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Preface

GbR (Graph-Based Representations in Pattern Recognition) is a biennial work-
shop organized by the TC15 (http://www.greyc.ensicaen.fr/iapr-tc15/) Techni-
cal Committee of the IAPR, aimed at encouraging research works in pattern
recognition and image analysis within the graph theory framework. This work-
shop series traditionally provides a forum for presenting and discussing research
results and applications at the intersection of pattern recognition, image analysis
on one side and graph theory on the other side.

Traditionally, the scientific content of these workshops covers research on
problems such as matching, segmentation, object and shape representation, and
even image processing, where using graphs is more than interesting approach: all
the later problems, and many more, may be attacked from the graph point a view.
Sometimes, coarse-to-fine representations such as graph pyramids emerge to deal
with some of the latter problems. Topological notions are also interesting in the
case of object representation. More recently, translation into the graph (or to
the string) domain of data-mining procedures usually designed for vectors (e.g.,
clustering) and the embedding of graphs in subspaces have opened new intriguing
perspectives. Related to the latter problem, the design of proper measures or
distances between graphs, trees, or between the nodes of graphs or trees, is an
interesting challenge (e.g., kernel design). These elements are contemplated in
the current proceedings.

In addition, the avenue of new structural/graphical models and structural cri-
teria (e.g., belief-propagation, specific graphs under the constellation approach,
graph-cuts) has impacted the current edition of GbR and some papers, especially
those related to segmentation, are also included in these proceedings.

Furthermore, and in connection with data-mining with graphs, the inter-
section between graph representations and machine learning motivated GbR
2007 (which was celebrated in Alicante, Spain, June 11-13) us to organize in
conjunction with the Learning from and with Graphs (http://eurise.univ-st-
etienne.fr/GBR workshop2007/) workshop (June 14) of PASCAL (Pattern Anal-
ysis, Statistical Modelling and Computational Learning), which is European Ex-
cellence Network. This one-day workshop was within the PASCAL thematic
program of Graph Theory Methods in Machine Learning. The aim of this work-
shop was, thus, to promote the collaboration between the different communities
interested in learning with and from graphs.

The papers presented in these proceedings have been reviewed by at least
two members of the Program Committee (we sincerely thank all of them and
the additional referees for their efforts). There where 54 papers from authors of
14 countries. The Program Committee selected 23 of them oral presentation and
14 as posters. The 37 resulting papers are published in this volume.
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Finally, special thanks to Luc Brun, the new president of TC 15, for his
coordination efforts.

April 2007 Francisco Escolano
Mario Vento
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Bipartite Graph Matching for Computing the

Edit Distance of Graphs

Kaspar Riesen, Michel Neuhaus, and Horst Bunke

Department of Computer Science, University of Bern,
Neubrückstrasse 10, CH-3012 Bern, Switzerland

{riesen,mneuhaus,bunke}@iam.unibe.ch

Abstract. In the field of structural pattern recognition graphs
constitute a very common and powerful way of representing patterns. In
contrast to string representations, graphs allow us to describe relational
information in the patterns under consideration. One of the main draw-
backs of graph representations is that the computation of standard graph
similarity measures is exponential in the number of involved nodes. Hence,
such computations are feasible for rather small graphs only. One of the
most flexible error-tolerant graph similarity measures is based on graph
edit distance. In this paper we propose an approach for the efficient com-
puation of edit distance based on bipartite graph matching by means of
Munkres’ algorithm, sometimes referred to as the Hungarian algorithm.
Our proposed algorithm runs in polynomial time, but provides only sub-
optimal edit distance results. The reason for its suboptimality is that
implied edge operations are not considered during the process of finding
the optimal node assignment. In experiments on semi-artificial and real
data we demonstrate the speedup of our proposed method over a tradi-
tional tree search based algorithm for graph edit distance computation.
Also we show that classification accuracy remains nearly unaffected.

1 Introduction

Graph matching refers to the process of evaluating the structural similarity of
graphs. A large number of methods for graph matching have been proposed in
recent years [1]. One idea is to consider the spectral decomposition of graphs
rather than the graphs themselves [2,3], which provides for a number of conve-
nient properties. It seems, however, that spectral methods are often rather sen-
sitive to structural errors and sometimes only applicable to unlabeled graphs in
a straight-forward manner. In other approaches, relaxation labeling techniques,
artificial neural networks, and genetic algorithms have been used to map the
nodes of one graph to the nodes of another graph such that the edge structure,
and possibly labels attached to nodes and edges, are preserved as accurately as
possible [4,5,6]. Such algorithms perform quite efficiently, but they are limited
in that they are often applicable to special classes of graphs only. Recently a
general framework for graph matching has been proposed [7]. This aproach uses
random walk based models to compute topological features for each node and

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 K. Riesen, M. Neuhaus, and H. Bunke

shows that the adoption of classic bipartite graph matching algorithms offers a
straightforward generalization of the algorithm given for graph isomorphism.

One of the most flexible methods for error-tolerant graph matching that is
applicable to various kinds of graphs is based on the edit distance of graphs
[8,9]. The idea of graph edit distance is to define the dissimilarity of graphs by
the amount of distortion that is needed to transform one graph into the other.
Using the edit distance, an input graph to be classified can be analyzed by
computing its dissimilarity to a number of training graphs. For classification,
the resulting distance values may be fed, for instance, into a nearest-neighbor
classifier. Alternatively, the edit distance of graphs can also be interpreted as
a pattern similarity measure in the context of kernel machines, which makes a
large number of powerful methods applicable to graphs [10], including support
vector machines for classification and kernel principal component analysis for
pattern analysis. The edit distance has proved to be suitable for error-tolerant
graph matching in various applications [11,12,13].

The main drawback of graph edit distance is its computational complexity,
which is exponential in the number of nodes of the involved graphs. Conse-
quently, the application of edit distance is limited to graphs of rather small size
in practice. To render the matching of graphs less computationally demanding,
a number of methods have been proposed. In some approaches, the basic idea
is to perform a local search to solve the graph matching problem, that is, to
optimize local criteria instead of global, or optimal ones [11,14,15]. In [16], a
linear programming method for computing the edit distance of graphs with un-
labeled edges is proposed. The method can be used to derivelower and upper
edit distance bounds in polynomial time.

In this paper, we propose a new efficient algorithm for graph edit distance
computation. The method is based on a (globally optimal) fast bipartite opti-
mization procedure mapping nodes, or edges, of one graph to nodes, or edges, of
another graph. To this end we make use of Munkres’ algorithm [17]. Originally,
this algorithm has been proposed to solve the assignment problem in polynomial
time. However, in the present paper we adapt the original algorithm such that
one can compute graph edit distance. In experiments (on semi-artificial and real-
world data) we demonstrate that the proposed method allows us to speed up the
computation of graph edit distance substantially, while at the same time recogni-
tion accuracy is not much affected. In Section 2, we briefly introduce graph edit
distance. In Section 3, Munkres’ algrithm for bipartite graph matching and its
extension for computing graph edit distance are described. In Section 4, we give
some experimental results achieved by Munkres’ algorithm and compare them
with results from other methods. Finally, in Section 5, we draw conclusions.

2 Graph Edit Distance

The key idea of graph matching is to define a dissimilarity measure for graphs
[8,9]. In contrast to statistical pattern recognition, where patterns are described
by vectors, graphs do not offer a straightforward distance model like the
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Euclidean distance. A common way to define the dissimilarity of two graphs
is to determine the minimal amount of distortion that is needed to transform
one graph into the other. These distortions are given by insertions, deletions, and
substitutions of nodes and edges. Given two graphs – the source graph g1 and
the target graph g2 – the idea is to delete some nodes and edges from g1, relabel
some of the remaining nodes and edges (substitutions) and possibly insert some
nodes and edges, such that g1 is finally transformed into g2. A sequence of edit
operations that transforms g1 into g2 is called an edit path between g1 and g2.
One can introduce cost functions for each edit operation measuring the strength
of the given distortion. The idea of such cost functions is that one can define
whether or not an edit operation represents a strong modification of the graph.
Hence, between two structurally similar graphs, there exists an inexpensive edit
path, representing low cost operations, while for structurally different graphs
an edit path with high costs is needed. Consequently, the edit distance of two
graphs is defined by the minimum cost edit path between two graphs. In the
following we will denote a graph by g = (V, E, α, β), where V denotes a finite
set of nodes, E ⊆ V × V a set of directed edges, α : V → LV a node labeling
function assigning an attribute from LV to each node, and β : E → LE an edge
labeling function. The substitution of a node u by a node v is denoted by u→ v,
the insertion of u by ε→ u, and the deletion of u by u→ ε.

The edit distance can be computed by a tree search algorithm, where possible
edit paths are iteratively explored, and the minimum-cost edit path can finally
be retrieved from the search tree [8,18]. This method allows us to find the op-
timal edit path between two graphs. However, its drawback is the exponential
time-complexity, which makes the algorithm applicable to small graphs only. In
this paper we propose another way of computing graph edit distance based on
bipartite graph matching.

