International Conference, ICWE 2004, Munich, Germany, July
26-30, 2004, Proceedings, volume 3140 of Lecture Notes in Computer Science,
pages 488–501. Springer, 2004.

28. Marco Pistore, Marco Roveri, and Paolo Busetta. Requirements-driven verifi-
cation of web services. Electr. Notes Theor. Comput. Sci., 105:95–108, 2004.

29. Alin Deutsch, Monica Marcus, Liying Sui, Victor Vianu, and Dayou Zhou. A
verifier for interactive, data-driven web applications. In Fatma Ozcan, editor,
Proceedings of the ACM SIGMOD International Conference on Management
of Data, Baltimore, Maryland, USA, June 14-16, 2005, pages 539–550. ACM,
2005.

30. A. William Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1998.

31. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
32. Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-

cesses, I and II. Information and Computation, 100(1):1–40,41–77, September
1992.

33. Edmund M. Clarke, Sagar Chaki, Natasha Sharygina, Joel Ouaknine, and Nis-
hant Sinha. State/event-based software model checking. In Proceedings of the
International Conf. on Integrated Formal Methods, volume 2999 of Lecture Notes
in Computer Science. Springer, 2004.

34. Rocco De Nicola and Frits W. Vaandrager. Three logics for branching bisimu-
lation. Journal of the ACM (JACM), 42(2):458–487, 1995.

35. Ekkart Kindler and Tobias Vesper. ESTL: A temporal logic for events and states.
In Application and Theory of Petri Nets 1998, 19th International Conference
(ICATPN’98), volume 1420 of Lecture Notes in Computer Science, pages 365–
383. Springer, 1998.

36. Michael Huth, Radha Jagadeesan, and David A. Schmidt. Modal transition
systems: A foundation for three-valued program analysis. In Lecture Notes in
Computer Science, volume 2028, page 155. Springer, 2001.

37. Aysu Betin-Can, Tevfik Bultan, and Xiang Fu. Design for verification for asyn-

chronously communicating web services. In WWW ’05: Proceedings of the 14th

5 Model Checking with Abstraction for Web Services 145

international conference on World Wide Web, pages 750–759, New York, NY,
USA, 2005. ACM Press.

38. Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger. Web service

interfaces. In WWW ’05: Proceedings of the 14th international conference on
World Wide Web, pages 148–159, New York, NY, USA, 2005. ACM Press.

39. Xiang Fu, Tevfik Bultan, and Jianwen Su. Realizability of conversation protocols
with message contents. In ICWS, pages 96–. IEEE Computer Society, 2004.

40. Howard Foster, Sebastián Uchitel, Jeff Magee, and Jeff Kramer. Compatibil-
ity verification for web service choreography. In ICWS, pages 738–741. IEEE
Computer Society, 2004.

41. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Mike Champion,
Christopher Ferris, and David Orchard. Web services architecture. World-Wide-
Web Consortium (W3C). Available from http://www.w3.org/TR/ws-arch/,
2003.

42. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Labs, January 2003.

43. Edmund M.Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Computer Aided Verification, volume 1855 of
Lecture Notes in Computer Science, pages 154–169. Springer, 2000.

44. Thomas S. Anantharaman, Edmund M. Clarke, Michael J. Foster, and Bud
Mishra. Compiling path expressions into VLSI circuits. In Proceedings of POPL,
pages 191–204, 1985.

45. Himanshu Jain, Edmund M. Clarke, and Daniel Kroening. Verification of SpecC
and Verilog using predicate abstraction. In Proceedings of MEMOCODE 2004,
pages 7–16. IEEE, 2004.

46. Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.
Predicate abstraction of ANSI–C programs using SAT. Formal Methods in
System Design, 25:105–127, September–November 2004.

47. Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund Clarke.
Word level predicate abstraction and refinement for verifying RTL Verilog. In
Proceedings of DAC 2005, pages 445–450. ACM, 2005.

48. Edmund Clarke, Orna Grumberg, Muralidhar Talupur, and Dong Wang. High
level verification of control intensive systems using predicate abstraction. In
First ACM and IEEE International Conference on Formal Methods and Models
for Co-Design (MEMOCODE’03), pages 55–64. IEEE, 2003.

49. A. William Roscoe. The Theory and Practice of Concurrency. Prentice-Hall
International, London, 1997.

50. Edmund M. Clarke, Himanshu Jain, and Daniel Kroening. Predicate Ab-
straction and Refinement Techniques for Verifying Verilog. Technical Report
CMU-CS-04-139, 2004.

51. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Yhu. Sym-
bolic model checking without BDDs. In TACAS, volume 1579 of Lecture Notes
in Computer Science, pages 193–207. Springer, 1999.

52. David W. Currie, Alan J. Hu, and Sreeranga Rajan. Automatic formal verifica-
tion of DSP software. In Proceedings of DAC 2000, pages 130–135. ACM Press,
2000.

53. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond
safety. In Computer Aided Verification, 18th International Conference, (CAV),
volume 4144 of Lecture Notes in Computer Science, pages 415–418. Springer,
2006.

Part II

Testing

6

Unit Testing BPEL Compositions

Daniel Lübke

Leibniz Universität Hannover, FG Software Engineering, Germany
daniel.luebke@inf.uni-hannover.de

Abstract. Service-Oriented Architecture is a new emerging architectural style for
developing distributed business applications. Those applications are often realized
using Web services. These services are grouped into BPEL compositions.

However, these applications need to be tested. For achieving better software qual-
ity, testing has to be done along the whole development process. Within this chapter
a unit testing framework for BPEL named BPELUnit is presented. BPELUnit allows
unit and integration tests of BPEL compositions. The tester is supported as much as
possible: The used Web services can be replaced during test execution. This allows
to really isolate the BPEL composition as a unit and guarantees repeatable tests.

6.1 Introduction

Service-Oriented Architecture (SOA) has become an accepted architectural
style for building business applications. The application’s logic is decomposed
into fine-grained services which are composed into executable business pro-
cesses. Services in SOA are loosely coupled software components, which most
often offer functionality in a platform-independent and network-accessible
way. Therefore, SOA is a functional decomposition of a system.

SOA aims to better align business processes and their supporting IT sys-
tems. Thus, changes within the processes should easily be incorporated into
the IT infrastructure. Using fine-grained services, compositions can be up-
dated easily by rearranging said services – hopefully without the need to
change the services themselves. In this scenario, services can be offered by in-
ternal IT systems or can be bought from external service providers or partner
organizations. This way, it is possible to integrate IT systems from differ-
ent enterprises, e.g. in order to optimize supply chains or building virtual
organizations.

While SOA as an architectural style is not dependent on any technol-
ogy, the dominant implementation strategy is to use Web service standards.
Supported by all major software companies, Web services and their related

150 D. Lübke

technologies, like the Business Process Execution Language (BPEL), have
relatively good development support despite being a new technique.

BPEL is used for composing Web services into complex business processes.
It supports rather complex programming constructs. These are the same as
in normal programming languages, e.g. conditions, loops and fault handling.
Therefore, BPEL compositions are software artefacts as well, possibly con-
taining complex logic which is error-prone.

Being aware that BPEL compositions are subject to the same problems as
normal software, it is necessary to test them in order to find as many defects as
possible. This is especially necessary since BPEL compositions are normally
deployed at high-risk positions within a company. However, testing BPEL
is problematic due to its nature: BPEL compositions have many external
dependencies, namely the Web services it accesses.

While non-functional testing has attracted much attention within the re-
search community, functional testing of service compositions can be problem-
atic as shown in this chapter. To address this issue, this chapter presents a
unit testing framework for BPEL processes called BPELUnit. The framework
was developed to ease the burden of testers and programmers in BPEL-related
projects by allowing Web services to be mocked at run-time.

The next section of this chapter will shortly categorize services before some
problems special to testing service compositions are presented in Sect. 6.3. Af-
terwards, different test types, which developers and testers will face in SOA
projects, are described in Sect. 6.4. Section 6.5 describes a generic layered ar-
chitecture for test tools, especially unit testing frameworks. This architecture
has been used to develop BPELUnit – a unit testing framework for BPEL
compositions – which is presented afterwards. The last section illustrates the
difficulties in testing compositions presented during this chapter by giving a
short example.

6.2 Service Classification

Web services are categorized within this chapter by two dimensions: The or-
ganizational dimension and the composition dimension as shown in Fig. 6.1.

A service can be developed and deployed by the organization itself or can
be offered by an external party. Examples for internally developed services are
wrappers around legacy systems and custom created services. Source code for

Fig. 6.1. Categorization for services

6 Unit Testing BPEL Compositions 151

Fig. 6.2. Distributed roles in SOA make testing more difficult

such services is available and generally they can be replicated in a testing en-
vironment. In contrast, many services are available in the Internet, which can
be used by applications without knowing how the services work. Consequently,
such services cannot be replicated within a testing environment.

The organizational dimension can be seen in the SOA triangle as illustrated
in Fig. 6.2: SOA systems span multiple roles, most important the service
provider and the service requester.

The other dimension is (visible) service composition: Services can either be
atomic, i.e. provided as such, or put together by composing other services. The
former ones are either implemented in traditional programming languages like
Java or are provided as is without access to the services’ logic. The latter are
processes composed in-house using composition languages like the Business
Process Execution Language (BPEL).

It is notable that there is no composed, external service from an orga-
nization’s point of view: Since the service is external, it cannot be accessed,
modified nor installed locally. It is a black box and therefore it is irrelevant for
the tester in which way the service is implemented. Such external services are
an obstacle in testing: Normally, they cannot be used intensively for testing,
because they need to be paid for or no test account is available. However,
integration and system tests – as described in Sects. 6.4.3 and 6.4.4 – are only
possible if the original services can be used.

In contrast, when unit testing BPEL compositions, all atomic services can
be mocked, i.e. replaced by dummy services. This allows the composed services
to be tested in isolation and without the need for external dependencies.

6.3 Challenges in BPEL Testing

Testing software is a time-consuming and often neglected task. Testing BPEL
compositions is even harder due to the following reasons:

• Test performance: BPEL compositions depend on calling Web services.
SOAP calls are extremely costly due to intense XML parsing and often

152 D. Lübke

associated XSL transformations, as well as network overhead. Example
measures are, e.g., given by [9].

• Error conditions: Due to the distributed nature, many errors must be
expected and handled by the system. For example, networking errors and
temporarily not reachable services need careful error handling which needs
to be tested too.

• Dependencies: Web services represent external dependencies for the BPEL
composition. The composition relies on the correct behaviour of the ser-
vices in order to fulfil its tasks.

• Deployment: BPEL compositions need to be transferred on a BPEL server
and be made ready for execution. This process, called deployment, requires
time-consuming preparation before testing can start.

• Complexity: BPEL compositions normally contain many elements, like
assigns and Web service calls. Especially, the use of complex XPath queries
and XSL transformations lead to many cases which need to be tested.

• Organizational borders: As already outlined, SOA systems can span mul-
tiple organizations, which do not share their service implementations. This
hinders setting up a test environment as outlined in Sect. 6.2.

Because BPEL is a relatively new technique, testers and developers do not
have much experience in which areas defects are likely to occur. This reduces
test efficiency until testers are able to get a “feeling” in which areas they are
likely able to find defects.

All these factors require intensive research into testing habits and test
support for service compositions in general and for BPEL in particular.

6.4 Test Types for Compositions

6.4.1 Test Levels

Software testing is a widely used quality-improvement activity, supported by
both academic research and commercial experience. In his timeless classic, The
Art of Software Testing, Myers offers a definition of software testing: “Testing
is the process of executing a program with the intent of finding errors” ([15]).

While newer definitions are available, this simple but precise definition
hints at the attitude a software tester should have: He or she should not try
to prove that a software works correctly (i.e. has no defects), but rather to
find cases in which it does not work (i.e. has defects). The former is impossible
anyway – as pointed out by [3]: Testing can only show the presence of errors,
but not their absence.

There are many different forms of software testing, each on a different level
addressing different error types (see also [14]):

• Unit testing: A unit test is used to test a single class, routine, or more
generally, component, in isolation from the rest of the system it belongs

6 Unit Testing BPEL Compositions 153

to. This type of tests try to detect errors inherent to one unit, like wrong
logic etc.

• Integration testing: An integration test is used to test combined, or in-
tegrated, components of a software system. Such tests try to spot errors
which are introduced by the combination of different components, e.g. dif-
ferently interpreted interfaces etc.

• System testing: System testing is the process of testing the complete, final
system, which includes interactions with other systems and all compo-
nents. Such tests are typically done at the end of an iteration. Using this
kind of tests, projects try to find any fatal errors before delivering the
software.

All types of tests can be automated. Automated test are often used in
regression testing, which can therefore be repeated easily and cheaply. Re-
gression testing intends to find bugs in updated software which previously
has already passed the tests.

An extreme form of automated testing is Test-First. Test-First has es-
tablished itself as a new way of creating test cases before code is written.
Especially successful in Agile Methods, like Extreme Programming ([2]), it
has shown its ability to increase the quality of the tests, e.g. in ([5, 4]).

In the following course of this section, the different kinds of tests are
described more precisely. This includes special problems service compositions
raise in these corresponding contexts.

6.4.2 Unit Tests

As pointed out above, unit testing is the process of testing a single component,
named a unit, of a program in isolation. It has been wholly embraced by
the Extreme Programming community ([2]) and in the area of Test-Driven
Development.

In the context of service compositions and BPEL, unit testing implies that
all Web services, as they represent external dependencies, need to be replaced
by mocks. However, those mocks need to be implemented and deployed which
can be a rather time-consuming task. Furthermore, in order to develop Web
services (e.g. in Java and .Net), programming skills are needed which are not
necessarily available in a testing team.

The problem of mocking external services is one of the most important
drivers for tool automation for unit tests. Even in other languages like Java
there are mocking facilities available ([7]). However, in the world of Web ser-
vices, tool support is more critical due to the mentioned reasons. Because of
this, mocking support has been incorporated into the unit testing framework
itself rather than being an independent component.

While other languages have support for unit tests by special frameworks,
like JUnit for Java ([8]), BPEL lacks such support. Therefore, one of our
research goals was to develop unit test support for BPEL, which is described
in Sect. 6.6.

154 D. Lübke

6.4.3 Integration Tests

Integration testing concerns two or more components. Ideally, these compo-
nents are tested using unit tests, so that the functionality can be anticipated
to work (mostly) correctly.

Integration testing tries to verify the interaction between several com-
ponents. The tests try to trigger all communication and calls between the
components.

Integration testing in service composition is mostly an organizational chal-
lenge: For testing compositions all services need to be available. Normally, a
testing environment is set-up, in which services, databases etc. are replicated
and can be used and their contents changed. However, when using an ex-
ternally provided service, like a payment service, it is impossible to install
the same service on-site. Instead, there are essentially two possibilities during
integration testing, whenever a test environment is not available:

1. Mocking of external, atomic services: External services are mocked as they
are in unit tests. This has the advantage that communication between all
self-developed components can be done at all times during the develop-
ment process. However, the interaction between the self-developed parts
and external services cannot be tested this way. This option is only appli-
cable for testing two compositions depending on each other, so that their
combination can be tested without the need of the respective dependent
services.

2. Test accounts: The service provider may offer test accounts, e.g. a dummy
environment for a CRM system may be offered. This environment can be
used for testing purposes by the testers.

It is notable, however, that this problem only arises when services store
data. Whenever a service only calculates data or returns values, like search
engines, the original service can normally be used without any problems.

In case of non-free services, for which the consumer has to pay, integration
tests should be optimized for using as few calls to services as possible. Mocking
service calls in non-essential situations may be an option too.

Integration testing is especially important in Web service–based projects,
since WSDL descriptions of Web services only define the syntax of the services
but neglect semantic aspects like meaning of parameters, fault behaviour etc.

6.4.4 System Tests

At the end of an iteration or the project, the system is tested in its entirety.
Therefore, the whole system is normally installed in a test environment, repli-
cating the real environment in which the application will run later on. This
will include the composition engine, e.g. the BPEL server, and the developed
services. As with integration tests, the problem during system test is the repli-
cation of external services. However, during system test it is unacceptable to

6 Unit Testing BPEL Compositions 155

mock certain services. If services cannot be replicated internally, a test account
must be created by the service provider or the test team needs to utilize the
final configuration.

Dynamic discovery of services poses a significant problem for system test-
ing: If a service is not bound statically to the composition, the composition
engine tries to discover, e.g. by using UDDI, a matching service. The selected
service can change over time. However, the new service has not been part of
the system test, possibly rendering its results worthless.

6.4.5 Test-First

Test-First is not directly a class of testing as unit integration and system tests
are. Instead, it describes a philosophy of development: Tests are written in
small chunks before actual code is written. Test-First is an inherent practice
in Extreme Programming and Test-Driven Development. For service compo-
sitions, this means that a part of the process is specified before development
as a test case. Afterwards, the composition is written, e.g. one service is called
and the correspondent variable assignments are made. Finally, the tests are
complemented with tests for error handling and new functionality and the
composition is updated to fulfil the tests. Hereby, all external dependencies
are excluded and mocked as well. These steps continue until all requirements
and error handling routines have been developed.

Especially with composition projects, in which not all services are initially
available to the development organization, Test-First is a good option to start
development: All external references to unavailable services can be replaced
by dummy services called mocks. The missing services can be integrated later
and are immediately ready for integration testing, which will try to detect
misunderstood interfaces.

For Test-First, test automation is very important. Since tests are run after
every little implementation step, manual testing is too cumbersome and time-
consuming. Therefore, unit testing frameworks are a necessity in test-driven
projects.

6.4.6 Remarks

Testing service compositions is comparable to testing “normal” software sys-
tems. The same types of tests can be integrated into the development process.
However, their relevance changes: Unit testing compositions is easier than in
traditional programming languages, since all parts of the system are already
loosely coupled and can be replaced by mocks. Mocks play a special role in
testing compositions since they can replace external services in all types of
tests whenever the use of original services is impossible or at least too costly.
This hints at the major problem: Replicating the system in a test environment
is often impossible whenever services are hosted externally. The testing team

156 D. Lübke

should try to mitigate these problems early and try to replace the services or
have special accounts not interfering with the production environment.

Because of the special role of using mocks and trying to isolate parts of
the system over which the development organization has control, tool support
is necessary. Only by using adequate tools, compositions can be easily and
efficiently isolated and mocks created accordingly.

Furthermore, since service compositions, especially BPEL, are normally
geared towards machine-to-machine communication, automation is a desir-
able goal: Repeated tests using manually entered XML-data are enormously
expensive and time-consuming. Additionally, all XML artefacts need to be
managed. Accordingly, tools should be able to handle and store the large and,
for humans, often unreadable XML data.

One available tool for generating stubs is WSUnit ([6]). However, it lacks
integration into the other test tools: WSUnit needs to be deployed in a J2EE
web container before it is used and cannot detect whether the values passed
to it are correct and consequently abort the test run. The deployment has to
be done before the tests are run and therefore needs to be integrated into an
automated test run.

6.5 Testing Architectures

In this section, a generic, layer-based approach for creating BPEL testing
frameworks is presented, which is later used for the design of the BPELUnit
framework [13]. As a side effect, this layer-based model can be used for clas-
sifying existing frameworks or implementations of other frameworks.

Testing tools can be geared towards different roles in development projects
which consequently have different requirements, usage models and technical
backgrounds. For example, the “test infected developer” doing Test-First on
his BPEL composition is a technical savvy person, understanding XML data
and has knowledge in SOAP. He or she wants to write tests efficiently and
run them every five minutes. However, a pure tester does not want to deal
with technical details. He or she most likely does not need mocking support
but wants to organize a large number of test-cases. Therefore, design decisions
must differ for the intended target group, but the layered architecture can be
the same for all.

The proposed architecture consists of several layers which build upon one
another, as outlined in Fig. 6.3. The functionality of each layer can be im-
plemented in various ways, which are shortly pointed out in the subsequent
sections.

The first (bottom) layer is concerned with the test specification – i.e. how
the test data and behaviour are formulated. Building on this, the tests must
be organized into test suites, which is the responsibility of the test organi-
zation layer. A test – and therefore also the process under test – must be
executed. This task is performed by the test execution layer. During the test

6 Unit Testing BPEL Compositions 157

Fig. 6.3. Layers for unit testing frameworks

run, results must be gathered and presented to the user, which is done in the
test results layer.

6.5.1 Test Specification

Testing a process means sending data to and receiving data from its endpoints,
according to the business protocol imposed by the process under test (PUT)
and its partner processes.

BPEL interfaces are described using WSDL port types and operations.
However, the WSDL syntax lacks a description of the actual protocol of a
Web service, i.e. which operation must be invoked after or before another
operation (for a discussion, see [1, pp. 137]). This is particularly relevant for
asynchronous operations. A testing framework must provide a way for the
tester to specify such a protocol and check whether it has been followed or
not.

As for the information flow between the BPEL composition and its partner
processes, the data can be differentiated between incoming and outgoing data
from the perspective of the test.

The test specification must be concrete enough to validate the correctness
of incoming data as well for creating outgoing data. As pointed out by [11],
incoming data errors can be classified into three types:

1. incorrect content
2. no message at all, when one is expected
3. an incorrect number of messages (too few or too many).

There are several ways of formulating the test specification to achieve these
goals. The following two examples are the most extreme:

158 D. Lübke

1. Data-centred approach (e.g. using fixed SOAP data, augmented with sim-
ple rules): Incoming data from the process is compared against a prede-
fined SOAP message (which, e.g., resides in some file on disk). Outgoing
data is predefined, too, read from a file and sent to the process. A simple
set of rules determines if messages are expected at all and defines which
replies to send. This approach is not only very simple, but also least ex-
pressive to implement tests in.

2. Logic-centred approach (e.g. using a fully-fledged programming language
for expressing the test logic): A program is invoked on each incoming
transmission which may take arbitrary steps to test the incoming data.
The outgoing data is also created by a program. This approach is very
flexible and expressive, but requires a lot more work by the test developer
and is therefore more expensive to implement.

Of course, there are several approaches in-between. A data-centred ap-
proach could use a simple XML specification language to allow testers to
specify test data at the level of BPEL, i.e. XML-typed data records instead
of SOAP messages. A logic-centred approach could use a simple language for
expressing basic conditional statements (“if the input data is such-and-such,
send package from file A, otherwise from file B”).

The choices made here have significant influence on the complexity of the
test framework and the ease of use for the test developer. In most cases, the
complexity of the framework reduces work for the test developer, and vice
versa.

Beside the questions of expressiveness of the logic and simplicity for the
tester, two additional requirements must be considered:

1. Automation: The ultimate goal of a BPEL testing framework is repeatable
automated testing. This means the test must be executable as a whole.
In turn, this indicates that the test must be specified in an unambiguous,
machine-readable and executable form. The more sophisticated the test
logic, the more complex the test execution will be.

2. Tool support: It should be possible to automate at least some of the steps
a test developer must do for creating the test specification. The effort
needed to automate a test can become quite high. Consequently, it is
necessary to relieve the test developer of the more tedious tasks and let
him focus on the actual problem.

Regardless of how the test specification is implemented, it will be used by
the test developer for describing BPEL test cases. A BPEL test case contains
all relevant data for executing a BPEL composition to test a certain path.

6.5.2 Test Organization

As pointed out before, the test specification allows users to define test cases.
While a test case contains all necessary information for testing a certain path

6 Unit Testing BPEL Compositions 159

of a BPEL composition, it is not yet bound to a specific BPEL composition,
which may be identified by an URL, a set of files, or something completely
different. The test organization must provide a way to link the test cases to a
concrete BPEL composition for testing. Additionally, it is beneficial to allow
testers to organize their test cases into groups, which are called test suites in
existing frameworks.

For these two purposes, the test suite concept of conventional xUnit ap-
proaches is extended as follows:

• A BPEL test case will always be executed as part of a test suite.
• The test suite provides the test fixture for all enclosed test cases. This

fixture contains the link to the BPEL composition under test.

By using this approach, the fixture is globally specified in the suite and
applicable to all test cases, which do not need to specify the BPEL composition
binding again. This reduces the work done by the tester, because such bindings
can become very complex.

There are two basic approaches to test organization:

1. Integrated test suite logic: The first approach is to integrate test organiza-
tion with the test specification. This is possible only when a sophisticated
test specification method is in place (e.g. when using a high-level lan-
guage). This approach has the benefit of being very flexible for the test
developer.

2. Separate test suite specification: The second approach is to allow formula-
tion of separate test organization artefacts. These artefacts could include
links to the actual test cases and the test fixture.

As in the previous section about test specification, it is also important to
stress the importance of automation and tool support for test organization, as
the organization artefacts are the natural wrappers for the test specification.

6.5.3 Test Execution

For normal execution, BPEL compositions are usually deployed into a BPEL
engine, instantiated and run upon receipt of a message triggering instance
creation. However, for testing a BPEL composition there are other possibilities
too.

BPEL testing means executing a BPEL composition with a test envi-
ronment, the so-called “harness”, around it handling input and output data
according to the test specification. This can be done in several ways. The
following two approaches are the most obvious ones:

1. Simulated testing: Simulated testing, as defined here, means the BPEL
composition is not actually deployed onto a server and invoked after-
wards by Web service invocations. Instead, the engine is contacted directly
via some sort of debug API and instructed to run the PUT. Through
the debug API, the test framework closely controls the execution of the

160 D. Lübke

PUT. It is, therefore, possible to intercept calls to other Web services
and handle them locally; it is also possible to inject data back into the
PUT. This approach is taken by some editors currently available for
manual testing and debugging. Simulated BPEL execution works only
if the engine supports debugging, i.e. it has a rich API for controlling
the execution of a BPEL instance. While most engines do support such
features, unfortunately they are in no way standardized. To avoid vendor
lock-in, a test framework must therefore factor out this part and create
adapters for each BPEL engine to be supported, which may get rather
tedious.

2. Real-life testing: Real-life testing, as defined here, means actually deploy-
ing the PUT into an engine and invoking it using Web service calls.
Note that this means that all partner Web services must be replaced
by mock Web services in a similar way, i.e. they must be available by
Web service invocation and be able to make Web service calls them-
selves. The PUT must be deployed such that all partner Web service
URIs are replaced by URIs to the test mocks. Real-life BPEL execution
requires the process to be deployed first, binding the PUT to custom
(test) URIs for the test partner processes. However, most engines rely
on custom, vendor-specific deployment descriptors, which the test frame-
work must provide, and which are not standardized as well. Furthermore,
the BPEL specification allows dynamic discovery of partner Web services.
Although frequent use of such features is doubted ([1]), a framework re-
lying on real-life test execution will have no way to counter such URI
replacements.

There are certain correlations between the two approaches discussed in
Sect. 6.5.1 and the two execution types. For example, the test framework
can directly use predefined SOAP messages in the case of simulated testing;
real-life execution requires Web service mocks, which can be formulated in a
higher-level programming language.

However, other combinations are also possible and depend on the amount
of work done by the framework. It is relatively easy to create simple Web
services out of test data, and simulating BPEL inside an engine does not
mean the test framework cannot forward requests to other Web services or
sophisticated programs calculating a return value.

As in the xUnit family, the part of the framework responsible for executing
the test is called the test runner. There may be several test runners for one
framework, depending on the execution environment.

6.5.4 Test Results

Execution of the tests yields results and statistics, which are to be presented
to the user at a later point in time. Many metrics have been defined for testing
(a good overview is given by [18]), and a testing framework must choose which
ones – if any – to calculate and how to do this.

6 Unit Testing BPEL Compositions 161

The most basic of all unit test results is the boolean test execution result
which all test frameworks provide: A test succeeds, or it fails. Failures can
additionally be split into two categories, as is done in the xUnit family: an
actual failure (meaning the program took a wrong turn) or an error (mean-
ing an abnormal program termination). Furthermore, test metrics, like test
coverage, can be calculated.

The more sophisticated the metrics, the more information is usually re-
quired about the program run. This is an important aspect to discuss because
control over the execution of a BPEL composition is not standardized as
pointed out in the last section. For example, it is rather easy to derive num-
bers on test case failures, but activity coverage analysis requires knowledge
about which BPEL activities have actually been executed. There are several
ways of gathering this information:

• During BPEL simulation or debugging: APIs may be used to query the
activity which is currently active. However, these APIs, if they exist, are
vendor specific.

• During execution using instrumentation: Tools for other programming lan-
guages, like Cobertura for Java, are instrumenting the source code or bi-
nary files in order to being informed which statements are executed ([16]).
Since the BPEL engine’s only capability to communicate to the outside
world are Web service calls, the notification need to be done this way. How-
ever, this approach imposes a high-performance penalty due to frequent
Web service calls.

• During execution by observing external behaviour: The invoked mock part-
ner processes are able to log their interactions with the PUT. It is thus
possible to detect execution of some PUT activities (i.e. all activities which
deal with outside Web services). However, this requires additional logic
inside the mock partner processes which will complicate the test logic.
Conclusions about path coverage may also be drawn from this informa-
tion, but they will not be complete as not all paths must invoke external
services.

• As a follow-up: It has been suggested ([11]) to use log files produced by
BPEL engines to extract information about the execution of a particular
instance, and to use this information to calculate test coverage. Such logs,
if they exist, are of course again vendor specific.

The calculated test results must also be presented to the user. A BPEL test
framework should make no assumptions about its environment, i.e., whether
it runs in a graphical UI, or headless on a server. For all these cases, the
test runners should be able to provide adequately formatted test results; e.g.,
a graphical UI for the user, or a detailed test result log in case of headless
testing.

With this explanation of the test result layer, the description of the four-
layer BPEL testing framework architecture is complete. In the next section,
our design decisions for the BPELUnit framework are given.

162 D. Lübke

6.6 BPELUnit

As part of our research, BPELUnit ([12]) has been developed. BPELUnit is
the first step for addressing the difficulties encountered in unit testing BPEL
compositions and is based on the layered architecture described in Sect. 6.5.
Because its main focus is unit testing, the natural user group for BPELUnit
are developers. Therefore, all technical details are readily accessible during
and after test-runs, and XML is used intensively to define test cases, test
parameters etc. BPELUnit is available under an open source license at http:
//www.bpelunit.org.

BPELUnit is implemented in Java. The core itself is not dependent on
any presentation layer technique and therefore can be used from any build
and development environment. Part of BPELUnit are

• a command-line client
• integration into ant for automatic builds
• an Eclipse plug-in for supporting development using various BPEL editors

based on the Eclipse platform (Fig. 6.4).

The integration into development environments like Eclipse is important es-
pecially for developers, because switching between testing and developing is
easier and quicker to do. Furthermore, assistants in the development envi-
ronment can be used to quickly create tests, prepare values, generate XML
fragments etc.

Various BPEL engines are supported, and new engines can be integrated
by writing matching adapters. BPEL engines only need to support automatic

Fig. 6.4. Screenshot of BPELUnit integration into Eclipse

6 Unit Testing BPEL Compositions 163

Fig. 6.5. BPELUnit architecture and test suite

deployment and undeployment of BPEL compositions. The general software
architecture can be see in Fig. 6.5.

6.6.1 Architectural Layers

BPELUnit’s design is aligned to the layers presented above. In the follow-
ing, the design choices in each layer are described to give an overview about
BPELUnit’s principal architecture.

Test Specification

Tests in BPELUnit are specified in XML. The data is specified in XML, i.e.
as it is in SOAP itself. Therefore, the developer has maximal control over the
data sent to the BPEL composition.

The description of interactions of the BPEL composition can be verified
by using XPath statements applied to the returned data. XPath is the natural
choice for selecting data from XML documents. Furthermore, the interaction
style between partners and composition can be stored in the specification: So
far one-way (receive-only and send-only), two-way synchronous (send-receive
and receive-send), and two-way asynchronous (send-receive and receive-send)
are supported.

Test Organization

The test specification is organized as a set of parallel interaction threads.
Each thread describes expected communication to and from one partner of
the BPEL composition. These tests can be grouped into test suites. A test
suite references all necessary elements for its corresponding tests: The WSDL

164 D. Lübke

descriptions of services, XML schemata etc. Furthermore, the suite defines
the test environment, as it contains all set-up information like the server and
URLs.

In order to ease the creation of tests, test cases can be inherited: Common
interaction sequences can be defined once and inherited into another test case.
The new test case can add new partners and input values. This way, much
effort can be saved since tests for the same compositions normally differ only
slightly.

The test suites containing test cases are stored using XML. Their files
normally end in .bpts (BPel Test Suite). The schema contains the following
components (as illustrated in Fig. 6.6):

• A name used for identifying the test suite.
• The base URL under which the mocks should be accessible.
• Within the deployment section the BPEL process and all partner

WSDL descriptions are referenced. The partner descriptions are used for
creating the mocks.

• The Test Cases contain the client track responsible for feeding input to
the BPEL process and the partner definitions. Those partner definitions
are used to create the stubs’ logic: Expected values and data to send back
to the process are defined within the partner definitions.

Fig. 6.6. XML schema of test Suite specifications

6 Unit Testing BPEL Compositions 165

Test Execution

The aim of BPELUnit’s execution layer is to take most of the burden from
the developer. Test execution in BPELUnit can automatically deploy and
undeploy compositions on servers, and offers a stub engine which resembles
the behaviour specified in the parallel execution threads.

Especially, the mock engine – as it simulates partners of the BPEL com-
position – is quite complex. It simulates a complete Web service stack and
can parse and handle the most important SOAP constructs. It contains a
HTTP engine for receiving and sending SOAP messages, can process RPC/lit-
eral and document/literal styles and transparently handles callbacks using
WS-Addressing. Other styles and SOAP processing options can be added by
third-parties through extensions.

Test Results

Since BPELUnit uses a concrete BPEL server for execution, gathering run-
time statistics is difficult. Up to now, BPELUnit only reports successful test
cases, failures and errors. A failure represents an application-level defect. This
normally indicates that an expected value is not received. In contrast, an
error indicates a problem with the Web service stack: a server may not be
responding, wrong error codes may have been sent etc.

BPELUnit itself does not offer a GUI or extensive output facilities. Instead,
the test results are passed to front-ends, e.g. the Eclipse plug-in. The front-end
processes and visualizes the test results.

6.6.2 Mocking Architecture

The main advantage of using BPELUnit – compared to other Web service
testing tools – is its ability to emulate processes’ partners. The real partners
are replaced by simulated ones during run-time. The simulated partners are
called stubs. At least one stub is needed per test, i.e. the partner stub. The
partner stub is the partner initiating the BPEL process.

The behaviour of the stubs is configured in BPELUnit by the means of
partner tracks. A partner track describes expected incoming messages and
the corresponding reply messages to the process. The incoming messages can
be checked by XPath statements for all relevant information, e.g. is a sent
ID correct, is there certain number of products supplied etc. These checks
are used by BPELUnit to evaluate whether the test was successful, i.e. if all
checks were successful. Especially, the partner stub will check the final result
of the BPEL process for an expected output.

Whenever a test is started, BPELUnit will start a thread for each mock.
The thread is configured using the information supplied by the partner track
definition. Afterwards, BPELUnit will open a port on which an own Web

166 D. Lübke

service stack listens. The Web service stack decodes the incoming message, and
routes the incoming requests to the matching mock. The mock consequently
processes the request by checking the incoming message for validity and the
correct information as expected by the partner track. Afterwards, a reply
message is sent back, which is again routed through BPELUnit. Within the
partner track, the tester can give definitions to assemble parts of the reply
message for copying dynamic elements, like dates and times into the message,
which cannot be statically defined.

The mocks do not need to deal with SOAP details, because all the SOAP-
related work is done by the framework itself. An example definition of a part-
ner track which checks the incoming message looks like this ([12], p. 71):

1 <sendRece ive
2 port=”BookingProcessPort ”
3 operat ion=”proce s s ”
4 s e r v i c e =”c l i e n t : BookingProcess ”>
5 <send>
6 <data>
7 <c l i e n t : bookme>
8 <c l i e n t : employeeID >848</ c l i e n t : employeeID>
9 </c l i e n t : bookme>

10 </data>
11 </send>
12 <r ece iv e >
13 <condit ion >
14 <expre s s i on>
15 c l i e n t : bookinganswer/ c l i e n t : booked/ tex t ()
16 </expres s i on>
17 <value >’ true ’</value>
18 </condit ion >
19 </rece iv e >
20 </sendReceive>

The client is a synchronous send and receive client, which checks whether
a booking has completed successfully or not.

6.6.3 Extension of BPELUnit

BPELUnit itself is a basic implementation of a unit testing framework which
handles test organization and execution well. However, the SOAP protocol
and the BPEL application landscape are very complex and diverse. The SOAP
protocol is very extensible, and there is no standard for accessing BPEL servers
in order to deploy and undeploy processes to name two of the biggest problems.

BPELUnit supports SOAP over HTTP with literal messages for all mocks.
If a process accesses other services, they cannot be mocked with BPELUnit
in its current version. Besides being open source software, BPELUnit offers
extension points for plugging in new protocols and header processors. Since
BPELUnit itself calls processors after handling all incoming and outgoing

6 Unit Testing BPEL Compositions 167

SOAP messages, new encodings and headers processors can be added inde-
pendently of the BPELUnit source tree. For instance, the default BPELUnit
distribution ships with WS-Addressing support, which is implemented as a
header processor.

Another plug-in interface is offered for deployment and undeployment:
Since all servers have their own way of handling deployment, it is necessary
to separate these operations and make them extensible. New servers can be
supported by BPELUnit by adding a corresponding plug-in. BPELUnit ships
with support for ActiveBPEL, the Oracle BPEL Engine and – as a fall-back
option – for manual deployment.

6.7 Example

Within this chapter the common example from the introduction is used. How-
ever, some additional technical properties will be presented at the beginning.

This example concentrates on a ticket reservation system and its associated
services. The reservation system is developed and operated by a fictional,
touristic company. This company is offering their services as Web services
described in WSDL. For fulfilling their customers’ requests, various databases
of partners need to be queried: Different hotels and restaurants can be looked
up and tickets can be ordered and reserved. Therefore, partner companies’
services have to be integrated into the service composition.

A hotel is one of the touristic service provider’s partners. It has developed
a BPEL composition for fulfilling the reception of hotel reservations which
includes the payment as well. The payment is realized by a Web service by a
bank. The whole service architecture can be seen in Fig. 6.7.

From the point of view of the touristic service provider, the reservation
services are atomic services. They can only see a black box which is outside
their development organization and their control. For the hotel, however, the
reservation service is a complex process using the bank’s services as atomic
services.

Fig. 6.7. Service architecture in the example

168 D. Lübke

This scenario includes some problematic challenges for testing the corre-
sponding compositions. Focusing on the touristic provider’s process, it has no
single reservation service: The Web service, which is actually called, depends
on which hotel is to be booked. The provider itself has no own implementation
of such a service and cannot randomly book and cancel hotel rooms for testing
purposes. Therefore, the developers need to carefully unit test their process
using stubs in order to minimize possible defects. For testing the whole sys-
tem, organizational problems are dominant. However, the touristic provider
has been able to get three hotels to offer them a test account which does
not make effective bookings or cancellations. Therefore, the these parts of the
system can be tested in integration tests thereby minimizing possible defects
through misunderstood WSDL interfaces.

In Fig. 6.8 the touristic service provider’s BPEL process is illustrated
with a unit test: All hotels are queried in parallel and afterwards the results
are merged. The best three results are returned. For simplicity, only a brief
overview of the process is given. The unit test suite for this process simulates
the hotels by returning a predefined set of possible booking options. Thereby,
the correct merging of the results is validated. Moreover, service failures can
be simulated by returning SOAP faults to the BPEL process to show correct
behaviour in case of partner service failures. While the test could not find any
errors in the merging part of the process, errors were not correctly caught in
the BPEL process. This leads to termination of the whole process, instead of
proceeding with only the available results. In this test, BPELUnit controls the
whole execution and all mocks. The BPEL process is deployed onto the server
and the test suite is run. There are no organizational borders conflicting with
the test.

However, using unit tests alone, it is not possible to detect failures hid-
den in the communication between the BPEL process and a Web service.
Web services are often created by exposing functionality written in traditional

Fig. 6.8. Provider’s unit test

6 Unit Testing BPEL Compositions 169

Fig. 6.9. Provider’s integration test

languages. In most programming languages, indexes are counted from 0, while
in XPath the first index is 1. What convention is used by a service is not stored
in its WSDL description since it only defines that an integer is required. To
counter such mistakes, BPELUnit can be used to do integration testing. In
contrast to unit tests, no services are mocked. Instead, the original services
are used. Since the touristic service provider is able to access some real ser-
vices, this is possible. Such tests are consequently able to detect problems
concerning the interfaces.

In the example’s case, it is likely that a programmer, who misunderstood
the index while writing the BPEL process, will consequently write a mock
which waits for the wrong parameter. Therefore, the unit test is wrong in this
regard and the error will not be spotted. However, using the test accounts
during integration testing, it is possible to detect such failures as illustrated
in Fig. 6.9. The BPELUnit test awaits the list of hotel offers. However, a wrong
list is returned due to the wrong index. The testers can see this behaviour,
report the bug and update the unit tests accordingly.

For integration tests, BPELUnit only controls the client track and the
deployment of the BPEL process. However, the services used in this example
are the real services. Therefore, this test spans multiple organizations.

6.8 Conclusions and Outlook

Testing service compositions, most notable such modelled in BPEL, is a rela-
tively new aspect for quality assurance in software projects. Therefore, expe-
riences and experience reports concerning testing are lacking. The first steps

170 D. Lübke

taken to better support the testing process is to try to improve tool support:
This support must address the distributed nature of services and the necessary
test set-up routines for deployment of all necessary compositions and stubs.

BPELUnit is the first version of such a unit testing framework supporting
BPEL. It manages test cases and contains a stub engine, which can be pa-
rameterized by the test suites. The design is extensible for adding support of
further BPEL engines and front-ends.

Next aim for the future is support for gathering metrics during test ex-
ecution. Unfortunately, this is a tremendous effort due to missing standards
for BPEL debugging and process introspection. However, adding generic in-
terfaces which need to be implemented by the corresponding BPEL engine
adapters is possible with support for one or two BPEL engines in the stan-
dard distribution.

While the stub facility of BPELUnit is very powerful, it cannot deal with
dynamic service discovery. This type of discovery poses a significant challenge
for all testing activities related to SOA. Since the service to be called is de-
termined at run-time, it is not necessary to replace the service endpoint in
the deployment. Therefore, other means must be found to redirect the service
call to the stub service.

Another important aspect is the parallelization of tests: At least unit tests
should be independent of each other, so their execution could be distributed
to different test machines and be done in parallel. For other unit testing
frameworks, research concerning distribution is available, for e.g. by [10] and
[17], which should be adopted for BPELUnit or comparable frameworks as
well.

Furthermore, testing habits and likely defects in BPEL compositions need
to be empirically studied. Interesting questions would be, e.g., in which parts
of a BPEL composition errors are likely to occur, by which rate certain tests
can reduce defects in the software product concerning service compositions
etc.

BPELUnit can serve as a stable foundation for all these research questions.
Moreover, it can be used in a production environment for finding defects in
developed BPEL compositions.

References

1. Alonso, Gustavo, Casati, Fabio, Kuno, Harumi, and Machiraju, Vijay (2003).
Web Services. Springer, 1st edition.

2. Beck, Kent (2000). Extreme Programming Explained. Addison-Wesley.
3. Dijkstra, Edsger Wybe (1971). Structured programming, chapter Notes on struc-

tured programming, pages 1–82. Academic Press.
4. Flohr, Thomas and Schneider, Thorsten (2006). Lessons learned from an XP

Experiment with Students: Test-First needs more teachings. In Proceedings of
the Profes 2006.

6 Unit Testing BPEL Compositions 171

5. George, Boby and Williams, Laurie (2003). A Structured Experiment of Test-
Driven Developmen. Information and Software technology, 46(5):337–342.

6. java.net (2006). WSUnit - The Web Services Testing Tool. WWW: https:
//wsunit.dev.java.net/.

7. jmock.org (2006). jMock. WWW: http://www.jmock.org/.
8. JUnit.org (2006). JUnit. WWW: http://www.junit.org.
9. Juric, Matjaz B., Kezmah, Bostjan, Hericko, Marjan, Rozman, Ivan, and

Vezocnik, Ivan (2004). Java RMI, RMI tunneling and Web services comparison
and performance analysis. SIGPLAN Not., 39(5):58–65.

10. Kapfhammer, Gregory M. (2001). Automatically and Transparently Distribut-
ing the Execution of Regression Test Suites. In Proceedings of the 18th Inter-
national Conference on Testing Computer Software.

11. Li, Zhongjie, Sun, Wei, Jiang, Zhong Bo, and Zhang, Xin (2005). BPEL4WS
Unit Testing: Framework and Implementation. In ICWS ’05: Proceed-
ings of the IEEE International Conference on Web Services (ICWS’05),
pages 103–110, Washington, DC, USA. IEEE Computer Society.

12. Mayer, Philip (2006). Design and Implementation of a Framework for Testing
BPEL Compositions. Master’s thesis, Gottfried Wilhelm Leibniz Unversität
Hannover.

13. Mayer, Philip and Lübke, Daniel (2006). Towards a BPEL unit testing frame-
work. In TAV-WEB ’06: Proceedings of the 2006 workshop on Testing, analysis,
and verification of web services and applications, pages 33–42, New York, NY,
USA. ACM Press.

14. McConnell, Steve (2004). Code Complete. Microsoft Press, 2nd edition.
15. Myers, Glenford J. (1979). The Art of Software Testing. John Wiley & Sons.
16. Project, Cobertura (2006). Cobertura Homepage. WWW: http://cobertura.

sourceforge.net/.
17. Safi, Bassim Aziz (2005). Distributed JUnit. Bachelor Thesis at University

Hannover.
18. Zhu, Hong, Hall, Patrick A. V., and May, John H. R. (1997). Software unit test

coverage and adequacy. ACM Comput. Surv., 29(4):366–427.

7

A Model-Driven Approach to Discovery,
Testing and Monitoring of Web Services

Marc Lohmann1, Leonardo Mariani2 and Reiko Heckel3

1 University of Paderborn, Department of Computer Science Warburger Str. 100,
33098 Paderborn, Germany mlohmann@uni-paderborn.de

2 Università degli Studi di Milano Bicocca – DISCo via Bicocca degli Arcimboldi,
8, 20126 Milano, Italy mariani@disco.unimib.it

3 University of Leicester, Department of Computer Science University Road, LE1
7RH Leicester reiko@mcs.le.ac.uk

Abstract. Service-oriented computing is distinguished by its use of dynamic dis-
covery and binding for the integration of services at runtime. This poses a challenge
for testing, in particular, of the interaction between services.

We propose a model-driven solution to address this challenge. Service descrip-
tions are promoted from largely syntactical to behavioural specifications of services
in terms of contracts (pre-conditions and effects of operations), expressed in a vi-
sual UML-like notion. Through mappings to semantic web languages and the Java
Modelling Language (JML) contracts support the automatic discovery of services as
well as the derivation of test cases and their execution and monitoring.

We discuss an extended life cycle model for services based on the model-driven
approach and illustrate its application using a model of a hotel reservation service.

7.1 Introduction

Service-oriented computing is becoming the leading paradigm for the inte-
gration of distributed application components over the Internet. Besides its
implementation, the life cycle of a service includes the creation and publication
of a service description to a registry. Clients will query the registry for ser-
vice descriptions satisfying their requirements before selecting a description,
binding to the corresponding service and using it.

Established technology for providing, querying and binding to services is
largely based on syntactic information. From UDDI registries, e.g., services
can only be retrieved by inspecting interface descriptions and associated key-
words [50]. The lack of semantic information in service descriptions prevents
reliable automatic integration of services. For instance, if an application inter-
acting with a shopping cart assumes that the addItem(item,qt) operation
adds qt to the quantity of the target item, interactions will fail with all carts

174 M. Lohmann et al.

that implement an addItem(item,qt) operation overwriting the quantity in-
stead of increasing it [26]. To mitigate semantic problems, natural language
specifications can be associated with interface descriptions. However, these
descriptions cannot be automatically processed by clients and are often am-
biguous and incomplete. For instance, according to [17], more than 80% of
Web services have descriptions shorter than 50 words and more than 50% of
service descriptions are even shorter than 20 words.

In addition to the danger of binding to incompatible services, problems can
be caused by services which fail to correctly implement their specifications,
i.e., their public service descriptions. A client application has only limited
capacity to verify the quality of a remote Web service because it cannot access
the service implementation. Moreover, owners of services can modify their
implementations at any time without alerting existing clients. Hence, clients
can neither rely on the quality of a service at the time of binding nor on its
behavioural stability over time.

Several testing and analysis techniques for Web services and service-based
applications have been developed [10], addressing the verification of functional
and non-functional requirements, interoperability and regression, but they fo-
cus on the technical verification problem, failing to provide a sound embedding
in the life-cycle of services. For example, many approaches focus on testing
entire applications, which is obviously insufficient because it reveals faults of
single services too late to be effectively fixed and does not consider dynamic
changes.

In this chapter, we present a framework for developing high-quality service-
based applications addressing both the verification problem, as well as its
embedding in the service life-cycle. In line with the current best practice,
this includes a model-driven approach for developing service specifications
with automated mappings to languages for service description and matching,
as well as monitoring at the implementation level. We focus on functional
service specifications aimed at the interoperability of services.

Model-driven development provides the foundation for (formal) reasoning
about the behaviour of services and their compositions. Models allow devel-
opers to focus on conceptual tasks and abstract from implementation details.
Moreover, models are often represented with a high-level visual language that
can be understood more intuitively than source code and formal textual de-
scriptions and are effective for communication between developers [15].

We describe the data types visible at a service interface with a class di-
agram. We specify the behaviour of its operations by graph-transformation
rules [13], describing the manipulation of object structures over the class di-
agrams. Graph transformation rules combine a number of advantages which
make them particularly suitable for the high-level modelling of operations:
(1) they have a formal semantics; (2) they address the transformation of
structure and data, an aspect that would otherwise be specified textually in
a programming- or logic-oriented style; (3) they form a natural complement

7 An MD Approach to Discovery, Testing and Monitoring WS 175

to mainstream visual modelling techniques like state machines or sequence
diagrams; and (4) they can easily be visualised themselves in a UML-like
notation, supporting an intuitive level of understanding beyond the for-
mal one [3].

Our approach aims to guarantee high-quality service-oriented applications
by refining the classical life-cycle of service registration, discovery and usage
as follows.

• Service registration: Only tested Web services should be allowed to par-
ticipate in high-quality service-based applications. For this, we propose to
extend the functionality of UDDI registries to automatically generate test
cases that are executed when a Web service either adds or updates its
behavioural description. Registration is allowed only if all test cases have
been passed [26].

• Service discovery: Based on the extension of service descriptions to in-
clude behavioural specifications, service discovery can match descriptions
against behavioural requirements [23]. For instance, a client can explicitly
query for a cart that implements an addItem operation that overwrites
the quantity of items already present in the cart.

• Service usage: Since clients can access services over a period of time, it
is important that their behaviour remains consistent with their specifi-
cations. Service models are used to automatically generate monitors that
are able to continuously verify the behaviour of Web service implementa-
tions [16].

In summary, our framework provides discovery mechanisms based on be-
havioural descriptions, supports continuous monitoring of web services at the
provider and client sides and allows registration and composition of high-
quality Web services only.

The rest of the chapter is organised as follows. Section 7.2 describes the life-
cycle of high-quality service-based applications. Section 7.3 introduces graph-
transformation as the formal language used to describe the behaviour of ser-
vices, along with a running example used throughout the chapter to present
our framework. Testing, discovery and monitoring techniques, which are the
core of the approach, are presented in Sects. 7.4–7.6, respectively. Sects. 7.7
and 7.8 discuss empirical validation of our framework and related work, re-
spectively. Finally, Sect. 7.9 outlines conclusions and future work.

7.2 Life-Cycle of High-Quality Service-Oriented
Applications

High-quality service-oriented applications are systems obtained from reliable
composition of high-quality web services. Reliable composition is achieved by
automatic service discovery and binding based on the matching of behavioural

176 M. Lohmann et al.

Service Requestor Service Provider

Service

developer

implements

Service
Description

(Visual Contracts)

creates

Query

(Visual Contracts)

creates

Correctness
(Model-Driven Monitoring)

Discovery Service

generate
failure reports

developer

Client

implements

Service
Description

(Visual Contracts)

Query

(Visual Contracts)

Comparison
(Model-Driven Matching)

repository
of failures

test cases

test case
execution

publishes
searches

Oracle

Model-Driven Generation
of test cases and oracles.

Client-side
monitor

checking

interactions

Service
Description

generation

Fig. 7.1. The development process for high-quality service-based applications

specifications. High-quality services are tested before their registration and
monitored throughout their life time.

Figure 7.1 shows the entities that participate in service development, pub-
lication and discovery of high-quality service-oriented applications. Different
shades of grey are used to mark entities involved in different steps of the pro-
cess. Items associated with service development are indicated in light grey,
artefacts and activities related to service registration are shown with a dark
grey background, and service discovery is indicated with a white background.

During service development software developers design and implement sin-
gle services. The development methodology associated with our framework is
based on the integrated use of UML diagrams to describe static aspects and
graph transformations to describe dynamic properties of the service under
development. The dynamic properties of a service are given in terms of pre-
and post-conditions, both instances of the design class diagram as explained
in Sect. 7.3. These visual descriptions are used both internally and externally.

Internal use consists of translating these visual descriptions into JML mon-
itors that are embedded into the implementation.4 External use consists in

4 The Java Modelling Language (JML) [9, 33] is a behavioural specification lan-
guage for Java classes and interfaces. JML assertions are based on Java expression
and annotated to the Java source code. Thus, JML extends Java with concepts
of Design by Contract following the example of Eiffel [37]. However, JML is more
expressive than Eiffel, supporting constructs such as universal and existential

7 An MD Approach to Discovery, Testing and Monitoring WS 177

uploading these descriptions to the discovery service to support the generation
of test cases and monitors required in the next phases. Violations detected by
JML monitors are collected in a repository and examined by developers who
use this information to fix bugs in the implementation.

The translation process from visual descriptions to JML monitors consists
of two parts: first, Java class skeletons are generated from the design class
diagrams; second, JML assertions are derived from graph transformation rules.
The assertions allow us to validate the consistency of the models they are
derived from with the manually produced code. The execution of such checks
must be transparent in that, unless an assertion is violated, the behaviour
of the original program remains unchanged. This is guaranteed since JML
assertions are free of side-effects. (See Sect. 7.6 for details on the translation.)

Programmers use the generated Java fragments to fill in the missing be-
havioural code in order to build a complete and functional application ac-
cording to the design models and visual contract of the system. They are not
allowed to change the JML assertions, thus ensuring that they remain con-
sistent with the visual contracts. If new requirements for the system demand
new functionality, the functionality has to be specified using visual contracts
first, in order to derive new assertions for implementation.

When behavioural code has been implemented, programmers use a JML
compiler to build the executable binary code. This binary code includes the
programmer’s behavioural code and additional executable runtime checks that
are generated from the JML assertions. The runtime checks verify if the man-
ually coded behaviour of an operation fulfils its JML specification, i.e., pre-
and post-conditions. Since the JML annotations are generated from the vi-
sual contracts, we indirectly verify that the behavioural code complies with
the visual contract of the design model.

During service registration service developers publish specifications based
on graph transformations to make services available to potential clients. When
specifications are uploaded, discovery services automatically generate test
cases and oracles, to verify that services satisfy their expectations. Test cases
are executed against target services and oracles evaluate results. In some cases,
services under test may need to implement special testing interfaces to let ora-
cles inspect their internal states, to verify the correctness of the results. These
interfaces implement a get operation that returns the current state of the web
service, according to its behavioural descriptions. If necessary, these interfaces
can include a set operation that assigns a given state to the target web ser-
vice. Since both the signature of getter/setter methods and the structure of
the web service state are known a priori, these interfaces can be automatically
generated.

If a service does not pass all test cases, registries generate a report which is
sent to service developers and they cancel service registration. Otherwise, if a

quantifications. Different tools are available to support, e.g., runtime assertion
checking, testing, or static verification based on JML.

178 M. Lohmann et al.

service passes all tests, registries complete registration and inform service de-
velopers that they can turn off any testing interface. This protocol guarantees
that only high-quality Web services can register. If service providers modify
the behaviour of their services, they must provide a new specification and
repeat registration and testing. Service providers are discouraged to change
the behaviour of services without publishing updated specifications because
clients would discover services by referring to outdated specifications, and
thus they would be unable to interact with these services. Moreover, client-
side monitors can automatically detect anomalous behaviour to prevent clients
from interacting with unsound implementations of a published specification.

During service discovery clients retrieve and bind to services. To this
end, service requestors submit queries to discovery services. Discovery ser-
vices automatically process requests and if any of the specifications satisfies
the queries, references to the corresponding services are returned to clients.
In our framework, both queries and specifications are visually expressed by
graph transformations. Thus, developers use a coherent environment at both
client and service provider sites.

While using a service, clients can download the service description (service
specifications) and generate a client-side monitor to verify the correctness of
its behaviour. A client-side monitor is similar to a client-side proxy, which can
be generated from Web service engines like Apache Axis [1]. Additionally, the
client-side monitor embeds JML assertions and checks if requests and results
exchanged between clients and services satisfy expectations by wrapping the
invocation of the service of the client.

Thanks to these refinements of the standard life cycle, clients have the
guarantee of interacting with web services that have been verified against
their requirements. Moreover, any deviations from the expected behaviour
are revealed by client-side monitors.

The life-cycle of a web service described in this section allows the develop-
ment of reliable web services. It helps developers of services to produce reliable
services by generating test cases and JML assertions, which can be used to
monitor the implementation at the provider side, e.g., during testing. During
registration, automatic generation of test cases is able to detect and reject
incorrect services. Client-side monitors help to ensure that the behaviour of a
service remains consistent with its description.

Even if we only present how to generate Java and JML code from our
models in this chapter, the overall framework does not mandate a specific
programming language. The service descriptions exchanged between the ser-
vice provider, service requester and the discovery service are not platform-
specific, and the communication between them can also be based on platform
independent XML-dialects like SOAP [39]. To be completely platform inde-
pendent, we only need to adjust our code and test generators to support
multiple programming languages. A translation of graph transformation rules
to Microsoft’s Spec# [4] (adds the idea of contracts to Microsoft’s C# [32])
is also possible as shown in [44].

7 An MD Approach to Discovery, Testing and Monitoring WS 179

7.3 Web Service Specification

In this section, we describe the specification-related concepts underlying our
modelling approach using the example of a hotel reservation system. This
system is able to create a number of reservations for different hotels and
manages them in a reservation list for each customer. For example, this allows
John to organise a round trip, while visiting different hotels and celebrating
the purchase of his new car. After John has finished planning his trip he can
commit the reservation list. Later activities such as payment or check-in are
not part of our example.

In our approach, a design model consists of a static and a functional view.

7.3.1 Modelling Static Aspects

UML class diagrams are used to represent the static aspects in our design
model. Figure 7.2 shows the class diagram of our hotel reservation system.
We use the stereotypes control, entity and boundary. Each of these stereo-
types expresses a different role of a class in the implementation. Instances
of control classes encapsulate the control flow related to a specific complex
activity, coordinating simpler activities of other classes. Entity classes model
long-lived or persistent information. Boundary classes are used to model non-
persistent information that is exchanged between a system and its actors.
The stereotype key indicates key attributes of a class. A key attribute is a

createHotel(in hotelName : String, in hotelDescription : String) : Hotel
queryHotel(in queryString : String) : HotelList
createCustomer(in name : String) : Customer
createReservationList(in customerID : String) : CustomerReservationList
addHotelReservationToList(in listID : String, in hotelID : String, in sDate : Date, in eDate : Date) : ReservationResult
removeHotelReservationFromList(in reservationID : String) : Boolean
clearReservationList(in listID) : Boolean
commitReservationList(in listID : String) : Boolean

«control»
HotelBookingSystem

«key» reservationID : String
startDate : Date
endDate : Date

«entity»
HotelReservation

«key» hotelID : String
hotelName : String
hotelDescription : String

«entity»
Hotel

«key» customerID : String
customerName : String

«entity»
Customer

customerID

1

0..*

hotelID

1

0..*

0..*

0..1

reservedHotel

«key» listID : String
commit : Boolean

«entity»
CustomerReservationList

0..*

0..1

owns

listID1

0..*

0..1 0..*

reservationSuccess : Boolean
reservationID : String

«boundary»
ReservationResult

«boundary»
HotelList

0..* 0..*

Fig. 7.2. Class diagram specifying the static structure of the hotel reservation
system

180 M. Lohmann et al.

unique identifier for a set of objects of the same type. A small rectangle as-
sociated with an association ending with a qualifier (e.g. hotelID) designates
an attribute of the referenced class. In combination with the attributes, the
qualifier allows us to get direct access to a specific object. For instance, the
control class HotelBookingSystem is connected to the entity classes of the
system via qualified associations.

7.3.2 Modelling Functional Aspects

Class diagrams are complemented by graph transformation rules that intro-
duce a functional view, integrating static and dynamic aspects. They allow us
to describe the pre-conditions and effects of individual operations, referring
to the (conceptual) data state of the system. Graph transformation rules are
formed over the classes of the design class diagram and are represented by a
pair of UML object diagrams, specifying pre- and post-conditions. The use
of graph transformations to specify the functional view of services is a key
aspect of our approach because they enable specification of the service be-
haviour, automatic generation of test cases, automatic generation of monitors
and specification of visual queries.

In particular, the functional view is used to (formally) match the behaviour
required by the client and the behaviour offered by the server, at the discovery
service side. When a client uploads a description of the required behaviour, the
service discovery analyses all available specifications and responds with the
list of all compatible services. The required behaviour is visually defined by
the client as a set of graph transformation rules that represent the operations
that must be implemented by returned services. The functional view of a
service is also used during the registration phase to automatically generate
test cases and oracles. Test cases are generated by the discovery service that
executes them and rejects the requests for registration of services that do not
pass all test cases. Finally, the modelling of the functional aspect is used both
from the server and the client to automatically generate monitors that verify
at runtime if the observed interactions satisfy expectations. Any violation is
signalled to the client (server) that, in case of problems, can bind to another
service (can search and repair the fault).

In the following, we will introduce graph transformation rules through
a number of examples. The operation createReservationList of the con-
trol class HotelBookingSystem creates a new reservation list for an existing
customer. Figure 7.3 shows a graph transformation rule that describes the be-
haviour of the operation. The rule is enclosed in a frame, containing a heading
and a context area. The frame notation originates from UML 2.0, providing a
portable context for a diagram. The heading is a string enclosed in a rectangle
with a cutoff corner, placed in the upper left corner of the frame. The keyword
gtr refers to the type of diagram, in this case a graph transformation rule.
The keyword is followed by the name of the operation specified by the rule,
in turn followed by a parameter list and a return parameter, if declared in

7 An MD Approach to Discovery, Testing and Monitoring WS 181

gtr createReservationList(cid) : crl

NAC

customerID = cid

«entity»
/c : Customer

«control»
/this : HotelBookingSystem

«control»
/this : HotelBookingSystem

commit = false

«entity»
/crl : CustomerReservationList

customerID = cid

«entity»
/c : Customer

commit = false

«entity»
 : CustomerReservationList

customerID = cid

«entity»
/c : Customer

Fig. 7.3. Graph transformation rule for operation createReservationList

the class diagram. All parameters occur in the graph transformation rule. An
extension of the UML 2.0 metamodel for graph transformation rules of this
form can be found in [16].

The graph transformation rule itself is placed in the context area. It con-
sists of two object diagrams, its left- and right-hand side, both typed over
the design class diagram. The basic idea is to consider the left-hand side as a
pattern, describing the objects, attributes and links that need to be present
for the operation to be executable. Then, all items only present in the left-
but not in the right-hand side of the rule are removed, and all present only
in the right-hand side are newly created. Objects present in both sides are
not affected by the rule, but required for its application. If there is only one
object of a certain type, it can remain anonymous; if a distinction between
different objects of the same type is necessary, then there must be an object
identifier separated from the type by a colon.

We may extend the pre- or post-conditions of a rule by negative pre-
conditions [20] or post-conditions. A negative condition is represented by a
dark rectangle in the frame. If the dark rectangle is on the left of the pre-
condition, it specifies object structures that are not allowed to be present
before the operation is executed (negative pre-condition). If the dark rectangle
is on the right of the post-condition, it specifies object structures that are
not allowed to be present after the execution of the operation (negative post-
condition). A detailed explanation of graph transformation rules can be found
in [13].

The graph transformation rule as described in Fig. 7.3 expresses the
fact that the operation createReservationList can be executed if the
HotelBookingSystem object references an object of type Customer, which
has an attribute customerID with the value cid. The concrete values are
specified when the client calls the operation. The negative pre-condition ad-
ditionally requires that the object c:Customer be not connected to an ob-
ject of type CustomerReservationList that has the value false for the at-
tribute commit. That means, the system only creates a new reservation list
for an existing customer if there is no reservation list for the customer, which
is not yet committed. As an effect, the operation creates a new object of
type CustomerReservationList and two links between the objects of types

182 M. Lohmann et al.

HotelBookingSystem and CustomerReservationList as well as Customer
and CustomerReservationList. As indicated by the variables used in the
heading, the object crl:CustomerReservationListbecomes the return value
of the operation createReservationList. The active object, executing the
method, is designated by the variable this.

Figure 7.4 shows a functional specification of the operation
addHotelReservationToList by two graph transformation rules. If the oper-
ation is successfully executed, it adds a new hotel reservation to the reserva-
tion list of the customer. If the operation is not successfully executed, it does
nothing. The pre-conditions of both rules are identical. That means, from an
external point the resulting behaviour is non-deterministic. A client does not
know whether the hotel reservation system will create a new reservation or
not. The reason is that the decision depends on the availability of the hotel,
which is not known in advance. For a successful execution of the operation,
the object this must know two different objects with the following charac-
teristics: an object of type Hotel which has an attribute hotelID with the
value hid, an object of type CustomerReservationList which has an at-
tribute listID with the value lid and an attribute commit with the value
false. If the requested hotel is available, the operation creates a new ob-
ject HotelReservation and initialises its attributes startDate and endDate

gtr addHotelReservationToList(lid, hid, sDate, eDate) : rer

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

hotelID = hid

«entity»
/h : Hotel

reservationID = rid
startDate = sDate
endDate = eDate

«entity»
/hr :HotelReservation

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

hotelID = hid

«entity»
/h : Hotel

reservationSuccess = true
ReservationID = rid

«boundary»
/rer : ReservationResult

gtr addHotelReservationToList(lid, hid, sDate, eDate) : rer

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

hotelID = hid

«entity»
/h : Hotel «control»

/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

hotelID = hid

«entity»
/h : Hotel

reservationSuccess = false

«boundary»
/rer : ReservationResult

Fig. 7.4. Graph transformation rule for operation addHotelToList

7 An MD Approach to Discovery, Testing and Monitoring WS 183

gtr clearReservationList(lid) : true

«entity»
/hr :HotelReservation

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

Fig. 7.5. Graph transformation rule for operation clearReservationList

according to the parameter values (see top rule in Fig. 7.4). This new object is
linked to the objects h:Hotel and crl:CustomerReservationList identified
in the pre-condition. Additionally, the object creates a new boundary object of
type ReservationList, initialises its attributes and uses this object as return
value. Generally, the boundary object is used to group different return values
into one return object. If the requested hotel is not available, the service only
creates a boundary object rer:ReservationResult and sets the value of its
attribute to false (see bottom rule in Fig. 7.4). This allows to show the client
that the reservation has not been successful.

Universally quantified operations, involving a set of objects whose cardi-
nality is not known at design time, can be modelled using multi-objects. An
example is shown in Fig. 7.5. This rule specifies an operation which removes all
HotelReservations from an existing, not committed
CustomerReservationList. The multi-object hr:HotelReservation in the
pre-condition indicates that the operation is executed if there is a set (which
maybe empty) of objects of type HotelReservation. After the execution of
the operation, all objects conforming to hr:HotelReservation (as well as the
corresponding links) are deleted, i.e., the reservation list is cleared.

Figure 7.6 shows the remaining graph transformation rules for the opera-
tions of the hotel reservation system.

7.4 Web Service Registration

As outlined in Sect. 7.2, registration of web services includes a testing phase
where registries automatically generate, execute and evaluate test cases. Only
if all test cases are passed, the registration phase is successfully completed;
otherwise, registration is aborted. In both cases, a report is sent to service
owners.

Execution of test cases can require the implementation of ad hoc interfaces
that are used by registries to set and reset the state of Web services, when
normal interfaces do not support all necessary operations. In particular, test
case execution usually requires a reset operation to clean the current state, a

184 M. Lohmann et al.

gtr removeHotelReservationFromList(lid, rid) : true

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

reservationID = rid

«entity»
/hr :HotelReservation

gtr createHotel(hname, hdescription) : h

«control»
/this : HotelBookingSystem

hotelName = hName
hotelDescription = hdescription

«entity»
/h : hotel

«control»
/this : HotelBookingSystem

gtr createCustomer(name) : c

«control»
/this : HotelBookingSystem

customerName = name

«entity»
/c : Customer

«control»
/this : HotelBookingSystem

gtr commitReservationList(lid) : true

«control»
/this : HotelBookingSystem

listID = lid
commit = false

«entity»
/crl : CustomerReservationList

«control»
/this : HotelBookingSystem

listID = lid
commit = true

«entity»
/crl : CustomerReservationList

gtr queryHotel(queryString) : hList

«control»
/this : HotelBookingSystem

«control»
/this : HotelBookingSystem

«entity»
/h : Hotel

«entity»
/h : Hotel

«boundary»
/hList : HotelList

Fig. 7.6. Remaining graph transformation rule for operations of the hotel reserva-
tion system

7 An MD Approach to Discovery, Testing and Monitoring WS 185

creational interface to transform the target service into a given state (similarly
to a setter method) and an inspection interface, to access the internal state
of Web services (similarly to a getter method). Once testing has been passed,
the testing interface can be disabled.

Automatic test case generation validates the behaviour of a given Web ser-
vice by addressing two aspects: correctness of single operations, e.g., booking
a hotel room, and correctness of multiple operations, e.g., fully managing a
reservation list [26].

The registration phase also includes the generation of client-side monitors.
The following sections present techniques for generation of test cases and
monitors.

7.4.1 Test Cases for Single Operations

The result of an operation depends on both its inputs and the current state
of the service. Admissible inputs are defined by operation signatures, which
constrain each variable with a type, while states are defined by class diagrams
limiting the types and relations of objects. This information is complemented
by transformation rules that specify the pre-conditions and effects of the
operations.

Testing single operations means executing them on samples from their
domains to evaluate the general correctness of their behaviour. Since trans-
formation rules provide information that allows the identification of different
sets of “equivalent” inputs, we generate test cases by a domain-based strat-
egy [54] known as partition testing. The rationale is that test cases can be
suitably selected by dividing operations’ domains into (possibly overlapping)
subsets and choosing one or more elements from each subset [53]. Inputs from
each domain should trigger sets of equivalents behaviours, according to Web
service specifications.

Usually, input domains are identified by following fault-based guidelines,
identifying small partitions, where several insidious faults can be present,
and large partitions, where little assumptions about specific implementation
threats can be made [53]. In case of operations specified by graph transfor-
mations, if opi are the transformation rules that define the behaviour of an
operation and the pre-condition of each rule is indicated with prei, we can
identify the following domains:

• completeDomain: Each prei is a domain. Selecting at least one input from
each prei guarantees the execution of all transformation rules.

• multiRules: Any prei ∩ prej �= ∅ is a domain. It represents the case of
an input that can potentially trigger either of two rules. The choice is
internal to the Web service, and can eventually be non-deterministic. The
identification of the rule that must be triggered is a potential source of
problems, coverage of these domains guarantees execution of all possible
decision points.

186 M. Lohmann et al.

• boundaryValues: Any prei can specify conditions on node attributes. Since
many faults are likely to arise when attributes assume values at boundaries
of their domain, a separate domain is represented for each input where at
least one attribute assumes a boundary value.

• multiObjects: prei can contain multi-objects, which are satisfied by inputs
with any cardinality of nodes. The operation must be able to suitably
manage any input. We identified three domains that must be covered when
a multi-object is part of a pre-condition: inputs with 0 elements, with 1
element and with more than 1 element.

• unspecified: Input values that do not satisfy any prei, but conform to the
constraints represented by the operation signature. In these cases, a target
Web service should respond by both signalling incorrectness of the input
and leaving its state unchanged.

Note that domains are not disjoint because the same input can reveal a failure
for multiple reasons.

Given an operation op and its rules opi, we derive test cases by gener-
ating a set of triples (in, seq, out), where in is an input that belongs to one
of the domains associated with op, seq consists of an invocation to op, and
out is the expected result, which can be any opi(in), where in satisfies the
pre-condition of opi. Test cases must cover all domains. Moreover, different
domains can be covered with different numbers of test cases, according to the
tester’s preference. For instance, we can cover the “completeDomain” with
four test cases, and the “multiObjects” domain with one test case. Concrete
attribute values are randomly generated taking into account constraints asso-
ciated with rules. We only consider linear constraints; however, extensions to
non-linear constraints can be incorporated as well [30]. Values from the unspec-
ified domain are obtained by considering a transformation rule, and generating
inputs that preserve the structure of the pre-condition of the rule, but in-
cludes attribute values that violate at least one constraint associated with the
pre-condition.

For example, if we generate test cases for the rule
clearReservationList(lid) shown in Fig. 7.5, we can identify the following
domains:

• completeDomain: The operation is specified with one rule, thus the tech-
nique identifies only one domain that corresponds to the pre-condition of
clearReservationList(lid).

• multiRules: Since we have only one rule, there is no input that can poten-
tially trigger multiple rules. Thus no domain is selected.

• boundaryValues: The rule includes only one unspecified attribute value,
which is listId. The type of this attribute is String. Thus, two domains
with Strings of minimum and maximum length are considered (the max-
imum length can be either defined by the tester or inherited from the
specification of the String type).

7 An MD Approach to Discovery, Testing and Monitoring WS 187

• multiObjects: The rule includes one multi-object. Thus the technique
generates three domains: one with an empty set of HotelReservation,
one with a single HotelReservation and one with multiple
HotelReservations.

• unspecified: The only constraint about attribute values that can be vi-
olated is commit=false. Thus, the technique generates a domain with
commit=true. This is an interesting test case because Web service devel-
opers may erroneously assume that the clearReservationList operation
can be executed on commited reservation lists.

The exact number of test cases depends on the amount of samples that
are extracted from each domain. For instance, if we extract 4 samples from
completedomain, 1 sample from boundaryValues, 1 sample from multiObjects
and 1 sample from unspecified, we obtain 4 × 1 + 1 × 2 + 1 × 3 + 1 × 1 = 10
test cases.

7.4.2 Test Cases for Operation Sequences

To test the effect of sequences of operations, we analyse the relation between
transformation rules. A sequence of rule applications leads to a sequence
of transformations on the data state of the service. Typically, when state-
dependent behaviour has to be tested, data-flow analysis is used to reveal
state-dependent faults by exercising variable definitions and uses [19]. A sim-
ilar idea can be applied to graph transformation rules.

In particular, given two transformation rules p1 and p2, p1 may dis-
able p2 if it deletes or adds entities that are required or forbidden by
p2, respectively. In this case, we say that a conflict between p1 and p2

exists. Given two transformation rules p1 and p2, p1 may cause p2 if it
deletes or adds state entities that are forbidden or required by p2, respec-
tively. In this case, we say that a dependency between p1 and p2 exists.
For example, a dependency between rule addReservationToList, shown
in Fig. 7.4, and rule createReservationList, shown in Fig. 7.3, exists.
This is because the former rule can be applied only if the state includes a
CustomerReservationList node, which can be created by the latter rule.
Moreover, a conflict between rule clearReservationList, shown in Fig. 7.5,
and rule removeHotelReservationFromList, shown in Fig. 7.6, exists. This
is because the former rule deletes the HotelReservation node, which is re-
quired by the latter rule.

Our technique addresses testing of sequences of operations by covering
dependencies and conflicts between rules. Sequences of operations that do not
include any dependency or conflict are likely to be sequences of independent
operations. Thus, they have been already covered by testing of the single
operations.

To turn the test requirement to cover a sequence of two rules 〈p1, p2〉 into
an executable test case, we must solve a search problem. In particular, the

188 M. Lohmann et al.

pre-condition of rule p1 may not be satisfied by the initial state of the target
web service (this happens also for testing of single operations). Moreover, the
state that results from the execution of rule p1 may not allow the immediate
execution of rule p2. Thus, we need to identify two sequences of operations:
seqpre, which brings the Web service from the initial state to a state that
satisfies the pre-condition of p1, and seqbetw, which brings the web service
from the state that results from the execution of p1 to a state that satisfies
the pre-condition of p2. The sequence seqbetw should not modify the entities
that are part of the conflict/dependency between p1 and p2, otherwise the
dependency between the two transformations would be removed.

Conflicts and dependencies can automatically be identified by the AGG
tool [51], while the search for sequences seqpre and seqbetw can be supported
by tools like PROGRESS [47] and GROOVE [46]. The existence of testing
interfaces can simplify the solution to the search problem. Early experience
presented in [26] shows that the problem is feasible at the level of complexity
of several common Web service APIs.

For example, if we focus on rule createReservationList, shown in
Fig. 7.3, we can automatically identify the following dependencies

• 〈createCustomer, createReservationList〉, because createCustomer
creates the Customer node, which is required by the pre-condition of
createReservationList.

• 〈commitReservationList, createReservationList〉, because commit-
ReservationList modifies the value of the commit attribute from false
to true, and the createReservationList rule forbids the presence of a
CustomerReservationList with commit equals to false.

and conflicts:

• 〈createReservationList, createReservationList〉, because the first
createReservationList creates a ReservationList with commit equals
to false, which is forbidden by the second createReservationList.

Examples of concrete test cases that can be generated from the test require-
ments above are (attribute values are omitted):

• TC1 = createCustomer; createReservationList
• TC2 = createCustomer; createReservationList;

commitReservationList; createReservationList
• TC3 = createCustomer; createReservationList;

createReservationList

7.4.3 Test Oracles for Services

Oracles evaluate the correctness of the test result by comparing the expected
return values and post states with those produced by the test of the service.
Graph transformation rules can be translated into JML assertions that verify

7 An MD Approach to Discovery, Testing and Monitoring WS 189

consistency of runtime behaviour and specification. The mapping for gener-
ating JML assertions is presented in detail in Sect. 7.6.

Clients can use this technology to create client-side monitors. A client-side
monitor is a stub with embedded assertions. In this case, JML assertions can
only check data values sent and received by clients, and cannot inspect the
web service state. Verification of internal behaviour of Web services is possible
using server-side monitors. For example, a client-side monitor can verify that
the createCustomer operation, shown in Fig. 7.6, returns a customer object
with a name equal to the string passed as parameter, but cannot verify if the
same object is part of the internal state of the web service.

All violations revealed by the client-side monitors are recorded, to be ac-
cessed by the developers of the service or prospective clients, to identify and
fix problems, to adapt client applications or to select new web services.

7.5 Web Service Discovery

An important part of our approach, albeit not the focus of this book chap-
ter, is the discovery of services based on their semantic descriptions. Current
standards already enable much of the discovery process, but they concentrate
largely on syntactic service descriptions. However, service requestors can be
assumed to know what kind of service they need (i.e. its semantics), but not
necessarily how the service is actually called (i.e. its syntax). Thus, a provider
must be able to formulate a semantic request and a discovery service must be
able to match a semantic service description to a corresponding request.

We will give only a brief overview of how our approach enables the semantic
discovery of services. The interested reader is referred to previous publications
on the discovery of services specified by graph transformation rules [23, 24].

In our approach, graph transformation rules serve as both description of
an offered service and formulation of a request. From a provider’s point of
view, the left-hand side of the rule specifies the pre-condition of the provider’s
service (i.e. the situation that must be present or the information that must
be available for the service to perform its task). The right-hand side of the rule
depicts the post-condition (i.e. the situation after the successful execution of
the web service). From a requester’s point of view, the left-hand side of the rule
represents the information the requester is willing to provide to the service,
and the right-hand side of the rule represents the situation the requester wants
to achieve by using the service.

Matching the rules of a provider with those of a requestor means deciding
whether a service provider fulfils the demands of a service requestor and vice
versa. Informally, a provider rule matches a requestor rule if (1) the requestor
is willing to deliver the information needed by the provider and in turn (2)
the provider guarantees to produce the results expected by the requestor.

We have formalized this informal matching concept using contravariant
subgraph relations between the pre- and post-conditions of the rules of the

190 M. Lohmann et al.

service provider and the requestor [24]. In short, the requester is willing to
deliver the information needed by the provider if the latter’s pre-conditions is a
subgraph of the requestor’s pre-conditions. The provider produces the results
expected by the requestor if the provider’s post-condition is a subgraph of the
requestor’s post-condition. That means, the requestor is allowed to offer more
information than needed by the provider and the provider can produce more
results than needed by the requestor.

A prototypical implementation of our approach is available [23] using
DAML+OIL [12] as semantic web language for representing specifications at
the implementation level. Matching is based on the RDQL (RDF Data Query
Language) [48] implementation of the semantic web tool Jena by HP [27].
RDQL is a query language for specifying graph patterns that are evaluated
over a graph to yield a set of matches. A visual editor for graph transformation
rules has been implemented, to support the creation of models [34, 16].

7.6 Web Service Monitoring

The loose coupling of services in a service-oriented application requires the
verification that a service satisfies its description not only at the time of
binding, but also that it continues to do so during its life time. We propose
to use a monitoring approach to continuously verify services at runtime.

Monitors are derived from models, with class diagrams describing the
structure and graph transformations describing the behaviour of services. In
the following, we describe a translation of models into JML constructs to
enable a model-driven monitoring [16, 25, 36].

7.6.1 Translation to JML

Class diagrams are used to generate static aspects of Java programs, like inter-
faces, classes, associations and signatures of operations. The transformation of
graph transformations into JML constructs makes the graph transformations
observable in the sense that they can be automatically evaluated for a given
state of a system, where the state is given by object configurations. In the
following, we will concentrate on the code generation for the service provider.
The code generation for the client side monitors works similar and will not
be discussed in detail in this book chapter. The requestor side monitors can
be obtained by restricting the generation of JML assertion to the ones that
include only references to parameters. Thus, any assertions with references to
any other state variables will not part of the client-side monitor.

Translation of UML Class Diagrams to Java

Given a UML class diagram, we assume that each class is translated to a
corresponding Java class. In the following, we will focus on the characteristics

7 An MD Approach to Discovery, Testing and Monitoring WS 191

of such a translation that we need for explaining our mapping from graph
transformation rules to JML.

All private or protected attributes of the UML class diagram are trans-
lated to private and protected Java class attributes with appropriate types
and constraints, respectively. According to the Java coding style guides [45],
we translate public attributes of UML classes to private Java class attributes
that are accessible via appropriate get- and set-methods. Standard types
may be slightly renamed according to the Java syntax. Attributes with multi-
plicity greater than one map to a reference attribute of some container type.
Furthermore, each operation specified in the class diagram is translated to a
method declaration in the corresponding Java class up to obvious syntactic
modifications according to the Java syntax.

