
K.C. Chang et al. (Eds.): APWeb/WAIM 2007 Ws, LNCS 4537, pp. 534–539, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Version Management of Business Process Models in
BPMS

Hyerim Bae1, Eunmi Cho1, and Joonsoo Bae2,*

1 Department of Industrial Engineering
Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu,

Busan, Korea, 609-735
hrbae@pusan.ac.kr, oldlace@naver.com

2 Department of Industrial and Information Systems Engineering
Chonbuk National University, 664-14, Dukjin-dong, Duckjin-gu,

Jeonju, Korea, 561-756
jsbae@chonbuk.ac.kr

Abstract. BPM system manages increasing number of business processes and
the necessity of managing processes during whole process lifecycle from
process modeling to process archiving has been emerged. Despite of wide use
of the BPM system and the maturing of its technology, the main focus has been
mainly on correctly executing process models, and convenient modeling of
business processes has not been considered. In this paper, a new method of
versioning business processes is developed in order to provide users with an
easy modeling interface. Version management of a process enables a history of
the process model to be recorded systematically. In our method, an initial
version and changes are stored for each process model, and any version can be
reconstructed using them. We expect that our method enhances the convenience
of process modeling in an environment of huge number of business processes,
and thereby assists the process designer. In order to verify the effectiveness of
our method, a prototype system is presented in this paper.

Keywords: Business Process Management, Version Management, XML.

1 Introduction

A business process is represented as a flow of tasks, which are either internal or
external to the enterprise. Business Process Management (BPM) is an integrated
method of managing processes through their entire lifecycle. The BPM system is a
software system that models, defines, controls and manages business processes [6, 7].
By contrast with the simple, linear versioning methods of existing systems, the
version management method presented in this paper allows parallel versioning,
automatic detecting of changes and the option of keeping track of the change history

* Corresponding author.

 A Version Management of Business Process Models in BPMS 535

with a graphical tool. With its exactingly
developed functions, our method also
improves user convenience and
minimizes space used to store process
models. Version management, in its
broad sense, is a method of
systematically handling with temporal
features and changes in objects over
time. A version is defined as a
semantically meaningful snapshot of an
object at a point in time [5]. A version
model is used to represent a history of
changes to an object over time, or simply
records a version history of that object. The history of change is usually described
using a version graph, such as that shown in Figure 1. In a version graph, a node is a
version, and a link between two neighboring nodes is a relationship between them.
For example, version v2(o) was created by modifying a previous version, v1(o).

2 Business Process Model

In this chapter, we define the process model, which is a target object of our version
management. A business process model used in the BPM system is usually composed
of basic objects such as tasks, links and attributes[8]. Attributes describe features of
the objects. We define objects as the elements of a process model.

Definition 1. Business Process Model
A process model p, which is an element of a process model set P, consists of tasks,
links, and attributes. That is, p= (T, L, A).

● A set of tasks: T = {ti | i= 1,…, I}, where, ti represents i-th task and I is the total
number of tasks in p.

● A set of links: L = {lk= (ti, tj) | ti, tj ∈T, i≠j }, where, lk represents a link between
two tasks, ti and tj. A link represents a precedence relation between the two tasks.
That is, the link (ti, tj) indicates that ti immediately precedes tj.

● A set of attributes: A is a set of task attributes or link attributes.
1) Ai = {ti.as | s =1,…, Si} is a set of task attributes, where ti.as represents

s-th attribute of task ti and Si is the total number of ti’s attributes.
2) Ak = {lk.as | s =1,…, Sk} is a set of link attributes,where lk.as represents

s-th attribute of link lk and Sk is the total number of lk’s attributes.

3 Version Management of Business Process

This chapter explains our method of process version management. We first define a
version graph by introducing concepts of object, a version, and change types. Then,
we present a version management algorithm using check-in/check-out algorithms.

v1(o) v2(o)

v3(o)

v4(o)

Fig. 1. Version Graph

536 H. Bae, E. Cho, and J. Bae

3.1 Version Graph

In the BPM system, process design procedure is a work of defining all the process
elements introduced in Section 2 by using a design tool. In this procedure, it may be
impossible to prepare a perfect process model at once. Therefore, business
requirements for reusing the previous models have been always raised. A user can
modify a previous model to make it more complete one. After the user modifies a
process model, change of the process is defined as a set of changes to component
objects. A component object o can be a task, a link or an attribute. That is, o∈T, o ∈
L or, o ∈A.