3 Munkres’ Algorithm for Graph Matching

The process of graph matching can be seen as an assignment problem: How can
one assign the nodes of graph g1 to the nodes of graph g2, such that the overall
edit costs are minimal? For two graphs g1 and g2 with n and m nodes respectively,
there are n · (n− 1) · ... · (n−m + 1) possible assignments of which several may
be optimal. The time complexity of a brute force algorithm is therefore O(nn).

Originally, Munkres’ algorithm was proposed to solve an assignment problem
in a more sophisticated and efficient way than brute force [17]. The assignment
problem is the task of finding the best – that is the minimum-cost – assignment
of the elements of a set S1 to the elements of another set S2. One can prove
that the method of [17] finds the minimum-cost assignment of two given sets in
a time-complexity of O(n3), where n = max{|S1|, |S2|}. Applied to the problem
of graph edit distance computation, the above-mentioned sets are the nodes of
the graphs to be matched: S1 = V1 and S2 = V2. Hence, Munkres’ algorithm
can be applied to graph edit distance computation. Despite the optimality of
the minimum-cost assignment of the involved nodes, the edit path found by
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this method is only suboptimal. The reason is that edge operations are always
implied by node operations. Munkres’ algorithm finds the minimum-cost node
assignment, without considering edge edit operations. In our proposed algorithm
for graph edit distance computation, the costs of these implied operations are
added at the end of the computation. Hence, the node assignments and the
implied edge assignments found by the algorithm need not correspond to the
optimal edit path.

Formally, given two graphs g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2),
where n = |V1| and m = |V2|, Munkres’ algorithm finds the k = min{n, m} node
assignments with minimal costs. If one does not impose any restrictions on the
cost function, it may be that the edit sequence delete-insert is less expensive than
a simple substitution of nodes: (c(u→ ε)+c(ε→ v)) < c(u→ v). Whenever this
case occurs the costs for the substitution can be replaced by the costs caused by
the edit sequence delete-insert. In the remainder of this paper we assume in fact
that substitution costs are always given by the minimum-cost edit operations:
c(u→ v) = min{(c(u→ ε) + c(ε→ v)), c(u→ v)}.

Munkres’ algorithm is given in detail in Alg. 1, and Fig. 1 illustrates the
execution of the algorithm by means of an example.

3.1 Munkres’ Algorithm

In the description of Munkres’ algorithm we will use a cost matrix and distinguish
some lines (rows or columns) of the matrix and some zero elements. In the
remainder of this paper we will speak of covered or uncovered lines and starred
or primed zeros, for zeros marked with a star, and zeros marked with a prime,
respectively.

In line 1 of Alg. 1 the initial cost-matrix C is generated. Matrix elements
represent the costs of a node assignment given by a predefined cost function
c: Ci,j = c(vi → uj). The smallest element of each row is subtracted from the
actual row in line 2. This leads to a matrix in which each line contains at least
one zero element. In line 3 all zeros in a row or column with no starred zeros are
getting marked with a star. This completes the preliminary steps.

The algorithm enters STEP 1, in which all the columns containing a starred
zero are covered. If k = min{n, m} columns are covered, the algorithm has found
the k minimum-cost node assignments. Assignment pairs are then indicated by
the positions of the starred zeros in the matrix. In the example in Fig. 1 only
two columns are covered, so that we proceed with STEP 2. In this part of the
algorithm it is determined whether the algorithm continues with STEP 3 or 4.
Before switching to one of the two subsequent steps, STEP 2 possibly has to
be repeated several times. If there exists an uncovered zero in the cost-matrix,
and there is no starred zero in its row, the algorithm proceeds with STEP 3.
If there is an uncovered zero in the cost-matrix, but there is also a starred
zero in its row, some covering- and uncovering-operations have to be performed
and STEP 2 is repeated with the modified matrix. If finally the cost-matrix
contains no uncovered zeros any more, the smallest element emin is saved and
the algorithm continues with STEP 4. In the example given in Fig. 1, STEP 2
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Algorithm 1. Computation of the minimum-cost node assignement by
Munkres’ algorithm
Input: Non-empty graphs g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2),

where V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}
Output: The minimum-cost node assignment

1: Generate the n × m cost-matrix C, where each element represents the cost of a
single node assignment: Ci,j = c(ui → vj). Initialize k = min{n, m}.

2: For each row r in C, subtract its smallest element from every element in r
3: For all zeros zi in C, mark zi with a star if there is no starred zero in its row or

column
4: STEP 1:
5: for Each column containing a starred zero do
6: cover this column
7: end for
8: if k columns are covered then GOTO DONE else GOTO STEP 2 end if
9: STEP 2:

10: if C contains an uncovered zero then
11: Find an arbitrary uncovered zero Z0 and prime it
12: if There is no starred zero in the row of Z0 then
13: GOTO STEP 3
14: else
15: Cover this row, and uncover the column containing the starred zero GOTO

STEP 2.
16: end if
17: else
18: Save the smallest uncovered element emin GOTO STEP 4
19: end if
20: STEP 3: Construct a series S of alternating primed and starred zeros as follows:
21: Insert Z0 into S
22: while In the column of Z0 exists a starred zero Z1 do
23: Insert Z1 into S
24: Replace Z0 with the primed zero in the row of Z1. Insert Z0 into S
25: end while
26: Unstar each starred zero in S and replace all primes with stars. Erase all other

primes and uncover every line in C GOTO STEP 1
27: STEP 4: Add emin to every element in covered rows and subtract it from every

element in uncovered columns. GOTO STEP 2
28: DONE: Assignment pairs are indicated by the positions of starred zeros in the

cost-matrix.

has to be performed twice before switching to STEP 4. The effect of STEP 4 is
to decrease each uncovered element of the matrix by emin, increase each twice-
covered element by emin, and leave each once-covered element unaltered. All
primed and starred zeros are once-covered, so that each of these zeros are still
zeros after performing STEP 4. Moreover, there is at least one new uncovered
zero in the cost-matrix, so that STEP 2 can be repeated. In the example in Fig. 1,
STEP 2 reiterates twice before finding an uncovered zero without a starred zero
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in its row, so that the algorithm proceeds with STEP 3. In this step the algorithm
construct a special sequence S of altering primed and starred zeros, the stars
in S are deleted, and the primes of S are starred accordingly. The resulting
set of starred zeros is larger, by one, than the previous set of starred zeros.
The algorithm switches to STEP 1, and it is checked whether the starred zeros
describe a complete node assignment or not. After performing STEP 3 and going
back to STEP 1 in Fig. 1, the starred elements represent the minimum-cost node
assignment and the algorithm terminates. Note that in the example of Fig. 1 the
dimensions of the graphs to be matched are the same. In the general case, where
n > m or m > n the costs for max{0, n−m} node deletions and max{0, m−n}
node insertions have to be added to the minimum-cost node assignment.

Fig. 1. Finding the minimum-cost node assignment by Munkres’ algorithm – shown
is the 3 × 3 cost-matrix C, where each element represents the cost of a single node
assignment: Ci,j = c(ui → vj). Covered rows and columns are shaded.

3.2 Plain-Munkres and Adjacency-Munkres

Obviously, one can use the algorithm described in Section 3.1 to approximately
compute the edit distance of a pair of graphs. In this algorithm only node, but
no edge information is taken into account, i.e. no information of the adjacent
edges is used for constructing the cost matrix:

Ci,j = c(vi → uj)

In the remainder of this paper we will refer to this version of Munkres’ algorithm
as Plain-Munkres. To enhance the algorithm one can use information about
the edges adjacent to a node when the initial cost matrix is constructed in line
1. Whenever the cost of a node assignment c(ui → vj) has to be calculated
for the cost matrix, one can add the costs resulting from the minimum-cost
edge assignment for all edges connected to ui and vj . To find the minimal edge
assignment Munkres’ algorithm can be used again. Instead of the costs for node
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assignments the costs for edge substitutions are used to generate the cost matrix.
So for every entry Ci,j in the initial cost matrix one has to compute Munkres’
algorithm recursively for all the adjacent edges of ui and vj . In the remainder of
this paper we will call this method Adjacency-Munkres, because it uses the
information of the adjacent edges of the nodes to be assigned (evi stands for all
edges connected to vi and euj for all edges connected to uj):

Ci,j = c(vi → uj) + min{
∑

c(evi → euj)},

where min{
∑

c(evi → euj)} is computed by Munkres’ algorithm using a new
cost-matrix Ce with entries Ci,j = c(evi → euj).

4 Experimental Results

The method of Munkres compared to brute force methods is expected to per-
form significantly faster. Instead of an exponential time-complexity, Munkres’
algorithm finds the node assignment in polynomial time. However, one has to
keep in mind that the optimal node assignment need not be the optimal edit
path. Thus, the computation of graph edit distance by Munkres’ algorithm is
suboptimal in the sense that only approximate edit distance values are obtained.
The crucial question is whether the accuracy of the suboptimal distance remains
sufficiently accurate for pattern recognition applications.