Associations are translated by adding an attribute with the name of the
association to the respective classes. For handling, e.g., the association owns
of Fig. 7.2, a private variable owns of type Customer is added to the class
CustomerReservationList. Again, appropriate access methods are added to
the Java class. Because the UML association owns is bidirectional, we addi-
tionally add an attribute named revOwns to the class Customer. For asso-
ciations that have multiplicities with an upper bound bigger than one, we
use classes implementing the standard Java interface Collection. A collec-
tion represents a group of objects. In particular, we use the class TreeSet as
implementation of the sub-interface Set of Collection. A set differs from
a collection in that it contains no duplicate elements. For qualified asso-
ciations, we use the class HashMap implementing the standard Java inter-
face Map. An object of type Map represents a mapping of keys to values.
A map cannot contain duplicate keys; each key can map to at most one
value. In addition, we provide access methods for adding and removing el-
ements. Examples are the access methods addCustomerReservationList or
removeCustomerReservationList. To check the containment of an element,
we add operations like hasCustomerReservationList. In case of qualified
attributes, we access elements via keys by adding additional methods like
getCustomerReservationListByID. As described in [18], in order to guaran-
tee the consistency of the pairs of references that implement an association,
the respective access methods for reference attributes call each other.

Translation of Graph Transformation Rules to JML

For the transformation of graph transformation rules into JML, we assume a
translation of design class diagrams to Java as described above. Listing 7.1
shows how a method is annotated with a JML specification. The behavioural
information is specified in the Java comments. Due to their embedding into
Java comments, the annotations are ignored by a normal Java compiler. The
keywords public normal_behavior state that the specification is intended
for clients, and that if the pre-condition is satisfied, a call must return nor-
mally, without throwing an exception. JML pre-conditions follow the keyword

192 M. Lohmann et al.

1 pub l i c c l a s s A {
2
3 . . .
4
5 /∗@ pub l i c normal behav ior
6 @ r e q u i r e s JML−PRE;
7 @ ensure s JML−POST;
8 @∗/
9 pub l i c Tr m(T1 v1 , . . . Tn vn) { . . . }

10
11 . . .
12
13 }

Listing 7.1. Format for specifying pre- and post-conditions by JML

requires, and post-conditions follow the keyword ensures. Both JML-PRE
and JML-POST are Boolean expressions. The pre-condition states what con-
ditions must hold for the method arguments and other parts of the state of
the systems. If the pre-condition is true, then the method must terminate in
a state that satisfies the post-condition.

If a JML construct represents a visual contract, the JML’s pre- and post-
conditions must be interpretations of the graphical pre- and post-conditions.
When a JML pre-condition (post-condition) is evaluated, figuratively an oc-
currence of the pattern that is specified by the pre-condition of the corre-
sponding graph transformation rule has to be found in the current system
data state. To find the pattern, a JML pre-condition (post-condition) applies
a breadth-first search starting from the object this. The object this is the ob-
ject that is executing the behaviour. If a JML pre-condition (post-condition)
finds a correct pattern, it returns true, otherwise it returns false.

In Listing 7.2 the JML contract for verifying the visual contract of Fig. 7.3
is shown. Mainly, we test the pre- and post-conditions by nesting existence
or universal quantifications that are supported by JML. Additionally, the
negative application condition is nested into the pre-condition. The general
syntax of JML’s quantified expressions is given as (\forAll T x; r ; p)
and (\exists T x; r; p). The forAll expression is true if every object x
of type T that satisfies r also satisfies p. The exists expression is true if there
exists at least one object x of type T that satisfies r also satisfies p.

Next, we explain the JML-contract of Listing 7.2 in more detail. The pre-
condition including the negative application condition is tested in lines 2–11.
Lines 3–5 check if the active object (object this of type HotelBookingSystem)
knows an object of type Customer with the value cid (parameter of the op-
eration createReservationList) for the attribute customerID.

In lines 6–11 the negative application condition is checked. It is checked
whether the previously identified customer (c) references an object of type

7 An MD Approach to Discovery, Testing and Monitoring WS 193

1 /∗@ publ i c
2 normal behavior
3 @ r e qu i r e s
4 @ (\ e x i s t s Customer c ;
5 @ th i s . getCustomer . va lues () . conta ins (c) ;
6 @ c . getCustomerID () . equa l s (c id) &&
7 @ ! (
8 @ (\ e x i s t s CustomerReservationList crlNAC ;
9 @ c . owns . conta ins (crlNAC) ;

10 @ crlNAC . getCommit () == f a l s e
11 @)
12 @)
13 @) ;
14 @
15 @ ensur es (

16 @ (\ e x i s t s Customer c ;
17 @ th i s . getCustomer . va lues () . conta ins (c) ;
18 @ c . getCustomerID () . equa l s (c id) &&
19 @ (\ e x i s t s CustomerReservationList c r l ;
20 @ th i s . cus tomerReservat i onLi s t . va lues () . conta ins (c r l) ;
21 @ c r l . owns == c &&
22 @ c r l . getCommit () == f a l s e &&
23 @ \ r e s u l t == c r l
24 @)
25 @) ;
26 @∗/
27 pub l i c CustomerReservationList c r ea t eRe s e r va t i onL i s t
28 (Str ing c id) ;

Listing 7.2. JML contract of operation createReservationList of Fig. 7.3

CustomerReservationList with the value false for the attribute commit. If
such an object is found, then lines 6–11 return false (see ! in line 7).

The post-condition is tested in lines 14–23. The objects of the post-
condition are tested in the following order by the JML expression: c:Customer
and crl:CustomerReservationList. Therefore, two JML-exists expressions
are nested into each other. In line 22 whether the object crl is returned by
the operation is tested. The JML-keyword result is used to denote the value
returned by the method.

7.6.2 Runtime Behaviour

For enabling model-driven monitoring, we have bridged the gap between the
model and the implementation level by the definition of a transformation of
our visual contracts into JML assertions. On the implementation level we can
take advantage of existing JML tools: The JML compiler generates assertion
check methods from the JML pre- and post-conditions. The original, manual
implemented methods are replaced by automatically generated wrapper meth-
ods and the original methods become a private method with a new name. The

194 M. Lohmann et al.

execution of operation call

alt

Client Service

return

operation call

exception

check pre-condition

throw
pre-condition error

[else]

execute original,
manual implemented

operation

[pre-condition
holds]

check post-condition

[post-condition
holds]

throw
post-condition error

return normally

system
state sk

system
state sk+1

Fig. 7.7. Runtime behaviour of operation, model-driven monitoring approach

wrapper methods delegate client method calls to the original methods with
appropriate assertions checks.

This leads to a runtime behaviour of an operation call as shown in Fig. 7.7.
When a client calls an operation of a service, a pre-condition check method
evaluates a method’s pre-condition and throws a pre-condition violation ex-
ception if it does not hold. If the pre-condition holds, then the original opera-
tion is invoked. After the execution of the original operation, a post-condition
check method evaluates the post-condition and throws a post-condition vio-
lation exception if it does not hold.

If an exception is thrown during the pre-condition test, then the client
(routine’s caller), although obligated by the contract to satisfy a certain re-
quirement, does not satisfy it. This is a bug in the client itself; the routine is
not involved. A violation of the post-condition means that the manual imple-
mented operation was not able to fulfil its contract. In this case, the manual
implementation contains a bug, the caller is innocent.

If the contracts are not violated at runtime, then automatic monitoring is
transparent. The system state is only changed by the original operation. Our
transformation of the visual contracts into JML ensures that the assertion
checks generated by the JML compiler do not have any side effects on the
system state. That is, except for time and space measurements, a correct
implementation’s behaviour is unchanged.

With the generated assertions, we can monitor the correctness of an im-
plementation. If we want to take full advantage of our model-driven moni-
toring approach, a system needs to react adequately. As introduced before,
an exception is thrown if a pre- or a post-condition is violated at runtime.
The JML tools introduce the exception classes JMLPreconditionError and
JMLPostconditionError to catch these exceptions. Listing 7.3 shows how to
use these classes in an implementation. The operation at the beginning of the

7 An MD Approach to Discovery, Testing and Monitoring WS 195

1 try {
2 shop . cartAdd (item , ca r t I d) ;
3 } catch (JMLPreconditionError e) {
4 System . out . p r i n t l n (” V io l a t i on o f p recond i t i on ”
5 + e . getMessage ()) ;
6 } catch (JMLPostcondit ionError e) {
7 System . out . p r i n t l n (” V io l a t i on o f pos t cond i t i on ”
8 + e . getMessage ()) ;
9 } catch (Error e) {

10 System . out . p r i n t l n (” Un id en t i f i e d e r r o r ! ”
11 + e . getMessage () ;
12 }

Listing 7.3. Exceptions handling at development time

1 V io l a t i on o f pre−cond i t i on by method OnlineShop . cartAdd
2 regard ing s p e c i f i c a t i o n s at
3 F i l e ”de\upb\ dbis \amazonmini\OnlineShop . r e f i n e s −java ” ,
4 l i n e 34 , charac t e r 18 when
5 ’ cid ’ i s Cart 1
6 ’ item ’ i s de . upb . db is . amazonmini . Item@ecd7e
7 ’ th i s ’ i s de . upb . db is . amazonmini . OnlineShop@1d520c4

Listing 7.4. Example of an exception

try-catch block is an operation detailed by visual contracts on the design
level. A programmer on the client side can now use these exception handling
mechanisms to catch pre- and post-condition violations and implement an ad-
equate reaction. Listing 7.4 shows the example of a message if a pre-condition
is violated.

To summarise, with our model-driven monitoring approach we can build
reliable (correct and robust) software systems. Correctness is the ability of
a software system to behave according to its specification. Robustness is the
ability to react to cases not included in the specification. At runtime, the
generated JML assertions allow for the monitoring of the correctness. The
generated exceptions allow a programmer to make a software system robust
if it does not behave according to its specification.

7.7 Empirical Validation

The framework presented in this chapter has been used with several case
studies: test case generation has been applied to publicly available web services
and the monitoring technology has been used with web services provided by

196 M. Lohmann et al.

industrial partners. In the following, we summarize the results obtained so
far. Details about these experiences are available in [26, 35, 14].

The technique for automatic testing has been applied to both a selection of
web services available from www.xmethods.com and the Amazon web service.
Since the GT-based specifications of these web services are not available, we
manually specified the behaviour expected from these web services, and we
used automatic testing to check if web service implementations conform with
our expectations.

Testing showed that all web services, with the exception of the Kayak
Paddle Guide web service, behave according to our expectations. The Kayak
Paddle Guide web service returns the recommended length of a paddle given
the height of the person who will use it. Testing revealed a fault that consists
in suggesting a kayak of a maximum length, even if the input represents an
incorrect height for a person.

Test case generation applied to the Amazon Web Service also revealed an
incompatibility between its specification and the actual behavior of the web
service. However, the incompatibility was due to our misinterpretation of the
operation for adding items. Once the specification had been fixed, test cases
did not identify any incompatibility.

This experience showed that the technique for test case generation scales
well even with web services of non-trivial complexity, like the Amazon Web
Service.

In an industrial case study [35, 14], we successfully applied graph trans-
formations for specifying the interfaces of web services. In this case study,
we used the web services of a business process for ordering new insurance
contracts. We have been able to replace almost all previously created textual
descriptions of web services by descriptions with graph transformations to
allow for an efficient administration and monitoring of web services.

Moreover, we demonstrated the feasibility of the monitoring technology by
implementing an in-house version of the Amazon Web service and generating
its server-side monitors. The monitoring components worked fine and this
experience demonstrated the feasibility of the technology.

7.8 Related Work

The vision of service-oriented architectures is that a program in need of some
functionality (that it cannot provide itself) queries a central directory to ob-
tain a list of service descriptions of potential suppliers of this functionality.
The notion of service description is a central one in service-oriented archi-
tectures. A service description describes the functionality of a service. An
important fact to note at this point is that a service requestor must know the
syntax of a service to be able to call the service and additionally the service

7 An MD Approach to Discovery, Testing and Monitoring WS 197

requestor must know the semantics of a service to be able to call the service
correctly.

In this section, we will focus on the service descriptions, the usage of
models and model-driven testing approaches in service-oriented architectures.

7.8.1 Service Descriptions

An interface definition is a technical description of the public interfaces of
a web service. It specifies the format of the request and the response from
the web service. The Web Service Description Language (WSDL) [11] pro-
posed by the World Wide Web Consortium (W3C) is an XML (Extensible
Markup Language) format for describing interfaces offered by a web service
as a collection of operations. For each operation, its input and output pa-
rameters are described. The W3C refers to this kind of service description as
the “documentation of the mechanics of the message exchange” [5, 7]. While
these mechanics must be known to enable binding, a semantic description of
services based on WSDL is not possible. WSDL only encodes the syntax of
the web service invocation; it does not yield information on the service’s se-
mantics. Of course, human users might guess which service an operation (e.g.
orderBook(isbn:String)) provides, but such explicit operation names are
technically not required.

UDDI (Universal Description, Discovery, and Integration) [50], the proto-
col for publishing service descriptions, allows users to annotate their WSDL
file with information about the service in the form of explanatory text and
keywords. Using Keywords is one way of supplying semantics but not a re-
liable one, as there has to be a common agreement between requestors and
providers about the meaning of the different keywords. The current state of
web service technology is such that a developer solves these semantic problems
by reading additional textual service descriptions in natural language.

Trying to describe a service with keywords also ignores the operational
nature of services. When executing a service, one expects certain changes,
i.e., the real world is altered in some significant way (e.g. an order is created,
a payment is made or an appointment is fixed). Service descriptions should
reflect this functional nature by providing a semantic description in the form
of pre- and post-conditions (a style of description also known from contract-
based programming) [38]. For a service-oriented architecture, this kind of se-
mantic description can be found in [42, 49]. In both approaches the pre- and
post-conditions are expressed in terms of specialised ontologies. While [42]
shows the matching only for single input and output concepts, [49] combines
a number of pre-defined terms to express the pre- and post-conditions (e.g.
CardCharged-TicketBooked-ReadyforPickup). Using this style of descrip-
tion, it is possible to distinguish between rather similar services (e.g. booking
a ticket, which is sent to the customer vs booking a ticket, which has to be
picked up) without coining special phrases for each individual service in the
ontology.

198 M. Lohmann et al.

While this latter approach addresses human users, all previously men-
tioned solutions are directed towards machine-readable descriptions only. An
important characteristic of our approach is its usability by mainstream soft-
ware engineers.

7.8.2 Models

Models provide abstraction from the detailed problems of the implementa-
tion technologies and allow developers to focus on the conceptual tasks. In
particular, visual structures can often be understood more intuitively than
source code or formal textual descriptions. Thus, they are usually more effec-
tive for the communication between a service provider and a service requestor.
Software engineers have long recognised this feature of visual languages and
they make use of it. Especially, the diagrams of the industry standard Unified
Modelling Language (UML) [41] have become very successful and accompa-
nying software development tools are available. Further, models are an es-
tablished part of modern software development processes. They are becoming
more crucial with the advent of the Model Driven Architecture (MDA), since
the MDA promotes generating implementation artefacts automatically from
models, thus saving time and effort. Thus, a visual representation of pre- and
post-conditions is a promising amalgamation that can be easily integrated
into today’s model-driven software development processes.

Since version 1.1, the UML standard comprises the Object Constraint
Language (OCL) [40] as its formal annotation language for UML models. In
contrast to the commonly used graphical diagrammatic UML sub-languages,
OCL is a textual language. As a consequence, OCL expressions have a com-
pletely different notation for model elements than the diagrams of the UML.
The types of constraints that can be expressed in OCL include invariants on
classes and types as well as pre- and post-conditions of operations. However,
OCL is of limited use even in organisations which employ UML diagrams. The
limited readability of OCL and the difficulty of integrating a purely textual
language like OCL with diagrams are important reasons for this situation.

Other proposals provide a visual counterpart of OCL by exploiting visual-
isations with set-theoretic semantics. Kent and Howse define a visual formal-
ism for expressing constraints in object-oriented models. They first proposed
constraint diagrams [31] that are based on Venn diagrams and visualised the
set-theoretic semantics of OCL constraints. Later, Howse et al. advanced this
approach towards Spider Diagrams [28] to support reasoning about diagrams.
Visual OCL [8] is a graphical representation of OCL. Both proposals embed
textual logic expressions in the diagrams, which leads to a hybrid notation
of OCL constraints. In addition, the diagrams differ from the diagrams that
are commonly used in organizations employing UML in software development
and, thus, developers have to learn another visual language.

We rather prefer to represent practically relevant concepts of object con-
straints by using graph transformation rules. A graph transformation rule

7 An MD Approach to Discovery, Testing and Monitoring WS 199

allows for the reuse of UML’s object diagram notation. Thus, we have chosen
a notation that is familiar to software developers and it easily integrates into
today’s software development processes.

7.8.3 Testing

There are several techniques for testing applications that include web services,
see [10] for a survey on this topic. A few of these techniques investigated the
development of enhanced UDDI servers that validate the quality of web ser-
vices by executing test cases during the registration phase [6, 52]. In particular,
Tsai et al. investigated the use of UDDI servers that execute test scripts de-
veloped by web service providers [52], and Bertolino et al. investigated the use
of UDDI servers that generate test cases from Protocol State Machine dia-
grams [6]. The former technique focuses on validating a limited set of scenarios
identified by testers at design-time, while the latter technique focuses on val-
idating interaction protocols. These techniques follow a complemental point
of view with respect to the one presented in this chapter, which focuses on
validating if the effect of single invocations and invocation sequences modify
the conceptual state of an external web service according to its specification.
Moreover, existing techniques do not address the methodology aspect of the
development.

We believe that high-quality applications can be obtained with thorough
design and modelling of systems. UML is a well-known design language, and
some of its diagrams, e.g., sequence diagrams and state charts, can be used
for test case generation [43]. However, the generated test cases often fail to
capture the concrete complexity of the exchanged parameters that are often
restricted to few simple types, see for instance [22]. Moreover, due to the lack
of a precise semantics, UML diagrams often need to be extended with some
formalism that unambiguously defines the semantics of their elements.

Graph-transformations naturally integrate with UML diagrams, because
they can be easily derived from UML design artefacts [3], they allow reasoning
about behaviours of target applications and are suitable for test case gener-
ation. Moreover, graph transformations naturally address the complexity of
both objects that can be exchanged between components and state objects.

A few approaches for test case generation from graph transformations ex-
ist [2, 55]. We advance these approaches in three ways: (1) we extend and
apply domain-based testing and data-flow techniques to the case of graph
transformations, (2) we generate executable test oracles from graph transfor-
mation rules and (3) we automatically test and validate web services. Finally,
the idea of using registries which automatically test web services before reg-
istering seems to be original.

Automatic generation of assertions from models has been addressed in
other works. For instance, different approaches show how to translate OCL
constraints into assertions that are incorporated into Java code. Hamie [21]
proposes a mapping of UML design class diagrams that are annotated with

200 M. Lohmann et al.

OCL constraints to Java classes that are annotated with JML specifications.
OCL is used to precisely describe the desired effects of the operations in terms
of pre- and post-conditions. Invariants on the classes of a design model are also
expressed using OCL. The Dresden OCL Toolkit [29] supports parsing, type
checking and normalisation of OCL constraints. An application of the toolkit
is a Java code generator that translates OCL constraints into Java code frag-
ments that can compute the fulfilment of an OCL constraint. Even if different
approaches facilitate the translation of OCL into executable contracts, OCL
still lacks an easy-to-use representation.

7.9 Conclusions

Service-oriented applications are characterised by loosely coupled and dy-
namic interactions among participants. In particular, to obtain reliable and
high-quality systems, service discovery, binding and integration must be ex-
tensively validated. Several approaches address quality problems in isolation,
failing to provide a sound embedding of quality techniques into the life-cycle
of services.

In contrast, our framework addresses coherent and model-driven develop-
ment of high-quality service-based applications and its embedding into the
service life-cycle. The resulting service-oriented architecture

• allows participation only of high-quality web services, i.e., web services
that passed automatic testing;

• continuously monitors the behaviour of web services and instantaneously
signals any violation of specifications;

• supports discovery based on behavioural descriptions rather than syntac-
tical descriptions of interfaces;

• provides client-side monitoring facilities, which support clients in discov-
ering integration problems and re-selecting new services if current services
do not behave correctly.

We demonstrated the feasibility of our approach by applying the technolo-
gies that are part of the framework for high-quality service-based applications
to several real web services.

References

1. Apache. Axis. http://ws.apache.org/axis/.
2. P. Baldan, B. König, and I. Stürmer. Generating test cases for code generators

by unfolding graph transformation systems. In proceedings of the 2nd Interna-
tional Conference on Graph Transformation, Rome, Italy, 2004.

3. L. Baresi and R. Heckel. Tutorial introduction to graph transformation: a soft-
ware engineering perspective. In proceedings of the International Conference on
Graph Transformation, volume 1 of LNCS. Springer, 2002.

7 An MD Approach to Discovery, Testing and Monitoring WS 201

4. M. Barnett, K. R. M. Leino, and W. Schulte. The spec# programming system:
An overview. In CASSIS 2004, volume 3362 of LNCS. Springer-Verlag, 2004.

5. B. Benatallah, M.-S. Hacid, C. Rey, and F. Toumani. Semantic reasoning for web
services discovery. In proceedings of the WWW 2003 Workshop on E-Services
and the Semantic Web (ESSW’ 03), 2003.

6. A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans. Architecting Systems
with Trustworthy Components, chapter Audition of Web Services for Testing
Conformance to Open Specified Protocols. Number 3938 in Lectures Notes in
Computer Science Series. Springer, 2006.

7. D. Booth, H. Haas, F. McCabe, E. Newcomer, C. Michael, C. Ferris, and
D. Orchard. Web services architecture - W3C working group note 11 febru-
ary 2004. Technical report, W3C, 2004.

8. P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A visualization of
OCL using collaborations. In M. Gogolla and C. Kobryn, editors, proceedings of
the 4th International Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, volume 2185 of Lecture Notes In Computer
Science, pages 257–271. Springer-Verlag, 2001.

9. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer (STTT), February 2005.

10. G. Canfora and M. D. Penta. Testing services and service-centric systems:
Challenges and opportunities. IEEE IT Pro, pages 10–17, March/April 2006.

11. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web services de-
scription language (WSDL) version 2.0 part 1: Core language - W3C working
draft 10 may 2005, May 2005.

12. D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. DAML+OIL (march 2001) reference description -
W3C note 18 december 2001, March 2001.

13. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Chap-
ter 3: Algebraic approaches to graph transformation - part I: Basic concepts
and double pushout approach. In G. Rozenberg, editor, Handbook of Graph
Grammars of Computing by Graph Transformation. World Scientific, 1997.

14. G. Engels, B. Güldali, O. Juwig, M. Lohmann, and J.-P. Richter. Industrielle
Fallstudie: Einsatz visueller Kontrakte in serviceorientierten Architekturen. In
B. Biel, M. Book, and V. Gruhn, editors, Software Enginneering 2006, Fachta-
gung des GI Fachbereichs Softwaretechnik, volume 79 of Lecture Notes in Infor-
matics, pages 111–122. Köllen Druck+Verlag GmbH, 2006.

15. G. Engels, R. Heckel, G. Taentzer, and H. Ehrig. A view-oriented approach
to system modelling based on graph transformation. In proceedings of the 6th
European Conference held jointly with the International Symposium on Founda-
tions of Software Engineering, pages 327–343. Springer-Verlag, 1997.

16. G. Engels, M. Lohmann, S. Sauer, and R. Heckel. Model-driven monitoring:
An application of graph transformation for design by contract. In proceedings
of the Third International Conference on Graph Transformations (ICGT 2006),
volume 4178 of Lecture Notes in Computer Science, pages 336–350. Springer,
2006.

17. J. Fan and S. Kambhampati. A snapshot of public web services. SIGMOD
Record, 34(1):24–32, March 2005.

202 M. Lohmann et al.

18. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new
graph rewrite language based on the Unified Modeling Language. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Selected papers from
the 6th International Workshop on Theory and Application of Graph Transfor-
mations (TAGT), volume 1764 of Lecture Notes In Computer Science, pages
296–309. Springer Verlag, 1998.

19. P. Frankl and E. Weyuker. An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering, 14(10):1483–1498, 1988.

20. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative applica-
tion conditions. Fundamenta Informaticae, 26(3,4):287–313, 1996.

21. A. Hamie. Translating the object constraint language into the java modeling
language. In proceedings of the 2004 ACM symposium on Applied computing,
pages 1531–1535. ACM Press, 2004.

22. J. Hartmann, C. Imoberdorf, and M. Meisinger. Uml-based integration testing.
In proceedings of the 2000 international symposium on Software testing and
analysis (ISSTA), pages 60–70. ACM Press, 2000.

23. J. H. Hausmann, R. Heckel, and M. Lohmann. Model-based discovery of
Web Services. In proceedings of the International Conference on Web Services
(ICWS), 2004.

24. J. H. Hausmann, R. Heckel, and M. Lohmann. Model-based development of
web services descriptions enabling a precise matching concept. International
Journal of Web Services Research, 2(2):67–84, April-June 2005.

25. R. Heckel and M. Lohmann. Model-driven development of reactive informations
systems: From graph transformation rules to JML contracts. International Jour-
nal on Software Tools for Technology Transfer (STTT), 2006.

26. R. Heckel and L. Mariani. Automatic conformance testing of web services. In
proceedings of the 8th International Conference on Fundamental Approaches to
Software Engineering (FASE). Springer-Verlag, 2005.

27. Hewlett-Packard Development Company. Jena - a semantic web framework for
Java. http://jena.sourceforge.net/.

28. J. Howse, F. Molina, J. Tayloy, S. Kent, and J. Gil. Spider diagrams: A di-
agrammatic reasoning system. Journal of Visual Languages and Computing,
12(3):299–324, June 2001.

29. H. Hussmann, B. Demuth, and F. Finger. Modular architecture for a toolset
supporting OCL. Science of Computer Programming, 44:51–69, 2002.

30. B. Jeng and E. Weyuker. A simplified domain-testing strategy. ACM Transac-
tions on Software Engineering and Methodology, 3:254–270, 1994.

31. S. Kent and J. Howse. Mixing visual and textual constraint languages. In
R. France and B. Rumpe, editors, proceedings of International Conference on
The Unified Modeling Language (UML’99), volume 1723 of Lecture Notes in
Computer Science, pages 384–398. Springer, 1999.

32. A. Kühnel. Visual C# 2005. Galileo Computing, 2006.
33. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behav-

ioral interface specification language for Java. Technical Report 98-06-rev27,
Department of Computer Science, Iowa State University, February 2005.

34. M. Lohmann, G. Engels, and S. Sauer. Model-driven monitoring: Generat-
ing assertions from visual contracts. In proceedings of the 21st IEEE Interna-
tional Conference on Automated Software Engineering (ASE’06), pages 355–356,
September 2006.

7 An MD Approach to Discovery, Testing and Monitoring WS 203

35. M. Lohmann, J.-P. Richter, G. Engels, B. Güldali, O. Juwig, and S. Sauer. Ab-
schlussbericht: Semantische Beschreibung von Enterprise Services - Eine indus-
trielle Fallstudie. Technical Report 1, Software Quality Lab (s-lab), Unversity
of Paderborn, May 2006.

36. M. Lohmann, S. Sauer, and G. Engels. Executable visual contracts. In M. Erwig
and A. Schürr, editors, proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05), pages 63–70, 2005.

37. B. Meyer. Applying “Design by Contract”. IEEE Computer, 25(10):40–51, 1992.
38. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood

Cliffs, second edition, 1997.
39. N. Mitra. SOAP version 1.2 part 0: Primer - W3C recommendation 24 june

2003, Juni 2003.
40. OMG (Object Management Group). UML 2.0 OCL final adopted specification,

2003.
41. OMG (Object Management Group). UML 2.0 superstructure specification -

revised final adopted specification, 2004.
42. M. Paolucci, T. Kawmura, T. R. Payne, and K. Sycara. Semantic matching of

web services capabilities. In I. Horrocks and J. A. Hendler, editors, proceedings of
the First International Semantic Web Conference on the Semantic Web, volume
Lecture Notes In Computer Science; Vol. 2342, pages 333–347, Sardinia, Italy,
2002. Springer-Verlag.

43. M. Pezzè and M. Young. Software Test and Analysis: Process, Principles and
Techniques. John Wiley and Sons, 2007.

44. M. Raacke. Generierung von spec#-code aus visuellen kontrakten, October
2006. Bachelor Thesis at the University of Paderborn.

45. A. Reddy. Java coding style guide. Technical report, 2000.
46. A. Rensink. The GROOVE simulator: A tool for state space generation. In

2nd Intl. Workshop on Applications of Graph Transformations with Industrial
Relevance, volume 3062 of LNCS, pages 479–485. Springer, 2004.

47. A. Schürr, A. J. Winter, and A. Zündorf. The PROGRES approach: language
and environment. In Handbook of graph grammars and computing by graph
transformation: vol.2: applications, languages, and tools, pages 487–550. World
Scientific, 1999.

48. A. Seaborne. RDQL - a query language for RDF - W3C member submission 9
january 2004. Technical report, W3C, 2004.

49. K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to
web services standards. In L.-J. Zhang, editor, proceedings of the International
Conference on Web Services, ICWS ’03, pages 395–401, Las Vegas, Nevada,
USA, 2003. CSREA Press.

50. O. U. S. TC. UDDI version 3.0.2. OASIS standard, Organization for the Ad-
vancement of Structured Information Standards, 2004.

51. Technical University Berlin. The attributed graph grammar system (AGG).
http://tfs.cs.tu-berlin.de/agg/.

52. W. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi, and B. Xiao. Verification of web ser-
vices using an enhanced UDDI server. In proceedings of the IEEE International
Workshop on Object-oriented Real-time Dependable systems, 2003.

53. E. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Trans-
actions on Software Engineering, 17:703–711, 1991.

54. L. White and E. Cohen. A domain strategy for computer program testing. IEEE
Transactions on Software Engineering, 6:247–257, 1980.

204 M. Lohmann et al.

55. J. Winkelmann, G. Taentzer, K. Ehrig, and J. Küster. Translation of restricted
OCL constraints into graph constraints for generating meta model instances by
graph grammars. In proceedings of the International Workshop on the Graph
Transformation and Visual Modeling Techniques, Electronic Notes in Theoreti-
cal Computer Science, 2006.

8

Web Services Regression Testing

Massimiliano Di Penta, Marcello Bruno, Gianpiero Esposito,
Valentina Mazza and Gerardo Canfora

RCOST — Research Centre on Software Technology — University of Sannio
Palazzo ex Poste, Via Traiano 82100 Benevento, Italy
{dipenta, marcello.bruno, gianpiero.esposito}@unisannio.it,
{valentina.mazza, canfora}@unisannio.it

Abstract. Service-oriented Architectures (SOA) introduce a major shift of per-
spective in software engineering: in contrast to components, services are used in-
stead of being physically integrated. This leaves the user with no control over
changes that can happen in the service itself. When the service evolves, the
user may not be aware of the changes, and this can entail unexpected system
failures.

When a system integrator discovers a service and starts to use it, she/he
may need to periodically re-test it to build confidence that (i) the service de-
livers over the time the desired functionality and (ii) at the same time it is
able to meet Quality of Service requirements. Test cases can be used as a form
of contract between a provider and the system integrators. This chapter de-
scribes an approach and a tool to allow users to run a test suite against a
service to discover if functional and non-functional expectations are maintained
over time.

8.1 Introduction

A challenging issue for the verification and validation of service-oriented sys-
tems is the lack of control a system integrator has over the services she/he
is using. System integrators select services to be integrated in their systems
based on a mixture of functional and non-functional requirements. An un-
derlying assumption is that the service will maintain its functional and non-
functional characteristics while being used. However, behind any service there
is a software system that undergoes maintenance and evolution activities.
These can be due to the addition of new features, the evolution of the exist-
ing ones, or corrective maintenance to cope with problems that arise during
the service usage.

Whilst the service evolution strategy is out of the system integrators con-
trol, any changes to a service may have an impact on all the systems using it.
This is a relevant difference with respect to component-based development:

206 M. Di Penta et al.

when a component evolves, this does not affect systems that use previous
versions of the component itself. Component-based systems physically inte-
grate a copy of the component and, despite the improvements or bug fixing
performed in the new component release, systems can continue to use an old
version.

Several types of changes may entail that a service does not satisfy any-
more the requirements of an integrator. When the evolution activity does not
require modifying the service interface and/or specification—e.g., because the
provider believes this is a minor update—the change remains hidden from
whoever is using the service. In other words, the system continues to use the
service without being aware that its behavior, in correspondence with some
inputs, may be different from the one exhibited previously. Evolution cannot
only alter the service functional behavior, but can also affect its Quality of
Service (QoS). While the current version of a service meets integrator non-
functional requirements, future versions may not. Finally, when the service is,
on its own, a composition of other services, the scenario may be even more
complex. As a matter of fact, changes are propagated between different sys-
tem integrators, and it happens that the distance between the change and the
actor affected by the change makes unlikely that, even if the change is adver-
tised, the integrator will be able to get it and react accordingly. To summarize,
functional or non-functional changes can violate the assumptions the integra-
tor made when she/he discovered the service and negotiated the Service Level
Agreement (SLA).

This chapter describes a regression testing strategy that can be used to
test whether or not, during its lifetime, a service is compliant to the behav-
ior specified by test cases and QoS assertions the integrator downloaded when
she/he discovered the service and negotiated the SLA. Similarly to what made
for components [1, 2], test cases are published together with the service inter-
face as a part of its specification. In addition, they can be complemented by
further test cases produced by the system integrator, as well as by monitoring
data, to form a sort of executable contract, which may or may not be part of
the legal contract. During the service lifetime, the integrator can run the test
suite against the (possibly new versions of the) service. If some test cases or
QoS assertions fail, the contract has been violated.

A relevant issue, that makes service testing different from component test-
ing, is the cost of such a test. Test case execution requires service invocations,
that are supposed to have a cost, and a massive testing can consume provider
resources or even cause denial of service. Both provider and integrator, there-
fore, may want to limit actual service execution during testing. To this aim,
this chapter explains how monitoring data can be used to reduce the number
of service invocations when executing a test suite.

The proposed service regression testing approach is supported by a toolkit,
described in the chapter. The toolkit comprises a Testing Facet Genera-
tor, that analyzes unit test suites (e.g., JUnit test suites) produced by the
service developer/provider and generates XML-encoded test suites and QoS

8 Web Services Regression 207

assertions that can be executed by service consumers, who do not have ac-
cess to the service internal implementation but only to the service interface.
Such test suites and QoS assertions will be one of the facets composing the
whole service specification.1 Another component of the toolkit, the Test Suite
Runner, permits the downloading and the execution of the test suites against
the service. Finally, the tool manages test logs and provides a capture/replay
feature.

The chapter is organized as follows. Section 8.2 motivates the approach,
describing the different service evolution scenarios that can result in a need for
re-testing the service, discussing the different stakeholders that can be involved
in service regression testing, and finally describing the running example used
to describe the approach. Section 8.3 presents the regression testing approach
through its different phases and the related tool support, also discussing issues
and open problems. Section 8.4 presents case studies carried out to evaluate
different aspects of the approach. After a discussion of the related literature
in Sect. 8.5, Sect. 8.6 concludes the chapter.

8.2 Motivations and Testing Scenarios

This section motivates the need for service regression testing. It firstly de-
scribes how services can evolve and to what extent this can have an impact on
systems using them. Then, it discusses the different perspectives from which a
service can be tested and what makes service regression testing different from
component regression testing. Finally, it presents some motivating examples
that will be used to explain the testing approach.

8.2.1 Evolution Scenarios in SOA

Let us imagine that a system integrator has discovered the release rn of a
service and, after having negotiated the SLA with the service provider, starts
to use it. At release rn+k the service has evolved, and different scenarios may
arise:

• Change in the service functional behavior: At release rn+k the service may
behave differently from release rn. If the integrator negotiated the SLA
at rn, the new, unexpected behavior may cause failures in the system.
This happens when the service, at release rn+k, replies to a given set of
inputs differently from release rn, or it handles exceptions differently. For
example, release rn+k of a search hotel service may return an unbounded
list of available hotels, while rn only returned a single results.

1 To enrich the service specification available within the WSDL interface, one could
hyperlink other files, e.g., specifying the semantics, the QoS, or containing test
cases.

208 M. Di Penta et al.

• Change in the service non-functional behavior: This can be due to changes
in the service implementation—which may or may not alter the service
functional behavior—as well as to changes in the provider hardware, in
the network configuration, or in any other part of the environment where
the service is executed. For example, the throughput may decrease or the
response time may increase, causing violations of the contract stipulated
between the integrator and the provider.

• Change in the service composition/bindings: A service may, on its own,
be composed of other services. It may happen that the composite service
owner changes some bindings. For example, let us suppose that an image
processing service (S1) uses another service (S2) for filtering the image. In
particular, S2 is able to ensure a given image resolution. It can happen that,
since S2 is not available anymore, S1 re-binds its request to an equivalent
image filtering service, S′

2 which, however, is not able to ensure the same
resolution anymore. As a result, S1 users will obtain an image having a
lower resolution without being aware of what actually happened behind
S1 interface.

The aforementioned scenarios may or may not be reflected in changes vis-
ible in the service interface/specification. If the interface does not change, the
provider may decide to update the service without advertising the changes. In
other cases, the interface update does not necessarily reflect changes made to
the implementation. For example, the service interface indicates that a new
release of the service has been deployed at a given date. However, since noth-
ing has changed in the service specification nor in any operation input/output
parameters, the integrators will continue to invoke the service without verify-
ing whether the new release is still compliant with the assumption underlying
their system. In summary, even if providers are encouraged to update service
specifications/interfaces when the service evolves, there is no guarantee they
will actually do it properly whenever needed.

This urges the need to provide system integrators with a way to test
the service, either periodically or when they are aware that something has
changed. This form of regression testing can be used to ensure that the func-
tional and non-functional behavior is still compliant with the one observed
when negotiating the SLA.

8.2.2 Service Testing Perspectives

Whilst the introduction motivates the need for service regression testing from
a system integrator’s point of view, there are different stakeholder interested
to make sure that a service, during its lifetime, preserves its original behavior.
Similarly to what Harrold et al. [3] defined for components, it is possible to
foresee different service testing perspectives [4]:

1. Provider/developer perspective: The service developer would periodi-
cally check whether the service, after its maintenance/evolution, is still

8 Web Services Regression 209

compliant to the contract stipulated with the customers. To avoid affecting
service performance, testing can be performed off-line, possibly on a sep-
arate instance (i.e., not the one deployed) of the service and on a separate
machine. The cost of testing is therefore limited (no need for paying ser-
vice invocation, no waste of resources). On the other hand, developer’s
inputs may not be representative of system integrator scenarios, and the
non-functional testing does not necessarily reflect the environment where
the service will be used.

2. System integrator’s perspective: On his/her side, the system integrator
may periodically want to re-test the service to ensure that its evolu-
tion, or even changes in the underlying software/hardware, does not al-
ter the functional and non-functional behavior so to violate the assump-
tions she/he made when starting to use the service. Testing from this
perspective is more realistic, since it better reflects integrator’s scenarios
and software/hardware configuration. On the other hand, as discussed in
Sect. 8.3.5, testing from this side is a cost for the integrator and a waste
of resources for the provider, raising the need for countermeasures.

3. Third-party/certifier perspective: A certifier has the responsibility of test-
ing the service on behalf of another stakeholder, which can be either a ser-
vice provider or one or more system integrators. The provider can rely on
a certifier as a mean to guarantee the service reliability and performance
to potential service users (e.g., integrators). Testing from this perspective
has weaknesses for both the provider and the integrator perspective: the
testing scenario and the configuration under which the service is tested
may not fully reflect the environment where the service will actually work.
As for system integrators, testing from this perspective has a cost and con-
sumes provider’s resources, although having a single certifier is certainly
an improvement over having each integrator testing the service.

4. User perspective: As described by Canfora and Di Penta [4], the user might
also be interested to have a mechanism which periodically re-tests the ser-
vice his/her application is using. Let us imagine the onboard computer
software installed in John’s car. Such application communicates with some
services (see Sect. 8.2.4) that, over the time, might vary their behavior,
causing problems to the onboard computer software. For this reason, an
automatic (the user is not a tester and would be unaware of such a de-
tail) regression testing feature from the user side is highly desirable. The
limitations and weaknesses are the same as for a service integrator.

8.2.3 What Makes Services Different from Components?

The above section explained the need for regression testing in service-oriented
systems, while highlighting several commonalities with component-based soft-
ware. In the authors’ experience, the main differences with components, that
need to properly adapt the approach, are, among others

210 M. Di Penta et al.

• the lack of control the integrator/user has on the service evolution, and on
the way the service, on its own, provides a piece of functionality by using
other, dynamically bound, services;

• the testing cost, both for the tester and for the service provider;
• the key role played by the QoS: even if QoS is also relevant for component-

based systems, in service-oriented computing it is used to determine bind-
ing choices and to assess whether a service provider is able to meet what
stipulated with the service consumer in the SLA. Furthermore, the need
for QoS testing is also due to the highly distributed nature of service-
oriented systems that may cause huge variations in QoS values or even
service unavailability.

8.2.4 Regression Testing Scenarios

To better explain the approach, let us consider the scenario described in the
Chap. 1. When John searches for a restaurant in a given location, this search
is made through a complex system that takes as inputs

1. the current latitude and longitude;
2. the maximum distance allowed;
3. the arrival date and hour;
4. the number of seats requested.

The system, among other services—e.g., services for computing the routing
distance between two locations—accesses a third party service, RestaurantSer-
vice, that provides five operations:

1. getRestaurantID, which, given the restaurant’s name, the city name and
the address returns the related ID composed of four decimal digits.

2. getRestaurantInfo, which returns an information record of the restaurant
(i.e., address, location expressed in GPS coordinates, etc.).

3. checkRestaurantAvailability, which, given a list of restaurant IDs, the date
and the number of seats requested, returns an array of availabilities.

4. restaurantReservation, which reserves a specified number of seats in the
restaurant for a given date and hour.

5. getRestaurantList, which, given a city name, returns a list of up to three
restaurants from that city.

Let us imagine now that the service undergoes a series of maintenance
activities. Some of them have been inspired from maintenance/evolution ac-
tivity actually carried out over the Amazon Web service and documented in
its release notes2:

2 http://developer.amazonwebservices.com/ecs/resources

8 Web Services Regression 211

1. The comma-separated list of restaurant IDs as parameter for the checkRe-
staurantAvailability operation is no longer supported. This means that,
similar to the Amazon service, whilst the interface does not change, only
a single ID is accepted.

2. The list returned by getRestaurantList is now unbounded, while in the
previous release it contained at most three restaurantInfo objects.

3. The restaurant ID format changes, due to the increasing number of restau-
rants handled. The new ID is composed of five digits, rather than the
original four digits.

8.3 The Approach

The previous section identified the need for a system integrator, as well as
for other stakeholders, to perform service testing with the aim of ensuring
that the service meets his/her functional and non-functional expectations. To
this aim, it would be useful that the providers make available to the system
integrator test cases she/he can use to regression test the service during its
lifetime.

Since test suites are, very often, created during early stages of the software
system development, it would be useful to reuse them to permit the testing
of services that expose pieces of functionality of the system itself. However,
since such test suites access system’s internal resources not visible from out-
side, they must be adequately transformed so that they can be executed from
the perspective of a service integrator, which has access only to the service
interface.

8.3.1 Service regression testing process

Figure 8.1 describes a possible scenario for the test case publication and re-
gression testing process. The scenario involves both a service provider (Jim)
and two system integrators (Alice and Jane), and explains the capabilities of
the proposed regression testing approach.

1. At time t0 Jim deploys the RestaurantService service together with a test
suite.

2. At time t1 Alice discovers the service, negotiates the SLA and down-
loads the test suite; she can complement the test suite with her own test
cases, perform a pre-execution of the test suite, and measure the service
non-functional behavior. A SLA is agreed with the provider, and Alice
stores both the test suite and the QoS assertions generated during the
pre-execution.

3. Then, Alice regularly uses the service, until,
4. after a while, Jim updates the service. In the new version the ID return

value for getRestaurantID is composed of five digits instead of four. Also,

212 M. Di Penta et al.

Jim
(Service Provider)

Alice
(Service Integrator)

Jane
(Service Integrator)

Application Server

Monitoring
Regression
Testing Tool

Test
cases
Test
cases

Test
log

deploys service
and test cases

Service
test

cases
updates service

1:

acquires service
and downloads
test cases

2:

4:

uses
service5a:

monitored
service I/O 5b:

triggers regression testing6a:

tests
service

6b:

uses monitoring data
to reduce testing cost6b:

outputs testing results6c:

Non functional
Assertions

starts pre-execution
of test cases

3:

QoS
assertions3b:

pre-execution
of test cases

3a:

Fig. 8.1. Test generation and execution process

because of some changes in its configuration, the modified service is not
able to answer in less than two seconds.

5. Jane regularly uses the new service with no problems. In fact, she uses a
field that is large enough for visualizing a restaurant ID composed of five
digits. Meanwhile, Jane’s interactions are monitored.

6. Since the service has changed, Alice decides to test it: data monitored
from Jane’s executions can be used to reduce the number of service in-
vocations during testing. A test log containing successes and failures for
both functional test cases and QoS assertions is reported. For example,
test cases expecting a restaurant ID composed of four digits will fail. The
non-functional assertions that expect a response time less or equal than
two seconds for getRestaurantID will also fail.

Test case publication and regression testing is supported by a toolkit,
developed in Java, comprising two different tools:

1. The Testing Facet Generator that generates service test cases from test
suites developed for the software system implementing the features ex-
posed by the service. In the current implementation, the tool accepts
JUnit3 test suites, although it can be extended to accept unit test suites

3 http://www.junit.org/

8 Web Services Regression 213

developed using different frameworks available for other programming lan-
guages (such as SUnit for Smalltalk or PHPUnit for PHP). JUnit supports
the development of a unit test suite as a Java class, containing a series
of methods that constitute the test cases. Each test case, in its turn,
is composed of a sequence of assertions checking properties of the class
under test.

2. The Test Suite Runner that permits the service consumer to
• download the testing facet hyperlinked to the service;
• generate QoS assertions by pre-executing the test suite;
• execute the test suite and to produce the test log;
• support capture/replay operations.

The toolkit relies on JavaCC4 to perform Java source code analysis and
transformation, on the Axis Web services framework5 and on the Xerces6

XML parser. The toolkit is freely available7 and distributed under a BSD
license.

The next subsections describe the different phases of the test case gener-
ation and execution process.

8.3.2 Testing facet generator

As shown in Fig. 8.2, the Testing Facet Generator produces a XML-encoded
testing facet organized in two levels.

1. The first level contains
• A Facet Description, providing general information such as the facet

owner and creation date.
• A Test Specification Data, containing information such as the type

of assertions contained in the test suites (functional and/or non-
functional), the number of test cases composing each test suite and the
perspective from which QoS assertions were generated (i.e., provider
or integrator).

• Links to XML files containing the test suite itself and QoS assertions.
• Some Policies, i.e., constraints that limit the number of operations that

can be invoked during a test in a given period of time. For example, the
facet in Fig. 8.2 defines the limitation of three operation invocations
per day.

2. The second level comprises files containing XML-encoded test suites and
QoS-assertions (the file testRestaurant.xml in our example).

4 https://javacc.dev.java.net/
5 http://xml.apache.org/axis/
6 http://xml.apache.org/xerces2-j/
7 http://www.rcost.unisannio.it/mdipenta/Testing.zip

214 M. Di Penta et al.

Fig. 8.2. Structure of testing facet

Generating Service Test Cases from JUnit Test Suites

As mentioned before, the service test cases are obtained by analyzing and
transforming test suites — implemented e.g., using JUnit — that the devel-
oper has produced for the system implementing the service’s features. These
test suites are very often available, and many software development method-
ologies, e.g., test-driven development, strongly encourage developers to pro-
duce them, even before implementing the system itself.

However, although these test suites are available, they cannot be directly
used by a service integrator to test the service. This because assertions con-
tained in the JUnit test cases can involve expressions composed of variables
containing references to local objects and, in general, access to resources that
are only visible outside the service interface. Instead, a test suite to be exe-
cuted from a system integrator can only interact with the service operations.
This requires that any expression part of a JUnit assertion, except invoca-
tions to service operations and Java static methods (e.g., methods of the Math
class), needs to be evaluated and translated into a literal, by executing an in-
strumented version of the JUnit test class from the server-side. The obtained
dynamic information is then complemented with test suite static analysis to
generate service test cases. Such test cases, as any other piece of information
describing the service, are XML-encoded and, to be executed, only require
access to service operation, and not to any service internal resource.

The process of generating service test cases from JUnit test suites can
be completely automatic, or user-guided. In the first case, the JUnit test
suite is translated so that operation invocations are left symbolic, whilst other
expressions are evaluated and translated into literals. In the second case, the

8 Web Services Regression 215

tool user can guide the transformation. The tool shows to the user the list
of test cases contained in the test suite (Choose test cases window in the
screenshot of Fig. 8.3). The user can select the JUnit test cases that should
be considered to generate service test cases. For the selected test cases, the
user can select (from the Select analysis window) two different options:

1. Default analysis: The tool automatically translates any expression, except
service operation invocations, in literals and generates the service test
suite;

Fig. 8.3. Facet generation tool

216 M. Di Penta et al.

2. Selective analysis: The user can select which method invocations, corre-
sponding to service operations, should be evaluated and translated into
literals, and which should be left symbolic in the testing facet.

Figure 8.4 shows an example of how a JUnit test case is mapped onto a
XML-encoded service test suite. The first assertion checks whether the oper-
ation getRestaurantID returns a valid ID, i.e., a sequence of four digits. The
upper part of the figure shows the JUnit test case, while the lower part shows
how the two assertions are mapped onto the service test suite. Note that each
functional assertion is followed by a QoS-assertion, which is checked against
the QoS values monitored when executing the assertion. As shown, some as-
sertion parameters appear as literals. For the first assertion, they were already
literal in the JUnit test suite. However, it can happen that a literal value con-
tained in the service test suite results from the evaluation of an expression
contained in the JUnit test case. The service test suite also contains some sym-
bolic parameters. These are Java static methods, e.g., Pattern.matches, that
can be invoked from the regression testing tool without the need for accessing
the service implementation and service operations, e.g., getRestaurantID. The
second assertion checks whether the restaurantReservation returns an error
output when someone attempts to book a table in the past.

Generating QoS Assertions

Assertions over QoS attributes are used to check whether the service, during
its evolution, is able to preserve its non-functional behavior, in compliance
with SLA stipulated by service consumers. These assertions are automatically
generated by executing test cases against the deployed service, and measuring
the QoS attributes by means of a monitor. Test cases are executed against the
service for a large, specified number of times and QoS values (e.g., response
time) measured. Given the QoS value distribution, a constraint can be fixed as

ResponseT ime < pi

where pi is the ith percentile of the response time distribution as measured
when the service was discovered and the SLA negotiated. Both the facet gener-
ation tool and the service regression testing tool have a feature for generating
the QoS assertions, after having specified how the assertion shall be gener-
ated, i.e., how many executions are necessary to compute the average QoS
value and which would be the percentile to be used to define the boundary.

QoS assertions are XML-encoded within the test suite using a format
similar to those defined by the WSLA schema [5]. An example of QoS assertion
for the getRestaurantID operation is shown in Fig. 8.4. The example indicates
that, when executing the getRestaurantID operation (part of the functional
assertion), the response time must be less than 3949 ms, which is the 90
percentile of the response time distribution estimated when generating the

8 Web Services Regression 217

<FunctionalAssert type="assertTrue">
<param name="expected" type="boolean" evaluation ="literal">

<boolean>true</boolean>
</param>
<param name=“actual" type="Pattern.matches" evaluation ="symbolic" invocationtype ="java static">

<param name="param0" type="java.lang.String">
<string>[0-9]{4}</string>

</param>
<param name="param1" type="r.getRestaurantID" evaluation ="symbolic"
invocationtype="operation">

<param name="param11" type="java.lang.String">
<string>Il Mare</string>

</param>
<param name="param12" type="java.lang.String">

<string>Naples</string>
</param>
<param name="param13" type="java.lang.String">

<string>Via Posillipo</string>
</param>

</param>
</param>

</FunctionalAssert>

<QoSExpression>
<AND><Expression>

<Predicate type="lessthan" percentile=“90" >
<SLAParameter>responsetime</SLAParameter><Value>3949</Value>

</Predicate>
</Expression>
<Expression>

<Predicate type="greaterthan" percentile=“10" >
<SLAParameter>throughput</SLAParameter><Value>0.25322866</Value>

</Predicate>
</Expression></AND>

</QoSExpression>

<FunctionalAssert type="assertEquals">
<param name="expected" type=“java.lang.String“ evaluation ="literal“>

<string>ERROR</string>
</param>
<param name=“actual" type="r.restaurantReservation" evaluation ="symbolic"
invocationtype="operation">

<param name="param0" type="java.lang.String"><string>2006-08-28</string></param>
<param name="param1" type="java.lang.String"><string>21:00</string></param>
<param name="param2" type=“int"><int>12</int></param>
<param name="param3" type="java.lang.String"><string>7134</string></param>

</param>
</FunctionalAssert>

<QoSExpression>
<AND><Expression>

<Predicate type="lessthan" percentile=“90" >
<SLAParameter>responsetime</SLAParameter><Value>293</Value>

</Predicate>
</Expression>
<Expression>

<Predicate type="greaterthan" percentile=“10" >
<SLAParameter>throughput</SLAParameter><Value>3.4129644</Value>

</Predicate>
</Expression></AND>

</QoSExpression>

public void testRestaurantReservation () throws Exception {
String id = "7134"

RestaurantService r= new RestaurantService();

assertTrue(Pattern.matches("[0-9]{4}",r.getRestaurantID("Il Mare","Naples","Via Posillipo")));

assertTrue(Pattern.matches("ERROR",r.restaurantReservation(“2006-08-28","21:00",12,id));

1

2

Q
o
S

A

s

s
.

Q
o
S

A

s

s
.

Fig. 8.4. Mapping of a JUnit test case onto a XML-encoded service test case

218 M. Di Penta et al.

QoS assertion. While a SLA document expresses general QoS constraints8

(e.g., “Throughput > 1 Mbps” or “Average response time < 1 ms”), QoS
assertions indicate the expected service performance in correspondence with
a given set of inputs (specified in the test case). For example, the assertion in
figure indicates what is the maximum response time permitted when invoking
the getRestaurantID operation.

As an alternative to using of QoS assertions, the service non-functional
behavior can be checked against the SLA. However, while the assertions are
used to check the QoS achieved for each test case, SLA can only be used to
check aggregate QoS values (e.g., the average, the minimum, or the maximum
against all test case executions).

An important issue to be discussed is who should generate QoS assertions.
The provider can generate QoS assertions when deploying the service. These
assertions will reflect the service QoS (e.g., response time or throughput) that
only depends on the service behavior (e.g., an image compression service will
respond slowly when the input is a large image) and on the provider’s machine
configuration. However, different integrators may experience response times
having a large variability from those generated by the provider. To overcome
this limitation, a system integrator can generate his/her own assertions, mea-
suring the QoS expected in correspondence with the given inputs (specified
by test cases) within a more realistic configuration.

8.3.3 Test Cases as a Contract

Test cases and QoS assertions constitute a kind of executable contract between
the system integrator and the service provider. When executing the test cases,
the integrator can observe the service’s functional and non-functional behav-
ior. If satisfied, she/he stipulates the contract. The provider, on his/her own,
agrees to guarantee such a behavior over a specified period of time, regardless
of any change that would be made to the service implementation in the future.
If, during that period, the service evolves — i.e., a new release is deployed —
deviations from the agreed behavior would cause a contract violation.

When a service has been found, the system integrator can download the
test suite published as a part of the service specification. Since the system
integrator may or may not trust the test suite deployed by the provider,
she/he can complement it with further test cases, also to better reflect the
intended service usage scenario. In a semi-structured environment — e.g., a
service registry of a large organization — the system integrator can publish
the new test suite, so that other integrators can reuse it. On the contrary, this
may not be possible in an open environment, where the additional test suite
is stored by the system integrator, and only serves to check whether future
service releases still satisfy his/her requirements.

8 That must hold for any service usage.

8 Web Services Regression 219

The decision on whether the integrator has to add further test cases may
be based on the analysis of the provider’s test suite (e.g., characterizing the
range of inputs covered) and from the test strategy used by the provider to
generate such a test suite — e.g., the functional coverage criterion used —
also advertised in the testing facet. The trustability level of the provider’s
test suite can be assessed, for instance, by analyzing the domain in which the
service inputs vary and the functional coverage criteria adopted.

8.3.4 Performing Service Regression Testing

Once the system integrator has downloaded the test suite and has generated
the QoS assertions, she/he can use them to perform service regression testing.
When regression testing starts, service operations contained in the test suite
are invoked, and assertions are evaluated. A test log is generated, indicating,
for each test case, (i) whether the test case has passed or failed and (ii) the
differences between the expected and actual QoS values. Also in this case, the
QoS monitoring is used to measure actual QoS values, thus permitting the
evaluation of QoS assertions.

Figure 8.5 shows a screenshot of the test suite runner. After specifying
the service URL and selecting a test facet from a local file or from a remote
URL, it is possible to run the test cases against the service, selecting whether
someone wants to perform only functional check, only non-functional, or both.
Progress bars report the test cases that have been passed and failed, both for
the functional and for the non-functional parts. Also, a progress bar indicates
the percentage of operation invocations that were avoided because reuse was
made through monitoring data. This would let the tester figuring out to which
extent the use of monitoring data permits to reduce the service testing cost
(further details will be provided in Sect. 8.3.5). After the execution has been
completed, it is possible to analyze the test execution results from a XML-
encoded log, or by browsing a table reporting summary results for each test
case executed.

When Regression Testing Needs to be Performed

The lack of control system integrators have over services poses critical issues
on when service regression testing should be performed.

• Triggered by service versioning: If the service specification provides infor-
mation on when the service was changed, the integrator can check such
an information and launch regression testing. For example, the WSDL can
contain service versioning information, or the service deployment date.
Nevertheless, this kind of information cannot be completely trusted: the
service implementation can, in fact, change without the need for a service
re-deployment.

• Periodic re-testing: The tool permits to automatically launch regression
testing periodically.

220 M. Di Penta et al.

Fig. 8.5. Test suite runner

• Whenever the service needs to be used: This option is the most expensive;
however, it may be required when high reliability is needed. In this case,
the service should be re-tested before each execution. This, however, does
not provide an absolute confidence on the fact that, if the test suite does
not reveal any failure at time tx, the same condition will be held at time
tx + δ, where δ is the time interval between the testing and the subsequent
service usage.

Finally, it is important to point out that service regression testing is not the
only testing activity an integrator should perform. As discussed by Canfora
and Di Penta [4], she/he should also perform integration testing between the
system and the services being integrated.

8.3.5 Minimizing Service Invocations by Using Monitoring Data

A critical issue of service testing is cost. Test suite execution requires a num-
ber of service invocations that, in most cases, have a cost. In other words,
the provider charges the service consumer when she/he invokes the service,
even if the invocation is done for testing purposes. Also, a testing activity
is generally undesired for a provider because it wastes resources reserved for

8 Web Services Regression 221

production service usage. The number of service invocations needed for ser-
vice regression testing should be, therefore, limited as much as possible. First,
the test suite itself needs to be minimized. To this aim, whoever generates
a service regression test suite — i.e., both the provider or the integrator —
can use one of the several existing regression test suite reduction techniques
(see Sect. 8.5). In addition, assuming that service executions are monitored,
monitoring data can be used to mimic service behavior and, therefore, avoid
(or at least reduce) service invocations during regression testing.

To explain how this can happen, let us recall the scenario explained in
Sect. 8.3.1 and depicted in Fig. 8.1. After Jim has updated the service at time
t1, Jane uses it without experiencing any problem. After a while, Alice wants
to use the service. She realizes that the service has changed (because, e.g.,
the versioning info is reported in the service interface) and decides to re-test
it. When executing the test suite, some of the inputs can be part of Jane’s
executions after t1. For example, if Alice’s test suite contains an assertion
to check that the getRestaurantID operation returns a correct restaurant ID,
this result can be reused when Jane’s test suite is executed, thus avoiding
to actually invoke the getRestaurantID operation. In other words, monitoring
data can be used to mimic the service behavior.

For security reasons, however, testers should not be allowed to access mon-
itoring data. This, in fact, could issue serious non-disclosure problems. Espe-
cially when services are used over the Internet, one would avoid to have other
people looking at his/her own service invocation data. To overcome such a
risk, in the proposed approach the (server side) monitor supports the pos-
sibility to check assertions sent by the client-side testing tool, as a way of
mimicking the service behavior.

The usage of monitoring data to reduce the testing cost is feasible if the
relationship between service I/O is deterministic, i.e., different service invo-
cations with the same inputs always produce the same output. If this is not
the case, it can be possible to overcome such a limitation by checking that
the service output matches a pattern or belongs to a given domain, instead
of performing an exact match.

A further possibility for reducing the testing cost is to provide the service
with a testing interface. Such an interface uses monitoring data (if they are
available) to answer a service request, otherwise it directly accesses the service.
Whilst this solution still requires service invocation, it will certainly reduce the
usage of server resources, due to the execution of the service implementation,
on the provider side.

8.3.6 Capture/Replay

A useful feature that the proposed regression testing tool makes available is
the possibility to perform capture/replay. Similar approaches have been used
for GUI testing [6] and for Web application testing [7]. During the service
usage, I/O data is captured and stored within a monitoring database. In our

222 M. Di Penta et al.

implementation, monitoring is performed by a plug-in installed behind the
Axis application server, thus supported by the service provider. Nevertheless,
alternative solutions, e.g., sniffing SOAP messages from client side, are also
viable and have the advantage of being applicable for any service, even if the
provider does not support monitoring.

When a service evolves, the tester can decide to re-test the service by
replaying the inputs. Test case success or failure can be determined either
by doing an exact match between previously monitored outputs and actual
outputs or by performing a weaker check over the assertions, e.g., by checking
that, in correspondence with a given input, the output still belongs to a given
domain. The user can select the date interval from which captured data shall
be taken. Then, when replay is being performed, the progress bar shows the
percentage of test cases that failed. Finally, as for regression testing, it is
possible to open a window where a detailed test log can be browsed.

8.3.7 Issues and Limitations

Service testing activities require to perform service invocation. In many cases,
this can produce side effects, i.e., a change of state in the service environ-
ment. For example, testing a hotel booking service operation (like the restau-
rantReservation in our motivating example) can produce a series of unwanted
room reservations, and it can be even worse when testing a book purchasing
service. While a component can be tested in isolation, this is not possible for
a service when the testing activity is carried out from the system integrator’s
perspective. In other words, the approach is perfectly viable for services that
do not produce side effects in the real world. This is the case, e.g., of services
performing computations, e.g., image compressing, DNA microarray process-
ing, or any scientific calculus. For services producing side effects, the approach
is still feasible from the provider’s perspective, after having isolated the ser-
vice from its environment (e.g., databases), or even from the integrator’s side
if the provider exports operations to allow integrators to test the service in
isolation.

Despite the effort made to limit it, another important issue from inte-
grator’s perspective remains testing cost [4]. This is particularly true if the
service has not got a fixed fee (e.g., a monthly usage fee) while the price
depends on the actual number of invocations. From a different perspective,
testing can have a high cost from the provider, when the service is highly
resource-demanding.

The dependency of some service non-functional properties (e.g., response
time) from the configuration where the service is used poses issues on the
service non-functional testing. To this aim, the integrator can generate some
non-functional assertion, by executing the test suite against the service and
monitoring the QoS. However, monitoring data depends on the current config-
uration (server machine and load, network bandwidth and load, etc.). While
averaging over several measures can mitigate the effect of network/server load

8 Web Services Regression 223

at a given time, changes in network or machines may lead to completely dif-
ferent QoS values. Clearly, the way our toolkit computes QoS distribution
estimates can be biased by network or server loads, although such an effect
can be mitigated by sampling the response time over a large set of service
executions. More sophisticated QoS estimation approaches are available in
the literature, accounting for the server load [8], the HTTP protocol parame-
ters [9] and, in general, to the network and server status [10, 11]. While such
kind of QoS estimates are not implemented in our toolkit at the time of writ-
ing, their adoption would, in the future, make the QoS testing less dependent
on the network/server configuration and load.

Moreover, in case the service to be tested is a composite service and dy-
namic binding mechanisms hold, it may still happen that the bindings at
testing time are different from these that could be determined when using the
service. As a consequence, the QoS testing may or may not be able to identify
QoS constraint violations due to binding changes.

Finally, as also mentioned in Sect. 8.3.5, non-determinism can limit the
possibility of using assertions to check service I/O. Many services do not
always produce the same response when invoked different times using the
same inputs. This is the case, e.g., of a service returning the temperature
of a given city. However, this issue can be addressed by replacing a strong
assertion — e.g., temperature = 12.5o C — with a weaker one, e.g., −40o C <
temperature < 50o C.

8.4 Assessing the Approach

This section presents two studies that have been carried out to assess the
usefulness of the approach. The first study aims to investigate to what ex-
tent a test suite can be used to check whether the evolution of service
would have affected its functional and non-functional behavior. The second
study shows how monitoring data has been used to reduce the number of
service invocations — and therefore the testing cost — during regression
testing.

8.4.1 Study I: Assessing the Service Compliance Across Releases

Due to the lack of availability of multiple releases of real services, we wrapped
five releases of an open source system, i.e., dnsjava, as Web services. dnsjava9

is a Domain Name System (DNS) client and server; in particular, we focused
our attention on dig (domain information groper), a utility used to gather
information from DNS servers. The service under test is not a real service;

9 http://www.dnsjava.org/

224 M. Di Penta et al.

however, it well reflects the evolution that any DNS existing service10 could
have undergone.

The Web service has five input parameters: the domain to be solved
(mandatory), the server used to solve the domain, the query type, the query
class, and an option switch. The service answers with two strings: the query
sent to the DNS and the DNS answer. We carefully checked whether the re-
sponse message contained values such as timestamps, increasing id, etc. that
could have biased the result, i.e., causing a failure for any test case execu-
tion. Test case generation was based on equivalence classes for each input
parameter. The number of test cases was large enough (1000) to cover any
combination of the equivalence classes. Test cases were run against the five
service releases.

Service outputs were checked by comparing the output of a reference re-
lease, corresponding to the service implementation running when the inte-
grator started to use the service, with the output of future releases. The
comparison has been performed using two types of checks:

1. a strong check, comparing both dnsjava response messages (i.e., the
DNS query and answer). This is somewhat representative of a stronger
functional-contract between the system integrator and the provider, which
guarantees an exact match of the whole service response over a set of re-
leases;

2. a weak check, comparing only the DNS answer, i.e., the information that
often a user needs from a DNS client. This is somewhat representative of
a weaker functional contract.

Finally, values of two QoS attributes—i.e., the response time and the
throughput—were measured. To mitigate the randomness of these measures,
the test case execution was repeated 10 times, and average values consid-
ered. The following subsections will discuss results related to functional and
non-functional testing.

Functional Testing

Table 8.1 reports the percentage of test cases that failed when comparing
different dnsjava releases, considering the strong check contract. Rows repre-
sent the releases when the integrator started to use the service, while columns
represent the service evolution. It clearly appears that a large percentage of
failures (corresponding to contract violations) is reported in correspondence
with release 1.4. This is mostly explained by changes in the set of DNS types
supported by dnsjava.

All the system integrators who started to use the service before release
1.4 could have reported problems in the service usage. Integrator-side testing

10 Although many DNS services exist, the chapter does not provide any URL for
them since they are fairly unstable and likely to change over the time.

8 Web Services Regression 225

Table 8.1. dnsjava: % of failed test cases

strong check weak check

1.3.0 1.4.0 1.5.0 1.6.1 1.3.0 1.4.0 1.5.0 1.6.1

1.2.0 3% 74% 74% 74% 1% 7% 7% 7%

1.3.0 74% 74% 74% 9% 9% 9%

1.4.0 0% 0% 0% 0%

1.5.0 0% 0%

would have been therefore effective to identify the change. If executed from
the provider’s perspective, testing would have suggested to advertise — e.g.,
updating the service description — the change made. Vice versa, integrators
who started to use the service at release 1.4 experienced no problem when the
service evolved toward releases 1.5 and 1.6.

Let us now consider the case in which the comparison is limited to the
DNS answer (weak check). As shown in Table 8.1, in this case the percentage
of violations in correspondence with release 1.4 is lower (it decreases from
74% to 7–9%). Such a large difference is due to the fact that only the DNS
query (involved in the comparison only when using the strong check and not
when using the soft check) reports DNS types: here the comparison of re-
solved IP addresses did not produce a large percentage of failures. Where
present, failures are mainly due to the different way subsequent releases han-
dle exceptions. While this happens in a few cases, it represents a situation
to which both the provider and the system integrators should pay attention
carefully.

Non-functional Testing

Figure. 8.6 reports average response time and throughput values measured
over the different dnsjava releases. A response time increase (or a throughput
decrease) may cause a violation in the SLA stipulated between the provider
and the integrator. Basically, the figure indicates that

• except for release 1.6, the performance always improves;
• integrators who started to use the service at release 1.5 could have noticed

a SLA violation, in case the provider guaranteed, for future releases, at
least the same performances exhibited by release 1.5;

• integrators who started to use the service at release 1.4 could have noticed,
in correspondence with release 1.6, a slight increase in the response time,
even if a slight improvement in terms of throughput;

• finally, all the integrators who started to use the service before release 1.4
were fully satisfied.

226 M. Di Penta et al.

Fig. 8.6. dnsjava measured QoS over different releases

Overall, we noticed that the QoS always improved over its evolution, ex-
cept for release 1.6.5, where developers decided to add new features at the
cost of worsening the performances.

8 Web Services Regression 227

Table 8.2. Characteristics of the services under test

Operation Inputs Outputs # of test
Cases

HotelService

getHotelInfo HotelID, Arrival Date, #
of Nights

of Rooms Available 13

getHotelListByLocation City, Location List of Hotel IDs
getHotelByLocation City, Location Hotel ID

RestaurantService

restaurantReservation Restaurant ID, date, Reservation outcome 7
hour, # of seats

checkRestaurant- Restaurant ID, date, Restaurant
Availability #of seats availabilities
getRestaurantList City, Location List of Restaurant Info
getRestaurantInfo Restaurant ID Info related to the

specified restaurant
getRestaurantID restaurant name, city,

address
the related ID

8.4.2 Study II: Usage of Monitoring Data to Reduce Service
Invocations During Regression Testing

The second study was performed with the aim of investigating the use of
monitoring data to reduce the number of testing invocations. To this aim, we
selected two services developed within our organizations and being used as a
part of the test-bed for an integrated service marketplace developed within a
large research project [12]. In particular, we considered a service for searching
hotels HotelService and a service for searching restaurants RestaurantService,
also used in Sect. 8.3 to explain the proposed approach and toolkit. Table 8.2
reports characteristics of these services in terms of operations provided and
(JUnit) test cases developed for each service (each test case only contains a
single service operation invocation).

As shown in Fig. 8.7, the two services underwent three evolution stages. As
explained in Sect. 8.2, some of the evolution scenarios stem from the evolution
of the Amazon Web service.

1. Time t0: The two services are released.
2. Time t1: The HotelService input parameter location becomes mandatory

(while it was optional at time t0). For RestaurantService the operation
getRestaurantList now returns an unbounded list of Restaurant Info (at
time t0 the list contained three items at most).

3. Time t2: For RestaurantService the maintenance activity impacted the
checkRestaurantAvailability and getRestaurantID operations. In

228 M. Di Penta et al.

Fig. 8.7. Service evolution and usage timeline

particular, the checkRestaurantAvailability operation does not accept a
comma-separated list of restaurant IDs anymore, but only a single ID.
The getRestaurantID operation now returns a restaurant ID composed of
five digits instead of four. Finally, the HotelService search criteria changed.

Services I/O were monitored. From the beginning of the analysis (t0) to its
completion (t2 + Δ) we monitored a total of 70 invocations for HotelService
and 203 for RestaurantService. The time between the release time tx and
the testing time tx + Δ was about five hours. During these time intervals,
we monitored a number of invocations (Table 8.3) reusable to reduce service
invocations when performing regression testing.

Figure. 8.8 reports the percentage of test cases that failed at time t0 + Δ,
t1 + Δ, and t2 + Δ respectively. No test case failed at time t0 + Δ. This is not
surprising, since system integrators started to use the services and downloaded
the test suites at that time. At time t1 + Δ, the change made to HotelService
was not detected by any test case, because the location parameter was always
specified for all test cases of the HotelService test suite. This was not the case
of RestaurantService, where test runs were able to detect the change: the list
returned by the operation getRestaurantList contains more elements than the
three expected.

When running again the test suite at time t2 + Δ, it was able to identify
the changes made to HotelService. In particular, the different outputs pro-
duced for the same query were captured when executing the test cases. For
RestaurantService, the execution of the test suite discovered only the change
related to getRestaurantID (five digits instead of four), while the change of im-
plementation for checkRestaurantAvailability was not detected, since the test
cases considered always contained a single ID, instead of a comma-separated
list of IDs.

Table 8.3. Number of monitored messages for the services under test

Service [t0, t0 + Δ] [t1, t1 + Δ] [t2, t2 + Δ]

HotelService 11 8 18
RestaurantService 15 19 24

8 Web Services Regression 229

Fig. 8.8. Percentage of failed test cases

Figure. 8.9 shows how data from monitoring were used to reduce the num-
ber of operation invocations during the testing activity. Clearly, the percentage
of the reused invocations (between 8% and 70% in our case studies) depends
on the accesses made by external users during their normal usage of the ser-
vices and, in particular, during the time interval [tx, tx + Δ] between a new
release and the testing activity.

8.5 Related Work

The idea of complementing Web services with a support for testing comes
from the testing of component-based systems. As described by Weyuker [2],
Bertolino et al. [1], and Orso et al. [13, 14], components can be complemented
with a high-level specification, a built-in test suite, and also a traceability map
that relates specifications to component interfaces and test cases. Weyuker [2]

230 M. Di Penta et al.

Fig. 8.9. Percentage of reused invocations

indicates that, especially for components developed outside the user orga-
nization, the provider might not be able to effectively perform component
unit testing, because she/he is not aware of the target usage scenarios. As a
consequence, the component integrator is required to perform a more careful
re-test inside his/her own scenario. The aforementioned requirements are also
true for services and, as discussed in Sect. 8.1 and in Sect. 8.2.3, the shift of
perspective services enforces the need for testing during service evolution. In
addition, while components are, very often, developed as independent assets
for which unit test suites are available, services expose a limited view of com-
plex software systems. However, test suites developed for such systems are not
suitable to be executed by the system integrators.

The literature reports several approaches for regression testing. A compre-
hensive state of the art is presented by Harrold [15], explaining the different
techniques and issues related to coverage identification, test-suite minimiza-
tion and prioritization, testability, etc. Regression test selection [16, 17, 18]

8 Web Services Regression 231

is an important aspect: it aims to reduce the cost of regression testing that
largely affects the overall software maintenance cost [19]. Much in the same
way, it is important to prioritize test cases that better contribute toward
achieving a given goal, such as code coverage or the number of faults re-
vealed [20, 21]. Cost-benefits models for regression testing have also been de-
veloped [22, 23, 24]. For services, the issue of cost reduction is particularly rel-
evant, as discussed in Sects. 8.3.5 and 8.3.7. Nevertheless, the aforementioned
white-box techniques cannot be applied for services, due to the unavailability
of source code from the integrator’s perspective.

While the research on service testing is at an initial stage, it is worth
comparing a few approaches with ours. Tsai et al. [25] defined a scenario-
based testing method and an extension to WSDL to test Web services. The
Coyote tool [26] is an XML-based object-oriented testing framework to test
Web services. It supports both test execution and test scenario management.
The Coyote tool consists of two parts: a test master and a test engine. The
test master produces testing scenarios from the WSDL specification. The test
engine interacts with the Web service being tested and provides tracing infor-
mation to the test master. Tsai et al. [27] also proposed to extend the UDDI
registry with testing features: the UDDI server stores test scripts in addition
to WSDL specifications.

Bertolino and Polini [28] proposed a framework to extend the UDDI reg-
istry to support Web service interoperability testing. With their approach,
the registry changes its role from a passive role of a service directory toward
an active role of an accredited testing organism.

The use of the above approaches and tools is limited to a closed environ-
ment, since the tools need to know the scenario in which the available Web
services and the user applications are deployed. On the other hand, our tool
is usable in a open environment, as it just requires that the provider releases
the XML-encoded test suite together with the service. Even if the provider
does not release a test suite, it is still possible for the system integrator to
develop his/her own test suite and use it against the service.

Heckel and Mariani [29], use graph transformation systems to test single
Web services. Like Tsai et al., their method assumes that the registry also
stores additional information about the service. Service providers describe
their services with an interface descriptor (i.e., WSDL) and some graph trans-
formation rules that specify their behavior.

At the time of writing, some commercial tools supported Web service re-
gression testing. Basically, they generate random test cases starting from input
types defined in WSDL interfaces. Such an approach can lead to quite large
and expensive test suites. In our case, we can either generate a test suite start-
ing from unit test suites available for the software system which is behind the
service interface, or use a capture/replay approach. Moreover, we try to re-
duce the testing cost further by using monitoring data to reduce the number
of service invocations when executing the test. Finally, we combine the check
of service functional and non-functional (QoS) properties.

232 M. Di Penta et al.

In a companion paper [30] we introduced the idea of service testing as a
contract and presented a preliminary description of the approach. This chapter
thoroughly describes the service regression testing approach by means of a
running example and provides details about the tool support. In addition, it
outlines the main open issues for service regression testing and proposes the
use of monitoring data to reduce the testing cost.

8.6 Concluding Remarks

The evolution of a service is out of control of whoever is using it: while being
used, a service can change its behavior or its non-functional properties, and
the integrator may not be aware of such a change. To this aim, regression
testing, performed to ensure that an evolving service maintains the functional
and QoS assumptions and expectations valid at the time of integration into a
system, is a key issue to achieve highly reliable service-oriented systems.

This chapter discussed the idea of using test cases as an executable contract
between the service provider and the system integrator. The provider deploys
an XML-encoded test suite with the service, while the user can rely on such
a test suite, properly complemented if necessary, to test the service during
its evolution. The proposed approach is supported by a toolkit composed of
(i) a tool that generates the XML-encoded test suite, which can be executed
against the service, from JUnit test cases available from the system behind
the service interface, and (ii) of a tool that allows the integrator to regression
test the service.

Reducing the testing cost has always been an issue for any testing activity.
This is particularly true when testing a service, since service invocations have
a cost and consume provider’s resources. This chapter proposes to exploit
previously monitored I/O to reduce the number of service invocations due to
the execution of test cases.

Service regression testing still presents a number of open issues. The testa-
bility of services that produce a side effect and the dependency of testing
results, especially for non-functional testing, from the particular configura-
tion and from factors such as the network workload, are just some of them.
Work-in-progress is devoted to enhance the tool, further improving the mech-
anism for reducing invocations by using monitoring data and adopting more
sophisticated mechanisms to model service QoS.

References

1. Bertolino, A., Marchetti, E., Polini, A.: Integration of ”components” to test
software components. ENTCS 82 (2003)

2. Weyuker, E.: Testing component-based software: A cautionary tale. IEEE
Softw. 15 (1998) 54–59

8 Web Services Regression 233

3. Harrold, M.J., Liang, D., Sinha, S.: An approach to analyzing and testing
component-based systems. In: First International ICSE Workshop on Testing
Distributed Component-Based Systems, Los Angeles, CA (1999) 333–347

4. Canfora, G., Di Penta, M.: Testing services and service-centric systems: Chal-
lenges and opportunities. IT Professional 8 (2006) 10–17

5. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level
Agreement (WSLA) language specification (2005)
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

6. Hicinbothom, J.H., Zachary, W.W.: A tool for automatically generating tran-
scripts of human-computer interaction. In: Proceedings of the Human Factors
and Ergonomics Society 37th Annual Meeting. (1993) 1042

7. Elbaum, S.G., Rothermel, G., Karre, S., Fisher, M.I.: Leveraging user-session
data to support Web application testing. IEEE Trans. Software Eng. 31 (2005)
187–202

8. Zhang, L., Ardagna, D.: SLA based profit optimization in autonomic computing
systems. In: Proceedings of the 2nd ACM International Conference on Service
Oriented Computing (ICSOC 2004), ACM Press (2004)

9. Liu, H., Lin, X., Li, M.: Modeling response time of SOAP over HTTP. In: pro-
ceedings of the IEEE International Conference on Web Services (ICWS 2005),
11-15 July 2005, Orlando, FL, USA, IEEE Computer Society (2005) 673–679

10. Menasce, D.A.: Qos issues in web services. IEEE Internet Computing 06 (2002)
72–75

11. Menasce, D.A.: Response-time analysis of composite web services. IEEE Inter-
net Computing 08 (2004) 90–92

12. Canfora, G., Corte, P., De Nigro, A., Desideri, D., Di Penta, M., Esposito, R.,
Falanga, A., Renna, G., Scognamiglio, R., Torelli, F., Villani, M.L., Zampog-
naro, P.: The C-Cube framework: Developing autonomic applications through
web services. In: Proceedings of Design and Evolution of Autonomic Applica-
tion Software (DEAS 2005), ACM Press (2005)

13. Orso, A., Harrold, M., Rosenblum, D., Rothermel, G., Soffa, M., Do, H.: Using
component metacontent to support the regression testing of component-based
software. In: Proceedings of IEEE International Conference on Software Main-
tenance. (2001) 716–725

14. Orso, A. Harrold, M., Rosenblum, D.: Component metadata for software engi-
neering tasks. In: EDO2000. (2000) 129–144

15. Harrold, M.J.: Testing evolving software. J. Syst. Softw. 47 (1999) 173–181
16. Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., Rothermel, G.: An em-

pirical study of regression test selection techniques. ACM Trans. Softw. Eng.
Methodol. 10 (2001) 184–208

17. Harrold, M.J., Rosenblum, D., Rothermel, G., Weyuker, E.: Empirical studies
of a prediction model for regression test selection. IEEE Trans. Softw. Eng. 27
(2001) 248–263

18. Rothermel, G., Harrold, M.J.: Empirical studies of a safe regression test selec-
tion technique. IEEE Trans. Softw. Eng. 24 (1998) 401–419

19. Leung, H.K.N., White, L.: Insights into regression testing. In: Proceedings of
IEEE International Conference on Software Maintenance. (1989) 60–69

20. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: A
family of empirical studies. IEEE Trans. Softw. Eng. 28 (2002) 159–182

21. Rothermel, G., Untch, R.J., Chu, C.: Prioritizing test cases for regression
testing. IEEE Trans. Softw. Eng. 27 (2001) 929–948

234 M. Di Penta et al.

22. Leung, H.K.N., White, L.: A cost model to compare regression testing strate-
gies. In: Proceedings of IEEE International Conference on Software Mainte-
nance. (1991) 201–208

23. Malishevsky, A., Rothermel, G., Elbaum, S.: Modeling the cost-benefits trade-
offs for regression testing techniques. In: Proceedings of IEEE International
Conference on Software Maintenance, IEEE Computer Society (2002) 204

24. Rosenblum, D.S., Weyuker, E.J.: Using coverage information to predict the
cost-effectiveness of regression testing strategies. IEEE Trans. Softw. Eng. 23
(1997) 146–156

25. Tsai, W.T., Paul, R.J., Wang, Y., Fan, C., Wang, D.: Extending WSDL to
facilitate Web services testing. In: 7th IEEE International Symposium on
High-Assurance Systems Engineering (HASE 2002), 23-25 October 2002, Tokyo,
Japan. (2002) 171–172

26. Tsai, W.T., Paul, R.J., Song, W., Cao, Z.: Coyote: An XML-based frame-
work for Web services testing. In: 7th IEEE International Symposium on
High-Assurance Systems Engineering (HASE 2002), 23-25 October 2002, Tokyo,
Japan. (2002) 173–176

27. Tsai, W.T., Paul, R.J., Cao, Z., Yu, L., Saimi, A.: Verification of Web services
using an enhanced UDDI server. (2003) 131–138

28. Bertolino, A., Polini, A.: The audition framework for testing Web services
interoperability. In: EUROMICRO-SEAA, IEEE Computer Society (2005)
134–142

29. Heckel, R., Mariani, L.: Automatic conformance testing of Web services. In
Cerioli, M., ed.: FASE. Volume 3442 of Lecture Notes in Computer Science.,
Springer (2005) 34–48

30. Bruno, M., Canfora, G., Di Penta, M., Esposito, G., Mazza, V.: Using test
cases as contract to ensure service compliance across releases. In Benatallah,
B., Casati, F., Traverso, P., eds.: ICSOC. Volume 3826 of Lecture Notes in
Computer Science., Springer (2005) 87–100

Part III

Monitoring

9

Run-Time Monitoring in Service-Oriented
Architectures

Carlo Ghezzi and Sam Guinea

Dipartimento di Elettronica e Informazione—Politecnico di Milano via Ponzio
34/5 – 20133 Milano (Italy) ghezzi|guinea@elet.polimi.it

Abstract. Modern software architectures are increasingly dynamic. Among them,
Service-Oriented Architectures (SOAs) are becoming a dominant paradigm. SOAs
allow components to be exported as services for external use. Service descriptions
(which include functional and non-functional properties) are published by service
providers and are later discovered by potential users. Service discovery is based on
matching the published service descriptions with the required service specifications
provided by the user. Once an external service is discovered, it may be bound and
invoked remotely. New services may also be created by composing existing services.