A process version results from user’s modifications in designing a process model.
Versions are recorded using a version graph. In the version graph, a node represents a
version of a process p, which is denoted as v(p). A modification of a process includes
changes to the objects in it, and each of the changes is represented using δ. We define
a process modification as a set of object changes Δ = {δq(o) | q=1,…, Q and o∈ T, L,
A}. Applying the changes to a previous version to create a new version is represented
by ‘·’ (change operation). If the n-th version of p is derived from the m-th version of p
by applying the changes Δmn, we represent that vn(p) is equal to vm(p) · Δmn . A version
graph is defined as follows.

Definition 2. Version Graph, VG
A version graph is used to record the history of a single process. Let p denote a
process, and vm(p) the m-th version of the process. A version graph (VG) of p is a
directed acyclic graph VG = (V, E), where V and E is a set of nodes and arc
respectively.

• V = {vm(p) | m= 1, …,M}
• E = {(vm(p), vn(p)) | vm(p) ∈ V, vn(p) ∈V, vn(p) = vm(p) · Δmn}

In a version graph, if a version vn(p) can be derived from vm(p) by modifying vm(p)
repetitively({(vm(p), vk(p)), (vk(p), vk+1(p)), …, ((vk+l(p), vn(p)) }⊂E), we say that vn(p)
is ‘reachable’ from vm(p).

3.2 Combination of Changes

In general, a change can be classified into three types: adding, modifying or deleting.
In Figure 1, we consider a component object o, which is torder.adue . If a value is added
to the object, and then the value is modified into another value, the change can be
represented as follows.

 δ1(o) = ADD torder.adue(“2005-12-24”)
 δ2(o) = MOD torder.adue(“2005-12-24”, “2006-01-24”)

While designing a process, it is usual that the process is modified repetitively, and

multiple changes are created. These multiple and repetitive changes for the same
object can be represented by a single change. For example, the two changes δ1 and δ2
in the above can be combined using a combination operator, ‘◦’.

 A Version Management of Business Process Models in BPMS 537

 δnew = δ1(o) ◦ δ2(o) = ADD torder.adue (“2006-01-24”)

The combination of changes is calculated by using our rules, which are
summarized in Table 1. Reverse change (δ

-1) is used for δ and empty change (δø) is
used for the rules. Based on the combination of object changes, we can extend and
apply to combinations between sets of changes. A combination of two change sets Δ1,
Δ2 (Δ1 ◦ Δ2) is defined as a set of changes. All of the object changes are included as
elements of the set, and two changes from the two sets for the same object should be
combined into one element.

Table 1. Combination of changes

reverse change
ADD
operation ADD

-1 = DEL

DEL operation DEL
-1 = ADD

MOD
operation MOD

-1 = MOD’

combined change
ADD and DEL operation ADD DEL = ø
ADD and MOD operation ADD MOD = ADD’
DEL and MOD operation DEL ADD = MOD
MOD and MOD operation MOD MOD’= MOD”
MOD and DEL operation MOD DEL = DEL

When we apply combination operators, the following axioms are used.

• Communicative law is not valid. (δ’ ◦ δ’’ ≠ δ’’ ◦ δ’)
• Associative law is valid. (δ’ ◦ (δ’’◦ δ’’’) = (δ’◦ δ’’) ◦ δ’’’)
• De Morgan's law is valid. ((δ’ ◦ δ’’) -1 = δ’’ -1◦ δ’ -1)
• All changes are unaffected by empty change. (δ’ ◦ δø = δø ◦ δ’ = δ’)
• Associative operation between the change and reverse change is equal to empty

change. (δ’ ◦ δ -1 = δ -1◦ δ’ = δø).

3.3 Version Management Procedure

Our version management method is based on two important procedures; check-in and
check-out[2, 3]. When a user wants to make a new process model from an existing
model, he can request a previous version of the process to be taken out into his private
work area. This is called a ‘check-out’ procedure. After a user finishes modifying the
process, he may want to store it in a process repository as a new process version. We
call this a ‘check-in’ procedure. That is, check-out transfers a process model from
public storage to an individual workplace, and check-in returns the model to the
public storage.

If all of the versions of a process are stored whenever a new version is created,
storage space might be wasted. To avoid such a waste of space, we use the modified
delta method [4]. The modified delta method is implemented using our check-in/out
algorithms. The modified delta method uses the combination operators. It stores only
a root version of a process and changes, and reconstructs any version when a user
retrieves that version.