We propose a k-nearest-neighbor classifier in conjunction with edit distance
to address the classification problems considered in this paper. Given a labeled
training set of graphs, an unknown test graph is assigned to the class that occurs
most frequently among the k nearest graphs (in terms of edit distance) from the
training set. The fundamental idea of k-nearest-neighbor classifiers is based on
the assumption that graphs of the same class are similar in their structure. In
the experiments, insertion and deletion costs are set to constant values, and
substitution costs are set proportionial to the Euclidean distance of a pair of
labels. First, we optimize these parameters on a validation set, and subsequently,
the optimized parameters are applied to the unknown test set. This validation
phase is accomplished with the optimal tree-search algorithm proposed in [8,9].
This optimal calculation of the edit distance will serve us as a reference system
(Reference method). In [19] two simple, but effective modifications of the
standard edit distance algorithm are proposed that allow us to suboptimally
compute edit distance in an efficient way. These suboptimal modifications are
referred to as Beamsearch and Pathlength. Both versions are controlled by
a parameter t, which is used to control the trade-off between suboptimality of
the distances and the matching time. The methods proposed in this paper are
also compared to these two algorithms.

4.1 Letter Database

The first database consists of graphs representing distorted letter drawings. In
this experiment we consider the 15 capital letters that consists of straight lines
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Table 1. Letter Database: Classification accuracy and average running time

Method 1-NN 3-NN 5-NN Time [ms]
Reference method [8,9] 82.0 80.7 82.7 468.0
Beamsearch (t = 100) [19] 82.0 80.7 82.0 18.0
Pathlength (t = 1.1) [19] 79.3 82.7 84.0 8.0
Plain-Munkres 81.3 84.0 ◦ 83.4 0.2
Adjacency-Munkres 82.7 84.0 ◦ 82.7 2.8

◦ Statistically significantly better than the reference system
(α = 0.05).

only (A, E, F, ...). For each class, a prototype line drawing is manually con-
structed. To obtain aribtrarily large sample sets of drawings with arbitrarily
strong distortions, distortion operators are applied to the prototype line draw-
ings. This results in randomly shifted, removed, and added lines. These draw-
ings are then converted into graphs in very intuitive manner by representing
lines by edges and ending points of lines by nodes. Each node is labeled with a
two-dimensional attribute giving its position. The graph database used in our
experiments is composed of a training set, a validation set, and a test set, each
of size 150. The letter graphs consist of 4.6 nodes and 4.4 edges on the average.
In Table 1 we give the classification accuracy of three nearest-neighbor classifiers
and the average time it takes to compute a single edit distance of two graphs. It
turns out that the speedup of all suboptimal methods is remarkable, while the
classification accuracy remains high. As a matter of fact, the accuracy is not sta-
tistically significantly worse than that of the reference system. Moreover, both
versions of Munkres outperform the reference system with a 3-NN classifier by
achieving statistically significantly better results. Note that Plain-Munkres is
more than 2000 times faster than the reference system and 40 times faster than
the subopotimal tree search variant Pathlength. The fact that suboptimal
methods can outperform exact methods concerning the accuracy is caused by
the ability of the suboptimal methods to correct misclassifications by assigning
higher costs to pairs of graphs from different classes than the exact algorithm.
To understand this phenomenon one has to distinguish between inter-class dis-
tances, that is edit distances between graphs from different classes, and intra-
class distances, that is edit distances between graphs from the same class. As
above-mentioned, there exists an inexpensive edit path between two structurally
similar graphs, while for structurally different graphs a high cost edit path is
required. By computing the edit distance by means of Munkres’ algorithm the
low cost intra-class distances remain low, while higher cost inter-class distances
remain high or even increase. This increasing of inter-class distances is the main
reason for enhancing the classification accuracy.

4.2 Image Database

For a more thorough evaluation of the classification accuracy, we apply the pro-
posed methods of Munkres to the problem of image classification. Images are
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Table 2. Image Database: Classification accuracy and average running time

Method 1-NN 3-NN 5-NN Time [ms]
Reference method [8,9] 46.3 48.2 44.4 20
Beamsearch(t = 5) [19] 48.2 50.0 44.4 6
Pathlength(t = 1.1) [19] 48.2 50.0 46.3 5
Plain-Munkres 50.0 44.4 42.6 2
Adjacency-Munkes 48.2 44.4 42.6 15

converted into attributed graphs by segmenting them into regions, eliminating
regions that are irrelevant for classification, and representing the remaining re-
gions by nodes and the adjacency of regions by edges [20]. The image database
consists of 5 classes (city, countryside, people, snowy, streets) and is split into a
training set, validation set, and test set of size 54 each. The image graphs consist
of 2.8 nodes and 2.5 edges on the average. The nearest-neighbor classification
performance and the running time of the edit distance computation are given
in Table 2. Note that in this application Adjacency-Munkres is not able to
improve the accuracy of Plain-Munkres and is much slower than all the other
suboptimal methods. We observe that the classification accuracy achieved by
Munkres’ method remains nearly unaffected when compared to the reference
method, i.e. the results of the suboptimal methods are not significantly worse
than those of the exact computation by Reference method. The speedup of
Munkres’ algorithm is again remarkable. It is ten times faster than the reference
system.

4.3 Fingerprint Database

Finally we apply the proposed algorithms to the difficult problem of fingerprint
classification. For this purpose, we construct graphs from fingerprint images of
the NIST-4 database by extracting characteristic regions in fingerprints and con-
verting the result to attributed graphs [11]. We use a validation set of size 300
and a training set and a test set of size 500 each. The fingerprint graphs con-
sist of 5.2 nodes and 8.6 edges on the average. In our experiment, we address the
4-class problem (arch, left loop, right loop, whorl). Note that for this dataset, the
exact edit distance and the distances computed by Pathlength (t = 1, 2, 3, . . .)
cannot be computed because the search tree grows too large. So the reference
system is given by the method proposed in [11]. The results in Table 3 clearly
demonstrate the power of the new algorithms proposed in this paper. One single
computation of the edit distance is more than 100 times faster than the reference
system, and the classification accuracy remains high and exceeds the results of the
reference system with the 3-NN classifiers significantly. Because of specific prop-
erties of our predefined cost function for fingerprint graphs, it is useless to run
Adjacency-Munkres. In contrast to other data sets, the edges of the finger-
print graphs yield the crucial information about the structure of a given graph.
Node attributes are not relevant and therefore the costs of all node edit opera-
tions are set to zero. Hence, the initial entries in the cost matrix C are given by



10 K. Riesen, M. Neuhaus, and H. Bunke

Table 3. Fingerprint Database: Classification accuracy and average running time

Method 1-NN 3-NN 5-NN Time [ms]
Reference method [11] 82.6 83.8 84.8 11.0
Beamsearch (t = 30) [19] 85.2 87.6 ◦ 87.4 ◦ 32.0
Pathlength (t = arbitrary) [19] – – – –
Plain-Munkres 83.6 87.2 ◦ 86.6 0.1

◦ Statistically significantly better than the reference system [11]
(α = 0.05).

– Empty entries indicate computation failure due to lack of memory.

the costs of the edge operations. Consequently, a recursive computation for the
adjacent nodes becomes unnecessary and therefore only Plain-Munkres is used
in conjunction with edit distance computation for fingerprint graphs.

Summarizing we conclude that the proposed methods based on Munkres’ al-
gorithm are remarkably faster than the exact methods for computing the edit
distance. Fortunately on all tested datasets the classification performance is not
negatively affected. The reason for good performance is that edit distances that
are increased by our suboptimal algorithms are often from graphs from different
classes. Therefore the classification accuracy does not decrease. On the contrary,
in some cases the suboptimal methods outperforms the exact ones.

5 Conclusion

One of the main problems in graph matching is that standard algorithms for
computing the similarity of graphs – e.g. tree search algorithms – are exponen-
tial in the number of involved nodes. Hence, such algorithms are applicable to
small graphs only. In this paper, we propose a novel procedure based on Munkres’
algorithm to compute the edit distance. Since our method considers the implied
edge operations only locally, the resulting edit distances are suboptimal. Despite
the suboptimality, the proposed method accomplishes the graph matching pro-
cess much faster and leaves classification rates nearly unaffected. Sometimes, the
accuracy is even higher than that of the exact method. This means that the sub-
optimality mainly leads to an increase of inter-class distances, while intra-class
distances, which are more relevant for classification, are not strongly affected.
The speedup of the suboptimal algorithm compared to exact edit distance algo-
rithms is massive. We provide an experimental evaluation and demonstrate the
usefulness of our method on semi-artificial line drawings, on scenery images, and
fingerprints.
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Abstract. Many medical applications require a registration of different
images of the same organ. In many cases, such a registration is accom-
plished by manually placing landmarks in the images. In this paper we
propose a method which is able to find reasonable landmarks automat-
ically. To achieve this, nodes of the vessel systems, which have been
extracted from the images by a segmentation algorithm, will be assigned
by the so-called association graph method and the coordinates of these
matched nodes can be used as landmarks for a non-rigid registration
algorithm.

1 Introduction

Medical imaging methods like computed tomography (CT) and magnetic reso-
nance imaging (MRI) are able to provide three-dimensional, digital images of
organs like liver or lung. In many medical applications, it is desirable to provide
the user different images of the same organ. For instance, this might be reason-
able if a lung shall be examined both in the inhaled and exhaled state or if there
are CT as well as MRI images of the same organ. Another possible application
is the monitoring of an organ over a long time period by regularly scanning the
organ.