To achieve full flexibility, the binding between a service request and a service
provision may be set dynamically at run-time. Dynamic binding and decentralized
management of external services by independent authorities, however, challenge our
ability to perform verification and validation (V&V). Traditional V&V is a pre-
deployment activity. In the new setting it extends to run-time and requires contin-
uous monitoring of functional and non-functional attributes.

This chapter investigates continuous monitoring of SOAs, with particular empha-
sis on web services. It provides a classification scheme that can help understanding
the different monitoring approaches a system designer can choose. It also analyzes
the running example and discusses some of the functional and non-functional aspects
one might be interested in monitoring in its context. The chapter then presents a
short survey of the most important ongoing research in this field and concludes by
discussing future research directions.

9.1 Introduction

Traditionally, software systems had a pre-defined, static, monolithic, and cen-
tralized architecture. This was largely due to the technology available at the
time and to the need of making the resulting system more easily manageable
and controllable. All the parts that composed a large application were under
the control of a single organization, which was ultimately responsible for their
design, development, verification, and deployment procedures. Software archi-
tectures have been constantly evolving toward increasing degrees of dynamism

238 C. Ghezzi and S. Guinea

and decentralization, from statically bound compositions to dynamically com-
posed federations of already deployed and running components.

To describe this evolution, and the requirements that drove it, it is impor-
tant to provide an informal definition of some terms and concepts that will
be used throughout this chapter. The term component denotes an identifiable
piece of code implementing some useful function, which may become part of
a larger system. The term service denotes a component that is deployed and
run separately. Composition is the way a whole system is made up, by bind-
ing components together. The arrangement and relation between the bound
components defines the system’s architecture.

The evolution of software architectures has been dictated by the need for
applications to evolve continuously as the environment in which they are em-
bedded evolves. Continuous and rapid changes are requested from the real
world, and reactions to change requests must be extremely fast. The tradi-
tional strategy to respond to change requests—which implies switching to
off-line mode and re-designing, re-implementing, and re-deploying (parts of)
the application—does not work in this new context. Rather, changes should
be made dynamically at run-time.

Requirements for these new features arise in a large variety of applica-
tion fields, from in-the-large web-based information systems to in-the-small
embedded applications supporting ambient intelligence. Information systems
need to evolve continuously to support dynamic federations of business or-
ganizations interacting through the web. In this setting, each organization
exposes internal functions as new services that other members of the federa-
tion may use, and new bindings may be established between a service request
and a service provision as the opportunistic goals of the federation change
over time. In ambient intelligence settings, the requirements for dynamically
composing services derive from the goal to support context-aware behaviors.
In most practical cases, context is defined by the physical location, which may
change because of mobility. For example, a print command issued by a mobile
device should print a document from a closest printer, dynamically discovered
in the surrounding physical environment. The concept of context, however, is
more general. Suitable sensors, in general, may provide context information.
For example, depending on where the service requester is located and on light
conditions, the command to illuminate a room might imply sending signals to
actuators to switch the light on or to open the window shades. Both cases are
characterized by a novel distinctive feature: not only do the bindings among
components of the application change dynamically, as the application is run-
ning, but the components that are available for composition do so as well.

The concept of service is the cornerstone of service-oriented architectures
(SOAs). SOAs have been emerging as a most promising architectural paradigm
which provides support to dynamically evolving software architectures, where
both the components and their bindings may change dynamically. The style
is characterized by the following features:

9 Run-Time Monitoring in Service-Oriented Architectures 239

• Publication: Through publication, a service description is made available
by a service provider in a standardized manner that potential clients may
understand.

• Discovery: A service is searched based on the requested features it should
offer, and by matching the request with the available published descrip-
tions.

• Binding: Based on the search results, a binding is established between a
service request and a service offer.

Since publication and discovery may be performed at run-time, bind-
ings may also be established and modified dynamically. This high degree
of dynamism, while providing great benefits in terms of flexibility, has a
severe impact on the system’s correctness and on the way verification can
be performed. Traditionally, verification of correctness is performed stati-
cally, based on the known components that compose the application. Af-
ter the application is deployed, no further verification is needed (nor pos-
sible). In the case of SOAs, however, an application is made out of parts
(services) that are deployed and run independently, and may change un-
predictably after deployment. Thus, correctness cannot be ascertained stat-
ically, but rather requires continuous verification that the service delivered
complies with the request. In the case where serious problems are discov-
ered, suitable recovery reactions at the architectural level should be put in
place.

Many stakeholders are involved in service-oriented applications: clients,
providers, and third-parties. Typically, they have different needs and differ-
ent requirements. They have different business goals, and tend to state what
they expect from a system differently, both in terms of functionalities and
in terms of quality of service. Consequently, run-time monitoring has differ-
ent objectives for each of them. In this chapter, we focus on the role of a
service requester. This may be an end-user who acts as client, or a service
provider who acts as a third-party by composing a new service out of existing
services. Run-time monitoring, in this case, takes the requester’s viewpoint:
the service should deliver what it promised and should match the requester’s
expectations. If it does not, the system should take or initiate appropriate
subsequent reactions, such as notifications, remedy, compensation, etc. This
work focuses on monitoring; a study of reaction strategies falls beyond its
scope. Also, we do not focus on the process that elicits business goals and
derives run-time monitoring goals. Rather, we assume that such process is
in place, and focus our attention on the monitoring process itself. Although
our main focus is on requester-side monitoring, provider-side monitoring is
also quite relevant. In this case, the objective is to monitor the quality of the
delivered service and drive possible run-time optimizations, such as dynamic
resource allocation in SOAs implemented on grid architectures [10]. We will
only briefly touch on this point, which has received considerable attention in
a number of industrial research approaches.

240 C. Ghezzi and S. Guinea

Although this chapter concentrates on service composition providers and
their needs, most of what we present is general enough and easily ex-
tendible to cover the needs of different stakeholders [6]. Most of what we
say here also holds for SOAs in general. However, we focus on web ser-
vices and discuss solutions that hold in the case of the available web service
technology.

The chapter is organized as follows. Since many different monitoring ap-
proaches exist, and since they all behave quite differently (i.e., each with its
own strengths and weaknesses), Sect. 9.2 starts off by providing the reader
with an overview of some key aspects that can be used to better understand
and classify them. Section 9.3 continues by discussing the example intro-
duced in the initial chapters of this book in the context of run-time moni-
toring. Section 9.4 introduces our own assertion-based approach to monitor-
ing called “Dynamo,” and its monitoring definition language called WSCoL
(Web Service Constraint Language). Section 9.5 compares some of the other
most prominent research and industrial monitoring approaches, while Sect. 9.6
concludes the chapter.

9.2 Run-Time Monitoring

The need to monitor SOAs at run-time has inspired a large number of research
projects, both academic and industrial. The differences between these research
proposals are manifold, and quite evident after an accurate analysis. This has
led to an unfortunate situation in which the term “monitoring” is commonly
used, but with many possible interpretations. Although their main goal—
discovering potential critical problems in an executing system—remains the
same, there are differences that concern important aspects, such as the goals
of monitoring, the stakeholders who might be interested in them, the potential
problems one might try to detect, etc.

A thorough understanding of these aspects that characterize SOA mon-
itoring is important in order to classify the different monitoring approaches
available in the literature, to evaluate them, and to choose the monitoring
approach most suitable for the problem at hand.

Our presentation will concentrate on the following most significant as-
pects: the type of properties that can be monitored, the type of collabo-
ration paradigm with which they can be coupled, the methods they use
to collect data, their degree of invasiveness, and their timeliness in discov-
ering anomalies. Even though the classification items are presented sepa-
rately, they are heavily intertwined, and the choices made in the context of
one dimension may influence the others. For example, the choice to mon-
itor certain functional properties impacts the way run-time data are col-
lected, which in turn has an impact on the degree of invasiveness of the
approach.

9 Run-Time Monitoring in Service-Oriented Architectures 241

9.2.1 Types of Properties

Monitoring approaches can be tailored to the verification of two main fam-
ilies of properties: functional and non-functional (or quality-of-service re-
lated) properties. When monitoring the former, we are interested in verifying
whether a given service delivers the function we expect from it. This obvi-
ously requires that some specification of the expected behavior be available.
Since the invocation of a service can be seen as a black box that, given certain
inputs, produces certain outputs, most monitoring approaches tend to rely
on procedural specifications expressed in terms of pre- and post-conditions.1

The monitoring approaches, therefore, typically consist of mechanisms that
produce suitable oracles for the service being monitored.

Since we focus on web services, most descriptions—such as those given
using the WSDL standard[7]—only specify the syntactical aspects involved in
invoking a web service. A number of special-purpose specification languages
have been proposed to address this problem. Some of the proposals originated
in the field of software engineering, such as our own language WSCoL, were
built on the legacy of Design by Contract [22,23] and assertion languages
for standard programming languages such as Anna [20] or APP [30]. Others
originated in the field of Semantic Web, such as the current specification
language candidates being considered in the context of OWL-S [29]. Their
principal candidate is the Semantic Web Rule Language (SWRL) [11].

Regarding non-functional or “quality of service” related properties, moni-
toring focuses on those that can be measured in a quantitative way. This leaves
out a number of relevant properties (such as usability or scalability) that are
either qualitative (and subjective), or for which quantitative metrics do not
exist. Some of the most common non-functional properties are as follows:

• Availability, which measures the readiness of a web service to be used by its
clients. It also considers aspects such as how long a given service remains
unavailable after occurrence of a failure.

• Accessibility, which considers the capability of the service provider’s in-
frastructure to instantiate a service and guarantee provisioning even in the
case of heavy traffic. In some way, it measures scalability of the provider’s
infrastructure.

• Performance, which is usually measured in terms of throughput and la-
tency. The former defines the number of requests that can be addressed
in a given time-frame. The latter defines the round-trip time of a request
and its response.

• Security, which is perceived as an extremely important aspect due to the
open environment (the Internet) in which service interactions occur. Its
most important goals are to guarantee confidentiality, non-repudiation,
and encryption.

1 This works fairly easily for stateless services, which behave like functions. Stateful
services require a way to model the hidden abstract state as well.

242 C. Ghezzi and S. Guinea

• Reliability, which measures the capability of a service to guarantee the
promised or negotiated qualities of service.

9.2.2 Collaboration Paradigms

The true advantages of service-oriented architectures become evident when
remote services are used cooperatively to achieve some overall business goals.
Different existing collaboration paradigms exist, each presenting its own
unique aspects. This leads to monitoring approaches that are tailored toward
a specific style of collaboration.

Collaboration paradigms differ in the degree of coupling among the par-
ticipating services and the degree with which business responsibility is dis-
tributed amongst them. A typical distinction is between orchestration and
choreography. In the case of orchestration-based approaches, a single party is
responsible for the correct evolution of the business process. The current state
of the art in orchestration-based approaches is the Business Process Execution
Language for Web Services (BPEL)[16], which became a de-facto standard in
the last few years. BPEL is an executable workflow language that is processed
by a suitable engine. Most current implementations are based on a central-
ized workflow engine (e.g., ActiveBPEL), although distributed BPEL engines
have also been proposed [28]. The workflow engine is responsible for correctly
executing the business process and invoking the required external services, as
specified in the process. As we mentioned, the binding between an invocation
of an external service and the actual service exported by a service provider can
change dynamically at run-time. The monitoring approaches that are tailored
to such a scenario are typically concerned with checking whether the external
services behave as promised, and expected. That is, one needs to check that
external services—when invoked—satisfy certain functional or non-functional
requirements that allow the business process to achieve its goals.

At the other end of the spectrum, it is possible to envision paradigms in
which services are individually responsible for the overall coordination effort
and the correctness of different parts of the business process. This is the case
of choreography-based approaches to collaboration. The current state of the
art is the Web Service Choreography Description Language (WSCDL)[17].
WSCDL is a non-executable specification language that describes the mes-
sages exchanged among the different parties during a collaboration. It defines
both the message formats and the order in which they must be sent. In a
choreography, no central party is responsible for guiding the collaboration,
but rather each partner must be (1) aware of the defined business-logic, (2)
capable of correlating messages, and (3) capable of performing its role in the
process. In such scenarios, it is important to monitor the functional and non-
functional qualities of service invocations. It is also necessary to monitor the
evolution of the business logic, by checking that the required messages are
sent and received in the specified order. To achieve this goal, the monitor

9 Run-Time Monitoring in Service-Oriented Architectures 243

must be provided with a behavioral specification of the process being carried
out, which can be derived from the specification of a choreography.

9.2.3 Collecting Monitoring Data

Data can be collected from different sources. At least four very prominent
cases can be identified.

1. Collection of process state data: In orchestration-based systems, data may
be collected through appropriate probes that are placed throughout the
process. The properties that can be checked are those that predicate on
process states. To make the approach less invasive, it is possible to limit the
check of process states to the points where the workflow process interacts
with the outside world, by capturing the data that flow in and out. In a
centralized execution environment, this can be achieved quite simply by
intercepting the incoming and outgoing messages. In a choreography, the
probes must be set up in a distributed fashion.

2. Collection of data at the SOAP message level: In service collaborations,
data can also be collected at the message level. This can be achieved
through the use of appropriate probes that intercept all the SOAP mes-
sages entering or leaving the system on which a service is deployed. This is
especially useful when we need to check the properties of a SOAP message
header, or of a message’s payload.

3. Collection of external data: Some monitoring approaches require addi-
tional data that must be collected externally. This happens when a certain
property to monitor predicates on data that does not belong to the cur-
rent business process. For example, it might be necessary to verify if the
value of the interest rate, returned by a banking web service, satisfies the
correctness requirement that it should not exceed a threshold defined by
the National Bank. Since the threshold may change dynamically, it must
be retrieved at run-time by invoking an appropriate external data source.
Obviously, the monitoring framework must be aware of the existence of
this data source in order to verify such a constraint.

4. Collection of low level events: Some monitoring approaches rely on data
collection that is achieved at a lower level of abstraction, such as at
the execution engine level. The events generated by the execution are
collected and logged for on-the-fly or later analysis. For example, the
ActiveBPEL execution engine[1] associates special states to the BPEL
activities being executed. An invoke activity can be in an “inactive”
state, a “ready to execute” state, or an “execute” state, and produces
an event each time when there is a valid state transition. Data collection
can be wired into the execution engine to capture these transitions, al-
lowing analysis to predicate on the order in which they occur, when they
occur, etc.

244 C. Ghezzi and S. Guinea

9.2.4 Degrees of Invasiveness

Existing monitoring approaches differ in the degree of invasiveness with re-
spect to specification of the business logic and its execution.

Regarding specification—a typical design-time activity—in certain ap-
proaches the definition of the business logic and the monitoring activities
are highly intertwined (e.g., through the use of annotations in the process
definition). Other approaches keep the specification of the monitoring logic
entirely separate from the business logic, thus encouraging a “separation of
concerns” which allows designers to reason separately on the two problems.

Regarding execution, it is possible to distinguish between approaches in
which the execution of the business and of the monitoring logic are highly
intertwined, and approaches in which they execute independently.

An example of a highly invasive approach to monitoring is the use of pre-
and post-conditions. Since they require process execution be blocked when
the properties are checked, they have an adverse effect on performance. On
the other hand, approaches that have a low degree of invasiveness usually take
place externally to the process.

9.2.5 Timeliness in Discovering Undesirable Situations

A timely monitor detects an anomalous situation as soon as the data indi-
cating the anomaly have been collected. In general, the distance between the
two time points denotes the degree of timeliness of the monitoring approach,
which can vary from early to late detection.

At one end of the spectrum, we can find approaches that adopt highly
intrusive techniques, which aim at discovering erroneous situations as early
as possible. These should be used in situations that are critical for the busi-
ness process, such as cases in which we need to be sure that a message is
transmitted in encrypted form, using the appropriate encryption algorithms.
A possible way to ensure high degrees of timeliness is to express the proper-
ties in terms of assertions (e.g., pre- and post-conditions on service invoca-
tions) that block the business process while the run-time checking is being
performed.

At the other end of the spectrum, we can find approaches that allow de-
signers to do post-mortem analysis to discover erroneous situations. These
approaches can be used to plan changes that may affect future executions,
bindings, or versions of a business process. A possible implementation may be
based on logging events and execution states for later analysis.

A special mention should also go to approaches that perform proactive
monitoring. Thanks to the data collected both during previous executions of
the business process and on-the-fly, these approaches try to identify situations
in which it is progressively more and more likely that global process quali-
ties (e.g., the overall response time) will not be maintained. However, since

9 Run-Time Monitoring in Service-Oriented Architectures 245

erroneous behaviors—especially those regarding non-functional qualities—
can be transient, pro-active monitoring may lead to situations in which the
monitoring signals a problem that actually does not manifest itself.

9.2.6 Abstraction Level of the Monitoring Language

The language used to specify the monitor depends on the expected end-user.
Highly structured approaches provide a low-abstraction level and are heavily
influenced by aspects such as the collaboration paradigm being used and its
data formats. These must be considered tools for the designers responsible for
delivering high quality and dependable processes.

On the other hand, it is also possible to envision approaches in which
higher abstraction levels are used. These hide the intricacies of the business
process’ collaboration paradigm, and allow non-technical end-users to define
functional and/or non-functional properties they consider important for their
applications.

9.2.7 Other Aspects

Many other classification dimensions can be considered when analyzing exist-
ing monitoring approaches. An example is the degree of expressiveness pro-
vided by the monitoring specification language. Depending on the nature of
the properties the approach is capable of verifying, we can find languages that
require a more theoretical background, such as first-order logics or temporal
logics, or that are closer to a more typical object-oriented system designer’s
background, such as OCL.

Another possible classification dimension is the degree of automation in
the derivation of the monitoring directives. In fact, it is possible to envision
approaches that require the designer to manually define the properties to be
checked, and approaches in which the properties are automatically derived by
the system, by formally reasoning on the requirements.

Monitoring approaches can also be classified based on the validation tech-
niques they adopt. Some examples of techniques for verifying properties are
assertion checking, trace analysis, model-checking, etc.

The approaches can also be classified based on their degree of adoptabil-
ity. Some approaches, thanks to the adoption of standards, do not depend on
the run-time infrastructure chosen by a service composition provider. Oth-
ers, instead, from a technological and implementation standpoint, are tied to
a certain proprietary run-time environment, and therefore cannot be easily
configured to interoperate and integrate with different ones.

Finally, monitoring approaches can be classified based on the nature of
their support infrastructure. It is possible to conceive monitoring infras-
tructures as centralized components that overlook service execution, or as
distributed components that collaborate to check the functional and/or non-
functional properties we need.

246 C. Ghezzi and S. Guinea

9.3 Case Study

The case study introduced in the initial chapters of this book provides informal
common grounds for reasoning on the different facets of web services. To dwell
deeper in the real intricacies of the monitoring problem, we need to further
detail some key aspects of the proposed scenarios, such as their functional
and non-functional requirements, the required collaboration paradigms, the
underlying architecture, and its binding policies.

9.3.1 Functional Correctness of the Holiday
Location-Finder Web Service

The process starts with John looking for suitable locations for his get-away
weekend, locations that must satisfy certain requirements (they must be close
to where he lives, by a lake, near the mountains, etc). Using his office com-
puter, John interacts with a fairly simple orchestrated process that guides him
in finding the location, booking the rooms in a hotel, etc.

Figure 9.1 specifies the interface of the holiday location-finder web service,
using a stereotyped UML class diagram to avoid the low-level details of a
WSDL XML interface. In this abstraction, web services are seen as boxes
that only provide public methods. The input and output parameters for these
methods are described through “dataType” stereotypes, which only contain
public attributes.

Given a request that specifies the departure location (i.e., a location name
and GPS coordinates), a maximum traveling distance the client is willing to
go, and an articulate description (the format of which is omitted for simplicity)

+ findLocation(RequestSpec) : LocationResults

<<service>>
Holiday Location Finder

+ departureLocation : Location
+ maxLocationDistance: int
+ selectionCriteria : Criteria

<<dataType>>
RequestSpec

+ locations : Location[]

<<dataType>>
LocationResults

+ name : String
+ Coordinate_Zone : int
+ Coordinate_Easting : int
+ Coordinate_Northing : int

<<dataType>>
Location

Fig. 9.1. The holiday location-finder web service

9 Run-Time Monitoring in Service-Oriented Architectures 247

of key interests, such as proximity to a lake, mountains, etc., the web service
responds with an array of possible holiday locations.

We assume that the external location-provider web service invoked by
the workflow is used by John under a temporary trial license. Before sub-
scribing a contract with the provider, John wishes to verify that the ser-
vice delivers what it promises, and therefore he turns the monitor on. The
monitor checks whether the returned locations satisfy all the user-defined
selection criteria. To simplify our example, we will concentrate on verify-
ing whether the locations are within the maximum distance specified in the
request.

John decides to adopt an invasive monitoring approach, in which post-
conditions block the process while executing run-time checks. The post-
condition that checks the validity of the service can be expressed as in
Fig. 9.2.2 However, an invasive monitoring approach based on a blocking post-
condition is not the only possible solution. John could have instead adopted
a solution that checks the property in a less timely fashion, using a less in-
trusive approach, and with a lower impact on the overall performance of the
process.

9.3.2 Functional Correctness of the Map Web Service

The example scenario states that John and his wife decide to travel by car.
The car is equipped with a haptic device to communicate with remote ser-
vices for entertainment reasons (e.g., purchase a multimedia stream), or for
gathering useful information from the environment. John decides to use his
device to obtain a map illustrating how to reach the vacation resort. The de-
vice can show only certain image formats with a given resolution. Therefore,
it is important that the map returned by the external service satisfies both
requirements. Suppose that John’s workflow has a pre-installed binding to a
free-of-charge external service that does not always guarantee fulfillment of
the requirement. It may, in fact, sometimes deliver maps whose format or res-
olution are invalid for the haptic device. The monitor is therefore turned on,

For all the returned locations l,
(RequestSpec.departureLocation.Coordinate_Easting - l.Coordinate_Easting) +
(RequestSpec.departureLocation.Coordinate_Northing - l.Coordinate_Northing) <=
RequestSpec.maxLocationDistance

2

2

2

Fig. 9.2. A functional property

2 We assume that the monitoring language allows properties to be specified using
universal quantifiers over the elements of a certain data set.

248 C. Ghezzi and S. Guinea

to allow for delivery of unacceptable maps to be trapped. A suitable reaction
to a detected anomaly might consist of switching to another service provider
who provides maps under payment.

In order to discover an image’s format and resolution, special-purpose tools
are needed. Since the delivery environment (i.e., the BPEL execution engine)
does not possess the necessary tools for manipulating and/or aggregating the
monitoring data, the monitor itself is responsible for retrieving the data it
needs. Furthermore, John decides to adopt an invasive but timely monitoring
policy, which prevents the haptic device from using a non-compliant image.
As a non-compliant image is detected, the system starts a reaction strategy
which tries to find a suitable substitute for the current map service. To achieve
this goal, John decides to define the property in terms of a process-blocking
post-condition.

9.3.3 Monitoring Security

In the example, John uses a service—provided by his bank—to pay for his
reservations. John expects his banking services to provide standard encryp-
tion strategies and technologies capable of ensuring “safe transactions.” Safe
transactions prevent eavesdropping, message tampering, fake messages, etc.
The main standards proposed for tackling these problems are WS-Security [2]
and WS-Trust [15]. The former supports end-to-end security issues, such as
origin authentication, integrity, and confidentiality, while the latter supports
the creation of trust relationships between different parties.

In order to ensure end-to-end security, the monitor must have access to
the SOAP messages flowing in and out of the execution engine. In fact, it
is necessary to verify whether the messages carry the appropriate signature
elements, and whether certain message parts are encrypted as specified. In
practice, the messages should be intercepted after their preparation has been
finalized by the sending party, but before they are sent out. Due to the impor-
tance security issues have, an intrusive and timely approach should be used,
to prevent insecure messages from being sent out.

On the other hand, if the goal is to monitor the correct establishment of
trust relationships, a slightly different approach should be used. Since WS-
Trust embeds special tokens in messages using the WS-Security specification,
it is important to verify their presence at the message level. However, WS-
Trust also specifies multi-party protocols for obtaining the needed tokens,
and these should be verified as well. Moreover, in these protocols, it is often
the case that a number of intermediaries—already in a trust relationship—
are used to help establish the new relationship (i.e., between John’s system
and the bank web service). These collaborations are typically choreographic
in nature, especially when concepts such as trust federations are introduced.
As a consequence, monitoring should also verify that the desired protocols
perform as expected.

9 Run-Time Monitoring in Service-Oriented Architectures 249

9.3.4 Monitoring Response Time

Web service response times are typically monitored by web service providers,
who establish control policies on their assets and plan changes in their deploy-
ment strategies, should response time degrade over time (e.g., due to request
overload). Examples of how a deployment strategy can be modified and im-
proved are the migration to more capable servers or the deployment of new
instances of the service.

However, clients are also directly interested in monitoring the response
times of services they interact with. For example, in our scenario, John’s haptic
device could be interested in monitoring the time taken by his bank’s web
service to open a secure channel with the highway’s tollgate payment service,
pay the toll, and have the tollgate lift its bars. In this case, one might define
a non-invasive approach that proceeds in parallel with the normal process
execution. Through statistical analysis, the monitor may proactively discover
non-functional problems before they actually occur. This would give the on-
board computer the time to let John know if he should slow down, or avoid
the automatic gates entirely and proceed to one where he can pay manually.

9.4 Dynamo

Dynamo (Dynamic Monitoring) is an approach and a toolset we developed to
support service monitoring. Its conceptual roots originate from the software
engineering community, and in particular can be traced back to assertion
languages like Anna (Annotated Ada [20]), JML (Java Modeling Language
[3]), and the notation added to the Eiffel language [22] to support “Design by
Contract” [24]. These languages allow designers to add constraints to their
programs in the form of assertions, typically pre-conditions, post-conditions,
and invariants.

Dynamo provides a language called WSCoL [4]—similar to the light-weight
version of JML—which allows designers to specify constraints on orchestrated
collaborations. WSCoL is tailored toward the de-facto standard BPEL and
supports the definition of pre- and post-conditions for activities that interact
with external services (i.e., invoke, receive, reply, and pick). Dynamo monitors
the evolving client-side state of the process and assumes that it can be modified
erroneously only through external collaboration. That is, the approach trusts
the internal business logic, but not the execution of the external services the
process is bound to. This is the reason why post-conditions must be checked.
On the other hand, pre-conditions may be useful in the debugging phase of
a service composition to check that external services are invoked correctly.
Dynamo also fosters separation of concerns since monitoring is defined as a
cross-cutting concern. Designers can concentrate on the business logic and on
the monitoring directives independently. Therefore, we can say the approach
is non-invasive at the specification time.

250 C. Ghezzi and S. Guinea

To favor adoption of our monitoring approach, the BPEL execution envi-
ronment was not changed: appropriate external services—called Monitoring
Managers—are responsible for analyzing WSCoL constraints. The business
logic is unaffected by the monitoring, but to allow the process to interact
with the external monitors, additional BPEL code is added to the process
at deployment time by means of static weaving. This leads to an intrusive
approach (with regard to the execution of the system itself), which blocks
the process execution to check pre- and post-conditons to discover erroneous
situations in a timely fashion, i.e., as soon as they occur.

Dynamo explicitly supports—through the WSCoL specification language—
two main kinds of data collection: (1) directly from the process and (2) from
external data sources, if these are provided via web service interfaces.

Figure 9.3 summarizes the approach and gives a better idea of the static
weaving that occurs at deployment time. The component responsible for weav-
ing the code that ties the process to the external monitoring managers is
called BPEL2. It takes as inputs both the non-monitored version of the busi-
ness process—specified in terms of BPEL code—and an external Monitoring
Definition File. This file contains both the WSCoL constraints to be checked
and the “locations” within the process in which (i.e., the BPEL activities
for which) the constraints should be verified. These locations are expressed
using an XPATH [8] expression (since BPEL is an XML specification lan-
guage) and a keyword indicating whether the condition is a pre-condition or
a post-condition.

The monitored version of the process that is produced substitutes each
BPEL invocation for which a pre-condition or a post-condition, or both, has
been defined (see invocation of service B in Fig 9.3), with a call to the Mon-
itoring Manager, which acts both as a proxy for the service invocation and
as a gateway toward external components that can act as WSCoL constraint

Fig. 9.3. An overview of Dynamo

9 Run-Time Monitoring in Service-Oriented Architectures 251

analyzers. The weaving also adds some additional code at the beginning of
the process and at the end, respectively responsible for the set up of the
monitoring manager, and its release once the process execution terminates.

9.4.1 WSCoL

WSCoL, our monitoring language, allows the designer to do the following:

• Define and predicate on variables containing data originating both within
the process and outside the process.

• Use pre-defined functions, e.g., string concatenation.
• Use the typical boolean operators such as && (and), || (or), ! (not), =>

(implies), and <=> (if and only if), the typical relational operators, such
as <, >, ==, <=, and >=, and the typical mathematical operators such
as +, −, ∗, and /.

• Predicate on sets of variables through the use of universal and existential
quantifiers.

Since the web services invoked by a workflow may be considered as black
boxes that expose public methods, which take an input and produce an output,
there is no side effect on input variables. Assertion expressions may, therefore,
refer to variables in the input message without distinguishing between the
value prior to service invocation and the value afterward.

WSCoL will be introduced via examples, to describe properties that can
be verified using Dynamo in the case study outlined in Sect. 9.3.

Internal Variables

It is common practice in BPEL to use one variable to contain the data that
must be sent to a web service, and another variable to contain the data that
the invocation returns to the process. These variables match the XSD types of
the input and output messages of the web method being called, as defined in
the service’s WSDL description. WSCoL can refer to internal BPEL variables
through use of a syntax which is somewhat similar to XPATH. The designer
must specify the name of the variable, and the internal path from the root
of the variable to the actual content he/she wants to refer to. The XPATH
must point to a simple data type, since WSCoL does not allow the definition
of relationships between complex data types.

In Sect. 9.3, to express the functional requirements of the “Holiday Lo-
cation Finder” service, we need to refer to the maximum location distance.
Figure 9.4 shows the structure of the internal BPEL variables “RequestSpec”
and “LocationResults” used to call the “Holiday Location Finder Web Ser-
vice” web method. To refer to the maximum location distance we can write:

($RequestSpec/maxLocationDistance)

252 C. Ghezzi and S. Guinea

Fig. 9.4. The input and output messages for the Holiday Location Finder Web
Service

The first part of the expression is introduced by a dollar sign and indi-
cates the BPEL variable we are referring to (i.e., “RequestSpec”) while the
remaining part specifies how to obtain the “maxLocationDistance” value from
the variable. In this case the XPATH expression matches a node containing
a integer value (see Fig. 9.1), on which a function like “abs” can be used to
evaluate the absolute value.

External Variables

WSCoL allows the designer to refer to external variables through the concept
of external data collection. External variables can be simple data types such as
strings, integers, longs, booleans, etc. WSCoL provides a number of functions
for data collection, one for each simple data type that can be returned, and
assumes the external data collectors being used can be queried through a web
service interface.

In the example discussed in Sect. 9.3, we need to first discover the map’s
resolution (of which we only had a byte representation), and then compare
it with the highest resolution accepted by the haptic device—say 300 by 200
pixels. To do so, we use a data collector (e.g., the “imageInfoService,” whose
return type is shown in Fig. 9.5), which provides the resolution of an image
it is given as input.

The common signature for WSCoL’s data collection functions is

(\return<X> (W, O, Ins, Out))

9 Run-Time Monitoring in Service-Oriented Architectures 253

Fig. 9.5. Structure of the return type for “imageInfoService”’s “getInfo” web
method

where

• X is the XSD type of the function’s return value.
• W is the location of the WSDL specification for the data collector that is

to be used.
• O is the name of the operation (web method) that is to be called on the

data collector.
• Ins is a string concatenation of the input values that should be used when

calling the data collector’s web method.
• Out is an XPATH indicating how to obtain the correct return value within

the complex data type returned by the data collector.

Figure 9.6 shows a post-condition that specifies the requested resolution
(higher than 300 by 200 pixels) of the map returned by the service.

Quantifiers

WSCoL also offers designers the possibility to use universal and existential
quantifiers. These are useful in cases in which we want to express constraints
on sets of values.

Universal quantifiers indicate a constraint that must be true for each ele-
ment in a given range. They follow a simple syntax:

(\forall $V in R; C)

254 C. Ghezzi and S. Guinea

(\returnInt('WSDL', 'getInfo', ($getRoute/parameters/getRouteResult),
'//parameters/getInfoResult/HResolution') <= 300 &&
(\returnInt('WSDL', 'getInfo', ($getRoute/parameters/getRouteResult),
'//parameters/getInfoResult/VResolution') <= 200

Fig. 9.6. The post-condition on the map web service

They indicate a constraint that must be true for each element in a given range.
The meanings of the different parts are as follows:

• $V in R defines the variable and the finite set in which the variable is
considered. The set is defined using the syntax previously introduced for
variables, where the XPATH expression returns a set of nodes, instead of
a single node.

• C defines the constraint that must hold.

For example, the “findLocation” web method in the “Holiday Location
Finder” web service returns an array of locations (see Fig. 9.4 for the structure
of the returned data type). In Sect. 9.3 our post-condition for this method
was that “all the returned locations should be within the maximum location
distance specified in the request.” The WSCoL constraint can be seen in
Fig. 9.7.

Existential quantifiers follow a similarly simple, and equally intuitive, syn-
tax:

(\exists $V in R; C)

9.4.2 The Monitoring Manager

The internal architecture of the Dynamo monitoring manager is shown in
Fig. 9.8. It follows a plug-in style, which allows it to interact with different
kinds of data analyzers for different kinds of properties. In its current imple-
mentation, Dynamo uses the XlinkIt engine [27] as its external data analyzer.
The following are the monitoring manager’s principal components:

(\forall $l in ($LocationResults/locations/location/);
($l/Coordinate_zone)==($RequestSpec/departureLocation/Coordinate_Zone) &&
[($l/Coordinate_Easting) - ($Request/departureLocation/Coordinate_Easting)] ^2 +
[($l/Coordinate_Northing) - ($Request/departureLocation/Coordinate_Northing)] ^2 <=
($RequestSpec/maxLocationDistance)^2)

Fig. 9.7. The post-condition for the “findLocation” web method

9 Run-Time Monitoring in Service-Oriented Architectures 255

Monitoring Manager

XlinkIt
Analyzer

Plugin

Analyzer
Plugin

Analyzer
Plugin

External
Analyzers
Manager

Configuration
Manager

Invoker

Rules
Manager

Monitor
Manager
Interface

Plugin Interface

Plugin Interface

Plugin Interface

Fig. 9.8. The architecture of the monitoring manager

• Rules manager, which represents the interface through which the moni-
toring manager interacts with its clients. It is responsible for managing
the monitoring manager’s set up, for how the other internal components
collaborate to achieve constraint verification, and for releasing the mon-
itoring manager’s resources, once the executing process no longer needs
monitoring.

• Configuration manager, which contains all the information needed by the
other components to verify the constraints. Every time weaving is per-
formed, the BPEL2 component adds a snippet of BPEL code at the begin-
ning of the monitored process. This allows the configuration manager to
be set up independently for each process to be monitored. In particular,
the extra code sends the monitoring manager all the WSCoL assertions it
will be asked to verify during the process execution, thereby reducing the
amount of data that will be sent each time a constraint needs to be checked,
by restricting it to information that can be obtained only at run-time.

• External analyzers manager, which allows different external data analyzers
to be used by the monitor. This component is responsible for transforming
the collected monitoring data and the WSCoL assertions into the specific
formats that can be understood by the external data analyzers. In the
case of XlinkIt, the data are transformed into XML data files, while the
WSCoL rules are transformed into [25] rules.

256 C. Ghezzi and S. Guinea

• Invoker, which can invoke any external component, provided it has a
WSDL interface. It is used for external data collection, to invoke external
data analyzers, and to invoke the external web service being checked and
for which the monitoring manager is acting as a proxy.

The collaboration diagram of Fig. 9.9 illustrates how run-time monitoring
is achieved. The figure illustrates a simple case in which (1) the Rules man-
ager checks whether a pre-condition is defined in the Configuration manager
for the specific service invocation being monitored (steps 1–2), (2) discov-
ers that a constraint exists and asks the External analyzers manager to use
the appropriate analyzer plug-in to transform the monitoring data and the
WSCoL constraint into suitable formats (steps 3–6), (3) asks the Invoker to
call the external data analyzer to verify the constraint (steps 7–10), (4) finds
out that the constraint holds and asks the Invoker to call the external service
(steps 11–14), and finally gets back to the process with the data it is expecting
(step 15). Although many interactions take place, the implementation is ex-
tensively configurable. All components can be kept local in order to minimize
the amount of needed distributed interactions.

The actual cost of our approach in terms of distributed interactions is
difficult to quantify. On the one hand, each call to an external service being
monitored is substituted by a call to our Monitoring manager proxy. At that

WS-BPEL
Process

Data Collector

Web Service

Data AnalyzerInvoker

Rules
Manager

External
Analyzers
Manager

Monitor Plug-
in

Configuration
Manager

12: Invoke Web Service
13: return

7: Validate
pre-condition 10: return

3: Tranform WS-Col Expression
and monitoring data

4: Tranform Rule
and data

5: return6: return

11: Invoke
Web Service 14: return

8: Invoke Monitor

9: return

15: return

1: Service invocation

2: Ask for monitoring rule

Fig. 9.9. Checking a pre-condition

9 Run-Time Monitoring in Service-Oriented Architectures 257

point, two things can happen depending on whether a pre-condition has been
defined or not. In the first case, if the pre-condition is verified correctly then
the proxy will call the actual external service. In the second case, a post-
condition must be present (if not the proxy would not have been called). In
order to verify such a condition, the proxy must first call the actual external
service. Therefore, in the worst case, from a performance standpoint, two ser-
vice invocations are performed: one to the proxy and one to the service itself.
Their payloads are similar, except that the call to the proxy contains the extra
monitoring data collected from within the process in execution. The actual
amount of extra data depends solely on the nature of the WSCoL expressions
defining the pre- and/or post-condition being checked. External data collec-
tion, through which data are gathered from external sources that expose a
web service interface, also affects performance. In fact, the occurrence of ex-
ternal variables in pre- or post-conditions implies extra remote invocations
that must be performed at run-time.

Regardless of the actual number of service invocations being performed,
however, the main performance bottleneck in the current version of Dynamo
is due to the verification of the CLiX rules (after they have been translated
from the original WSCoL rules) performed by XlinkIt, which uses XML files to
perform its tasks. We are currently producing a pure WSCoL analyzer based
on Java that will solve this problem by keeping the data in main memory,
without leaning on filesystems and databases.

9.5 Other Monitoring Approaches

This section reviews a number of research and industrial monitoring ap-
proaches and discusses their properties in terms of the classification items
presented earlier. For some of these approaches, more in-depth presentations
can be found in the other chapters of this monograph. A summary of our
comparative analysis of all the approaches is presented in Table 9.1.

9.5.1 Research Approaches

Requirements Monitoring

Spanoudakis and Mahbub [26] present an approach in which the requirements
to monitor in a BPEL workflow are defined using event calculus, a first-order
logic that incorporates predicates for expressing temporal features. An event
interceptor component is needed to capture phenomena, such as operation
invocations, return messages, etc. By tying the event interceptor to a central-
ized execution engine, with this approach it is not necessary to instrument
the individual services in the collaboration.

Two kinds of requirements are considered: behavioral properties, automat-
ically obtained from the BPEL collaboration specification, and behavioral as-
sumptions that are manually specified. When events are collected at run-time,

258 C. Ghezzi and S. Guinea

they are stored in an event database. The specified properties are then verified
against the collected data, using variants of integrity-checking techniques in
temporal databases.

This approach is meant to capture erroneous situations post-mortem. Even
though the approach is tailored toward monitoring functional properties, non-
functional properties can also be expressed and verified, such as properties
regarding response times. Since events are collected in parallel with the process
execution, a low degree of invasiveness is ensured.

For a deeper analysis of this approach, see Chap. 10.

Planning and Monitoring Service Requests

A significantly different approach is proposed by Lazovik et al. [18]. They
present a planning architecture (with a specially tailored run-time environ-
ment) in which service requests are presented in a high-level language called
XSRL (Xml Service Request Language). They adopt a proprietary orches-
trated approach to collaboration, since they claim that current standards,
like BPEL, do not have the necessary flexibility to satisfy user requirements
that heavily depend on run-time context information.

The planing architecture is based on a continuous interleaving of planning
steps and execution steps. Because BPEL lacks formal semantics, the authors
decided to extrapolate state-transition systems from BPEL specifications and
to enrich them with domain operators and constructs.

This framework is based on reactive monitoring. In particular, design-
ers can define three kinds of properties: (1) Goals that must be true before
transitioning to the next state (2) goals that must be true for the entire pro-
cess execution, and (3) goals that must be true for the process execution
and evolution sequence. The XSRL language also allows for the definition of
constraints as boolean combinations of linear inequalities and boolean propo-
sitions. It provides sequencing operators such as “achieve-all,” “before” and
“then,” “prefer” goal x “to” goal y, and “then.” It also defines a number of
operators that can be used on the propositions themselves, defining how these
propositions should be satisfied such as “vital” and “optional.”

The delivery platform continuously loops between execution and planning.
In particular, the latter activity is achieved by taking into account context and
the properties specified for the state-transition system. This makes it possible
to discover, each time it is undertaken, whether a property has been violated
by the previously executed step, or if execution is proceeding correctly.

9.5.2 Industrial Approaches

In the last few years, numerous industrial approaches to monitoring have
been developed. With respect to research proposals, industrial approaches
tend to be tailored on the requirements of service providers and concentrate
on monitoring low-level events. Most of the monitoring approaches are part

9 Run-Time Monitoring in Service-Oriented Architectures 259

of a deployment environment, and consist of either ways to capture low-level
information (such as response time and throughput) or exceptions that occur
while trying to enforce certain non-functional properties (or policies). We will
start by presenting examples of the latter, by looking at two industrial propos-
als: Cremona and Colombo. We will then conclude by investigating lower-level
approaches such as GlassFish and IBM’sTivoli Composite Application Man-
ager for SOAs.

Cremona

Cremona is a proposal from IBM, which is currently distributed within the
Emerging Technologies Toolkit (ETTK) [19]. Cremona, which stands for “Cre-
ation and Monitoring of WS-Agreements,” is a special-purpose library devised
to help clients and providers in the negotiation and life-cycle management of
WS-Agreements (i.e., their creation, termination, run-time monitoring, and
re-negotiation).

A WS-Agreement is an XML binding between clients that require spe-
cific functional and/or non-functional properties be ensured at run-time and
providers that promise them. The standard, proposed by the GRAAP(Grid
Resource Allocation and Agreement Protocol) workgroup, provides XML syn-
tactical templates for agreements—protocols that should be followed during
the creation of an agreement—and a number of operations that can be used
to manage them throughout their life-cycle.

Regarding the monitoring problem, the Cremona framework provides an
“Agreement Provider” component, whose structure incorporates, among other
things, a “Status Monitor.” This component is specific to the system provid-
ing the service. By consulting the resources available on the system and the
terms of an agreement, it helps decide whether a negotiation proposal should
be accepted or refused. Once an agreement has been accepted by both parties
(the client and the provider), its validity is checked at run-time by a “Compli-
ance Monitor,” a sophisticated system-specific component that can check for
violations as they occur, predict violations that still have to occur, and take
corrective actions. Since both monitoring components are system dependent,
designers are guaranteed great flexibility in terms of the properties they can
check.

Colombo

Colombo [9] is a lightweight middleware for service-oriented architectures pro-
posed by IBM. It advocates that an optimized and native run-time environ-
ment, which does not build upon previously existing application servers, can
provide greater performance, and guarantee simplified models for development
and deployment. It supports the entire web service stack and, in particular,
orchestrated collaborations defined using BPEL. It also supports declarative
service descriptions, such as those expressed using WS-Policy [14].

260 C. Ghezzi and S. Guinea

Table 9.1. Comparing monitoring approaches

Tools for service
providers who

need to monitor
statistics of client-

service
interactions

Tools for
composition

providers who
need to monitor

the external
services

Tools for service
providers who

need to monitor
agreements with

their clients

Tools for
composition

providers who
need to monitor

process evolution

Tools for service
providers who can

personalize
monitoring on-top
of the service bus

structure

Monitoring goals

Tools for service
providers who

need to monitor
policy compliance
of incoming and

outgoing mesages

Tools for
composition

providers who
need to monitor

the external
services used

No automatic
validation

Event-based
system

(integration bus)

IBM TIvoli
Composite
Application

Manager

Mainly non-
functional
properties

Messages as they
enter or leave the
integration bus.

No automatic
analysis.

Timeliness does
not depend on the

system

WS-Policy for
QoS

Response times,
throughputs,
numbers of

requests, and
message tracing

Mainly non-
functional
properties

No automatic
analysis.

Timeliness does
not depend on the

system

Proprietary
deployment

infrastructure

Three standard
macro-degrees of

monitoring
GlassFish

No automatic
validation

Through a pipe of
dedicated policy-
specific verifiers

Mainly non-
functional

properties (WS-
Policy)

Before a message
leaves the system,

or before the
incoming

message is
processed.

Optimized
middleware for

SOA that supports
BPEL

 Service,
operation, or

message level
Colombo

Validation is policy
dependent

No specific
paradigm, but any

interaction
between a caller
and the provider

WS-Agreement
templates with

different property
description
languages.

Functional and
non-functional,

and properties of
histories of
interactions

Implementation-
specific

techniques

Server-side
regarding the

interaction
channel and the

system's
resources

Reactive
approach

Cremona

Assertion-
checking
approach

Errors discovered
as soon as they

occur

Planning and
monitoring

Service
Requests

Collected within
the proprietary

framework

Proprietary
orchestration-
based delivery

framework

Requirements and
specification level
(market domain

terminology)

Process and
evolution

sequence goals

Low-level
sequences of
engine events

Variant of integrity
checking in

temporal
deductive
databases

Post-mortemRequirements
monitoring

BPEL-based
orchestrations

Mainly functional
(and simple non-

functional)
properties

An interceptor
component listens

for low-level
engine events

Collected by the
process itself, or
through external

data sources

Blocking pre- and
post-conditions

Assertion-
checking

Dynamo
Programming

level

Mainly functional
(and simple non-

functional)
properties

BPEL-based
orchestrations

Types of Properties
Validation
technique

Abstraction levelTimeliness
Collecting

monitoring data
Collaboration

paradigm
Approach

Name

WS-Policy is a declarative language that aggregates quality-of-service
assertions that are defined using domain-specific languages. Of the many
domain-specific policy languages already defined or being defined, WS-Security
and WS-Transactions are the most prominent. Policies are statements that can
be attached to a service, to a single operation, or even to a single message
type. Therefore, recalling the example of Sect. 9.3, Colombo could be used
to monitor the messages being sent to the bank service and to check whether
they satisfy the specified security policies (i.e., encryption, authentication,
etc.). Colombo manages incoming and outgoing messages by passing them
through two corresponding pipes of dedicated policy verifiers and enforcers
(i.e., one for each kind of policy supported by the system), it can discover
erroneous behavior in a timely fashion, but is intrusive in nature. It provides
support for important issues, such as security.

9.5.3 Other Approaches

Many other industrial approaches to the monitoring of service-oriented sys-
tems exist. Most of them, however, tend to interpret monitoring at an even

9 Run-Time Monitoring in Service-Oriented Architectures 261

lower level of abstraction. In fact, they limit themselves to logging the mes-
sages being sent in and out of a system. They can be assimilated to mere
data collectors, since there is seldom any automatic analysis of functional or
non-functional properties, and data are interpreted manually.

GlassFish

GlassFish [12] is an open-source community implementation of a server for
Java EE 5 applications. Regarding monitoring of deployed services, GlassFish
provides a number of specific tools. Using technologies such as “J2EE Man-
agement” [13] and “Java Management Extensions”[21], GlassFish makes it
possible to access information on resources and properties that are tied to the
web services to be monitored. This information is given in the form of opera-
tional statistics (and in graphical form as well). The nature of the monitored
aspects depends on the level of monitoring chosen for a given service. There
are three possible levels: low, which monitors response times, throughput, and
the total number of requests and faults; medium, which adds message tracing
under the form of content visualization; and off, in which no data is col-
lected. Captured information can also be automatically aggregated to obtain
“minimum response times,” “maximum response times,” “average response
times,” etc.

Regarding the examples presented in Sect. 9.3, this approach could be
helpful in monitoring response times. Analysis of the monitored data could
then be achieved either manually, or automatically, possibly in conjunction
with a more sophisticated monitoring approach, such as Dynamo. This could
be the case of the examples presented in Sect. 9.3, in which John’s haptic
device needs to know how much time it usually takes to interact with the
bank service, pay the toll, and open the toll bars.

IBM Tivoli Composite Application Manager for SOAs

Another similar approach is the IBMTivoli Composite Application Manager
for SOAs [31]. This application manager uses an event-based collaboration
paradigm, implemented through a special-purpose integration bus. Messages
enter and leave the bus continuously, passing through special components
called the “ServiceBusInbound” and the “ServiceBusOutbound,” making it
easy to monitor their behavior and, in particular, their performance. However,
the application manager lacks the specially tailored tools present in other
similar approaches.

9.6 Conclusions

In this chapter we argued that dynamic software architectures, like SoAs, re-
quire verification to extend to run-time. In fact, since both the components

262 C. Ghezzi and S. Guinea

of an application and their interconnections may change after deployment,
traditional pre-deployment verification is not enough to guarantee that the
application will satisfy the required quality requirements. We discussed run-
time monitoring as a possible solution to this problem, and we analyzed the
possible dimensions that may characterize the monitoring activity. In partic-
ular, we zoomed into an approach to monitoring that we investigated in our
research, based on assertions.

We believe that monitoring should also be the basis for architectural recov-
ery. It should be possible to design SOAs that provide self-organized reactions,
which may occur as deviations from the expected quality requirements de-
tected by the monitor. This is still an open and challenging research direction
in which we plan to invest our future efforts.

We are also considering a new version of the Dynamo framework that re-
lies heavily on Aspect-oriented Programming technology. In particular, we are
using AspectJ to enhance the ActiveBPEL engine [1] with Dynamo’s moni-
toring capabilities. Such an approach is allowing us to treat business logic and
monitoring as two completely cross-cutting concerns that are only intertwined
at run-time. The original process is no longer modified at deployment-time
and is directly deployed to the framework, regardless of the number of moni-
toring strategies defined by the different stakeholders. The approach also has
another advantage. Since the actual service invocations are no longer per-
formed by the Dynamo framework, which is only responsible for monitoring,
but by the ActiveBPEL engine itself, all general-purpose policies supported
by ActiveBPEL are a given. Such an approach also provides slightly better
performance.

Finally, we have also been using WSCoL and slightly extended versions
of Dynamo to enable the management of general policies such as those used
within the WS-Policy spec [14]. Some initial results have been achieved [5],
but the work is still ongoing.

References

1. ActiveBPEL The Open Source BPEL Engine, 2006.
2. B. Atkinson, G. Della-Libers, S. Hada, M. Hondo, P. Hallam-Baker,

J. Klein, B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin,
N. Nagaratnam, H. Prafullchandra, J. Shewchuk, and D. Simon. Web Services
Security (WS-Security), 2002.

3. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An Overview of JML Tools and Applications. International
Journal on Software Tools for Technology Transfer, 7(3):212–232, 2005.

4. L. Baresi and S. Guinea. Towards Dynamic Monitoring of BPEL Processes.
In B. Benatallah, F. Casati, and P. Traverso, editors, ICSOC, volume 3826 of
Lecture Notes in Computer Science, pages 269–282. Springer, 2005.

5. L. Baresi, S. Guinea, and P. Plebani. WS-Policy for Service Monitoring. In
C. Bussler and M. Shan, editors, TES, volume 3811 of Lecture Notes in Computer
Science, pages 72–83. Springer, 2005.

9 Run-Time Monitoring in Service-Oriented Architectures 263

6. L. Baresi, S. Guinea, and M. Plebani. Business Process Monitoring for Personal
Dependability. In Workshop SOAM 06 Modeling the SOA – Business Perspective
and Model Mapping, 2006.

7. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL: Web
Services Definition Language. W3C Technical Reports on WSDL, published
online at http://www.w3.org/TR/wsdl/, 2004.

8. J. Clark and S. DeRose. Xml path language version 1.0, 1999.
9. F. Curbera, M. J. Duftler, R. Khalaf, W. A. Nagy, N. Mukhi, and

S. Weerawarana. Colombo: Lightweight Middleware for Service-Oriented Com-
puting. IBM Syst. J., 44(4):799–820, 2005.

10. I. Foster and C. Kesselman. Scaling system-level science: Scientific exploration
and it implications. Computer, 39(11):31–39, November 2006.

11. I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML, 2004.

12. H. Hrasna. GlassFish Community Building an Open Source Java EE 5 Applica-
tion Server, 2006.

13. H. Hrasna. JSR-000077 J2EETM Management, 2006.
14. IBM, BEA Systems, Microsoft, SAP AG, Sonic Software, and VeriSign. Web

Services Policy Framework, 2006.
15. IBM, Microsoft, Layer 7 Technologies, Oblix, Verisign, Actional, Computer Asso-

ciates, OpenNetwork Technologies, Ping Identity, Reactivity, and RSA Security.
Web Services Trust Language, 2005.

16. IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems. Business Process
Execution Language for Web Services 1.1, 2005.

17. N. Kavantzas, D. Burdett, and G. Ritzinger. Web Services Choreography De-
scription Language Version 1.0, 2004.

18. A. Lazovik, M. Aiello, and M. P. Papazoglou. Associating Assertions with Busi-
ness Processes and Monitoring their Execution. In Proceedings of the 2nd Inter-
national Conference on Service Oriented Computing, pages 94–104. ACM, 2004.

19. H. Ludwig, A. Dan, and R. Kearney. Cremona: an Architecture and Library for
Creation and Monitoring of WS-Agreements. In Proceedings of the 2nd Interna-
tional Conference on Service Oriented Computing, pages 65–74. ACM, 2004.

20. D. C. Luckham and F. W. von Henke. An overview of Anna, a specification
language for Ada. IEEE Software, 2(2):9–22, March 1985.

21. E. McManus. JSR-000003 JavaTM Management Extensions, 2006.
22. B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.
23. B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,

1997.
24. B. Meyer. Design by Contract, Components and Debugging. JOOP, 11(8):75–79,

1999.
25. M. Marconi and C. Nentwich. CLiX ¡constraint language in xml/¿, 2004.
26. K. Mahbub and G. Spanoudakis. A Framework for Requirents Monitoring of

Service Based Systems. In Proceedings of the 2nd International Conference on
Service Oriented Computing, pages 84–93. ACM, 2004.

27. C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. Xlinkit: a Consistency
Checking and Smart Link Generation Service. ACM Transactions on Internet
Technology, 2(2):151–185, 2002.

28. M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing Execution of Composite
Web Services. In J. M. Vlissides and D. C. Schmidt, editors, OOPSLA, pages
170–187. ACM, 2004.

264 C. Ghezzi and S. Guinea

29. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services,
2003.

30. D. S. Rosenblum. A Practical Approach to Programming with Assertions. IEEE
Trans. Software Eng., 21(1):19–31, 1995.

31. IBM Tivoli Composite Application Manager for SOA, 2006.

10

Monitoring WS-Agreements:
An Event Calculus–Based Approach

Khaled Mahbub and George Spanoudakis

Department of Computing, City University, London, EC1V 0HB
gespan|am697@soi.city.ac.uk

Abstract. In this chapter, we present a framework that we have developed to sup-
port the monitoring of service level agreements (SLAs). The agreements that can
be monitored by this framework are expressed in an extension of WS-Agreement
that we propose. The main characteristic of the proposed extension is that it uses
an event calculus–based language, called EC-Assertion, for the specification of the
service guarantee terms in a service level agreement that need to be monitored at
runtime. The use of EC-Assertion for specifying service guarantee terms provides
a well-defined semantics to the specification of such terms and a formal reasoning
framework for assessing their satisfiability. The chapter describes also an imple-
mentation of the framework and the results of a set of experiments that we have
conducted to evaluate it.

10.1 Introduction

The ability to set up and monitor service level agreements (SLAs) has been in-
creasingly recognized as one of the essential preconditions for the deployment
of web services [28]. Service level agreements are set through collaboration be-
tween service consumers and service producers in order to specify the terms
under which a service that is offered to the former by the latter is to be de-
ployed and the quality properties that it should satisfy under these terms.
The ability to monitor the compliance of the provision of a service against a
service level agreement at runtime is crucial from the point of view of both
the service consumer and the service producer.

In the case of service consumers, monitoring service level agreements is
necessary due to the need to check if the terms of an agreement are satis-
fied in a specific operational setting (i.e., the set of the running instances of
the services involved in the agreement and the computational resources that
these services are deployed on or they use to communicate), identify the con-
sequences that the violation of certain terms in an agreement might have onto
their systems, and request the application of any penalties that an agreement
prescribes for the violated service provision terms.

266 K. Mahbub and G. Spanoudakis

For service providers, the monitoring of the provision of a service against
the terms specified in an agreement is necessary in order not only to gather
evidence regarding the provision, which may be necessary if a dispute with a
service consumer arises over the provision, but also to identify problems with
the delivery of the service and take action before an agreement is violated. For
instance, if an agreement requires that on average a service should respond
within N time units over a specific time period, monitoring the performance
of the service may spot a performance deviation early enough to give the
provider an opportunity to address the problem (by adding, for instance, an
extra server at runtime or reducing the level of provision of the same service
to other consumers who do not have strictprovision terms).

In this chapter, we describe a framework that we have developed to sup-
port the monitoring of functional and quality of service requirements which
are specified as part of service level agreements. This framework can moni-
tor the provision of services to service-based software systems (referred to as
“SBS” systems, see Fig. 10.1). A for our framework is a system that deploys
one or more external web services which are coordinated by a composition

Monitor

Deviation Database
Handler

Event Receiver

Monitor Manager

Behavioural Properties
Extractor

Monitoring
Console

IMonitor
Manager

Service based System
Execution Environment

Deviation Port

Deviation Port

Event Port

AKey: B A exposes the interface C, and B uses the interface C

A B A writes to port C that B listens to

C
C

Event Database
Handler

IEventDBHandler

IMonitor

Simulator

IDeviationDBHandler IBehaviouralPropertiesExtractor

IEventReceiver

ISimulator

Fig. 10.1. Monitoring framework

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 267

process that is expressed in BPEL [1]. This composition process provides
the required system functionality by calling operations in the external web
services, receiving and processing the results that these services return, and
accepting and/or responding to requests from them. It should be noted that
the external services which are deployed by an SBS system may be inter-
acting directly with third-party services without the intervention of this sys-
tem. Such interactions are not taken into account during monitoring. Thus,
all the external services of an SBS system are effectively treated as atomic
services.

The service level agreements that can be monitored by the framework
that we present in this chapter are expressed using an extension of WS-
Agreement [2] that we have defined for this purpose. This extension sup-
ports the description of (a) the operational context of an agreement, (b)
the policy for monitoring an agreement, and (c) the functional and qual-
ity requirements for the service which is regulated by the agreement and
need to be monitored (i.e., the guarantee terms in the terminology of WS-
Agreement). The extensions of WS-Agreement that we have introduced to
support (a) and (b) have been directly integrated into the XML schema that
defines this language. To support the specification of (c), we have developed
a new language in which service guarantee terms are specified in terms of
(i) events which signify the invocation of operations of a service by the com-
position process of an SBS system and returns from these executions, (ii)
events which signify calls of operations of the composition process of an SBS
system by external services and returns from these executions, and (iii) the
effects that events of either of the above kinds have on the state of an SBS
system or the services that it deploys (e.g., change of the values of system
variables). This language has been defined by a separate XML schema and is
called . EC-Assertion. It is based on (EC) [34] which is a first-order temporal
logic language. Specifications of service guarantee terms in EC-Assertion can
be developed independently of WS-Agreement and subsequently referred to
by it.

The events which are used in the specification of the service description
and guarantee terms in an agreement are restricted to those which can be
observed during the execution of the composition process of an SBS system.
This set of events is determined by a static analysis of the BPEL composition
process of this system that is performed by our framework.

The choice of event calculus (EC) as the language for specifying the ser-
vice guarantee terms in an agreement has been motivated by the need for
(a) expressing the properties to be monitored in a formal language allowing
the specification of temporal constraints and (b) being able to monitor an
agreement using a well-defined reasoning process based on the inference rules
of first-order logic (this criterion has also led to the choice of event calculus
instead of another temporal logic language).

Our monitoring framework has been designed with the objective to sup-
port service level agreements. The term “non-intrusive monitoring” in this

268 K. Mahbub and G. Spanoudakis

context signifies a form of monitoring that is carried out by a computational
entity that is external to the system that is being monitored, is carried out
in parallel with the operation of this system and does not intervene with
this operation in any form. Given this definition, non-intrusive monitoring
excludes approaches which perform monitoring by weaving code that im-
plements the required checks inside the code of the system that is being
monitored (e.g., monitoring oriented programming [10] or SBS monitoring
by code weaved into BPEL processes [5]). It also excludes approaches which,
despite deploying external entities in order to perform the required checks,
require the instrumentation of the source code of the monitored system in
order to generate the runtime information that is necessary for the checks
(e.g., [19, 33]).

The framework that we present in this chapter is non-intrusive as it is
based on events which are captured during the operation of an SBS sys-
tem without the need to instrument its composition process or the code of
the services that it deploys and is performed by a reasoning engine that
is separate from the system that is being monitored and operates paral-
lel with it. Furthermore, our framework can monitor different types of de-
viations from service guarantee terms including: (a) violations of terms by
the recorded behavior of a system and (b) violations of service guaran-
tee terms by the expected behavior of the system. These types of devia-
tions were originally defined in [36] and are discussed in this chapter. Ad-
ditional forms of violations that can be detected by the framework are
described in [36].

The framework that we discuss in this chapter was originally developed to
support the monitoring of functional service requirements outside the context
of WS-Agreement and the main formal characteristics of the original form of
the framework have been presented in [36]. Hence, in this chapter, our focus is
to discuss how this framework can be used to support the monitoring of WS-
Agreement and introduce the extensions to this standard that enable the use
of our framework for this purpose. Furthermore, in this chapter, we present
an extension of the specification language of the framework that is based on
the use of internal and external operations in event calculus formulas which
enable the specification and monitoring of wider range of quality of service
requirements.

The rest of the chapter is structured as follows. In Sect. 10.2, we briefly
introduce our monitoring framework. In Sect. 10.3, we describe the extensions
that we have introduced to WS-Agreement in order to specify the service guar-
antee terms that can be monitored at runtime and policies for performing this
monitoring. In Sect. 10.4 we describe the monitoring process that is realized
by the framework. In Sect. 10.5, we discuss the prototype that we have de-
veloped to implement the framework. In Sect. 10.6, we present the results of
an experimental evaluation of the framework. In Sect. 10.7, we review related
work. Finally, in Sect. 10.8, we conclude with an overview of our approach
and directions for future work.

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 269

10.2 Overview of Monitoring Framework

Our framework assumes that the deployment platform of a service-based sys-
tem is an environment that executes the composition process of the system and
can provide the events that will be used during monitoring (see the component
Service Based System Execution Environment in Fig. 10.1). The framework
itself consists of a monitoring manager, an event receiver, a monitor, an event
database, a deviation database, and a monitoring console.

The monitoring manager is the component that has responsibility for initi-
ating, coordinating, and reporting the results of the monitoring process. Once
it receives a request for starting a monitoring activity as specified by the mon-
itoring policy of an agreement, it checks whether it is possible to monitor the
service guarantee terms of the agreement as specified in this policy (i.e., given
the BPEL process of the SBS system that is identified in the policy and the
event reporting capabilities indicated by the type of the execution environ-
ment of the SBS system). If the service guarantee terms can be monitored, it
starts the event receiver to capture events from the SBS execution environ-
ment and passes to it the events that should be collected. It also sends to the
monitor the formulas to be checked.

The event receiver polls the event port of the SBS execution environment
at regular time intervals as specified in the monitoring policy in order to get
the stream of events sent to this port. After receiving an event, the event
receiver identifies its type and, if it is relevant to the service guarantee terms
of the agreement being monitored, it records the event in the event database
of the framework. All the events which are not relevant to monitoring are
ignored.

The monitor retrieves the events which are recorded in the database dur-
ing the operation of the SBS system in the order of their occurrence, derives
(subject to the monitoring mode of an agreement) other possible events that
may have happened without being recorded (based on assumptions set for an
SBS system in an agreement and its behavioral properties), and checks if the
recorded and derived events are compliant with the requirements being moni-
tored. In cases where the recorded and derived events are not consistent with
service guarantee terms in an agreement, the monitor records the deviation
in a deviation database.

The monitoring manager polls the deviation database of the framework at
regular time intervals to check if there have been any deviations detected with
respect to a given monitoring policy and reports them to the port specified
by the monitoring policy.

The behavioral properties extractor takes as input the BPEL process of the
SBS system to be monitored and generates a specification of the behavioral
properties of this system in event calculus. As a by-product of this extrac-
tion, it also identifies the primitive events which can be observed during the
runtime operation of the SBS systems. These events are used by the monitor-
ing manager to check whether the formulas specified in an agreement can be

270 K. Mahbub and G. Spanoudakis

monitored at runtime. They are also used by the assumptions editor of the
framework (see below) as primitive constructs for specifying the service guar-
antee terms that are to be monitored in cases where the service consumers
and producers wish to specify these terms using the framework.

Finally, the framework incorporates a monitoring console that gives access
to the monitoring service to human users. The console incorporates a terms
editor that supports the specification of the service guarantee terms of an
agreement in the high level syntax of our event calculus–based language, and
a deviation viewer that displays the deviations from the monitored require-
ments. The terms editor provides a form-based interface that enables the user
to select events extracted from the BPEL process of an SBS system and com-
bine them in order to specify the formulas that define the service guarantee
terms of an agreement.

10.3 Specification of Service Level Agreements

10.3.1 Overview of WS-Agreement

WS-Agreement is a standard developed by the Global Grid Form for specifying
agreements between service providers and service consumers and a protocol
for creating and monitoring such agreements at runtime [2]. The objective of
a WS-Agreement specification is to define the guarantee terms that should
be satisfied during the provision of a service. WS-Agreement is defined as an
XML schema. An agreement drawn using WS-Agreement has two sections:
the Context section and the Terms section.

The Context section specifies the consumer and the provider of the service
that have created the agreement (i.e., the parties of the agreement) and other
general properties of the agreement including, e.g., its duration and any links
that it may have to other agreements.

The Terms section of a WS-Agreement specifies the service that the agree-
ment is about and the objectives that the provision of this service should fulfill.
This section is divided into two subsections: the Service Description Terms
and Service Guarantee Terms. The service description terms constitute the
basic building block of an agreement and define the functionalities of the ser-
vice that is to be delivered under the agreement. An agreement may contain
any number of service description terms. The guarantee terms specify assur-
ances on service quality that need to be monitored and enforced during the
provision of a service.

The agreement life cycle that is envisaged by WS-Agreement expects that
an agreement initiator sends an agreement template to the service consumer.
This template is defined by adding a new section to the agreement structure
described above, called Creation Constraints. This new section contains con-
straints on possible values of terms for creating the agreement. The consumer

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 271

fills in the template and sends it back to the initiator as an offer. Subse-
quently, the initiator notifies the consumer of the acceptance or rejection of
the agreement depending on the availability of resources, the service costs,
etc. The monitoring of an agreement that has been confirmed is expected to
start when at least one of the services which are involved in the agreement is
running.

10.3.2 Extensions of WS-Agreement

In its original form, WS-Agreement does not support the specification of poli-
cies determining the deployment context in which the provision of services will
be monitored, and who will have responsibility for providing the information
that will be necessary for assessing whether the guarantee terms of the agree-
ment are satisfied. Also, it does not specify where the results of monitoring
should be reported. This is problematic in cases where the agents who have
responsibility for the monitoring of an agreement are expected to actively
report deviations from it rather than waiting to be asked if deviations have
occurred (i.e., notification of deviations in a push mode). Furthermore, WS-
Agreement does not specify a language for defining the service description and
service guarantee terms of an agreement or an operation protocol that would
enable the monitoring of an agreement in the push mode described above.
The choice of the language for the specification of the service description and
service guarantee terms of an agreement is left to the concrete implementa-
tions of the standard as the language for the specification of these terms may
need to vary for different domains. Our extensions to WS-Agreement address
these limitations of the standard.

Specification of the Context of an Agreement

Our first extension to WS-Agreement is concerned with the specification of
policies for monitoring an agreement. A policy, in our proposal, specifies the
following:

• The composition process of the SBS system that deploys the services which
are the subject of the agreement.

• The source of the runtime information which will enable the monitoring
of the agreement.

• The way in which the monitoring of the agreement is to be performed
including the mode, regularity, and timing of monitoring.

• The recipient of the results of the monitoring process.

To enable the specification of monitoring policies, we have extended WS-
Agreement by a complex XML type, called MonitoringPolicyType. A graphical
view of this type is shown in Fig. 10.2. According to MonitoringPolicyType,
the description of the monitoring policy of an agreement includes the following
elements:

272 K. Mahbub and G. Spanoudakis

Fig. 10.2. MonitoringPolicyType – Specification of agreement monitoring policies

1. processSpecificationType. This element is used to identify the BPEL com-
position process of the SBS system that deploys the service(s) which the
agreement is concerned with and the WSDL files of all the services that
this process uses but are not regulated by the agreement (called third-
party services in the following). The references to the WSDL specifica-
tions of third-party services in a monitoring policy is important as the
behavior of these services may interfere with the service(s) regulated by

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 273

the agreement and, therefore, the guarantee terms in an agreement may
need to be conditioned upon the satisfiability of conditions for third-party
services. A processSpecification includes (a) an element called bpelFile
that contains a reference to the BPEL file specifying the composition
process in the context of which the agreement is to be monitored, and
(b) an element called wsdlFiles that contains references to the list of
the WSDL files that specify the services deployed by the composition
process.

2. monitoringModeType. Elements of this type are used to specify the way of
reporting the results of monitoring an agreement (i.e., the mode of report-
ing); the kind of events that are used to check whether the agreement’s
guarantee terms are satisfied; and the source of the events which are used
to check an agreement. The results of monitoring may be reported in a
pullMode or a pushMode. In the former mode, the client of the monitor has
to check the status of the guarantee terms of the agreement. In the push-
Mode, the monitor reports the detected deviations to the client. When the
pushMode is selected the destination where deviations should be reported
(i.e., the deviationDestination element in Fig. 10.2) must also be specified.
The specification of a deviation destination includes (a) an element called
ipAddress that is of type string and is used to specify the IP address of
the client where the deviation reports will be sent, (b) an element called
port of type int which specifies the port in the client where the deviation
reports should be sent, and (c) an element called pushingInterval of type
long that defines the time interval between the generation of consecutive
deviation reports. The type of the events used in monitoring is specified by
the element eventsType that is of type eventType. Currently, our extension
supports two types of events: recorded or derived events. Recorded events
are events which are generated during the execution of the composition
process of an SBS system. Derived events are events which are generated
from recorded events.1

3. eventSourceType. An event source is described by (a) an element called
bpelEngineName of type string which is used to specify the type of the
BPEL engine, i.e., the execution environment of the service centric system,
(b) an element called ipAddress of type string that is used to specify the
IP address of the execution environment, and (c) an element called port
of type int that specifies the port where the runtime events will be sent
by the event source.

Overall, a monitoring policy is specified as part of the context of an agree-
ment. The new definition of the context type in WS-Agreement that includes
the element monitoringPolicy which allows the specification and attachment
of a monitoring policy to the context of an agreement is shown in Fig. 10.3.

1 In the monitoring framework that we have developed to support the runtime
checking of WS-Agreements, derived events are generated by deduction (see
Sect. 10.4.1).

274 K. Mahbub and G. Spanoudakis

Original Form of WS-Agreement Extended Form of WS-Agreement
<xs:complexType name="AgreementContextType">

<xs:sequence>
<xs:element name="AgreementInitiator"

 type="xs:anyType" minOccurs="0"/>
<xs:element name="AgreementProvider"

 type="xs:anyType" minOccurs="0"/>
<xs:element
 name="AgreementInitiatorIsServiceConsumer"
 type="xs:boolean" default="true"
minOccurs="0"/>
<xs:element name="TerminationTime"

 type="xs:dateTime" minOccurs="0"/>
<xs:element name="RelatedAgreements"

 type="wsag:RelatedAgreementListType"
 minOccurs="0"/>

<xs:any namespace="##other"
 processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>

</xs:sequence>
<xs:anyAttribute namespace="##other"/>

</xs:complexType>

<xs:complexType name="AgreementContextType">
<xs:sequence>
<xs:element name="AgreementInitiator"

 type="xs:anyType" minOccurs="0"/>
<xs:element name="AgreementProvider"

 type="xs:anyType" minOccurs="0"/>
<xs:element
 name="AgreementInitiatorIsServiceConsumer"

 type="xs:boolean" default="true"
minOccurs="0"/>
<xs:element name="TerminationTime"

 type="xs:dateTime" minOccurs="0"/>
<xs:element name="RelatedAgreements"

 type="wsag:RelatedAgreementListType"
 minOccurs="0"/>

<xs:any namespace="##other"
 processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>

<xs:element name="monitoringPolicy"
 type="MonitoringPolicyType
 minOccurs="0" maxOccurs="1" />
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>

Fig. 10.3. Extended definition of AgreementContextType in WS-Agreement

Specification of Service Description and Service Guarantee Terms

WS-Agreement defines a service guarantee term as a term that specifies “an
assurance to the service consumer on the service quality and/or resource avail-
ability offered by the service provider” (see p. 16 in [2]). In our framework,
this definition is refined to include functional and quality of service (QoS)
requirements for the constituent services of an SBS system. Functional and
QoS requirements may be associated with

• qualifying conditions conditions that must be met for a requirement to be
satisfied and enforced if it is not (as defined in [2])

• assumptions specifying how the behavior of an SBS system and its con-
stituent services affects the state of the system and therefore the satisfia-
bility of the requirements.

At runtime, the monitor of a WS-Agreement checks whether the func-
tional and QoS requirements that are defined as service guarantee terms in
the agreement are satisfied. During monitoring, any assumptions that may
have been specified for service guarantee terms are also used to generate ad-
ditional information about the effect of the behavior of an SBS system and
its constituent services. The identification of this effect is necessary as it may
affect the satisfiability of the service guarantee terms.

Service guarantee terms along with their qualifying conditions and assump-
tions are specified in our framework using an XML schema that is based on
event calculus, called EC-Assertion. In the following, we give an overview of

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 275

event calculus and EC-Assertion how it is used in our monitoring framework
to specify service guarantee terms, qualifying conditions, and assumptions for
WS-Agreements.

10.3.3 Overview of Event Calculus

The event calculus (EC) is a first-order temporal formal language that can be
used to specify properties of dynamic systems which change over time. Such
properties are specified in terms of events and fluents.

An event in EC is something that occurs at a specific instance of time (e.g.,
invocation of an operation) and may change the state of a system. Fluents are
conditions regarding the state of a system and are initiated and terminated
by events. A fluent may, e.g., signify that a specific system variable has a
particular value at a specific instance of time.

The occurrence of an event is represented by the predicate Happens(e, t,-
R(t1, t2)). This predicate signifies that an instantaneous event e occurs at
some time t within the time range R(t1, t2). The boundaries of R(t1, t2) can
be specified by using either time constants or arithmetic expressions over the
time variables of other predicates in an EC formula.

The initiation of a fluent is signified by the EC predicate Initiates(e, f, t)
whose meaning is that a fluent f starts to hold after the event e at time t. The
termination of a fluent is signified by the EC predicate Terminates(e, f, t)
whose meaning is that a fluent f ceases to hold after the event e occurs
at time t. An EC formula may also use the predicates Initially(f) and
HoldsAt(f, t) to signify that a fluent f holds at the start of the operation
of a system and that f holds at time t, respectively.

Special Types of Fluents and Events

EC-Assertion is based on event calculus but uses special types of events and
fluents to specify service guarantee terms, and their qualifying conditions and
assumptions. More specifically, the fluents in EC-Assertion have the form

valueOf(fluent expression, value expression) (10.1)

The meaning of the expression 10.1 is that the fluent signified by flu-
ent expression has the value value expression. Furthermore, in this expression:

• fluent expression denotes a typed SBS system variable or a list of such
variables. fluent expression may be an
– internal variable that represents a variable of the composition process

of an SBS system, or
– external variable that is introduced by the creators of a service level

agreement to represent the state of an SBS system at runtime.

276 K. Mahbub and G. Spanoudakis

If fluent expression has the same name as a variable in the SBS system
composition process then it denotes this variable, has the same name with
it, and is treated as an internal variable. In all other cases, fluent expression
denotes an external variable and its type is determined by the type of
value expression as described below.

• value expression is a term that either represents an EC variable or signifies
a call to an operation that returns an object of some type. The operation
called by value expression may be an internal operation that is provided by
the monitoring framework or an operation that is provided by an external
web service. If value expression signifies a call to an operation, it can take
one of the following two forms:
(i) oc : S : O(Oid, P1, ..., Pn) that signifies the invocation of an operation

O in an external service S.
(ii) oc : self : O(Oid, P1, ..., Pn) that signifies the invocation of the built-

in operation O of the monitor.
In these forms,
– Oid is a variable whose value identifies the exact instance of O’s invo-

cation within a monitoring session, and
– P1, ..., Pn are variables that indicate the values of the input parame-

ters of the operation O at the time of its invocation.

The internal operations which may be used in the specification of fluents
are shown in Table 10.1. Note also that a fluent is valid if and only if the type
of fluent expression is more general than the type of value expression. If flu-
ent expression is an external variable, the specification of its type is deduced
from the type of value expression in a fluent specification. In this case, if flu-
ent expression appears in different fluents that use different value expression
terms, the above type validity condition should be satisfied by the types of all
the relevant value expression terms. On the other hand, if fluent expression is
an internal variable, its type is determined by the specification of the variable
in the composition process of the SBS system that it refers to.

The calls to external and internal operations in fluents allow us to deploy
complex computations. As shown in Table 10.1, the internal operations of
EC-Assertion, for instance, can perform various arithmetic operations over
numbers and compute statistics of series of numerical values (e.g., compute
the average, median, and standard deviation of a series of values), manage
lists of primitive values and create new instances of object types which are
supported by EC-Assertion.

These operations are necessary for checking QoS requirements within the
reasoning process of the monitoring framework. The maintenance of lists of
primitive data values, for instance, is useful for recording multi-valued fluents
(e.g., recording the response times of a service operation). The operation avg
for instance, which computes the average value of a list of real or integer num-
ber, can be used to compute the average response time of a service operation.
During a monitoring session, when attempting to unify formulas which include

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 277

Table 10.1. Built-in operations for specification and computation of service guar-
antee terms

Operation Description
add(n1:Real, n2:Real): Real This operation returns n1+n2

sub(n1:Real, n2:Real): Real This operation returns n1-n2

mul(n1:Real, n2:Real): Real This operation returns n1* n2

div(n1:Real, n2:Real): Real This operation returns n1/n2

append(a[]: list of <T>, e:T): list of <T>
where T is Real, Int or String.

This operation appends e to a[].

del(a[]: list of <T>, e:T): list of <T>
where T is Real, Int or String.

This operation deletes the first occurrence of e in a[].

delAll(a[]: list of <T>, e:T): list of <T>
where T is Real, Int or String.

This operation deletes all occurrences of e in a[].

size(a[]: list of <T>): Int
where T is Real, Int or String.

This operation returns the number of elements in a[].

max(a[]: list of <T>):<T>
where T is Real, Int or String.

This operation returns the maximum value in a[].

min(a[]: list of <T>):<T>
where T is Real, Int or String.

This operation returns the minimum value in a[].

sum(a[]: list of <T>):<T>
where T is Real or Int.

This operation returns the sum of the values in a[].

avg(a[]: list of <T>): <T>
where T is Real or Int.

This operation returns the average of the values in a[].

median(a[]: list of <T>):<T>
where T is Real, Int or String.

This operation returns the arithmetic median of the values in
a[].

mode(a[]: list of <T>): <T>
where T is Real, Int or String.

This operation returns the most frequent element in a[].

new(type_name: String):
ObjectIdentifier

This operation creates a new object instance of type T and
returns an atom that is a unique object identifier for this object.

such calls, the EC variables which represent the operation parameters are uni-
fied first and then the monitor calls the relevant operation. If the operation
returns successfully with a return value that is compliant with the type of flu-
ent expression, this value becomes the binding of the term value expression.
Otherwise, unification fails. In Sect. 10.4.3, we give examples of monitoring
formulas that use built-in operations of the framework. (Table 10.1).

Events in our framework represent exchanges of messages between the
composition process of an SBS system and the services coordinated by it.
These messages either invoke operations or return results following the exe-
cution of an operation and – depending on their sender and receiver – they
can be of one of the following types:

1. Service operation invocation events—These events signify the invocation
of an operation in one of the partner services of an SBS system by its
composition process and are represented by terms of the form

ic : S : O(Oid, P1, ..., Pn) (10.2)

where O is the name of the invoked operation; S is the name of the
service that provides O, Oid is a variable identifying the exact instance
of O’s invocation within an execution of the SBS composition process, and

278 K. Mahbub and G. Spanoudakis

P1, ..., Pn are variables indicating the values of the input parameters of
O at the time of its invocation.

2. Service operation reply events—These signify the return from the execu-
tion of an operation that has been invoked by the composition process of
an SBS in one of its partner services and are represented by terms of the
form

ir : S : O(Oid) (10.3)

where O, S, and Oid, are as defined in (1). Note that the values of the
output parameters of such operations (if any) are represented by fluents
which are initiated by the above event as discussed below.

3. SBS operation invocation events—These events signify the invocation of
an operation in the composition process of an SBS by one of its partner
services and are represented by terms of the form

rc : S : O(Oid) (10.4)

where S is the service that invokes O, and O, Oid are as defined in (1).
Note that the values of the input parameters of such operations (if any) are
represented by fluents which are initiated by the above event as discussed
below.