538 H. Bae, E. Cho, and J. Bae

Check-out is invoked when a user requests a certain version of a process, vm(p). It
first searches the changes from database, which are required to reconstruct the version
and combines them into a single change. Then, by applying the change to a root
version v0(p), the requested version can be reconstructed and sent to the user.

Conversely, check-in is invoked when a user returns the modified version of a
process. First, it identifies which objects were changed. Then it detects the change
types (add, modify, delete). The changes are stored as a change set, and finally the
process version graph is updated. In Figure 2, we provide flows of the two
procedures.

START

A Process vm(p) to check out is requested

Δw←{},
vw(p) ← v0(p)

Δu←a change set such that vu(p) is reachable to
vm(p), (vw(p), vu(p))∈E,and vu(p) = vw(p) · Δu

w = m

return v0(p) · Δw

END

NO

YES

(a) Check-out procedure

START

A user requests to check in
a new version vn(p)

that is checked out from vm(p)

END

(b) Check-in procedure

Identify all op’s that are modified

For each op, specify δq(op)

Record changes Δmn

Establish a change set Δ
Δmn={δq(op) | q=1,…, Q}

Update Version Graph (VGp)
V← V∪{vn(p)}

E ← E∪{(vm(p),vn(p))}

Δw← Δw ◦ Δu

Fig. 2. Flowcharts of check-out/in procedures

3.4 Prototype System

The proposed method is implemented as a module of process designer, which
implementation is a build-time function of our BPM system, called ILPMS
(Integrated Logistics Process Management System) [1]. A user designs the process
models with a process design tool and the designed process model is stored in a
process DB. The user can easily modify and change the process using the modeling
tool supported by our version management. When a user requests a process version,
the system, with the check-out function, automatically generates the requested process
version. After modifying the version delivered to the user, he checks in the newly
created version.

 A Version Management of Business Process Models in BPMS 539

4 Conclusions

In this paper, we propose a new method of process version management. Our method
enables BPM users to design process models more conveniently. Though the BPM
system is becoming increasingly essential to business information system, the
difficulty of process modeling is a significant obstacle to employing the system.
Consequently, beginners have not been able to easily design business processes using
the BPM design tool. For this reason, we presented process models that use XML
technology. If a user modifies a process model, our system detects the changes in the
XML process definition. Then, the changes are recorded and the version graph is
updated. With the version graph, we can manage history of process model change
systematically. Any version of a process can be reconstructed, once its retrieval has
been requested, by combining the changes and applying them to the initial version.
We expect that our method can be easily added to the existing BPM system and,
thereby, can improve the convenience of process modeling in an environment where a
huge number of process models should be dealt with.

Acknowledgements. This work was supported by "Research Center for Logistics
Information Technology (LIT)" hosted by the Ministry of Education & Human
Resources Development in Korea.

References

1. Bae, H.: Develpment Integrated Logistics Process Management System (ILPMS) based on
XML. PNU-Technical Paper-IS-2005-03, Pusan National University. (2005)

2. Conradi, R., Westfechtel, B.: Version Models for Software Configuration Management.
ACM Computing Survey 30(2), 232–282 (1998)

3. Dittrich, K.R., Lori, R.: A. Version Support for Engineering Database Systems. IEEE
Transaction on Softwate Engineering 14(4), 429–437 (1988)

4. Hunt, J. J., Vo, K. P., Ticky, W. F.: An Emperical Study of Delta Algorithms. In:
Proceedings of ICSE’96 SCM-6 Workshop, LNCS, vol. 1167 (1996)

5. Katz, R.H.: Toward a Unified Framework for Version Modeling in Engineering Database.
ACM Computing Surveys 22(4), 375–408 (1990)

6. Smith, H.: Business process management - the third wave: business process modeling
language (bpml) and its pi-calculus foundations. Information and Software
Technology 45(15), 1065–1069 (2003)

7. van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda. Computers
in Industry 53(3), 231–244 (2004)

8. WfMC: Workflow Management Coalition the Workflow Reference Model. WfMC
Standards, WfMC-TC00-1003 (1995), http://www.wfmc.org

	A Version Management of Business Process Models in BPMS
	Introduction
	Business Process Model
	Version Management of Business Process
	Version Graph
	Combination of Changes
	Version Management Procedure
	Prototype System

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