Because of respiration, heartbeat etc. it is possible that the position and
shape of an organ might considerably differ between two scannings. That makes
it difficult to detect regions in the images which depict the same part of the
organ. Such a mapping between different images of an organ is called registration.
Following Hill [1], registration is the process of transforming different image data
sets into one coordinate system.

In order to allow an automatic registration of image data sets it is necessary
to use properties of the organs which are invariant against respiration, heartbeat
etc. The vessel system of the organs is one possibility for such an invariant fea-
ture. The position and extension of these vessel systems might change but their
structure remains (nearly) constant. The identification of corresponding areas
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in these structures provides structural information, which eases the registration
of the image data sets. The vessel systems of liver and lung (e. g. portal vein
of the liver and bronchi respectively) are trees and it is therefore possible to
apply structural pattern recognition methods to this problem of matching tree
structures.

2 State of the Art

There are different approaches for matching of tree structures. We briefly sketch
four of them:

Pelillo et al. [2,3] used the so-called association graph for detecting maximal
subtree isomorphism of rooted and free trees. Possible assignments of tree nodes
are represented as nodes of the association graph. Two nodes of the association
graph are connected via an edge if the corresponding assignments are consistent.
Two assignments are considered to be consistent if the topological relationship
between the two involved nodes in both trees is equal. The definition of this
topological relationship differs for matching of rooted and free trees; for free
trees it is exactly the topological distance1 of two nodes while for rooted trees the
difference of node levels2 additionally has to be equal. In the derived association
graph a maximal clique is detected by applying pay-off monotonic dynamics from
evolutionary game theory on a continuous formulation of the problem obtained
by the Motzkin-Straus theorem [4].

Bartoli et al. [5] and Pelillo et al. [6] proposed an extension of the associa-
tion graph approach to achieve many-to-one and many-to-many matchings of
attributed trees. Many-to-many matching means that a group of nodes can be
assigned (contracted) to a single node in the other tree while many-to-one match-
ing means that this relationship holds only in one direction. The latter might be
adequate when matching a tree to a model. For the purpose of many-to-many
matching, each node is rated with a value r ∈ R+ which depends only on its
attributes. A group of nodes can be contracted if the ratings of all but one node
fall below a certain threshold.

Tschirren et al. [7] proposed a method for matching of human airway trees.
They first perform a pruning step on the trees in order to improve their compa-
rability and subsequently a rigid registration in order to map the trees into the
same coordinate system. Thereafter, a hierarchical approach using an associa-
tion graph is applied to the data to accomplish a matching. While this approach
performs well for some input trees, there are two major drawbacks: The method
needs robust ways of detecting major branchpoints in the trees and relies on
the invariance of the topological distance. The former may be possible in airway
trees but proved to be difficult in liver vessel systems. The latter is susceptible
to erroneous segmentation due to noise (see Figure 1).
1 The topological distance is defined as the number of edges, which have to be traversed

on the unique path from one node to another.
2 The level of a tree node is defined as the number of edges, which have to be traversed

on the unique path from a node to the root of the tree.
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Charnoz et al. [8] proposed an algorithm, which performs a parallel depth first
search on both trees. During this process, a set of matching hypotheses is gen-
erated. All matching hypotheses contained in this set are rated and the global
optimal matching is chosen. Because of the exponential number of potential
matching hypotheses it is crucial to study only the most promising hypothe-
ses. Hence, on each step of the depth first search only a certain number of those
node assignments is considered, whose node attributes are similar. This selection
based on local properties is risky since the global optimal matching may contain
assignments of nodes whose attributes differ significantly. If one correct assign-
ment of nodes close to their root is missed, the whole generated set of matching
hypotheses may be significantly flawed. The approach attained promising results
when matching one tree segmented from the Visible Mans liver with a perturbed
version of itself. Nevertheless, the applicability to trees segmented from real pa-
tient data with significant differing topology and node attributes (see Section 3)
remains open.

In this work, we will propose an enhanced version of the association graph
approach. The association graph approach proposed by Pelillo et al. [2,3] has
been applied successfully to matching of shock trees and shape-axis trees. When
applying it to matching of anatomical vessel trees, there are a few additional
issues which have to be considered:

– Due to noise and motions of the recorded organs, there will nearly always
be errors in the extracted tree structures: Noise, for example, might result
in additional branches, which do not exist in the real organ. An additional
branch can influence topological distances as well as the level of nodes (see
Figure 1).

– Since the resolutions of CT and MRI have increased continuously in the re-
cent years, the tree structures might be quite big, i. e. have up to 1000 nodes.

A many-to-many matching as described by Bartoli and Pelillo [5,6] might in
principle deal with the first issue; however, it is not clear how to obtain a rating
based on node attributes that has small values for exactly those nodes, which
were erroneously detected.

Therefore, the described approaches which use an association graph are not
well suited for the purpose of matching of anatomical vessel trees. The main
contribution of this work is to enhance the association graph approach so that the
method can deal with the issues mentioned above. Consequently, it is adequate
for the matching of anatomical vessel trees.

3 Methods

3.1 Association Graph

In this section, we will present our enhanced version of the association graph
approach. We start with the definition of the enhanced tree association graph,
and explain it in more details later on:



16 J.H. Metzen et al.

Definition 1 (Tree Association Graph). Let T1 = (V1, E1, w1) and T2 =
(V2, E2, w2) be two rooted trees. We define the tree association graph G =
(VA, EA) of T1 and T2 with respect to a set of unary constraints CF and a set of
binary constraints CG as:

1. VA = {va ∈ V1 × V2|
∑

fi∈CF

ωifi(va) ≥ 0.5},
∑

i

ωi = 1, ωi ∈ [0, 1]

2. EA = {(va, vb) ∈ VA × VA|
∑

gj∈CG

υjgj(va, vb) ≥ 0.5},
∑

j

υj = 1, υi ∈ [0, 1]

An interpretation of this definition is as follows: A node va = (va1, va2) ∈ VA

represents the potential assignment of the tree nodes va1 and va2. Consequently,
the set VA is the set of all promising assignments of nodes in V1 to nodes in
V2. An assignment is considered to be promising if it fulfills a set of unary con-
straints, formalising similarity measures for two nodes, to a certain extent. Each
unary constraint measures the similarity of two nodes and rates this similarity
with a value between 0 and 1. If the rating is close to 1, the two nodes are nearly
indistinguishable for this constraint, while two nodes with rating close to 0 pos-
sess only little similarity. Furthermore, each of these constraints has a parameter
which determines its selectivity3. Since there are different unary constraints and
not all of them might be equally decisive, each unary constraints is weighted
with a factor ωi ∈ [0, 1]. The sum of all weights has to be 1. An assignment is
promising if the average weighted sum of the rating of all unary constraints for
this assignment is greater than or equal to 0.5. Hence, in contrast to the original
definition [2,3,5,6] of an association graph VA �= V1 × V2 but VA � V1 × V2. The
reduction of the cardinality of VA enables us to apply the association graph ap-
proach to trees with a great number of nodes. A collection of unary constraints
is introduced in Subsection 3.2.

Two nodes va = (va1, va2) and vb = (vb1, vb2) of an association graph are con-
nected via an edge e iff the assignments va1 ↔ va2 and vb1 ↔ vb2 are consistent
to each other. Two assignments are considered to be consistent if they fulfill a set
of binary constraints, which formalise consistency measures for two assignments,
to a certain extent. Analogue to unary constraints, each binary constraint gives a
rating between 0 and 1, is controlled by a selectivity parameter, and is weighted
with a factor υj . Two assignments are consistent if the average weighted sum
of the ratings of all binary constraints for the corresponding association graph
nodes is greater than or equal to 0.5. Some binary constraints are proposed in
Section 3.3.

The aim of matching of tree structures is to determine a set of node assign-
ments of maximum cardinality in which each two assignments are pairwise con-
sistent. Such a set corresponds directly to a maximum clique4 in the association
graph. Since detecting a maximum clique of a graph is known to be NP-hard [9],
3 “Selectivity” means how similar two nodes must be to be rated with a value greater

than 0.5.
4 Given an arbitrary undirected graph G = (V, E), a subset of vertices C ⊆ V is called

a clique if all its vertices are mutually adjacent; a clique is said to be maximum if
there is no other clique with higher node cardinality in the graph.
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we have to apply approximate methods. As discussed in Section 2, Pelillo gives
a promising approach for approximating the maximum clique based on apply-
ing pay-off monotonic dynamics from evolutionary game theory on a continuous
formulation of the problem obtained by the Motzkin-Straus theorem [4]. This
approach has been successfully adopted to this problem.

3.2 Unary Constraints

Unary constraints detect promising assignments of tree nodes in an early stage of
the matching process. Obviously, two nodes which might be assigned should be
similar. In this context, similarity means that some local properties of the nodes
should differ only to a small amount. Examples of such local properties are:

– The level of a tree node.
– The length (or diameter) of the discharging edge of a node. The discharg-

ing edge is the unique incident edge of a node, whose other endpoint is a
node with minor level. The length of an edge has been computed during the
segmentation process and is defined as the length of the anatomical vessel,
which corresponds to the edge.