4. SBS operation reply events—These events signify the reply following the
execution of an operation that was invoked by a partner service in the
composition process of an SBS and are represented by terms of the form:

re : S : O(Oid, P1, ..., Pn) (10.5)

where S is the service that invoked O; P1, ..., Pn are variables that indi-
cate the values of the output parameters of O at the time of its return,
and O, Oid are as defined in (1).

EC-Assertion uses another type of events which signify the assignment of
a value to a variable used in the composition process of an SBS. These are
called assignment events and are represented by terms of the form

as : aname(Aid) (10.6)

where aname is the name of the assignment in the composition pro-
cess specification, and Aid is a variable whose value identifies the exact
instance of the assignment within an operational system session. An as-
signment event initiates a fluent that represents the value of the relevant
variable.

In addition to the EC predicates and event/fluent denoting terms that
were discussed above, formulas that express monitorable properties in EC-
Assertion can use the predicates < and = to express time conditions (the
predicate t1 < t2 is true if t1 is a time instance that occurred before t2, and

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 279

the predicate t1 = t2 is true if t1 is a time instance that is equal to t2) and
to compare values of different variables. Also, an EC formula that expresses a
monitorable property must specify boundaries for the time ranges R(LB, UB)
which appear in the Happens predicates.

If the variable t in such predicates is existentially quantified, at least one
of LB and UB must be specified. These boundaries can be specified by using
(i) constant time indicators or (ii) arithmetic expressions of time variables t′

which appear in Happens predicates of the same formula provided that the
latter variables are universally quantified, and that appears in their scope.
If t is a universally quantified variable both LB and UB must be specified.
Happens predicates with unrestricted universally quantified time variables
take the form Happens(e, t, R(t, t)). These predicates express instantaneous
events. Furthermore, a formula is valid in our framework if the time variables
of all the predicates, which include existentially quantified non-time variables,
take values in time ranges with fixed boundaries. These restrictions guarantee
the ability to check the satisfiability of formulas. Furthermore, a specification
of requirements must also be compliant with the standard axioms of event
calculus. These axioms are shown in Fig. 10.4.

The axiom EC1 in Fig. 10.4 states that a fluent f is clipped (i.e., ceases
to hold) within the time range from t1 to t2, if an event e occurs at some time
point t within this range and e terminates f . The axiom EC2 states that a
fluent f is declipped (i.e., it comes into existence) at some time point within
the time range from t1 to t2, if event e occurs at some time point t, between
times t1 and t2 and fluent f starts to hold after event e at t. The axiom EC3
states that a fluent f holds at time t, if it is held at time 0 and has not been
terminated between 0 and t. The axiom EC4 states that a fluent f holds at
time t2, if an event e has occurred at some time point t1 before t2 which
initiated f at t1 and f has not been clipped between t1 and t2. The axiom
EC5 states that a fluent f does not hold at time t2, if there is an event e that
occurred at some time point t1 before t2 which terminated fluent f and this
fluent has not been declipped at any time point from t1 to t2. The axiom EC6
states that a fluent f holds at time t2, if it held at time t1 prior to t2 and has
not been terminated between t1 and t2. The axiom EC7 states that a fluent
f does not hold at time t2, if it did not hold at some time point t1 before t2

(EC1) Clipped(t1,f,t2) (e,t) Happens(e,t, (t1,t2)) Terminates(e,f,t)
(EC2) Declipped(t1,f,t2) (e,t) Happens(e,t, (t1,t2)) Initiates(e,f,t)
(EC3) HoldsAt(f,t) Initially(f) ¬Clipped(0,f,t)
(EC4) HoldsAt(f,t2) (e,t) Happens(e,t, (t1,t2)) Initiates(e,f,t) ¬Clipped(t,f,t2)
(EC5) ¬HoldsAt(f,t2) (e,t) Happens(e,t, (t1,t2)) Terminates(e,f,t) ¬Declipped(t,f,t2)
(EC6) HoldsAt(f,t2) HoldsAt(f, t1) t1 < t2 ¬Clipped(t1,f,t2)
(EC7) ¬HoldsAt(f,t2) ¬HoldsAt(f, t1) (t1 < t2) ¬Declipped(t1,f,t2)
(EC8) Happens(e,t, (t1,t2)) (t1 t2) (t1 t) (t t2)

Fig. 10.4. Axioms of Event Calculus

280 K. Mahbub and G. Spanoudakis

and f has not been declipped since then. Finally, the axiom EC8 states that
the time range in a Happens predicate is inclusive of its boundaries.

Examples of Specification of Service Guarantee Terms

In the following, we present examples of functional and QoS guarantee terms
that we can specify using EC-Assertion. Our examples are based on a simple
SBS system, called Quote Tracker Process (QTP), which we have implemented
to test the monitoring framework (see [31] for a specification of the BPEL
process and the services deployed by this system).

QTP allows a user to get a stock quote in US dollars given a stock symbol
from New York Stock Exchange (NYSE) and convert it to some other currency.
QTP uses a web service called Stock Quote Service (SQS) to get a quote for
stocks traded in the New York Stock Exchange using a NYSE symbol. It also
uses a second web service called Currency Exchange Service (CES) to get the
currency exchange rate between US dollars and a target currency, and a third
web service, called Simple Calculator Service (SCS), to convert the quote into
the target currency. QTP has been implemented as a BPEL process of QTP
and uses the services SQS and CES of XMethods. In our implementation, SCS
is a service that we have developed.

Fig. 10.5 shows specifications of functional and QoS properties for QTP
in the high-level logical syntax of EC-Assertion.

The formula F1 in Fig. 10.5, for instance, specifies a functional require-
ment for the CES service. According to this requirement, any request for the
exchange rate between two countries country1 and country2 that is sent
to CES within a specific time period T should return the same exchange
rate. This requirement is specified to ensure the consistency of the informa-
tion returned by CES. The EC-Assertion formula specifies this requirement
by stating that the results which are returned by any two invocations of the
operation getRate(ID, country2, country1) of the CES service that have
happened within a time period [t1, ..., t1 + T] must be the same. The invoca-
tions of the operation getRate in this case are represented by the predicates
Happens(ic : CES : getRate(ID1, country2, country1), t1, R(t1, t1)) and
Happens(ic : CES : getRate(ID2, country2, country1), t3, R(t1, t1 + T))
in the formula. The results of the invocations of getRate are represented by
the initiation of the external fluent variables Result1 and Result2. The as-
signment of values to these two fluent variables is expressed by the predicates

• Initiates(ir : CES : getRate(ID1), equalT o(Result1, result1), t2) and
• Initiates(ir : CES : getRate(ID2), equalT o(Result2, result2), t4).

The formula Q1 in Fig. 10.5 expresses a quality requirement for the CES
service of QTP . According to this requirement, the response time of the op-
eration getRate of CES should be less than 100 milliseconds (ms). The re-
sponse time in this formula is measured as the difference between the time

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 281

of the receipt of the response of CES following the completion of the exe-
cution of getRate (this is signified by the time variable t2 of the predicate
Happens(ir : CES : getRate(ID1), t2, R(t1, t2)) which represents the return
of the operation in the formula) and the time when this operation was in-
voked in the service (this is signified by the time variable t1 of the predicate
Happens(ir : CES : getRate(ID1), t2, R(t1, t2)) which represents the call of
the operation in the formula).

A second quality requirement is expressed by the formula Q2 in Fig. 10.5.
The requirement that is expressed by this formula is that the average response
time of all the invocations of operation getQuote of the SQS service which take
place in the time range R(T 1, T 2) should be less than 100ms. Q2 expresses
this requirement by requiring the result of the calculation of the average of the
values stored in the list SQS get Quote RT [] to be less than 100ms. In Q2,
SQS get Quote RT [] is specified as an external fluent variable which is up-
dated every time that there is an invocation of getQuote followed by a return
from the execution of this operation. In these cases, the response time of each
invocation is appended to the list of values SQS get Quote RT []. The update
of the values of SQS get Quote RT [] is specified by the assumption A1 which

(F1) (_ID1,_country1,_country2: String) (t1: Time)
 Happens(ic:CES:getRate(_ID1,_country2,_country1),t1, (t1,t1)) ^ (t2:Time) ^
 Happens(ir:CES:getRate(_ID1),t2, (t1,t2)) ^
 Initiates(ir:CES:getRate(_ID1),valueOf(Result1,_result1),t2) ^ (t3:Time) ^
 Happens(ic:CES:getRate(_ID2, _country2, _country1),t3, (t1,t1+T)) ^ (t4:Time) ^
 Happens(ir:CES:getRate(_ID2),t4, (t3,t4)))
 Initiates(ir:CES:getRate(ID2),valueOf(Result2,_result2),t4) _result1 = _result2
(Q1) (_ID,_country1,_country2: String) (t1: Time)
 Happens(ic:CES:getRate(_ID,_country1,_country2),t1, (t1,t1)) ^ (t2:Time) ^
 Happens(ir:CES:getRate(_ID),t2, (t1,t2)) oc:self:sub(t2,t1) < 100
(Q2) (t1: Time) HoldsAt(valueOf(SQS_get_Quote_RT[],_resTime),t1) oc:self:avg(_resTime]) < 100
(A1) (_ID, _symbol: String) (t1: Time)

Happens(ic:SQS:getQuote(_ID,_symbol),t1, (T1,T2)) ^ (t2:Time)
 Happens(ir:SQS:getQuote(_ID),t2, (t1,t2)) ^ HoldsAt(valueOf(SQS_get_Quote_RT[],_resTime),t2)

 Initiates(ir:SQS:getQuote(_ID), valueOf(SQS_get_Quote_RT[], oc:self:append(_resTime,
oc:self:sub(t2, t1)), t2))

(Q3) (t1: Time) (t1 = T2+1) ^
HoldsAt(valueOf(getQuote_responses,_resNumber), t1) ^

 HoldsAt(valueOf(getQuote_fails,_failsNumber), t1)
oc:self:div(_resNumber, oc:self:add(_failsNumber,_resNumber)) > 0.999

(A2) (_ID, _symbol: String, t1: Time)
Happens(ic:SQS:getQuote(_ID,_symbol),t1, (T1,T2)) ^ (t2:Time)

 Happens(ir:SQS:getQuote(_ID),t2, (t1,t1+500)) ^
HoldsAt(valueOf(getQuote_responses,_resNumber),t2)

 Initiates(ir:SQS:getQuote(_ID), valueOf(getQuote_responses, oc:self:add(_resNumber, 1), t2))
(A3) (_ID, _symbol: String, t1: Time)

Happens(ic:SQS:getQuote(_ID,_symbol),t1, (T1,T2)) ^ ¬ (t2:Time)
 Happens(ir:SQS:getQuote(_ID),t2, (t1,t1+500)) ^

HoldsAt(valueOf(getQuote_fails,_failNumber),t2)
 Initiates(ir:SQS:getQuote(_ID), valueOf(getQuote_fails, oc:self:add(_failNumber, 1), t2))

Fig. 10.5. Functional and Quality of Service requirements for the CES and SQS
services of QTP

282 K. Mahbub and G. Spanoudakis

appends each new response time of getQuote to the list of values already in
SQS get Quote RT [] (see the fluent initiation predicate Initiates(ir : SQS :
getQuote(ID), valueOf(SQS get Quote RT [], oc : self : append(resT ime,
oc : self : sub(t2, t1)), t2)) in A1).

Formula Q3 in Fig. 10.5 expresses a second QoS requirement for the SQS
service. According to this formula, the requirement that should be guar-
anteed for this service is that rate of responses which are received within
500ms after an invocation of the operation getQuote of SQS should ex-
ceed 99.9%. This requirement is expressed by Q3 as a condition over the
values of the fluents getQuote responses and getQuote fails. These two flu-
ents keep the counters of cases where getQuote produced a response within
500ms following its invocation and cases where it did not, respectively. The
values of these two fluents are updated by deduction from the assumptions
A2 and A3, respectively. More specifically, from A2 it can be deduced that
the value of the fluent getQuote responses should be increased by one ev-
ery time that getQuote produces a response within 500ms after its invo-
cation. Similarly, from A3 it can be deduced that the value of the fluent
getQuote fails should be increased by one every time that getQuote does not
produce a response within 500ms from its invocation. Q3 uses the built-in
operations of EC-Assertion to calculate the ratio of the values of these two
fluents.

As noted earlier, the specification of the formulas in Fig. 10.5 is given in
the high-level logic-based syntax of EC-Assertion. Our framework supports
the transformation of the logic formulas which are specified in this logic-
based syntax into an XML-based representation following the schema that
defines EC-Assertion. This representation is generated by the editor of our
framework from the specification of the formula in the high-level EC syntax
automatically. Fig. 10.6 shows an extract of the representation of formula Q2
in EC-Assertion. The highlighted terms in the figure represent the specifi-
cation of the two Happens predicate in the formula. The description of the
full syntax of EC-Assertion is beyond the scope of this chapter. The speci-
fication of it, however, is available in [14] and a graphical representation of
the XML schema that defines EC-Assertion is given in the appendix of this
chapter.

Specification of Service Guarantee Terms

The specification of service guarantee terms using EC-Assertion is supported
by a refinement of the definition of the sub-elements QualifyingCondition
and ServiceLevelObjective in WS-Agreement.

The element QualifyingCondition in an agreement is used to specify a
precondition that should be satisfied for the enforcement of a service guar-
antee term [2]. The element ServiceLevelObjective is used to specify a con-
dition that must be met in order to satisfy a service guarantee. The type of
both these elements in the original form of WS-Agreement is xs : anyType

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 283

<formula forChecking="true" formulaId="Q2">
 <quantification>
 <quantifier>existential</quantifier>
 <timeVariable> <varName>t1</varName> … </timeVariable>
 </quantification>
 <quantification>
 <quantifier>existential</quantifier>
 <timeVariable> <varName>t2</varName> … </timeVariable>
 </quantification>
 <body>
 <predicate negated="false" unconstrained="true">
 <happens>
 <ic_term>
 <operationName>GetRate</operationName> <partnerName>CES</partnerName>
 <id>_ID</id> <varName>_country1</varName> ...
 <varName>_country2</varName></varName>
 </ic_term>
 <timeVar> <varName>t1</varName> … </timeVar>
 <fromTime> <time> <varName>t1</varName> … </time> </fromTime>
 <toTime> <time> <varName>t1</varName> …</time> </toTime>
 </happens>
 </predicate>
 <operator>and</operator>
 <predicate negated="false" unconstrained="false">
 <happens>
 <ir_term>
 <operationName>getRate</operationName> <partnerName>CES</partnerName>
 <id>_ID</id>
 </rc_term>
 <timeVar> <varName>t2</varName> … </timeVar>
 <fromTime> <time> <varName>t1</varName> … </time> </fromTime>
 <toTime> <time> <varName>t2</varName> … </time> </toTime>
 </happens>
 </predicate>
 </body>
 <head>
 <relationalPredicate> <lessThan>
 <operand1> <operationCall> <name>sub</name> <partner>self</partner>
 <variable forMatching="false" …> <varName>t2</varName> … </variable>
 <variable forMatching="false" …> <varName>t1</varName> … </variable>
 </operationCall>
 </operand1>
 <operand2> <constant> <name>Vo</name> <value>1000</value> </constant> </operand2>
 </lessThan> ...
 </relationalPredicate>
 </head>
 </formula>

Fig. 10.6. Extract of the representation of formula Q2 in EC-Assertion

(Fig. 10.7). In the extended form of WS-Agreement, the type of these elements
is ecQualifyingConditionType and ecServiceLevelObjectiveType, respectively.

ecQualifyingCondition is used to specify the precondition of a service guar-
antee term. ecQualifyingCondition is defined as a type with a single sub-
element, called formula, of type ecFormula, i.e., the type of EC formulas in
EC-Assertion.

ecServiceLevelObjectiveType is defined as a type with two sub-elements:
one sub-element called guaranteeFormula defines the condition that must be
met for the service guarantee term to be satisfied and the second sub-element
called assumption specifies the effects of the behavior on an SBS and its

284 K. Mahbub and G. Spanoudakis

Extension for specifying GuaranteeTerms
Original Form Extended Form
<xs:complexType name="GuaranteeTermType">
 <xs:complexContent>

…
<xs:element ref="wsag:QualifyingCondition"

 minOccurs="0"/>
<xs:element ref="wsag:ServiceLevelObjective"/>

…
</xs:complexContent>

…
<xs:element name="GuaranteeTerm"

 type="wsag:GuaranteeTermType"/>
<xs:element name="QualifyingCondition"

 type="xs:anyType"/>
<xs:element name="ServiceLevelObjective"

 type="xs:anyType"/>
…

<xs:complexType name="GuaranteeTermType">
 <xs:complexContent>

…
<xs:element ref="wsag:QualifyingCondition"

 minOccurs="0"/>
<xs:element ref="wsag:ServiceLevelObjective"/>

 …
</xs:complexContent>

…

<xs:element name="GuaranteeTerm"
 type="wsag:GuaranteeTermType"/>

<xs:element name="QualifyingCondition"
 type="xs:ecQualifyingConditionType"/>
<xs:element name="ServiceLevelObjective"
 type="xs:ecServiceLevelObjectiveType"/>

<xs:complexType
 name="xs:ecQualifyingConditionType">
 <xs:sequence>
 <xs:element name="formula"
 type="ecas:ecFormula"
 minOccurs="1"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType
 name="ecServiceLevelObjectiveType">
 <xs:sequence>
 <xs:element name="guaranteeFormula"
 type="ecas:ecFormula" minOccurs="1"
 maxOccurs="1"/>
 <xs:element name="assumption"
 type="ecas:ecFormula" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Fig. 10.7. Extensions in WS-Agreement for Specifying Service Guarantee Terms

constituent services which affect the satisfiability of a guaranteeFormula. The
type of both these elements is ecFormula, as shown in Fig. 10.7.

10.4 Monitoring Service Level Agreements

10.4.1 Types of Agreement Deviations

A broad distinction that is made by our monitoring framework is related
to the type of the events which are used in order to detect deviations from
service level guarantee terms. These events may be of two types: (1) Events
which have been captured during the operation of the system at runtime or
(2) events which are generated from recorded events by deduction. The use of
events of these two types also affects the characterisation of deviations from
service level agreements in our framework. More specifically, if monitoring is
based only on recorded events, it can detect only inconsistencies which are

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 285

evidenced by violations of specific service guarantee terms by these recorded
events. If, on the other hand, monitoring is based on both recorded and derived
events, then the framework can also detect (a) inconsistencies which arise
from the expected system behavior, (b) cases of unjustified system behavior,
(c) possible inconsistencies evidenced from the expected system behavior, and
(d) possible cases of unjustified system behavior.

In the following, we focus only on inconsistencies caused by recorded events
and derived events. A description of the other types of inconsistencies that
can be detected by our framework is beyond the scope of this chapter and
may be found in [36].

10.4.2 Violations of Service Guarantee Terms by the Recorded
Behavior of SBS Systems

The recorded behavior of an SBS system S at time T , ER(T), is defined
as a set of event, and fluent initiation or termination literals of the forms:
Happens(e, t, R(t, t)), Initiates(e, f, t), and Terminates(e, f, t) which have
been recorded during the operation of S and for which 0 ≤ t ≤ T . A violation
of a service guarantee term of the form f : H ⇒ B is caused by the recorded
behavior of a system at time T if the recorded behavior implies the negation
of the term, that is if

{ER(T), ECa} |= ¬f

where

• |= signifies logical entailment using also the principle of negation as failure,
and

• ECa are the axioms of event calculus.

Assuming the log of the runtime events of QTP shown in Fig. 10.8,
the quality requirement Q1 that requires the response time of the operation
getRate of the service CES to be less than 100ms is violated at time T =
24657. This is because at this time point an event signifying the response from
the execution of this operation that was invoked at T = 24500 is received and
the time difference between the invocation and the response of the operation is
found to be 157ms (see the events L4 and L5 in the event log of Fig. 10.8 which
represent the invocation and response of the operation getRate, respectively).
The identification of the violation is identified since the events L4 and L5
imply the negation of Q1. This is because, following the unification of the
variables t2 and t1 of Q1 with the values 24657 and 24500 respectively, the
result of the execution of the built-in operation oc : self : sub(24657, 24500)
in the formula is not less than 100 as required by Q1.

Violations of Service Guarantee Terms by the Expected Behavior
of SBS Systems

The second type of deviations that can be detected in our framework are
violations of service guarantee terms by the expected behavior of an SBS

286 K. Mahbub and G. Spanoudakis

system. The latter type of behavior includes the set of predicates that can
be derived by deductive reasoning from the recorded behavior of a system
using the formulas in the behavioral specification BS of the system and the
assumptions AS that have been specified for it. As defined in [36], a service
guarantee term of the form f : C ⇒ A is violated with the expected behavior
of a system at time T if

ER(T), ECa, dep(AS ∪ BS , f) |= � f

where dep(AS∪BS , f) is the set of formulas g : B ⇒ H in the assumptions
AS defined for f and the service description terms of the SBS system (BS)
which f depends on. In this definition, inter-formula dependencies are defined
as follows. A formula f depends on a formula g : B ⇒ H if the head H of g has
a predicate L that unifies with some predicate K in the body C of f or with
some predicate K in the body B′′ of another formula g′ that f depends on.

The runtime events of Fig. 10.8 and the events that can be derived from
them given the assumptions of Fig. 10.5 and the axioms of event calculus
violate the QoS requirement Q2 of QTP at T = 26325. This is because at this
time point, the fluent vector variable SQS get Quote RT [] has two values (50
and 200), the average value of which is not less than 100. The violation in
this case is detected using the derived events and recorded events of QTP.
More specifically the relevant derived events in this case are the events which
update the value of the fluent (vector) variable SQS get Quote RT []. These
events are generated by deduction from the assumption A1. More specifically,
following the events L1 and L2, SQS get Quote RT [] is deduced by A1 to
include the value 50 and following the events L7 and L8 the same fluent
variable is deduced to include the value 200 too.

10.4.3 Monitoring Process

In the following, we describe the process by which our monitor checks for
violations of service guarantee terms. At runtime, the monitor generates and
maintains templates that represent different instantiations of the formulas

L1 : Happens(ic:SQS:getQuote(ID1,SX),23100, (23100,23100))
L2 : Happens(ir:SQS:getQuote(ID1),2315, (23150,23150))
L3 : Initiates(ir:SQS:getQuote(ID1),valueOf(q,107),23150)
L4 : Happens(ic:CES:getRate(ID2,US,UK),24500,R(24500, 24500))
L5 : Happens(ir:CES:getRate(ID2),24657,R(24657, 24657))
L6 : Initiates(ir:CES:getRate(ID2), valueOf(rate,1.77),24657)
L7 : Happens(ic:SQS:getQuote(ID3,SY),26125, (26125,26125))
L8 : Happens(ir:SQS:getQuote(ID3),26325, (26325,26325))
L9 : Initiates(ir:SQS:getQuote(ID3),valueOf(q,54),26325)
L10 : Happens(ic:CES:getRate(ID4,US,UK),27555,R(27555, 27555))
L11 : Happens(ir:CES:getRate(ID4),28000,R(28000, 28000)
L12 : Initiates(ir:CES:getRate(ID4), valueOf(rate,1.77),28000)

Fig. 10.8. Runtime events of QTP

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 287

that specify the service guarantee terms of an agreement which should be
monitored. A template for a formula f stores the following:

• The identifier (Id) of f .
• A list of pairs (i, p) where i indicates a formula that depends on f , and p

indicates the predicate that creates the dependency.
• The variable binding (VB) computed for the template (i.e., the set of value

bindings of the variables of the formula represented by the template).
• For each predicate p in f

– The quantifier of its time variable (Q) and its signature (SG).
– The boundaries (LB, UB) of the time range within which p should

occur.
– The truth value (TV) of p. TV is defined to be UN if the truth value

of the predicate is not known yet, T if the predicate is known to be
true, and F if the predicate is known to be false.

– The source (SC) of the evidence for the truth value of p. The value of
SC is UN if the truth value has not been established yet, RE if the
truth value of the predicate has been established by a recorded event,
DE if the truth value of the predicate has been established by a derived
event, and NF if the truth value of the predicate has been established
by the principle of negation as failure.

– A time stamp (TS) indicating the time in which the truth value of p
was established.

The monitor creates two sets of templates for each formula: a set of devia-
tion templates which are used to check for violations of the formula, and a set
of derivation templates which are used to derive predicates from the formula.2

Both types of templates are updated by recorded and derived events.
Recorded events are captured by the event receiver and stored in the event
database of the framework (see Fig. 10.1). These events are processed by the
monitor in the exact order of their occurrence and used to update the truth
values of predicates in templates. When a new event is taken from the event
database, the monitor checks it against all the different templates to establish
if the event could be unified with a predicate in the template. In cases where
the event can be unified with a predicate in a template and the truth value of
the predicate has not been set yet, the template is updated. The form of the
update depends on whether the predicate has an existentially or a universally
quantified time variable.

More specifically, the truth value of a predicate with an existentially quan-
tified time variable—i.e. a predicate of the form (∃t)p(x, t) where t is in the
range R(t1, t2)—is set to T (true) as soon as the first event e that can be
unified with p occurs between t1 and t2. If no such event occurs at the distin-
guishable time points within R(t1, t2), the truth value of p is set to F (false).

2 Derivation templates are not generated if the mode of monitoring in a monitoring
policy is set to recorded events only (see Sect. 10.3).

288 K. Mahbub and G. Spanoudakis

The absence of events unifiable with p is confirmed as soon as the first event
that cannot be unified with p occurs after t2. The truth value of a predicate
of the form � (∃p)(x, t) is established in the opposite way: as soon as an event
e that can be unified with p occurs between t1 and t2, the truth value of p is
set to F (false) and if no such events occur at the distinguishable time points
between t1 and t2, the truth value of p is set to T (true).

The truth value of a predicate with a universally quantified time variable—
i.e., a predicate of the form (∀t)p(x, t) where t must be in the range R(t1, t2)—
is set to F (false) as soon as an event which is not unifiable with p occurs
between t1 and t2, and to T (true) if all the events that occur at the distin-
guishable time points between t1 and t2 can be unified with p. The truth value
of predicates of the form � (∀t)p(x, t), where t must be in the range R(t1, t2),
is set to T (true) as soon as the first event that is not unifiable with p occurs
within the time range R(t1, t2) and F (false) if all the events at the distin-
guishable time points between t1 and t2 can be unified with p. The truth
value of predicates of the form (∀t)p(x, t), where t is unconstrained (i.e., it is
defined to be in a range of the form R(t, t)), is set to T (true) as soon as an
event that can be unified with the predicate is encountered.

As an example of this process, consider the check of the satisfiability of
the formula Q1 in Sect. 10.3. Initially, the template of this formula will have
the form shown in Fig. 10.9.

Then, when the event L4 in the even log of Fig. 10.8 occurs, the mon-
itor detects that it can be unified with the first predicate in the template
(i.e., the predicate Happens(ic : CES : getRate(ID, country1, country2),
t1, R(t1, t1))) and creates a new instance of the template in which the event
is unified with the predicate. Following the unification, in the new tem-
plate instance, which is shown in Fig. 10.10, the truth value of the pred-
icate Happens(ic : CES : getRate(ID, country1, country2), t1, R(t1, t1))
is set to T . This is because the time variable t1 of the predicate is uni-
versally quantified and unconstrained. Also, the source (SC) of this truth
value is set to RE (as the value was set due to a recorded event), the times-
tamp at which the truth value of the predicate was determined is set to
24500 (i.e., the timestamp of the event that was unified with the predicate)
and the lower (LB) and upper (UB) time boundaries of the time variable

Template-1
ID Q1
DP
VB (_ID,?) (_country1,?) (_country2,?) (1, ?) (t2, ?)
P Q SG TS LB UB TV SC
1 Happens(ic:CES:getRate(_ID,_country1,_countr

y2),t1, (t1,t1))
t1 t1 t1 UN UN

2 Happens(ir:CES:getRate(_ID),t2, (t1,t2)) t2 t1 t2 UN UN
3 oc:self:sub(t2,t1) < 100 ? UN UN

Fig. 10.9. Template for formula Q1

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 289

Template-2
ID Q1
DP
VB (_ID, ID2) (_country1,US) (_country2, UK) (t1, 24500) (t2, ?)
P Q SG TS LB UB TV SC
1 Happens(ic:CES:getRate(_ID,_country1,_countr

y2),t1, (t1,t1))
24500 24500 24500 T RE

2 Happens(ir:CES:getRate(_ID),t2, (t1,t2)) t2 24500 t2 UN UN
3 oc:self:sub(t2,t1) < 100 ? UN UN

Fig. 10.10. Template for formula Q1 updated due to the event L4

of the predicate are both set to 24500. The update of the template due
to the event L4 also changes the variable binding of the template. More
specifically, the variables ID, country1, country2, and t1 of the predicate
Happens(ic : CES : getRate(ID, country1, country2), t1, R(t1, t1)) are
bound to the values ID2, US, UK, and 23500, respectively. Note also that
the lower boundary (LB) of t2 which is the time variable of the second predi-
cate in the template has been updated so as to be equal to the value bound to
t1 (i.e., 24500). As a result of the update of the lower bound of t2, the truth
value of the second predicate in the template will subsequently be updated
only by events that happen after t = 24500.

When the event L5 in the event log of Fig. 10.8 occurs the template
of Fig. 10.10 will be updated again. This is because L5 can be unified
with the second predicate in the template, i.e., the predicate Happens(ir :
CES : getRate(ID), t2, R(t1, t2)), and has taken place within the time
boundaries of this predicate (i.e., after 24500). The result of this update is
shown in Fig. 10.11. As shown in this figure, the truth value of the predicate
Happens(ir : CES : getRate(ID), t2, R(t1, t2)) is set to T , its timestamp
is set to 24657, and the source of the truth value of the predicate is set to
RE as the event that led to the update was again a recorded event. At this
point, the truth value of the only remaining predicate in the template (i.e., the
predicate oc : self : sub(t2, t1) < 100) can also be computed. This is because
oc : self : sub(t2, t1) < 100 is not a predicate with a time variable and all

Template-3
ID Q1
DP
VB (_ID, ID2) (_country1,US) (_country2, UK) (t1, 24500) (t2, 24657)
P Q SG TS LB UB TV SC
1 Happens(ic:CES:getRate(_ID,_country1,_countr

y2),t1, (t1,t1))
24500 24500 24500 T RE

2 Happens(ir:CES:getRate(_ID),t2, (t1,t2)) 24657 24500 24657 T RE
3 oc:self:sub(t2,t1) < 100 UN UN

Fig. 10.11. Template for formula Q1 updated due to the events L4 and L5

290 K. Mahbub and G. Spanoudakis

its variables (t1 and t2) are bound to specific values in the current variable
binding of the template.

As the predicate oc : self : sub(t2, t1) < 100 refers to an operation (i.e.,
oc : self : sub(t2, t1)), to establish its truth value the monitor must execute
this operation. In this case, the monitor will call the operation oc : self : sub
using as parameters the values of the variables t2 and t1 and will substitute the
result of this call (i.e., 257) for the operation in the predicate “<” . Following
the substitution, the predicate “<” becomes “257 < 100” and consequently
its truth value is evaluated to F .

When the truth values of all predicates in a template have been deter-
mined, a check for possible formula violations is performed. This check is
carried out according to the following rules:

• If the truth value all the predicates in the template is T , the instance of
the formula represented by the template is satisfied.

• If the truth value of all the predicates in the body of the template is T and
the truth value of at least one predicate in the head is F and there is no
predicate in the template whose source is a derived event (i.e., DE), the
instance of the formula represented by the template is inconsistent with
the recorded behavior of the system.

• If the truth value of all the predicates in the body of the template is True
and the truth value of at least one predicate in the head of the template
is False and the source of at least one predicate in the template is a
derived event, the formula is inconsistent with the expected behavior of
the system.

The template checking process will be triggered following the update of the
truth value of the predicate oc : self : sub(t2, t1) < 100 in the template of
Fig. 10.11. This process will establish that the specific instance of the formula
Q1 that is expressed by the template has been violated and since the events
that have been taken into account in order to establish the truth values of
the predicates in the formula are all recorded events, the detected violation is
classified as a violation due to recorded behavior.

The monitor also generates derived events by deduction from event deriva-
tion templates. More specifically, if in an event derivation template the truth-
value of all the predicates in the body of the template is T and there is a
predicate p in the head of the template that has an unknown truth value but
whose variables are bound to specific values in the variable binding of the
template, the truth value of p is set to T and the monitor generates a derived
event as a copy of the bound form of p.

Derived events are used to update derivation templates in order to derive
further events and to detect deviations. In the update process for derived
events, the truth value of a predicate of the form (∃t)p(x, t)(¬(∃t)p(x, t)),
where t is in the range R(t1, t2) in a template, is set to T (F) if there is a not-
negated derived event e that can be unified with p and the range R(t1′, t2′)
of e is within R(t1, t2). The truth value of a predicate of the form (∀t)p(x, t)

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 291

(where t is in the range R(t1, t2)) with a yet unknown truth value is set
to T if there is a derived event e that can be unified with p and the range
R(t1, t2) is within the range R(t1′, t2′) of e. The truth value of a predicate
in a template of the form ¬(∀t)p(x, t) (where t is in the range R(t1, t2)) with
a yet unknown truth value is set to T if there is a derived negated event e
that can be unified with p and the range R(t1′, t2′) of e is within the range
R(t1, t2).

According to this process, the derivation template Template-4 shown in
Fig. 10.12 will be created from formula A1 at T = 23150. This template
will be created from an uninstantiated template of A1 following the events
L1 and L2 in Fig. 10.8. More specifically, the truth value of the predicate
Happens(ic : SQS : getQuote(ID, symbol), t1, R(T 1, T 2)) in Template-4
will be set to T due to the event L1 and the truth value of the pred-
icate Happens(ir : SQS : getQuote(ID), t2, R(t1, t2)) will be set to T
due the event L2 at t = 23150. At this time point, the truth value of
the predicate HoldsAt(valueOf(SQS get Quote RT [], resT ime), t2) in the
template can also be derived from axiom EC3 of event calculus and the
predicate Initially(valueOf(SQS get Quote RT [], []) which represents the
initial set of the response times of the operation get Quote. Thus, since
all the predicates in the body of the template Template-4 are true, the
monitor will use Template-4 to deduce the truth value of the predicate
Initiates(ir : SQS : getQuote(ID), valueOf(SQS get Quote RT [], oc :
self : append(resT ime, oc : self : sub(t2, t1)), t2)) in the head of the tem-
plate at T = 23150 deriving the following bounded form of this predicate:
Initiates(ir : SQS : getQuote(ID), valueOf(SQS get Quote RT [], [50]), 23-
150)). This bounded form is derived by first evaluating the term oc : self :
sub(23150, 23100), substituting its result (i.e., the value 50) into the term
oc : self : append(resT ime, oc : self : sub(t2, t1)) and finally evaluating the
latter term. The result of the latter evaluation is the list of values: [50]. This list
is substituted for the term oc : self : append(resT ime, oc : self : sub(t2, t1))
in the predicate.

Template-4
ID A1
DP Q2
VB (_ID, ID1) (_symbol, SX) (_resTime, [])
P Q SG TS LB UB TV SC
1 Happens(ic:SQS:getQuote(_ID,_symbol),t1,

(T1,T2))
23100 23100 23100 T RE

2 Happens(ir:SQS:getQuote(_ID),t2, (t1,t2)) 23150 23150 23150 T RE
3 HoldsAt(valueOf(SQS_get_Quote_RT[],_resTime)

, t2)
23150 23150 23150 T DE

4 Initiates(ir:SQS:getQuote(_ID),
valueOf(SQS_get_Quote_RT[],
oc:self:append(_resTime, oc:self:sub(t2, t1)), t2))

23150 23150 23150 UN UN

Fig. 10.12. Template for formula A1

292 K. Mahbub and G. Spanoudakis

Template 5
ID Q2
DP
VB (_resTime, [50])
P Q SG TS LB UB TV SC
1 HoldsAt(valueOf(SQS_get_Quote_RT[],

_resTime),t1)
23150 23150 23150 T DE

2 oc:self:avg(_resTime]) < 100 23150 23150 23150 T DE

Fig. 10.13. Template for formula Q2

Subsequently, from the derived predicate Initiates(ir : SQS : getQuote(-
ID), valueOf(SQS get Quote RT [], [50]), 23150)) and the axiom EC3 of

event calculus the predicate HoldsAt(valueOf(SQS get Quote RT [], [50]),-
23150) can also be derived. The latter predicate can then be used to update
a deviation template for the formula Q2. The template that results from this
update and the evaluation of the predicate oc : self : avg(resT ime]) < 100
in the formula is shown in Fig. 10.13. Thus, at T = 23150 the formula Q2 is
satisfied.

10.5 Implementation

Our framework has been implemented by a prototype written in JavaT M .
This prototype realizes the architecture of the framework that we discussed
in Sect. 10.2 and can monitor SBS systems whose composition process is
specified in BPEL. In the prototype, we have used the bpws4j BPEL process
execution engine [6]. This engine uses log4j [26] to generate logs of the events
during the execution of the composition process of an SBS. This event log is
fed into our framework in order to provide the runtime information that is
necessary for monitoring. The output of log4j is analyzed by the event receiver
of the prototype in order to extract the events which are taken into account
during the monitoring process.

Figure 10.14 shows a snapshot of the monitoring console of the prototype.
This snapshot was taken during a session of monitoring an implementation
of the SBS system that we described in Sect. 10.3. The upper left panel of
the monitoring console shows the formulas that express the service guarantee
terms in a WS-Agreement for this system. Using the console, the user of
our framework can select one or more of the formulas in an agreement to
monitor. Once selected, a formula appears in the lower left panel of the console.
In Fig. 10.14, the formula Q1 has been selected for monitoring and its EC
specification is shown in the lower left panel. When monitoring is activated,
the cases which violate and satisfy the selected formulas are shown in the
monitoring console (see upper right panel of the console in Fig. 10.14). The
user can select any of these cases in order to see the exact instantiation of
the formula (template) that underpins the case. This instantiation includes

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 293

Fig. 10.14. Snapshot of Monitoring

the events that have been unified with the different predicates in the formula,
the source, and timestamp of each of these events and the truth values of the
predicates that the events have been unified with.

Figure 10.14 shows four violations of the formula Q1 which, as discussed
in Sect. 10.3, requires that the response time of the operation getRate of
the service Currency Exchange Service should always be less than 100ms.
These violations are identified as R-Q1-5, R-Q1-4, R-Q1-3, and R-Q1-2 in
Fig. 10.5. The user can select any of these violations to see the details of the
events that have caused it. The violation selected in the figure corresponds to
the instance R-Q1-2 of the formula. As shown in the lower right panel of the
figure, this violation has occurred since there was a call of the operation ge-
tRate (i.e., the event ic : getRate(Thread− 35, country2, country1), tR(t, t))
at T=1151666256272 and the response to this call (i.e., the event ir :
getRate(Thread − 35), tR(t, t)) occurred T = 1151666256272. Following the
unification of these two events with the Happens predicates in the body of
Q1, the monitor executed the operation oc : self.sub(t2, t1) in the head of the
formula and as the result of this operation was 360 ms the truth value of the
“<” predicate in the head of Q1 was evaluated to F and the whole formula
instance was violated.

The current implementation of the framework does not support the check-
ing of past EC formulas (a past EC formula is a formula in which a predicate
p that has a time variable which is constrained by the time variable of an

294 K. Mahbub and G. Spanoudakis

unconstrained predicate q3 must occur before q). It also assumes that all the
non-time variables in formulas are universally quantified and does not support
the invocation of external operations in order to perform complex computa-
tions during the reasoning process (only invocations of built-in operations
are supported by the current implementation). Furthermore, based on our
implementation, we found that the impact of generating the events used for
monitoring onto the performance of the monitored system was about 18%
(i.e., the extra time that it takes from the BPEL engine to create an event
log). Currently, we are developing event captors which instead of using log4j
to generate events capture SOAP messages which are sent to and from the
BPEL execution engine and transform these messages into EC events before
sending them to the monitor. The impact of this alternative event capturing
solution on both the performance of the SBS system that is being monitored
and the monitoring process itself is to be evaluated.

10.6 Evaluation

10.6.1 Experimental Set Up

To evaluate the monitoring framework, we have carried out a series of exper-
iments. The objectives of these experiments were as follows:

1. To measure the efficiency of monitoring in terms of the average time that
it takes to detect a formula violation from the time that it occurred.

2. To establish whether performance is affected by the frequency and type
of the events which are taken into account and the size of the domains of
the non-time variables used in the formulas.

In our experiments, we used an implementation of a Car Rental System
(CRS) that is described in [12]. This system acts as a broker to car rental
companies enabling the hire of cars from different car parks. The system has
been implemented by a BPEL composition process that coordinates interac-
tions with different web services including (a) services which provide access
to information about the car fleet of different companies and the availability
of cars at different car parks and can make car rental reservations and (b)
services which operate as drivers of sensors installed at different car parks,
tracking car entries and departures.

Our experiments were based on simulations of the BPEL process of CRS.
In these simulations, we initially extracted the set of all the possible distinct
execution paths of the BPEL process of CRS and expressed them as formulas
in EC-Assertion. Then we generated different execution paths of the process
by selecting different formulas from the extracted formulas set and generating

3 A predicate p is constrained (unconstrained) if the range of its time variable is
(not) defined in terms of the values of other time variables.

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 295

randomly events from each selected formula. The random generation of events
from a formula was controlled by the following parameters:

1. The size of the domain of the non-time variables in the formula (i.e., the
number of the distinct possible values of each variable).

2. The distribution of the values of the constrained time variables within the
formula.

3. The distribution of the time that elapses between the initial events of
each consecutively selected formulas or, equivalently, the distribution of
the values of the unconstrained time variables in the formulas.

Our experimental design covered two different factors that could affect the
performance of the monitoring process, namely:

• The frequency of events—To explore this factor, we ran simulations of high
and moderate event frequency. These two categories of event frequency
were controlled by the distribution of the time between the starting events
of two consecutively selected formulas in the simulations. In high event
frequency (HEF) simulations, the difference between the timestamps of
the starting events of two consecutively selected formulas had a normal
distribution with an average of 3 seconds and a standard deviation of 0.8
seconds. In moderate event frequency (MEF) simulations, the difference
between the timestamps of the starting events of two consecutively selected
formulas had a normal distribution with an average of 10 seconds and
a standard deviation of 0.8 seconds. In both simulation categories, the
timestamps of the constrained predicates in the formulas were distributed
according to the uniform distribution within the range defined by their
boundaries. Based on these parameters, in HEF simulations we generated
30,000 events per hour on average and in MEF simulations we generated
9,000 events per hour on average.

• The size of the domain—To explore this factor, we ran simulations using
large and small domain sizes denoted as LD and SD, respectively. In our
case study, we had three different domains for non-time variables, namely
customers, cars, and car parks. In LD simulations, we used sets of 200
customers, 80 cars, and 12 car parks. In SD simulations, we used sets of
50 customers, 20 cars, and 3 car parks (i.e., domains whose size was 1/4
of the size of the respective LD domain).

In total, we performed four different experiments in which we monitored
four functional requirements for CRS with an average of seven predicates per
formula. The experiments were categorized with respect to the previous two
differentiation factors as shown in Table 10.2. In each of these experiments, we
generated 30,000 events using the simulator of our framework (see Fig. 10.1)
and the parameter values that were described above and fed them into the
monitor which carried out the monitoring process. The number of events that
were used in our experiments corresponded to about 1 hour of operation of

296 K. Mahbub and G. Spanoudakis

Table 10.2. Classification of experiments

MEF HEF

DL Exp 1 Exp 3
DS Exp 2 Exp 4

CRS in the case of HEF experiments and 3.3 hours of operation in the case
of MEF experiments.

In each experiment, we computed the in making a decision about possible
violations of a formula, called d-delay. d-delay was measured as:

d − delay =
∑

j=1,...,N

dj/N

In this formula, N is the number of the formula templates for which a
decision was made during the experiment and dj is the delay in making the
decision for a formula template j. dj was computed as

dj = T
Fj

E − maxi∈Fj (t
e(d)
i) if T

Fj

E − maxi∈Fj (t
e(d)
i) ≥ 0 (10.7)

dj = T
Fj

E − maxi∈Fj (t
M
i) if T

Fj

E − maxi∈Fj (t
e(d)
i) < 0 (10.8)

where

• tei is the time of occurrence of an event i as generated by the simulator
• T m

s is the starting time of the monitor
• T m

c is the current time of the monitor
• t

e(d)
i is the time of recording an event i in the monitor’s database; t

e(d)
i is

computed by the formula t
e(d)
i = (tei − te0) + T m

s where te0 is the time of
the first event that is generated by the simulator. t

e(d)
i is the relative time

of the occurrence of the event i after the occurrence of the first event that
is processed with the monitor and which is assumed to coincide with the
starting time of the monitoring process (i.e., T m

s)
• tMi is the time when the monitor retrieves an event i from its database to

process it
• T

Fj

S is the starting time of the decision procedure that the monitor executes
in order to check for violations after the truth values of the predicates in
the template j for a formula F have been established

• T
Fj

E is the completion time of the decision procedure that the monitor exe-
cutes in order to check for violations after the truth values of the predicates
in the template j for a formula F have been established

• i ranges over the events used to establish the truth values of the predicates
in a template Fj .

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 297

Formula 10.7 above is used to compute the delay in making a decision
about a template in cases where the monitor starts checking this template
after the occurrence of all the events that were used to instantiate and set the
truth values of the predicates in the template. Formula 10.8 is used in cases
where the monitor is capable of checking a template before the last event that
was used to instantiate one of its predicates really occurred (this case was only
possible due to the use of simulations in which the time of the real occurrence
of an event could be after its generation by the simulator and its transmission
to the monitor).

Furthermore, for each of the four experiments we produced two sets of
results. The first set recorded the average delay in monitoring sessions using
only the events generated by the simulator (i.e., recorded events). The second
set included the average delay in monitoring sessions using both events gener-
ated by the simulator and additional events that were derived from them using
the monitored requirement formulas and assumptions (i.e., both recorded and
derived events).

10.6.2 Results

Tables 10.3 and 10.4 show the average d-delay in making decisions about the
satisfiability of monitored formulas that was measured in our experiments. The
average delay measures in Table 10.3 refer to monitoring sessions where only
the recorded events (i.e., the events generated by the simulator) were taken
into account. The average delay measures in Table 10.4 refer to monitoring
sessions where both the recorded events and events that could be derived from
them and assumptions by deduction were taken into account. The measures
appearing in both tables are in seconds.

The experimental results shown in Tables 10.3 and 10.4 demonstrate
that the frequency of events had a significant impact on the performance

Table 10.3. d-delay with recorded events

Exp 1 Exp 2 Exp 3 Exp 4

Events Avg d-delay Avg d-delay Avg d-delay Avg d-delay

2500 0.06 0.62 0.03 0.04
5000 0.14 0.13 15.34 15.21
7500 0.21 0.20 185.95 210.22
10000 0.28 0.28 535.56 585.42
12500 0.36 0.36 1184.38 1195.02
15000 0.43 0.43 1896.70 2010.52
17500 105.56 66.29 2781.94 3034.48
20000 620.06 531.39 4121.51 4086.69
22500 1598.23 1397.85 5476.30 5590.25
25000 2993.66 2666.99 7003.27 7137.67
27500 4643.43 4343.57 9055.78 8838.63
30000 6493.96 6150.47 10671.60 11148.4

298 K. Mahbub and G. Spanoudakis

Table 10.4. d-delay with mixed (recorded and derived) events

Exp 1 Exp 2 Exp 3 Exp 4

Events Avg d-delay Avg d-delay Avg d-delay Avg d-delay

2500 49.47 44.70 61.04 68.90
5000 190.65 166.84 451.17 442.47
7500 380.23 342.41 1310.37 1380.84
10000 628.59 569.36 2650.79 2789.45
12500 1059.32 989.13 4420.99 4675.73
15000 1845.82 1744.56 6592.42 6971.83
17500 3205.74 3059.82 9435.23 9970.17
20000 5130.91 4926.66 12992.60 13366.00
22500 7624.29 7266.17 17063.41 17619.07
25000 10607.41 10134.35 21539.77 22325.48
27500 13976.86 13524.91 26647.47 27339.53
30000 17923.68 17452.27 31843.39 33171.97

of the monitor. The average decision delay increased linearly up to a certain
number of events and then it increased exponentially. In high event frequency
experiments, the exponential rise occurred earlier than in the moderate event
frequency (MEF) experiments. More specifically in MEF experiments where
only recorded events were used (i.e., Exp1 and Exp2), the exponential rise of
d-delay started in the range of 17,500–20,000 events as shown in Table 10.3
(i.e., the equivalent of about 1.9 hours of operation of CRS), whereas in the
recorded event HEF-experiments (i.e., Exp3 and Exp4) the exponential rise of
d-delay started in the range of 5,000–7,500 events (i.e., after about 0.2 hours of
operation of CRS). The same phenomenon was observed for the experiments
where we used both recorded and derived events as shown in Table 10.4.

Our experiments also showed that the size of the domains of the non-
time variables had no significant effect on the performance of the monitor.
This is evident from comparing the d-delay between Exp1 and Exp2 and
between Exp3 and Exp4 both in the case of experiments where only recorded
events were used (see Table 10.3) and in the case of experiments where both
recorded and derived events were used (see Table 10.4). The reason for the
absence of any effect of this factor is likely to have been due to the fact that
in our experiments the monitored formulas had predicates which had a small
number of shared variables. Thus, increments in the size of the domains of
these variables did not lead to a combinatorial proliferation in the number of
the templates (instances) of the formulas during the monitoring process.

Our experiments also demonstrated that the use of mixed events had a
significant effect on d-delay. Table 10.5 shows the ratio of the average d-delay
of mixed events over the average d-delay of recorded only events that was
measured in different experiments after processing 10,000, 20,000, and 30,000
events. In both MEF and HEF experiments, this ratio decreased as more
events were being processed going down to less than 3 at 30,000 events. This

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 299

Table 10.5. Mixed vs recorded events d-delay ratio

Events Exp 1 Exp 2 Exp 3 Exp 4

10,000 2197.85 2033.42 4.95 4.76
20,000 8.27 9.27 3.15 3.27
30,000 2.76 2.84 2.98 2.98

was due to the fact that at 30,000 events the monitor had been saturated with
events and substantial delays were being observed for recorded events alone
anyway. At the initial states of monitoring (10,000 events), however, the use of
mixed events (i.e., deduction in the monitoring process) caused a substantial
difference in d-delay which in the case of HEF experiments was almost 5-fold
and in the case of MEF experiments (Exp1 and Exp2) reached a ratio of
more than 2,000. The reason for the latter ratio was that monitoring based
on recorded events only in the case of MEP experiments was very efficient
up to 10,000 events (d-delay in this case was less than 0.3 seconds). These
results clearly demonstrate, as expected, that the use of deduction affects
substantially the efficiency and, therefore, the applicability of the monitoring
process.

Also, our experimental results have demonstrated that the average delay
in the detection of a formula deviation was substantial after some time. This
confirmed the results of a smaller scale experimentation that have been re-
ported in [29, 36]. The observed decision delays suggest that monitoring can
be deployed only for certain types of properties where the timeliness in the
detection of a deviation is not critical for a system (e.g., monitoring of long-
term performance properties of a system) and exclude time critical properties
(e.g., safety).

10.7 Related Work

The importance of being able to specify and monitor agreements between
providers and consumers of web services setting the objectives that the services
should satisfy and the penalties that may arise when they fail to do so is widely
recognized in industry and academia [2, 5, 23]. As a result of this recognition,
several standards and approaches have emerged, in addition to WS-Agreement
that we overviewed in Sect. 10.3.1.

WSLA (Web Service Level Agreement) is another framework that can
be used to specify a service level agreement between a service provider and
service consumer and the obligations of the two parties [23, 28]. This frame-
work provides an XML-based language for specifying quality objectives only
(e.g., service performance and throughput) without covering functional re-
quirements. A web service level agreement is agreed and signed by both par-
ties (known as signatory parties) through negotiation. Signatory parties may
monitor directly the agreement or employ one or more third parties (known as

300 K. Mahbub and G. Spanoudakis

supporting parties) to monitor it. The WS-Agreement -based framework that
we have described in this chapter provides support for the specification of the
entire range of quality properties that can be specified in WSLA.

WS-Policy is a W3C standard that provides an XML-based language for
expressing the capabilities, requirements, and general characteristics of enti-
ties in an SBS system [3]. WS-Policy focuses on the provision of operators
for combining assertions that specify the above characteristics into policies
and the specification of qualifiers indicating the circumstances under which
an assertion has to be met. However, it does not provide the equivalent of a
full logic–based language that would be required in order to express arbitrary
logical conditions regarding the capabilities and requirements of services in a
service-based system and does not support the specification of assertions that
should hold over specific periods of time. Thus, it does not have the expressive
power that is necessary in order to express the entire range of service guar-
antee terms that might be required as part of a WS-Agreement. It would not,
for instance, be possible to express the functional requirement F1 in Fig. 10.5
using WS-Policy.

Baresi et al. [5] have developed a monitoring tool that supports the
monitoring of assertions inserted into the composition process of an SBS sys-
tem. This work also assumes composition processes specified in BPEL. An
assertion is checked by a call to an external service and the execution of the
composition process waits until the monitor returns the result of the check.
Then, the execution of the composition process may continue or be aborted
with the raise of an exception depending on whether the assertion has been
violated. The main difference between the work of Baresi et al. and our frame-
work is that the latter cannot perform preventive monitoring in which the
violation of a certain property can block the execution of a system operation
as [5]. However, our approach is not intrusive to the normal operation of an
SBS system and, therefore, the monitoring that it can perform does not affect
the performance of the monitored system. Furthermore, our approach makes
it possible to monitor more than one service guarantee terms not in isola-
tion (as in [5]) but jointly and complex service guarantee terms which involve
conditions over time.

Baresi et al. [4] have also used the WS-Policy framework to support the
monitoring of security properties for BPEL processes. In this approach the
constraints to be monitored are expressed in WS-Policy and WS-PolicyAtta-
chment is used to attach the policy to a particular context of the BPEL pro-
cess. Monitoring is performed using the approach described in [5], i.e., given
the specification of the constraints to be monitored in WS-Policy and WS-
PolicyAttachment, a process weaver instruments the BPEL process to make
it invoke an external service at runtime that checks the relevant constraints.

Another approach for monitoring SBS systems has been developed by
Robinson [33]. In this approach, requirements are expressed in KAOS and an-
alyzed to identify obstacles for them (i.e., conditions under which the require-
ments can be violated). Obstacles are identified by negating a requirement

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 301

formula R and then identifying all the primitive events that can imply ¬R
through a regressive analysis of formulas that ¬R depends on. If an obstacle
is observable (i.e., it corresponds to a pattern of events that can be observed
at runtime), it is assigned to an agent for monitoring it. At runtime, an event
adaptor translates web service requests and replies expressed as SOAP mes-
sages into events and a broadcaster forwards these events to the obstacle
monitoring agents, which are registered as event listeners to the broadcaster.

Farrell et al. [17] have developed an ontology to capture aspects of service
level agreements agreed between service provider and consumer. This work
is concerned with the monitoring of properties related to computational re-
sources used by services such as computational power, storage, and network
bandwidth. A service level agreement in this approach is specified in terms of
an ontology that includes (i) contract management norms defining the effects
of contract events on the contract state, (ii) obligation norms that define the
actions a party has to perform in case of violation/fulfillment of contract man-
agement norms, and (iii) privilege norms that define non-contractual actions
that the parties of an agreement are permitted to perform. Contracts in [17]
are specified in an XML-based language called CTXML that has a semantics
grounded on event calculus. Their framework is supported by a query execu-
tion engine that checks whether a CTXML contract is satisfied at runtime.
The contract deviations that can be detected in the framework of Farrell et al.
are similar to the inconsistencies caused by the recorded behavior of a system
in our framework.

Ludwig et al. [28] have developed architecture for a middleware that can
be used to create and monitor WS-Agreements, called Cremona. Cremona
has a Java library that implements the protocol for creating service level
agreements as defined by WS-Agreement. It also proposes the use of monitors
that can check the status of the service guarantee terms in an agreement.
These monitors are seen in [28] as domain-specific components that can gather
primitive information from the systems that provide and/or use a service
and use it to evaluate the status of service guarantee terms. As no further
information is available to us regarding the implementation of such monitors,
we are unable to compare them with the monitoring framework described in
this chapter.

Runtime requirements monitoring has been the focus of different strands
of requirements engineering research since the late 1990s. Most of the existing
techniques (e.g., [19]) express requirements in the KAOS framework [13] as
high-level goals that must be achieved by a system. These goals are mapped
onto events that must be monitored at runtime. Typically, the existing ap-
proaches assume that the events to be monitored are generated by special
statements, which must be inserted in the code of a system for this purpose
(i.e., instrumentation) [32]. Note, however, that instrumentation cannot be
always applied to SBS systems since typically SBS system providers are not
the owners of the services deployed by the system.

302 K. Mahbub and G. Spanoudakis

The acquisition of information about the environment of a system during
monitoring is even more difficult and most of the approaches do not address
this problem. As a solution to this problem, which is prominent in highly
dynamic settings (e.g., in mobile computing), Capra et al. [9] have suggested
the use of reflective middleware. Such middleware could maintain metadata
about an application and its execution context and give dynamic access to
this information upon request. In this approach, applications can influence
the middleware behavior by changing their own profile based on the reflected
information provided by the middleware. The reflective approach is also used
in the monitoring framework proposed in [11, 15, 20].

Recently, there has also been work that is concerned with the runtime
verification of program behavior [7, 8, 22, 24]. Work in this area focuses on
the development of framework for emitting and tracing program events during
the execution of a program and verifying them at runtime against properties
specified in some formal language, typically a variant of temporal logic. Events
normally correspond to change values of program variables at the start or end
of method executions. Work in this area focuses on the runtime verification
of Java programs and the deployed runtime events are generated either by
instrumentation [22, 24] or by using Java debugger interface [7, 8]. These
approaches are more close to debugging or perpetual testing of Java programs
rather than monitoring high-level user requirements.

10.8 Conclusions and Directions for Future Work

In this chapter, we presented a framework that we have developed to sup-
port the monitoring of service level agreements. The agreements that can be
monitored are expressed in an extension of WS-Agreement that we have de-
scribed in this chapter. The main characteristic of this extension is that it
uses an event calculus–based language, called EC-Assertion, for the specifica-
tion of the service guarantee terms that constitute the core of a service level
agreement and specify the conditions regulating the provision of services that
should be monitored at runtime. The use of EC-Assertion for specifying ser-
vice guarantee terms provides a well-defined semantics to the specification of
such terms and a formal reasoning framework for assessing their satisfiability.

EC-Assertion enables the specification of complex service guarantee terms
using full first-order logic formulas as well as conditions about time which
are necessary for the specification of not only behavioral but also quality of
service guarantees. It also enables the use of well-understood reasoning proce-
dures for the assessment of the satisfiability of service level agreements by our
framework. In addition to these characteristics, it should be noted that EC-
Assertion defines special events and operations which can be used in event cal-
culus formulas to enable the specification of complex service guarantee terms.
The use of internal and external operations in formulas enables the delegation
of computations of complex data functions which are often required for the

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 303

specification of service guarantee terms to computational entities outside the
main reasoning engine which checks the satisfiability of the terms.

The monitoring framework that supports the proposed extension of WS-
Agreement has been evaluated in a series of experiments that we reported in
this chapter. These experiments have shown that the adoption of non intrusive
monitoring approach of our framework introduces some delay in the detection
of the deviations for an agreement but does not affect the performance of the
system which is being monitored significantly.

Beyond performance, it should be noted that, although our framework is
expressive enough to support a wide spectrum of monitorable service guar-
antee terms, we appreciate that the use of EC-Assertion for the specification
of such terms may be difficult for users who are not familiar with formal lan-
guages. To address this point, we are investigating the development of patterns
that specify generic service guarantee terms in EC-Assertion and an editor
to support the automatic generation of instances of these patterns for specific
SBS systems. An initial set of such patterns which specify generic security
properties, including confidentiality, integrity, and availability properties, in
EC-Assertion has been developed by Spanoudakis et al. [35]. The extension
of this set is the subject of the ongoing work.

Further ongoing work on the framework focuses on its further experimental
evaluation and the introduction of capabilities for probabilistic reasoning as
part of the monitoring process.

References

1. Andrews T. et al.: Business Process Execution Language for Web Services,
v1.1. http://www-106.ibm.com/developerworks/library/ws-bpel

2. Andrieux A. et al.: Web Services Agreement Specification. Global Grid Fo-
rum, May 2004, available from: http://www.gridforum.org/Meetings/GGF11/
Documents/draft-ggf-graap-agreement.pdf

3. Bajaj S. et al.: Web Services Policy Framework. Sep 2004, available from: ftp:
//www6.software.ibm.com/software/developer/library/ws-policy.pdf

4. Baresi L, Guinea S, and Plebani P.: WS-Policy for Service Monitoring. 6th
VLDB Workshop on Technologies for E-Services (TES-05), Trondheim, Norway,
September 2–3, 2005

5. Baresi L., Ghezzi C., and Guinea S.: Smart Monitors for Composed Services.
Proc. of 2nd Int. Conf. on Service Oriented Computing, New York, 2004

6. BPWS4J: http://alphaworks.ibm.com/tech/bpws4j

7. Brorkens M. and Moller M.: Dynamic Event Generation for Runtime Check-
ing using the JDI. In Klaus Havelund and Grigore Rosu (Eds.), Proceedings
of the Federated Logic Conference Satellite Workshops, Runtime Verification.
Electronic Notes in Theoretical Computer Science 70.4, Copenhagen, July 2002.

8. Brorkens M., and Moller M.: Jassda Trace Assertions, Runtime Checking the
Dynamic of Java Programs. In: Ina Schieferdecker, Hartmut Konig and Adam
Wolisz (Eds.), Trends in Testing Communicating Systems, International Con-
ference on Testing of Communicating Systems, Berlin, March 2002, pp. 39–48.

304 K. Mahbub and G. Spanoudakis

9. Capra L., Emmerich W., and Mascolo C.: Reflective middleware solutions for
context-aware applications. LNCS 2192, 2001

10. Chen F. and Rosu G.: Java-MOP: A Monitoring Oriented Programming Envi-
ronment for Java. Proceedings of the 11th International Conference on Tools
and Algorithms for the construction and analysis of systems, 2005

11. Clarke L. and Osterweil L.: Continuous Self-Evaluation for the Self-
Improvement of Software. Springer Verlag Lecture Notes in Computer Sci-
ence #1936, Proceedings of the 1st International Workshop on Self-Adaptive
Software (IWSAS 2000), pp 27–29, April 2000, Oxford, England.

12. CRS Case Study: Available from: www.soi.city.ac.uk/~am697/monitoring/
case_studies/CRS_Case_Study.html

13. Dardenne A., van Lamsweerde A., and Fickas S.: Goal-Directed Requirements
Acquisition. Science of Computer Programming, 20, pp. 3–50, 1993.

14. EC-Assertion: http://www.soi.city.ac.uk/~gespan/EC-assertion.xsd

15. Efstratiou C., Friday A., Davies N., and Cheverst K.: Utilising the event cal-
culus for policy driven adaptation on mobile systems. In Jorge Lobo Bret J.
Michael and Naranker Duray, editors, 3rd International Workshop on Policies
for Distributed Systems and Networks, pages 13–24, Monterey, Ca., U.S., 2002.
IEEE Computer Society.

16. Emerging Technology Toolkit: http://www.alphaworks.ibm.com/tech/ettk

17. Farrell A, Sergot M., Salle M., and Bartolini C.: Using the event calculus
for performance monitoring of Service Level Agreements in Utility Computing.
In Proc. Workshop on Contract Languages and Architectures (CoALa2004),
8th International IEEE Enterprise Distributed Object Computing Conference,
Monterey, September 2004.

18. Feather M. and Fickas S.: Requirements Monitoring in Dynamic Environments.
Proceedings of IEEE International Conference on Requirements Engineering,
1995

19. Feather M.S., Fickas S., Van Lamsweerde A., and Ponsard C.: Reconciling
System Requirements and Runtime Behaviour. Proc. of 9th Int. Work. on
Software Specification & Design, 1998.

20. Finkelstein A. and Savigni A.: A Framework for Requirements Engineering
for Context-Aware Services. In Proc. of 1st Int. Workshop From Software
Requirements to Architectures (STRAW 01), Toronto, Canada, May 2001.

21. Firesmith D.: Engineering Security Requirements. Journal of Object Technol-
ogy, 2(1), 53–68, Jan-Feb 2003

22. Kannan S., Kim M., Lee I., Sokolsky O., and Viswanathan M.: Runtime Mon-
itoring and Steering based on Formal Specifications. Workshop on Modeling
Software System Structures in a fastly moving scenario, June 2000.

23. Keller A. and Ludwig H.: The WSLA Framework: Specifying and Monitor-
ing Service Level Agreements for Web Services. Technical Report RC22456
(W0205–171), IBM Research Division, T.J. Watson Research Center, May 2002.

24. Kim M., Kannan S., Lee I., Sokolsky O., and Viswanathan M.: Java-MaC: a
Runtime Assurance Tool for Java Programs. In Klaus Havelund and Grigore
Rosu, editors, Electronic Notes in Theoretical Computer Science, Vol. 55. El-
sevier Science Publishers, 2001.

25. Lloyd J.W.: Logic for Learning: Learning Comprehensible Theories from Struc-
tured Data. Springer Verlag, ISBN 3-540-42027-4, 2003.

26. Log4j: http://logging.apache.org/log4j/docs/, September 2003

10 Monitoring WS-Agreements: An Event Calculus–Based Approach 305

27. Ludwig H., Dan A., and Kearney R.: Cremona: An Architecture and Library
for Creation and Monitoring of WS-Agreements. Proceedings of the 2nd
International Conference on Service Oriented Computing, November 2004,
New York

28. Ludwig H., Keller A., Dan A., King R.P., and Franck R.: Web Service Level
Agreement (WSLA) Language Specification, Version 1.0. IBM Corporation
(January 2003), http://www.research.ibm.com/wsla

29. Mahbub K. and Spanoudakis G.: Run-time Monitoring of Requirements for
Systems Composed of Web-Services: Initial Implementation and Evaluation
Experience. 3rd International IEEE Conference on Web Services (ICWS 2005),
July 2005

30. OWL-S: http://www.daml.org/services/owl-s/
31. QTP: http://www.soi.city.ac.uk/~am697/QTP_Case_Study.html

32. Robinson W.: Monitoring Software Requirements using Instrumented Code. In
Proc. of the Hawaii Int. Conf. on Systems Sciences, 2002.

33. Robinson W.N.: Monitoring Web Service Requirements. Proc. of 12th Int.
Conf. on Requirements Engineering, 2003

34. Shanahan M.: The event calculus explained. In Artificial Intelligence Today,
409–430, Springer, 1999

35. Spanoudakis G., Kloukinas C., and Androutsopoulos K.: Towards Security
Monitoring Patterns. 22nd Annual ACM Symposium on Applied Computing,
Technical Track on Software Verification, March 2007

36. Spanoudakis G. and Mahbub K.: Non Intrusive Monitoring of Service Based
Systems. International Journal of Cooperative Information Systems, 15(3):
325–358, 2006

306 K. Mahbub and G. Spanoudakis

A Graphical Representation of EC-Assertion

11

Assumption-Based Composition
and Monitoring of Web Services

Marco Pistore and Paolo Traverso

ITC-IRST
Via Sommarive 18, Povo, 38050 Trento, Italy
[pistore,traverso]@itc.it

Abstract. We propose an approach to the automated synthesis and the run-time
monitoring of web service compositions. Automated synthesis, given a set of existing
component services that are modeled in the BPEL language, and given a compo-
sition requirement, generates a new BPEL process that, once deployed, interacts
with the components to satisfy the requirement. The composition requirement ex-
presses assumptions under which component services are supposed to participate in
the composition, as well as conditions that the composition is expected to guaran-
tee. Run-time monitoring matches the actual behaviors of the service compositions
against the assumptions expressed in the composition requirement, and reports vi-
olations. We describe the implementation of the proposed approach, which exploits
efficient synthesis techniques, and discuss its scalability and practical applicability.

11.1 Introduction

Service composition is one of the key ideas underlying web services and service-
oriented applications: composed services perform new functionalities by inter-
acting with component services that are available on the web. The automated
synthesis of composed services is one of the key tasks that can significantly
support the design and development of service-oriented applications. Given a
set of component services and a description of the interaction protocols that
one has to follow in order to exploit them (e.g., in BPEL [3]), and given a
composition requirement, the problem is to automatically synthesize a com-
posed service that, once deployed, interacts with the components to satisfy
the requirements.

Beyond composition requirements and component descriptions, in real life
scenarios, key elements of the problem are the so-called choreographic assump-
tions, i.e., assumptions under which the component services are supposed to
participate in the composition. Such assumptions may not be necessarily en-
coded in the descriptions of each component service. For instance, an assump-
tion between an on-line shop and an electronic payment service can represent
the agreement that the bank will always accept to process a request for a

308 M. Pistore and P. Traverso

money transfer, even if the interaction protocol may allow for a refusal of the
request from the bank. Similarly, a reasonable agreement may be that it is
always possible to cancel an order before paying for it, even if the interface
description of the service may allow for a refusal of cancellations even before
paying. Together with the description of the interactions with the available
components, the choreographic assumptions constitute, therefore, the envi-
ronment in which the composed service has to operate. As a consequence, the
automated synthesis task should take them into account.

Beyond influencing the synthesis at design time, assumptions should also
be monitored at run-time. Run-time monitoring should match the actual be-
haviors of service compositions against the assumptions, and report viola-
tions. This is a compelling requirement in service-oriented applications, which
are most often developed by composing services that are made available by
third parties, and which are autonomously developed and managed. Moreover,
monitors are also needed to detect those problems that can emerge only at
run-time. This is the case, for instance, of situations that, even if admissible
in general at design time, must be promptly revealed when they happen, e.g.,
the fact that a bank refuses to transfer money to a partner on-line shop, even
if this was part of an agreement.

While there have been several works on the automated synthesis of web
services, see, e.g., [33, 27, 12, 41, 37], and several works on monitoring web
services, see, e.g., [5, 30], much less emphasis has been devoted to the problem
of the “assumption-based synthesis and monitoring of web services,” i,e., to
the problem of automatically generating composed services by possibly taking
into account assumptions at design time, which are then monitored at run-
time.

In this chapter, we address this problem: given a formal composition re-
quirement, given a set of component service descriptions in BPEL, and given
a set of choreographic assumptions expressed in temporal logic, we synthe-
size automatically an executable BPEL process that, once deployed, satisfies
the composition requirement, as well as a set of Java monitors that report
at run-time possible assumption violations. The automated generation of the
composed BPEL process takes into account the choreographic assumptions
during the synthesis, by discarding behaviors that violate them during the
search for a solution. We synthesize a composed service that is not supposed
to work and to satisfy the requirements in the case some assumptions are vio-
lated. A first advantage of this assumption-based synthesis is that the search
for a solution may be simpler and scale up to more complex problems than
the previous approach, since assumptions can be used to prune the search
space (see, e.g., [2]). But, more important, this approach is mandatory in the
case the composition only exists under the choreographic assumptions. This
means that the assumptions are so crucial that, if they are violated, the com-
position does not make sense. In these cases, assumption-based synthesis and
monitoring is the only viable solution.

11 Assumption-Based Composition and Monitoring of Web Services 309

The chapter is structured as follows. We start with a motivating example
(Sect. 11.2) and with a conceptual architecture for automated composition
and monitoring (Sect. 11.3). The next two sections describe our approach
to assumption-based synthesis (Sect. 11.4) and monitoring (Sect. 11.5). We
conclude with an evaluation of the approach (Sect. 11.6) and an analysis of
related works (Sect. 11.7).

11.2 Motivating Example

As motivating example, we consider a virtual travel agency (VTA) that offers
a transportation and accommodation service to clients, by interacting with
three external services: one for booking flights, another for booking hotel
rooms, and a third one for managing the payment (Fig. 11.1). When the
agency receives a request from a client for a travel to a given location and
period of time, it contacts the flight service. If available flights are found, the
flight service returns an offer including the cost. Similarly, the agency contacts
the hotel service and asks for a hotel room for the period of permanence in
the desired location. If flight and hotel are both available, then the agency
prepares and sends to the client an aggregated offer, which includes travel and
accommodation, and sends it to the client. If the client decides to accept the
offer, then she/he sends payment information (e.g., the credit card number) to
the agency, which starts the payment procedure interacting with the payment
service. Eventually, the flight and hotel services will receive a confirmation of
the payment, and will emit electronic tickets that the agency will forward to
the client.

In this chapter, we assume that BPEL [17] is used to describe the behavior
of the involved services. BPEL provides an operational description of the
(stateful) behavior of web services on top of the service interfaces defined
in their WSDL specifications. A BPEL description identifies the partners of
a service, its internal variables, and the operations that are triggered upon
the invocation of the service by some of the partners. Operations include
assigning variables, invoking other services and receiving responses, forking

VTA

Payment

Hotel

Flight

Fig. 11.1. The virtual travel agency example

310 M. Pistore and P. Traverso

parallel threads of execution, and non-deterministically picking one amongst
different courses of actions. Standard imperative constructs such as if-then-
else, case choices, and loops, are also supported.

BPEL can describe a web service at two different levels of abstraction.
An executable BPEL model describes the actual behavior of a participant in
a business process in terms of the internal activities and of the interactions
undertaken with the partners. In an abstract BPEL model, instead, only the
interface behavior of a service is described. That is, only the flow of mes-
sages exchanged with the other parties is defined, without revealing internal
behaviors.

In this example, flight, hotel, and payment services are the external ser-
vices. We assume, therefore, that their abstract BPEL specifications are avail-
able and can be downloaded from the web. These specifications describe the
interaction protocols that the agency is expected to respect when interacting
with the external services. In Fig. 11.2 we see the graphical descriptions of
the BPEL processes for the flight, the hotel, and the payment service. We
also assume that the protocol that the VTA follows in the interactions with
the client is given as an abstract BPEL specification, which we also repre-
sent in Fig. 11.2. This protocol has to be considered an additional input to
the composition, as it defines the interactions with the fourth partner of the
VTA, namely its user. Notice that, in Fig. 11.2, transitions whose labels start
with a “?” correspond to inputs received by the service, while labels starting
with a “!” denote outputs of the service. Labels starting neither with “?” nor
with “!” are internal actions of the protocol and correspond, for instance, to
decisions or other private computations.

When automated web service composition techniques like those described
in [41] are applied in this framework, the executable BPEL process of the VTA
is generated automatically starting from the abstract BPEL specifications of
the component services and from a composition requirement that specifies the
goal of the composite process. In our example, the composition requirement
specifies that the goal of the agency is to “sell holiday packages,” i.e., to find a
suitable flight and a suitable hotel for the client, and to manage the payment
procedure. Achieving this goal means leading the interaction protocols with
flight, hotel, payment service, and client to the successful final states (the
states marked with SUCC in Fig. 11.2). However, there are cases in which the
goal “sell holiday packages” cannot be achieved by the VTA: it might be that
there are no flights or rooms available, the client may not accept the offer,
the payment procedure may fail, etc. In all these cases, the VTA should at
least guarantee that there are “no pending commitments” at the end of the
execution: i.e., the VTA has to avoid the cases where a flight or a room are
booked, if the client has not accepted or is not able to pay for them. If one
of the interaction protocol fails, then we have to guarantee that all of them
terminate in failure states (i.e., final states not marked with SUCC). The
composition requirement for the VTA is hence something like “do whatever

11 Assumption-Based Composition and Monitoring of Web Services 311

VTA CLIENT PROTOCOLPAYMENT SERVICE PROTOCOL

! ack

SUCCFAIL

SUCC

! cancel_vacation

NA

check_cc

? payment_request(cc,amount)

START START

! vacation_request(from,to,date)

? vacation_not_avail
? offer(f_info,h_info,cost)

decide_buy

! payment_info(cc)

! nack

? tickets(f−ticket,h_ticket)

FAIL

CANCELLED
? payment_failed

FLIGHT BOOKING PROTOCOL

? flight_request(from,to,date)

check_flight_avail

? cancel_flight

CANCELLED

NA

START

! flight_not_avail ! flight_offer(info,cost)

! canc_refused

decide_cancel

! flight_ticket(e−ticket)

SUCC

! flight_canc_accepted

NA

START

HOTEL BOOKING PROTOCOL

? hotel_request(loc,date)

check_hotel_avail

! hotel_not_avail ! hotel_offer(info,cost)

! hotel_ticket(e−ticket)

SUCC

CANCELLED

? confirm_hotel
? cancel_hotel

Fig. 11.2. Abstract BPEL protocols

possible to ‘sell holiday packages,’ but if something goes wrong guarantee that
there are ‘no pending commitments’.”

In Fig. 11.3 we report a possible executable BPEL process that implements
the VTA and satisfies the composition requirement just described. One can
notice that the BPEL process behaves as an orchestrator that interacts with
the flight, the hotel, the payment services, and the user according to the

312 M. Pistore and P. Traverso

 ? vacation_request(from,to,date)

 ! flight_request(from,to,date)

 ! hotel_request(to,date)! vacation_not_avail

? flight_not_avail

? hotel_not_avail

? flight_offer(f_info,f_cost)

? hotel_offer(h_info,h_cost)

! vacation_not_avail

? payment_info(cc)

 ! payment_request(cc,f_cost+h_cost)

! offer(f_info,h_info, f_cost+h_cost)

? ack

! tickets(f−ticket,h_ticket)

? flight_ticket(f−ticket)

! confirm_hotel

? hotel_ticket(h−ticket)

? nack

! payment_failed

! cancel_hotel

! cancel_flight

? flight_canc_accepted

VTA COMPOSITE SERVICE

? cancel_vacation

Fig. 11.3. Composite BPEL process for the VTA

protocols in Fig. 11.2, and directs and interleaves these interaction is a suitable
way, in order to guarantee the achievement of the composition requirement.

In many cases, it is necessary or convenient to restrict the behaviors of
the external services (hotel, flight, payment) with additional assumptions on
their behaviors which are not implied by the abstract BPEL specifications.
This is the case also for our scenario. Indeed, consider the behavior of the
Flight service in case of a cancellation request: the BPEL specification simply

11 Assumption-Based Composition and Monitoring of Web Services 313

specifies that the request can be accepted or refused by the service. However,
we may know, for instance from a service level agreement, that the flight can-
cellation is granted whenever the payment of the requested flight has not yet
been done. We remark that the composition reported in Fig. 11.3 is based
on this assumption: when a cancel flight is issued by the VTA, the only
expected outcome is an approval of the cancellation. More in general, without
this assumption, it would not be possible for the VTA to achieve its composi-
tion requirement: indeed, if a flight offer has been obtained, but the user is not
interested in the package returned by the VTA, then it would be impossible
for the VTA to guarantee the possibility of canceling it, as requested by the
“avoid pending commitments” requirement.

Besides being used to restrict the possible behaviors of the component
services, our framework exploits these assumptions at run-time. Assumption
monitors, which can be automatically generated from the specification of the
assumptions, are executed in parallel with the composed BPEL process so as
to check if the assumptions are respected during execution. Indeed, if the flight
service violates our assumption, and refuses to cancel a flight even before the
payment, the violation has to be detected and reported, since it will prevent
the VTA from achieving its goal.

Monitoring is not limited to those assumptions that we use to restrict the
valid behaviors at composition time. Indeed, it may be useful to have moni-
tors also for additional assumptions that we did not exploit for generating the
composition. Consider, for instance, the assumptions that rooms are guaran-
teed to be available if the request is done sufficiently in advance, or that flight
availability is guaranteed for VIP clients, or also that the payment procedure
will always succeed for “gold” credit cards, etc. These assumptions do not
need to be exploited to obtain a correct composition. Still, it is important for
the VTA to monitor them, since their violation may lead to loose clients.

Finally, an implicit assumption of the VTA on the component processes
is that they respect the flow of interactions described in their abstract BPEL
specification. This violation can happen, for instance, due to evolutions in the
implementations of the external services, or also due to malicious external
parties. In our framework, domain monitors, which detect violations of the
specified protocols in the actual interactions with external services, can be
automatically generated from the abstract BPEL specifications.

11.3 The Framework

Figure 11.4 depicts the design-time and run-time environments in our frame-
work.

11.3.1 Design-Time Environment

The Design-Time Environment has two main components, a Composer and
a Monitor Generator. The Composer can be used to automatically generate

314 M. Pistore and P. Traverso

Console AdminAdmin Extended
Console

M
ediator

Queue
Manager

Engine

RTM

Process Monitor
Inventory

Process
Instance Instance

Monitor

Generator
Monitor
Domain

Monitor
Generator

Inventory

Assumptions Component Services

Assumptions

Goal
Composition

E
nv

iro
nm

en
t

Process

M
on

ito
rin

g
E

nv
iro

nm
en

t
R

un
−

T
im

e
E

xe
cu

tio
n/

Manager

BPEL

D
es

ig
n−

T
im

e
Composer

Fig. 11.4. Design-time and run-time execution/monitoring environments

the executable BPEL processes implementing the composed service. It takes
in as input the component services and a composition goal. The component
services are abstract BPEL specifications that are available on the web, and
they can be seen as the environment the composed service has to interact
with. The composition goal specifies requirements on the composed service.
The composer can also take advantage of assumptions about the behavior of
component services, in order to prune the search for a composed service. The
composition task performed by the Composer is further analyzed in Sect. 11.4.

The second component of the Design-Time Environment is the Monitor
Generator, which is composed of a core component, the Domain Monitor
Generator, and the Assumption Monitor Generator, which is built upon the
generator of domain monitors. The algorithms run by these modules are de-
scribed in detail in Sect. 11.5.

11.3.2 Run-Time Environment

The Run-Time Execution/Monitoring Environment runs in parallel executable
BPEL processes (for instance, the composite services generated at design time)
and Java monitors (also possibly generated by the monitor generator). In
our approach, monitors observe BPEL process behaviors by intercepting the
input/output messages that are received/sent by the processes, and signal
some misbehavior or, more in general, some situation or event of interest. In
Fig. 11.4, the components on the left-hand side constitute the BPEL process
execution environment, while the monitor run-time environment consists of
the components on the right-hand side. For the BPEL process execution en-
vironment, we have chosen a standard engine for executing BPEL processes.

11 Assumption-Based Composition and Monitoring of Web Services 315

Among the existing BPEL engines, we chose Active BPEL [1] for our experi-
ments, since it is available as open source, and since it implements a modular
architecture that is easy to extend. From a high-level point of view, the Ac-
tive BPEL run-time environment can be seen as composed of four parts. A
Process Inventory contains all the BPEL processes deployed on the engine.
A set of Process Instances consists of the instances of BPEL processes that
are currently in execution. The BPEL Engine is the most complex part of
the run-time environment, and consists of different modules (including the
Process Manager, the Queue Manager, the Process Logger, and the Alarm
Manager), which are responsible for the different aspects of the execution of
the BPEL processes. The Process Manager creates and terminates process in-
stances, and the Queue Manager is responsible for dispatching incoming and
outgoing messages. The Admin Console provides web pages for checking and
controlling the status of the engine and of the process instances.