– The size of the induced subtree of a node. The induced subtree of a node is
that part of the tree which is rooted in this node. The size of a subtree is
defined as the sum of the length of all edges of this subtree.

– The spatial coordinate of a node.

Unfortunately, all of these properties are perturbed by noise, movements of
the organs and resultant errors during the segmentation and extraction of the
tree structure. For example, the spatial coordinate of a node in the lung is heavily
influenced by respiration. The size of a subtree depends among other things on
the resolution of the medical imaging method. Methods with higher resolution
are able to detect more subtle parts of the tree structure, which increase the size
of a subtree. Noise might cause the erroneous detection of a node, which can
influence the level of nodes as well as the length of edges (see Figure 1).

Thus, these local properties proposed above are no good choices for unary
constraints (as shown by the results presented in Section 4) . A more reliable
property, though not local, is the spatial course of the unique path from a node
v to a reference node5 r of the tree. This path traverses a set of edges, whose
spatial course is described by a sequence of skeleton points. Hence, the spa-
tial course of each path can be described as a polyline S = [v, v1, ..., vn, r] in
R3 consisting of the concatenation of the skeleton points of the edges. We will
now define a similarity measure for two of these polylines. This similarity mea-
sure compares the curve progression but is independent of the length of the
polylines. Therefor, each polyline will be normalised first by transforming it as
follows:
5 A reference node is a tree node, which can be reliably detected in both trees. Pos-

sibilities for reference nodes are the root or the first major bifurcation node of a
tree.
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A

B

A

C

Fig. 1. Erroneously detected nodes influence the level of nodes as well as the length
of edges. In this example, the erroneous node C causes an additional bifurcation node
B, which splits one edge into two parts. Thus, the level of the leftmost node A has
increased by one as well as its topological distance to all other tree nodes. Furthermore
the length of its discharging edge has decreased considerably, because this edge has
been split into two parts.

1. The polyline will be displaced by −v so that its start point is located in the
origin of the coordinate system.

2. Each skeleton point of the polyline will be scaled by 1
||r−v||2 so that the start

and end point of the polyline will have the euclidean distance 1.
3. The polyline will be rotated in order that its end point will be x1 = (1, 0, 0)t.

For this purpose, the angle α between the vectors r − v and x = (1, 0, 0)t

will be computed. Thereafter, the polyline will be rotated by α around the
axis, which is orthogonal to r − v and x. This axis is uniquely determined
unless r − v = ±(1, 0, 0)t. In this case, an axis which is orthogonal to x can
be arbitrarily chosen, because α has to be 0 or π.

After this transformation, all polylines S = [s0, s1, ..., sn−1, sn] will begin
at s0 = (0, 0, 0)t and end at sn = (1, 0, 0)t. We define a partial-polyline as
Si = [s0, s1, ..., si] and the length of a polyline Si as ||Si|| =

∑i
j=1 ||sj − sj−1||2.

Furthermore, we define a parametrisation f of a polyline as follows: f : [0; 1]→
R

3 with f( ||Si||
||S|| ) = si, in particular f(0) = (0, 0, 0)t and f(1) = (1, 0, 0)t. The

other values of f are linearly interpolated: For t ∈
]
||Si||
||S|| , ||Si+1||

||S||
[

let f(t) =

(1− α)si + αsi+1 with α = t||S||−||Si||
||Si+1||−||Si|| .

An obvious similarity measure for two polylines S1 and S2 with parametrisa-
tion f1 and f2 is the integral

∫ 1

0 ||f1(t)− f2(t)||2 dt. This integral corresponds to
the area between the polylines. However, as shown in Figure 2, this similarity
measure is not appropriate since there is still one degree of freedom which affects
the value of the integral. Therefore, a better similarity measure is

d = min
φ∈[0,2π]

d(φ) with d(φ) =
1∫

0

||f1(t)−Aφf2(t)||2 dt,

where Aφ is a matrix which describes a rotation by φ degrees around the x-axis.
Unfortunately, this optimisation of the angle φ is computationally expensive.
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Fig. 2. Two normalized polylines which are to be compared. If the rotational degree of
freedom around the x-axis is not considered, even very similar polylines can be rated
as very different. In this example, if one of the polylines is rotated by π around the
x-axis, the polylines would be identical.

This is critical since we have to apply each unary constraints very often6, which
requires the computation of d each time.

Instead of computing the area between two polylines, the directions of the
polylines can be compared as basis for a similarity measure, too. Since the poly-
lines are piecewise linear, the derivative f ′(t) exists almost everywhere and f ′ is
piecewise constant. For each t ∈ [0, 2π], gi(t) = f ′

i(t)

||f ′
i(t)||2

is a unit vector which de-

scribes the direction of the polyline’s tangent for the parameter value t. We define
the similarity of two unit vectors a and b as their dot product atb. A property of
the dot product of two unit vectors is −1 ≤ atb ≤ 1 with atb = 1⇔ a = b. Hence,
the similarity of two polylines can be defined as 1

2

∫ 1

0
(1 + g1(t)tg2(t))dt ∈ [0, 1].

The greater the value of the integral, the more similar are the two polylines. How-
ever, this similarity measure is influenced by the rotational degree of freedom,
too. Fortunately, the optimisation problem

max
φ∈[0,2π]

1
2

1∫

0

(1 + g1(t)tAφg2(t))dt (1)

with a matrix Aφ which describes a rotation around the x-axis can be solved
analytically [10]. Using gi = (gi1, gi2, gi3)t the solution is given by

max
φ∈[0,2π]

1∫

0

(g1(t)tAφg2(t))dt = C +
√

D2 + E2

with C = b11, D = b22 + b33, E = b23 − b32 and bjk =
1∫

0

g1j(t)g2k(t)dt.

3.3 Binary Constraints

Binary constraints determine whether two assignments va1 ↔ va2 and vb1 ↔ vb2

are consistent to each other, i. e. whether the corresponding nodes of the asso-
ciation graph shall be connected via an edge. First ideas for binary constraints
might be:
6 If the two trees have n and m nodes respectively, a unary constraint has to be applied

O(nm) times.
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– The euclidean distance de of both nodes in the two trees should be similar,
i. e. de(va1, vb1) ≈ de(va2, vb2)

– The topological distance dt of both nodes in the two trees should be similar,
i. e. dt(va1, vb1) ≈ dt(va2, vb2)

Unfortunately, the same disturbing factors (noise, respiration, heartbeat) which
affect the local properties in Section 3.2 influence the mentioned properties,
too. Thus, we have to develop more sophisticated similarity measures. It has
turned out that the comparison of the directions of two polylines can be easily
transferred onto the binary case and results in a robust constraint: Instead of
comparing the two polylines which connect the nodes with the reference nodes
of their trees we can simply compare the two polylines which connect va1 and
vb1, and va2 and vb2, respectively.

Since binary constraints might be applied very often7 the comparison of the
directions of two polylines can be too expensive for large trees. In this case, the
comparison of the length l(va, vb) of the connecting path8 of two nodes va and
vb is an option, which can be computed very fast and yields acceptable results.
Another similarity measure, which is computationally cheap, is the curvature of
the connecting path. We define the curvature c of a path connecting two nodes
va and vb as c(va, vb) = l(va, vb)/de(va, vb).

4 Results

The proposed method has been implemented and tested in the MeVisLab re-
search and prototyping platform (http://www.mevislab.de/). To provide a ba-
sis for the empirical evaluation of the quality of the matchings achieved by the
association graph method, we use two matchings as ground truth, which were
created manually by human experts. These datasets match a pair of bronchi
trees (in inhaleted and exhaleted state) and a pair of portal vein trees (one CT
and one MRI image). In each case, both trees have roughly 200 nodes and both
ground truths contain 34 assignments of significant nodes distributed all over
the trees.

We analyzed the quality of unary and binary constraints. In this section we
present mainly the results obtained with the portal vein dataset. Nevertheless,
the results for the bronchi tree were similar. First, we present a comparison9 of

7 If the two trees have n and m nodes respectively, in the worst case a binary constraint
has to be applied O(n2m2) times. The worst case occurs, if most of the possible
assignments have been rated as promising by the unary constraints.

8 The length of a path is defined as the sum of the length of its edges.
9 Since the proposed algorithm can only be tested with a combination of unary and

binary constraints, we show here the results of a particular unary constraint in
combination with a specific set of binary constraints. Since we used the same set of
binary constraints for all tests, we can compare the quality of the unary constraint.
Furthermore, it has turned out that the relative quality of the unary constraints
does not depend on the choice of the set of binary constraints.

http://www.mevislab.de/
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Table 1. Comparison of different unary constraints. For each constraint, the selectivity
parameter σ has been chosen empirically in order to optimise the resulting matching.
Neither the comparison of the diameter of the discharging edge (EdgeDiameter) nor
the size of the induced subtree (SubtreeSize) of a node yield in promising results. Better
results are obtained by the non-local constraints. These constraints require the choice
of a reference node. For the results presented here, the root has acted as reference node.
The runtime was measured on a Pentium4 3.2GHz.

Constraint σ Correct Error Runtime

EdgeDiameter 1.5 0 3 0.08 sec

SubtreeSize 1.1 4 2 2.36 sec

PathCurvature 1.08 7 3 0.16 sec

PolylineArea 1.04 11 1 14.79 sec

PolylineDirection 1.15 18 4 2.58 sec

the different unary constraints proposed in Subsection 3.2. We will use the fol-
lowing names for the different types of constraints (regardless if unary or binary)
proposed in Section 3:

EdgeDiameter : Compares the diameter of the discharging edge of a node.
SubtreeSize: Compares the size of the subtree induced by a node.
PathLength: Compares the length of the (unique) path connecting two nodes.
PathCurvature: Compares the curvature of the (unique) path connecting two
nodes.
PolylineArea: Compares the area between two (normalized) polylines.
PolylineDirection: Compares the direction of two (normalized) polylines.

As can be seen in Table 1, the best results yield from the PolylineArea and
the PolylineDirection constraints. As expected, the runtime of the PolylineArea
constraint is (because of the expensive optimization of the angle φ) significantly
larger than the runtime of the other constraints. Further improvements of the
matching can be achieved when combining several unary constraints. It has
turned out that it is optimal to combine the PathCurvature constraint with the
PolylineDirection constraint in the proportion 1 : 4 (see Table 2).

Similarly, we have analysed the quality of several binary constraints proposed
in Subsection 3.3 (in combination with the optimal set of unary constraints, see
above). The results are shown in Table 3 and Table 4.

Subsequently, the set of constraints and parameters, which was optimal for
the portal vein datasets, has been applied to the bronchi tree datasets to evaluate
if the approach performs equally well for datasets originated from other organs.
The results are summarised in Table 5, and Figure 3 depicts the matching of
the portal vein trees. The quality of both matchings is satisfying, whereas the
matching of the portal vein dataset is superior to that of the bronchi trees. Since
this discrepancy remains when differing weights and selectivity parameters, the
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Table 2. Combination of unary constraints. In parentheses, the weight of the respec-
tive constraint is shown. A combination of the PolylineArea and the PolylineDirection
does not improve the quality of the matching. It is likely that this is due to the fact
that both constraints assess similar properties and a combination comprises a lot of
redundancy. Better results are obtained when combining one of these constraints with
the PathCurvature constraint. The best result is achieved when combining this con-
straint with the PolylineDirection constraint in the proportion 1 : 4. This proportion is
grounded in the fact that the PolylineDirection constraint provides better results than
the PathCurvature constraint when applied solely.

Configuration Correct Error

PolylineArea(0.5) : PolylineDirection(0.5) 16 4
PathCurvature(0.5) : PolylineDirection(0.5) 13 2
PathCurvature(0.2) : PolylineDirection(0.8) 20 2

PathCurvature(0.2) : PolylineArea(0.8) 10 4

Table 3. Comparison of binary constraints. For each constraint, the selectivity pa-
rameter σ has been chosen empirically in order to optimise the resulting matching.
The PathLength constraint alone does not yield in good results as it is not distinctive
enough. Better results are obtained by the PathCurvature and PolylineDirection con-
straints. The PolylineArea constraint is omitted here, since its runtime is (due to the
large number of applications of a binary constraint) very high and it does not yield in
better results than the PolylineDirection constraint.

Constraint σ Correct Error Runtime

PathLength 1.7 2 4 6 sec

PathCurvature 1.3 18 2 8.9 sec

PolylineDirection 1.13 17 2 203.97 sec

Table 4. Combination of binary constraints. The weight of the respective constraint
is shown in parentheses. Even though the PathLength constraint alone does not seem
to be promising, it can improve the results of the PathCurvature and PolylineDirection
constraints. The best results are achieved when combining the PolylineDirection with
the PathLength constraint in the proportion 3:1.

Configuration Correct Error

PolylineDirection(0.5) : PathCurvature(0.5) 17 4
PathCurvature(0.75) : PathLength (0.25) 20 2

PolylineDirection(0.75) : PathLength(0.25) 17 0

matching of bronchi trees is apperently intrinsically more complex than match-
ing of portal veins. One possible reason is that bronchi trees are dichotomous
structures, which means that they have many subtrees which are very similar to
each other. An example for such similar subtrees are the right and the left part
of a bronchi tree, which split in the first major branchpoint.
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Table 5. Results of the matching process: In both cases, the matching algorithms
assigned approximately 80 nodes. In case of the portal vein dataset, 17 of these as-
signments were covered by the ground truth and none of them was incorrect. In case
of the bronchi tree, 25 of the assignments were covered by the ground truth and 4 of
them were incorrect. Nevertheless, these erroneous assignments match nodes, which are
topological neighbours and geometrically at close quarters and therefore, it was even
difficult for humans to determine the correct matching of these nodes.

Dataset Portal Vein Bronchi Tree

Correct 17 21

Error 0 4

Runtime 207.35 sec 369.23 sec

Fig. 3. Matching of two portal veins. Depicted are two portal veins as well as the
attained matching. Assigned nodes are dyed in the same colour. If a set of node as-
signments induces a subtree isomorphism, the whole subtrees are dyed with the same
colour.

5 Conclusions

The results indicate that the proposed method is able to achieve good results
for typical examples of vessel trees. A significant ratio of tree nodes is assigned
in an admissible amount of time. The acquired matching covers most parts of
the trees and contains no or only few errors. In our future work, we will analyze
if the acquired landmarks are able to improve the registration of the image
datasets. Furthermore, it will be examined if the method acquires promising
results for harder datasets like images taken during the regeneration of a liver
after living liver donation. Also, it will be analyzed if a rigid registration and
a hierarchical decomposition of the trees (as described in [7]) can reduce the
required computation time.
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Abstract. In this paper, we propose a highly robust point-matching
method (Graph Transformation Matching - GTM) relying on finding the
consensus graph emerging from putative matches. Such method is a two-
phased one in the sense that after finding the consensus graph it tries to
complete it as much as possible. We successfully apply GTM to image
registration in the context of finding mosaics from retinal images. Feature
points are obtained after properly segmenting such images. In addition,
we also introduce a novel topological descriptor for quantifying disease
by characterizing the arterial/venular trees. Such descriptor relies on
diffusion kernels on graphs. Our experiments have showed only statistical
significance for the case of arterial trees, which is consistent with previous
findings.

1 Introduction

Image registration is a fundamental problem to several image processing and
computer vision applications. In the case of medical retinal images, two images
taken before and after laser surgery can be registered to detect location of lesions.
Two images taken from the same eye but at different times can be registered to
quantify the severity of disease and the progression of therapy. A series of images
of the same retina can be registered to form a mosaic image giving a complete
view of the retina. The quantification of some diseases is commonly made by
measuring differences in tree vascular structure between groups. Measurements
can be either geometrical or topological [9].

In this paper we present a twofold graph-based method applied to retinal
image analysis: 1) a graph-based point-matching algorithm to allow the con-
struction of mosaics in order to have a larger view of the retina, and 2) a tree
vascular characterization in order to find structural differences such as those
found by other authors [4,5]. The graph-based point-matching algorithm, Graph
Transformation Matching (GTM), is an efficient method for dealing with high
rates of outlying matches, which is the main drawback of some continuation
methods for graph matching like Softassign, or its kernelized version [7], which

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 25–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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optimize quadratic cost functions. In addition to the latter, we propose a new
spectral descriptor relying on diffusion kernels for characterizing the topologies
of normotensive and hypertensive arterial trees.

The rest of the paper is organized as follows. Section 2 describes the process
of segmenting vascular trees (arterial and venular) and extracting the key fea-
tures from retinal images, which is a critical step for further analysis. Section 3
describes the Graph Transformation Matching: (i) the basic approach, (ii) the
optimized algorithm, and (iii) the recovery phase. We test the algorithm in the
context of retinal image alignment and compare it with Softassign. Section 4 is
devoted to describe the interpolation method used for the alignment to generate
a mosaic view. Section 5 presents our spectral descriptor for vascular character-
ization and show its adequacy. Finally, in Section 6 we outline our conclusions.

2 Image Feature Extraction

Previous work has been done in order to analyze and extract features from reti-
nal images. The process consists of two main steps: i) the segmentation of blood
vessels to generate a binary image, and ii) the analysis of the binary image.
Features of interest herein are branching and crossing points as feature points
for mosaicing and, extraction of arterial and venous vessel trees for characteri-
zation. Blood vessels are segmented based on a multi-scale analysis of the first
and second derivatives of the images in combination with a region growing al-
gorithm [10]. Figs. 1(a) and 1(c) show two different views of retinal images and
Figs. 1(b) and 1(d) their segmented binary images, respectively. The optic disc
region is on the bottom-left, vessels are tracked from this area outwards.

(a) (b) (c) (d)

Fig. 1. Retinal images. (a) img15 and (c) img21 are two different views from the same
eye-ball and, (b) and (d) are their respective segmented binary images.

A semi-automatic method to measure and quantify geometrical and topologi-
cal properties of continuous vascular trees on binary retinal images was developed
on a previous work [9]. The analysis of the binary image involves: i) labelling
each vessel tree, ii) detecting significant points, iii) extracting the vessel tree by
a chain code tracking method and iv) measuring geometrical and topological
parameters.