The Run-Time Monitoring Environment is composed of four parts (see
Fig. 11.4). The Monitor Inventory and the Monitor Instances are the coun-
terparts of the corresponding components of the BPEL engine: the former
contains all the monitor classes deployed in the engine, while the latter is the
set of instances of these classes that are currently in execution. Each monitor
class is associated to a specific BPEL process, while each monitor instance is
associated to a specific process instance. Each monitor class is a Java class
that implements the methods described in Fig. 11.5. The Run-Time Monitor
(RTM) is responsible to support the life-cycle (creation and termination) and
the evolution of the monitor instances. The Mediator allows the RTM to in-
teract with the Queue Manager and the Process Logger of the BPEL engine
and to intercept input/output messages as well as other relevant events such
as the creation and termination of process instances. The Extended Admin
Console is an extension of the Active BPEL Admin Console that presents,

• init(): init method, executed when an instance of the monitor is created
• evolve(BpelMsg message): handles a message, updating the state of the monitor

instance
• terminate(): handles the notification of a process termination event
• isValid(): returns true if the monitor instance is in a valid state (i.e., no mis-

behavior has been detected)
• getErrorString(): returns an error string if the monitor instance is in an invalid

state
• getProcessName(): returns the name of the BPEL process associated to the

monitor
• getPropertyName(): returns the (short) property name of the monitor
• getPropertyDescription(): returns the description of the property checked by

the monitor

Fig. 11.5. Methods of a monitor Java class

316 M. Pistore and P. Traverso

along with other information on the BPEL processes, the information on the
status of the corresponding monitors.

The monitor life-cycle is influenced by three relevant events: the process
instance creation, the input/output of messages, and the termination of the
process instance. When the RTM receives a message for the Mediator, it tries
to find a match with the already instantiated monitors. If a match is found, the
message is dispatched to all the matching monitor instances through method
evolve. If no match is found, then a new process instance has been created in
the BPEL engine, and hence a set of monitor instances specific for that process
instance is created by the RTM and initialized through the method init. For
each message, the Mediator provides also information on the process instance
receiving/sending the message, as well as on the BPEL process corresponding
to the instance. The information on the BPEL process is used to select the
relevant set of monitors to be instantiated for that process. The process ter-
mination is captured via a termination event, the event is dispatched, through
the invocation of method terminate, to all the monitor instances associated
to the process instance.

11.4 Assumption-Based Composition of Web Services

In this section we describe the theory underlying the assumption-based Com-
poser of Fig. 11.4 exploiting a general framework for the automated composi-
tion of web services.

11.4.1 An Automated Composition Framework

The work in [41] (see also [42, 37]) presents a formal framework for the au-
tomated composition of web services which is based on planning techniques:
component services define the planning domain, composition requirements
are formalized as a planning goal, and planning algorithms are used to gener-
ate the composite service. The framework of [41] differs from other planning
frameworks since it assumes an asynchronous, message-based interaction be-
tween the domain (encoding the component services) and the plan (encoding
the composite service). We now recall the most relevant features of the frame-
work defined in [41].

The planning domain is modeled as a state transition system (STS from
now on) which describes dynamic systems that can be in one of their possible
states (some of which are marked as initial states) and can evolve to new
states as a result of performing some actions. Actions are distinguished in
input actions, which represent the reception of messages, output actions, which
represent messages sent to external services, and a special action τ called
internal action. The action τ is used to represent internal evolutions that are
not visible to external services, i.e., the fact that the state of the system can
evolve without producing any output, and independently from the reception of

11 Assumption-Based Composition and Monitoring of Web Services 317

inputs. A transition relation describes how the state can evolve on the basis
of inputs, outputs, or of the internal action τ . Finally, a labeling function
associates to each state the set of properties Prop that hold in the state.
These properties will be used to define the composition requirements.

Definition 1 [State transition system (STS)] A state transition system Σ is
a tuple 〈S,S0, I,O,R,L〉 where

• S is the finite set of states
• S0 ⊆ S is the set of initial states
• I is the finite set of input actions
• O is the finite set of output actions
• R ⊆ S × (I ∪ O ∪ {τ}) × S is the transition relation
• L : S → 2Prop is the labeling function.

A state s is said to be final if there is no transition starting from s (i.e.,
∀a ∈ (I ∪ O ∪ {τ}), ∀s′ ∈ S.(s, a, s′) /∈ R).

The automated synthesis problem consists in generating a state transition
system Σc that, once connected to Σ, satisfies the composition requirement
ρ. We now recall the definition of the state transition system describing the
behavior of Σ when connected to Σc.

Definition 2 (controlled system) Let Σ = 〈S,S0, I,O,R,L〉 and Σc =
〈Sc,S0

c ,O, I,Rc,L∅〉 be two state transition systems, where L∅(sc) = ∅ for all
sc ∈ Sc. The STS Σc�Σ, describing the behaviors of system Σ when controlled
by Σc, is defined as

Σc � Σ = 〈Sc × S,S0
c × S0, I,O,Rc � R,L〉

where

• 〈(sc, s), τ, (s′c, s)〉 ∈ (Rc � R) if 〈sc, τ, s
′
c〉 ∈ Rc

• 〈(sc, s), τ, (sc, s
′)〉 ∈ (Rc � R) if 〈s, τ, s′〉 ∈ R

• 〈(sc, s), a, (s′c, s
′)〉 ∈ (Rc � R), with a �= τ , if 〈sc, a, s′c〉 ∈ Rc and

〈s, a, s′〉 ∈ R.

Notice that we require that the inputs of Σc coincide with the outputs of
Σ and vice versa. Notice also that, although the systems are connected so
that the output of one is associated to the input of the other, the resulting
transitions in Rc � R are labeled by input/output actions. This allows us to
distinguish the transitions that correspond to τ actions of Σc or Σ from those
deriving from communications between Σc and Σ. Finally, notice that we
assume that the plan has no labels associated to the states.

In an automated synthesis problem, we need to generate a Σc that guar-
antees the satisfaction of a composition requirement ρ. This is formalized by
requiring that the controlled system Σc � Σ must satisfy the goal ρ, written
as Σc � Σ |= ρ. In [41], ρ is formalized using EaGLe, a requirement language
which allows to specify conditions of different strengths (like “try” and “do”),

318 M. Pistore and P. Traverso

and preferences among different (e.g., primary and secondary) requirements.
EaGLe operators are similar to CTL [24] operators, but their semantics,
formally defined in [21], takes into account the notion of preference and the
handling of failure when subgoals cannot be achieved.

For example, the EaGLe formalization of the composition requirement
for the VTA example discussed in Sect. 11.2 is the following:

TryReach

c.SUCC ∧ f.SUCC ∧ h.SUCC ∧ p.SUCC

Fail DoReach

(c.NA ∨ c.FAIL ∨ c.CANCELLED) ∧
(f.NA ∨ f.CANCELLED ∨ f.START) ∧
(h.NA ∨ h.CANCELLED ∨ h.START) ∧
(p.FAIL ∨ p.START)

Where c is the client, f the flight, h the hotel, and p the payment services and
propositions like c.SUCC correspond to require that the client has reached the
state marked with SUCC according to the interaction protocols in Fig. 11.2.1

The goal is of the form “TryReach c Fail DoReach d.” TryReach c requires
a service that tries to reach condition c, in our case the condition “sell holiday
packages.” During the execution of the service, a state may be reached from
which it is not possible to reach c, e.g., since the product is not available.
When such a state is reached, the requirement TryReach c fails and the
recovery condition DoReach d, in our case “no pending commitments” is
considered.

The definition of whether ρ is satisfied, which we omit for lack of space, is
defined on top of the executions that Σc � Σ can perform. Given this, we can
characterize formally an automated synthesis problem.

Definition 3 [Automated Synthesis] Let Σ be a state transition system, and
let ρ be an EaGLe formula defining a composition requirement. The auto-
mated synthesis problem for Σ and ρ is the problem of finding a state transi-
tion system Σc such that

Σc � Σ |= ρ.

The work in [41] shows how to adapt to this task the “Planning as Model
Checking” approach, which is able to deal with large non-deterministic do-
mains and with requirements expressed in EaGLe. It exploits powerful BDD-
based techniques [16] developed for Symbolic Model Checking [17] to efficiently
explore domain Σ during the construction of Σc.
1 Note that in the “no pending commitments” part of the composition goal we

allow the flight, the hotel, and the payment services to “terminate” in the START
state. This permits to skip calling some of the services (e.g., the payment service)
in case of failures in previous services (e.g., no flight is available).

11 Assumption-Based Composition and Monitoring of Web Services 319

11.4.2 BPEL Processes and Assumptions as STSs

The domain for the composition task corresponds to the BPEL specifications
of the component services and to the assumptions that we decide to enforce
in the composition and that, as a consequence, restricts the valid behaviors of
the BPEL components. We now show that BPEL processes and assumptions
can all be mapped to STSs.

In [41], we have defined a translation that associates a state transition
system to each component service, starting from its BPEL specification.
We omit the formal definition of the translation, which can be found at
http://www.astroproject.org.2 Intuitively, input actions of the STS represent
messages received from the component services, output actions are messages
sent to the component services, internal actions model assignments and other
operations which do not involve communications, and the transition relation
models the evolution of the service.

For what concerns the assumptions, we allow the user to specify them in
Linear Temporal Logic (LTL [24]).

Definition 4 (LTL) Let Prop be a property set and p ∈ Prop. LTL properties
on Prop are defined as follows:

φ ::= true | p | ¬φ | φ ∧ φ | Xφ | Fφ | G φ | φ1 U φ2 | φ1 W φ2.

Intuitively, the temporal operators above can be read as follows:

• Xφ means “φ will be true in the next state.”
• Fφ means “φ will be true eventually in the future.”
• G φ means “φ will be true for all the future states.”
• φ1Uφ2 means “φ2 will be eventually true, and φ1 will be true till that

moment.”
• φ1W φ2 means “φ1 will be true till φ2 becomes true or the history termi-

nates.”

In our context, the properties p ∈ Prop are atoms of the form s.q, where s
is the name of one of the component services and q is either an input/output
operation or one of the properties labeling the states of (STS modeling) s.

For example, the assumption that it is possible to cancel a flight until we
start the payment process can be formalized as the following LTL formula:
2 For the moment, the translation is restricted to a significant subset of the BPEL

languages. More precisely, we support all BPEL basic and structured activities,
like invoke, receive, sequence, switch, while, pick, and flow. Moreover, we support
restricted forms of assignments and correlations. The considered subset does not
deal at the moment with important BPEL constructs like scopes, fault, event, and
compensation handlers; while these constructs are often required in executable
BPEL implementation, we found the considered subset expressive enough for
describing the abstract BPEL interface of complex services in real applications
domains.

320 M. Pistore and P. Traverso

ACCEPTACCEPT

p.payment_request

p.payment_request

f.canc_flight_accepted
f.cancel_flight

f.canc_flight_accepted

Fig. 11.6. Example of STS corresponding to an assumption

(f.cancel flight ⇒ F f.canc flight accepted)) W p.payment request.

It says that, until a payment request received by the payment service p (output
payment request in the protocol of Fig. 11.2), if a flight cancellation request
is sent to the flight booking service f (message cancel flight according to the
interaction protocol of the flight), then an acknowledgement of the cancellation
will eventually be received (message canc flight accepted). Alternatively, the
same assumption can be written exploiting the labeling of the states of flight
and payment service:

G ((f.cancel flight ∧ p.START) ⇒ F (f.CANCELLED)).

It says that, if a flight cancellation request (message cancel flight) is received
when the payment procedure is still in its initial state (state labeled with
START in the protocol of the payment service), then the state where the flight
has been cancelled will eventually be reached (state labeled CANCELLED of
the interaction protocol of the flight).

Standard techniques [24] can be used to translate the LTL specification
of an assumption into an STS.3 For instance, Fig. 11.6 reports the graphical
description of the STS corresponding to property

(f.cancel flight ⇒ F f.canc flight accepted)) W p.payment request.

We remark that, despite the simplicity of this STS, its role is fundamental in
order to guarantee the feasibility of the composition.

11.4.3 Generating the Composed BPEL Process

We are ready to show how we can perform assumption-based composition
within the automated composition framework presented in Sect. 11.4.1. Given
n component services W1, ..., Wn and m assumptions A1, ..., Am that we want
to enforce, we encode each component service Wi as a STS ΣWi and each
assumption Ai as a STS ΣAi . The planning domain Σ for the automated

3 Notice that we are interested in finite executions of the web services, hence we
have to interpret the LTL assumptions on finite words. We can hence avoid the
difficulties in modeling acceptance conditions that arise when interpreting LTL
on infinite executions/words.

11 Assumption-Based Composition and Monitoring of Web Services 321

composition problem is the synchronized product of all these STSs. Formally,
Σ = ΣW1 ‖ ... ‖ ΣWn ‖ ΣA1 ‖ ... ‖ ΣAm .

The planning goal is obtained from the formalization ρ of the compo-
sition termination requirements expressed in EaGLe. This formula has to
be enriched to capture the fact that we require the conditions expressed
in goal ρ to be satisfied only for those executions that satisfy the enforced
assumptions, i.e., for those executions that terminate in a state where all
the automata ΣAi are in accepting states (e.g., the states marked as AC-
CEPT in the STS of Fig. 11.6). Consider, for instance, the requirement
ρ = TryReach c Fail DoReach d, and let us assume that property a ex-
presses the condition that all the automata ΣAi are in accepting states. Then
the modified goal is

ρa = TryReach (a ⇒ c) Fail DoReach (a ⇒ d).

Given the domain Σ and the planning goal ρc, we can apply the approach
presented in [41] to generate a controller Σc, which is such that Σc � Σ |= ρa.
Once the state transition system Σc has been generated, it is translated into
the executable BPEL implementation of the composite service. This trans-
lation is conceptually simple, but particular care has been put in its imple-
mentation (see http://www.astroproject.org) in order to guarantee that the
generated BPEL is of good quality, e.g., it is emitted as a structured program
that can be inspected and modified if needed.

11.5 Automatic Generation of Monitors

In this section we describe how monitors can be automatically generated from
the BPEL description of the component services and from the assumptions
specifying the properties to be monitored. As discussed in Sect. 11.2, we dis-
tinguish two kinds of monitors: domain monitors, which are responsible to
check whether the component services respect the protocols described in their
abstract BPEL specification, and assumption monitors, which check whether
the component services satisfy additional assumptions on their behavior.

11.5.1 Domain Monitors

Monitors can only observe messages that are exchanged among processes.
As a consequence, they cannot know exactly the internal state reached by
the evolution of a monitored external service. Non-observable behaviors of a
service (such as assign activities occurring in its abstract BPEL) are modeled
by τ -transitions, i.e., transitions from state to state that do not have any
associated input/output. From the point of view of the monitor, this kind
of evolutions of external services cannot be observed, and states involved
in such transitions are indistinguishable. Such sets of states are called belief

322 M. Pistore and P. Traverso

procedure build-mon()
MS = MT = MF = ∅
ms0 = {τ -closure(s0) : s0 ∈ S0}
build-mon-aux(ms0)

procedure build-mon-aux(B:Belief)
if B �∈ MS then

MS = MS ∪ {B}
if ∃s ∈ B. s is final then

MF = MF ∪ {B}
end if
for all m ∈ (I ∪ O) do

B′ = Evolve(B, m)
if B′ �= ∅ then

build-mon-aux(B′)
MT = MT ∪ {< B, m, B′ >}

end if
end for

end if

Fig. 11.7. The domain monitor generation algorithm

states, or simply beliefs [15]. We denote with τ -closure(s) the set of the states
reachable from s through a sequence of τ -transitions. The evolution of an
external service, as perceived by a monitor, is modeled by the evolution from
belief states to belief states.

Definition 5 (belief evolution) Let B ⊆ S be a belief on some STS Σ =
〈S,S0, I,O,R,L〉. We define the evolution of B on message m ∈ (I ∪ O) as
the belief Evolve(B, m), where

Evolve(B, m) = {s′ : ∃s ∈ B.∃s′′ ∈ S.〈s, m, s′′〉 ∈ R ∧ s′ ∈ τ-closure(s′′)}.

The generation of a domain monitor for an external abstract BPEL process
is based on the idea of beliefs and belief evolutions. The domain monitor gen-
eration algorithm (Fig. 11.7) incrementally generates the set MS of beliefs
starting from the initial belief ms0, by grouping together indistinguishable
states of the STS. The beliefs in MS are linked together with (non τ) tran-
sitions MT ⊆ MS × (I ∪O)×MS, as described by function Evolve. Beliefs
that contain at least one state that is final for the STS are considered possible
final states also for the domain monitor, and are stored in MF .

Once the algorithm in Fig. 11.7 has been executed, the Java code imple-
menting the domain monitor can be easily generated. A skeleton of this Java
code, parametric with respect to the set of beliefs MS, initial and final beliefs
ms0 and MF , and the belief transitions MT , is reported in Fig. 11.8.

In the Java code, the belief states in MS are used to trace the current sta-
tus of the evolution of the monitored BPEL process, using ms0 as initial state

11 Assumption-Based Composition and Monitoring of Web Services 323

and the transitions in MT to let the status of the monitor evolve whenever a
message is received. The final beliefs MF are exploited when a termination
event is received: indeed, if the process instance terminates and the monitor is
a belief that is not final, then a premature termination of the process instance
has occurred.

We remark that one can interpret the algorithm in Fig. 11.7 as a transfor-
mation of the STS in input, which is non-deterministic and contains τ tran-
sitions, into a new STS that is deterministic and is fully observable (i.e., that
does not contain τ transitions). Actually, the algorithm is an adaptation of
the standard power-set construction for transforming non-deterministic finite
automata into deterministic ones.

11.5.2 Assumption Monitors

The algorithm for the generation of assumption monitors takes as input the
(STSs corresponding to the) abstract BPEL processes of the external services
plus an assumption to be monitored. As already discussed in Sect. 11.4.2, we
express assumptions in LTL [24], using as propositional atoms the input/out-
put messages of the component services as well as the properties labeling the
states of the STSs modeling these services.

To build an assumption monitor, the corresponding LTL formula is mapped
onto an STS, which is then emitted as Java code.

The evolution of the assumption monitor depends on the input/output
messages received by the composite services, which are directly observable by
the monitor. However, it also depends on the evolution of the truth values
of those basic propositions labeling the states of the components STSs which
appear in the LTL formula. These truth values are computed by tracing the
evolution of the beliefs of the component services relevant to the formula,
similarly to what is described in Fig. 11.8 for the domain monitor. However,
it is possible in this case to simplify the “domain” monitor, by pruning out
parts of the protocol that are not relevant to tracing the evolution of the basic
propositions which appear in the formula. This prune is obtained by applying a
reduction algorithm inspired by the classical minimization algorithm for finite
state automata (Fig. 11.9). This algorithm builds a partition Π of the belief
states of the domain monitor, so that beliefs in the same class are considered
equivalent for monitoring the basic propositions P1, . . . , Pn we are interested
in. The initial partition consists of different classes corresponding to different
truth values of the basic propositions. This partition is then iteratively refined
by splitting a class into two parts, until a fixed point is reached. The splitting of
class C into the two classes split(C, m, C′) and C�split(C, m, C′) is performed
whenever there are some beliefs in C from which class C′ is reached performing
message m, while for other beliefs in C a class different from C′ is reached
performing x (see procedures “split” and “splittable” in Fig. 11.9). When a
stable partition is reached, the reduced monitor is obtained by merging beliefs
in the same class of the partition.

324 M. Pistore and P. Traverso

public class Monitor implements IMonitor {
 private enum MS { ... } // monitor states
 private MS _bs; // current monitor state
 private boolean is_valid = true;
 public void init() { _bs = ms0; }
 public boolean isValid() {

return is_valid;
 }
 private boolean isFinal() {

return (_bs in MF);
 }
 public void terminate()
 {

is_valid= is_valid && isFinal() ;
 }
 public String getErrorString()
 {

if(!isValid()){
 return "Protocol violation";
} else {
 return "No error";
}

 }
 public void evolve(BpelMsg msg)
 {

if (is_valid){
 if (exists <_bs,msg,next> in MT){

_bs = next;
 } else {

is_valid = false;
 }
}

 }
 public Monitor() { init(); }
 public String getProcessName() { ... }
 public String getPropertyName() { ... }
 public String getPropertyDescription() { ... }
}

Fig. 11.8. Skeleton of the domain monitor

procedure reduce-monitor(P1, . . . , Pn)
/* Building the initial partition */
for all PS ⊆ {P1, . . . , Pn} do

C = {B ∈ MS : ∀i = 1, . . . , n. (B|=Pi ⇔ Pi∈PS)}
if C �= ∅ then Π = Π ∪ {C} end if

end for
/* Refining the partition */
while ∃C, C′ ∈ Π. C �= C′ ∧ ∃m ∈ (I ∪ O). splittable(C, m, C′) do

Π = Π � {C} ∪ {split(C, m, C′), C � split(C, m, C′)}
end while
return Π

procedure split(C, m, C′)
return {B ∈ C : ∃B′ ∈ C′. < B, m, B′ >∈ MT }

procedure splittable(C, m,C′)
return ∅ �= split(C,m, C′) �= C

Fig. 11.9. The assumption monitor reduction algorithm

11 Assumption-Based Composition and Monitoring of Web Services 325

11.6 Experimental Evaluation

The performance of the automated composition task have been tested exper-
imentally, see, e.g., [41, 37, 42] in the case without assumptions. We have also
used the automated composition techniques on some real applications in the
field of e-government, telcos, and on-line banking. The experiments and the
applications have shown the feasibility and the scalability of the approach. We
have shown that the automated composition task takes a rather low amount
of time, and it is surely much faster than manual development of executable
BPEL composite processes. Moreover, the automatically generated BPEL is
of good quality. In some cases, we have asked experienced programmers to
develop manually the BPEL processes and we have compared the automati-
cally generated and the hand-written solutions. We have discovered that the
solutions often implement the same strategy and have a similar structure. The
main differences are mainly due to possible different styles of programming,
and the automatically generated code is reasonable and rather easy to read
and understand.

In this chapter, we report the performance of the automated construction
of monitors, as well as the overhead caused by the execution of monitors at
run-time. All experiments have been run on a 3 GHz Pentium 4 PC machine,
equipped with 1 GB memory, and running a Linux 2.6.7 operating system.

In order to test the performance of the monitor generation, we have per-
formed two sets of experiments. In the first set, we test the automatic gener-
ation of domain monitors w.r.t. the complexity of the planning domain. We
report the results of the automatic generation w.r.t. the number of activities of
an abstract BPEL process in input to the monitor generation (Fig. 11.10). The
input BPEL is a generalized version of the hotel service which can perform
different kinds of reservations one after the other, thus increasing its number
of activities. We start the experiments from six activities, corresponding to the

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250

tim
e

(s
ec

on
ds

)

of BPEL activities

Fig. 11.10. Experiments with domain monitor generation

326 M. Pistore and P. Traverso

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140 160 180 200

re
du

ct
io

n
sc

al
e

of atoms in formula

Fig. 11.11. Experiments with assumption monitor reduction

activities of a very simple hotel service, and we scale up to 240, corresponding
to a service dealing with about 40 different kinds of reservations. On the ver-
tical axis, we report the monitor generation time in seconds. As expected, the
time for monitor construction increases regularly with the number of activi-
ties. The monitor generation however manages to deal with rather complex
BPEL specifications in a rather short time. The case of 100 activities takes 10
seconds, and we manage to automatically generate monitors for BPEL spec-
ifications with about 250 activities in 1000 seconds. In our example, BPEL
with 100 activities generate a monitor with more than 300 beliefs, while 250
activities correspond to about 1000 beliefs.

In Fig. 11.11 we report the results of our second set of experiments. Given
a service, we test the monitor reduction algorithm performance. In the hori-
zontal axis, we have the number of propositions in a set of randomly generated
assumption formulas of increasing complexity. The number of atoms in the
formula is indeed the parameter that can affect monitor reduction. In the
vertical axis, we report the average gain ratio in number of beliefs obtained
by performing the monitor reduction (a value of 0.25 means that the size of
the reduced automaton is 25% of the original). The reduction is significant.
Notice also that, as the number of atomic propositions in the formula grows,
the gain ratio stabilizes somewhere around 0.30. This corresponds to the fact
that about 70% of the states in the monitor are useful only for protocol mon-
itoring, but do not give any information for the monitoring of the specific
formula.

Figure 11.12 reports instead an experimental evaluation of the overhead
that can be caused by executing monitors in parallel to BPEL processes. We
measure the overhead at increasing number of monitors that check at run-time
a process: the number of monitors per process is reported on the horizontal
axis. The overhead is the time to run the processes without any monitor di-
vided by the time to run the processes with their monitors. Fig. 11.12 reports

11 Assumption-Based Composition and Monitoring of Web Services 327

Fig. 11.12. Experiments with monitor generation

four curves that measure the overhead with a different number of process in-
stances: 10, 30, 50, and 100. Notice that the overhead, even for a very high
number of monitors per process, is acceptable, and the decrease in perfor-
mances is not high. Consider the case of 10 process instances. We have 25%
overhead with 10 monitors for each instance. The execution with 40 running
monitors per process instances takes just twice the time required for running
processes without monitors. It is about three times with 100 monitors per
process instances (for a total of 1000 monitors running on the run-time envi-
ronment). Moreover, the overhead does not increase significantly by increasing
the number of process instances. In the case of more than 10 process instances,
the fact that results are not reported after a given number of monitors is due
to the fact that, in the setting we used for the experiments, the memory is
exhausted if more than 3000 monitor instances are running at the same time.
We are working to a more efficient implementation of the run-time monitoring
environment that solves this problem.

Overall, the experiments show that monitor generation can be done effi-
ciently also for complex component services and properties. Moreover, they
show that run-time checking does not reduce significantly performances, and
that this fact is independent of the load of the BPEL execution engine.

In conclusion, it turns out that both automated composition and run-time
monotoring manage to deal in practice with cases of a certain complexity, have
the potentiality to scale up to real applications, and can reduce significantly
the effort in the development process. We leave for the future an extensive
user evaluation dedicated to test the acceptance of the technology from the
point of view of the developers.

328 M. Pistore and P. Traverso

11.7 Conclusions and Related Work

As far as we know, the contribution described in this chapter presents several
elements of novelty. The work provides a uniform framework that integrates
the automatic generation of composed BPEL processes with the automated
generation of monitors. Moreover, the approaches to both composition and
monitoring present elements of novelty by themselves, as discussed in the
next two subsections.

11.7.1 Automated Composition of Web Services

In this chapter, we address the problem of automated composition in a
mediator-based architecture where, given a set of component services (defined
in our case as abstract BPEL processes), and a composition requirement, we
synthesize one new web service that acts as a mediator and implements the
composition by interacting with the component services. A different problem
is that of the automated composition in a peer-to-peer architecture, where,
given n component services and a composition requirement, the task is to
generate n distributed new executable BPEL processes, one for each compo-
nent, that interact with their own component and with the other new BPEL
processes that are generated. The extension of our approach to a peer-to-peer
automated composition is under study and development.

As far as we know, no other approaches provide the capability of taking
into account assumptions in the automated composition of web services. In
the following, we consider other approaches that have some relations with our
underlying technique for automated composition without assumptions.

Automata-Based Approaches

The approach presented in this chapter is based on the idea that published
abstract BPEL processes and composed executable BPEL processes can be
given semantics and can be translated to state transition systems.

In [9, 7, 8, 10], the authors describe web services in terms of their interac-
tions, e.g., with state machines. They do not provide an automated composi-
tion technique like the one described in this chapter.

In [27], a formal framework is defined for composing e-services from be-
havioral descriptions given in terms of automata. This approach considers
a problem that is fundamentally different from ours, since the e-composition
problem is seen as the problem of coordinating the executions of a given set of
available services, and not as the problem of generating a new composite web
service that interacts with the available ones. Solutions to the former problem
can be used to deduce restrictions on an existing (composition automaton
representing the) composed service. We generate (the automaton correspond-
ing to) the BPEL composed service, thus addressing directly the problem of
reducing time, effort, and errors in the development of composite web services.

11 Assumption-Based Composition and Monitoring of Web Services 329

In [11, 12], decision procedures for satisfiability are used to address the
problem of coordinating component services that are described as finite state
machines. The model used in [11, 12] is based on a finite alphabet of activity
names, and transitions labeled with activity names specify the process flow of
component services, while input and output messages are not modeled. In the
initial works, the model is limited to deterministic state transition systems,
while in [12], the framework is extended to non-deterministic finite state tran-
sition systems, corresponding to a “devilish” form of non-determinism. In this
setting, the so-called “realizability” problem, i.e., the problem of determining
the existence of a composition, can be solved as a satisfiability problem in
propositional dynamic logic. The work studies the complexity of this reduc-
tion. Similarly to the work in [27], in these works the e-service composition
problem is reduced to selecting among the activities that the component ser-
vices should perform, a problem that is fundamentally different from the one
addressed in this chapter, both in a mediator-based and in a peer-to-peer
architecture.

More in general, our work shares some ideas with work on the automata-
based synthesis of controllers (see, e.g., [43, 50]). Indeed, the composite service
can be seen as a module that controls an environment which consists of the
component services. However, the work on the synthesis of controllers is based
on rather different technical assumptions on the interaction with the environ-
ment (BPEL interactions are asynchronous), and on a different language for
expressing requirements, which cannot distinguish among primary and sec-
ondary requirements. Finally, this work has never been extended or applied
to deal with the problem of the synthesis of web services, and in particular of
BPEL processes.

Semantic Web Services

The semantic web community has used automated planning techniques to
address the problem of the automated discovery and composition of seman-
tic web services, e.g., based on owl-s [19] or wsmo [26] descriptions of in-
put/outputs and of preconditions/postconditions (see, e.g, [33, 32]). Two gen-
eral remarks are in order. First, while here we do not address the problem of
discovery (we assume the n component services are given), we tackle a form
of automated composition that is more complex than the one considered by
the semantic community, where usually services are atomic and compositions
are simply sequences of service invocations. In our problem, services do not
correspond to actions in the planning domain. Second, while here we do not
address the problem of the automated composition of web services with se-
mantic annotations, the approach can be extended to semantic web services
along the lines of the work presented in [49, 38]. In [40], semantic annotations
are kept separated from process descriptions, thus allowing for a practical and
incremental approach to the use of semantics.

330 M. Pistore and P. Traverso

There is a large amount of literature addressing the problem of automated
composition of semantic web services. However, most of the approaches ad-
dress composition at the functional level (see, e.g. [35, 20]), and much less
emphasis has been devoted to the problem of process-level composition. In
[33], web service composition is achieved with user defined re-usable, cus-
tomizable, high-level procedures expressed in Golog. The approach is orthog-
onal to ours: Golog programs can express programming control constructs
for the generic composition of web service, while we automatically generate
plans that encode web service composition through programming control con-
structs. In [32], Golog programs are used to encode complex actions that can
represent DAML-S process models. However, the planning problem is reduced
to classical planning and sequential plans are generated for reachability goals.
In [34], the authors propose an approach to the simulation, verification, and
automated composition of web services based on a translation of DAML-S
to situation calculus and Petri Nets, so that it is possible to reason about,
analyze, prove properties of, and automatically compose web services. How-
ever, the automated composition is again limited to sequential composition
of atomic services for reachability goals, and does not consider the general
case of possible interleavings among processes and of extended business goals.
Moreover, Petri Nets are a rather expressive formalism, but algorithms that
analyze them have less chances to scale up to complex problems compared to
symbolic model-checking techniques.

The work in [31] is close in spirit to the general objective of [49, 38, 40] to
bridge the gap between the semantic web framework and the process model-
ing and execution languages proposed by industrial coalitions. However, [31]
focuses on a different problem, i.e., that of extending BPEL with semantic
web technology to facilitate web service interoperation, while the problem of
automated composition is not addressed.

Planning for Web Services

Different automated planning techniques have been proposed to tackle the
problem of service composition, see, e.g., [51, 22, 47]. However, none of these
can deal with the problem that we address in this chapter, where the plan-
ning domain is non-deterministic, partially observable, and asynchronous, and
goals are not limited to reachability conditions.

Other planning techniques have been applied to related but somehow or-
thogonal problems in the field of web services. The interactive composition
of information-gathering services has been tackled in [48] by using CSP tech-
niques. In [28] an interleaved approach of planning and execution is used;
planning techniques are exploited to provide viable plans for the execution
of the composition, given a specific query of the user; if these plans turn
out to violate some user constraints at run-time, then a re-planning task is
started. Works in the field of Data and Computational Grids are more and

11 Assumption-Based Composition and Monitoring of Web Services 331

more moving toward the problem of composing complex workflows by means
of planning and scheduling techniques [14].

Planning for the automated discovery and composition of semantic web
services, e.g., based on OWL-S, is used in [33, 32, 34]. These works do not
take into account behavioral descriptions of web service, like our approach
does with BPEL.

Our work is based on the idea of and extends the technique called “plan-
ning via symbolic model checking” [18, 13, 21, 2, 39], a framework that dif-
ferentiates from classical planning techniques since it can deal with planning
in non-deterministic domains, with partial observability, and with goals that
can express requirements with temporal and preference conditions. A detailed
discussion on how the planning via symbolic model checking approach must
be extended to deal with asynchronous domains that are constructed from
BPEL processes can be found in [41]. In [37], the approach is extended to
deal with large and possibly infinite ranges of data values that are exchanged
among services.

11.7.2 Run-Time Monitoring of Web Services

Run-time monitoring has been extensively studied in different areas of com-
puter science, such as distributed systems, requirement engineering, program-
ming languages, and aspect-oriented development, see, e.g., [23, 25, 36, 46].
There have been several proposals that deal with different aspects of the
monitoring of web services and distributed business processes, see, e.g.,
[45, 44, 4, 5, 29, 30]. A different but related topic is that of monitoring service
level agreements (SLAs), i.e., contracts on services between parties that are
signed to guarantee some quality of service, satisfy expectations, control costs,
and resources. Monitoring SLAs means monitoring their compliance and re-
acting properly if compliance is not satisfied. An extension of our framework
to the monitoring of SLAs is in our plans for future work.

Considering the problem of monitoring BPEL processes, an obvious alter-
native to our approach would be to code manually monitors in BPEL. The
developer should embed special-purpose controls in the BPEL process imple-
menting the business logic. However, this approach has several drawbacks. It
does not allow for a clear separation of the business logic from the monitor, it
does not allow for implementing monitors that capture misbehaviors caused
by BPEL execution engines, and finally but perhaps more importantly, this
task is time-consuming, error prone, requires programming effort, and does
not allow for an independent maintenance of the monitor functionality w.r.t.
the application layer. Similar problems exist in different frameworks based on
BPEL, see, e.g., BPELJ [6]. BPELJ allows the programmer to embed monitors
as Java code into BPEL processes.

The works closest to ours are those described in [4, 5] and in [29, 30]. We re-
fer to them as assertion-based monitoring and requirement-based monitoring.

332 M. Pistore and P. Traverso

Assertion-Based monitoring

In [4], monitors are specified as assertions that annotate the BPEL code.
Assertions can be specified either in the C# programming language or as
pre- or post-conditions expressed in the CLIX constraint language. Annotated
BPEL processes are then automatically translated to “monitored processes,”
i.e., BPEL processes that interleave the business processes with the monitor
functionalities. This approach allows for monitoring time-outs, runtime errors,
as well as functional properties.

In [5], Baresi and Guinea extend the work presented in [4] with the abil-
ity to perform “dynamic monitoring,” i.e., the ability to specify monitoring
rules that are dynamically selected at run-time, thus providing a capability to
dynamically activate/deactivate monitors, as well as to dynamically set the
degree of monitoring at run-time. Monitoring rules abstract web services into
UML classes that are used to specify constraints on the execution of BPEL
processes. In [5], assertions are specified in ws-col (Web Service Constraint
Language), a special purpose language that extends jml (Java Modeling Lan-
guage) with constructs to gather data from external sources. Monitoring rules
are defined with parameters that specify the degree of monitoring that has
to be performed at run-time. The user can instantiate dynamically these pa-
rameters at run-time, changing in this way the amount of monitoring that is
performed.

On the one hand, the approach described in [4, 5] provides some advantages
w.r.t. ours. First, monitors are themselves services implemented in BPEL. As
a consequence, they can run on standard BPEL engines without requiring any
modification. A further challenge could also be the possibility to apply com-
position techniques developed for the BPEL business logic to the monitoring
task. Second, annotations of BPEL processes with assertions constitute an
easy and intuitive way to specify monitor tasks. Finally, the approach is ex-
tend to dynamic monitoring, a feature that is not provided in our framework.

On the other hand, we allow for the monitoring of properties that depend
on the whole history of the execution path. These kinds of monitors would be
hard to express as assertions. Moreover, we allow for a clearer separation of
the business logic from the monitoring task than in [4, 5], since we generate
an executable monitor that is fully distinguished from the executable BPEL
that runs the business logic. Finally, our monitors can capture misbehaviors
generated by the internal mechanisms of the BPEL execution engine. For
instance, since there is no way to guarantee that a message is sent to a process
instance only when the instance is ready to consume it, in BPEL, messages
can be consumed in a different order from how they are received: indeed a
process may receive a message that it is not able to accept at the moment,
which can be followed by another message that can instead be consumed.
The first message can be consumed later on by the process, or may never
be consumed. This phenomenon, that we call message overpass, cannot be
captured by monitors based on assertions that annotate the BPEL code.

11 Assumption-Based Composition and Monitoring of Web Services 333

Requirement-Based monitoring

In the work described in [29, 30], Mahbub and Spanoudakis share with us the
idea to have a monitor that is clearly separated from the BPEL processes.
Another similarity is that the framework allows for specifying requirements
that represent either behavioral properties or assumptions to be monitored.

The framework allows for extracting automatically the behavioral prop-
erties from the abstract BPEL specification of component services. Require-
ments to be monitored are expressed in event-calculus, and the specified events
are observed at run-time and stored in a database. An algorithm based on in-
tegrity constraint checking is then used to analyze the database and perform
a run-time checking of the specified behavioral properties and assumptions.

The technical setting of this work is very different from ours. It is based
on event calculus rather than linear temporal logic and on constraint checking
rather than model checking.

References

1. ActiveBPEL. The Open Source BPEL Engine - http://www.activebpel.org.
2. A. Albore and P. Bertoli. Generating Safe Assumption-Based Plans for Partially

Observable, Nondeterministic Domains. In Proc. AAAI, 2004.
3. T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weeravarana. Business
Process Execution Language for Web Services (version 1.1), 2003.

4. L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Composed Services.
In Proc. of Int. Conf. on Service-Oriented Computing, 2004.

5. L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL Processes.
In Proc. of Int. Conf. on Service-Oriented Computing, 2005.

6. BEA and IBM. BPELJ: BPEL for Java - http://www-
106.ibm.com/developerworks /webservices/library/ws-bpel.

7. B. Benatallah, F. Casati, H. Skogsrud, and F. Toumani. Abstracting and En-
forcing Web Service Protocols. Int. Journal of Cooperative Information Systems,
2004.

8. B. Benatallah, F. Casati, and F. Toumani. Analysis and Management of Web
Services Protocols. In ER, 2004.

9. B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and man-
aging web service protocols. Data Knowl. Eng., 58(3), 2006.

10. B. Benatallah, F. Casati, F. Toumani, and R. Hamadi. Conceptual Modeling of
Web Service Conversations. In CAiSE, 2003.

11. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Au-
tomatic composition of E-Services that export their behaviour. In Proc. IC-
SOC’03, 2003.

12. D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella. Composition
of Services with Nondeterministic Behaviours. In B. Benatallah, F. Casati,
and P. Traverso, editors, Proceedings of the Third International Conference on
Service-Oriented Computing (ICSOC’05). Lecture Notes in Computer Science
LNCS 3826. Springer, 2005.

334 M. Pistore and P. Traverso

13. P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in Nondeterministic
Domains under Partial Observability via Symbolic Model Checking. In Proc.
IJCAI’01, 2001.

14. Jim Blythe, Ewa Deelman, and Yolanda Gil. Planning for Workflow Construc-
tion and Maintenance on the Grid. In Proceedings of ICAPS’03 Workshop on
Planning for Web Services, Trento, Italy, June 2003.

15. B. Bonet and H. Geffner. Planning with Incomplete Information as Heuristic
Search in Belief Space. In Proc. AIPS’00, 2000.

16. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Survey, 24(3):293–318, 1992.

17. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In CAV, 2002.

18. A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and
Strong Cyclic Planning via Symbolic Model Checking. Artificial Intelligence,
147(1-2):35–84, 2003.

19. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services. In
Technical White paper (OWL-S version 1.0), 2003.

20. I. Constantinescu, B. Faltings, and W. Binder. Typed Based Service Composi-
tion. In Proc. WWW2004, 2004.

21. U. Dal Lago, M. Pistore, and P. Traverso. Planning with a Language for Ex-
tended Goals. In Proc. AAAI’02, 2002.

22. D. Mc Dermott. The Planning Domain Definition Language Manual. Technical
Report 1165, Yale Computer Science University, 1998. CVC Report 98-003.

23. A. Dingwall-Smith and A. Finkelstein. From Requirements to Monitors by way
of Aspects. In Int. Conf. on Aspect-Oriented Software Development, 2002.

24. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics.
Elsevier, 1990.

25. M. Feather and S. Fickas. Requirements Monitoring in Dynamic Environment.
In Int. Conf. on Requirements Engineering, 1995.

26. The Web Service Modeling Framework. SDK WSMO working group -
http://www.wsmo.org/.

27. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look Behind
the Curtain. In Proc. PODS’03, 2003.

28. A. Lazovik, M. Aiello, and Papazoglou M. Planning and Monitoring the Execu-
tion of Web Service Requests. In Proc. of the 1st International Conference on
Service-Oriented Computing (ICSOC’03), 2003.

29. K. Mahbub and G. Spanoudakis. A Framework for Requirements Monitoring of
Service Based Systems. In Int. Conf. on Service-Oriented Computing (ICSOC),
2004.

30. K. Mahbub and G. Spanoudakis. Run-Time Monitoring of Requirements for
Systems Composed of Web-Services: Initial Implementation and Evaluation Ex-
perience. In Int. Conf. on Web Services (ICWS), 2005.

31. D. Mandell and S. McIlraith. Adapting BPEL4WS for the Semantic Web: The
Bottom-Up Approach to Web Service Interoperation. In Proc. of 2nd Interna-
tional Semantic Web Conference (ISWC03), 2003.

32. S. McIlraith and R. Fadel. Planning with Complex Actions. In Proc. NMR’02,
2002.

11 Assumption-Based Composition and Monitoring of Web Services 335

33. S. McIlraith and S. Son. Adapting Golog for composition of semantic web
Services. In Proc. KR’02, 2002.

34. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Com-
position of Web Services. In Proc. WWW2002, 2002.

35. M. Paolucci, K. Sycara, and T. Kawamura. Delivering Semantic Web Services.
In Proc. WWW2003, 2002.

36. D.K. Peters. Deriving Real-Time Monitors for System Requirements Documen-
tation. In Int. Symp. on Requirements Engineering - Doctoral Symposium, 1997.

37. M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition
of Web Services by Planning at the Knowledge Level. In Proc. Int. Joint Conf.
on Artificial Intelligence (IJCAI), 2005.

38. M. Pistore, P. Roberti, and P. Traverso. Process-level compositions of executable
web services: on-the-fly versus once-for-all compositions. In Proc. ESWC’05,
2005.

39. M. Pistore, D. Shaparau, and P. Traverso. Contingent Planning with Goal
Preferences. In Proc. AAAI’06, 2006.

40. M. Pistore, L. Spalazzi, and P. Traverso. A Minimalist Approach to Semantic
Annotations for Web Processes Compositions. In Proc. ESWC’06, 2006.

41. M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Ser-
vices by Planning in Asynchronous Domains. In Proc. Int. Conf. on Automated
Planning and Scheduling (ICAPS), 2005.

42. M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis
of Composite BPEL4WS Web Services. In IEEE Int. Conf. on Web Services
(ICWS), 2005.

43. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In Proc. ICALP’89, 1989.

44. W. Robinson. Monitoring Web Service Requirements. In IEEE Int. Conference
on Requirement Engineering, 2003.

45. A. Sahai, V. Machiraju, A. van Morsel, and F. Casati. Automated SLA Moni-
toring for Web Services. In Int. Workshop on Distributed Systems: Operations
and Management, 2002.

46. K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient Decentralized Monitoring
of Safety in Distributed Systems. In Proc. of ICSE, 2004.

47. M. Sheshagiri, M. desJardins, and T. Finin. A Planner for Composing Services
Described in DAML-S. In Proc. AAMAS’03, 2003.

48. Snehal Thakkar, Craig Knoblock, and Jose Luis Ambite. A View Integration Ap-
proach to Dynamic Composition of Web Services. In Proceedings of ICAPS’03
Workshop on Planning for Web Services, Trento, Italy, June 2003.

49. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services
into Executable Processes. In Proc. Int. Semantic Web Conference (ISWC),
2004.

50. M. Y. Vardi. An automata-theoretic approach to fair realizability and synthesis.
In Proc. CAV’95, 1995.

51. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web
Services Composition using SHOP2. In Proc. ISWC’03, 2003.

Part IV

Reliability, Security, and Trust

12

Reliability Modeling and Analysis
of Service-Oriented Architectures

Vittorio Cortellessa1 and Vincenzo Grassi2

1 Universita’ dell’Aquila, cortelle@di.univaq.it
2 Universita’ di Roma Torvergata, vgrassi@info.uniroma2.it

Abstract. Service selection and composition are central activities in service-oriented
computing, and the prediction of the QoS attributes of a Service-Oriented Architec-
ture (SOAs) plays a key role to appropriately drive these activities. Software com-
position driven by QoS criteria (e.g., optimization of performance, maximization of
reliability) has been mostly studied in the Component-Based Software Engineering
domain, whereas methodological approaches are not well established in the service-
oriented area. Indeed, prediction methodologies for service-oriented systems should
be supported by automated and efficient tools to remain compliant with the require-
ment that most of the activities connected with service discovery and composition
must be performed automatically. Moreover, the adopted implementation should
respect the autonomy and independence of each provider of the services we want to
include in our analysis. In this chapter we focus on the modeling and analysis of the
reliability attribute in Service-Oriented Architectures, with particular emphasis on
two aspects of this problem: (i) the mathematical foundations of reliability model-
ing of a Service-Oriented Architecture as a function of the reliability characteristics
of its basic elements and (ii) the automatization of service composition driven by
reliability criteria.

12.1 Introduction

Designing and building software systems by composition is one of the dis-
tinguishing features of the component-based and service-oriented approaches.
Several methodologies and techniques have been proposed to drive the assem-
bly of software systems from pre-existing components/services [16]. In partic-
ular, in the domain of software services, the automation of service discovery,
selection and composition plays a key role to fully enable a service-oriented
vision.

However, current proposals for the automated assembly of service-oriented
systems are mostly based on criteria related to functional features, such as
the minimal distance between the descriptions of required and offered services,

340 V. Cortellessa and V. Grassi

despite the high relevance that QoS attributes (such as performance and avail-
ability) may have in this type of systems.

In a service market vision, the delivered QoS plays an important role in
determining the success of a service provider [6]. In this respect, an impor-
tant issue is how to assess the QoS delivered by a service, for instance its
performance or dependability characteristics. Delivering QoS on the Internet
is by itself a critical and significant challenge, because of its dynamic and
unpredictable nature. Assessing the delivered QoS of Service-Oriented Archi-
tectures (SOAs) is even more challenging, given the emphasis on dynamically
binding service requests with the available services and resources in a given
context.

QoS attributes are undeniably harder to take into account with respect to
functional ones also because they relate to factors that rarely enter the soft-
ware development process, such as the operational profile. Approaches have
been introduced for service selection and assembly that also consider QoS
attributes, but the selection is based, in best cases, on intelligent agents, in
most other cases on empirical estimations and/or on the developers’ experi-
ence, thus lacking model-based automated support [20]. It is also true that
special skills are often required to model QoS attributes of software systems,
due to the mathematical aspects and modeling intricacies that must be often
faced in this domain.

In the context of SOA-based applications, the QoS assessment involves
both monitoring the actual QoS experienced by a client, and predicting the
QoS that could be experienced in some context. In particular, QoS prediction
may play a crucial role either to drive the selection of services to be assem-
bled to fulfill a given request, or to foresee potential QoS problems caused
by changes in the application environment and to support corrective actions
(e.g., re-binding to a different service provider). In other words, the ability
of predicting QoS would allow to answer crucial questions on SOA, such as
“What the reliability of my service-oriented architecture would be if I select
this given set of services?” or “How would the performance of my architecture
be affected from replacing a certain service with another one?”

A real breakthrough in this area would therefore be brought from the
introduction of modeling techniques that allow to predict QoS properties of
an SOA on the basis of features of the services involved, thus in practice
extending the mechanisms successfully applied to functional aspects.

Modeling the overall QoS of an SOA-based application on the basis of
properties of the component services may require very different efforts, de-
pending on the QoS property we are interested in. In this respect, an inter-
esting classification of QoS properties has been presented in [10] in the field
of component-based software systems. Most of the ideas presented in [10] can
be applied to the SOA domain.

However, a main issue for the QoS analysis of SOA is the parameter estima-
tion. The properties of basic services are not easily made available from service
providers. Thus, monitoring/estimation techniques are needed to “populate”

12 Reliability Modeling and Analysis of Service-Oriented Architectures 341

QoS models with values of basic service characteristics (such as the probability
of failure). In Sect. 12.3.2 we shortly discuss this aspect.

In this chapter we focus on the modeling and the analysis of the reliability
property of SOA, with a special emphasis on two aspects of this problem:
(i) the mathematical foundations of reliability modeling of a service-oriented
architecture as a function of the reliability characteristics of its basic elements
and (ii) the automatization of service composition activity driven by reliability
criteria.

According to the classification in [10], based on the capability of assembling
a system-level model starting from characteristics of basic elements (such as
components or services), the reliability is defined as an usage-dependent at-
tribute, i.e., an attribute which is determined by the system usage profile. This
means, in the SOA domain, that the service developers and assemblers must
predict as far as possible the use of the service in different systems, which
may not yet exist. A second problem is the transfer of the usage profile from
the assembly (or from the system) to the service. Even if the usage profile on
the assembly level is specified, the usage profile for the services is not easily
determined especially when the assembly is not known.

The chapter is structured as follows: in Sect. 12.2 we shortly introduce
the basic concepts of reliability theory; in Sect. 12.3 we discuss specific issues
of reliability in SOA and review related work; in Sect. 12.4 we introduce a
model for reliability of SOA along with an algorithm for its evaluation, then
in Sect. 12.5 we propose an implementation of this algorithm complying with
the SOA principles of decentralization and autonomy; in Sect. 12.6 we use the
example described in the Introduction of this book to present an application
of our reliability model, and finally in Sect. 12.7 we provide some conclusions.

12.2 Software Reliability Basics

Reliability is a specific aspect of the broader concept of dependability [3].
Other dependability aspects are, e.g., availability and safety. Reliability specif-
ically refers to the continuity of the service delivered by a system. In this
respect, two basic definitions of reliability can be found in the literature: (i)
the probability that the system performs its required functions under stated
conditions for a specified period of time [19] and (ii) the probability that
the system successfully completes its task when it is invoked (also known as
“reliability on demand”) [12].

The definition in (i) refers in particular to “never ending” systems that
must operate correctly over all the duration time of a given mission (e.g., the
on-board flight control system of an airplane that should not fail during the
enitre duration of a flight). The definition in (ii) refers to systems offering
services that, once invoked, must be successfully completed.

Both definitions can be applied to systems at whatever level of granularity
(e.g., a distributed software system, a software component, a software service,

342 V. Cortellessa and V. Grassi

etc.), whose correctness can be unambiguously specified. A correct behavior is
intended here as a “failure-free” one, where the system produces the expected
output for each input following the system specifications.3

However, “failure-free” only refers to what can be observed at the system
output level. A system may in fact experience a certain degree of incorrectness
without showing any failure. This assertion is easily understandable on the
basis of three fundamental reliability concepts: fault , error , and failure. A
fault is a wrong statement introduced somewhere in the software.4 An error is
an unexpected state in which a system may enter upon executing a fault (e.g.,
an internal variable assumes an unexpected value). A failure occurs when an
error propagates up to the system output (e.g., an output variable assumes
an unexpected value).

The presence of a fault in a system does not necessarily imply that the
system eventually experiences an error. In fact, a wrong statement might not
be executed, even in a very long interval of time, due to the structure of
the code and the sequence of inputs given. And, even if executed, the wrong
statement could not originate any unexpected value of the internal variables.5

Moreover, a system in an erroneous state does not necessarily manifest a
failure, because the error may be masked from the operations that are executed
between the erroneous state and the output production.

Failures can be classified with respect to different attributes. With respect
to the way a failure manifests itself, they can be partitioned as follows:

• Regular failure—A failure that manifests itself as an unexpected value of
any system output.

• Crash failure—A failure that immediately brings the system to stop its
elaboration; systems that only account for this type of failure are also
known as fail-and-stop systems.

• Looping failure—A failure that prevents the system to produce any (cor-
rect or incorrect) output; this type of failure is particularly problematic
because it may take some time to assess that the system has failed under
such a failure.

With respect to their severity, failures can be partitioned as follows:

• Repairable failure—A failure that can be somehow repaired without restart-
ing the whole system.

• Unrepairable failure—A failure that requires the system to be restarted to
restore its correct behavior.

3 We assume readers are familiar with basics of reliability theory; however, we
redirect those interested to details on this topic to [19].

4 For sake of tractability, we consider in this chapter only software faults, even
though the reliability of SOAs may be affected by hardware faults as well.

5 For example, both statements y = x ∗ 2 and y = x2 produce the result y = 4
when x = 2.

12 Reliability Modeling and Analysis of Service-Oriented Architectures 343

Each reliability model undergoes several hypotheses on the types of failures
that the modeled system can experience. Obviously, the less restrictive the
hypotheses are the more complicated is the model formulation. Note, however,
that the attributes specified above are not independent of each other, e.g., a
crash failure cannot be repairable.

12.3 Specific Reliability Issues in SOA

Reliability models of modular software systems aim at formulating the re-
liability of the whole system as a function of the reliabilities of the basic
elements. This idea is behind models for object-oriented, component-based,
service-based systems and, in general, any system that can be viewed as an
assembly of basic elements.

In this section we discuss specific issues for the modeling and estimation
of the service reliability in SOA-based systems.

First of all, we note that the definition (ii) of reliability on demand given in
Sect. 12.2 appears more suitable than definition (i) within the SOA domain,
since it finely matches with the expectation and the degree of trustworthiness
a user may have about a service. On the basis of this definition of reliability,
in the following subsections we discuss, respectively, of

• the additional information that must be provided to support reliability
analysis of SOAs;

• the estimation of this information in an SOA environment;
• the viewpoint that can be assumed in the SOA reliability analysis (i.e.,

client vs provider viewpoint);
• the failure model that we adopt in the modeling of SOA reliability.

In the last subsection of this section, we review existing work that is related
to this chapter topic. Given the lack of specific reliability models for service-
based systems, we take a wider view on software systems that are built by
assembling basic elements, such as components.

12.3.1 Information to Support SOA Reliability Analysis

In an SOA environment, services are expected to publish information needed
to correctly invoke them over the network. This information, expressed by
a suitable language like WSDL [30], includes the name of the provided op-
erations, and the name and type of their input and output parameters. To
support predictive analysis of some QoS attribute like the service reliability,
each service must also publish QoS-related information.

This raises the question about which information should be published to
better support QoS predictive analysis. In this perspective, it is important to
note that a basic principle of the SOA paradigm is that each composition of

344 V. Cortellessa and V. Grassi

services may become itself a service that can be recursively used to build other
services. As a consequence, it is useful to distinguish two kinds of service:

1. Atomic service that does not require any other service or resource to
carry out its own task; this includes, e.g., not only the services offered by
basic processing and communication resources, but also “self-contained”
software services strictly tied to a particular computing environment and
that cannot be re-deployed;

2. Composite service, realized as a composition of other selected services that
it requires to carry out its own tasks; the glue logic of this composition
may be expressed using workflow description languages like BPEL [31].

From the reliability prediction viewpoint (but the same consideration holds
for other QoS attributes), the basic difference between these two kinds of ser-
vices is that the provider of an atomic service can publish complete reliability
information that can be directly used by the clients to figure out the service
reliability, while the provider of a composite service is only aware of reliability
information concerning the part of the service implementation which is under
his/her direct control (we call it as the service internal segment). This in-
formation must be combined with the reliabilities of the other (dynamically)
selected services to get the overall service reliability.

In order to properly combine these reliabilities, attention must be paid to
give the right weight to the reliability of each single service: a rarely invoked
service has obviously a smaller impact on the reliability of the invoking service
than a frequently used one. Hence, besides knowing which services are required
by a composite service, we must also take into account how they are used (i.e.,
we must know the service operational profile).

Therefore, to support the reliability prediction of a service composition,
we need the following information on each service6:

• Internal reliability (both atomic and composite services), i.e., a reliability
measure that expresses the probability of successfully completing some
task considering only the internal segment of the service; in the case of
an atomic service it corresponds to the actual service reliability, whereas
in the case of a composite service it must be suitably combined with the
reliabilities of the invoked services;

• Service usage profile (composite services only), i.e., a description of the
pattern of external service requests expressed in a stochastic form (also
known as operational profile); e.g., if a certain service may invoke two
alternative services for completing its task (depending on the user inputs)
then the probability of each service invocation is an element of the service
usage profile.

6 In Sect. 12.5 we present an architecture in which providers have three alternative
approaches to disclose this information.

12 Reliability Modeling and Analysis of Service-Oriented Architectures 345

12.3.2 Estimation of Additional Information

In an ideal scenario, the internal reliability of a service shall be associated
to the service description at the time the provider publishes the service on a
registry. On the contrary, the service usage profile is a very domain-dependent
information, therefore it cannot be a priori estimated.

However, in a more realistic scenario, the information described in
Sect. 12.3.1 can be estimated by monitoring the service activity.

In particular, with regard to the service usage profile, the structure of the
composite service workflow (expressed with a service composition language
like BPEL) provides information about the possible invocation patterns of
external services. To estimate the probability of different patterns, we must
basically monitor the relative frequencies of the different branches at each
workflow branching point, and collect such data over an adequate number of
different invocations of the composite service.

On the other hand, the internal reliability can be estimated as the ratio
between the number of service invocations and the number of failures that
occur. We point out that, in the case of a composite service, the failures
that should be recorded at a composite service site are those generated by
the internal segment of the service. Collecting failure statistics about the used
external services could not be significant, as at different time instants we could
bind to different implementations of the same abstract service and, given the
autonomy principle of the SOA environment, we are not generally aware of
these changes.

However, methods for the estimation of the probability of failure of soft-
ware components and the usage profile (in component-based systems) have
been reviewed in [12], and are extensively discussed in [11].

12.3.3 Client vs Provider Viewpoint of Reliability

We may adopt two different perspectives in the assessment of the reliabil-
ity of a service in an SOA framework, depending on whether we look at
services from the client or provider viewpoint. This is generally not an is-
sue in traditional distributed systems, where the network and other envi-
ronment components are under the control of a single organization. On the
contrary, in an SOA environment, the reliability information published by a
service provider is likely to concern only what can be observed at the ser-
vice site and does not include information about the reliability of the net-
work infrastructure used to access the service, which is generally out of the
provider control. On the other hand, from the perspective of the client of
a service, this information must be integrated into the overall reliability as-
sessment procedure, as the used network infrastructure may greatly affect
the reliability perceived by the user. Neglecting this information could lead
to poor predictions about the overall reliability of a service. We point out,

346 V. Cortellessa and V. Grassi

however, that all the above considerations can be extended to other QoS
attributes.

In some cases, a reference to the network used to access a remote service
could be explicitly expressed in the workflow of a composite service, e.g., when
the latter explicitly intends to use networking functionalities offered through
some service-oriented interface (like in OSA/Parlay [29]) by a network service
provider. This could facilitate the inclusion of network reliability information
in the overall reliability model, assuming that a network service publishes its
reliability information like any other service. If the network services needed
to access remote services are not explicitly mentioned in a composite service
workflow, their use should be made explicit at the reliability modeling level.
However, the assignment of a meaningful reliability value to the network ser-
vices could be more problematic in this case, as it could not be clear at the
composite service level which kind of network is going to be used (possibly
some kind of “best effort” network).

However, if the provider does not publish any data about the service
reliability then the client can refer to trusted third-parties to collect this
information [5].

12.3.4 Failure Models for SOA

As reported in Sect. 12.2, failures can be classified as regular, crash, and
looping failures according to the way they manifest themselves, while they
can be classified as repairable or non-repairable failures according to their
severity.

Crash failures are the simplest ones to model from the reliability viewpoint,
as they lead to the complete system failure as soon as they occur. In this
respect, it is worth noting that it has been argued, based on an analysis of
existing systems, that components and services for Internet-based systems
should be designed to be “crash-only” [7].

On the other hand, regular failures causes the generation of incorrect out-
put values. As discussed in Sect. 12.2, the incorrect output generated by an
inner service invoked within the workflow of a composite service does not gen-
erally imply the overall failure of the composite service itself. This is due to
the possibility that the inner service failure does not propagate up to the com-
posite service outputs because some other service on the path to the output
is able to mask the error. Hence, to include regular failures in the reliability
analysis of SOA-based systems would require to take into account the error
maskability factor, i.e., the capability for a service to map an incorrect input
to a correct output. This factor can be ignored by assuming that any regular
failure occurring in an inner service always propagates to the composite ser-
vice outputs. This simplifies the analysis but could lead to overly pessimistic
estimations of the overall reliability.

With regard to the failure repairability we note that, given the definition
of reliability on demand that we have adopted, repairable failures are not

12 Reliability Modeling and Analysis of Service-Oriented Architectures 347

actually a concern. Indeed, a repairable failure does not prevent, by definition,
the correct termination of a service, and hence does not affect its reliability on
demand. Nevertheless, it may affect other quality attributes like the service
performance (because the repair leads to a “degraded” mode of operation) or
availability (because of service interruption during the repair).

Finally, we point out that many existing reliability analysis methodologies
for service- or component-based systems rely on the assumption of indepen-
dence among the system components. When applying these methodologies in
an SOA framework we must be careful about the validity of such an assump-
tion. Indeed, it may happen that originally independent services are assembled
in such a way that they exploit some common service, so becoming no longer
independent. However, considering the impact of service sharing on reliability
is not an easy task.

12.3.5 Related Work

The scientific literature has produced several interesting approaches to the
modeling of reliability in modular software systems based on characteristics
of modular units. Most of them can be somehow adapted to the case of service-
based systems, but the adaptation may bring to loose peculiarities of SOA like
the ones discussed in the previous subsections. Due to the lack of specific ap-
proaches for SOA, in this subsection we briefly present the major contributions
in the wider field of modular software systems.

Hence, the originality of this chapter with respect to the existing work is
to build a reliability model for SOA that takes into account the specifics of
service-based systems.

A thorough review of reliability modeling in the field of software archi-
tectures can be found in [12], where architectural models are partitioned as
follows: (i) path-based models, where the reliability of an assembly of com-
ponents is calculated starting from the reliability of architectural paths; (ii)
state-based models, where the reliability is calculated starting from the relia-
bility of system states and from the transition probabilities among states.7

One of the main differences between these two types of models emerges
when the control flow graph of the application contains loops. State-based
models analytically account for the infinite number of paths that might exist
due to loops. Path-based models require instead an explicit enumeration of
the considered paths; hence, to avoid an infinite enumeration, the number of
paths must be somehow restricted, e.g., to the ones observed experimentally
during the testing phase or by limiting the depth traversal of each path. In
this respect, the methodology we propose in Sect. 12.4 adopts a state-based
model.

As said in Sect. 12.3.4, the impact of service sharing on SOA reliability may
be consistent, even though modeling this aspect is not an easy task. In fact, it
7 Quite often state transitions are triggered by the control flow between system

components.

348 V. Cortellessa and V. Grassi

falls under the more general problem of modeling error propagation in modular
software systems [1]. Most of the existing models do not consider the impact
of error propagation on the estimation of the system reliability due to the
extremely high complexity of finding closed-form formulations to the problem.

Models for the reliability estimation of a component-based system embed-
ding the error propagation and the error maskability factors have been recently
presented in [14] and [22], which are based on quite different failure models. In
[14] it is assumed that an error arising within a component does not cause an
immediate failure, but it can rather propagate to other components up to the
system output, unless it is masked before reaching the output. On the other
hand, in [22] it is assumed that each error arising within a component imme-
diately causes a system failure and, at the same time, it can also propagate to
other components affecting their failure probability. This latter failure model,
based on the contemporary assumption of immediate failure and propagation
to other components, deserves in our opinion further investigation about its
significance.

Quite interesting work has been done in other topics somehow related
to the SOA reliability. In particular, we provide several seminal references
for readers interested to the following topics: ontologies for QoS [21, 23, 27],
representing QoS in UML [28], monitoring QoS in SOA [4], and Service Level
Agreement in SOA [17, 18].

12.4 A Model for Predicting the Reliability of SOAs

Any reliability prediction methodology for SOA-based applications must be
compliant with the specific constraints and requirements of this environment.
In particular, this means that prediction methodologies must be implemented
by automated and efficient tools to remain compliant with the requirement
that most of the activities connected with service discovery and composition
must be performed automatically. Moreover, the implementation of a method-
ology should meet the openness and distribution characteristics of SOAs. This
implies that it should respect the autonomy of each provider of the services
involved in the reliability prediction.

In order to address these automation and efficiency issues, in this section
we tackle them by proposing an algorithmic reliability analysis methodology.
Assuming that, in general, an offered service is built as a composition of
other services, the methodology is based on the service assembly structure
and exploits reliability information published by each assembled service in its
description. In Sect. 12.5, we propose an architecture for the implementation
of this methodology that supports different degrees of autonomy among the
providers of the services involved in a composition. In this methodology, we
take into account all the SOA specific issues outlined in Sect. 12.3.

The failure model we adopt is the “fail-stop with no repair” model. Hence,
we only consider crash failures that occurs within a service component and

12 Reliability Modeling and Analysis of Service-Oriented Architectures 349

lead to the service interruption. The methodology can be applied as well to
regular failures that does not cause service interruption, under the hypothesis
that each error generated by a service always propagates up to the system
output.

We do not consider repairs because, as discussed in Sect. 12.3, they are
basically not relevant in the reliability on demand analysis. However, this
model does not imply that we are assuming repairs never occur within the
system. Simply, we are restricting our attention to those failures that cannot
be repaired, as our focus is on the system reliability.

A key element of this methodology is the definition of a suitable model for
the information associated with each service that concerns its internal relia-
bility, and, in case of a composite service, the pattern of requests addressed to
other services. We use a unique model to represent both these types of infor-
mation, and assume that the QoS-related information of a service is published
by means of an instance of this model.

12.4.1 A Model Based on Internal Reliability
and Service Usage Profile

The model is based on a probabilistic flow graph, where each node of the
graph models a “stage” of the service execution that must be completed be-
fore a transition to the next node can take place. Each stage may include
the request for one or more external services. The flow graph includes two
special nodes, a Start node that represents its entry point and an End node
with no outgoing transitions, representing the successful completion of the ser-
vice. This flow graph can be considered as a representation “distilled” from
some description of the service workflow (e.g., expressed using a language like
BPEL), and enriched with statistical information needed to support reliability
prediction.

Transitions from node to node of the flow graph follow the Markov prop-
erty, where p(i, j) denotes the probability that stage j is selected after the
completion of stage i. This kind of transition rule basically models (in a prob-
abilistic way) a sequential flow of control. We introduce other kinds of control
flows in our model by allowing more than one external service request to be
specified within each node. In this case, before a transition to the next stage
can take place, the service requests associated with node i must be com-
pleted according to a specified completion model. In the current version of
our methodology, we consider two possible completion models:

1. AND model – all the service requests included in node i must be completed
to enable a transition to the next stage.

2. OR model – at least one of the service requests included in node i must
be completed to enable a transition to the next stage.

The AND model allows to represent a request for the parallel execution of
a set of services, as expressed, e.g., “by the flow” control construct of BPEL

350 V. Cortellessa and V. Grassi

(corresponding to a fork-join execution pattern) [31]. The OR model allows
to represent a race among different service requests, as expressed, e.g., “by
the pick” control construct of BPEL (where one out of several activities is
non-deterministically selected) [31]. It can also be used to model the presence
of fault-tolerance features, where different instances of a service are tried until
at least one of them succeeds. We are planning to include in our methodology
other completion models (e.g., “k out of n”).

Besides the pattern of requests addressed to other services, we also embed
in this flow graph information about the internal reliability of a service, by
associating with each node i of the graph a failure probability intf(i), that
represents the probability of a failure occurrence during the execution of that
stage. This probability concerns only the internal segment of the service de-
scribed by the flow graph. In general, intf(i) may be expressed as a real valued
function of suitable parameters (e.g., the probability of a failure occurrence
when a processing service is invoked may depend on the number of operations
to be processed). The Start and End nodes have zero failure probability, as
they do not correspond to any real activity.

This flow graph can be used to model information on the reliability of
atomic as well as composite services. As the example in Fig. 12.1a shows,
an atomic service can be modeled by a flow graph consisting of only one
node (besides the Start and End nodes), which does not contain any request
for external services. Thus, the single node of this graph only reports an
intf value. In particular, the flow graph in Fig. 12.1a models the reliability
characteristics of a computing resource that offers a processing service. Figure
12.1b depicts an example of flow graph for a composite service that includes

Fig. 12.1. Representation of the internal failure probability and service usage pro-
file of a service by a probabilistic flow graph: (a) flow graph of an atomic service
(processing service with exponential failure rate depending on the number n of oper-
ations to be processed), (b) flow graph of a composite service (at node 2, nop is the
number of operations whose execution is requested to the two processing services)

12 Reliability Modeling and Analysis of Service-Oriented Architectures 351

requests for external services. It consists of two alternative stages 1 and 2,
followed by a final stage 3. At stage 1, no external service is requested: this
stage may model the execution of “locally implemented” operations, and the
corresponding value of intf(1) models their failure probability (i.e., 0.00001).
On the other hand, at stage 2 two external processing services are requested,
with an OR completion model. This stage may model the request for the
remote execution of some code provided by the service, where the value intf(2)
models the intrinsic failure probability of that code (i.e., 0.00015) that must
be combined with the failure probabilities of the selected processing services
to get the overall reliability. The OR completion model of this stage models
the use of a fault-tolerant approach in its design, since it is sufficient that
only one of the two service requests succeeds to make the invoking service
able to continue its execution. Finally, stage 3 models the request for another
external service (i.e., a database service in this example).

12.4.2 An Algorithm for Model Evaluation

Given this model, we can now present our evaluation methodology, where we
adopt a client-side perspective which means, as discussed in Sect. 12.3, that
we include in the reliability evaluation of a service also the reliability of the
network used by the client to access the service.

For this purpose, let us introduce the following notation:

• Relcli(S) – the probability that a service S is able to complete its task, as
seen by a client invoking S.

• Relpro(S) – the probability that a service S is able to complete its task,
as seen by the provider of S.

• Relnet(S) – the reliability of the network used to access a service S, when
it is invoked by a client.

• Pfail(i) – the probability of a failure occurrence before the completion of
stage i of a given service.

• p∗S(Start, End) – probability of reaching, in any number of steps, the End
state of the flow graph associated with S, starting from its Start state.8

Given this notation, the client-side reliability of a service S can be ex-
pressed as follows, once its provider-side reliability and the reliability of the
network used to access S are known:

Relcli(S) = Relnet(S) · Relpro(S) (12.1)

Using the flow graph model defined above, we can calculate Relpro(S) in
(12.1) as follows:

Relpro(S) = p∗S(Start, End) (12.2)

8 We remind that, under the fail-and-stop assumption, reaching the End node
means that there have been no failures in the execution path.

352 V. Cortellessa and V. Grassi

p∗S(Start, End) can be calculated by standard results from the Markov
processes theory [24]. However, to get a meaningful result, we must elaborate
transition probabilities on the flow graph before calculating p∗S(Start, End).
Indeed, each transition probability p(i, j) associated with an outgoing arc from
a node i is an information about how frequently a stage j is executed after a
stage i. For reliability prediction purposes, this information must be weighed
by the probability (1−Pfail(i)) that no failure occurs before the completion of
stage i. Hence, to calculate expression (12.2), we must first calculate Pfail(i)
for each stage i of the flow graph of S.

The calculation of Pfail(i) is immediate when i does not contain any re-
quest for external services. This is the case of a single-stage flow graph as-
sociated with an atomic service, whose Relpro(S) (given by (12.2)) can be
immediately calculated. In all other cases we enter a recursive process, as to
calculate Pfail(i) we must first calculate the reliability of all the services Sk

requested by S at stage i. In this respect, we point out that S is the “client”
of the services Sk. Hence, the reliability of the generic Sk to be used in the
evaluation of Pfail(i) is Relcli(Sk), which can be calculated using expressions
(12.1) and (12.2).

Once the Relcli(Sk) reliabilities are known, we can combine them with
intf(i), according to the completion model of i, to calculate the overall
Pfail(i). By adapting the results that we have presented in [13], Pfail(i) can
be expressed as follows for the OR completion model:

Pfail(i) = (12.3)

= 1 − (1 − intf(i))(1 −
∏

Sk

(1 − Relcli(Sk)))

= 1 − (1 − intf(i))(1 −
∏

Sk

(1 − Relnet(Sk) · Relpro(Sk)))

= 1 − (1 − intf(i))(1 −
∏

Sk

(1 − Relnet(Sk) · p∗Sk
(Start, End)))

For AND completion model we instead have

Pfail(i) = (12.4)

= 1 − (1 − intf(i))
∏

Sk

Relcli(Sk)

= 1 − (1 − intf(i))
∏

Sk

Relnet(Sk) · Relpro(Sk)

= 1 − (1 − intf(i))
∏

Sk

Relnet(Sk) · p∗Sk
(Start, End)

Expressions (12.3) and (12.4) hold under the assumption that all the Sk’s
requested at stage i are independent. As pointed out in Sect. 12.3, this assump-
tion could not hold in an SOA environment. However, taking into account all

12 Reliability Modeling and Analysis of Service-Oriented Architectures 353

the possible inter-dependencies is really challenging. In [13] we have analyzed
a restricted dependency scenario, where all the service requests at stage i are
actually invocations of the same service S′ offered by a single resource. This
scenario occurs, e.g., when we allocate n software components to the same pro-
cessing resource, thus requesting the same processing service offered by that
resource. Under this scenario, we have shown in [13] that expression (12.4) still
holds, with

∏
Sk

Relnet(Sk)·p∗Sk
(Start, End) = (Relnet(S′)·p∗S′(Start, End))n,

where n is the number of invocations of S′. On the contrary, expression (12.3)
is no longer valid, and must be substituted by the following expression:

Pfail(i) = 1 − (1 − intf(i))Relnet(S′) · p∗S′(Start, End) (12.5)

The intuition behind (12.5) follows from the stopping failure and no repair
assumptions. If all the Sk’s invocations are actually invocations of the same
service, then its failure prevents the possibility of trying other alternatives.
Hence, the “OR-reliability” of n invocations of S′ is equal to the simple reli-
ability of S′. Using (12.3) instead of (12.5) when this scenario occurs would
lead to an underestimation of the service reliability.

The recursive Algorithm 1 summarizes all the operations described above.
Given the flow graph fg(S) associated with a service S, the algorithm returns
the provider-side reliability of S.

Algorithm 1 Model evaluation algorithm: double Rel-pro-Alg(fg(S))
1: for each node i in fg(S) (except the Start and End nodes) do
2: if(i does not include any request for external services)
3: then Pfail(i) = intf(i)
4: else
5: for each Sk requested in i do
6: netk = reliability of the network used to invoke Sk

7: get fg(Sk)
8: rk = netk· Rel-pro-Alg(fg(S)) //recursive step
9: endfor

10: case CompletionModel:
11: OR : Pfail(i) = 1 − (1 − intf(i))(1 −

∏
k(1 − rk)) // expression

(12.3)
12: AND : Pfail(i) = 1 − (1 − intf(i))

∏
k rk // expression (12.4)

13: endcase
14: endif
15: for each outgoing transition from i to j with probability p(i, j) do
16: replace p(i, j) with (1 − Pfail(i)) · p(i, j)
17: endfor
18: endfor
19: return absorption probability in the End node of the discrete time Markov

process described by fg(S), calculated using standard Markov process solution
techniques

354 V. Cortellessa and V. Grassi

Step 11 of this algorithm relies on the independence assumption discussed
above. If this assumption does not hold and the conditions of the “single
service sharing” scenario occurs, then step 11 must be modified according to
expression (12.5). Step 8 is the recursive step. The recursive call returns the
provider-side reliability of Sk. To turn it into the client-side reliability (as it is
perceived at the S site), this reliability must be multiplied by the reliability of
the network used to access Sk. The bottom of the recursion is reached when S
is an atomic service. In this case, steps 5–13 are skipped, and the calculation
of step 19 is greatly simplified as fg(S) consists of only one node, plus the
Start and End nodes.

12.5 Analyzing Reliability in the SOA Framework

In this section we discuss issues concerning the implementation, in an SOA
environment, of the methodology presented in Sect. 12.4.

The methodology relies on the assumption that each provider of a compos-
ite service collects and publishes information concerning the service internal
structure that consists of (i) the external services it exploits, (ii) how they are
glued together, and (iii) how frequently they are invoked. In Sect. 12.4 we have
presented a data structure (i.e., a flow graph) which able to represent all this
information. We remark here that the construction of such a data structure
can be completely automated. Indeed, with regard to the flow graph structure
(i.e., nodes and edges that connect them), it can be easily extracted from the
executable workflow description of a composite service. For example, if the
workflow is expressed in BPEL, which is an XML-based language, we can use
XML navigation libraries, like JDom [32], to implement this algorithm. With
regard to the flow graph parameters (i.e., branching probabilities and internal
failure probability at each node), they can be estimated through monitoring
activities, as discussed in Sect. 12.3.2.

However, according to the decentralization and autonomy principles of
the SOA paradigm, the provider of a composite service (which could be in
turn required to build a new composition) might want to adopt different
transparency policies in revealing this information and in selecting the services
his/her own service requires. In the following we present an architecture that
implements the methodology described above, still remaining compliant with
the SOA autonomy and decentralization principles.9 For this purpose, we
identify three possible policies that cover the spectrum of different autonomy
degrees (from high to low):

1. No transparency—The provider reveals only information about the overall
(possibly parametric) service reliability. This policy implies that it is up
to the provider to select the services to be assembled when the service
is invoked, and to calculate the resulting reliability. A provider adopting

9 The content of this section is based on results presented in [15].

12 Reliability Modeling and Analysis of Service-Oriented Architectures 355

this policy wants to maintain full autonomy in the selection of services
required by his/her service, without disclosing any information about its
architecture.

2. Partial transparency—The provider reveals both the service internal reli-
ability and its usage profile of other external services, but autonomously
decides the external services to select. This policy implies that it is up
to the provider to select the services to be assembled, while it is up
to the invoker of the composite service to calculate its overall reliabil-
ity. A provider adopting this policy wants to maintain full autonomy
in the selection of services required by his/her service, but does not
want to bear the burden of evaluating the resulting overall reliability
(maybe because he/she selects services according to different criteria than
reliability).

3. Total transparency—The provider reveals both the internal reliability and
the usage profile of the service, indicating only the kind of services that
should be selected, without actually selecting them. This policy implies
that it is totally up to the user of the composite service to select the ser-
vices to be assembled and to calculate the resulting reliability. A provider
adopting this policy actually provides only a service template consisting of
some glue logic that connects services to be selected, and does not want
to bear the burden of both selecting those services and evaluating the
resulting reliability.

Figure 12.2 illustrates the SOA compliant architecture in which we propose
to implement the reliability prediction methodology of Sect. 12.4. The building
blocks of this architecture are

• an implementation of the Rel-pro-Alg() (which, in an SOA environment,
could be itself defined as a particular type of service, called RelServ in
Fig. 12.2);

• an operation GetFlowGraph(S) that returns the flow graph describing the
behavior of a service S. Note that this operation could be included within
the ones offered in a Web accessible S interface; it is the responsibil-
ity of the S provider to build and parameterize the flow graph, using
his/her knowledge of the S structure and the results of monitoring the S
execution.

A client of a service S who wants to get a prediction about the service
reliability must first call the GetFlowGraph(S) operation, and then invoke the
RelServ service, passing to it the obtained flow graph as a parameter. The
result returned by RelServ must then be combined with the reliability of the
network the client uses to access S, according to expression (12.1).

In this architecture, the fulfillment of the three different policies listed
above is guaranteed by the implementation of the GetFlowGraph(S) operation
(which is under the control of the S provider) as follows:

356 V. Cortellessa and V. Grassi

Fig. 12.2. The RelServ service architecture. The path (2b, 3b, 4b, 5b) describes
the distributed part of this architecture (scenario b): the request from RelServ to
get the flow graph of Si1 causes the invocation of another instance of the reliability
prediction service (RelServ k); the flow graph returned to RelServ is actually the
“collapsed” version of the “true” flow graph, so that RelServ gets no knowledge
about Si1 except for its overall reliability. The path (2c, 3c) describes the internally
recursive realization of RelServ (scenario c): the reliability of Si2 is recursively
calculated by RelServ itself, since only the usage profile of Si2 is returned to RelServ ;
in this way, RelServ gets knowledge about the internal realization of Si2

a) S is an atomic service – GetFlowGraph(S) returns the (single node) flow
graph associated with S ;

b) S is a composite service whose provider adopts a “no transparency” pol-
icy – GetFlowGraph(S) builds and returns a flow graph consisting of a
single stage that expresses the overall reliability of S; this “collapsed” flow
graph is built by “privately” invoking a (possibly different) instance of
RelServ (i.e., RelServk in Fig. 12.2). In this way, the invoker of GetFlow-
Graph(S) gets only information about the overall S reliability;

c) S is a composite service whose provider adopts a “partial or total trans-
parency” policy – GetFlowGraph(S) returns the “true” flow graph describ-
ing the internal structure of S. In this way, the invoker of GetFlowGraph(S)
gets information about the internal reliability and usage profile of S.

We point out that the flow graph fg(S), that RelServ receives as input
to calculate the reliability of a service S, must explicitly specify the services
that S invokes during its execution. This information is necessary to contact
these services and get the corresponding reliability information (i.e., step 7
of the Algorithm 1). These services are determined by means of a suitable
selection procedure. If the provider of S adopts a “no transparency” or “par-
tial transparency” policy, then this selection is carried out by the provider.
Otherwise, it must be carried out by the one that is requesting the evaluation
of the S reliability. In both cases, this procedure must in general be carried

12 Reliability Modeling and Analysis of Service-Oriented Architectures 357

out each time we want to evaluate the reliability of S. Indeed, given the dy-
namic nature of an SOA environment, the same abstract service (i.e., the type
of inner service required at a certain stage of execution of a composite ser-
vice) could be bound to different concrete services (i.e., Internet accessible
implementations of an abstract service). This is due to the possibility that
either previously accessible concrete services could be no longer available, or
new concrete services could have emerged. A discussion on how to set up a
service selection procedure is beyond the scope of this chapter, and a quite
rich literature exists about this topic [2, 8, 9, 25, 26]. We only remark that
the reliability analysis methodology presented here can be used to support
such a selection procedure, by comparing the reliability of different available
concrete services.

Given this implementation of the GetFlowGraph(S) operation, we get a
mixed recursive/distributed implementation of the recursive algorithm Rel-
pro-Alg() of Sect. 12.4. The distributed implementation occurs when RelServ
executes step 6 of Rel-pro-Alg() under the scenario b described above, since
this in general involves a call, on behalf of GetFlowGraph(), to a different
RelServ instance. The true recursion occurs when step 6 is executed under
scenario c; in this case RelServ must first solve the Markov processes as-
sociated with the services invoked by S, before solving the Markov process
associated with S.

Finally, it is worth noting that, in this architecture, if a single-node flow
graph is received as a result of a GetFlowGraph(S) call, then there is no
need to be aware whether this is occurring under scenario a or b. Hence,
besides allowing a service provider to select the preferred autonomy level, this
architecture allows also to not revealing the autonomy policy that has been
actually selected, thus preserving the “privacy” of each provider.

12.6 A Case Study

In this section we apply our modeling framework to a slightly modified and
simplified version of the scenario outlined in the introductive chapter of this
book. In particular, we consider the “travel planning” part of this scenario.

We assume that John, to plan his trip, invokes an Internet accessible Trip-
Planner service. This service allows John to specify his preferences and con-
straints about the trip, and supports him in an interactive way in the selection
and booking of everything he could need during this trip.

Figure 12.3 shows a possible workflow of this service. As shown, Trip-
Planner invokes several other services to carry out its task. Given the user
preferences and constraints, it first invokes a specialized HotelSelection ser-
vice that returns a possible list of hotels for the site of interest, with their
corresponding features. Looking at these features, John selects an hotel. As
the information provided by HotelSelection could not be up to date, Trip-
Planner checks (by contacting the HotelInfo service of that hotel) whether

358 V. Cortellessa and V. Grassi

TripPlanner(preferences, constraints) (S1):

invoke HotelSelection(preferences, constraints) [S2]

get hotel from hotelList

invoke HotelInfo(hotel, preferences, constraints) [S3]

ok ?
no

invoke HotelReservation(hotel, room) [S4]

yes

no

invoke ResturantSelection(hotel) [S5]

yes

yes

no

invoke RestaurantReservation(restaurant, date, n)
[S8]

get restaurant from
restaurantList

invoke AttracriontReservation(attraction, date, n)
[S9]

get attraction from
attractionList

yes

no

displayplan

credit card
error

ok ?

other ?

invoke AttractiontSelection(hotel) [S6]

more ?

Fig. 12.3. A workflow for the TripPlanner service

12 Reliability Modeling and Analysis of Service-Oriented Architectures 359

the listed features are really present (e.g., the swimming pool, even if present,
could be closed). When a selection has been finalized, TripPlanner invokes
the HotelReservation service of the selected hotel to make a reservation, pro-
viding the John’s credit card number. HotelReservation, in turn, invokes the
CreditCardManager service of the credit card company to check whether the
card is valid. In the positive case, the booking is completed and TripPlanner
asks John whether he wants to reserve some attractions or restaurants in the
site he is going to visit. Also in this case, TripPlanner relies on two special-
ized services (i.e., RestaurantSelection and AttractionSelection) to get a list of
possible attractions and restaurants close to the hotel that has been selected.
Given these lists, John selects one or more attractions or restaurants. After
that, TripPlanner displays the complete trip plan.

Figure 12.4 depicts the workflows of other services invoked in the Trip-
Planner scenario. TripPlanner is in fact a composite service that exploits
other services. One of the invoked services (i.e., HotelReservation) is, in turn,
a composite service, as it invokes another service to carry out its task.

To predict the reliability of a given composition of such services, the
provider of each of such services has to “distill” from its workflow the flow
graph described in Sect. 12.4, parameterizing it with suitable transition prob-
abilities and failure probabilities (possibly estimated through a monitoring
activity).

Figure 12.5 depicts possible flow graphs associated with some of the ser-
vices included in our scenario. For example, we can see that most (except
the last one) of the stages in TripPlanner flow graph have an internal failure
probability equal to zero. This means that the reliability of this service will
mostly depend on the reliability of the services it invokes and of the network
it uses to contact them. For example, we could assume that John starts his
session with TripPlanner while he stays at work (thus using a reliable wired

Hotel Selection (preferences,constraints) (S2):

prepare hotel List

return hotel List

Restaurant Selection (site) (S5):

prepare restaurant List prepare attraction List

return restaurant List return attraction List

Attraction Selection (site) (S6):

Hotel Reservation (hotel,room) (S4):

invoke Credit Card Manager (card_no,amount)[S7]

return result

Credit Card Manager (card_no,amount) (S7):

check account

return check status

Fig. 12.4. Workflows of services invoked from TripPlanner

360 V. Cortellessa and V. Grassi

Fig. 12.5. Flowgraphs of services in the TripPlanner scenario

Internet connection), but he completes the last part of the session (attrac-
tion and restaurants reservation) while he is going back home using public
transportation (thus using a less reliable wireless connection).

Given this scenario, the Algorithm 1 can be executed on the flow graphs
shown in Fig. 12.5 to retrieve at what extent the reliability of the wireless
network affects the overall reliability of the system.

12.7 Conclusions

In this chapter, we have introduced the problem of modeling and analyzing
reliability of Service-Oriented Architectures. We have raised the main issues
related to this problem that fall, on one hand, in the general problem of
composing QoS attributes in modular software systems and, on the other end,
in the specific constraints and requirements of the SOA environment such as
automation support and provider autonomy.

Upon introducing very basic reliability concepts, we have presented a
model for SOA reliability and an algorithm to evaluate our model. Finally, we
have described a service implementation of our methodology.

We have tried to open a window on the actual possibility of pursuing
model-based automated prediction of QoS attributes in SOAs. In fact we
retain that these practices have not yet entered the development and assembly

12 Reliability Modeling and Analysis of Service-Oriented Architectures 361

process mostly for lack of automated supports, and we hope that the research
community will spend more efforts in future in this direction, because very
good results can be at hand in the next few years in the field of model-based
QoS in SOAs.

References

1. H. Ammar , D. Nassar, W. Abdelmoez, M. Shereshevsky, A. Mili, “A Frame-
work for Experimental Error Propagation Analysis of Software Architecture
Specifications”, Proc. of International Symposium on Software Reliability En-
gineering (ISSRE’02), 2002.

2. Ardagna, D., Pernici, B., “Global and Local QoS Guarantee in Web Service
Selection”, Proc. of Business Process Management Workshop, 2005.

3. A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr, “Basic Concepts and Tax-
onomy of Dependable and Secure Computing”, IEEE Trans. on Dependable
and Secure Computing, Vol.1, no.1, January-March 2004, pp. 11–33.

4. L. Baresi, C. Ghezzi, S, Guinea, “Smart monitors for composed services”, Proc.
of 2nd International Conference on Service Oriented Computing (ICSOC’04),
2004.

5. B. Bhusha, J. Hall, P. Kurtansky, B. Stiller, “Operations Support System
for End-to-End QoS Reporting and SLA Violation Monitoring in Mobile Ser-
vices Environment”, Quality of Service in the Emerging Networking Panorama,
LNCS 3266, 2004.

6. R. Buyya, D. Abramson, J. Giddy, H. Stockinger, “Economic models for re-
source management and scheduling in Grid computing”, Concurrency and Com-
putation: Practice and Experience, Vol. 14, 2002, pp. 1507–1542.

7. G. Candea, A. Fox, “Crash-only software”, Proc. of the 9th Workshop on Hot
Topics in Operating Systems, 2003.

8. Canfora, G., Di Penta, M., Esposito, R., Villani, M. L., “An Approach for QoS-
aware Service Composition Based on Genetic Algorithms”, Proc. of Genetic and
Computation Conference, 2005.

9. F. Casati, M. Castellanos, U. Dayal, M.C. Shan, “Probabilistic, Context-
sensitive, and Goal-oriented Service Selection”, Proc. of 2nd International Con-
ference on Service Oriented Computing (ICSOC’04), 2004.

10. I. Crnkovic, M. Larsson, O. Preiss, “Concerning Predictability in Depend-
able Component-Based Systems: Classification of Quality Attributes”, Proc.
of Workshop on Architecting Dependable Systems (WADS’04), 2004.

11. S. Gokhale, W.E. Wong, J.R. Horgan, K. Trivedi, An analytical approach to
architecture-based software performance and reliability prediction, Performance
Evaluation, n.58 (2004), pp. 391–412.

12. K. Goseva-Popstojanova, A.P. Mathur, K.S. Trivedi, “Architecture-based ap-
proach to reliability assessment of software systems”, Performance Evaluation,
no. 45 (2001), pp. 179–204.

13. V. Grassi, “Architecture-based Reliability Prediction for Service-oriented Com-
puting”, Architecting Dependable Systems III (R. de Lemos, A. Romanovsky,
C. Gacek Eds.), LNCS 3549, Springer-Verlag, 2005, pp. 279–299.

362 V. Cortellessa and V. Grassi

14. V. Grassi, V. Cortellessa, “Embedding error propagation in reliability modeling
of component-based software systems”, Proc. of International Conference on
Quality of Software Architectures (NetObjectDays’05), 2005.

15. Grassi, V., Patella, S., “Reliability Prediction for Service-Oriented Comput-
ing Environments”, IEEE Internet Computing, Volume 10, Issue 3 (2006),
pp. 43–49.

16. Inverardi, P., Scriboni, S., “Connectors Synthesis for Deadlock-Free
Component-Based Architectures”, Proc. of Automated Software Engineering
Conference (ASEÃ01), 2001.

17. H. Ludwig, A. Keller, A. Dan, R. Franck, and R.P. King, “Web Service Level
Agreement (WSLA) Language Specification”, IBM Corporation, July 2002.

18. Ludwig, H., Dan, A., Kearney, R. Cremona, “An Architecture and Library
for Creation and Monitoring of WS-Agreements”, Proc. of 2nd international
conference on service oriented computing (ICSOC’04), 2004.

19. M.R. Lyu (Editor), “Handbook of Software Reliability Engineering”, IEEE
Computer Society Press, 1996.

20. Maximilien, E.M., Singh, M.P., “Toward Autonomic Web Services Trust and
Selection”, Proc. of International Conference on Service Oriented Computing
(ICSOC’04), 2004.

21. I.V. Papaioannou, D.T. Tsesmetzis, I.G. Roussaki, M.E. Anagnostou, “A QoS
Ontology Language for Web-Services”, Proc. of the 20th International Confer-
ence on Advanced Information Networking and Applications (AINA’06), Vol. 1,
2006.

22. P. Popic, D. Desovski, W. Abdelmoez, B. Cukic, “Error propagation in the
reliability analysis of component based systems”, Proc. of International Sym-
posium on Software Reliability Engineering (ISSREÃ05), 2005.

23. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller, “A Concept for QoS
Integration in Web Services”, Proc. of the 4th International Conference on Web
Information Systems Engineering Workshops (WISEWÃ03), 2003.

24. H.C. Tijms, “Stochastic models: an algorithmic approach”, John Wiley and
Sons, 1994.

25. Yu, T. and Lin, K. J., “Service Selection Algorithms for Web Services with
End-to-End QoS Constraints”, Journal of Information Systems and E-Business
Management, vol.3, no.2, July 2005.

26. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.,
“QoS-Aware Middleware for Web Services Composition”, IEEE Trans. Software
Engineering, vol.30, no.5, August 2004.

27. C. Zhou, L.T. Chia, B.S. Lee, “DAML-QoS Ontology for Web Services”, Proc.
of IEEE International Conference on Web Services, 2004.

28. “UML Profile for Modeling Quality of Service and Fault Tolerance Character-
istics and Mechanisms”, OMG Adopted Specification, ptc/2004-06-01, 2004.

29. “Parlay Web Services Overview”, The Parlay Group: Web Services Working
Group, Version 1.0, Oct. 2002, on line at: www.parlay.org.

30. “Web Services Description Language 1.1”, W3C Note, March 2001,
http://www.w3.org/TR/wsdl.

31. “Business Process Execution Language for Web Services 1.1”, http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/.

32. www.jdom.org

13

Vulnerability Analysis of Web-Based
Applications

Marco Cova, Viktoria Felmetsger and Giovanni Vigna

Reliable Software Group, Department of Computer Science, University
of California, Santa Barbara
[marco,rusvika,vigna]@cs.ucsb.edu

Abstract. In the last few years, the popularity of web-based applications has grown
tremendously. A number of factors have led an increasing number of organizations
and individuals to rely on web-based applications to provide access to a variety of
services. Today, web-based applications are routinely used in security-critical envi-
ronments, such as medical, financial, and military systems.

Web-based systems are a composition of infrastructure components, such as web
servers and databases, and of application-specific code, such as HTML-embedded
scripts and server-side CGI programs. While the infrastructure components are usu-
ally developed by experienced programmers with solid security skills, the application-
specific code is often developed under strict time constraints by programmers with
little security training. As a result, vulnerable web-based applications are deployed
and made available to the whole Internet, creating easily exploitable entry points
for the compromise of entire networks.

To ameliorate these security problems, it is necessary to develop tools and tech-
niques to improve the security of web-based applications. The most effective ap-
proach would be to provide secure mechanisms that can be used by well-trained
developers. Unfortunately, this is not always possible, and a second line of defense
is represented by auditing the application code for possible security problems. This
activity, often referred to as web vulnerability analysis, allows one to identify security
problems in web-based applications at early stages of development and deployment.

Recently, a number of methodologies and tools have been proposed to support
the assessment of the security of web-based applications. In this chapter, we survey
the current approaches to web vulnerability analysis and we propose a classifica-
tion along two characterizing axes: detection model and analysis technique. We also
present the most common attacks against web-based applications and discuss the
effectiveness of certain analysis techniques in identifying specific classes of flaws.

13.1 Introduction

The World Wide Web started in the mid-1990s as a system to support
hyper-textual access to static information and has since then evolved into
a full-fledged platform for the development of distributed applications. This

364 M. Cova et al.

has been made possible by the introduction of a number of mechanisms that
can be used to trigger the execution of code on both the client and the server
side. These mechanisms are the basis to implement web-based applications.

As the use of web applications for critical services has increased, the num-
ber and sophistication of attacks against web application has grown as well.
A series of characteristics of web-based applications make them a valuable
target for an attacker. First, web applications are often designed to be widely
accessible. Indeed, by design, they are almost always reachable through fire-
walls and a significant part of their functionality is available to anonymous
users. Because of this, they are considered the most effective entry point for
the compromise of computer networks. Second, web-based applications of-
ten interface with back-end components, such as mainframes and product
databases, that might contain sensitive data, such as credit card information.
Therefore, they become an attractive target for attackers who aim at gaining
a financial profit. Third, the technology used to implement, test, and interact
with web-based applications is inexpensive, well known, and widely available.
Therefore, attackers can easily develop tools that expose and automatically
exploit vulnerabilities.

Other factors contribute to make web applications a preferred target for
attackers. For example, some of the most popular languages used to develop
web-based applications are currently easy enough to allow novices to start
writing their own applications, but, at the same time, they do not provide a
comprehensive, easy-to-use set of mechanisms that support the development
of secure applications. This problem is particularly difficult to solve. In fact,
while the infrastructure components, such as web servers and browsers, are
usually developed by experienced programmers with solid security skills and
reviewed by a large developer team, the application-specific code is often de-
veloped under strict time constraints by few programmers with little security
training. As a consequence, vulnerable code is made available on the web.

This trend is confirmed by various statistics. In the first semester of 2005,
Symantec cataloged 1,100 new vulnerabilities, which represent well over half
of all new vulnerabilities, as affecting web-based applications. This is a 59%
increase over the previous semester, and a 109% increase over the same period
of the previous year [33].

An analysis of the reported vulnerabilities shows various types of prob-
lems. Web applications can be affected by flaws that are not web specific and
that have been commonly found also in traditional applications. Examples of
such problems include broken authentication and authorization management,
where account credentials and session tokens are not properly protected; im-
proper handling of errors or exceptional conditions, which leads to the leaking
of confidential information or to unexpected system behavior.

In addition to these well-known security problems, web-based applications
are affected by a number of vulnerabilities that are specific of the web en-
vironment. Some vulnerabilities are due to architectural choices, such as the
use of relational databases as back-ends for long-term storage, which lead

13 Vulnerability Analysis of Web-Based Applications 365

to vulnerabilities such as SQL injections [1, 30] and permanent Cross Site
Scripting (XSS) [14]. Other causes of web-based vulnerabilities are the incor-
rect handling of trust relations between clients and servers, which might lead
to XSS, and inconsistencies in web protocols implementations, which lead to
request smuggling [20] and response splitting [15]. Another source of security
problems are the unforeseen consequences of the use of special features pro-
vided by the languages used to implement web-based applications, such as the
use of the register globals option in the PHP language. In this chapter,
we will focus on vulnerabilities that are specific to the web environment.

Clearly, the abundance of vulnerabilities in web-based applications and
their increasing popularity make a strong case for the need of techniques and
tools for their security assessment. A number of approaches to secure web-
based applications have been proposed in the recent past by both industry
and academia. While most of these techniques reuse well-known ideas from the
past, these ideas have to be extended to take into account the novel aspects
of web-based application security. These approaches can be classified on the
basis of when they can be applied in the life-cycle of a web-based application.

At the coding phase, new programming languages have been adopted that,
among other things, take away from the programmer the burden of performing
error-prone tasks and, in addition, eliminate the ability to perform insecure
operations commonly found in traditional languages, such as memory man-
agement and pointer arithmetic.

New testing tools and methodologies have been proposed that aim at iden-
tifying and removing flaws by exercising an instance of an application with
unexpected, random, or faulty input. Testing-time approaches are appealing
because, in general, they can be performed even on applications whose source
code is not available. In addition, they are usually independent of the internals
of the application under testing, and, therefore, they are reusable on different
applications. Finally, they are characterized by the absence of false positives,
i.e., flaws found through testing correspond to actual bugs in the application
code. The main disadvantage of these testing approaches is their lack of com-
pleteness, i.e., in general, they cannot guarantee to expose all vulnerabilities
in a program.

Code reviews and security audits are part of the quality assurance phase.
In particular, vulnerability analysis is the process of examining different char-
acteristics of an application in order to evaluate whether there exists a se-
quence of events that are capable of driving the application into an insecure
state. Thus, vulnerability analysis supports the identification and fixing of
errors. In its simplest form, the analysis is performed by manually auditing
the source code of an application. However, a number of more sophisticated
and automatic approaches have been proposed in the last few years.

Finally, at deployment and operation time, an application can be protected
through the use of web application firewalls. These applications examine the
requests directed to a web server and determine if a request is to be considered
an attack or not. The focus of web application firewalls is on preventing attacks

366 M. Cova et al.

directed against a web-based application rather than identifying and fixing its
errors. These security mechanisms usually do not require the understanding
of an application’s internals or its modification.

This chapter reviews and discusses a number of techniques that can be
used to perform the vulnerability analysis of web-based applications. Before
delving into the details of these techniques, Sect. 13.2 presents the exist-
ing mechanisms for the execution of code in web-based applications. Then,
Sect. 13.3 discusses the type of attacks that are common of web-based appli-
cation. Finally, Sect. 13.4 provides a survey of the techniques used to perform
vulnerability analysis of web-based applications.

13.2 Technologies

The technologies used to implement web-based applications have rapidly
evolved since the appearance of the first simple mechanisms to create dy-
namic web pages. In this section, we will briefly present the most important
steps in this evolution.

13.2.1 Common Gateway Interface

One of the first mechanisms that enabled the generation of dynamic content
was the Common Gateway Interface (CGI) [23]. The CGI standard defines a
mechanism that a server can use to interact with external applications. The
CGI standard specifies the rules of this interaction but does not dictate the use
of any particular technology for the implementation of the external applica-
tions. Therefore, CGI programs can be written virtually in any programming
language and executed by virtually all web servers.

The original goal of the CGI invocation mechanism was to provide web-
based access to legacy applications. In this case, a CGI program acts as a
gateway between the web server and the legacy application, e.g., a database.
More precisely, the life-cycle of a CGI-based program is as follows. Whenever a
request references a CGI program, the server creates a new process to execute
the specified application. Then, the web server passes to the program the data
associated with the user request. The CGI program executes and produces
data, which is passed back to the server. The server, in turn, passes the data
to the client. When the CGI program exits, the request is completed.

The CGI specification defines different ways for a web server to communi-
cate with a CGI program. At every request, the web server sets a number of
environment variables that contain information about both the server (e.g.,
server name and version, or CGI specification supported) and the request
(e.g., request method, request content type, and length). The request itself is
passed to the CGI program through its standard input (if the request is issued
using the POST HTTP method) or through an environment variable (if the
request is issued using the GET HTTP method). When the CGI program has

13 Vulnerability Analysis of Web-Based Applications 367

finished serving the request, it sends back the results to the server through its
standard output. The output can either consist of a document generated by
the program or one or more directives to the server for retrieving the output.

The example in Fig. 13.1 shows a CGI program written in Perl. The pro-
gram allows users to authenticate with the application to access services of-
fered only to authenticated users. Users are expected to send their credentials
as two request parameters, namely username and password. The program
uses two Perl modules, CGI and CGI::Session, which provide a number of
library functions to ease the tasks of parameter decoding and session manage-
ment. The credential parameters are extracted from the request and validated
through the validate function (which, e.g., could lookup a database of regis-
tered users). If the credentials are found to be valid, a new session is started
and a welcome message is shown to the user. Otherwise, the program returns
to the user an error message. Note that this is just one of the components of
a web-based application. For example, there might be other components that
will provide access to information or services.

Developing web-based applications using the CGI mechanism to invoke
server-side components has some advantages. First, as noted before, the CGI
mechanism is language independent, i.e., each CGI-based component of the

1 #!/usr/bin/perl -w

2 use CGI;

3 use CGI:: Session;

4
5 $cgi = new CGI;

6
7 my $user = $cgi ->param(" username ");

8 my $pass = $cgi ->param(" password ");

9
10 if (validate($user , $pass) == 1) {

11 my $session = new CGI::Session (" driver:File",

12 undef , {Directory =>"/ tmp "});

13 $cookie = $cgi ->cookie(CGISESSID => $session ->id);

14 print $cgi ->header(-cookie=>$cookie);

15 print $cgi ->start_html ("Login");

16 print "Welcome !";

17 } else {

18 print $cgi ->header;

19 print $cgi ->start_html ("Login");

20 print "Invalid username or password !";

21 }

22
23 print $cgi ->end_html ;

Fig. 13.1. A sample CGI program

368 M. Cova et al.

application can be implemented using a different language. Second, CGI pro-
grams run in separate processes so problems in one program do not affect
other components of the web applications or the web server.

The main disadvantage of using the CGI mechanism is that it requires that
a new process be created and executed for each request, with significant impact
on the performance and scalability of the web-based application. On many
systems (notably UNIX), the creation of a new process is a costly operation.
Furthermore, the use of a separate process for each request poses a limit to
the maximum number of requests that can be satisfied at the same time,
which is bounded by the maximum number of processes allowed by the OS.
In addition, CGI programs run in a separate address space than the web
server, and, therefore, they can only have a limited interaction with it. In
particular, they cannot take advantage of its services (e.g., logging) leading
to a duplication of functionalities between the server and the CGI programs.

In an attempt to overcome some of these problems, several extensions to
the original CGI standard have been proposed. For example, the FastCGI
mechanism creates a pool of resident processes that handle multiple requests
without exit and need to be restarted [3]. Also, the FastCGI mechanism al-
lows the web server and the external program to communicate through Unix-
domain or TCP sockets rather than pipes, allowing developers to create more
sophisticated architectures where server-side components are not required to
run on the same host as the web server.

A different approach to overcome these limits consists in leveraging various
functionalities of the server that are exposed through vendor-specific APIs.
The most notable examples are the ISAPI extensions for Microsoft IIS and
the API provided by Apache. External programs that use these server-specific
APIs generally have low initialization cost and can perform more general
functionalities than CGI-based programs. For example, they can rely on the
web server to enforce access control or even hook into the server’s request
handling process.

However, server-specific APIs lack some of the benefits provided by the
CGI mechanism. Writing a program that relies on server-specific APIs is gen-
erally more complex than writing a CGI program, because it requires some
knowledge of the server’s inner workings. In addition, the APIs are typically
language specific (i.e., they have C or C++ bindings) and vendor specific,
and, thus, not portable.

13.2.2 Embedded Web Application Frameworks

Today, the most common approach to web-based application implementa-
tion is a middle way between the original CGI mechanism and the use of
server-specific APIs. More precisely, the web server is provided with exten-
sions that implement frameworks for the development of web-based applica-
tions. At a minimum, these frameworks include an interpreter or compiler for
the language used to encode the application’s components and define rules

13 Vulnerability Analysis of Web-Based Applications 369

that govern the interaction between the server and the application’s compo-
nents.

Frameworks vary greatly in the support provided to the application devel-
oper. At their most basic level, they simply parse request parameters and make
them available to the application. Some frameworks also offer mechanisms to
deal with HTTP-specific characteristics, e.g., cookies, authentication mech-
anisms, and connection handling. Most frameworks generally support other
commonly used features, such as access to back-end databases and sessions.
More sophisticated environments are designed to support large-scale enter-
prise applications and include support for features such as transactions and
complex authorization mechanisms.

Web application frameworks are available for a variety of programming
languages. Most frameworks are built around scripting languages, such as
PHP, Perl, and Pyhton. These high-level languages, which are generally in-
terpreted, provide support for object-oriented programming and are loosely
typed. These characteristics simplify the development of small components,
which is a perfect match for web-based applications. In fact, these applica-
tions are usually characterized by a number of small server-side components
that perform relatively simple tasks. Other significant choices are Java, used
in the J2EE platform, and the languages compatible with the ASP.NET en-
vironment, such as Visual Basic, C#, and JScript.

The example in Fig. 13.2 shows a PHP-based version of the login example
shown in the Sect. 13.2.1. In PHP, the parameters of requests issued through
the HTTP GET method are available in the predefined $ GET array. Also, PHP
provides native support for sessions, and, therefore, it is extremely easy to keep

1 <?php

2
3 $username = $_GET[" username "];

4 $password = $_GET[" password "];

5
6 if (validate($username , $password)) {

7 session_start ();

8 $_SESSION [" user "] = $username ;

9 ?>

10 <p>Welcome!</p>

11 <?php

12 } else {

13 ?>

14 <p>Invalid username or password !</p>

15 <?php

16 }

17 ?>

Fig. 13.2. A sample PHP program

370 M. Cova et al.

1 <%

2 String username = request.getParameter (" username ");

3 String password = request.getParameter (" password ");

4
5 if (validate(username , password)) {

6 session.setAttribute (" user", username);

7 %>

8 <p>Welcome!</p>

9 <%

10 } else {

11 %>

12 <p>Invalid username or password !</p>

13 <%

14 }

15 %>

Fig. 13.3. A sample JSP program

track of a user across different requests. In the example, users credentials are
first checked using the validate function. If the validation is successful, a
new session is started and a welcome message is printed; otherwise, an error
message is sent back to the user. Note that in a PHP program it is possible
to interleave PHP and HTML code.

Figure. 13.3 shows a similar program written using the JavaServer Pages
(JSP) framework [32]. In both examples, the code of the validate function
has been omitted for the sake of clarity.

13.3 Attacks

Web-based applications have fallen prey to a variety of different attacks that
violate different security properties that should be enforced by the application.
Note that here we are not concerned with attacks that might involve the
infrastructure (e.g., in terms of web server and databases) or the operation
of the network (e.g., in terms of routers and firewalls). Instead, we focus on
attacks that try to induce a web-based application to behave in unforeseen
(and unwanted) ways to disclose sensitive information or execute commands
on behalf of the attacker.

Many web-based applications offer services that are available only to reg-
istered users, e.g., “premium” functionalities or personalized content. These
services require that some authentication mechanism be in place to establish
the identity of users. Errors in authentication code or logic can be exploited to
bypass authentication or lock out legitimate users. For example, user creden-
tials transferred in the clear to the application can be stolen by eavesdropping

13 Vulnerability Analysis of Web-Based Applications 371

the network connection and weak authentication mechanisms can be broken
by brute force or dictionary attacks [6].

Once a user has been authenticated, the application has to enforce the
policy that establishes which resources are available to the user. Broken au-
thorization can lead to elevation of privileges, disclosure of confidential data,
and data tempering. Authorization mechanisms are particularly critical when
web-based applications handle sensitive data, such as financial or health in-
formation.

Web-based applications tend to be large, heterogeneous, complex pieces
of software, whose configuration is far from being trivial. Configuration prob-
lems may affect both the infrastructure (e.g., the account under which the
web server runs or the configuration of a back-end database) and the web
application itself (e.g., where the application stores its temporary files). Con-
figuration errors can allow an attacker to bypass otherwise-effective authen-
tication and authorization mechanisms. For example, improper configuration
has been exploited to gain unauthorized access to administrative functional-
ities or retrieve sensitive information, such as secrets stored as plain-text in
configuration files, such as database server passwords.

Attacks that exploit poorly designed authentication, faulty authorization,
or configuration mechanisms are the cause of serious compromises. However,
currently, most of attacks against web applications can be ascribed to one
class of vulnerabilities: improper input validation. Most web application de-
velopers assume that they might receive from their users incorrect input, as
a result either of an error or of malicious intent. Input validation is a de-
fensive programming technique that makes sure that all user input is in the
expected format and does not contain dangerous content. While simple in
principle, performing correct and complete validation of all input data is a
time-consuming task that requires notable expertise. Therefore, this type of
flaw is all too common in current web-based applications.

The remaining of this section explores different types of attacks that take
advantage of incorrect or missing input validation.

13.3.1 Interpreter Injection

Many dynamic languages include functions to dynamically compose and inter-
pret code. For example, the PHP language provides the eval function, which
accepts a string as a parameter and evaluates it as PHP code. If unchecked
user input is used to compose the string to be evaluated, the application is
vulnerable to arbitrary code execution.

For example, consider the following simple example of interpreter injec-
tion that was present in Double Choco Latte (version 0.9.4.3 and earlier), a
PHP web-based application that provides basic project management function-
ality [2]. The attack URL is of the form

http://[target]/[dcl-directory]/
main.php?menuAction=htmlTickets.show;system(id);ob_start

372 M. Cova et al.

The parts of the request URL containing the strings menuAction=html-
Tickets.show and ob start are required to avoid errors. The arbitrary code
is the part between these two string and, in the example above, corresponds
to the part containing system(id).

The vulnerability is contained in the following code snippet:

1 if ($g_oSec -> ValidateMenuAction () == true)

2 {

3 list($class , $method) = explode (".", $menuAction);

4 $obj = CreateObject (’dcl.’ . $class);

5 eval ("\ $obj ->$method ();");

6 }

7 else

8 {

9 commonHeader ();

10 PrintPermissionDenied ();

11 }

As can be seen from the code above, the class and method variables,
obtained from the user’s controlled menuAction variable, are never validated.
Therefore, it is possible to insert a command to be executed in the string that
represents the variable’s value. After requesting the attack URL, the eval call
becomes

eval("$obj->show;system(id);ob_start();");

Thus, in addition to execute the show method on the obj object, the in-
terpreter will also execute the command specified by the attacker. In this
example, the id UNIX command will be executed and the information about
the user ID under which the command is executed will be printed. Of course,
arbitrary (and more malicious) commands can be executed by exploiting this
flaw.

One difficulty in preventing interpreter injection attacks is that popular
languages offer many attack vectors. In PHP, eval and preg replace can
be used to interpret PHP code. In addition, the functions system, passthru,
backticks, and shell exec pass a command to the system shell. Finally,
exec, pcntl exec, popen, and proc open can be used to execute external
programs.

Some languages offer natively sanitization primitives that ensure that
malicious user input is properly removed before use. For example, in PHP,
escapeshellarg and escapeshellcmd can be used to escape quotes or other
special characters that might be inserted to trick an application into executing
arbitrary commands. However, programmers must be aware of the problem,
choose the proper sanitization function, and remember to invoke it on all
possible code paths that lead to an invocation of a dangerous function. This
requires substantial expertise, and might be foiled by subsequent reorganiza-
tions of the code.

13 Vulnerability Analysis of Web-Based Applications 373

13.3.2 Filename Injection

Most languages used in the development of web-based applications allow pro-
grammers to dynamically include files to either interpret their content or
present them to the user. This feature is used, e.g., to modularize an ap-
plication by separating common functions into different files or to generate
different page content depending on user’s preferences, e.g., for international-
ization purposes. If the choice of the file to be included can be manipulated
by the user, a number of unintended consequences can follow. To worsen the
situation, some languages, most notably PHP, even supports the inclusion of
files from remote sites.

The following snippet of code illustrates a filename injection vulnerability
in txtForum, an application to build forums [11]. In txtForum, pages are
divided into parts, e.g., header, footer, forum view, etc., and can be customized
by using different “skins,” which are different combination of colors, fonts, and
other presentation parameters. For example, the code that defines the header
is the following:

1 DEFINE(" SKIN"," $skin");

2 ...

3 function

4 t_header($h_title ,$pre_skin =’’,$admin_bgcolor =’’) {

5 ...

6 include(SKIN .’/ header.tpl ’);

7 }

During execution, each page is composed by simply invoking the functions
that are responsible for creating the various parts, e.g., t header("page
title"). Unfortunately, the skin variable can be controlled by an attacker,
who can set it to cause the inclusion and evaluation of arbitrary content.
Because PHP allows for the inclusion of remote files, the code to be added
to the application can be hosted on a site under the attacker’s control. For
example, requesting the login.php page and passing the parameter skin
with value http://[attacker-site] leads to the execution of the code at
http://[attacker-site]/header.tpl.

For this type of problem, PHP does not offer any sanitization methods
natively. Therefore, appropriate, ad hoc checks must be put in place by the
developers.

13.3.3 Cross-Site Scripting

In Cross-site Scripting (XSS) attack, an attacker forces a client, typically a web
browser, to execute attacker-supplied executable code, typically JavaScript
code, which runs in the context of a trusted web site [14].

This attack allows the perpetrator to bypass the same-origin policy en-
forced by browsers when executing client-side code, typically JavaScript. The

374 M. Cova et al.

same-origin policy states that scripts or documents loaded from one site can-
not get or set the properties of documents from different sites (i.e., from
different “origins”). This prevents, for instance, a malicious web application
from stealing sensitive information, such as cookies containing authentication
information, associated with other applications running on different sites.

However, the same-origin policy can be circumvented, under certain con-
ditions, when an application does not perform correct input validation. In
these cases, the vulnerable application can be tricked into storing malicious
code from an attacker and then presenting that malicious code to users, so it
will be executed under the assumption that it originates from the vulnerable
application rather than from the attacker.

There exist different forms of XSS attacks, depending on how malicious
code is submitted to the vulnerable application and later echoed from the
application to its users. In non-persistent (or reflected) attacks, the user is
lured into visiting a specially crafted link that points to the vulnerable ap-
plication and embeds the malicious code (e.g., as the value of a parameter
or the name of a resource). When the link is activated the vulnerable web
application immediately reflects the code to the user (e.g., as part of an error
message). The code is then executed in the context of the vulnerable site and
has access to all the information associated with the attacked application,
such as authentication cookie or session information.

In persistent (or stored) attacks, the malicious code is first stored by the
vulnerable application, and then, at a later time, it is presented to its users.
In this case, the security of a user is compromised each time he/she visits a
page whose content is determined using the stored malicious code. Typical
examples of vulnerable applications include guestbook applications or blog
systems. If they allow users to submit entries containing scripting code, then
they are vulnerable to persistent XSS attacks.

A third form of XSS attacks, called DOM-based, is also possible. In this
case, the vulnerable application presents to the users an HTML page that uses
data from parts of its Document Object Model (DOM) in insecure ways [16].
The DOM is a data structure that allows client-side scripting code to dynami-
cally access and modify the content, structure, and style of HTML documents.
Some of its properties are populated by the browser on the basis of the re-
quest parameters, rather than on the characteristics of the document itself.
For example, the document.URL and document.location properties are set
to the URL of the document by the browser. If an HTML page contains code
that dynamically changes the appearance of the page using the content of
document.URL (e.g., to show to the user the URL associated with the page),
it is possible to use a maliciously crafted URL to execute malicious scripting
code.

An example of code vulnerable to non-persistent XSS attacks could be
found in the application PHP Advanced Transfer Manager (version 1.30 and
earlier) [28]. The vulnerability is contained in the following snippet of code.

13 Vulnerability Analysis of Web-Based Applications 375

1 $font = $_GET[’font ’];

2 ...

3 echo "<font face =\" $font\" color=\" $normalfontcolor \"

4 size =\"1\" >\n";

The variable $font is under the control of the attacker because it is ex-
tracted from the request parameters and it is used to create the web page
returned to the user, without any sanitizing check. To exploit this vulnerabil-
ity, an attacker might request the following URL:

http://[target]/[path]/viewers/txt.php?font=
\%22\%3E\%3Cscript\%3Ealert(document.cookie)\%3C/script\%3E

As a consequence, the vulnerable application will generate the following web
page:

<script>alert(document.cookie)</script>

When interpreted by the browser, the scripting code will be executed and it
will show in a pop-up window the cookies associated with the current page.
Clearly, a real attack would, for instance, send the cookies to the attacker.

13.3.4 SQL Injection

A web-based application has an SQL injection vulnerability when it uses un-
sanitized user data to compose queries that are later passed to a relational
database for evaluation [1, 30]. This can lead to arbitrary queries being exe-
cuted on the database with the privileges of the vulnerable application.

For example, consider the following code snippet:

1 $activate = $_GET[" activate "];

2 $result = dbquery (" SELECT * FROM new_users " .

3 "WHERE user_code =’$activate ’");

4 if ($result) {

5 ...

6 }

The dbquery function is used to perform a query to a back-end database
and return the results to the application. The query is dynamically composed
by collating a static string with a user-provided parameter. In this case, the
activate variable is set to the content of the homonymous request parameter.
The intended use of the variable is to contain the user’s personal code to
dynamically compose the page’s content. However, if an attacker submits a
request where the activate parameter is set to the string ’ OR 1=1 -- the
query will return the content of the entire new users table. If the result of the
query is later used as the page content, this will expose personal information.
Other attacks, such as the deletion of database tables or the addition of new
users, are also possible.

376 M. Cova et al.

13.3.5 Session Hijacking

Most web applications use HTTP as their communication protocol [5]. HTTP
is a stateless protocol, i.e., there is no built-in mechanism that allows an ap-
plication to maintain state throughout a series of requests issued by the same
user. However, virtually all non-trivial applications need a way to correlate
the current request with the history of previous requests, i.e., they need a
“session” view of their interaction with users. In e-commerce sites, e.g., a user
adds to a cart items he/she intends to buy and later proceeds to the check-
out. Even though these operations are performed in separated requests, the
application has to keep the state of the user’s cart through all requests, so
that the cart can be displayed to the user at checkout-time.

Consequently, a number of mechanisms have been introduced to provide
applications with the abstraction of sessions. Some languages provide session-
like mechanisms at the language level, others rely on special libraries. In other
cases, session management has to be implemented at the application level.

The session state can be maintained in different ways. It can be encoded
in a document transmitted to the user in a way that will guarantee that the
information is sent back as part of later requests. For example, HTML hidden
form fields can be used for this purpose. These fields are not showed to the
user, but when the user submits the form, the hidden variables are sent back
to the application as part of the form’s data. In our e-commerce example, the
application might keep the current sub-total of the transaction in a hidden
field. When the user chooses the shipping method, the field is returned to the
application and used to calculate the final total cost.

The state can be kept in cookies sent to a user’s browser and automatically
resent by the browser to the application at subsequent visits. Cookies might
contain the items currently inserted in a user’s cart. The application, during
checkout, looks up the price of each item and presents the total cost to the
user.

All the methods mentioned above require the client to cooperate with
the application to store the session state. A different approach consists in
storing the state of all sessions on the server. Therefore, each user is assigned
a unique session ID, and this is the only information that is sent back and
forth between the application and the user, e.g., by means of a cookie, or
of a similar mechanism that rewrites all the URLs in the page adding the
session identifier as a parameter. As a consequence, every future request will
include the session identifier as a parameter. Then, whenever the user submits
a request to the site, e.g., to add an item to the cart, the application receives
the session ID, looks up the associated session in its repository, and updates
the session’s data according to the request.

A number of attacks have been designed against session state management
mechanisms. Approaches that require clients to keep the state assume that
the client will not change the session state, e.g., by modifying the hidden
field (or the cookie) and storing the current sub-total to lower the price of

13 Vulnerability Analysis of Web-Based Applications 377

an item. Countermeasures include the use of cryptographic techniques to sign
parameters and cookies to make them tamper-resistant.

A more general attack is session fixation. Session fixation forces a user’s
session ID to an explicit value of the attacker’s choice [17]. The attack requires
three steps. First, the attacker sets up a session with the target application
and obtains a session ID. Then, the attacker lures the victim into accessing
the target application using the fixed session ID. Finally, the attacker waits
until the victim has successfully performed all the required authentication and
authorization operations and then impersonates the victim by using the fixed
session ID. Depending on the characteristics of the target web applications,
different methods can be used to fix the session ID. In the simplest case, an
attacker can simply lure the users into selecting a link that contains a request
to the application with a parameter that specifies the session ID, such as .

13.3.6 Response Splitting

HTTP response splitting is an attack in which the attacker is able to set the
value of an HTTP header field such that the resulting response stream is in-
terpreted by the attack target as two responses rather than one [15]. Response
splitting is an instance of a more general category of attacks that takes advan-
tage of discrepancies in parsing when two or more devices or entities process
the data flow between a server and a client.

To perform response splitting the attacker must be able to inject data
containing the header termination characters and the beginning of a second
header. This is usually possible when user’s data is used (unsanitized) to
determine the value of an HTTP header. These conditions are commonly met
in situations where web applications need to redirect users, e.g., after the login
process. The redirection, in fact, is generally performed by sending to the user
a response with appropriately set Location or Refresh headers.

The following example shows part of a JSP page that is vulnerable to
response splitting attack:

1 <%

2 response.sendRedirect ("/ by_lang.jsp?lang =" +

3 request.getParameter (" lang "));

4 %>

When the page is invoked, the request parameter lang is used to determine
the redirect target. In the normal case, the user will pass a string representing
the preferred language, say en US. In this case, the JSP application generates
a response containing the header

Location: http://vulnerable.com/by_lang.jsp?lang=en_US.

However, consider the case where an attacker submits a request where lang
is set to the following string:

378 M. Cova et al.

dummy%0d%0a
Content-Length:%200
%0d%0a%0d%0a
HTTP/1.1%20200%20OK%0d%0a
Content-Type:%20text/html%0d%0a
Content-Length:%2019%0d%0a%0d%0a
<html>New document</html>

The generated response will now contain multiple copies of the headers
Content-Length and Content-Type, namely those injected by the attacker
and the ones inserted by the application. As a consequence, depending on
implementation details, intermediate servers and clients may interpret the re-
sponse as containing two documents: the original one and the document forged
by the attacker.

Use cases of the attack most often mention web cache poisoning. In fact,
if a caching proxy server interprets the response stream as containing two
documents and associates the second one, forged by the attacker, with the
original request, then an attacker would be able to insert in the cache of the
proxy a page of his/her choice in association to a URL in the vulnerable
application.

Recently, support to contrast response splitting has been introduced in
some languages, most notably PHP. In the remaining cases, the programmer
is responsible to properly sanitize data used to construct response headers.

13.4 Vulnerability Analysis

The term vulnerability analysis refers to the process of assessing the secu-
rity of an application through auditing of either the application’s code or
the application’s behavior for possible security problems. In this section, we
survey current approaches to vulnerability analysis of web-based applications
and classify them along two characterizing axes: detection model and anal-
ysis technique. We show how existing vulnerability analysis techniques are
extended to address the specific characteristics of web application security,
in terms of both technologies (as seen in Sect. 13.2) and types of attacks (as
shown in Sect. 13.3).

The identification of vulnerabilities in web applications can be performed
following one of two orthogonal detection approaches: the negative (or vul-
nerability based) approach and the positive (or behavior based) approach.

In the negative approach, the analysis process first builds abstract mod-
els of known vulnerabilities (e.g., by encoding expert knowledge) and then
matches the models against web-based applications, to identify instances of
the modeled vulnerabilities. In the positive approach, the analysis process first
builds models of the “normal,” or expected, behavior of an application (e.g.,
using machine-learning techniques) and then uses these models to analyze the

13 Vulnerability Analysis of Web-Based Applications 379

application behavior to identify any abnormality that might be caused by a
security violation.

Regardless of whether a positive or negative detection approach is followed,
there are two fundamental analysis techniques that can be used to analyze the
security of web applications: static analysis and dynamic analysis.

Static analysis provides a set of pre-execution techniques for predicting
dynamic properties of the analyzed program. One of the main advantages of
static analysis is that it does not require the application to be deployed and
executed. Since static analysis can take into account all possible inputs to
the application by leveraging data abstraction techniques, it has the potential
to be sound, i.e., it will not produce any false negatives. In addition, static
analysis techniques have no impact on the performance of the actual appli-
cation because they are applied before execution. Unfortunately, a number
of fundamental static analysis problems, such as may alias and must alias,
are either undecidable or uncomputable. Consequently, the results obtained
via static analysis are usually only a safe and computable approximation of
actual application behavior. As a result, static analysis techniques usually are
not complete and suffer from false positives, i.e., these techniques often flag
as vulnerable parts of an application that do not contain flaws.

Dynamic analysis, on the other hand, consists of a series of checks to detect
vulnerabilities and prevent attacks at run-time. Since the analysis is done on a
“live” application, it is less prone to false positives. However, it can suffer from
false negatives, since only a subset of possible input values is usually processed
by the application and not all vulnerable execution paths are exercised.

In practice, hybrid approaches, which mix both static and dynamic tech-
niques, are frequently used to combine the strengths and minimize the limi-
tations of the two approaches. Since many of the approaches described here-
inafter are hybrid, in the context of this chapter, we will use the term static
techniques to signify that the detection of vulnerabilities/attacks is done based
on some information derived at pre-execution time and the term dynamic tech-
niques when the detection is done based on dynamically acquired data. We will
use the positive vs negative approach dichotomy as our main taxonomy when
describing current research in security analysis of web-based applications.

This section is structured as follows. Sects. 13.4.1 and 13.4.2 discuss nega-
tive and positive approaches, respectively. Each section is further divided into
subsections covering static and dynamic techniques. Sect. 13.4.3 summarizes
the challenges in the security analysis of web-based applications and proposes
directions for future work.

13.4.1 Negative Approaches

In the context of the vulnerability analysis of web-based applications, we
define as the negative approaches those approaches that use characteristics
of known security vulnerabilities and their underlying causes to find security
flaws in web-based applications. More specifically, known vulnerabilities are

380 M. Cova et al.

first modeled, often implicitly, and then applications are checked for instances
of such models. For example, one model for the SQL Injection vulnerability
in PHP applications can be defined as “untrusted user input containing SQL
commands is passed to an SQL database through a call to mysql query().”

The vast majority of negative approaches to web vulnerability analysis
are based on the assumption that web-specific vulnerabilities are the result of
insecure data flow in applications. That is, most models attempt to identify
when untrusted user input propagates to security-critical functions without
being properly checked and sanitized.

As a result, the analysis is often approached as a taint propagation prob-
lem. In taint-based analysis, data originated from the user input is marked
as tainted and its propagation throughout the program is traced (either stat-
ically or dynamically) to check whether it can reach security-critical program
points.

When taint propagation analysis is used, models of known vulnerabilities
are often built implicitly and are simply expressed in the form of the analysis
performed. For example, the models are often expressed by specifying the
following two classes of objects:

1. A set of possible sources of untrusted input (such as variables or function
calls).

2. A set of functions, often called sinks, whose input parameters have to be
checked for malicious values.

To track the flow of data from sources in (1) to sinks in (2), the type system
of the given language is extended with at least two new types: tainted and
untainted. In addition, the analysis has to provide a mechanism to represent
transitions from tainted to untainted, and vice versa. Usually, such transitions
are identified using a set of technique-specific heuristics. For example, tainted
data can become untainted if it is passed to some known sanitization routine.
However, modeling sanitization is a very complex task, and, therefore, some
approaches simply extend the language with additional type operations, such
as untaint() and require programmers to explicitly execute these operations
to untaint the data.

In the following two subsections, we explore in greater details how negative
approaches are applied, both statically and dynamically, to the vulnerability
analysis of web-based applications.

Static Techniques

All of the works described in this section use standard static analysis tech-
niques to identify vulnerabilities in web-based applications. Despite the fact
that many of the static analysis problems have been proven to be undecidable,
or at least uncomputable, this type of analysis is still an attractive approach
for a number of reasons. In particular, static analysis can be applied to ap-
plications before the deployment phase, and, unlike dynamic analysis, static

13 Vulnerability Analysis of Web-Based Applications 381

analysis usually does not require modification of the deployment environment,
which might introduce overhead and also pose a threat to the stability of the
application. Therefore, static analysis is especially suitable for the web ap-
plications domain, where the deployment of vulnerable applications or the
execution in an unstable environment can result in a substantial business
cost.

As a result, there is much recent work that explores the application of static
analysis techniques to the domain of web-based applications. The current focus
of the researchers in this field is mostly on the analysis of applications written
in PHP [10, 12, 13, 37] and Java [9, 21]. This phenomenon can be explained by
the growing popularity of both languages. For example, the popularity of PHP
has grown tremendously over the last five years, making PHP one of the most
commonly used languages on the Web. According to the Netcraft Survey [24],
about 21,000,000 sites were using PHP in March of 2006 compared to about
1,500,000 sites in March of 2000. In the monthly Security Space Reports [29],
PHP has constantly been rated as the most popular Apache module over the
last years. In the Programming Community Index report published monthly
by TIOBE Sofware [34], Java and PHP are consistently rated in the top five
most popular programming languages around the world.

A tool named WebSSARI [10] is one of the first works that applies taint
propagation analysis to finding security vulnerabilities in PHP. WebSSARI
targets three specific types of vulnerabilities: cross-site scripting, SQL injec-
tion, and general script injection. The tool uses flow-sensitive, intra-procedural
analysis based on a lattice model and typestate. In particular, the PHP lan-
guage is extended with two type-qualifiers, namely tainted and untainted,
and the tool keeps track of the type-state of variables. The tool uses three
user-provided files, called prelude files : a file with pre-conditions to all sensi-
tive functions (i.e., the sinks), a file with post-conditions for known sanitiza-
tion functions, and a file specifying all possible sources of untrusted input. In
order to untaint the tainted data, the data has to be processed by a saniti-
zation routine or cast to a safe type. When the tool determines that tainted
data reaches sensitive functions, it automatically inserts run-time guards, or
sanitization routines.

The WebSSARI tool is not publicly available and the chapter does not
provide enough implementation details to draw definitive conclusions about
the tool’s behavior. However, from the information available, one can deduce
that WebSSARI has at least the following weaknesses. First of all, the analysis
performed seems to be intra-procedural only. Secondly, to remain sound, all
dynamic variables, arrays, and other complex data structures, which are com-
monly used in scripting languages, are considered tainted. This should greatly
reduce the precision of the analysis. Also, WebSSARI provides only a limited
support for identifying and modeling sanitization routines: sanitization done
through the use of regular expressions is not supported.

A more recent work by Xie and Aiken [37] uses intra-block, intra-procedur-
al, and inter-procedural analysis to find SQL injection vulnerabilities in PHP

382 M. Cova et al.

code. This approach uses symbolic execution to model the effect of statements
inside the basic blocks of intra-procedural Control Flow Graphs (CFGs). The
resulting block summary is then used for intra-procedural analysis, where a
standard reachability analysis is used to obtain a function summary. Along
with other information, each block summary contains a set of locations that
were untainted in the given block. The block summaries are composed to
generate the function summary, which contains the pre- and post-conditions
of the function. The pre-conditions for the function contain a derived set of
memory locations that have to be sanitized before function invocation, while
the post-conditions contain the set of parameters and global variables that
are sanitized inside the function. To model the effects of sanitization routines,
the approach uses a programmer-provided set of possible sanitization routines,
considers certain forms of casting as a sanitization process, and, in addition, it
keeps a database of sanitizing regular expressions, whose effects are specified
by the programmer.

The approach proposed by Xie and Aiken has a number of advantages
when compared to WebSSARI. First of all, it is able to give a more precise
analysis due to the use of inter-procedural analysis. Secondly, their analysis
technique is able to derive pre-conditions for some functions automatically.
Also, the Xie and Aiken approach provides support for arrays, commonly
used data structures in PHP, in the presence of simple aliases. However, they
only simulate a subset of PHP constructs that they believe is relevant to
SQL injection vulnerabilities. In addition, there seems to be no support for
the object-oriented features of PHP, and the modeling of the effects of many
sanitization routines still depends on manual specification.

One of the most recent works on applying taint-propagation analysis for
security assessment of applications written in Java is the work by Livshits
and Lam [21]. They apply a scalable and precise points-to analysis to dis-
cover a number of web-specific vulnerabilities, such as SQL injection, cross-
site scripting, and HTTP response splitting. The proposed approach uses a
context-sensitive (but flow insensitive) Java points-to analysis based on Binary
Decision Diagrams (BDDs) developed by Whaley and Lam [36]. The analy-
sis is performed on the byte-code–level image of the program and a Program
Query Language (PQL) is used to describe the vulnerabilities to be identified.

The main problem with the Livshits and Lam’s approach is the fact that
each vulnerability that can be detected by their tool has to be manually
described in PQL. Therefore, previously unknown vulnerabilities cannot be
detected and the detection of known vulnerabilities is only as good as their
specification.

Even though static analysis has a number of desirable characteristics that
make it suitable for web vulnerability analysis, it also has a number of both
inherent and domain-specific challenges that have to be met to be able to ap-
ply it to real-world applications in an effective way. First of all, static analysis
heavily depends on language-specific parsers that are built based on a lan-
guage grammar. While this is not generally a problem for general-purpose

13 Vulnerability Analysis of Web-Based Applications 383

languages, such as Java and C, grammars for some scripting languages, like
PHP, might not be explicitly defined or might need some workarounds to be
able to generate valid parsers.

More importantly, many web applications are written in dynamic scripting
languages that facilitate the use of complex data structures, such as arrays and
hash structures using non-literal indices. Moreover, the problems associated
with alias analysis and the analysis of object-oriented code are exacerbated
in scripting languages, which provide support for dynamic typing, dynamic
code inclusion, arbitrary code evaluation (e.g., eval() in PHP), and dynamic
variable naming (e.g., $$ in PHP). Some of these challenges are described in
greater details in the recent research work of Jovanovic et al. who developed
a static analysis tool for PHP, called Pixy [12], and implemented new precise
alias analysis algorithms [13] targeting the specifics of the PHP language.

Other solutions and workarounds to these challenges include different tech-
niques, such as abstraction of language features or simplification of the analy-
sis, and result in different levels of precision of the analysis. For example, the
WebSSARI tool chooses to ignore all complex language structures by simply
considering them tainted. The tool proposed by Xie and Aiken models only a
subset of PHP language that is believed to be relevant to the targeted class of
vulnerabilities. Lam and Livshits, on the other hand, apply scalable points-
to analysis to the full Java language, but choose to abstract away from flow
sensitivity.

Precise evaluation of sanitization routines becomes even more difficult for
applications written in scripting languages. Dynamic languages features stim-
ulate programmers to extensively use regular expression and dynamic-type
casting to sanitize user data. Unfortunately, it is not possible to simply con-
sider the process of matching a regular expression against tainted data as a
form of sanitization, if the analysis has to be sound. To increase the precision
of the analysis, it is necessary to provide a more detailed characterization of
the filtering performed by the regular expression matching process.

One of the main drawbacks of static analysis in general is its suscepti-
bility to false positives caused by inevitable analysis imprecisions. Researches
only started exploring the benefits of applying traditional static analysis tech-
niques, such as symbolic execution and points-to analysis, to the domain of
web-based applications. However, the first efforts in this direction clearly show
that web-based applications have their domain-specific additional complexi-
ties, which require novel static analysis techniques.

Dynamic Techniques

The dynamic negative approach technique is also based on taint analysis.
As for the static case, untrusted sources, sensitive sinks, and the ways in
which tainting propagates need to be modeled. However, instead of running
the analysis on the source code of an application, either the interpreter or the

384 M. Cova et al.

program itself are first extended/instrumented to collect the right information
and then the tainted data is tracked and analyzed as the application executes.

Perl’s Taint mode [27] is one of the best-known example of dynamic taint
propagation mechanism. When the Perl interpreter is invoked with the -T
option, it makes sure that no data obtained from the outside environment
(such as user input, environment variables, calls to specific functions, etc.)
can be used in security critical functions (commands that invoke sub-shell,
modify files, etc.). Even though this mode can be considered too conservative
because it can taint data that might not be tainted in reality,1 it is a valuable
security protection against several of the attacks described in Sect. 13.3.

Unsurprisingly, approaches similar to Perl taint mode have been applied
to other languages as well. For example, Nguyen-Tuong et al. [25] propose
modification of the PHP interpreter to dynamically track tainted data in
PHP programs. Haldar et al. [8] apply a similar approach to the Java Virtual
Machine (JVM).

The approach followed by Nguyen-Tuong et al. modifies the standard PHP
interpreter to identify data originated from untrusted sources in order to pre-
vent command injection and cross-site scripting attacks. In the modified in-
terpreter, strings are tainted at the granularity of the single character and
tainting is propagated across assignments, compositions, and function calls.
Also, the source of taintedness, such as the parameters of a GET method and
the cookies associated with a request, is kept associated with each tainted
string. Such precision comes at a price, and even though the authors report
a low average overhead, the overhead of run-time taint tracking sometimes
reaches 77%. Besides the possible high overhead, the proposed solution has
the additional disadvantage that the only way to untaint a tainted string is to
explicitly call a newly defined untaint routine, which requires manual mod-
ification of legacy code. In addition, deciding when and where to untaint a
string is an error-prone activity that requires security expertise.

The approach proposed by Haldar et al. implements a taint propagation
framework for an arbitrary JVM by using Java bytecode instrumentation.
In the framework, system classes like java.lang.String and java.lang.-
StringBuffer are instrumented to propagate taintedness. This instrumen-
tation has to be done off-line because no modification of system classes is
allowed at run- or load-time by the JVM. All other classes are instrumented
at loading time. Tainted data can be untainted by passing the data to one
of the methods of the java.lang.String class that performs some kind of
checking or matching operations.

The dynamic approach to the taint propagation problem has some advan-
tages over static analysis. First of all, a modified interpreter can be transpar-
ently applied to all deployed applications. Even more important, no complex

1 For example, Perl considers any sub-expression of tainted expressions to be tainted
as well.

13 Vulnerability Analysis of Web-Based Applications 385

analysis framework for features such as alias analysis is required, because all
the required information is available as the result of program execution.

However, there are some inherent disadvantages of this approach as well.
As noted earlier, the analysis is only performed on executed paths and does
not give any guarantee about paths not covered during a given execution. This
is not a problem if the modified interpreter is used in production versions of
the application, but provides no guarantees of security if the dynamic analysis
framework is used in test versions only.

Another problem associated with the use of dynamic techniques is the
possible impact on application functionality. More precisely, dynamic checks
might result in the termination or blocking of a dangerous statement, which, in
turn, might have the side-effect of halting the application or blocking it in the
middle of a transaction. Also, any error in the modifications performed on the
interpreter or in the instrumentation code can have an impact on application
stability and might not be acceptable in some production systems.

More importantly, despite the fact that dynamic analysis has the potential
of being more precise, it can still suffer from both false positives and false
negatives. If taint propagation is done in an overly conservative way, safe
data can still be considered tainted and lead to a high false positive rate.
Imprecisions in the modeling of untainting operations, on the other hand, can
lead to false negatives. Unfortunately, in either case, the increased precision
comes at the price of increased overhead and worse run-time performance.

Summary

As we have shown, many known classes of web-specific vulnerabilities are
the result of improper or insufficient input validation and can be tackled as
a taint propagation problem. Taint propagation analysis can be done either
statically or dynamically, and, depending on the approach taken, it has both
strengths and weaknesses. In particular, if it is done statically, the precision
of the analysis highly depends on the ability of dealing with the complexities
of dynamic features. Precise evaluation of sanitization routines is especially
important, and none of the current approaches is able to deal with this aspect
effectively. If taint propagation analysis is done dynamically, on the other
hand, issues of analysis completeness, application stability, and performance
arise.

Regardless of the approach taken, taint propagation analysis depends on
the correct identification of the sets of untrusted sources and sensitive sinks.
Any error in identifying these sets can lead to incorrect results. Currently,
there is no known fully automated way to derive these sets, and at least some
sources and sinks have to be specified manually. The other challenge, which
is common to all taint propagation based approaches, is how to safely untaint
previously tainted data to decrease the number of false positives. In many
cases, this becomes a problem of precise sanitization identification, evaluation,
or modeling.

386 M. Cova et al.

However, taint propagation analysis is not the only possible negative ap-
proach to vulnerability analysis of web-based applications. For example, Mi-
namide [22] proposes another approach to static detection of cross-site script-
ing attacks in PHP applications. The PHP string analyzer developed by
Minamide approximates the output of PHP applications and constructs a
context-free grammar for the output language. This grammar is then stati-
cally checked against user-provided description of unsafe strings.

For example, a user can describe the cross-site scripting vulnerability as
the regular expression “.*<script>.*.” In this case, if the script tag is con-
tained in the output language of an application, the application will be marked
as vulnerable to cross-site scripting. As originally presented by Minamide, this
approach cannot be applied to check for cross-site scripting vulnerabilities in
real-world applications, because of its high false-positive rate. For example,
all applications that are designed to generate JavaScript code would be con-
sidered vulnerable. Since cross-site scripting is in the class of vulnerabilities
caused by improper handling of user input, some mechanism to identify user
input in program-produced output is needed.

In general, negative approaches rely on the knowledge of causes and mani-
festations of different types of vulnerabilities. Their main disadvantage is that
the analyzers developed for a particular set of vulnerabilities might not be
able to recognize previously unknown classes of vulnerabilities. Nonetheless,
currently, this is the most adopted approach because many vulnerabilities,
both known and newly discovered, are caused by the same type of problems,
such as insufficient input validation. As a result, the same analysis techniques
can be effectively applied to detect a wide range of vulnerabilities.

13.4.2 Positive Approaches

In the positive approaches to the identification of vulnerabilities in web-based
applications, the analysis is based on inferred or derived models of the “nor-
mal” application behavior. These models are then used, usually at run-time, to
verify if the dynamic application behavior conforms to the established mod-
els, in the assumption that (1) deviations are manifestations of attacks or
vulnerabilities and (2) attacks create an anomalous manifestation.

Models are built either statically, using some form of analysis done at pre-
execution time, or dynamically, as a result of analysis of dynamic application
behavior. Detection of attacks (or vulnerabilities) is almost always done at
run-time, and, thus, most approaches are not purely static or dynamic in
the traditional sense, but should be considered hybrid. In the context of this
section, we will classify the approaches as static if models are built prior to
program execution, and as dynamic otherwise.

Static Techniques

Static models of expected application behavior are usually derived either au-
tomatically, by means of traditional static analysis techniques, or analytically,

13 Vulnerability Analysis of Web-Based Applications 387

by deducing a set of rules that must hold during program execution. Usually,
models are not concerned with all aspects of application behavior, but instead
they focus on specific application properties that are relative to specific types
of attacks/vulnerabilities.

A good example of the static, positive approach is the work of Halfond
and Orso, whose tool is called AMNESIA [9]. AMNESIA is particularly con-
cerned with detecting and preventing SQL injection attacks for Java-based
applications. During the static analysis part, the tool builds a conservative
model of expected SQL queries. Then, at run-time, dynamically generated
queries are checked against the derived model to identify instances that vio-
late the intended structure of a query. AMNESIA uses the Java String Analysis
(JSA) [4], a static analysis technique, to build an automata-based model of
the set of legitimate strings that a program can produce at given points in the
code. AMNESIA also leverages the approach proposed by Gould et al. [7] to
statically check type correctness of dynamically generated SQL queries.

More precisely, Halfond and Orso define an SQL injection as the attack
in which the logic or semantics of a legitimate SQL statement is changed due
to malicious injection of new SQL keywords or operators. Thus, to detect
such attacks, the semantics of dynamically generated queries must be checked
against a derived model that represents the intended semantics of the query.

AMNESIA builds a Non-Deterministic Finite Automata (NDFA) model
of possible string expressions for each program point where SQL queries are
generated. The derived character-level NDFA is then simplified through string
abstraction. The resulting model represents the structure of the legitimate
SQL query and consists of SQL tokens intermixed with a place holder, which
is used to denote any string other than SQL tokens. To detect SQL injection
attacks at run-time, the web-based application is instrumented with calls to a
monitor that checks if the queries generated at run-time respect the abstract
query structure derived statically.

The approach proposed by Halfond and Orso is based on the following
two assumptions. First of all, they assume that the source code of the pro-
gram contains enough information to build models of legitimate queries. It
can be argued that this is usually the case with most applications. The sec-
ond assumption, stated also by the authors, is that the SQL injection attack
must violate the derived model in order to be detected. This is generally a
safe assumption given that models are able to distinguish between SQL to-
kens and other strings. However, AMNESIA will generate false positives if an
application allows user input to contain SQL keywords. The authors argue
that this does not represent a real problem because usually only database-
administration tools perform such queries.

The work by Su and Wassermann [31] is another example of positive ap-
proach that targets injection attacks, such as XSS, XPath injection, and shell
injection attacks. However, the current implementation, called SqlCheck is
designed to detect SQL injection attacks only. The approach works by track-
ing substrings from user input through program execution. The tracking is

388 M. Cova et al.

implemented by augmenting the string with special characters, which mark
the start and the end of each substring. Then, dynamically generated queries
are intercepted and checked by a modified SQL parser. Using the meta-
information provided by the substring markers, the parser is able to determine
if the query syntax is modified by the substring derived from user input, and,
in that case, it blocks the query.

Unlike in AMNESIA, in SqlCheck the model of application-specific legit-
imate SQL queries is built somewhat implicitly at pre-execution time and is
expressed in the form of an augmented grammar. The observation made by
the authors is that any non-malicious SQL query should have a node whose
descendants comprise the entire input substring. These syntactically correct
queries are modeled by introducing additional rules into the augmented SQL
grammar. For example, if characters ≪ and ≫ are used to mark the start
and the end of user input strings and the augmented SQL grammar has a pro-
duction rule value ::= ≪id≫, then an entire user input substring covered
by the subtree of the value node is considered non-malicious even if it con-
tains SQL keywords. Thus, SQL grammar productions are used to implicitly
specify which non-terminals are allowed to be roots of user input substrings.

The approach proposed by Su and Wassermann has one advantage over
other approaches that have been shown so far. Since it works with the output
language grammar (i.e., the SQL grammar), it does not require any analysis of
the application source code, and, therefore, the tool can be potentially applied
to applications written in different languages. However, the approach requires
that the application code marks user input with meta-characters, which have
to be inserted into the application either manually by the programmers or
automatically as a result of some form of static analysis. In addition, from
the published research, it is not clear whether or not the augmented SQL
grammar has to be redefined for each tested application based on knowledge
of the type of queries generated by that application.

One disadvantage that both the approaches described above have in com-
mon is the fact that detection of attacks or vulnerabilities can only be done at
run-time. As a result, any error in model construction can result in undesired
side effects, such as undetected application compromises or the blocking of
valid queries.

To the best of our knowledge, in the web applications domain, the posi-
tive approach so far has only been applied to the detection of SQL injection
attacks. However, this approach has the potential of being applied to a wider
range of attacks resulting from insecure input handling by an application,
such as cross-site scripting and interpreter injection attacks. More important,
unlike the taint propagation analysis approaches described in Sect. 13.4.1,
positive approaches have the potential for being used to detect attacks that
exploit logical errors in applications, such as attacks exploring insufficient
authentication, authorization, and session management mechanisms.

13 Vulnerability Analysis of Web-Based Applications 389

Dynamic Techniques

Positive approaches based on dynamic information build models of expected
behavior of an application by analyzing the application’s execution profiles
associated with attack-free input. In other words, the application’s behavior
is monitored during normal operation, and then the profiles are derived on
the basis of the collected meta-information such as log files or system call
traces. After the models have been established, the run-time behavior of an
application is compared to the established models, to identify discrepancies
that might represent evidence of malicious activity.

Traditionally, this approach has been applied to the area of learning-based
anomaly detection systems. An example of the application of this approach to
web-based application is represented by the work of Kruegel and Vigna [18]. In
this case, an anomaly detection system utilizes a number of statistical models
to identify anomalous events in a set of web requests that use parameters to
pass values to the server-side components of a web-based application.

The anomaly detection system operates on the URLs extracted from suc-
cessful web requests. The set of URLs is further partitioned into subsets cor-
responding to each component of the web-based application (e.g., each PHP
file). The anomaly detector processes each subset of queries independently,
associating models with each of the parameters used to pass input values to
a specific component of the web-based application.

The anomaly detection models are a set of procedures used to evaluate
a certain feature of a request parameter, and operate in one of two modes,
learning or detection. In the learning phase, models build a profile of the
“normal” characteristics of a given feature of a parameter (e.g., the normal
length of values for a parameter), setting a dynamic detection threshold for
the parameter. During the detection phase, models return an anomaly score
for each observed example of a parameter value. This is simply a probability
on the interval [0, 1] indicating how probable the observed value is in relation
to the established profile for that parameter (note that a score close to zero
indicates a highly anomalous value). For example, there are models that char-
acterize the normal length and the expected character distribution of string
parameters, models that derive the structure of path-like parameters, and
models that infer if a parameter takes only a value out of a limited set of
constants [19].

Since there are generally multiple models associated with each parameter
passed to a web application, a final anomaly score for an observed parameter
value during the detection phase is calculated as 1 minus the weighted sum of
the individual model scores. If the weighted anomaly score is greater than the
detection threshold determined during the learning phase for that parameter,
the anomaly detector considers the entire request anomalous and raises an
alert.

The advantage of this approach is that, in principle, it does not require
any human interaction. The system is able to automatically learn the profiles

390 M. Cova et al.

that describe the normal usage of an application and then it is able to de-
termine abnormal use of a server-side component. In addition, by following a
positive approach, this technique is able to detect both known and unknown
attacks. Finally, by operating on the requests sent to the server, this approach
is completely language independent and therefore can be applied, without
modification, to web-based application developed with any technology.

The main disadvantage of this approach is shared by all the anomaly detec-
tion systems. These systems rely on two assumptions, namely that an anomaly
is evidence of malicious behavior and that malicious behavior will generate
an anomaly. Neither assumption is always valid. When the first assumption is
violated, the system generates a false positive, i.e., a normal request is blocked
or identified as malicious. When the second assumption is violated, the system
generates a false negative, i.e., it fails to detect an attack.

Summary

Positive approaches have the advantage that, by specifying the normal, ex-
pected state of a web-based application, they can usually detect an attack
whether it is part of the threat model or not. On the other hand, the con-
cept of normality is difficult to define for certain classes of applications, and
the creation of models that correctly characterize the behavior of an applica-
tion still requires the use of ad hoc heuristics and manual work. Therefore,
web vulnerability analysis systems based on the positive approach are not as
popular as the ones based on the negative approach.

Another problem of these systems is that they are in general vulnerable to
mimicry attacks [35]. These are attacks where a vulnerability is exploited in a
way that makes its manifestation similar to what is considered to be normal
usage in order to avoid detection. To counter these attacks, the models should
be tightly “fit” to the application. Unfortunately, tighter models are more
prone to produce false positives, and determining the right detection threshold
to optimize detection and minimize errors still requires manual intervention
and substantial expertise.

Finally, all known positive approaches require some form of run-time mon-
itoring of the application behavior and, therefore, are likely to introduce some
form of overhead.

13.4.3 Challenges and Solutions

Web-based applications are complex systems, and while in the previous sec-
tions we have shown a number of approaches that attempt to make this class
of applications more secure, there are still a number of open problems, which
will likely be the focus of research in the next few years.

A first general consideration is that there is no approach or technique
that can be considered “the silver bullet,” under all conditions and cases. One

13 Vulnerability Analysis of Web-Based Applications 391

challenge is, thus, that of combining the strengths from the various techniques
and approaches that we have described so far.

Another general consideration is that there is already a corpus of work
on vulnerability analysis techniques for traditional applications that can be
extended to web-based applications. While some of the existing techniques
can be applied to the web domain with little effort, some characteristics of
web-based applications make the adaptation process difficult. For example,
web-based applications implement shared, persistent state in a number of
ways, such as cookies, back-end databases, etc. Modeling this state is not
trivial when applying “traditional” vulnerability analysis techniques that were
mostly developed for the analysis of structured languages such as C and C++.

In addition, some web-based applications have a complex interaction model
and are assembled as a composition of various, heterogeneous modules, writ-
ten in different languages. One challenge is thus to develop analysis techniques
that are able to take into account the interaction between all the different tech-
nologies used in a web-based application. Consider, e.g., a web-based applica-
tion, in which a module, written in PHP, stores a value obtained from a user
in a back-end database. This value is then retrieved by a module written in
Python and used, without any sanitization, to perform a sensitive operation.
In this case, the vulnerability analysis process should be able to analyze PHP,
Python, and SQL code to identify the path that can bring the user-defined
value to be used in a sensitive operation. Unfortunately, currently there are
no techniques that are able to perform this type of analysis.

Another group of challenges is specific to the different techniques and ap-
proaches. For example, in the case of static analysis, it is necessary to include
new techniques to perform more precise analysis in the context of dynamic lan-
guages. These new techniques should support object-oriented code, dynamic
features of languages (e.g., $$ in PHP), complex data structures, etc.

Another major challenge is represented by the correct modeling of saniti-
zation. So far, the only way to characterize sanitization in an application has
been through simple heuristics. For example, if tainted data is passed to string
manipulation functions or to functions that return an integer value, the data
is considered “safe.” This approach is too näıve and it might lead to attacks
that are able to exploit “blind spots” in the sanitization routines. Therefore,
it is important to provide techniques and tools to better model sanitization
operations and to assess whether a sanitization operation is appropriate for
the task at hand (e.g., the sanitization necessary to prevent SQL injection is
different from the sanitization required to avoid XSS attacks.)

Another set of challenges is represented by novel, web-specific attack tech-
niques. In fact, while vulnerabilities caused by improper input validation are
starting to be well known, well studied, and effectively detected, new vulnera-
bilities begin to surface. For example, attacks that tend to violate the intended
logic of a web application cannot be easily expressed in terms of tainting. Con-
sider, e.g., a web-based application that implements an e-commerce site. A
login process allows a registered user to access a catalog with links to sensitive

392 M. Cova et al.

documents. The developer assumed that the only way to access these docu-
ments is through the catalog page, which is presented to the user after the
login process. Unfortunately, there is no automatic mechanism that prevents
a de-registered user to simply provide the address of a sensitive document and
completely bypass the authentication procedure. In this case, the attacker has
not violated the logic of a web-application component. It has simply violated
the implicit workflow of the application. Modeling and protecting from this
types of attacks is still an open problem.

Finally, a set of challenges in the field is posed by the need to compare re-
sults between different approaches. Currently, there is no standard, accepted
dataset usable as base-line for evaluation. While there exists some effort to
build “standard” applications with known sets of vulnerabilities (e.g., Web-
Goat [26]), there is still no consensus inside the security community on which
applications to use for testing and how. As a consequence, every tool is eval-
uated on a different set of applications and a fair comparison of different
approaches is not possible.

As web-based applications will become the prevalent way to provide ser-
vices and distribute information on the Internet, the challenges described
above will have to be addressed to support the development of secure ap-
plications based on web technologies.

References

1. C. Anley. Advanced SQL Injection in SQL Server Applications. Technical
report, Next Generation Security Software, Ltd, 2002.

2. J. Bercegay. Double Choco Latte Vulnerabilities. http://www.gulftech.org/

?node=research&article_id=00066-04082005, April 2005.
3. M. Brown. FastCGI Specification. Technical report, Open Market, Inc., 1996.
4. A. Christensen, A. Møller, and M. Schwartzbach. Precise Analysis of String

Expressions. In Proceedings of the 10th International Static Analysis Symposium
(SAS’03), pp. 1–18, May 2003.

5. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFC 2817.

6. K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and Don’ts of Client Au-
thentication on the Web. In Proceedings of the USENIX Security Symposium,
Washington, DC, August 2001.

7. C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically Generated
Queries in Database Applications. In Proceedings of the 26th International Con-
ference of Software Engineering (ICSE’04), pages 645–654, September 2004.

8. V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation for Java.
In Proceedings of the 21st Annual Computer Security Applications Conference
(ACSAC’05), pages 303–311, December 2005.

9. W. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutraliz-
ing SQL-Injection Attacks. In Proceedings of the International Conference on
Automated Software Engineering (ASE’05), pp. 174–183, November 2005.

13 Vulnerability Analysis of Web-Based Applications 393

10. Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y. Kuo. Securing Web
Application Code by Static Analysis and Runtime Protection. In Proceedings
of the 12th International World Wide Web Conference (WWW’04), pp. 40–52,
May 2004.

11. N. Jovanovic. txtForum: Script Injection Vulnerability. http://www.seclab.

tuwien.ac.at/advisories/TUVSA-0603-004.txt, March 2006.
12. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for De-

tecting Web Application Vulnerabilities. In Proceedings of the IEEE Symposium
on Security and Privacy, May 2006.

13. N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias Analysis for Static Detec-
tion of Web Application Vulnerabilities. In Proceedings of the ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security (PLAS’06),
June 2006.

14. A. Klein. Cross Site Scripting Explained. Technical report, Sanctum Inc., 2002.
15. A. Klein. “Divide and Conquer”. HTTP Response Splitting, Web Cache Poi-

soning Attacks, and Related Topics. Technical report, Sanctum, Inc., 2004.
16. A. Klein. DOM Based Cross Site Scripting or XSS of the Third Kind. Technical

report, Web Application Security Consortium, 2005.
17. M. Koľsek. Session Fixation Vulnerability in Web-based Applications. Technical

report, ACROS Security, 2002.
18. C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks. In Proceed-

ings of the 10th ACM Conference on Computer and Communication Security
(CCS’03), pp. 251–261, October 2003.

19. C. Kruegel, G. Vigna, and W. Robertson. A Multi-model Approach to the
Detection of Web-based Attacks. Computer Networks, 48(5):717–738, August
2005.

20. C. Linhart, A. Klein, R. Heled, and S. Orrin. HTTP Request Smuggling. Tech-
nical report, Watchfire Corporation, 2005.

21. V. Livshits and M. Lam. Finding Security Vulnerabilities in Java Applications
with Static Analysis. In Proceedings of the 14th USENIX Security Symposium
(USENIX’05), pp. 271–286, August 2005.

22. Y. Minamide. Static Approximation of Dynamically Generated Web Pages. In
Proceedings of the 14th International World Wide Web Conference (WWW’05),
pp. 432–441, May 2005.

23. NCSA Software Development Group. The Common Gateway Interface. http:

//hoohoo.ncsa.uiuc.edu/cgi/.
24. Netcraft. PHP Usage Stats. http://www.php.net/usage.php, April 2006.
25. A. Nguyen-Tuong, S. Guarnieri, D. Greene, and D. Evans. Automatically Hard-

ening Web Applications Using Precise Tainting. In Proceedings of the 20th In-
ternational Information Security Conference (SEC’05), pp. 372–382, May 2005.

26. OWASP. WebGoat. http://wwwo.wasp.org/software/webgoat.html, 2006.
27. Perl. Perl security. http://perldoc.perl.org/perlsec.html.
28. rgod. PHP Advanced Transfer Manager v1.30 underlying system disclosure / re-

mote command execution / cross site scripting. http://retrogod.altervista.
org/phpatm130.html, 2005.

29. Security Space. Apache Module Report. http://www.securityspace.com/s_

survey/data/man.200603/apachemods.html, April 2006.
30. K. Spett. Blind SQL Injection. Technical report, SPI Dynamics, 2003.

394 M. Cova et al.

31. Z. Su and G. Wassermann. The Essence of Command Injection Attacks in Web
Applications. In Proceedings of the 33rd Annual Symposium on Principles of
Programming Languages (POPL’06), pp. 372–382, 2006.

32. Sun. JavaServer Pages. http://java.sun.com/products/jsp/.
33. Symantec Inc. Symantec Internet Security Threat Report: Vol. VIII. Technical

report, Symantec Inc., September 2005.
34. TIOBE Software. TIOBE Programming Community Index for April 2006. http:

//www.tiobe.com/index.htm?tiobe_index, April 2006.
35. D. Wagner and P. Soto. Mimicry Attacks on Host-Based Intrusion Detection

Systems. In Proceedings of the ACM Conference on Computer and Communi-
cations Security, pp. 255–264, Washington DC, November 2002.

36. J. Whaley and M. Lam. Cloning-Based Context-Sensitive Pointer Alias Analysis
Using Binary Decision Diagrams. In Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI’04), pp. 131–144, June 2004.

37. Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in Script-
ing Languages. In Proceedings of the 15th USENIX Security Symposium
(USENIX’06), August 2006.

14

Challenges of Testing Web Services
and Security in SOA Implementations

Abbie Barbir1, Chris Hobbs1, Elisa Bertino2, Frederick Hirsch3

and Lorenzo Martino4

1 Nortel, 3500 Carling Avenue, Ottawa, Canada {abbieb,cwlh}@nortel.com
2 Department of Computer Science and CERIAS, Purdue University, West
Lafayette, Indiana, USA bertino@cerias.purdue.edu
3 Nokia, 5 Wayside Rd, Burlington, Mass., USA frederick.hirsch@nokia.com
4 Department of Computer Technology and Cyber Center, Purdue University,
West Lafayette, Indiana, USA Imartino@purdue.edu

Abstract. The World Wide Web is evolving into a medium providing a wide array
of e-commerce, business-to-business, business-to-consumer, and other information-
based services. In Service Oriented Architecture (SOA) technology, Web Services are
emerging as the enabling technology that bridges decoupled systems across various
platforms, programming languages, and applications.

The benefits of Web Services and SOA come at the expense of introducing new
level of complexity to the environments where these services are deployed. This
complexity is compounded by the freedom to compose Web Services to address
requirements such as quality of service (QoS), availability, security, reliability, and
cost. The complexity of composing services compounds the task of securing, testing,
and managing the quality of the deployed services.

This chapter identifies the main security requirements for Web Services and de-
scribes how such security requirements are addressed by standards for Web Services
security recently developed or under development by various standardizations bod-
ies. Standards are reviewed according to a conceptual framework that groups them
by the main functionalities they provide.

Testing composite services in SOA environment is a discipline at an early stage
of study. The chapter provides a brief overview of testing challenges that face early
implementers of composite services in SOA taking into consideration Web Services
security. The importance of Web Services Management systems in Web Services de-
ployment is discussed. A step toward a fault model for Web Services is provided. The
chapter investigates the use of crash-only software development techniques for en-
hancing the availability of Web Services. The chapter discusses security mechanisms
from the point of view of interoperability of deployed services. The work discusses
the concepts and strategies as developed by the WS-I Basic Security profile for
enhancing the interoperability of secure Web Services.

396 A. Barbir et al.

14.1 Introduction

The use of Web Services in IT is becoming more relevant as the key tech-
nology for enabling the foundation of a loosely coupled, language-neutral,
platform-independent way to link applications across multiple organizations.
Despite the heterogeneity of the underlying platforms, Web Services enhance
interoperability and are thus able to support business applications composed
of chains of Web Services. Interoperability among heterogeneous systems is
a key promise of Web Service technology and therefore notions such as Web
Service composition and technologies like workflow systems are being investi-
gated and developed. Interoperability and security play an important role in
positioning Web Services as the industry choice for realizing Service Oriented
Architectures (SOAs) [27].

The use of Web Services in loosely coupled service environments enables
enterprises quickly to adapt to changing business demands. However, the ben-
efits of Web Services and SOA come at the expense of introducing new com-
plexity to the environments where these services are deployed (see, for in-
stance, [31] and [47]). In this new programming paradigm, services are used
as part of a business process. The solution implements a workflow composed
of many services that are combined to achieve the required business objective.
The complexity is compounded with the ability to compose services whereby
services can be interchangeable based on various factors such as QoS, avail-
ability, security, reliability, and cost. This complexity compounds the task of
securing, testing, and managing [35] the quality of the deployed services.