Labelling each vessel tree involves thinning the segmented binary image to
produce its skeleton. Three types of significant points in the skeleton must be
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detected: terminal, bifurcation and crossing points. In a first pass, skeleton pixels
with only one neighbor in a 3 × 3 neighborhood are labelled as terminal points
and pixels with 3 neighbors are labelled as candidate bifurcation points. Fig. 2(a)
shows the skeleton of the tree with the candidate points marked with circles.

Because vessel crossing points appear in the skeleton as two bifurcation points
very close to each other, a second pass is made using a fixed size window centered
on the candidate bifurcations. The number of intersections of the skeleton with
the window frame determine whether the point is a bifurcation or a crossing.
After this process a chain code is used to label the rest of the skeleton points
in order to track the tree. Fig. 2(b) shows the branching and crossing points
marked with circles over the skeleton and the tree tracked on black. Finally,
after the tracking process the selected tree is isolated. Fig. 2(c) shows an arterial
tree extracted. The user should select the tree to be tracked and decided if it is
an arterial or a venous tree.

(a) (b) (c)

Fig. 2. Binary image analysis: (a) skeleton with candidate points marked with circles,
(b) branching and crossing points marked with circles and tracked tree marked in black.
(c) arterial tree extracted.

3 Graph Transformation Matching

Once significant points have been detected in both images, we proceed to get an
initial matching between them. This can be done by making a cross-correlation
around each significant point and matching with the point having the highest cor-
relation value. From this process two sets of corresponding points P = {pi} and
P ′ = {p′i} of size N (where pi matches p′i) are found. The Graph Transformation
Matching (GTM) algorithm consists of two phases: a pruning and a recovering
phase. In the pruning phase, a median K-NN graph GP = (VP , EP ) is computed
as follows: vertices VP = v1, ..., vN are given by the positions of the N corre-
sponding points. A non-directed edge (i, j) exists when pj is one of the K closest
neighbors of pi and also ||pi − pj|| ≤ η. Being η = med(l,m)∈VP×VP

||pl − pm||
the median of all distances between pairs of vertices. The first condition states
that a vertex can just validate the structure of its closest neighbors, while the
second condition restricts the proximity of validation which filters structural de-
formations due to outlying points. If there are not K vertices that support the
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structure of pi then this vertex is disconnected completely. The graph GP , which
is not necessarily connected, has the N×N adjacency matrix Aij , where Aij = 1
when (i, j) ∈ EP and Aij = 0 otherwise. Similarly, the graph GP ′ = (VP ′ , EP ′)
for points p′i has adjacency matrix A′

ij , also of dimension N ×N because of the
one-to-one initial matching M .

GTM relies on the hypothesis that outlying matchings in M may be removed,
with high probability, by iteratively applying a simple structural criterion [1].
Thus, GTM iterates as follows: (i) selecting an outlying matching; (ii) removing
matched features corresponding to the outlying matching, as well as this match-
ing itself, and (iii) recomputing both median K-NN graphs. Structural disparity
is approximated by computing the residual adjacency matrix Rij = |Aij − A′

ij |
and selecting column jo = argmaxj=1...N

∑N
i=1 Rij , the one that yields the max-

imal number of different edges in both graphs. The selected structural outliers
are the features forming the pair (pjo , p′jo). Thus, we remove vjo from GP and v′jo

from GP ′ , and (pjo , p′jo) from M . Then, after decrementing N , a new iteration
begins, and the median K-NN graphs are computed from the surviving vertices.
The algorithm stops when it reaches the null residual matrix, that is, when
Rij = 0, ∀i, j. It seeks for finding a consensus graph and returns the number of
vertices of this graph. Fig. 3 shows an example of the transformation process for
two retinal images, from iteration 0 (initial graphs) to iteration 71 (final identical
graphs), with K = 4 which showed to be adequate in all our experiments.

An example of initial and final matchings for two pairs of retinal images are
shown in Figs. 4 (a) and (b) for images named img15 and img12, and Figs. 4 (c)
and (d) for img15 and img21. Fig. 5 shows their respective resulting graphs.

Considering that the bottleneck of the algorithm is the re-computation of
the graphs, which takes O(N2logN) (the same as computing the median at the
beginning of the algorithm) and also that the maximum number of iterations

(a) GP , iteration 0 (b) GP ′ , iteration 0 (c) GP , iteration 28 (d) GP ′ , iteration 28

(e) GP , iteration 56 (f) GP ′ , iteration 56 (g) GP , iteration 71 (h) GP ′ , iteration 71

Fig. 3. Graph Transformation process example. GP corresponds to the median K-NN
graph of img15 and GP ′ for img12 during iterations 0, 28, 56 and 71.
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(a) Initial matches, (b)Final matches, (c) Initial matches, (d) Final matches,
img15 with img12 img15 with img12 img15 with img21 img15 with img21

Fig. 4. GTM initial and final matches from the pruning phase: (a)-(b) img15 with
img12 and (c)-(d) img15 with img21

(a) GP for matching (b) GP ′ for matching (c) GP for matching (d) GP ′ for matching
img15 with img12 img15 with img12 img15 with img21 img15 with img21

Fig. 5. Graphs resulting from GTM in its pruning phase: (a)-(b) image15 with image12
and (c)-(d) image15 with image21

is N , the worst case complexity is O(N3logN). A significant improvement in
the reconstruction of the graphs was made. It consists of replacing the graph
representation (adjacency matrix) by three new structures: i) a matrix OF of
size n×n where rows represent output edges for each vertex (ordered by distances
smaller than the median and where the first K locations represent the actual
output edges for that vertex, the rest are the potential next connections), ii) an
array of linked lists IF of dimension n with input edges for each vertex and iii)
an array NF of dimension n that keeps a reference to the next available edge to
connect in OF (initially with value K + 1).

Two implementations were made (in C language), one corresponding to the
brute force algorithm and the other to the optimized version. The time required
for the algorithm depends on two variables: i) the number of initial vertices
(which is directly related to the number of matches) and ii) the number of
iterations. To test the significance of the optimization, two experiments were
made by fixing one factor at a time. Time results for both implementations (in
seconds) are shown in Fig. 6, (a) and (b). These graphs make evident the im-
provement in time due to the optimization of the algorithm. The difference was
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Fig. 6. Graphs of times reported for GTM algorithms implemented in C: (a) brute
force and (b) optimized

more significant in the second case (b) suggesting an almost constant behavior
of the optimized version versus the increasing time of the brute force version.

In addition to the efficiency desired for the proposed matching algorithm, it
was also wanted to make it robust to a large amount of outliers. To test the
latter, an experiment was made consisting of taking a set of 60 correct matches
and introduce different percentages of outliers randomly generated, from 10%
to 95%. Results showed that in the case of 85% of outliers, the Graph Trans-
formation algorithm could recover 48 correct matches (from the 60 available)
with just 2 mismatches. In the case of 95% of outliers it recovered 24 with 2
mismatches. Images used in this paper contain at most 74% of natural outliers.
For some applications it is wanted to recover high quantities of correct matches

(a) After recovery, (b) After recovery, (c) Just structure, (d) Using kernels,
img15 with img12 img15 with img21 img15 with img12 img15 with img12

Fig. 7. (a)-(b) Results from the recovery phase when matching (a) img15 with img12
and (b) img15 with img21. (c)-(d) Softassign results from matching img15 with img12
using (c) just structure and (d) kernels.
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tolerating some mismatches. For these cases, here we propose a second phase of
the GTM algorithm named Recovering Phase. It consists in taking final graphs
and matches obtained from the pruning phase and adding iteratively all rejected
matches one at a time, recomputing the corresponding K-NN graphs and testing
the residual matrix condition. If this condition is satisfied, then this match is
considered as correct. Otherwise, it is discarded. Figs. 7 (a) and (b) show the
resulting matchings after the recovery phase for img15 with img12 and img15
with img21. Compare these results with those showed in Figs. 4 (b) and (d).

We compared our results versus those obtained from the Softassign algorithm.
Figs. 7(a) and (b) present the results obtained from matching img15 with img12,
using Softassign with (a) just structure and (b) kernels. In the case of using
kernels and costs, the resulting matching was exactly the same as the input,
suggesting that the costs completely influence the matching process. Figs. 7(c)
and (d) show the contribution of the recovery phase.

The algorithm was also tested with other retinal images. Some of the results
are shown in Figs. 8 and 9.

img13 with img15 img13 with img27 img14 with img15 img14 with img27

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Other matching results. (a)-(d) show the initial matches and (e)-(h) show the
corresponding final matches from GTM algorithm.
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img13 with img15 img13 with img27 img14 with img15 img14 with img27

(a) GP (b) GP (c) GP (d) GP

(e) GP ′ (f) GP ′ (g) GP ′ (h) GP ′

Fig. 9. Resulting graphs from GTM algorithm of other results

4 Mosaicing

The retinal images used in this section were taken using a fundus camera with
a 50◦ field of view (Zeiss FF 450 IR). Images were acquired with a CCD camera
(Sony Power HAD 3CCD Color Video Camera) attached to the fundus camera
with 768 × 576 pixels in size. Since the surface of the retina is curved, almost
spherical, the interimage transformation model use to build the mosaic must
take this into account.