In the SOA environment, testing Web Services requires an end-to-end
approach including service integration points and the connected systems
themselves. The set of connected systems includes services, web applications,
security gateways, legacy systems, and back-end systems. Web Service(s)
consumers and providers should be able to measure the service levels of the
invoked services [35].

Service Level Agreement (SLA) is a term widely used in the industry to
express contracts between service consumers and service providers [35]. A Ser-
vice Level Agreement defines the quality of service, how quality is measured,
and what happens if the service quality is not met. In today’s environment,
SLAs are implicit and in most cases negotiated in advance. However, the
same concept can be extended and used as means to express the performance
of a Web Service throughout the whole integration chain. Consumers of Web
Services can generate tests against the exposed services and compare the re-
sults with the SLAs. Service providers can publish test suits for their services
that can be used by the consumers to test the compliance to the published
SLA. However, service management and diagnosis require the knowledge and
view of the end-to-end service. This constraint entails the sharing of man-
agement across the administrative domain in order to provide an end-to-end
view [14, 35].

14 Challenges of Testing Web Services 397

Web Service must protect its own resources against unauthorized access.
This in turn requires suitable means for identification, whereby the recipient
of a message must be able to identify the sender; authentication, whereby
the recipient of a message needs to verify the claimed identity of the sender;
authorization, whereby the recipient of a message applies access control poli-
cies to determine whether the sender has the right to use the required Web
Services and the protected resources.

In a Web Service environment it is, however, not enough to protect the
service providers, it is also important to protect the parties requiring services.
Because a key component of the Web Service architectures is represented
by the discovery of services, it is crucial to ensure that all information used
by parties to this purpose be authentic and correct. Also, we need approaches
by which a service provider can prove its identity to the party requiring the
service in order to avoid attacks, such as phishing attacks. Within this con-
text, the goal of securing Web Services can be decomposed into three broad
subsidiary goals:

1. Providing mechanisms and tools for securing the integrity and confiden-
tiality of messages as well as the guarantee of message delivery.

2. Ensuring that the service acts only on message requests that comply with
the policies associated with the services.

3. Ensuring that all information required by a party in order to discover and
use services is correct and authentic.

The overall goal of Web Services security standards is to make interop-
erable different security infrastructures and to reduce the cost of security
management. To achieve this goal, Web Services security standards have to
provide a common framework, and common protocols, for the exchange of se-
curity information between/among Web Services that, once implemented and
deployed,

• can accommodate such existing heterogeneous mechanisms, i.e. different
encryption algorithms, different access control mechanisms, etc.

• can be extended so as to cope with new requirements and/or available
security technologies.

Ensuring the integrity, confidentiality, and security of Web Services through
the application of a complete security model is essential for the wide adop-
tion of this technology in SOAs. Security should be a testable property of
a published service SLA. Testing Web Services for vulnerabilities is a dif-
ficult task [31] complicated by current trends in service collaboration that
includes federation. The OASIS WS-Security versions (WSS) 1.0 and 1.1
[12, 13, 14, 15, 16, 17, 18] use SOAP extensibility facilities to provide secu-
rity functions for SOAP messages. The WS-Security specifications secure the
SOAP foundation layer by leveraging core technologies such as XML Signature
[20], XML Encryption [21], XML Canonicalization [28], and SSL/TLS [30] as

398 A. Barbir et al.

well as standards for conveying key and other information, such as SAML [16]
and X509 [15] certificates. The WS-Security (WSS) specification provides a
flexible framework for securing SOAP messages. For this reason, it is diffi-
cult for various implementations of WS-Security to interoperate unless simi-
lar choices have been made. Lack of interoperability at the SOAP and SOAP
message security layer adds complexity for security testing of Web Services
implementations.

This work is organized as follows. Section 14.2 discusses Web Services se-
curity challenges. Section 14.3 develops a Web Services security standards
framework. Section 14.4 discusses the complexities of testing Web Services.
This section provides a brief overview of current testing strategies and dis-
cusses the role of Web Services middleware in real-life deployments. Addition-
ally, this section identifies Web Services interaction stake holders, their testing
perspectives, and their testing levels.

Section 14.5 addresses Web Services security interoperability as an en-
hancement for testability. The section discusses the Basic Security Profile
(BSP) usage scenarios, BSP strength of requirements, BSP conformance and
BSP testability. This section provides an example of BSP profiling and takes
a close look at BSP security considerations.

Section 14.6 considers strategies for testing Web Services security with a
focus on developing a Web Services security fault model. The section pro-
vides an overview of testing strategies for Web Services security that includes
general testability guidelines. A case study for securing an application is also
provided. Section 14.7 investigates the use of crash-only software for enhanc-
ing the availability of and reducing testing complexities for composite Web
Services. Section 14.8 provides research proposals and discusses open research
issues. Section 14.9 concludes the discussion of this work and provides guide-
lines for future research.

14.2 Web Services Security Challenges

The discussion in the previous sections highlights the difficulties of testing Web
Services. The complexities increase when security is taken into consideration,
especially when application security applied at the server is not enough. A
multilayer service and resource protection strategy is required, including the
application of security techniques for Web Services description, discovery, and
messaging.

The main features that make Web Services attractive to enterprises, such
as accessibility to data, dynamic application connections, platform indepen-
dence, and open run-time environment, are at odds with traditional security
approaches. Security can be a key inhibitor to the wide adoption of Web
Services [22]; there is need to develop a Web security vulnerabilities frame-
work reflecting the service deployment environment. Understanding these

14 Challenges of Testing Web Services 399

vulnerabilities would help developers choose the right testing tools to detect
faults in the services.

14.2.1 Web Services Threats

This section provides a brief description of the most common threats facing
the security of Web Services. For a more complete analysis of these challenges,
the reader is referred to [10], where Web Services threats and possible counter
measures are discussed in more detail.

1. Message alteration: In this threat, message information is altered by in-
serting, removing, or modifying information created by the originator of
the information and mistaken by the receiver for the originator’s intention.
This type of attack is easily performed due to the use of intermediaries
and transformation mechanisms in Web Services.

2. Confidentiality: This type of threat makes information within the message
visible to unauthorized participants.

3. Falsified messages: This threat occurs when an attacker constructs coun-
terfeit messages and sends them to a receiver who believes them to have
originated from a party other than the sender.

4. Man in the middle: The term “man in the middle” is applied to a wide
variety of attacks that have little in common except for their topology. In
our context, this type of attack occurs when a third party poses as the
other participant to the real sender and receiver in order to fool both par-
ticipants (e.g. the attacker is able to downgrade the level of cryptography
used to secure the message). Designers have to examine their developed
applications on a case-by-case basis for susceptibility to anything a third
party might do.

5. Principal spoofing: A message is sent which appears to be from another
principal (e.g., Alice sends a message which appears as if it is from Bob).

6. Forged claims: A message is sent in which the security claims are forged
in an effort to gain access to otherwise unauthorized information (e.g., a
security token which was not really issued by the specified authority).

7. Replay of message parts: A message is sent which includes portions of
another message in an effort to gain access to unauthorized information
or to cause the receiver to take some action (e.g., a security token from
another message is added). This technique can be applied in a wide variety
of situations. All designs must be carefully inspected from the perspective
of what could an attacker do by replaying messages or parts of messages.

8. Replay: A whole message is resent by an attacker.
9. Denial of service: This is a form of an amplifier attack where the attacker

does a small amount of work forcing the system under attack to do a
large amount of work. This can cause the attacked system to provide a
degraded service or even fail completely.

400 A. Barbir et al.

14.2.2 End-to-End Security Requirements for Web Services

For Web Services Security, the objective is to create an environment where
message-level transactions and business processes can be conducted securely
in an end-to-end fashion. The requirements for providing end-to-end security
for Web Services are as follows:

• Mutual authentication: Mutual authentication of a service provider and a
service invoker to verify their identities enables them to interact with con-
fidence. This also includes data origin authentication whereby the receiver
can be sure that the data came from the sender without modification.

• Authorization to access resources: Authorization mechanisms control in-
voker access to appropriate system resources, controlling access to systems
and their components. Authentication may be necessary to perform au-
thorization.

• Data integrity and confidentiality: Ensure that information has not been
modified during transmission and is only accessible by the intended parties.
Encryption technology and digital signature techniques can be used for this
purpose.

• End-to-end integrity and confidentiality of messages: Ensure the integrity
and confidentiality of messages even in the presence of intermediaries.

• Integrity of transactions and communications: Ensure that the business
process was done properly and the flow of operations was executed in a
correct manner.

• Audit records and mechanisms: Enable dispute resolution and system ver-
ification. Records are necessary to enable a resolution if a party to a trans-
action denies the occurrence of the transaction, or if other disputes arise;
also to trace user access, behavior, and to enable system integrity verifi-
cation.

• Distributed enforcement of security policy: Enable implementers to de-
fine a security policy and enforce it across various platforms with varying
privileges.

14.2.3 Role of Cryptography

Cryptography [10] can play an important role in mitigating some of the threats
to Web Services. For example, symmetric cryptography in the form of encryp-
tion can be used to provide confidentiality for messages. Asymmetric cryptog-
raphy, on the other hand, can be used to enable authentication, confidentiality,
and dispute resolution. This can be achieved through the appropriate use of
public and private keys. Here, it is assumed the original sender and the re-
ceiver (including intermediaries if they are on the trust path) have access to
the appropriate public keys through some mechanism. In this regard, dispute
resolution can be enabled when the sender encrypts a message using its private
key since it is harder for the sender to deny the sending of the message.

14 Challenges of Testing Web Services 401

Confidentiality can be achieved when the original sender encrypts a mes-
sage using the receiver public key, requiring the receiver private key for de-
cryption. In a typical deployment, asymmetric cryptography is used as a
mechanism for exchanging session keys to be subsequently used in symmetric
cryptography. This technique is more efficient since symmetric cryptography
is usually faster to execute than asymmetric cryptography.

Asymmetric cryptography can provide authentication. In this case the
sender digitally signs a message using its private key. The receiver then verifies
the signature and the authenticity of the sender certificate to confirm that the
sender is the party that actually sent the message.

Asymmetric cryptography can be used to provide message integrity whereby
a message is first digitally signed by the original requestor private key and
is then encrypted using the ultimate receiver public key. Upon receiving the
message, the receiver first decrypts the message with its corresponding pri-
vate key and then decrypts the message with the sender public key. Integrity
is verified when the process executes without any errors.

14.2.4 Transport Layer Security

This subsection addresses using Transport layer [10] to secure SOAP messages
that are sent from a sender to a receiver. This approach is limited when there
are intermediaries; since termination of transport layer security at an endpoint
may allow that intermediary to modify or examine messages. For HTTP-based
bindings of SOAP, TLS/SSL provides point-to-point security (Fig. 14.1). For
Web Services, however, there is a need for end-to-end security, which becomes
an important distinction when one or more intermediaries exist between the
original service requester and the service provider. In this case the use of
Transport layer TLS/SSL has significant limitations. Transport layer security
mechanisms may be used to secure messages between two adjacent SOAP
nodes and message layer security mechanisms should be used (possibly in
conjunction with TLS/SSL) in the presence of intermediaries or when data
origin authentication is required.

Receiver
Sender

SOAP
Intermediary

Transport Layer
Security Context

Transport Layer
Security Context

SOAP
Intermediary

SOAP

Message

SOAP

Message

SOAP

Message
Receiver

Sender
SOAP

Intermediary

Transport Layer
Security Context

Transport Layer
Security Context

SOAP
Intermediary

SOAP

Message

SOAP

Message

SOAP

Message

SOAP

Message

SOAP

Message

Fig. 14.1. Transport and message level Security

402 A. Barbir et al.

14.2.5 Message Level Security

The SOAP specifications [23, 24] do not specify how to deal with security-
related issues such as authentication, integrity, and confidentiality. However,
they provide an extensibility model that can be used to build extensions to
the original SOAP standard. The OASIS WS-Security versions (WSS) 1.0 and
1.1[12, 13, 14, 15, 16, 17, 18] use these extensibility facilities to add security
functions to SOAP. WS-Security specifications secure the SOAP foundation
layer by leveraging core technologies such as XML Signature[20], XML En-
cryption [21], XML Canonicalization [28], and SSL/TLS. The WS-Security
specification adds security to SOAP messages by specifying how the header
part of the message can carry security information in conjunction with rules
on how to apply security technologies.

The OASIS WSS 1.0 standard [12] provides the underlying foundation for
SOAP message level security. It defines mechanisms for identifying the origin
of a message and verifying tampering through the use of signatures. It provides
mechanisms for message confidentiality by ensuring that only the intended
recipient is able to see the message through the use of encryption. WSS 1.0
introduces a security header in a SOAP message and three key elements:

1. Tokens: SOAP messages can contain security tokens with authentication
information. The standard defines Username tokens, X.509 Tokens, and
SAML tokens, among others. These tokens can be part of security headers
and can vouch for security claims to a recipient.

2. Signature elements: Security headers can contain Signature elements that
contain an XML Signature used to sign any part of the message. The
recipient can use the signature to verify that the request of the sender has
not been changed and that the message really originated from the sender.

3. Encryption elements: Some parts of the SOAP message can be encrypted
to protect sensitive information from unauthorized entities.

WS-Security defines a security header for SOAP messages as a mechanism
for conveying security information with and about a SOAP message. This
header is, by design, extensible to support many types of security informa-
tion. The security header may contain security tokens, references to security
tokens found elsewhere, timestamps, nonce, signatures, encrypted keys, and
encrypted data. Each security header is targeted to a specific SOAP actor. A
SOAP message may contain multiple security headers; however, each must be
targeted to a different SOAP actor. Each security header may contain mul-
tiple security tokens, security token references, nonce, signatures, encrypted
keys, and encrypted data; however, the BSP recommends that there may be
at most one timestamp in a message.

The WS-Security standard describes the processing rules for using and
processing XML Signature [20] and XML Encryption [21] in the context of a
SOAP message; however, these rules do not apply to using these standards
directly in application data. These WS-Security rules must be followed when

14 Challenges of Testing Web Services 403

using any type of security token. The specification does not dictate if and
how claim confirmation must be done; however, it does define how signatures
may be used and associated with security tokens (by referencing the security
tokens from the signature) as a form of claim confirmation.

WS-Security 1.1 enhances WSS 1.0 with additional mechanisms to con-
vey token information (e.g., sending Thumbprint of an X.509 certificate, or
a SHA1 hash of an Encrypted key). WSS1.1 also introduces the concept of
SignatureConfirmation that enables a communication sender to confirm that
the received message was generated in response to a message it initiated in
its unaltered form. In this technique, the recipient sends back the signature
values received from sender in SignatureConfirmation element. This technique
helps to prevent certain forms of reply and message alteration attacks. WS-
Security 1.1 has become an OASIS standard as of February 1, 2006. WSS1.1
also introduces a mechanism to encrypt SOAP headers.

WS-Security provides mechanisms to send security tokens as part of a
message, message integrity, and message confidentiality. Developers can use
the specification in conjunction with other Web Service extensions and higher-
level application specific protocols to accommodate a wide variety of security
models and security technologies. It does not specify how a security context
or authentication mechanisms are established. Furthermore, key derivation,
advertisement and exchange of security policy, trust establishment, and non-
repudiation are out of scope of the specification.

14.3 Web Services Security Standard Framework

In this section we present first the different notions of standards. We then
present the conceptual framework for Web Services security standards, and,
for each level of this framework, we survey existing and proposed standards,
their specific purpose, and their current status.

14.3.1 The Concept of Standard

The concept of “standard” covers different notions, ranging from a public
specification issued by a set of companies, to a de jure standard issued by a
recognized standardization body. These different notions can provide to the
potential users useful indications about the maturity, the stability, and the
level of endorsement of a given standard. A de facto standard is a technology
that is used by a vast majority of the users of a function. Such function
may, e.g., be provided in a product from a single supplier that dominates the
market; or it may be a patented technology that is used in a range of products
under license. A de facto standard may be endorsed by a standardization
initiative, and eventually become a consortium recommendation, or a de jure
standard. The relevant requirements are that it is widely used, meets the needs
for functionality, and supports interoperability.

404 A. Barbir et al.

A de jure standard is usually defined by entities with a legal status in inter-
national or national law such the International Organization for Standardiza-
tion (ISO). Consortium recommendations on the other hand are a technology
agreed on and recommended by groups of companies in order to fulfill some
functionality. The Organization for the Advancement of Structured Informa-
tion Standards (OASIS), the World Wide Web Consortium (W3C), and the
Internet Engineering Task Force (IETF) are examples of examples of such
consortia.

De facto standards, eventually promoted to the de jure standard by a sub-
sequent endorsement by a standardization body, offer a higher guarantee of
support for interoperability. Conversely, de jure standards or consortia recom-
mendations do not guarantee per se that a standard will be widely endorsed
nor the market availability of really interoperable implementations by mul-
tiple vendors. Moreover, the definition of a standard and its issuance by a
standardization body or by a consortium is a long-lasting process, subject to
formalized organizational procedures.

14.3.2 Framework for Web Services Security Standards

Web Services security standards address a variety of aspects, ranging from the
message-level security to the identity management. In order to provide a struc-
tured and engineered approach to the development of the standards, an over-
all conceptual reference framework was needed. Such a reference framework is
crucial in organizing the standards according to layers and in promoting the
reuse of already developed specification.

XML Encryption/Signature

IPSec

SSL/TLS

Security Management Identity ManagementSecurity Management Identity Management

Message Security Reliable MessagingMessage Security Reliable Messaging

SOAP FoundationSOAP Foundation

XML SecurityXML Security

Transport Level SecurityTransport Level Security

Network Level SecurityNetwork Level Security

Policy & Policy &
AccessAccess
ControlControl

XML Encryption/Signature

IPSec

SSL/TLS

Security Management Identity ManagementSecurity Management Identity Management

Message Security Reliable MessagingMessage Security Reliable Messaging

SOAP FoundationSOAP Foundation

XML SecurityXML Security

Transport Level SecurityTransport Level Security

Network Level SecurityNetwork Level Security

Policy & Policy &
AccessAccess
ControlControl

Fig. 14.2. Refined classification of standards

14 Challenges of Testing Web Services 405

In this work, we adopt the following classification, as shown by Fig. 14.2.
This classification has been adopted in order to take into account in the dis-
cussion the standards below the SOAP layer and most importantly, to group
the standards by their main intended purpose rather than adopting a “stack”
view that emphasizes mainly how each specification is built on top of the
other ones. In particular, we deemed useful to separate message-level security
specifications (the two groups labeled Message Security and Reliable Messag-
ing) from the specifications addressing Policy and Access Control, Security
Management, and Identity Management issues.

14.4 Complexities of Testing Web Services

Currently, Web Services are generally managed using tools supplied by plat-
form vendors [34]. This makes testing a vendor-dependent activity. Service
management includes configuration, accounting, QoS, policy and fault identi-
fication, containment, and repair. Passive or active testing mechanisms are
widely used as tools for fault detection. Active testing techniques require
the generation and the application of test cases in order to detect faults
[31, 32, 33, 34, 35]. Passive testing techniques use observers to track the in-
teraction between the entities being tested. Observers can be inserted directly
on-line in the data flow or can be off-line and with access to log files.

Current proposed Web Services strategies are either based on active testing
techniques [34] or require Web Services to participate in their management
through the support of a management interface to active testers [34]. These
solutions assume that a Web Service will participate in its management by
providing specific interfaces that are based on active testers. Requiring Web
Services to provide their own management interfaces adds complexity to Web
Services architecture and may impact performance. In addition, there are
security risks associated with these interfaces.

14.4.1 Brief Overview of Current Testing Strategies

The advent of Web Services and their role in realizing SOA are changing
the Internet to a platform of application collaboration and integration. This
will change the traditional design, build, test, launch, and retire software
life cycle. The change will be more profound once companies start to realize
the importance of orchestrating loosely coupled services into coarse-grained
business services as a way of quickly developing business solutions.

As enterprises adopt SOA principles, the traditional test after development
approach to software testing will no longer work. Instead, software projects
in enterprises will be based on agile approaches [48]. Accordingly, software
development will require developers to work closely with their clients to iden-
tify their needs. Developers will produce code that is tested and evaluated
by the customers and the process is repeated until the project is done. This

406 A. Barbir et al.

approach requires a change in the way test code is developed and will result
in developing the test code as part of the software development process [48].

In the Web Services world, dynamic binding allows developers to define
service centric systems as a workflow of invocations to abstract interfaces.
The interfaces are then bound to concrete services before or during workflow
execution. Testing techniques that require the pre-identification of system
components cannot be used to test these workflows [47]. The ability to use
dynamic bindings in a workflow raises the need to test a composite service
partner link for all possible endpoints [47]. The problem can be very com-
plex since the endpoint can be dynamically generated or unknown at testing
time [47].

Currently, Web Services testing is a discipline at its early stages of study
by the academic and industrial communities [38]. Some approaches in the
R&D community [42, 43] have suggested the possibility of augmenting the
functionality of a Universal Description, Discovery and Integration (UDDI)
service broker with logic to permit a testing step before a service is regis-
tered. The aim of the testing step is to ensure that the logic of the regis-
tered service is error free. This approach focuses on requiring Web Services
to include well-defined test suites that can be run by the enhanced UDDI,
or the inclusion of Graph Transformation Rules that allow the automatic
derivation of meaningful test cases that can be used to evaluate the behav-
ior of the service when invoked. This approach require that Web Services
providers implement interfaces that increase the service testability by bringing
the service into a known state from which a specified sequence of tests can be
performed.

A modification of this approach is presented in [38]. In their work, the
authors propose a UDDI extension mechanism to verify that a Web Service can
correctly cooperate with other services. This is done by checking that a correct
sequence of invocations to the service results in a correct interaction of the
service with services from other providers. The proposed framework extends
the UDDI registry role from a passive service directory to an accredited testing
entity that performs service validation before registering a service.

Mei et al. in [46] propose a framework to automate the testing process
of Web Services. This framework is designed to generate test data according
to the description of Web Services in an extended version of Web Services
Description Language (WSDL). The work extends WSDL with contract in-
formation, including pre-conditions and post-conditions. From the basic in-
formation and the contract information, test data for a Web Service can be
generated. Relational expressions appearing in the pre-conditions are used to
partition the range of each input parameter into several sub-ranges. For each
parameter, the technique randomly selects a value from a sub-range together
with the boundary values between sub-ranges. The different combinations of
the values for the parameters become the initial generated test data which is
used for the automatic execution of the Web Service under test. For composed
Web Services, the framework can intercept and record the inputs from each

14 Challenges of Testing Web Services 407

Web Service to be used for future regression test. The framework specifies two
ways to acquire test data. The first way is to use a test data generator; the sec-
ond way is to record the runtime information while executing an application
that invokes the service under test.

Benharref et al. [34] proposes architecture based on passive testing tech-
niques (using observers) for detecting faults in Web Services. The observers
are designed as Web Services that makes them platform independent. Their
architecture enables the testing of deployed Web Services by independent third
parties.

Tsai et al. [38] proposes an XML-based, object-oriented framework to test
Web Services. The framework supports test execution and test scenario man-
agement, consisting of a test master and a test engine. The test master enables
developers to identify test scenarios, perform dependency, completeness and
consistency analysis. The test engine interacts with the Web Services under
test and provides tracing information. XML perturbation testing techniques,
such as discussed in [43, 44, 45], can also be conducted in the framework of
Tsai as given in [38].

Testing strategies are even more complex when Web Services security is
also taken into consideration. Security challenges when testing Web Services
and the need for interoperability at the SOAP message security level are
addressed in a subsequent section.

14.4.2 Web Services Middleware

Web Services Middleware [37], also known as Web Services Management
(WSM), is a distributed infrastructure that acts like enforcement points. WSM
can be either a gateway that handles traffic for multiple Web Services or agents
co-resident on systems running a given Web Service.

The presence of the WSM infrastructure [37] is often transparent to a given
Web Service and to any software invoking that service. In actual deployment
scenarios, a WSM would appear like a standard service consumer to a Web
Service and a Web Service to the consuming application. The WSM uses
standard Web Services technology to communicate with the Web Service and
the software consuming that service.

WSM infrastructure addresses key areas that are related to Web Services;
in particular, security, system management, and service virtualization. Inter-
operability of Web Services at the WSDL, SOAP, and SOAP message–level
security can also be addressed in the WSM.

Figure 14.3 provides an overview of Web Services Management frame-
work’s functional components. Components can communicate with each other.
For clarity, the communication lines are omitted from Fig. 14.3. Not all com-
ponents need to be present in WSM infrastructure. The following components
are included in Fig. 14.3:

• Access control component enforces access control policies that may include
the capability to authenticate and authorize Web Services’ clients.

408 A. Barbir et al.

Life Cycle Management

Service Provisioning

Security

Event Management

Monitoring

Audit/Logging

Access Control

Mediation

W
O
R
K

F
L
O
W

V
I
R
T
U
A
I
Z
A
T
I
O
N

Interoperability

Tools

Life Cycle Management

Service Provisioning

Security

Event Management

Monitoring

Audit/Logging

Access Control

Mediation

W
O
R
K

F
L
O
W

V
I
R
T
U
A
I
Z
A
T
I
O
N

Interoperability

Tools

Fig. 14.3. WSM architecture

• Audit/logging logs requests, responses, various events, and session infor-
mation.

• Event management handles events that are related to Web Services. For
example, alerts can be sent based on pre-set conditions.

• Interoperability component is responsible for insuring interoperability that
may include many layers such as the WSDL, SOAP, and SOAP message
security layer.

• Life cycle manger manages the development, deployment, registering, and
testing stages of services.

• Mediation component enables Web Services federation through the en-
forcement of federation policies.

• Monitoring component monitors events from all deployed Web Services.
• Security component is a Policy Enforcement Point (PEP). It addresses

security-related issues across services that may include secure communica-
tion channels, authentication, authorization, privacy, trust, integrity, con-
fidentiality, federation, delegation, and auditing.

• Workflow manager creates, tests, and manages the logical flows of Web
Services.

• Service provisioning defines system behavior policies and the interactions
of the Web Services. It can be used to specify how Web Services clients
can subscribe to a given service. It can also be used to specify the rules
for client authentication and authorization before they can access Web
Services.

14 Challenges of Testing Web Services 409

• Virtualization component creates and manages virtual endpoints for Web
Services. These endpoints can be dynamically associated with physical
endpoints to manage fail-over, provide load balancing, and concurrently
manage multiple versions or invocations of a Web Service.

The tools are presented as separate components to emphasize the need not
to be locked into vendor-specific tool set that can lead to limited testing func-
tionality of the WSM infrastructure. Selecting the right tools is critical for the
task of testing Web Services. It is important to note that Web Services impose
specialized testing challenges for test tools. These tools need to be able to em-
ulate realistic usage scenarios. They should enable developers to create the
ability to rapidly test Web Services for functionality, performance, reliability,
scalability, and security. Since service re-use and service availability are essen-
tial to achieving robust SOA implementations, automated regression testing
is necessary in order to guarantee secure, reliable, and complaint services.

The use of an agile software development methodology requires the testing
process to be capable of detecting errors early in the development cycle. This
requires the flexibility to address known usage scenarios as well as unantici-
pated use cases. Most errors are caused when a system component is used in
an unexpected manner. Improperly tested code, executed in a way that the
developer did not intend, is often the primary culprit for security vulnerability.

The WSM framework allows developers to perform fault management,
configuration, accounting, performance, and security aspects of service man-
agement. Fault management includes fault detection, localization, and repair.
Passive or active testing techniques can be used for fault detection. Active
testing is based on the generation and the application of specific test cases
while passive testers just observe the interaction between a tested system and
its clients. The introduction of WSM into a corporation’s infrastructure al-
lows developers to concentrate on developing the services while letting the
WSM handle non-application, context-specific security needs, manageability,
and other aspects of the service. Developers need to note that Web Services’
gateway solutions usually do not have access to application context. Devel-
opers still need to perform tests that check the content of XML messages
since attackers can embed malicious content in the XML documents that pass
straight through the WSM software to the service interface of the application.

The use of a WSM framework allows practical implementations of Web
Services where providers can develop Web Services Service Level Agreements
(WSLAs) that the clients can use as contracts when invoking the services. In
traditional terminology, SLAs represent a formal contract between a service
provider and a client guaranteeing quantifiable network performance at de-
fined levels. These types of SLAs are network centric and generally deal with
packet flows across a network. At the Web Services level, a WSLA is more
concerned with message flows that span the end-to-end business transaction.
These are both depicted in Fig. 14.4. WSLAs can be used to provide QoS
that is based on the contract they have agreed upon when they subscribed

410 A. Barbir et al.

Legacy Systems

WSM Back End
Systems

Legacy Systems

Back End
Systems

Provider A

Provider B

Client

SLA

Network

Packets

Message

Web Service

Legacy Systems

WSM Back End
Systems

Legacy Systems

Back End
Systems

Provider A

Provider B

Client

SLA

Network

Packets

Message

Web Service

Fig. 14.4. Client’s view of SLA testing for Web Services

to services. Clients can develop testing strategies that stress the WSLA to
ensure that the service provider has met the contracted QoS commitment.

Stress testing WSLA requires interoperability of the Web Services at the
WSDL, UDDI, SOAP, and SOAP message–level security. The Basic Pro-
file (BP) [11] from the Web Services Interoperability Organization (WS-I)
provides a profile for enhancing interoperability at the SOAP level. In addi-
tion, WS-I has developed the Basic Security Profile (BSP) [11] for enhancing
interoperability at the SOAP message–level security. In a subsequent section,
we will take a closer look at the BSP.

14.4.3 Stake Holders Testing Perspectives and Levels

Many players can get involved when a Web Services consumer invokes a Web
Service. The stakeholders are the end-user or client, service developer, service
provider, service integrator, and service broker (certifier) [47]. Testing scope,
strategies, techniques, and perspective will vary based on the stakeholder.
Each stakeholder must deal with different requirements and issues [47].

The client or end-user expects any application to perform in a satisfactory
manner. An important aim of the service provider is to provide reliable ser-
vices; the service provider will focus on functional testing in order to ensure
the minimum number of failures. The service provider cannot anticipate the
details of how the service will be combined with all other services. Hence, al-
though the service developer can perform some non-functional testing of the
developed services, these tests are limited since the service developer lacks

14 Challenges of Testing Web Services 411

exposure to the infrastructure of the end-to-end message flow. In general,
the service developer will focus on performing service functional testing that
can be based on common techniques that are used in component or subsystem
testing [47]. The provider will need to perform tests on the WSDL, UDDI, and
SOAP layers. Tests based on mutation strategies [44, 45, 46, 47] are important
for the service developer in order to detect faults. The developer will need to
perform regression testing if any of the components of the service change. The
developer may need to provide an interface to the service to allow the service
provider, integrator, or certifier to test the service in an SLA scenario.

The main focus of the service provider is to ensure that the service meets
the claims as stated by the service developer. The aim is to be sure it can
meet the requirements of a WSLA. The service provider can use the same
testing techniques as the service developer. However, load testing the ser-
vice may also be an option in order to gain confidence in its WSLA con-
formance. From the service provider point of view, non-functional testing
of the service has limited value since it does not include the end customer
infrastructure.

The role of service integrator is to test its services that can be used in a
composite fashion by consumers in order to ensure that the original design
(functional and nonfunctional) objectives are met at invocation time [47]. Dy-
namic binding adds complexity to the service integrator testing scope, strate-
gies, and capabilities. At runtime, dynamic binding adds uncertainty since the
bound service can be one of many possible services. From the point of view
of a service workflow, the service integrator has no control over the service in
use, since it can change over its deployed lifetime. To increase confidence in
the testing process, the service integrator will need to invoke the service in
order to gain insight on how it will behave in the real world. Testing from this
perspective will result in additional costs to the service integrator. The use of
service emulators and stubs can reduce this cost, but do not fully replace the
need for the actual invocation of the services under test. The service integra-
tor may invoke more sophisticated test generation strategies. Pre-conditions,
post-conditions, and genetic algorithm testing ([43, 44, 45, 46, 47]) can be used
to create test oracles. Stress testing WSLA (at least with focus on the infras-
tructure components or sub-systems that the integrator can control) should
be performed in order to get better understanding of whether the service will
meet the QoS requirements of the contract.

The service certifier can be used by the service developer, provider, or
integrator to help test and find faults. The service certifier can also be the
service broker. The service certifier can play an important role in reducing
the number of players involved in testing a service and as a result can reduce
the overall cost of testing. However, the service certifier still lacks visibility of
how the service will be composed with other services and lacks access to the
infrastructure of the end-to-end message flow. The service certifier may invoke
more sophisticated test generation strategies on the service. Pre-conditions,
post-conditions, and genetic algorithm [47] testing can be used to create test

412 A. Barbir et al.

oracles for a given service. Due to dynamic binding and the lack of visibility
of network and infrastructure factors that can affect the performance of a
service, the service certifier may not be able to guarantee the QoS claims of
a WSLA.

14.5 Interoperability as an Enhancement for Testability

The framework for security standard development postulates a layered ap-
proach, such that every upper layer standard can re-use and extend the spec-
ification of lower-layer standards. However, the specifications of the standard
at a given layer (e.g., WS-Policy) are sometimes developed by a standardiza-
tion body different from that specifying the standard at the other layer (e.g.,
SAML). Thus, the two involved standard specifications are not always syn-
chronized. Such situation requires an activity of verification and alignment of
the specifications, which involves further iterations within each standardiza-
tion body.

Due to the role played by SOAP messages and by SOAP message secu-
rity, interoperability of different WS-Security implementation is crucial. For
this reason, WS-I has developed the Basic Security Profile (BSP) [11] to pro-
vide clarifications and constraints in order to enhance the interoperability
of WS-Security implementations. The BSP extends the profiles created by
the WS-I SOAP Basic Profile (BP) [11] by adding interoperability guidelines
for security. BSP 1.0 profiles WSS 1.0 and is available on the WS-I pub-
lic site. BSP 1.1 profiles WSS 1.1 and should be available to the public in
the near future. In this chapter, we use the term BSP to mean both BSP
1.0 and 1.1

SOAP messages are composed of XML elements. Using WS-Security tech-
niques, these elements may be signed, encrypted, or signed and encrypted.
The elements can be referenced from other elements. Each element within a
SOAP message may be processed by an intermediary that can add more data
and sign and encrypt the incremental data and/or the combined data. For
example, in an order processing chain of events, one intermediary can assign
an order number and sign the associated element. Another intermediary can
check credit worthiness of the consumer and either signs only the credit data
or the whole order data, and so forth.

14.5.1 BSP Usage Scenarios

The BSP adds security to the following three basic Message Exchange Patterns
(MEPs) that were adapted from the scenarios defined for the Basic Profile [11]:

1. One-way: A SOAP message is sent, potentially through intermediaries, to
a SOAP receiver. No response message is returned (Fig. 14.5).

14 Challenges of Testing Web Services 413

SOAP//HTTP
Sender ReceiverSOAP//HTTP
Sender Receiver

Fig. 14.5. One-way SOAP message

2. Synchronous request/response: A SOAP message (the request) is sent, po-
tentially through intermediaries, to an ultimate SOAP receiver. A SOAP
message (the response) is sent by the request’s ultimate SOAP receiver
through the reverse path followed by the request to the request’s initial
SOAP sender (Fig. 14.6).

3. Basic callback: A SOAP message (the request) is sent, potentially through
intermediaries, to an ultimate SOAP receiver, and an acknowledgment
message is returned in the manner of synchronous request/response. The
request contains information that indicates an endpoint for a SOAP node,
where the response should be sent. The request’s ultimate SOAP receiver
sends the response to that SOAP node, which returns an acknowledgment
message in the manner of synchronous request/response (Fig. 14.7).

14.5.2 BSP Strength of Requirements

The BSP focuses on improving interoperability by strengthening requirements
when possible and constraining flexibility and extensibility when appropriate.
The BSP limits the set of common functionality that vendors must implement
and thus enhances the chances for interoperability. This in return reduces the
complexities for the testing of Web Services security.

The guiding principles enumerated in the BSP declare that there is no
guarantee interoperability, that the profile should “do no harm,” that it makes
testable statements when possible, and focus on interoperability. The BSP
committee worked so that enhancing interoperability does not create new
security threats.

SOAP//HTTP

SOAP//HTTP

Sender Receiver
SOAP//HTTP

SOAP//HTTP

Sender Receiver

Fig. 14.6. Synchronous request/response

414 A. Barbir et al.

SOAP//HTTP Request: Initial

SOAP//HTTP Request: Final

SOAP//HTTP Response: Ack

SOAP//HTTP Response: Ack

Sender Receiver

SOAP//HTTP Request: Initial

SOAP//HTTP Request: Final

SOAP//HTTP Response: Ack

SOAP//HTTP Response: Ack

Sender Receiver

Fig. 14.7. Basic callback

It is not the intent of the profile to define security best practices. However,
when multiple options exist, the profile considers known security weaknesses
and makes choices that reduce the risks and reduces choice thus enhancing
interoperability. The Profile speaks to interoperability at the Web Services
layer only; it assumes that interoperability of lower-layer protocols (e.g., TCP,
HTTP) and technologies (e.g., encryption and signature algorithms) are ad-
equate and well understood. The Basic Security Profile restates selected re-
quirements from the WS-Security Errata rather than including the entire Er-
rata by reference, preferring interoperability over strict conformance.

The profile includes requirement statements about two kinds of artifacts:
SECURE ENVELOPE and SECURE MESSAGE. A SECURE ENVELOPE
is a SOAP envelope that has been subjected to integrity and/or confiden-
tiality protection. A SECURE MESSAGE expands the scope of the SE-
CURE ENVELOPE to include protocol elements transmitted with the
SECURE ENVELOPE that have been subjected to integrity and/or confi-
dentiality protection (an example is SOAP messages with attachments).

14.5.3 BSP Conformance

In order to conform to the BSP, any artifact that contains a construct that
is addressed in the profile must conform to any statements that constrain its
use. Conformant receivers are not required to accept all possible conformant
messages. Conformance applies to deployed instances of services. Since major
portions of the BSP may or may not apply in certain circumstances, individual
URIs may be used to indicate conformance to parts of the BSP including the
core profile or additional sections of the BSP for Username token, X.509 token,
and SOAP messages with attachments.

The BSP includes statements that are interoperability requirements as
well as statements that are security considerations. The normative require-
ment statements are identified by numbers prefixed with the letter ‘R’, e.g.,
Raaaa where aaaa is the statement number. These statements contain one
requirement level keyword (i.e., “MUST”) and one conformance target. Ex-
amples of BSP conformance targets include the following:

SECURE ENVELOPE: A SOAP envelope that contains sub-elements
that have been subjected to integrity and/or confidentiality protection.

14 Challenges of Testing Web Services 415

A message is considered conformant when all of its contained artifacts are
conformant with all statements in the BSP that are related to them. Use
of artifacts for which there are no statements in the Basic Security Profile
does not affect conformance.

SECURE MESSAGE: Protocol elements that have WS-Security applied
to them. Protocol elements include a primary SOAP envelope and option-
ally associated SOAP attachments.

SENDER: Software that generates a message according to the protocol(s)
associated with it. A sender is considered conformant when all of the
messages it produces are conformant and its behavior is conformant with
all statements related to SENDER in BSP.

RECEIVER: Software that consumes a message according to the proto-
col(s) associated with it. A receiver is considered conformant when it is
capable of consuming conformant messages containing the artifacts that
it supports and its behavior is conformant with all statements related to
RECEIVER in the BSP.

In BSP, certain statements are considered clarifying statements. The intent
of these statements is to eliminate confusion about the intended interpretation
of a requirement from an underlying specification. Clarifying requirements
are identified by adding a suffix of a superscript letter ‘C’, i.e. RxxxxC, where
xxxx is the requirement number. Additional consideration statements are also
identified by numbers prefixed by the letter ‘C’, i.e. Cyyyy, where yyyy is
the statement number. These statements are non-normative and are used to
provide clarification in order to eliminate confusion.

14.5.4 BSP Testability

The security consideration statements provide guidance that is not strictly
interoperability related but are testable best practices for security. It was
considered valuable to include these statements so that testing tool designers
can have the option of flagging potentially insecure practices. It is not feasible
to provide a comprehensive list of security considerations and not all security
considerations can easily be converted into testable statements. A complete
security analysis must be conducted on specific solutions based on the BSP
and underlying standards, based on a risk analysis of the application using
BSP technologies.

Even a fully standard compliant application may not interoperate with
another when the set of functionality supported is disjoint. For example, while
a sender may encrypt using one of three specific algorithms prescribed by the
BSP, a receiver may expect a different one of the three. Certain agreements
must be made using mechanisms currently out of scope for the profile.

416 A. Barbir et al.

14.5.5 Example of BSP Profiling

This section provides an example of BSP profiling with respect to SOAP
Message Security. BSP allows limited flexibility and extensibility in the appli-
cation of security to messages. Since no security policy description language
or negotiation mechanism is within the scope of the profile, BSP expects that
the sender and receiver can agree out of band over which mechanisms and
choices should be used for message exchanges including which security tokens
can be used. The next sections provide selected examples of the profiling in
the BSP. The reader can check [11] for the complete profile.

WSS 1.1 allows a Binary Security Token for the option of specifying its
Value Type, but requires that it specifies its encoding type. Base64Binary is
the only acceptable value. The Profile restricts the Value Type to one of those
specified by a security token profile and requires its specification. Note that
this token profile need not be one of the OASIS WSS profiles, although that is
preferred when possible. The listing below provides an example of the profiled
usage of Binary Security Token.

Correct:

<wsse:BinarySecurityToken wsu:Id=’SomeCert’
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3"
EncodingType="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#Base64
Binary">

lui+Jy4WYKGJW5xM3aHnLxOpGVIpzSg4V486hHFe7sHET/uxxVBovT7JV
1A2RnWSWkXm9jAEdsm/...
</wsse:BinarySecurityToken>

14.5.6 BSP Security Considerations

This section lists a number of security considerations as specified by the BSP
that should be taken into account when using one or more of the technologies
discussed in this section.

Use of the SOAPAction in protected messages can result in security risks.
The SOAPAction header can expose sensitive information about a SOAP mes-
sage such as the URI of the service, or the context of the transaction. If the
SOAPAction header is used for routing messages, there is a possibility that an
attacker can modify the header value to direct the message to a different re-
ceiver. This can defeat a replay detection mechanism based on the assumption
that the message would always be routed to the same place.

Additional risks can occur if multiple intermediaries are present. For ex-
ample, one intermediary can be designed to select the set of its processing
steps based on the value of SOAPAction or application/soap+xml. A second

14 Challenges of Testing Web Services 417

intermediary (such as a security gateway) can base its processing on the mes-
sage content (which could be secured through XML signatures). An attacker
can manage to trick the security gateway by allowing illegal operations by
modifications in HTTP headers. To remedy the situation, the BSP requires
that SOAPAction attribute of a soapbind:operation element to either be
omitted or have as its value an empty string.

BSP uses time-based mechanisms to prevent replay attacks. These mecha-
nisms will be ineffective unless the system clocks of the various network nodes
are synchronized. The BSP assumes that time synchronization is performed.

For messages that are signed using a Security Token that binds a pub-
lic verification key with other claims, and if specific processing is performed
based on those claims, the BSP requires that the Security Token itself be
part of the signature computation. This can be achieved by putting child
ds:Reference element whose URI attribute contains a shorthand XPointer
reference to the wsse:SecurityTokenReference that specifies the Security
Token into the ds:SignedInfo element of a signature. If a ds:SignedInfo
contains one or more ds:Reference children whose URI attribute contains a
shorthand XPointer reference to a wsse:SecurityTokenReference that uses
a potentially ambiguous mechanism to refer to the Security Token (e.g., KeyI-
dentifier) then it is recommended that the content of the Security Token be
signed either directly or using the Security Token Dereferencing Transform.
This approach can help to protect against post-signature substitution of the
Security Token with one that binds the same key to different claims.

When a key is provided in band within a Security Token or for the purpose
of specifying a key to be used by another node for encrypting information to
be sent in a subsequent message, the profile recommends that the sender of the
key cryptographically bind the key to the message in which it is transmitted.
This can be done either by using the key to perform a Signature or HMAC
over critical elements of the message body or by including the key under a
signature covering critical elements of the message body that uses some other
key. If a key is sent in a message that the receiver is expected to encrypt data
in some future message, there is a risk that an attacker could substitute some
other key and thereby be able to read unauthorized data. This is true even if
the key is contained in a signed certificate, but is not bound to the current
message in some way. If the future encryption key is used to sign the initial
request, the receiver can determine by verifying the signature that the key
is the one intended. Readers can consult [11] for more detailed security risk
analysis.

14.6 Strategies for Testing Web Services Security

Testing developed and deployed secure Web Services applications is a chal-
lenge. Security is an ongoing process as opposed to a one-time development
task. Developers should start with the security of the application in mind from

418 A. Barbir et al.

the origin concept of the service and during the development, deployment, and
maintenance phases.

The major concerns in testing the security of Web Services are the lack
of security testing standards and specifications. For a given service at the
functional level, input manipulation, information disclosure, and DoS consti-
tute the most common vulnerabilities against a service [45]. Testing strategies
should emphasize testing for these vulnerabilities. Common defense techniques
involve the use of strategies based on integrity and confidentiality to counter
these threats.

The WSM framework allows developers to perform fault detection, con-
figuration testing of security aspects of Web Service. Passive or active testing
techniques can be used for fault detection. As stated before, the incorporation
of WSM into Web Services infrastructure allows developers to concentrate on
developing the services while letting the WSM handle the non-application spe-
cific context security tasks, manageability, and other aspects of the services.

The following sections provide an approach for testing security for Web
Services. In this approach, the WSM plays an integral part, where layer sep-
aration between the service and its security is established.

14.6.1 Web Services Security Fault Model

Effective testing of Web Services security requires the development of a fault
model covering all interaction aspects of the service and spanning all the Web
Services layers that include UDDI, WSDL, and SOAP. The fault model should
encompass the entire group of stakeholders as discussed in Section 14.2. The
fault model is assumed to be part of the security component of the WSM. In
effect, the model builds on the generic fault model for Web Services security
as proposed in [45].

The fault model [45] must address threats to the UDDI that includes in-
formation disclosure, availability, DoS attacks, and unauthorized access. At-
tackers could use UDDI’s published WSDL to obtain information about Web
Services and use the information to carry out the attack [45]. Attackers could
use scanning and parameter mutation techniques to search for unpublished
backdoor capabilities of the services in order to gain unauthorized access to
resources and data. Buffer overflow and other types of attacks can also be
used.

The fault model should consider the effect of intermediaries on a client’s
messages. The presence of intermediaries introduces threats to these messages.
For example, an attacker may take over an intermediary and launch man-in-
the-middle attacks. The attacker may redirect the messages to a different
destination causing the equivalent of a DoS attack on the service [45].

At the service provider, integrator or certifier level, the fault model takes
into consideration that Web Services could spread over multiple tiers [45].
Services on these tiers could be exposed as Web Services. Exposed Web Ser-
vices could interact with infrastructure components that include mail servers,

14 Challenges of Testing Web Services 419

application servers, file systems, and various databases [45]. Web Services
security may be affected if any of these infrastructure components are com-
promised. The advent of Web Services has the effect of forcing developers to
re-think which components of a system should be trusted or which components
should be considered vulnerable.

In this work, XML firewalls are viewed as an integral component of the Web
Services fault model. The XML firewall can perform deep inspection of the
messages with the ability to inspect data for XML conformance and exploits.
XML firewalls can protect against attacks that do not require application
context. In Fig. 14.8, the extended model from [45] is depicted.

14.6.2 General Testability Guidelines

An application or service may consist of a single functional component or mul-
tiple sets of local or networked components. Security is a multifaceted process
consisting of mechanisms that cover network security elements, application
level security systems, authentication systems, and cryptography systems. In
a layered security approach, these mechanisms are developed independently
at different OSI layers and are expected to be combined together to secure
the deployed services in a useful manner.

For all phases of the application development life-cycle, it is important to
identify security-related threats and vulnerabilities. This requires that devel-
opers embrace the use of systematic security design methodologies with well
thought-out implementation processes.

WSM

Security

Provider

Broker

Client
Messages

Find Publish

WSDL

XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML
Firewall

Messages

WSM

Security

Provider

Broker

Client
Messages

Find Publish

WSDL

XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML
Firewall

Messages
XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML Parser
Application

Firewall

Service Code
Servlet

Container

DatabaseServlet
Container

Server

Other subsystems

XML
Firewall

Messages

Fig. 14.8. Fault model

420 A. Barbir et al.

Architects should ensure that all aspects of application security are consid-
ered at early design stage in a structured manner. Best practices for applying
security should be put in place before starting an application design pro-
cess. It is important to be proactive in checking and verifying the security
design for risks, tradeoffs, security policies, and defensive strategies ahead of
the completion of the application design phase. During the deployment and
production phases, it is good practice to adopt reactive security measures to
ensure service stability and recovery in the event of a security breach.

Organizations can minimize the effort of testing for security of the devel-
oped applications by following strategies that reduce the factors that need to
be tested. A crude but effective approach for minimizing the scope of testing
is to pursue some of the following steps:

1. Create a set of use case scenarios that can accommodate the majority of
services to be exposed as Web Services.

2. Determine the security boundaries of these services. Identify which ser-
vices are internal and which are external.

3. Determine the overall security requirements of the service, including
threats, risks, and vulnerabilities (internal and external).

4. Determine the set of messages to be exchanged by each service.
5. Determine the security requirements of each message. This can vary, de-

pending on whether the message is internal or external.
6. Determine the resources that are required or can be accessed by each

service and the type of access mechanism allowed.
7. Take a close look at the organization current network infrastructure and

determine what is currently available to support the security requirements
for these services. It is preferable to try to re-use existing security infras-
tructure (such as LDAP directories or PKI systems [10]) to support the
security requirements of the services.

8. Determine if any specific applications must be either developed in house,
out-sourced, or purchased to fulfill the security needs or other functionality
of the new Web Services.

9. Determine the impact of the new services on the management, auditing,
and logging facilities in the network and the applications.

10. Take a close look at the organization’s security policy and integrate the
new requirements to it.

11. Build the new services using secure code practices and standard-based
technologies. Developers need to be conservative in the use of features
in this step. Developers need to identify the minimum set of capabilities
that would be specified to meet the security requirements so far identified.
Minimizing the extent of supported services from SOAP message security
reduces the testing scope and reduces overall vulnerabilities.

Developers can generate test suits for testing the new security mechanisms
for the developed services. If the use case scenarios were broadly chosen then
they should be able to incorporate new services where developers can re-use

14 Challenges of Testing Web Services 421

the test patterns. However, developers need to understand that using regular
Web testing tools is not appropriate for testing Web Services. Web Services
testing requires understanding of the unique security issues related to them,
including XML, SOAP, WSDLs, and other WS standards.

14.6.3 Testing Strategies for Web Services Security

Testing strategies should conduct forcing errors tests to ensure that the error
messages that are returned by the service do not reveal information about
the service [45]. Testing for man-in-the-middle attacks should be used in the
event that intermediaries are expected to be in the data path. Data origin
authentication techniques can be used to remedy this threat. Authentication
bypass tests should be conducted to ensure that only authorized requests are
processed by the service.

At the UDDI, testing should be constructed that includes WSDL scanning
and parameter tampering to detect vulnerabilities in the exposed service. Mu-
tation tests techniques can be used to test for parameter tampering. Buffer
overflow tests can also be used in this step. Tests should also include sanity
checks on the UDDI to ensure that hackers cannot access services that should
not be made public. These tests are similar to file or directory traversal attacks
in web applications [45]. WSDL scanning tests must be conducted to ensure
that hackers cannot access unpublished transactional methods by playing on
variations of the published ones. It is really a bad practice when developers
provide unpublished methods as a backdoor technique for invoking the ser-
vice by insiders. This practice leaves the service vulnerable to the persistent
attacker.

The above-mentioned testing steps need to be repeated if configuration of
the system or the security mechanism is changed. For this reason, tests should
be repeated if the system configuration is changed [45]. Testing cannot guar-
antee an error-prone implementation. Testing is used to increase the level of
confidence that the service will operate according to its design objectives. Test
oracles should be saved and used in regression testing for the modified service.

14.6.4 Testing Strategies for Web Services Application Data

This section addresses functional testing strategies for Web Services security
from the developer’s point of view, with a focus on testing security related to
message data passed to applications. The testing strategy aims at addressing
the vulnerabilities as specified by the fault model of the previous section. The
aim is to perform tests that involve application context–type attacks. Some
examples of these types of attacks are given next, from [45].

1. Cross-site scripting: In this type of attack, the hacker embeds a script
into an XML document. The aim here is that the script will be stored
(for example, in a database) and then served to an unsuspecting client

422 A. Barbir et al.

Web browser. The script can then execute in the client’s browser and can
perform tasks on the behalf of the attacker. For example, the script can
steal sensitive information such as credit card numbers or passwords from
the unsuspecting client. Variation on this type of attack occurs when a
hacker embeds in an XML document a script, such as a shell script. The
attacker hopes that the script will be executed on the targeted system.
If the code executes, the attacker can perform unauthorized operation on
the compromised system. Possible counter measures include proper data
parsing and validation and to scan for all possible attack patterns and
the use of application layer countermeasures, such as Web application
firewalls.

2. XPath exploits: This is a form of XML injection attack. In this type
of attack, a hacker aiming for illegally accessing data from a database
injects malicious input into an XML document. The attacker aims to
get the data to be part of a dynamically created XPath query against
an XML document in a native XML database. An example of malicious
input for XPath exploits is OR 1=1. This expression, when executed in
the content of an XML document will always be true and can return data
to the attacker. Possible counter measures include proper data parsing
and validation and to scan for all possible attack patterns and the use of
application layer countermeasures, such as Web application firewalls.

3. SQL injection exploits: In this attack, a hacker injects malicious input
disguised as data into an application via an XML document or Web form,
with the hope that the input will end up in a WHERE clause of a SQL
query that is executed against a backend database. The hackers hope to
gain access to data in an unauthorized fashion. The main vulnerability
that enables Web Service enabled databases to be attacked in this fash-
ion is the insecure practice of configuring the backend systems to accept
and execute valid SQL queries received from any user with the necessary
access privileges. Possible counter measures include proper data parsing
and validation and to scan for all possible attack patterns and the use of
application layer countermeasures, such as Web application firewalls.

4. Buffer overflow exploits: These exploits are targeted atWeb Service com-
ponents that store input data in memory. These attacks succeed when
the Web Service component does not adequately check the size to ensure
that it is not larger than the allocated memory buffer that will receive
it. Possible counter measures include the use of programming languages
that perform input validation such as JAVA. The employment of appropri-
ate memory management techniques that protect memory segments that
are allocated for code form data overwrite can also be used as a counter
measure to this threat.

Developing remedies for the above threats requires the practice of safe
coding technique and the training of the developers in safe code practice. In
some cases, there will be a need to have the code inspected by independent

14 Challenges of Testing Web Services 423

security professionals to ensure that the code can pass tests performed to
detect these threats. Buffer overflow attacks usually target endpoints [45].
Tests must be conducted to ensure that the endpoint is capable of filtering
out large data loads. Hence, testing with large data load must be conducted
by developers to gain confidence that the service will survive such attacks.

Mutation-based test techniques can play an important role in detecting
vulnerabilities in the code for threats 1 to 3. Mutation test strategies change,
or mutate, inputs to the Web Service under test. By applying these changes
to input messages, testers can check whether these mutations produce ob-
servable effects on the service outputs. Based on the observed behavior, faults
in the service can be detected and the offending code can be fixed. The test
oracles must be saved and then used to perform regression testing when any
modifications have been performed on the service. Testing for script injection
exploits may require the identification of the operating system commands in
the language that is used to implement the system. These commands can then
be imbedded in the validation tests.

14.6.5 Securing an Application: Case Study

To illustrate some of the points of the above-stated approach, consider a fic-
titious book selling company that has stores nation wide. The company has
two warehouses for storing book supplies. For a given book, the company will
contact the supplier to re-order copies if a minimum threshold is reached. For
the purpose of this example,the company deals with only one supplier. The
company needs to develop a web application based on a Web Service to be
used by the store employees to query the warehouses for the availability of
a given book. The company will use a Web Service to re-order a book once
the threshold is met. This example is based on the same concepts of use-case
scenarios developed in WS-I to illustrate usage of the BSP profile [11].

Case Study Functional Overview

An employee uses a web-based application that invokes a Web Service to inter-
act with the retailer application. For simplicity, the retailer service manages
stock in the two warehouses (Fig. 14.9). If Warehouse A cannot fulfill an order,
the retailer service checks Warehouse B. When a warehouse’s inventory of a
book falls below a defined threshold, the retailer service orders more books
from the supplier. The example consists of the following:

1. Client Web Service: A web-based application that provides a user inter-
face. The web client application invokes the client Web Service to get
catalogue information and submit an order for a book to the retail ser-
vice. It also sends to the Retail service a one-way store update statement
frequently.

424 A. Barbir et al.

Internet

Employees

Client Web
Application

Client
Web

Service

Warehouse System

Warehouse A

Warehouse B

Retailer
Service

Book Supplier

Supplier
Web

Service
GetCatalog

SubmitOrder

SubmitPO

SubmitCon

SSL

SSL

Internet

Security Boundary

Security Boundary

Security BoundaryUpdateSt

InternetInternet

Employees

Client Web
Application

Client
Web

Service

Warehouse System

Warehouse A

Warehouse B

Retailer
Service

Book Supplier

Supplier
Web

Service
GetCatalog

SubmitOrder

SubmitPO

SubmitCon

SSL

SSL

InternetInternet

Security Boundary

Security Boundary

Security BoundaryUpdateSt

Fig. 14.9. Book service functional overview

2. Retailer service: A service invoking a Web Service that interacts with the
warehouse to determine the availability of book and the time to order
based on a given threshold.

3. Supplier service: An application that invokes a Web Service for accept-
ing purchase orders and provides callback functionality when the order is
fulfilled or an error occurs.

4. At a store, employees use the Web Client Application to view and
place orders for available books. A standard web browser that sup-
ports SSL is used. Employees are authenticated using a user ID and
password. The system does not have certificates that could be used for
authentication.

The company has existing X.509 certificate security capabilities. The com-
pany uses the Internet for connecting the stores to the retail application and
to communicate with the supplier. The company has a dedicated commu-
nication service with the warehouses and uses SSL for extra security. The
company would like to use SOAP message layer security for securing the
interactions.

SOAP Messages Usage Patterns

The use case scenario employs three usage patterns as follows:

1. One-way: Request messages are sent to a Web Service that does not issue
a corresponding response. For example, the store update message that is
sent to the retail service is a one-way exchange.

14 Challenges of Testing Web Services 425

2. Synchronous request/response: A SOAP request elicits a SOAP response.
3. Basic callback: A set of paired request/response messages to enable asyn-

chronous operation. The interchange between a retail service and the sup-
plier requires a callback pattern since the supplier cannot instantly re-
spond to the retail service request. The conventions used for callbacks
can vary. In this fictitious example, the following sequence of events
takes place:

• In an initial synchronous exchange, the retail service sends a purchase
order. The supplier validates the order and sends back an acknowledgment.

• In a follow-up exchange between the supplier and the retail callback ser-
vice, the supplier ships the goods and sends a shipping notice to the retail
service. The retail service then sends back an acknowledgment.

Security Requirements

For each of the systems and operations of the use case scenario, the security
requirements are specified for message integrity, authentication, and confiden-
tiality.

Message integrity. Message integrity is needed to ensure that messages
have not been altered in transit. For simplicity, attachments are not
considered. In order to support verification of message integrity, mes-
sages are signed. In order to improve on processing speed, digest values
are first calculated, and then these values are signed. Developers need
to determine which elements of the messages need a signature. For the
case under consideration, some or all of the following parts may need to
be signed:
• UsernameToken: The wsse:UsernameToken element in the WS Secu-

rity header containing the identity of the user who originally made the
purchase request.

• Timestamp: The wsu:Timestamp element added to the message when
it was created as defined in [12].

• Any custom SOAP headers such as a Start header that contains a
conversation ID element and a callback location element. The con-
versation ID is provided by the Retailer to the Supplier so that
the Supplier can include it in the Callback header responses
asynchronously.

• The Callback custom header which keeps the conversation ID apart
from the Start header.

• SOAP Body: The part of the SOAP message (e.g., soap:Body) that
contains the exchanged document (such as a purchase order).

Message integrity is implemented by creating a digital signature using
the sender’s private key over the elements that need to be signed. To
protect against dictionary attacks on plain text signature, the signature

426 A. Barbir et al.

is encrypted, meaning that a xenc:EncryptedData element replaces this
ds:Signature element in the message. Note that only the children of each
element are used by the signing algorithm. The element itself is not signed.

Authentication. Authentication is performed to allow the receiver to es-
tablish the message origin. It is a good practice for the recipient of a
message to authenticate the sender of a message. This is done by first
checking that the signed data in the message has been signed using the
public certificate whose private key was used to sign the message for mes-
sage integrity purposes and then checking the credentials in that public
certificate to determine the identity of the sender. If the sender includes
a wsse:BinarySecurityToken in the wsse:Security header, the token
contains the X.509 signing certificate.
The recipient should verify that it can trust the certificate issuer, and may
also need to compare the data in the content of the message that identifies
the sender, either in the SOAP header or in the payload, with the identity
as stated in the public certificate.
The identity of the original user may also be included, in a UsernameTo-
ken. If the username token is not used for authentication, a password is
not required.

Confidentiality. Confidentiality is required to conceal sensitive information
in messages. Not all parts of messages are necessarily sensitive, and in some
cases a message may not be considered sensitive at all, and thus there may
be no need for confidentiality. In this example, parts of the message that
are considered sensitive include the following:
• The SOAP Body since it could contain information such as order data,

which could aid competitors.
• The Signature element since in some cases the body of the message

can contain predictable variations, making it subject to guessing or
dictionary-based attacks. Encrypting the signature can prevent such
attacks.

• Custom headers such as the Start Header since it include the location
of the callback service.

Confidentiality is implemented by first deriving the xenc:EncryptedData
elements with the appropriate encryption algorithm and using the ap-
propriate public key. The xenc:EncryptedKey element is encrypted us-
ing a chosen encryption algorithm. The xenc:EncryptedKey element will
contain a security token reference to the public key information of the
X.509 certificate used for encrypting, along with DataReferences to the
xenc:EncryptedData elements. In this scenario the certificate itself is not
included since it is assumed to be already public. For the Soap Body and
the Start Header elements, only the children of the elements are encrypted.
For the Signature element, the whole element is encrypted.

14 Challenges of Testing Web Services 427

14.7 Crash-Only Web Services Design

In an SOA [53] environment, new Web Services are typically built by orches-
trating underlying services. In mission-critical applications, it is necessary
for both the underlying services and the composite service to advertise their
failure models. In general, failure models are complex and difficult to combine
but this section argues that the “crash-only software” architecture [49, 50, 51]
provides not only a simplifying coherence for designers, but also a paradigm
whose characteristics align particularly well with those of Web Services.

Within a Service-Oriented Architecture (SOA), new services are typically
created by orchestrating underlying services. Figure. 14.10 illustrates a par-
ticularly simple case when two underlying services, X and Y, are orchestrated
in some way to produce a new service, Z. In the general case, X and Y will
not be owned by the developer of Z, being services exposed by other service
providers.

To determine Z’s characteristics, so that WSLA guarantees can be offered
to customers, it is necessary to combine the characteristics of X and Y with
those of the additional logic provided by Z. To enable this, the characteristics
of X and Y must be known and although the SOA specifications make provi-
sion for X and Y to advertise their interface syntax, their behavior and their
contracts, no formal method has been proposed for defining many of the be-
havioral characteristics. For example, the performance, scaling, management,
security, privacy, availability, reliability, and many other models of X and Y
need to be known by the developer of Z in order to determine the service-level
agreements for the corresponding characteristics of Z. As a simple example,
consider privacy: X, Y, and Z may be implemented in different countries with
differing laws regarding privacy and security of data. For the developer of Z,
to ensure that the service complies with the local regulations and to be able
to offer reassurances to customers of Z about the privacy of their data, the
privacy policies of X and Y need to be available.

Fig. 14.10. Service orchestration

428 A. Barbir et al.

Each of the models listed above, and others, are needed but this section
addresses one particular model: the failure model. If the failure model of Z is
to be understood, the failure modes of X and Y have to be known. It may be,
e.g., that X supports a transactional model and rolls back its input following a
failure, guaranteeing that it returns to a sane state, putting the responsibility
for re-submission of inputs onto the consumer (Z). Y, on the other hand, may
buffer information and the precise state of an interaction may be difficult to
determine when a failure occurs.

To permit Z to determine necessary actions following the failure of X or Y
and to allow it to make claims about its own failure modes, a failure ontology
is required that could capture X’s and Y’s (and Z’s) failure semantics. This
section argues that the technique of “crash-only software” [50] is particularly
suited to the loosely coupled environment of SOAs, providing particularly
simple behavior that can be described and advertised in a formal manner. It
is unrealistic to expect all services to comply with this failure paradigm but
this work proposes that it forms the basis of the failure semantics for Web
Services.

14.7.1 Crash-Only Software

Studies (dating back to 1986 see [52]) support the view that failures in de-
ployed software are mainly caused by Heisenbugs [52], bugs caused by subtle
timing interactions between threads and tasks which are impervious to con-
ventional debugging, being non-reproducible and sensitive to tracing and other
observation. Reproducible bugs, the so-called “Bohrbugs,” are easier to detect
and fix during development and can largely be removed before shipment of a
final product.

It must be accepted that, in any software-based system, if Heisenbugs exist
then failures will occur. When they do, telecommunications and other high-
availability systems have been built to detect the failure, save state, shut down
the offending task and any other affected components (defined by some form
of failure tree) down gracefully, take whatever recovery action is required and
then restart the affected components.

The technique of crash-only argues that this is not only unnecessary but,
in many cases, counter-productive. Consumers of the services, it is argued,
must anticipate that their provider will, from time to time, crash cleanly
without the opportunity for sophisticated failure handling (perhaps because
of a power failure to the computer running the provider). Consumers must
therefore already have the capability of handling such a crash. If this is the
case, then consumers can always crash the component whenever any failure
occurs.

This crash-only semantic has several advantages:

• It defines simpler macroscopic behavior with fewer externally visible states.
• It reduces the outage time of the provider by removing all shutting-down

time.

14 Challenges of Testing Web Services 429

• It simplifies the failure model significantly by reducing the size of the
recovery state table. In particular, crashing can be invoked from outside
the software of the provider. Recovery from a failed state is notoriously
difficult and the crash-only paradigm coerces the system into a known
state without attempting recovery, reducing substantially the complexity
of the provider code.

• It simplifies testing by reducing the failure combinations that have to be
verified.

If software is to crash cleanly more often, then it should also be written in
such a way as to reload quickly [51].

14.7.2 Crash-Only Software and Web Services

Candea in [50] lists the properties required of a crash-only system and these
can be abstracted remarkably well to match those of Web Services as described
in [53]:

• Components have externally enforced boundaries. This is an implementa-
tion recommendation but one supported by the virtual machine concept
used on many Web Service systems.

• All interactions between components have a timeout. This is implicit in
any loosely coupled Web Services interaction.

• All resources are leased to the service rather than being permanently allo-
cated. This is an implementation recommendation but clearly one which
it is useful to follow in any implementation, particularly a Web Services
one.

• Requests are entirely self-describing. For crash-only services, this requires
that the request carries information about idempotency and time-to-live.
The work in [50] maps this request to a REST1-like [54] environment but
the comments are equally applicable to a true SOAP-defined Web Service.

• All important non-volatile state is managed by dedicated state stores.

In Section 14.2 of this chapter, in effect, the WSM performs runtime gov-
ernance. The WSM is enabled in an SOA environment by having access to the
service description of the invoked service and being in a position to intercept
and decode all incoming requests.

Deliberately induced crashes are a useful technique for software rejuvena-
tion (see [55]) and this requires detection of periods of low usage of the service.
Runtime governance is an obvious candidate for recognizing such periods and
causing the restarts.

The description of crash-only software in [50] assumes, when recast us-
ing SOA terminology, that the providers (X and Y in Fig.14.10) will exhibit
crash-only failure behavior but that consumers, having failed to obtain timely

1 Representational State Transfer.

430 A. Barbir et al.

or correct service, can initiate the crash. This is acceptable only when the con-
sumer and provider, although loosely coupled, are within one trust domain.
This is clearly not generally the situation with Web Services.

One common function of the WSM software layer is the monitoring of
response times from the service to ensure that the consumer is getting the
level of service paid for. This provides the perfect location for invocation of
the power-off switch provided by crash-only software that switch is external
to the service, relying in no way on continued correct operation of the service
code, and its operation is idempotent, ensuring that the decision to kill the
server does not require knowledge of internal state.

Crash-only design principles can be used as a starting point in the de-
sign of Web Services (we term them crash-only Web Services). In this aspect,
the service can be designed in such a fashion that the state of the service
that identifies critical information is always stored in the system even in the
event of a crash. The same crash-only design principles are extended at the
service level whereby, e.g., in business process interaction, information such
as the status of an order is stored in a non-volatile state [50]. Tree tech-
niques as defined in [49] and [50] can be used to identify the data compo-
nents from a service that should be stored and be available when the service
is crashed.

The use of crash-only systems combined with crash-only Web Services
in combination with a reliable SOAP stack can enhance on the availability
of a Web Service and reduces the complexity of its testing. Crash-only Web
Services can be re-started quickly and with a known state. In [56] a SOAP
reliable transport protocol is described (WSRM). The protocol allows a relia-
bility agent to acknowledge the receipt of SOAP messages to the Web Services
consumer. Reliability in WSRM is used to ensure that the messages are deliv-
ered to the targeted server (application server). The reliability agent can be
implemented at the Web Services end point in Fig. 14.11.

For systems with hardware redundancy, by using crash-only techniques,
SOAP WSRM can be extended in order to produce an always available Web
Service (although at reduced WSLA if and when a service is forced to crash)
from the provider’s and consumer’s point of view. The architecture is de-
picted in Fig. 14.11. Here, the components of the system are designed using
crash-only, which means that re-booting is fast and reliable. The Web Ser-
vices end point is used as the gateway between the Web Services consumer
and provider. At runtime, the system stores all of its important data innon-
volatile states. The WSRM agent acknowledges the receipt of the SOAP mes-
sages to the consumer only after a confirmation is received from the system
that the important data is safely stored in the system. The recovery agent
monitors the operation of the Web Services. If the agent determines that the
Web Service is misbehaving (due to fault in the code or any other reason,
actually the cause need not be known or investigated), then the agent will
instruct the stall proxy to delay the acknowledgment of the SOAP messages
to the consumer. The stall proxy will basically ensure that the session is

14 Challenges of Testing Web Services 431

Crash -Only
Application

Server

Stall Proxy

Web Service
Consumer

Web Services
Endpoint

Recovery
Agent

Crash-Only
Backend

Crash-Only
Backend

Crash-only
WSM

InternetInternet

Reliable SOAP Protocol

WSRM

Crash -Only
Application

Server

Stall Proxy

Web Service
Consumer

Web Services
Endpoint

Recovery
Agent

Crash-Only
Backend

Crash-Only
Backend

Crash-only
WSM

InternetInternet

Reliable SOAP Protocol

WSRM

Fig. 14.11. Architecture of crash-only reliable Web Services

kept alive. The system is re-started (multiple sub-component reboots may be
needed see [49] and [50] for details). When the system is back up again, the
WSRM agent can request the transmission of the last set of lost messages from
the consumer.

The above approach provides for the capability of extending the SOAP
WSRM protocol to enhance on the availability and reliability at the service
level. Testing scope is also minimized.

14.8 Research Proposals and Open Research Issues

Despite such intense research and development efforts, current Web Service
technology does not yet provide the flexibility needed to “tailor” a Web Ser-
vice according to preferences of the requesting clients. At the same time, Web
Service providers demand enhanced adaptation capabilities in order to adapt
the provisioning of a Web Service to dynamic changes of the Web Service en-
vironment according to their own policies. Altogether, these two requirements
call for policy-driven access controls model and mechanisms, extended with
negotiation capabilities. Models and languages to specify access and manage-
ment control policies have been widely investigated in the area of distributed
systems [3].

Standardization bodies have also proposed policy-driven standard access
control models [1]. The main goals of such models are to separate the access
control mechanism from the applications and to make the access control mech-
anism itself easily configurable according to different, easily deployable access
control policies. The characteristics of open web environments, in which the

432 A. Barbir et al.

interacting parties are mostly unknown to each other, have lead to the devel-
opment of the trust negotiation approach as a suitable access control model
for this environment [4, 5].

Trust negotiation itself has been extended with adaptive access control,
in order to adapt the system to dynamically changing security conditions.
Automated negotiation is also being actively investigated in different applica-
tion domains, such as e-business. However, a common key requirement that
has been highlighted is the need of a flexible negotiation approach that en-
ables the system to dynamically adapt to changing conditions. In addition,
the integration of trust negotiation techniques with Semantic Web technolo-
gies, such as semantic annotations and rule-oriented access control policies,
has been proposed. In such approaches, the resource under the control of
the access control policy is an item on the Semantic Web, with its salient
properties represented as RDF properties. RDF metadata, managed as facts
in logic programming, are associated with a resource and are used to de-
termine which policies are applicable to the resource. When extending a
Web Service with negotiation capabilities, the invocation of a Web Service
has to be managed as the last step of a conversation between the client
and the Web Service itself. The rules for such a conversation are defined
by the negotiation protocol itself. Such a negotiation protocol should be de-
scribed and made publicly available in a similar way as a Web Service op-
eration is publicly described through WSDL declarations. An XML-based,
machine-processable negotiation protocol description allows an electronic
agent to automatically generate the messages needed to interact with the
Web Service.

The client and the Web Service must be equipped with a negotiation en-
gine that evaluates the incoming messages, takes decisions, and generates the
outgoing messages according to the agreed upon protocol. The models already
proposed for peer-to-peer negotiations assume that both parties are equipped
with the same negotiation engine that implements the mutually understood
negotiation protocol. This assumption might not, however, be realistic and
may prevent the wide adoption of negotiation-enhanced, access-control model
and mechanisms.

In the remainder of this section, we present a short overview of a system,
addressing those requirements, and then we discuss open research issues.

14.8.1 Ws-AC1: An Adaptive Access Control System
for Web Services

In order to address the adaptation and negotiation requirements, we propose
the use of a system that supports Web Service access control model and an
associated negotiation protocol as given in [6]. The proposed model, referred
to as Web Service Access Control Version 1 (Ws-AC1, for short) is based on
a declarative and highly expressive access control policy language.

14 Challenges of Testing Web Services 433

Such language allows one to specify authorizations containing conditions
and constraints not only against the Web Service parameters but also against
the identity attributes of the party requesting the service and context pa-
rameters that can be bound, e.g., to a monitor of the Web Service operating
environment. An additional distinguishing feature of Ws-AC1 is the range of
object-protection granularity it supports. Under Ws-AC1 the Web Service se-
curity administrator can specify several access control policies for the same
service, each one characterized by different constraints for the service param-
eters, or can specify a single policy that applies to all the services in a set.
In order to support such granularity, we introduce the notion of service class
to group Web Services. To the best of our knowledge, Ws-AC1 is the first
access-control model developed specifically for Web Services characterized by
articulated negotiation capabilities. A model like Ws-AC1 has important ap-
plications, especially when dealing with privacy of identity information of
users and with dynamic application environments. In order to represent the
negotiation protocol, an extension to the Web Services Description Language
standard has also been developed.

The main reason of that choice is that, although the Web Services Chore-
ography Description Language (WS-CDL) is the emerging standard for rep-
resenting Web Services interactions, WS-CDL is oriented to support a more
complex composition of Web Services in the context of a business process
involving multiple parties.

Ws-AC1 is an implementation-independent, attribute-based, access-control
model for Web Services, providing mechanisms for negotiation of service pa-
rameters. InWs-AC1 the requesting agents (also referred to as subjects) are
entities (human being or software agents). Subjects are identified by means
of identity attributes qualifying them, such as name, birth date, credit card
number, and passport number.Identity attributes are disclosed within access
requests invoking the desired service. Access requests to a Web Service (also
referred to as provider agent) are evaluated with respect to access control poli-
cies. Note that in its initial definition,Ws-AC1 does not distinguish between
the Web Service and the different operations it provides, i.e., it assumes that
a Web Service provides just a single operation. Such a model can be applied
to the various operations provided by a Web Service without any extension.
Access control policies are defined in terms of the identity attributes of the
requesting agent and the set of allowed service parameters values. Both iden-
tity attributes and service parameters are further differentiated in mandatory
and optional ones. For privacy and security purposes, access control policies
are not published along with the service description but are internal to the
Ws-AC1 system. Ws-AC1 also allows one to specify multiple policies at dif-
ferent levels of granularity. It is possible to associate fine-grained policies with
a specific service as well with several services. To this end, it is possible to
group different services in one or more classes and to specify policies referring
to a specific service class, thus reducing the number of policies that need to
be specified by a policy administrator. A policy for a class of services is then

434 A. Barbir et al.

applied to all the services of that class, unless policies associated with the
specific service(s) are defined.

Moreover, in order to adapt the provision of the service to dynamically
changing conditions, the Ws-AC1 policy language allows one to specify con-
straints, dynamically evaluated, over a set of environment variables, referred
to as context, as well as over service parameters. The context is associ-
ated with a specific service implementation and it might consist of moni-
tored system variables, such as the system load. The access control process
of Ws-AC1 is organized into two main sequential phases. The first phase
deals with the identification of the subject requesting the service. The sec-
ond phase, executed only if the identification succeeds, verifies the service
parameters specified by the requesting agent against the authorized service
parameters.

The identification phase is adaptive, in that the provider agent might even-
tually require the requesting agent to submit additional identity attributes in
addition to those originally submitted. Such an approach allows the provider
agent to adapt the service provisioning to dynamic situations;for example,
after a security attack, the provider agent might require additional identity
attributes to the requesting agents. In addition, to enhance the flexibility of
access control, the service parameter verification phase can trigger a negoti-
ation process. The purpose of this process is to drive the requesting agent
toward the specification of an access request compliant with the service spec-
ification and policies. The negotiation consists in an exchange of messages
between the two negotiating entities in order to limit, fix, or propose the au-
thorized parameters the requesting agent may use. The negotiation of service
parameters allows the provider agent to tailor the service provisioning to the
requesting agent preferences or, at the opposite, to enforce its own preferred
service provisioning conditions.

14.8.2 Open Research Issues

Even though Ws-Ac1 provides an initial solution to the problem of adaptive
access control mechanisms for Web Services, many issues need to be investi-
gated. A first issue is related to the development of models and mechanisms
supporting a comprehensive characterization of Web Services that we refer to
as Web Service profiles. Such a characterization should be far more expressive
than conventional approaches, like those based on UDDI registries or OWL.
The use of such profiles would allow one to specify more expressive policies,
taking into account various features on Web Services, and to better support
adaptation.

The second issue is related to taking into account the conversational nature
of Web Services, according to which interacting with real world Web Services
involves generally a sequence of invocations of several of their operations, re-
ferred to as conversation. Most proposed approaches, like Ws-AC1, assume
a single-operation model where operations are independent from each other.

14 Challenges of Testing Web Services 435

Access control is either enforced at the level of the entire Web Service or at
the level of single operations. In the first approach, the Web Service could
ask, in advance, the client to provide all the credentials associated with all
operations of that Web Service. This approach guarantees that a subject will
always arrive at the end of whichever conversation. However, it has the draw-
back that the subject will become aware of all policies on the base of which
access control is enforced. In several cases, policies need to be maintained
confidentially and disclosed only upon some initial verification of the identity
of the client has been made. Another drawback is that the client may have
to submit more credentials than needed. An alternative strategy is to require
only the credentials associated with the next operation that the client wants
to perform. This strategy has the advantage of asking from the subject only
the credentials necessary to gain access to the requested operation. However,
the subject is continuously solicited to provide credentials for each transition.
In addition, after several steps, the client may reach a state where it cannot
progress because of the lack of credentials. It is thus important to devise strate-
gies to balance the confidentiality of the policies with the maximization of the
service completion. A preliminary approach to such strategies has been re-
cently developed [2]; the approach is based on the notion of k-trustworthiness
where k can be seen as the level of trust that a Web Service has on a client at
any point of their interaction. The greater the level of trust associated with
a client, the greater is the amount of information about access control poli-
cies that can be disclosed to this client, thus allowing the client to determine
early in the conversation process if it has all necessary credentials to satisfy
the access control policies. Such approach needs, however, to be extended by
integrating it with an exception-based mechanism tailored to support access
control enforcement. In particular, in a step-by-step approach, whenever a
client cannot complete a conversation because of the lack of authorization,
some alternative actions and operations are taken by the Web Service.

A typical action would be to suspend the execution of the conversation,
ask the user to acquire the missing credentials, and then resume the execution
of the conversation; such a process would require investigating a number of
issues, such as determining the state information that need to be maintained,
and whether revalidation of previous authorizations is needed when resuming
the execution.

A different action would be to determine whether alternative operations
can be performed to replace the operation that the user cannot execute be-
cause of the missing authorization. We would like to develop a language ac-
cording to which one can express the proper handling of error situations arising
from the lack of authorization.

The third issue is related to security in the context of composite services;
in such a case, a client may be willing to share its credentials or other sensitive
information with a service but not with other services that can be invoked
by the initial service. To handle such requirement, different solutions may be
adopted, such as declaring the possible services that may be invoked by the

436 A. Barbir et al.

initial service or associating privacy policies with the service description, so
that a client can specify its own privacy preferences. Other relevant issues
concern workflow systems. Such systems represent an important technology
supporting the deployment of business processes consisting of several Web
Services and their security is thus crucial. Even though some initial solutions
have been proposed, such as the extension of the WS-BPEL [9] standards with
role-based access control [7], more comprehensive solutions are required, sup-
porting adaptive access control and sophisticated access-control constraints.

Finally, the problem of secure access to all information needed to use
services, such as information stored by UDDI registries, needs to be addressed.
To date, solutions have been developed to address the problem of integrity
through the use of authenticated data structures [8]. However, work is needed
to address the problem of suitable access control techniques to assure the
confidentiality and privacy of such information in order to support its selective
sharing among multiple parties.

14.9 Conclusion

Testing Web Services and security in an SOA environment is a discipline that
is still in its infancy. Experience gained from Web Development can be used as
a guiding principle for the development of testing strategies in the SOA world
at large. There are still many open areas that still need to be worked on. For
example, there are no standard mechanisms to share management information
between the various service providers. Faults in the Web Services stack are
more centered toward the SOAP message level. Current standards are not
designed with fault management in mind. Regression tests need enhancement,
coverage, and speed improvement to be able to cope with the testing scope of
composite services.

References

1. OASIS eXtensible Access Control Markup Language 2 (XACML) Version 2.0
OASIS Standard, 1 Feb 2005.

2. M. Mecella, M. Ouzzani, F. Paci, E. Bertino. Access Control Enforcement
for Conversational-based Services. Proceedings of 2006 WWW Conference,
Edimburgh, Scotland, May 23-26, 2006.

3. N. Damianou ,N. Dulay, E. Lupu and M. Sloman. The Ponder Policy Specifica-
tion Language. Proceedings of the 2nd IEEE International Workshop on Policies
for Distributed Systems and Networks, 2001.

4. T. Yu, M. Winslett, K. Seamons. Supporting Structured Credentials and Sensi-
tive Policies through Interoperable Strategies for Automated Trust Negotiation.
ACM Transactions on Information and System Security, Vol. 6, No. 1, February
2003.

5. E. Bertino, E. Ferrari, A.C. Squicciarini. X -TNL: An XML-based Language
for Trust Negotiations. Proceedings of the 4th IEEE International Workshop on
Policies for Distributed Systems and Networks, 2003.

14 Challenges of Testing Web Services 437

6. E.Bertino, A.C. Squicciarini, L.Martino, F. Paci. An Adaptive Access Control
Model for Web Services. International Journal of Web Service Research, (3),
27-60 July-September 2006.

7. E.Bertino, B.Carminati, E.Ferrari. Merkle Tree Authentication in UDDI Reg-
istries. International Journal of Web Service Research, 1(2): 37-57(2004).

8. E.Bertino, J.Crampton, F.Paci. Access Control and Authorization Constraints
for WS-BPEL. Submitted for publication.

9. OASIS Web Services Business Process Execution Language Version 2.0. Com-
mittee Specification, 31 January 2007

10. Schwarz, J, Bret Hartman B., Nadalin A, Kaler C., F. Hirsch, and Morrison S,
, Security Challenges, Threats and Countermeasures Version 1.0, WS-I, May,
2005, http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf

11. Barbir, A. Gudgin M and McIntosh M., , Basic Security Profile Version 1.0,
WS-I, May 2005, http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-
05-12.html

12. Nadalin, A., Kaler C., Hallam-Naker, P., Monzillo R., Web Services Se-
curity: SOAP Message Security 1.0, (WS-Security 2004), OASIS, March
2004, http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0.pdf

13. Web Services Security: SOAP Message Security 1.1, (WS-Security 2004),
OASIS, February 2006, http://www.oasis-open.org/committees/download.php
/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

14. Nadalin, A., Kaler C., Hallam-Naker, P., Monzillo R.,, Web Services Se-
curity: UsernameToken Profile 1.1,OASIS, February 2006, http://www.oasis-
open.org/committees/download.php/16782/wss-v1.1-spec-os-Username Token-
Profile.pdf

15. Nadalin, A., Kaler C., Hallam-Naker, P., Monzillo R., Web Services
Security: X.509 Certificate Token Profile 1.1, OASIS, February 2006,
http://www.oasis-open. org/committees/download. php/16785/wss-v1.1-spec-
os-x509TokenProfile.pdf

16. Monzillo R., Kaler C., Nadalin A., Hallam-Naker, P.,., Web Services Secu-
rity: SAML Token Profile 1.1, OASIS, February 2006, http://www.oasis-open.
org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf

17. Nadalin, A., Kaler C., Hallam-Naker, P., Monzillo R.,, Web Ser-
vices Security: Kerberos Token Profile 1.1, OASIS, February 2006,
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-
os-KerberosTokenProfile.pdf

18. Monzillo R., Kaler C., Nadalin A., Hallam-Naker, P., Web Services Secu-
rity: Rights Expression Language (REL) Token Profile 1.1, OASIS, February
2006, http://www.oasis-open.org/committees/download.php/16687/oasis-wss-
rel-token-profile-1.1.pdf

19. Hirsch, F., Web Services Security: SOAP Messages with Attach-
ments (SwA) Profile 1.1, OASIS, February 2006, http://www.oasis-
open.org/committees/download.php/16672/wss-v1.1-spec-os-SwAProfile.pdf

20. Signature Syntax and Processing, W3C Recommendation February 2002,
http://www.w3.org/TR/xmldsig-core/

21. XML Encryption Syntax and Processing, W3C Recommendation December
2002, http://www.w3.org/TR/xmlenc-core/

22. Nortel Unified Security Framework for corporate and government security, Nor-
tel, http://www.nortel.com/solutions/security/collateral/nn104120-051705.pdf

438 A. Barbir et al.

23. SOAP Version 1.2 Part 1: Messaging Framework, W3C, June 2003,
http://www.w3.org/TR/soap12-part1/

24. Simple Object Access Protocol (SOAP) 1.1, W3C Note, May 2000,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

25. Rescorla E., HTTP Over TLS, RFC 2818, May 2000.
26. Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001,

http://www.w3.org/TR/wsdl
27. Bloomberg, J., Schmelzer, R, Service Orient or Be Doomed!: How Service Ori-

entation Will Change Your Business, SBN: 0-471-79224-1, Wiley, May 2006.
28. Boyer, J., Exclusive XML Canonicalization Version 1.0, W3C, July 2002,

http://www.w3.org/TR/xml-exc-c14n/
29. Bray, T., Extensible Markup Language (XML) 1.0 (Third Edition), W3C,

February 2004, http://www.w3.org/TR/REC-xml/
30. The Transport Layer Security (TLS) Protocol,Version 1.1, RFC 4346, April

2006.
31. Demchenko, Y.,, Web Services and Grid Security Vulnerabilities and Threats

Analysis and Model, Grid Computing Workshop, 2005.
32. Nakamura, Y., Model-Driven Security Based on a Web Services Security Ar-

chitecture, Proceedings of the 2005 IEEE International Conference on Services
Computing (SCC’05), 2005.

33. Tarhini et al., Regression Testing Web Services-based Applications, Computer
Systems and Applications, March 8, Page(s):163 - 170, 2006.

34. Benharref A. et al, A Web Service Based-Architecture for Detecting Faults
in Web Services, IFIP/IEEE International Symposium on Integrated Network
Management 2005.

35. Bhoj, P. , Management of new Federated Services, Integrated Network Manage-
ment V., 1997.

36. Weiping He, Recovery in Web Service Applications, Proceedings of the 2004
IEEE International Conference on e-Technology, e-Commerce and e-Service
(EEE’04), 2004.

37. Papazoglou, M. and Heuvel, W., Web Services Management: A Survey, IEEE
Internet Computing, November 2005.

38. Bertolino A. and Polini A., The Audition Framework for Testing Web Ser-
vices Interoperability, Proceedings of the 2005 31st EUROMICRO Conference
on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05),
2005. 30. Karjoth, G., Service-oriented Assurance: Comprehensive Security by
Explicit Assurances, Publications of the Network Security and Cryptography
Group, 2005.

39. Tsai, W., Ray Paul R., Weiwei S. and Cao Z.,, Coyote: An XML-Based Frame-
work for Web Services Testing, 7th IEEE International Symposium on High
Assurance Systems Engineering (HASE’02), 2002.

40. Yuan Rao, Y., Feng, O, Han, J., and Li, Z.,, SX-RSRPM: A Security Integrated
Model For Web Services, Proceedings of the Third International Conference on
Machine Learning and Cybernetics, Shanghai, 26-29 August 2004.

41. Bruno, M., Gerardo, C., and Di Penta, M., Using Test Cases as Contract to En-
sure Service Compliance across Releases, Proc. 3rd Int’l Conf. Service Oriented
Computing (ICSOC 2005), LNCS 3826, Springer, 2005, pp. 87-100.

42. Tsai, W., Paul, R, Cao, Z., L. Yu, L., A. Saimi, A. and B. Xiao, B., . Verification
of Web Services using an enhanced UDDI server. In Proc. of WORDS 2003,
pages 131-138, Jan., 15-17 2003. Guadalajara, Mexico.

14 Challenges of Testing Web Services 439

43. Tsai, W., Paul R., Wei S. and Cao Z. Scenario-based Web Service testing
with distributed agents. IEICE Transaction on Information and System, E86-
D(10):2130-2144, 2003.

44. Xu, W., Offutt, J., Juan Luo, J., Testing Web Services by XML Perturbation,
Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering (ISSRE’05), 2005.

45. Yu, W., Supthaweesuk, P., and Aravind, D. Trustworthy Web Services Based
on Testing, Proceedings of the 2005 IEEE International Workshop on Service-
Oriented System Engineering (SOSE’05), 2005.

46. Mei H. and Zhang L., A Framework for Testing Web Services and Its Supporting
Tool, Proceedings of the 2005 IEEE International Workshop on Service-Oriented
System Engineering (SOSE’05), 2005.

47. Canfora G. and Di Penta M., Testing Services and Service-Centric Systems:
Challenges and Opportunities, IT Pro Published by the IEEE Computer Society,
April 2006.

48. Zapthink, www.zapthink.org
49. Fox A. and D. Patterson D., When does fast recovery trump high reliability?

In 2nd Workshop on Evaluating and Architecting Systems for Dependability
(EASY), 2002.

50. Candea G. and A. Fox A., Crash-only software. In 9th Workshop on Hot Topics
in Operating Systems, 2003.

51. Candea G. Et, Microreboot-a technique for cheap recovery. In Proceedings of
the 6th Symposium on Operating Systems Design and Implementation, 2004.

52. Gray J., Why do computers stop and what can be done about it? In 5th Sym-
posium on Reliability in Distributed Systems, 1986.

53. OASIS SOA Reference Model TC. Reference model for service-oriented archi-
tecture 1.0. Technical report, OASIS, 2006.

54. Fielding, R., Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. Dissertation. University Of California, Irvine, 2000.

55. K. Vaidyanathan, K. et al., Analysis and implementation of software rejuvena-
tion in cluster systems. In SIGMETRICS ’01: Proceedings of the 2001 ACM
SIGMETRICS international conference on Measurement and modeling of com-
puter systems, pages 62-71, New York, NY, USA, 2001. ACM Press.

56. OASIS (www.oasis-open.org) Web Services Reliable Exchange Technical Com-
mitte (WS-SX). 49. W3C (www.w3.org) WS-Policy WG.

57. IBM; The Enterprise Privacy Authorization Language (EPAL 1.1) - Reader’s
Guide to the Documentation.

58. OASIS eXtensible Access Control Markup Language 2 (XACML) Version 2.0
OASIS Standard, 1 Feb 2005.

59. T. Yu, M. Winslett, K. Seamons. Supporting Structured Credentials and Sensi-
tive Policies through Interoperable Strategies for Automated Trust Negotiation.
ACM Transactions on Information and System Security, Vol. 6, No. 1, February
2003.

60. OASIS (www.oasis-open.org) WS-BPEL TC.
61. Mecella, M., Ouzzani, M., Paci, F., Bertino, E. Access Control Enforcement for

Conversation-based Web Services. Proceedings of the 2006 WWW Conference,
Edinburgh, Scotland, May 23-26, 2006.

62. Bertino, E., Crampton J.,, and Paci F. Access Control and Authorization Con-
straints for WS-BPEL. Submitted for publication.

440 A. Barbir et al.

63. Bertino, E., B. Carminat, and E. Ferrari, E. Merkle Tree Authentication in
UDDI Registries. International Journal of Web Service Research, 1(2): 37-57
(2004).

64. Liberty Alliance Project - Introduction to the Liberty Alliance Identity Archi-
tecture Revision 1.0 March, 2003

15

ws-Attestation: Enabling Trusted Computing
on Web Services

Sachiko Yoshihama1, Tim Ebringer2, Megumi Nakamura1, Seiji Munetoh1,
Takuya Mishina1 and Hiroshi Maruyama1

1 IBM Tokyo Research Laboratory, 1623-14, Shimotsuruma, Yamato-shi,
Kanagawa, Japan
{sachikoy, nakamegu, munetoh, tmishina, maruyama}@jp.ibm.com

2 CA Labs, 658 Church St., Richmond, Victoria, Australia
tim.ebringer@ca.com

Abstract. This chapter proposes ws-Attestation, an attestation architecture based
upon a Web Services framework. The increasing prevalence of security breaches
caused by malicious software shows that the conventional identity-based trust model
is insufficient as a protection mechanism. It is unfortunately common for a computing
platform in the care of a trustworthy owner to behave maliciously.3

Specifications created by the Trusted Computing Group (TCG) [27, 26] intro-
duced the concept of platform integrity attestation, by which a computing platform
can prove its current configuration state to a remote verifier in a reliable manner.
ws-Attestation allows Web Services providers and consumers to leverage this tech-
nology in order to make better informed business decisions based on the security of
the other party.

Current TCG specifications define only a primitive attestation mechanism that
has several shortcomings for use in real-world scenarios: attestation information is
coarse grained; dynamic system states are not captured; integrity metrics are diffi-
cult to validate; platform state as of an attestation is not well bound to the platform
state as of interaction and platform configuration information is not protected from
attackers. We aim to provide a software-oriented, dynamic, and fine-grained attesta-
tion mechanism which leverages TCG and ws-Security technologies to increase trust
and confidence in integrity reporting. In addition, the architecture allows binding of
attestation with application context, privacy protection, and infrastructural support
for attestation validation.

15.1 Introduction

The current and planned Web Services Specifications describe a set of func-
tionality for providing distributed services in a heterogeneous computing envi-
ronment. A service describes its functional interface in WSDL (Web Services

3 Zombie computers used to send spam being a common example.

442 S. Yoshihama et al.

Description Language) [20] and advertises itself through a centralized UDDI
registry [28] or ad hoc metadata exchange [11]. The messages sent between
services are in SOAP envelopes [19] and transported over various protocols,
the most common of which is HTTP.

In order to secure interactions between Web services, various Web Services
Specifications are defined or being defined as proposed in the Web Services
Security Roadmap [13]. These specifications are defined as building blocks
allowing various specifications integrated together to enable security, reliable
messages, policy, and transactions [12].

At the simplest level the messages can be protected against malicious
parties who would eavesdrop on sensitive data or alter messages. The ws-
Security specification [30] defines mechanisms for protecting message integrity
and confidentiality. ws-Trust [5] defines a generic framework for exchanging
security tokens between endpoints to establish trust. ws-SecureConversation
Language [4] utilizes ws-Trust and enables secure interaction context that will
last for a series of message exchanges. The ws-PolicyFramework [2] and the
ws-SecurityPolicy Language [10] defines syntax and vocabularies for exchang-
ing security policies between endpoints. ws-Federation Language [9] allows
federating identities between multiple parties.

In the ws-Security framework, a trust relationship is established based on
the identity of each entity who is participating in a transaction. For example,
the sender of a message is identified by a digital signature, which is authen-
ticated by the receiver using an X.509 certificate. The receiver checks the
trustworthiness of the certificate and a trust decision is made, depending on
the authenticity of the signature and the trust relationship to the Certification
Authority (CA) who issued the certificate.

In the business world, an entity utilizes fine-grained information to decide
whether another entity is trustworthy enough to make a deal. For example, a
customer may be interested in whether a service provider has ability to per-
form a certain service, with certain quality and quantity, by a certain deadline.
A customer may also be interested in whether the service provider is honest,
abides by the law, respects the privacy policy, has a good reputation, etc. On
the other hand, a service provider is generally interested in the customer’s
financial credibility and his/her eligibility for receiving the service (e.g., does
the customer have a license for buying controlled materials).

In addition, when the transaction takes place on the Internet, it is also
important to verify that a computer platform, acting on behalf of a service
provider or a requester, does not betray the service requester or provider’s will.
For example, if a user trusts an on-line shopping service and submits his credit
card number—even if the service provider company is actually honest and
trustworthy—the server platform might be infected with a Trojan horse that
surreptitiously sends the credit card number to a malicious remote attacker.
In another case, the server software might have a vulnerability that would
be attacked by an attacker, allowing the attacker to obtain the super user

15 ws-Attestation 443

privilege and steal customer information and credit card numbers. Therefore,
it is important to make sure that the service is running on a trustworthy
platform; i.e., it is running on the hardware that it claims to be, and that the
OS and software are not infected by malicious software and has no known
vulnerabilities.

Remote attestation is one of the key functionalities of Trusted Computing
which allows a remote challenger to verify not only the identity of the other
party but also the integrity of the platform that represents the party. The
platform integrity information allows the challenger to verify the configura-
tion and the state of the system (e.g., what OS is running, which security
patches are applied, what security policies are being observed or whether it is
infected with viruses). It allows intelligent decisions to be made as to whether
a service which runs on a trusted platform is fit to use. Conversely, the ser-
vice provider may choose whether to accept a service request from a requester
based on the trustworthiness of the requester. The trusted computing allows
establishing a trust relationship among potentially distrusted distributed par-
ties, thus enabling new types of secure interaction.

There are several issues that need to be considered when enabling Trusted
Computing on Web Services. First, it is obviously dangerous for a platform
to advertise its precise configuration, because such information is very use-
ful for an attacker in choosing the most effective attack technique. There-
fore, it is important that access to the precise configuration information
is only seen by authorized parties. For distrusted parties, the platform
needs to prove only its security properties without revealing configuration
details. Second, exchanging and validating a platform attestation can be
a relatively heavy process and it is important to adjust balance between
fine granularity and effectiveness. Third, the architecture has to support
validation of complicated computer platform that consists of various
components.

This chapter proposes ws-Attestation, attestation architecture built on
top of the Web Services framework. ws-Attestation provides a software-
oriented, dynamic, and fine-grained attestation mechanism which leverages
tcg and ws-Security technologies to increase trust and confidence in in-
tegrity reporting. In addition, the architecture allows binding of attestation
with application context, as well as infrastructural support for attestation
validation.

The following sections are structured as follows. Sect. 15.2 discusses an
overview of the trusted computing technology. Sect. 15.3 discusses design prin-
ciples. Sect. 15.4 discusses ws-Attestation architecture of attestation support
for Web Services framework. Sect. 15.5 and 15.6 discusses the ws-Attestation
profile and token exchange model respectively. Sect. 15.7 describes prototype
implementation. Sect. 15.8 shows observations on the architecture. Sect. 15.9
discusses related work. Sect. 15.10 concludes this chapter.

444 S. Yoshihama et al.

15.2 Trusted Computing Technology

The Trusted Computing Group (TCG) [27, 26] defines a set of industry
standard specifications for hardware and software for enabling trusted com-
puting among wide variety of computing platforms, such as pcs, servers,
mobile phones, etc. The center of the TCG technology is a security mod-
ule called the Trusted Platform Module (TPM) which is usually imple-
mented as a tamper-resistant hardware module. In addition to serving as
a cryptographic co-processor and a protected storage for secrets and keys,
the TPM is used to measure and report platform integrity in a manner
that cannot be compromised even by either platform owners or the soft-
ware running on it. In this section, we review mechanisms of platform in-
tegrity measurement and platform integrity reporting (i.e., attestation) in
more detail.

15.2.1 Platform Integrity Measurement

Platform integrity measurement consists of multiple phases of measuring and
storing integrity of hardware and software components that constitute a plat-
form. Integrity measurement can be categorized into two types: (1) TCG
trusted bootstrap and (2) other integrity measurement built on top of trusted
bootstrap.

TCG defines the trusted bootstrap process [27, 26] that comprises an
iterative process of “measurement” (cryptographic hashing), loading, and ex-
ecution of software components. When the system is powered-on, the im-
mutable initial bootstrap code (such as BIOS boot block) measures next
component and stores the measurement in the TPM before transferring
control to the next component. In subsequent steps, each software compo-
nent recursively measures next component and records the measurements
in the TPM, until the operating system is loaded. The BIOS boot block
and TPM are called Core Root of Trust for Measurement (CRTM), be-
cause they need to be trusted in order to trust measurement in trusted
bootstrap.

Each measurement is taken as a SHA-1 (Secure Hash Algorithm 1) value
of the binary image of a component, and stored into Platform Configura-
tion Registers (PCRs). pcrs are special purpose registers within the TPM
which record integrity measurements, and are protected from an arbitrary
modification.4

The specification requires 16 PCRs at minimum on a TPM, but each PCR
can store fingerprint of multiple components using a hash-chain mechanism.
That is, a PCR supports only the extend operation to update its value; i.e.,

4 TPM Specification 1.2 supports a new operation to reset the PCRs to 0, in order
to allow a virtualized operating system to leverage TCG capabilities without a
hard reset.

15 ws-Attestation 445

when recording a measurement value v into a PCR, the value v is extended
into the PCR, which results in a SHA-1 hash over concatenation of the current
PCR value and the value v.

PCRn
i = SHA-1(PCRn

i−1||v)

where the initial PCR value after power-on is PCRn
0 = 0, n denotes the

index of the PCR register (0 ≤ n < 16), and || denotes a concatenation.
After the os is loaded and initialized in a trusted bootstrap process, the

PCRs will contain some predictable values, provided that the PLATForm
runs a known set of components that are intact. If any bits of measured
components are modified from the original, the PCR value will be different,
and such modification can be detected. The PCR values form a fingerprint of
the exact software stack on a particular platform. Note that trusted bootstrap
is different from secure bootstrap, in the sense that the system continues the
bootstrap process even if there has been unauthorized modification of the
components that are loaded, though this modification is recorded. In contrast,
secure bootstrap terminates the bootstrap process when unauthorized code is
detected.

Trusted bootstrap provides a basis for platform integrity measurement,
but it does not prove all aspects of trustworthiness of a system. Various mod-
ules and application software which are loaded after the bootstrap process
contribute to the trustworthiness of a platform. Similarly, even identical OS
kernels can have different level of security if they have different configuration
settings,5 thus such configuration information needs to be measured. Mea-
surement by TPM can be further extended into modules, applications, and
configurations as follows:

• Run-time measurement at OS: While the system is running, various be-
havior, such as module loading or application execution, are monitored
and measured by the operating system and recorded into PCRs. Integrity
Measurement Architecture [24] realizes such measurement on the Linux
kernel, and enhances the role of the TPM to measure not only the static
state of a system but also the dynamic state.

• Run-time measurement at middleware: Various forms of middleware con-
stitute today’s computing systems. However, it is not practical to extend
OS to measure integrity of data that are used by middleware, because it
requires rebuilding the OS each time to support new middleware or data.
It is preferable that each middleware layer measures data that is loaded or
used by itself. An example of the measurement at middleware is a JavaTM

Virtual Machine (JVM) that measures integrity of Java class files when
each class is loaded.

5 For example, the Security Hardened Linux kernel supports an option noenforce

which disables its mandatory access controls.

446 S. Yoshihama et al.

• Measurement by agents: SHA-1 has its limitations when used as an in-
tegrity metric for policy or configuration files as any semantically mean-
ingless change (such as insertion of a white-space character or re-ordering
configuration properties in a text-based configuration file) will change the
PCR values, resulting in unnecessary complexity when validating PCR
values. A solution is to allow a software agent to measure policy and
configuration files. Such an agent might be a local daemon which reads
system configuration files, and composes a structured message, in canoni-
cal form, that describes the properties of the configuration (e.g., network
settings, minimum password length, etc.). Similar to the middleware-level
measurement, the chain of trust from the root-of-trust to agents must be
maintained.

Care needs to be taken, though, that a chain of trust needs to be main-
tained from the CRTM to the component being measured. That is, in the
case of measurement at middleware, (1) the integrity of the base code up
to OS is measured in the trusted bootstrap sequence, (2) the integrity of a
middleware is measured by OS, (3) and finally, the integrity of a file being
loaded by the middleware is measured by the middleware. The record of mea-
surements (stored in TPM) must prove that each component is measured by
a component that is already measured, and the measurement record is not
forgeable. Similarly, integrity of measurement agents need to be assured by
OS (or any middleware which integrity is measured by OS) for such agent to
be trustworthy.

15.2.2 Platform Integrity Reporting

Platform Integrity Reporting, or attestation, is the mechanism defined in the
TCG specification to report integrity measurements stored in the PCRs. In
the attestation process, the TPM signs the PCR values and an external
160-bit challenge (such as a nonce from a challenger to avoid replay attacks)
using an RSA private key, the confidentiality of which is protected by the
TPM. The attestation is an atomic, protected operation and the attestation
signature cannot be forged by malicious software. Therefore, if the TPM is
properly designed and implemented to adhere to the TCG specifications and
the platform, including the initial bootstrap code, is properly integrated with
the TPM, a remote verifier can have confidence in the integrity measurement
reported by TPM.

Note that the platform may also send additional information in an attes-
tation, and prove authenticity of such information using an attestation signa-
ture. For example, the list of modules and applications loaded on a platform
is useful information to validate the state of a platform and can be included
as part of the attestation process. In addition, an attestation signature over
the PCRs which record the hash values of loaded modules and applications
can prove which components have been actually measured and loaded, thus
the challenger can verify authenticity of the modules listed by the PCR value.

15 ws-Attestation 447

15.3 Design Principles

This section discusses principles that are taken into account in the design of
the attestation support in Web Services.

15.3.1 Fine Granular, Dynamic, Verifiable,
and Efficient Attestation

Although TCG provides a hardware-based root of trust, platform integrity
measurement, and reporting, it conveys little information compared with the
complex state of a running system. In ws-Attestation, we aim to complement
TCG attestation with fine granularity, dynamicity, and verifiability.

• Fine granularity: Trusted bootstrap, as defined in TCG, is designed to
measure binary images of executables and components (e.g., BIOS con-
figurations) during the bootstrap sequence. However, today’s computing
systems are complicated and include properties that cannot be meaning-
fully measured from their binary image. For example, behavior of Linux
systems can significantly differ because of parameters specified in configu-
ration files, even if they run on an identical OS kernel and the executable
image is the same. It is not practical to measure configuration files with
SHA-1 hash values; as most of the Linux configuration files are text based,
the system administrator can easily break the integrity of a configuration
files by adding a white-space or a blank line, even though the seman-
tics of the configuration file is unchanged. Therefore, it is desirable that
attestation can provide not only binary measurements but also seman-
tic information, e.g., platform configuration retrieved by a software-based
attestation agent.

• Dynamicity: Trusted bootstrap measures integrity of executable compo-
nents up to the operating system. However, various executables and data
loaded on the operating system and on the application layer affect behavior
of a running system [24]. It is desirable that the ws-Attestation supports
rich semantic attestation information whilst leveraging the root-of-trust
mechanism defined in the TCG specification.

• Verifiability: TPM stores a measurement of components in PCRs in the
form of composite hash values. Each composite hash value represents a
list of components that are measured and “extended” into a PCR. Since
the PCR extension mechanism allows one PCR to record a list of mea-
surements, each PCR is used to measure many components; e.g., TCG
defines minimum 16 PCRs for PC platforms, and 8 of them are reserved
for measuring BIOS, while the other 8 are used for measuring the OS and
the application layer. As the number of components measured by a PCR
becomes bigger, and as the number of possible revisions of each component
becomes bigger, the number of permutations that constitute a PCR value
becomes factorial. It becomes very difficult for a verifier to validate the
platform integrity from a PCR value.

448 S. Yoshihama et al.

• Efficiency: As the information conveyed and validated in the attestation
process becomes more detailed, the attestation process can become overly
expensive. On the other hand, it is not possible to simply separate attesta-
tion from the application context, because an entity sending an application
message may not be in the same state as what was attested, thus may not
be trusted anymore. It is desirable to increase efficiency while maintaining
a cryptographic binding between attestation and application context.

15.3.2 Attestation Supporting Infrastructure

As a large number of vulnerabilities are found everyday [3], software ven-
dors release security patches frequently. A typical security patch consists of
multiple files that replace vulnerable components on the system. Each patch
may fix one or more vulnerabilities. Thus, it becomes increasingly difficult
to make educated decisions as to whether vulnerability is present in a par-
ticular file. A well-organized infrastructural support is, therefore, essential to
enable validation measurement of each component on the system. Finally, each
entity requesting attestation may not be capable of validating attestation in-
formation. We assume presence of trusted third-party validation services that
validate attestation on behalf of requesters. We aim at defining communica-
tion models between the attestation requester, responder, and the validation
service.

15.3.3 Privacy Protection

There are two types of privacy that need to be considered in attestation:
identity and integrity of the platform being attested.

1. Identity privacy: It is one of the key objectives of TCG-defined attestation
to protect the privacy of the platform identity while establishing trust.
TCG defines two mechanisms for identity privacy: the Privacy-CA and
Direct Anonymous Attestation (DAA). Since current TCG specifications
already address identity privacy issues, we do not focus on the identity
privacy in this chapter.

2. Integrity privacy: The most unique aspect of attestation is that it proves
not only the identity of the platform but also the integrity and state of the
platform. Although it is useful information for a legitimate verifier to judge
trustworthiness of a platform, it can also become a source of vulnerability
if distrusted parties are allowed to perform an attestation. By investigating
the OS and application versions, an attacker can quickly deduce the most
effective attack technique. Therefore, it is important, especially in cross-
organizational transactions, that a platform can prove its trustworthiness
to anonymous challengers without disclosing its configuration details. This
is addressed in Sect. 15.6.3.

15 ws-Attestation 449

15.4 WS-Attestation Architecture

In order for ws-Attestation to be widely adopted and interoperable, it is im-
portant that ws-Attestation matches the model and framework of the existing
ws-Security standards. Therefore, rather than invent a new protocol for at-
testation, we leverage existing Web Services standards and define a profile for
supporting attestation on top of these standards.

Figure 15.1 shows architecture of attestation support on Web Services. The
attestation requester is an entity who initiates attestation request. The vali-
dation service is a trusted third-party authority that validates (or sometimes
performs) attestation on behalf of the requester. The validation service refers
to the integrity database for validating integrity of each component measure-
ment. The Privacy CA or the DAA issuer is responsible for certification of
Attestation Identity Keys (AIKs) generated on attested platforms.

• Attested Platform (AP): The platform being attested implements various
forms of integrity measurements and is capable of responding to an attesta-
tion request. It is also assumed that the attested platform implements ap-
propriate security mechanisms and policies that is to be required by the at-
testation requester, and presence of such implementation can be measured

Vulnerability
Database

Software
Repository

Offline
Update
Engine

Integrity
Database

Validation
Service

WS-*

Attested
Platform

WS-*

Attestation
RequesterWS-*

Privacy CA
or DAA issuer

WS-*

Validation
service backend

Fig. 15.1. ws-Attestation architecture and data flow. (Note WS-∗ denotes WS
standards)

450 S. Yoshihama et al.

and reported in the attestation process. Typically, an attested platform is
an entity which provides services through a Web service interface.

• Attestation Requester (AR): A party who is interested in platform in-
tegrity of the attested platform. An attestation requester may not be capa-
ble of validating integrity measurement by itself, and relies on a validation
service to make judgments. Typically, an attested platform is an entity
who is attempting to use a service provided by AP.

• Validation Service (VS): A trusted third-party service which issue attes-
tation credentials each of which asserts a set of security properties that
represents the state of a platform. Typically, VS verifies integrity mea-
surements of an AP, derives a set of properties, and issues an attestation
credential that asserts the properties. The VS needs to be trusted by both
AP and the AR, in a sense that (1) AP has to trust VS that VS does not
disclose configuration information of AP and (2) AR has to trust VS that
VS correctly performs validation based on the criteria that is understood
by both AR and VS.

• Integrity Database: It is a repository of black-list and white-list of met-
rics of known components and used by VS in validating the platform
integrity measurements. The Integrity Database leverages external infor-
mation sources, such as software repository and vulnerability database, to
consolidate various information sources into a representation useful for VS.

• Identity Credential Issuer (Privacy CA or DAA Issuer): Identity credential
issuer certifies identity of each AP by issuing a credential (e.g., an X.509
certificate) on an attestation identity key (AIK) of AP. In TCG specifica-
tions, it is important to prove that AP is a genuine trusted platform, which
has a genuine TPM and implements CRTM, because trust on integrity
measurement builds on the trust on the implementation of the platform.

15.5 ws-Security Attestation Profile

This section defines detailed ws-Attestation protocol as a profile on existing
ws-Security standards.

15.5.1 Attestation Signature

ws-Security defines a flexible framework for protecting message integrity and
confidentiality using various cryptographic algorithms. We define a new sig-
nature algorithm profile that represents TCG attestation signature.

The TCG attestation signature is an RSA signature value generated by an
AIK over the concatenation of the target data and PCR values. The signature
operation is an atomic operation performed by the TPM. The values in the
PCRs and the use of the AIK are also protected by the TPM. Therefore,
a TCG attestation signature proves that the signed PCR values are not
compromised and represents the state of the attested platform at the time of

15 ws-Attestation 451

signing. The signature value is considered a special form of the RSA signature.
In order to handle the attestation signature in ws-Security as an XML digital
signature, we define a new signature method that is identified by the URI
and specified in the algorithm attribute of the SignatureMethod element of
the XML digital signature.

In order to verify an attestation signature, the verifier needs to be informed
of the TPM quote info structure that is being signed. The TPM quote info
includes a 160-bit challenge and a composite hash of selected PCR values. In
the proposed signature method, this structure is concatenated to the signature
value that is included in the SignatureValue element as

TPM quote info||[TPM quote info]AIK

where || denotes bitwise concatenation and [x]K denotes a signature over
x with the key K).

In the XML Digital Signature, which defines extensible XML schema, it
is also possible to add the TPM quote info structure as a separate XML
element. However, adding this structure to the signed value has two advan-
tages. First, the same signature method can be used in protocols other than
ws-Security where messages have no or little extensibility to include an ad-
ditional element of information. Secondly, a provider-model crypto API such
as Java Cryptographic Extension (JCE) supports different crypto algorithms
under the same generic API. Such generic API cannot be extended to add
an extra parameter without losing advantage of plugability. By including the
TPM quote info in the signature value, the crypto provider can receive the
necessary information for verification of an attestation signature through a
generic API.

15.5.2 Platform Measurement Description

The Platform Measurement Description (PMD) is structured data that de-
scribes the state of the platform in a fine-grained and semantic manner. A
PMD includes the log of measurements which are recorded during the trusted
bootstrap and run-time, and describes the components that have been mea-
sured by PCRs. Such a log allows the verifier to validate the integrity of each
component running on the system. The verifier can also verify that the hash of
all components in the log matches the PCR values in the attestation signature.
Since the PCR values in the attestation signature are not forged, provided
that the TPM is genuine and not in direct contact with an attacker who
performs hardware-level attacks, we can use these values to verify integrity of
the PMD in such a way that malicious software cannot cause false-positive
validation.

In addition, a PMD may include non-TPM measurements such as seman-
tic configuration parameters and properties of the platform which are tested
or read by an attestation agent running on the platform. The integrity of such

452 S. Yoshihama et al.

agent can be measured and reported in TPM-based measurement, providing
a chain from the root-of-trust (CRTM) to the software-based measurements.

15.5.3 Attestation Credentials

As PMDs become richer, validating the PMD at each transaction may be-
come a bottleneck. To make attestation more efficient, we propose the notion
of attestation credentials. An attestation credential has properties that are
asserted by an authority, and may have expiration period. A typical attesta-
tion credential is issued by a trusted authority that asserts some properties
(e.g., hasKnownVulnerability=‘false’ or the level of trustworthiness such
as trustLevel = {1, . . . , N}) regarding an attested platform. An attestation
credential may bind a particular set of PCR values to the properties. Upon
a challenge by an attestation requester, the attested platform may present
the attestation credential along with the attestation signature signed over
the challenge. (See Sect. 15.6 for more details) By verifying the challenge,
the PCR values and attestation credentials, the attestation requester can
verify, without knowing the details of measurement description, that the at-
tested platform’s current state is represented by the PCR values in the at-
testation signature, and the PCR values represent the properties that are
asserted in the attestation credential. The attestation credential also protects
integrity privacy of the attested platform from potentially distrusted attesta-
tion requesters, especially by utilizing PCR obfuscation technique described
in Sect. 15.6.3.

An attestation credential can be represented in various forms; e.g., an
X.509 attribute certificate and a SAML Assertion are well-standardized for-
mats for this purpose.

15.6 ws-Attestation Token Exchange Model

In ws-Attestation, we propose exchanging attestation information in the form
of security tokens, based on ws-Trust, a standard token exchange protocol [5].
By transforming attestation information into security tokens and exchanging
them, we can communicate the state of the platform integrity efficiently, rather
than performing the PMD-based attestation process for each message.

This section describes how we map attestation token exchange into ws-
Trust, and then review logical token exchange patterns with observation on
pros and cons of each pattern. Next, we propose a method to protect plat-
form integrity privacy from misuse, and show an example message exchange
scenario that integrates all proposed technology elements. Finally, we discuss
advantages and disadvantages of several different mechanisms that bind at-
testation and messaging context.

15 ws-Attestation 453

15.6.1 Mapping to ws-Trust

Rather than defining a proprietary protocol for attestation, we leverage ws-
Trust [5]. In a ws-Trust message, a requester may request a particular type of
a security token, with an optional challenge. Upon a successful response, the
responder returns the requested security token. The challenge in the request
should be returned back to the requester with a responder’s signature over it,
thus proving that the response is fresh and is not replayed from past records.

ws-Trust defines generic framework for exchanging security tokens on Web
services. The basic message structures in ws-Trust are RequestSecurityToken
and RequestSecrityTokenResponse, which represent token request and re-
sponse respectively. The basic structure of these messages are as follows:

RequestSecurityToken: TokenType [, Supporting]

[, SignChallenge]

RequestSecurityTokenResponse: TokenType, RequestedSecurityToken

[, SignChallengeResponse]

(Note that ws-Trust supports more flexible message structure, but we
discuss only minimal elements that are relevant to our proposal, for the sake
of simplicity.)

Here, the TokenType in RequestSecurityToken message specifies URI
that represents particular token type, which the requester demands. An op-
tional Supporting element provides a security token and provides additional
claim information. An optional SignChallenge element contains a value, for
which requester demands the responder to return a signature.

The TokenType in the RequestSecurityTokenResponse message is the
type of actual returning token. The RequestedSecurityToken element con-
tains the returning token, and SignChallengeResponse contains the respon-
der’s signature over the challenge.

In ws-Attestation we have three kinds of token request/response interac-
tions that are illustrated below in an informal syntax:

1. Requesting full attestation information in PMD. This implies that an
entity (i.e., usually an attestation requester) may ask for a PMD from an
attested platform.

RequestSecurityToken: TokenType=PMD_TokenType,

SignChallenge=nonce

RequestSecurityTokenResponse: TokenType=PMD_TokenType,

RequestedSecurityToken=PMD,

SignChallengeResponse=[nonce]Sig

2. Requesting issuance of an attestation credential by presenting a PMD.
This implies that an entity (i.e., an attested platform or attestation re-
quester) may request a validation service to evaluate a PMD and to issue
an attestation credential which represents the result of validation.

454 S. Yoshihama et al.

RequestSecurityToken: TokenType=AC_TokenType,

Supporting=PMD

RequestSecurityTokenResponse: TokenType=AC_TokenType,

RequestedSecurityToken

=AttestationCredential

3. Requesting an attestation credential. This implies that an attestation re-
quester may request for an attestation credential to the attested platform.

RequestSecurityToken: TokenType=AC_TokenType,

SignChallenge=nonce

RequestSecurityTokenResponse: TokenType=AC_TokenType,

RequestedSecurityToken

=AttestationCredential,

SignChallengeResponse=[nonce]Sig

Note that the responder in each interaction may be a trusted party itself,
or a validation service which issues attestation credential for the attested
platform.

In the following subsection, we illustrate four communication patterns us-
ing ws-Trust messages above.

15.6.2 Attestation Token Exchange Patterns

An attestation requester (AR), an attested platform (AP), and a verification
service (VS) play central roles in an attestation, especially in verification
of integrity of the attested platform. This section discusses four attestation
models each of which is built on a different trust model and has advantages
and disadvantages.

Direct Attestation

Figure 15.2a shows the Direct Attestation Model in which an attestation re-
quester challenges the attested platform, which then returns the measurements
back to the requester. The attestation requester validates information by itself,
which has the advantage of not requiring that any other party need be trusted.
This model has two notable disadvantages. (1) The attestation requester has
to be capable of validating the attestation response and (2) the attested plat-
form has to disclose all of its integrity information to the requester, which
violates its integrity privacy to potentially distrusted attestation requesters.

Attestation with Pulled Validation

The second model (Fig. 15.2b) is similar to the direct attestation, except
that the attestation requester consults the validation service to validate the
PMD, and does not have to be capable of validating attestation. Integrity

15 ws-Attestation 455

privacy of the attested platform is not protected in this model. An additional
disadvantage is that this model may suffer from the performance bottleneck
of the validation service, because for every attestation the validation service
needs to be contacted.

Attestation with Pushed Validation

In the attestation with pushed validation model (Fig. 15.2c), the attested
platform pushes the attestation to the validation service, to request an at-
testation credential. Upon a challenge from the attestation requester, the at-
tested platform sends the attestation credential along with the attestation
signature over the challenge, thus allowing the attestation requester to verify
that the attested platform has the properties asserted in the credential. The
advantages of this model are that (1) the attested platform does not have
to disclose integrity information to the attestation requester; (2) the attesta-
tion requester does not have to be capable of validating attestations, (3) the
performance bottleneck at the validation service is of less concern, because
once an attestation credential is issued by the validation service, the attested
platform can re-use the credential for subsequent transactions. Finally, the
attested platform can choose which validation service to disclose its integrity
information to, thus helping maintain the privacy of platform.

Delegated Attestation

In the delegated attestation model (Fig. 15.2d), the attestation requester re-
quests a validation service to perform attestation on behalf of the requester,
and then sends only the validation result in the form of a credential. The
advantages of this model are that (1) the integrity privacy of the attested
platform is protected; (2) the attestation requester does not have to be capa-
ble of validating attestation.

AR AP
1. n

2. [PMD, n, PCR]AIK

(a) Direct Attestation (b) Pulled Validation

(c) Pushed Validation (d) Delegated Attestation

1. [PMD, n, PCR]AIK

VS

AR AP
3. n

2. Cred

4. Cred, [n, PCR]AIK

3. [PMD, n, PCR]AIK

AR AP
1. n

2. [PMD, n, PCR]AIK

VS

4. Cred
3. PMD

AR AP

VS

1. n

4. Cred 2. n

Fig. 15.2. Attestation Model

456 S. Yoshihama et al.

15.6.3 Privacy Protection—PCR Obfuscation

As we discussed in Sect. 15.3.3, attestation must address two types of pri-
vacy issue: identity and integrity. This chapter focuses on privacy of integrity
information. One problem with attestation is that it provides detailed config-
uration information useful to an attacker, since they may use this to choose
which attack tools will be effective against the platform, or when a platform
has changed its configuration. The solution is to extend each PCR register
with a random value at random times, yet at the same time recording these
random values in the log. The resulting PCR value is unpredictable; provides
no information about configuration details to the attacker. However, using the
log of all PCR measurements, a legitimate verifier can still verify integrity of
all other components.

In attestation models with a third-party validation service, the validation
service may issue a credential to the measurement log including random ex-
tensions, and the credential asserts that some properties are true only when
the attested platform has a particular set of PCR values. The attestation re-
quester who receives the credential and the current PCR values cannot derive
detailed configuration information from PCR values, but can verify that the
current PCR values prove the properties asserted in the attestation credential.

Random extension of PCRs may be performed any number of times, pro-
vided the log of the extensions is maintained. Especially important is that
the extension is performed more frequently than release of security patches
components that run on the system. If a patch that fixes vulnerability is re-
leased, by observing PCRs before and after the patch release, an attacker can
infer whether the patch is applied to the platform and will be able to make
an educated decision on attack tactics.

15.6.4 Binding to Secure Conversational Context

Several approaches are possible to bind the state of an attested platform to
an application context.

First, the attestation requester and the attested platform may establish a
secure communication channel before attestation. ws-SecureConversation [4]
defines a key exchange protocol to exchange a shared secret, which enables the
binding between attestation and subsequent transactions by adding Hashed
Message-Authentication Code (HMAC) to the messages. Care needs to be
taken to protect the shared secret from being bound to distrusted attested
platforms, not only must the attestation requester discard the shared secret
when the attestation fails, but the attested platform must also discard the
shared secret when its state changes. When the application is terminated, or
the system is rebooted, the attested platform must exchange a new shared
secret and start the attestation process again; it must be verified before a key
exchange that the attested platform and its applications are implemented to
relinquish shared secrets at termination. However, if the state of the attested

15 ws-Attestation 457

platform changes without terminating the application, e.g., as a result of ad-
ditional kernel module being loaded, this change is difficult to detect at the
application layer. To prevent the use of a shared secret in a context that is
not expected, the secret should expire and be renewed in a short window of
time. This has the obvious side-effect of reducing performance.

Second, the attested platform can sign each application message with the
attestation signature. The PCR composite hash value included in the attesta-
tion signature proves the state of the attested platform at the time of signing,
and therefore that the properties asserted in the credential are still in effect.
The freshness of the attestation signature has to be verifiable; e.g., by having
a signature over the timestamp and the application message body. If the at-
testation signature is performed on a SOAP response message, the entire ap-
plication protocol should include a challenge-and-response scheme. Although
performing attestation signature on each message requires extra processing
power on each party, this mechanism allows verifying the latest state of the
attested platform without the need to maintain shared secret keys between
peers. An attestation credential should be sent to the attestation requester
when it needs a new credential for verifying the attestation signature, but the
credential can be re-used until it expires or is revoked. An attestation creden-
tial may be valid even for multiple attested platforms as long as they have
identical integrity measurements.

15.6.5 Example: Pushed Validation with PCR Obfuscation

ws-* specifications are defined to be building blocks that can be composed
together to meet specific requirements. Likewise, ws-Attestation profile is
intended to be a flexible set of building blocks. However, in order to illustrate
its usage, we review an example scenario with one particular combination of
the profile and a model.

In this scenario, the attested platform (AP) wants to prove its platform
integrity to the attestation requester (AR), but does not trust AR in a sense
that AR might misuse AP’s configuration details. On the other hand, the
AR requires verifying platform integrity of AP on each message exchange, to
make sure that the state of AP has not been changed into unexpected state
as of the time of message exchange. Presumably, attestation and validation
are heavy processes and should be performed as few as possible.

In order to meet these requirements, we employ the following steps as
shown in Fig. 15.3. (Note that for the sake of simplicity, we use only one PCR
in this example while actual attestation may deal with multiple PCRs.)

1. In the integrity measurement phase, AP uses PCR obfuscation technique
to randomize the values in PCR. After trusted bootstrap finishes, the
original PCR value is PCRi, where i is the number of components that
have been measured by the PCR. An attacker may infer exact platform
configuration from PCRi. Then AP extends PCRi with a random value

458 S. Yoshihama et al.

AR AP

VS

1. [PMD, PCRi+1]AIK

pcr
1
: ……

…

pcr
i
: ……

salt: ……

PMD

2. Cred

3. n

4. Cred, [n, PCRi+1]AIK

Fig. 15.3. Pushed validation with PCR obfuscation

salt, and also records the salt value into the measurement log. Result-
ing PCRi+1 is randomized and no detailed configuration can be inferred
from it.

2. AP requests VS to issue an attestation credential for the PMD (including
the measurement log) of the AP. AP’s intention is to present the attes-
tation credential to any party to prove its security properties, without
showing detailed configuration information.

3. When VS receives a PMD from AP, it first verifies integrity and trust-
worthiness of each component in the measurement log. The random value
extended into PCR will be ignored in this phase, as it is marked as salt
in PMD. Second, VS verifies that the hash chain derived from the mea-
surement log, including the salt, matches the PCR value PCRi+1 in the
attestation signature; i.e., the measurement log is not altered. Third, VS
validates any additional properties measured by agents and recorded into
PMD. Finally, VS generates an attestation credential which asserts val-
idation result as particular security properties, and those properties are
to be associated with particular set of PCR values, and then sends the
credential back to AP. Note that the PCR value in the attestation cre-
dential is obfuscated with salt, thus nobody can infer the precise platform
configuration from this value.

4. AP sends the attestation credential to AR to present its security proper-
ties and the PCR values that the properties are associated with. When
sending application level messages, AP signs each message with the at-
testation signature with PCRi+1, to prove the PCR values as of the
signature.

5. Upon reception of each application level message, AR verifies the signa-
ture as if it is an ordinary digital signature over the message (which might
also include a challenge from the AR), with the specific attestation signa-
ture algorithm as defined in this chapter. Then AR verifies that PCRi+1

15 ws-Attestation 459

in the signature matches the PCR values in the attestation credentials,
thus the security properties asserted in the credential is still effective as
of the message generation.

15.7 Prototype

Figure 15.4 shows the architecture of the attested platform.
The integrity of the Linux OS is measured by the modified boot loader,

and loadable modules and executables are measured by IMA [24]. The mea-
surements (SHA1 hash values of files) are stored in PCRs as well as in the
kernel-held store measurement log (SML).

Linux Intrusion Detection System (LIDS) [16] is used to improve the OS
level security. LIDS consists of a kernel patch and administration tools which
enhances the OS security by enforcing Mandatory Access Control (MAC)
policies on operating system resources.

The prototype service is implemented in Java, and runs on the OSGi
(Open Service Gateway initiative) [18] platform, which is an open-standard
framework for Java-based applications and services. We extended IBM Service
Management Framework (SMF) [14], one of the OSGi implementations, to
measure each bundle JAR file when it is loaded and record the measurement
into PCR and the log.

We also extended the ws-OSGi, a light-weight SOAP/ws-Security engine
for OSGi platforms, to support the attestation signature and tokens described
in Sect. 15.3. The attestation signature and verification operation are imple-
mented as a crypto provider of Java Cryptography Extension (JCE) [15] and
communicates with TPM via TCG Software Stack (TSS) [25]. The WS-
Security engine can switch between an ordinary RSA signatures and the at-
testation signature simply by specifying the signature algorithm and the key
storage as a set of options.

Fig. 15.4. Prototype attested platform

460 S. Yoshihama et al.

The attestation requester and the validation service are also implemented
as services on the OSGi platform and communicate each other using the ws-
Trust protocol. PMDs returned by the attested platform consists of stored
measurement log in the XML format, while an attestation credentials are
implemented as a SAML attribute assertion signed by the validation service.
See the appendix for sample SOAP messages.

15.7.1 Validation Service and Integrity Database

The validation service implements a Web services interface which receives
PMD and returns an attestation credential that contains the validation result
of the PMD.

Our validation service prototype provides a database which is used for
making informed decisions as to the integrity and quality of each component
represented by an integrity metrics. This allows attestation verifiers to query
the integrity and vulnerability of each measured component.

Many operating systems support mechanisms to distribute software com-
ponents and patches in precompiled packages. For instance, RedHat’s Package
Manager (RPM) is the standard way of distributing and deploying compo-
nents of RedHat’s Linux distribution. When a different version is distributed,
the executable images in the package almost always have a new hash value.
Thus, the exact version of an RPM package can often be deduced from the
hash values of its executable files.

A relatively recent endeavor in platform security is the Online Vulner-
ability and Assessment Language (OVAL) [17], sponsored by MITRE and
supported by various operating system vendors, including RedHat [21]. OVAL
is a language for expressing the preconditions necessary for a vulnerability to
exist. Although the exact semantics differ depending on the operating system
platform, the RedHat variant references particular RPM packages.

A hash database of RPM packages was built by simply unpackaging
RPMs and generating hash values of all ELF executables. By parsing OVAL
vulnerability descriptions and correlating these with RPM package versions,
we would be able to deduce which executable hash values would indicate the
presence of vulnerabilities.

We found that a verifier with a database like the one could verify the
RPM-providence of all the executable images loaded. Furthermore, by cross-
referencing with OVAL vulnerabilities, they could determine the presence of
vulnerabilities, merely from the hash values.

The integrity database prototype is built on DB2 and queried by the vali-
dation service by SQL over JDBC. The integrity database currently supports
RPM packages only; data entries are generated from RPM package reposi-
tory for RedHat Enterprise Linux 3 (REL3) and OVAL repository for this
OS, thus capable of validating integrity of REL3 systems (Fig. 15.5).

15 ws-Attestation 461

Fig. 15.5. Integrity database ER diagram

15.8 Discussion

In this section, we discuss how Ws-Attestation contributes in achieving our
design objectives.

15.8.1 Performance of Attestation

We refer to an attestation with full PMD a “full attestation” and an attes-
tation with an attestation token a “token-based attestation.” Our proposal
assumes that full attestation is required to fine granular validation of precise
state of the attested platform, but it is expensive in terms of computational
cost. So light-weight token-based attestations can replace full attestation in
each application message. Therefore, performance difference between a full at-
testation and a token-based attestation signifies the performance improvement
achieved by this proposal.

Time required for full attestation is Tfa = msgcomp + pmdcomp + asgen +
tr+ps+asver +pmdver , where msgcomp and pmd comp are the time required for
composition of SOAP message and PMD respectively, asgen is time required

462 S. Yoshihama et al.

for generating an attestation signature, tr is time required for transmission,
ps is time required for message parsing, asver is time required for verifying
attestation signature, and pmd ver is time required for validating PMD.

Time required for token-based attestation is Tta = msgcomp + atcomp +
asgen + tr + ps + asver + atver , where atcomp is the time required for compo-
sition of an attestation token, and atver is the time required for verifying an
attestation token.

Therefore, performance difference between a full attestation and a token-
based attestation is (pmd comp −atcomp)+ (pmd ver −atver). The performance
difference between pmd comp and atcomp usually depends on how much over-
head it costs to collect information for PMD. Since a PMD consists of mea-
surement log and other information, it requires access to stored measurement
log in files and BIOS memory. Caching or precollection mechanisms may be
used to optimize composition of PMD. On the other hand, composition of an
attestation token does not require much processing, since the same attestation
token can be reused for every transaction.

Verification of a PMD takes significantly more time than verification of
an attestation token, as it requires accessing validation database for looking
up semantics of measurement hash values. In our first prototype, verification
of a PMD with approximately 100 hash values took more than a minute,
because of the overhead of the 100 database queries. This was significantly
reduced by using stored procedure to look up all hash values in one query.
Still, access to database takes about a second in our environment. Validation
of an attestation token is quicker, as it does not require any network access
but just parsing the token and checking the properties stored in it. Therefore,
we can safely say that the token-based attestation is quicker than the full
attestation.

Although it can provide fine-granularity, token-based attestation does not
provide much of performance benefit compared to the binary attestation of
TCG, since most performance overhead is caused by the generation of an
attestation signature, which is a 2048 bits RSA signature generated by TPM.
Additional performance improvement, in a long-running transaction, can be
achieved by adopting WS-SecureConversation [4] to bind the attestation token
into the secure messaging context using a light-weight symmetric key signature
algorithm (such as HMAC).

15.8.2 Vulnerability Detection

The architecture combining TCG trusted boot, IMA, allows measuring all
native applications running on the platform. In addition, supporting measure-
ment at the OSGi framework allows each JAR file to be measured when being
loaded. Therefore, proposed scheme allows fine-grained and dynamic measure-
ment of the platform integrity, which enables detection of vulnerabilities or
malicious software in timely manner. If malicious code runs after an attesta-
tion credential is obtained, the presence of the malicious code can be detected

15 ws-Attestation 463

from the latest PCR value included in the attestation signature. In addition,
the platform measurement description (PMD) in our architecture can be eas-
ily extended to include any finer-granular information measured by software
agents. Examples of non-TPM measurement include the Java security policy,
or system properties such as the minimum length and the maximum lifetime
of the administrator’s password.

However, still some problems exist in the current proposal.
First, it provides weak binding between integrity measurements and an

entity involved in a transaction. For example, when an attestation proves
that the platform runs a genuine application and a (potentially) malicious
application, it is difficult to assure which application is the originator of the
messages. This leads to the “all-or-nothing” policy, in which all applications
cannot be trusted when there is any potentially malicious components present
on the same platform. Strong isolation of execution environment for each
application and binding between attestation and the execution environment
would be required to prevent such overly strict policy.

Second, the current architecture only deals with the trustworthiness of
known components that are either in a black-list or in a white-list. However,
in reality, many Web services are running custom-made applications which
potentially have unknown vulnerabilities. One of the potential solutions for
this problem is to have a distributed trusted computing base (TCB) among
services. That is, all services run a common middleware (or one of a few
common middleware) as a distributed TCG, which can confine application
behavior with a given policy. Through integrity attestation, each service proves
not only integrity of the TCB but also which policy is being enforced. Trusted
Virtual Domains [7, 29] envisions such an architecture for establishing trust-
based distributed coalition.

15.8.3 Attestation Supporting Infrastructure

The current prototype uses OVAL database as the source of vulnerability in-
formation. An OVAL document consists of a set of tests for detecting vulner-
abilities. An OVAL document consists of two type of tests: to cheek whether
particular components exist on the platform and to find the configuration pa-
rameters of the platform. Combination of these two types of tests enables to
make intelligent decision on vulnerability presence. We utilize OVAL only as
a source of the vulnerability information, thus the information about config-
uration parameters is not utilized. This introduces false-positives, since some
vulnerability may exist only when a particular version of the component runs
with particular configuration parameters. The other problem of OVAL is
that although it is a comprehensive vulnerability database which is based on
unique numbering of vulnerability in Common Vulnerabilities and Exposures
(CVE), the support of operating systems is limited. OVAL scheme consists of
two parts: the core scheme which is generic among all platforms and platform
specific schemas. At the time of writing this chapter, schemas for Cisco IOS,

464 S. Yoshihama et al.

UNIX, HP-UX, Debian Linux, Red Hat Linux, Apple Macintosh, Sun So-
laris, and Microsoft Windows were released. However, vulnerability definition
of only three platforms, i.e., Windows, Red Hat Linux and Sun Solaris, were
released. Since timely update of maintenance of vulnerability information re-
quires contribution of OS vendors, we still need to wait for emergence of the
eco-system for the supporting infrastructure to mature.

15.9 Related Work

Related work includes previous efforts to secure Web services interactions
and establish trust relationship between parties measuring, reporting, and
verifying system integrity.

As discussed earlier, various ws-* specifications have been defined or being
defined [13] for protecting interaction on Web services and communicating
trust models. However, current specifications are concerned only with identity-
based trust model and do not deal with platform integrity–based trust. ws-
Attestation leverages flexible ws-Trust framework to communicate platform
integrity metrics and assertions in an effective manner.

ws-Policy [2] is a generic framework for expressing policies of web services,
and ws-SecurityPolicy[10] defines a set of vocabulary for expressing policies
on how to protect Web services messages. They are concerned with messaging
level security, but new set of vocabulary can be defined in future for expressing
requirements on state of the platform which behaves on behalf of the service
provider and the requester.

The AEGIS system [1] provides secure bootstrapping architecture on PC
system that maintains integrity chain from the lowest trustable layer of a
system. Secure bootstrap is different from trusted bootstrap in a sense that
its objective is not to allow remote verification of the system integrity; in
the secure bootstrapping, the system aborts bootstrap process upon integrity
check failure.

Sailer et al. leverages TCG in Integrity Measurement Architecture (IMA)
[24], to enhance the role of the TPM to measure not only static state of
a system but also dynamic state. IMA is implemented as a Linux Security
Module to measure each executable, library, or kernel module upon loading
and record the SHA1 hash values into TPM and the log. As mentioned earlier,
we leverage TCG and IMA to build Linux-based attested platforms.

The work of Sailer [23] utilizes the integrity measurements and attesta-
tion to protect remote access points and to enforce corporate security policies
on remote clients in a seamless and scalable manner. Cisco and IBM have
announced an enterprise network security solution based on their current
products: Cisco’s Network Admission Control (NAC) protects the network
infrastructure by enforcing security policy compliance on all devices seek-
ing to access network computing resources. The integrated security solution
leverages IBM Tivoli Compliance Manager (TSCM) which inspects device

15 ws-Attestation 465

configurations, thus denies network access to the devices that are not com-
pliant to the corporate security policies. The compliance checks are based on
software agents (e.g., whether anti-virus software is up to date, or the OS is
running the latest software patches), but NAC’s extensible architecture would
allow incorporating further attestation mechanisms in the future.

Terra [6] realizes isolated trusted platforms on top of a virtual machine
monitor, and allows attestation by a binary image of each virtual machine,
e.g., virtual disks, virtual BIOS, PROM, and VM descriptions.

Recent efforts on mitigating drawbacks of TCG attestation include a pro-
posal [8], which leverages language-based security and virtual machines to
enable semantic attestation, e.g., attestation of dynamic, arbitrary, and sys-
tem properties as well as behavior of the portable code.

Property-based attestation [22] proposes an attestation model with a
trusted third party that translates low-level integrity information into a set
of properties.

This chapter leverages prior work and defines substantial mapping to the
ws-Security framework. Our contribution includes (1) extension of integrity
measurement architecture [24] into upper layers, especially Java applications,
(2) definition of ws-Attestation profile that works on top of existing ws-
Security standards with the ability to attest fine-grained system configuration
while protecting integrity privacy, and (3) a proposal for attestation support-
ing infrastructure.

15.10 Conclusion and Future Direction

This chapter presents our proposal on ws-Security support for attestation.
Although attestation is a generic technique to allow remote verification of
platform integrity, our proposal is based on TCG, which was the most
promising and available technology at time of writing. This chapter shows
a set of profiles that seamlessly works on existing ws-Security standards. On
top of the ws-Trust protocol, attestation information can be exchanged as
two forms of tokens; i.e., the platform measurement description that con-
veys fine granular and semantic information, and the attestation credential
that binds low-level integrity measurement to high-level property assertion.
Using these tokens, the attested platform can prove its properties to re-
questers with little performance overhead. We also take privacy protection
into account, so that the configuration privacy of the attested platform is
protected from potentially distrusted challengers and allows only high-level
properties to be reported. The integrity database, which incorporates in-
formation on binary measurements and vulnerabilities of deployed package
software, provides base for efficient, accurate, and fine-granular attestation
validation.

466 S. Yoshihama et al.

References

1. W.A. Arbaugh, J. Farber, and J.M. Smith. A secure and reliable bootstrap
architecture. In IEEE Computer Society Conference on Security and Privacy,
pp. 65–71, 1997.

2. BM, BEA Systems, Microsoft, SAP AG, Sonic Software, and VeriSign. Web
services policy framework (ws-policy), Sep 2004.

3. Cert/cc statistics 1988-2005. Accessed 2005. http://www.cert.org/stats/

cert_stats.html.
4. IBM et al. Web services secure conversation language (ws-secureconversation),

Feb 2005.
5. IBM et al. Web services trust language (ws-trust), Feb 2005.
6. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual

machine-based platform for trusted computing. In 19th ACM Symposium on
Operating Systems Principles, 2003.

7. John L. Griffin, Trent Jaeger, Ronald Perez, Reiner Sailer, Leendert van Doorn,
and Ramon Caceres. Trusted virtual domains: Toward secure distributed ser-
vices. In Workshop on Hot Topics in System Dependability, 2005.

8. V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation — a vir-
tual machine directed approach to trusted computing. In 3rd Virtual Machine
Research and Technology Symposium, May 2004.

9. IBM. Web services federation language (ws-federation), Jul 2003.
10. IBM, Microsoft, RSA Security, and VeriSign. Web services security policy lan-

guage (ws-securitypolicy).
11. IBM, BEA Systems, Microsoft, SAP AG, Computer Associates, Sun Mi-

crosystems, and webMethods. Web services metadata exchange (ws-
metadataexchange), Sep 2004. http://www-128.ibm.com/developerworks/

library/specification/ws-mex/.
12. IBM, BEA Systems, Microsoft, Arjuna, and Hitachi. Web services transactions

specifications, Nov 2004.
13. Microsoft IBM. Security in a web services world: A proposed architecture

and roadmap, Apr 2002. http://www-128.ibm.com/developerworks/library/
specification/ws-secmap/.

14. Ibm service management framework. http://www-306.ibm.com/software/

wireless/smf/.
15. Java cryptography extension (jce). http://java.sun.com/products/jce/.
16. Linux intrusion detection system (lids). http://www.lids.org/.
17. Open vulnerability and assessment language. http://oval.mitre.org/.
18. OSGi alliance. http://www.osgi.org/.
19. W3C Recommendation. Soap version 1.2, Jun 2004. http://www.w3.org/TR/

soap/.
20. W3C Candidate Recommendation. Web services description language

(wsdl) version 2.0 part 0: Primer, Mar 2006. http://www.w3.org/TR/2006/

CR-wsdl20-primer-20060327/.
21. Redhat enterprise linux. http://www.redhat.com/.
22. A. Sadeghi and C. Stüble. Property-based attestation for computing platforms:

Caring about properties, not mechanisms. In 2004 Workshop on New Security
Paradigms (NSPW 2004), pages 67–77, 2004.

15 ws-Attestation 467

23. R. Sailer, T. Jaeger, X. Zhang, and L. Van Doorn. Attestation-based policy
enforcement for remote access. In 11th ACM Conference on Computer and
Communications Security, pages 308–317, Oct 2004.

24. R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation
of a tcg-based integrity measurement architecture. In 13th USENIX Security
Symposium, pages 223–238, Aug 2004.

25. Tcg software stack specification version 1.2. http://www.trustedcomputing.

org/specs/TSS.
26. Tcg specification architecture overview, revision 1.2. Trusted Computing Group,

Apr 2004. Available at https://www.trustedcomputinggroup.org/groups/

TCG_1_0_Architecture_Overview.pdf.
27. Trusted computing platform alliance main specification, version 1.1b. Trusted

Computing Group, Feb 2002. https://www.trustedcomputinggroup.org/

specs/TPM.
28. Uddi spec technical committee draft, version 3.02, Oct 2004. http://www.

oasis-open.org/.
29. Yuji Watanabe, Sachiko Yoshihama, Takuya Mishina, Michiharu Kudo, , and

Hiroshi Maruyama. Bridging the gap between inter-communication boundary
and inside trusted components. In 11th European Symposium on Research in
Computer Security(ESORICS 2006), LNCS. Springer, 2006.

30. Web service security: Soap messaging security 1.0 (ws-security 2004). OASIS
Standard 200401, Mar 2004.

Appendix

1 <S:Envelope xmlns:S=" . . . " xmlns=" . . . / s e c e x t " xmlns:wsu=" . . . / u t i l i t y "

2 xmlns:wst=" . . . ">

3 <S:Header>

4 <wss :S ecu r i ty>

5 <wsse:BinarySecur ityToken wsu:Id=" t a r g e t A I K "

6 ValueType=" . . . X 5 0 9 v 3 ">

7 < !−− . . . B i n a r y e n c o d e d c e r t i f i c a t e o f t h e AIK . . . −−>

8 </wsse:BinarySecur i tyToken>

9 <t cg :At te stat ionToken Id=" m y M e a s u r e m e n t ">

10 <tcg:Measurement ValueType=" t c g : P C R C o m p o s i t e "

11 Encoding=" x s d : h e x B i n a r y ">

12 00020A010000003C770FDFE8CD1CA4AEE432B818DBE. . .

13 </ tcg:Measurement>

14 <wsse :Secur i tyTokenReference>

15 <wsse :Ref er ence URI=" # t a r g e t A I K " />

16 </wsse :Secur i tyTokenReference>

17 </ tcg :At tes tat ionToken>

18 <ds : S i gna tu re>

19 <ds : S i gned In f o>

20 <ds :Canonica l i zat ionMethod

21 Algorithm=" h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / 1 0 / x m l - e x c - c 1 4 n # " />

22 <ds:SignatureMethod

23 Algorithm=" h t t p : / / t r u s t e d c o m p u t i n g g r o u p . o r g / 2 0 0 5 / 0 3 /

24 r s a _ p c r " />

25 <ds :Re fe r ence URI=" # b o d y ">

26 <ds:Transforms>

27 <ds:Transform

28 Algorithm=" h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / 1 0 / x m l -

468 S. Yoshihama et al.

29 e x c - c 1 4 n # " />

30 </ds:Transforms>

31 <ds:DigestMethod

32 Algorithm=" h t t p : / / w w w . w 3 . o r g / 2 0 0 0 / 0 9 / x m l d s i g

33 # s h a 1 " />

34 <ds :Dige stVa lue>

35 LyLsF094hPi4wPU . . .

36 </ ds :Diges tVa lue>

37 </ ds :Re fe r ence>

38 </ ds :S i gned In f o>

39 <ds :S ignatureValue>MC0CFFrVLtRlk = . . .</ ds:S igna tureValue>

40 <ds :KeyInfo>

41 <wsse :Secur i tyTokenReference>

42 <wsse :Re fe r ence URI=" # m y M e a s u r e m e n t " />

43 </wsse :Secur i tyTokenReference>

44 </ ds :KeyInfo>

45 </ ds :S i gna tu re>

46 </wss :S ecu r i ty>

47 < !−− . . . −−>

48 </S:Header>

49 <S:Body>

50 <wst:RequestSecurityToken>

51 <wst:TokenType>s aml :Asse r t i on</wst:TokenType>

52 <wst:S ignCha l l enge>

53 <wst:Chal l enge>Huehf . . .</wst :Chal l enge>

54 </wst :S ignChal l enge>

55 <wst:Support ing>

56 <xxx:PlatformMeasurementDescription>

57 < !−− p l a t f o r m meas u r emen t d e s c r i p t i o n −−>

58 </ xxx:PlatformMeasurementDescript ion>

59 </wst :Support ing>

60 </wst:RequestSecurityToken>

61 </S:Body>

62 </S:Envelope>

Listing 15.1. Message requesting for an Attestation Credential

1 <S:Envelope xmlns:S=" . . . " xmlns=" . . . / s e c e x t " xmlns:wsu=" . . . / u t i l i t y "

2 Xmlns:wst=" . . . ">

3 <S:Header>

4 <wss :S ecu r i ty>

5 <wsse:BinarySecur ityToken wsu:Id=" v p K e y "

6 ValueType=" . . . X 5 0 9 v 3 ">

7 . . . Binary encoded c e r t i f i c a t e o f the V e r i f i c a t i o n

8 Se rv i c e s Key

9 </wsse:BinarySecur i tyToken>

10 <ds : S i gna tu re>

11 <ds : S i gned In f o>

12 <ds :Canonica l i zat ionMethod

13 Algorithm=" h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / 1 0 / x m l - e x c -

14 c 1 4 n # " />

15 <ds:SignatureMethod

16 Algorithm=" h t t p : / / w w w . w 3 . o r g / 2 0 0 0 / 0 9 / x m l d s i g #

17 r s a - s h a 1 " />

18 <ds :Re fe r ence URI=" # b o d y ">

19 <ds:Transforms>

20 <ds:Transform

21 Algorithm=" h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / 1 0 / x m l - e x c -

22 c 1 4 n # " />

23 </ds:Transforms>

24 <ds:DigestMethod

25 Algorithm=" h t t p : / / w w w . w 3 . o r g / 2 0 0 0 / 0 9 / x m l d s i g #

15 ws-Attestation 469

26 s h a 1 " />

27 <ds :Dige stVa lue>

28 LyLsF094hPi4wPU . . .

29 </ ds :Diges tVa lue>

30 </ ds :Re fe r ence>

31 </ ds :S i gned In f o>

32 <ds :S ignatureValue>MC0CFFrVLtRlk = . . .</ ds:S igna tureValue>

33 <ds :KeyInfo>

34 <wsse :Secur i tyTokenReference>

35 <wsse :Re fe r ence URI=" # v p K e y " />

36 </wsse :Secur i tyTokenReference>

37 </ ds :KeyInfo>

38 </ ds :S i gna tu re>

39 </wss :S ecu r i ty>

40 </S:Header>

41 <S:Body>

42 <wst:RequestSecurityTokenResponse>

43 <wst:TokenType>s aml :Asse r t i on</wst:TokenType>

44 <wst:SignChal lengeResponse>

45 <wst:Chal l enge>Huehf . . .</wst :Chal l enge>

46 </wst:SignChal lengeResponse>

47 <wst:RequestedSecurityToken>

48 <s aml :Asse r t i on saml :Assert i onID=" . . . " s aml : I s s u e r=" . . . "

49 s aml : I s s u e In s t an t=" . . . ">

50 <saml :Attr ibuteStatement>

51 <s aml :At t r ibute saml:AttributeName=" t r u s t e d ">

52 <saml :Attr ibuteValue>

53 true

54 </ saml :Attr ibuteValue>

55 </ saml :At t r ibute>

56 <s aml :At t r ibute saml:AttributeName=" p c r ">

57 <saml :Attr ibuteValue>

58 00020A010000003C770FDFE8CD1CA4AEE432B818DBE

59 </ saml :Attr ibuteValue>

60 </ saml :At t r ibute>

61 </ saml :Attr ibuteStatement>

62 </ s aml :Asse r t i on>

63 </wst:RequestedSecur ityToken>

64 </wst:RequestSecurityTokenResponse>

65 </S:Body>

66 </S:Envelope>

Listing 15.2. Response message for returning a SAML assertion as an Attestation
Credential

Index

abstraction, 123
conservative, 123

existential, 123, 139
function, 138

predicate abstraction, 123
refinement, 123

Abstraction Level, 245

Accessibility, 241
ActiveBPEL, 242, 243, 262

Additional Information, 3
adoptability, 245

alias analysis, 140
AMNESIA, 387

Analysis, 108
Anna, 241, 249

APP, 241
architecture, 238

Aspect-oriented Programming, 262
AspectJ, 262

assertion checking, 245
assertion language, 241
assertions, 249

assumptions, 274
attestation, 441, 446

platform integrity attestation, 441
remote attestation, 443

Attestation Requester, 450
Attested Platform, 449

Audit, 400
Authentication, 397, 400–403, 408, 419,

425–426
by asymmetric cryptography, 401
data origin, 421

example, 424
mutual, 400
of client, 408
security token, 402

Authorization, 397, 400, 408, 435
automated synthesis, 307, 318
automation, 245
Availability, 241
average delay, 296

Basic Security Profile (BSP), 398, 410
Basic Service Profile (BSP), 412
Behaviour Analysis, 89
behavioural properties extractor, 269
Binding, 239
black boxes, 251
Bohrbug, 428
Boolean program, 138
Bounded Model Checking, 139
BPEL, 12, 17, 19–21, 46, 48, 150, 242,

255, 259, 309
BPEL2, 250, 255
BPEL2PN, 20
BPEL4WS, 100

Example, 101
Structure, 100
Translation to FSP, 101

BPELUnit, 150, 156, 162
Extension, 166
Mocking, 165

BSP, 402, 414, 417, 423
conformance, 415
profiling, 416

472 Index

security, 416–417
testability, 415

Buffer Overflow Exploit, 422
Business Process Execution Language,

150

capture
replay, 221

capture/replay, 213
choreographic assumptions, 307
choreography, 242
CLiX, 257
Collaboration Paradigms, 242
Colombo, 259, 260
Common Gateway Interface, 366
component, 238
composed service, 308
Composition, 238, 396, 398, 406, 433
composition dimension, 150
concurrency, 122
Confidentiality, 397, 399–403, 408, 414,

418, 425–426, 436
of policy, 435

Configuration manager, 255, 256
conformance checking, 45, 46
continuous validation, 1
continuous verification, 239
contract, 206, 218
control flow graph, 136
Conversation protocols, 64
Conversations, 65

Message contents, 73
Realizability, 71
Realizability analysis, 73, 76
Synchronizability, 68
Synchronizability analysis, 70, 75

counterexample, 123
Crash-Only, 427
Cremona, 259
Cross-Site Scripting, 421
Cross-site Scripting, 373
Crypography, 400–401
Cryptography, 399

asymmetric, 401

d-delay, 296
data analyzer, 254
database, 122
DecSerFlow, 12, 23, 24, 32, 36, 39

Denial of Service, 399, 418
deployment context, 271
deployment time, 250
derived events, 284
Design

Specification
LTS (of Service Interaction Design),

99
Message Sequence Charts (MSC),

96, 97
Design by Contract, 241, 249
deviation viewer, 270
Digital Signature, 400
Direct Anonymous Attestation (DAA),

448
Discovery, 239
distributed ownership, 6
dynamic analysis, 379
Dynamic Monitoring, 249
dynamism, 239
Dynamo, 249, 251, 254, 257, 262

EC-Assertion, 267
Eiffel, 249
embedded web application frameworks,

368
Encryption, 400
Engineering

WS-Engineer
Steps in analysis, 109

WS-Engineer Approach, 92
error, 342, 346, 348, 349
Error Condition, 152
ETTK, 259
Event Calculus, 267
event calculus, 257
event receiver, 269
eventSource, 273
evolution, 205

scenarios, 207
Existential quantifier, 254
existential quantifiers, 251
expressiveness, 245
External analyzers manager, 255, 256
external data, 243
External Variables, 252
External variables, 252

failure, 342, 345, 352, 353

Index 473

model, 343, 346–348
probability, 341, 345, 348, 350, 351,

354, 359
fault, 342, 350, 351
filename injection, 373
Finite State Processes (FSP), 93

Operators, 94
first-order logic, 245
Forged Claim, 399
frequency of events, 295
Functional Correctness, 246, 247

GlassFish, 259, 261
GRAAP, 259
graph transformations, 180

conflicts, 187
dependencies, 187
matching, 189
multi objects, 183
negative pre-conditions, 181
translation to JML, 191

Heisenbug, 428
high-quality web services, 175
http://www.astroproject.org, 319

Identification, 397, 434
IETF, 404
Implementation

Compositions, 100
Integrity Database, 450
Internal Variables, 251
interpreter injection, 371
invariants, 249
Invasiveness, 244
Invoker, 256
ISO, 404

J2EE Management, 261
Java Management Extensions, 261
JML, 190, 249

post-conditions, 192
pre-conditions, 192

JUnit, 206, 212, 214

labeled Kripke structure, 125
Labelled Transition Systems (LTS), 93
LDAP, 420
Linear Temporal Logic, 23, 24, 32, 36,

319

low level events, 243

Man-in-the-Middle, 399, 418
Message Alteration, 399
Message Integrity, 425–426
Message Replay, 399
Model Checking, 123
model-checking, 245
Models, 93, 96, 99, 102–104, 108, 110,

111, 113, 114
Composition Interactions, 102

monitor, 269
monitoring, 237, 262

assumption monitor, 313, 323
client side, 189
domain monitor, 313, 321
model-driven, 190, 193
requestor side, 190

monitoring console, 270
Monitoring Data, 243
Monitoring Definition File, 250
monitoring directive, 245
Monitoring Manager, 250, 254
Monitoring manager, 256
monitoring manager, 269
monitoring policies, 271
monitoring service flows, 39
monitoringMode, 273

non intrusive monitoring, 267

OASIS, 404
WS-Security, 397, 402, 403, 412, 416

OCL, 245
orchestration, 242
organizational dimension, 150
OWL-S, 241

parallel composition, 134
Performance, 241
Petri nets, 12, 14, 16, 20
PHP, 124
Pi calculus, 12
Pixy, 383
PKI, 420
Planning, 258
Platform Configuration Registers

(PCR), 444
obfuscation, 456

474 Index

Platform integrity measurement, 444
Platform Measurement Description, 451
PN2BPEL, 20
post-condition, 250, 253, 257
post-conditions, 249
post-mortem analysis, 244
pre-condition, 250, 256, 257
pre-conditions, 249
Principal Spoofing, 399
Privacy-CA, 448
proactive monitoring, 244
process mining, 12, 39–43, 47
process state data, 243
processSpecification, 272
ProM, 16, 20, 39, 42, 43, 49
Publication, 239

QoS
assertions, 206, 211, 213, 216, 218
Contract, 6

Negotiation, 6
Verification, 6

Contracts, 1
qualifying conditions, 274

race condition, 130
reachability property, 131
recorded behaviour, 285
recorded events, 284
recovery, 239, 262
regression testing

scenarios, 210
Regression Testing, 436
regression testing, 206, 207
Reliability, 242
reliability, 339–362

basics/concepts, 341, 342
information/characteristics, 341,

344–346, 348, 350, 356
internal, 344, 345, 349, 350, 355, 356
model/modeling, 341, 343, 346
on demand, 341, 343, 346, 349
prediction/estimation, 344, 348, 349,

352, 356
Requirements Monitoring, 257
response splitting, 377
Response Time, 249
Rules manager, 255, 256
run-time monitoring, 307

SAML, 398, 402, 412
SBS operation invocation events, 278
SBS operation reply events, 278
Security, 241, 248
Semantic Annotations, 431, 432
Semantic Web, 241
separation of concerns, 244
Service, 3

Abstract, 4
Composite Service, 4
composition, 396, 398, 406, 433
Concrete, 4
Stateful, 4
Stateless, 4

service
reliability, 343–346, 352, 354, 356, 359

service based system, 266
Service Composition, 4
Service composition, 62, 64
Service Consumers, 3
Service Developer, 3
Service Level Agreement, 206, 211, 216,

396, 397
Service Level Agreements (SLA), 1
Service operation invocation events, 277
Service operation reply events, 278
Service Properties, 3
Service Provider, 3
Service Registry, 3
Service Request, 3
Service Specification, 3
Service-Oriented Architecture, 2

Interactions, 96
Service-oriented Architecture, 149
session hijacking, 376
Size of the Domain, 295
SLA, 396, 397, 409–411, 427, 430
SOA, 149

reliability, 341, 343–354, 360
SOA triangle, 151
SOAP, 125, 128, 243

encryption element, 402
security header, 402
security token, 402, 417
signature element, 402

SQL, 122
SQL injection, 375
SQL Injection Exploit, 422
SqlCheck, 387

Index 475

SSL, 397, 401, 402
Standards

Business Process Execution Language
for Web Services (BPEL4WS),
100

Overview, 88
Web Services Choreography De-

scription Language (WS-CDL),
105

Web Services Description Language
(WSDL), 89

State transition system (STS), 317
static analysis, 379
SWRL, 241

taint analysis, 380
temporal logic, 245
Test

Automated Test, 153
Complexity, 152
Dependency, 152
Deployment, 152
Error Condition, 152
Integration Test, 153, 154, 169
Mocking, 165
Organizational Borders, 152
Performance, 151
System Test, 153, 154
Test-First, 153, 155
Unit Test, 152, 153, 168

test case
publication, 212

Test-First, 153, 155
testing

cost, 209, 220
data-flow analysis, 187
facet, 206, 212, 213, 219
operation sequences, 187
oracles, 188
partition testing, 185
perspectives, 208
single operations, 185

Timeliness, 244
timeliness, 240
Tivoli Composite Application Manager,

259, 261
TLS, 397, 401, 402
Tools, 115

WS-Engineer (Eclipse Tool), 115

trace analysis, 245
trusted bootstrap, 444, 447
Trusted Computing Group (TCG), 441,

444
Trusted Platform Module (TPM), 444

UDDI, 11, 406, 410, 411, 418, 421, 434
UML class diagrams, 179

boundary classes, 179
entity classes, 179

UML object diagrams, 180
unit test, 151
Universal quantifier, 253
usage profile, 341, 344, 345, 350, 355,

356

V&V, 237
Validation, 92
validation, 237
Validation Service, 450
Verification

BPEL4WS and WS-CDL, 114
Compatibility, 112
Compositions, 110
Design and Implementation Equiva-

lence, 109
MSC and BPEL4WS, 110
Obligations Analysis, 114
Port Mappings, 113
Progress Check, 112
Safety Check, 111
Techniques

Comparison, 91
verification, 237, 261
vulnerability analysis, 378

W3C, 404
weaving, 250
Web Services

Architecture, 88
Web Services Architecture (WS-A),

88
Web Services Description Language

(WSDL), 89
web services

Amazon Web Service, 196
analysis, 174
development, 176
discovery, 175, 178, 189

476 Index

functional view, 180

Kayak Paddle Guide, 196

life-cycle, 175

monitoring, 190

post-conditions, 180

pre-conditions, 180

registration, 175, 177, 183

reliable composition, 175

semantic description, 189, 197

static view, 179

testing, 174

unit testing, 185

visual contracts, 180

WebSSARI, 381

Woflan, 16

Ws-AC1, 434

access control, 434

policy language, 434

WS-Agreement, 259

WS-Attestation, 441, 443

WS-CDL, 22, 105

Example, 107

Specification, 106

Structure, 105

Translation to FSP, 107

WS-I, 412

basic security, 395
use-case, 423

WS-Policy, 259, 260, 262
WS-Security, 248, 260, 442, 450
WS-Transactions, 260
WS-Trust, 248, 442, 452, 453
WSCDL, 242
WSCoL, 249–253, 255, 257, 262
WSDL, 11
WSFL, 12
WSLA, 409–411, 427, 430
WSM, 418, 430
WSRM, 430

agent, 430
WSS, 397, 402, 403, 412, 416

X.509, 398, 402, 403, 414, 424, 426
XLANG, 12
XlinkIt, 254, 255, 257
XML, 128

canonicalization, 402
encryption, 402
firewall, 419
signature, 402, 417

XPATH, 250
XPath Exploit, 422
XSRL, 258

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