A quadratic model surface is a good approximation that allows corrections
of misalignment of blood vessels that cannot be corrected on spherical surface
by rotation, translation and scale modifications only. Based on the matched
points computed from the GTM technique, a pair of functions that maps a pixel
position (x, y) to a new position (x′, y′) is found. We will use the three images
showed in Fig. 4 (img15, img12 and img21) to build the mosaic using img15 as
the reference coordinate system.

A quadratic transformation is applied between the reference image and the
images to be changed into its coordinate system. The functions are defined as
the polynomial equations:

x′ =
∑m

i=0

∑m−i
j=0 aijx

iyj ,

y′ =
∑m

i=0

∑m−i
j=0 bijx

iyj , m = 2
(1)

where (x, y) and (x′, y′) are set of corresponding points in the original image
and the corrected image, respectively. A number of N coordinates are collected
from both images and, by substituting them in equations 1, a set of N linear
equations with respect to the coefficients ai,j and bi,j are obtained. The solution
is found by least squares criterion and an approximation of the functions that
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describe the correct mapping is found. The mapping is expressed in terms of a
pair of transformation maps, (Mx, My), that record the correspondence between
every pixel in the original image I(x, y) and the corrected image I ′(x, y):

I ′(x, y) = I(Mx(x, y), My(x, y)) (2)

The final image obtained from mosaicing img12, img15 and img21 is shown
in Fig. 10.

Fig. 10. The result mosaic after matching images img15 with img12 and with img21

5 Spectral Vascular Characterization

Previous approaches [4,9] to quantify changes in vascular trees due to disease are
mainly focused on geometric parameters (branching angles, length-to-diameter ra-
tio, diameter, and so on)whereas topologicalmeasurements (e.g. asymmetry, num-
ber of terminalbranches)have been less studied [5,9].We propose anew topological
measure based on the computation of diffusion kernels [2,6] on binary trees. Im-
ages used in this section were obtained from [8]. 20 images (10 normotensive and
10 hypertensive) were taken using a fundus camera with 30◦ field of view (Kowa
FX-50R). Photographic negatives were digitized and reduced to 533 × 509 pixels
size. Vessel trees were segmented and extracted as described in section 2.

Given a tree T = (V, G) with: m vertices, adjacency matrix A and Laplacian
L where: Lij = −1 when (i, j) ∈ E, Lii =

∑
i Aij , and Lij = 0 otherwise, the

diffusion kernel K of A is defined by the matrix exponentiation of the Laplacian:

K ≡ e−βL = Im + L +
1
2!

L2 +
1
3!

L3 + . . . , (3)

being Im the m×m identity matrix. In the particular case of an infinite binary
tree, we have that the kernel value between two vertices i and j depends on the
length dij of the unique path connecting them [3,6]:
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Fig. 11. Characterization. Left: Examples of hypertense (up) and normotensive (down)
arterial trees. Right: Spectral Descriptor for arterial (up) and venular (down) trees.

Kij = K2(dij) = 2
π

∫ π

0
e−β(1−cos x)

4(1−cos2 x) sinx[sin(dij + 1)x− sin(dij − 1)x]dx

Kii = K2(0) = 1
π

∫ π

0 e−β(1−cosx)dx

(4)

Equation 4 shows a well known property of kernels on trees. Alike in terms
of random walks, Kij can be regarded as the probability that a lazy random
walk reaches j from i, in binary trees, where there is a unique path between two
nodes. Such probability depends on the length of the path, because the branch-
ing factor is constant. In the infinite case, Kii is constant but this does not
happen in the finite case where Kii is given by 1−

∑
j Kij and the distribution

of distances dij is not uniform. In addition, for the i−th node in the tree, the
coefficients {Kij , j = 1 . . .m} define a spectral signature, in this case a probabil-
ity density function specifying the probability of reaching each node in the tree
from the i−th one. For the application domain considered in this paper, we pro-
pose to quantify the comparison of the {Kij} probability distribution functions
of vertices from normotensive and hypertensive trees with those associated to
nodes in perfect binary trees with the same cardinality, say m. Such comparison
will yield path-length invariance when characterizing a given binary tree, but
it requires to properly mapping each tree on the perfect one (completely bal-
anced), a sort of simple tree matching. After such matching, if the i−th node in
the tree is mapped on i′ in the perfect tree, a simple spectral tree descriptor is
given by:
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SD(T ) =
m∑

i=1

(HKT

i −HKP

i′ )2 being HK
i =

m∑

j=1

Kij log Kij . (5)

where: KT is the diffusion kernel of the tree and KP is the one of the perfect
binary tree with the same number of nodes; HKT and HKP are the entropies
of the probability distributions associated to the vertices and induced by the
kernels [7]. In Fig. 11 we show our preliminary characterization experiments.
We have considered both arterial and venular trees for 10 normotensive and 10
hypertensive subjects. After the Wilcoxon rank test, only statistically significant
differences (p < 0.0211) where found in arterial trees. However, when comparing
descriptors corresponding to venular trees the differences where no significant
(p = 0.3847). These findings are consistent with the evidence already reported
of geometrical and topological parameters [8], and show that the new spectral
descriptor may complement existing measures.

6 Conclusions

We have presented both a novel graph-based algorithm applied to the match
of correspondence points for retinal mosaicing, and a structural characteriza-
tion of retinal tree vasculature. On one hand, the results obtained for mosaic-
ing depend on the amount of overlapping regions between images and on the
number of matching points. Further work has to be done in order to obtained
larger views and more robust results using more matching points to get bet-
ter mapping approximations. The GTM algorithm has demonstrated to be a
fast, robust and reliable method for feature matching. On the other hand, the
analysis of purely topological indices of retinal blood vessels made by [8,9], us-
ing the same database, showed that arterial and venous trees are asymmetric
and indices such as the number of terminal edges not including the root: NT ,
the total sum of external path length in the tree: Pe, and the total number of
external-internal edges: EI , can characterize normal arterial trees from those
of hypertensive subjects. They displayed no differences in topology for venous
trees between groups. However, it is known that the latter topological indices
are tree size dependent and thus a normalization factor should be applied. On
the contrary, the spectral descriptor presented in this paper, which is consistent
with previous findings, is size invariant and it has proved to be effective. Such
descriptor can be considered another useful measurement as a complement for
the analysis of geometry.
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Abstract. We propose a new approach to stereo matching for obstacle detection 
in the autonomous navigation framework. An accurate but slow reconstruction 
of the 3D scene is not needed; rather, it is more important to have a fast 
localization of the obstacles to avoid them. All the methods in the literature, 
based on a punctual stereo matching, are ineffective in realistic contexts 
because they are either computationally too expensive, or unable to deal with 
the presence of uniform patterns, or of perturbations between the left and right 
images. Our idea is to face the stereo matching problem as a matching between 
homologous regions. The stereo images are represented as graphs and a graph 
matching is computed to find homologous regions. Our method is strongly 
robust in a realistic environment, requires little parameter tuning, and is 
adequately fast, as experimentally demonstrated in a comparison with the best 
algorithms in the literature. 

Keywords: Stereo vision; Obstacle detection; Graph matching; Autonomous 
mobile robots; Automated guided vehicles. 

1   Introduction 

During the last years, the Computer Vision community has shown an increasing interest 
in applications like Automated Guided Vehicles (AGV) or Autonomous Mobile Robots 
(AMR). In the literature many approaches have been proposed for Visual Navigation of 
a mobile platform. DeSouza and Kak [1] provide an excellent survey of Mobile Robot 
Navigation; Bertozzi, et al. [2], and Kastrinaki, et al. [3], propose a survey for Vision-
based intelligent vehicles. A very challenging task is the so-called obstacle detection, 
that is the detection of an obstacle in an unstructured environment and without prior 
knowledge of the obstacle appearance. Many authors have expressed their conviction 
that a robotic vision system should aim at reproducing the human vision system, and so 
should be based on stereo vision. The greatest advantage of stereo vision with respect to 
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other techniques (e.g. optical flow, or model-based) is that it produces a full description 
of the scene, can detect motionless and moving obstacles (without defining a complex 
obstacle model), and is less sensitive to the environmental changes (the major 
disadvantage of optical-flow techniques). The stereo vision provides a 3D representation 
(or at least an approximation like a 2D ½ representation) of the scene, and an 
interpretation of the structure can produce information about objects in the environment 
that may obstacle the motion. 

A pair of images acquired from a stereo camera implicitly contains depth 
information about the scene: this is the main assumption of stereo vision, based on the 
binocular parallax property of the human visual system. The main difficulty is to 
establish a correspondence between points of the two images representing the same 
point of the scene; this process is called disparity matching. The set of displacements 
between matched pixels is usually indicated as disparity map. All the approaches, in 
the literature, are based on this punctual definition of the disparity. We propose an 
extension of that concept, namely we define a disparity value for a whole region of 
the scene starting from the two homologous views of it in the stereo pair. The main 
reason of this extension is that a punctual approach is redundant for Autonomous 
Mobile Robot (AMR) and Automatic Vehicle Guidance (AVG) applications. In fact, 
in this framework, it is not very important to have a good reconstruction of the 
surfaces, but it is more important to identify adequately the space occupied by each 
object in the scene (as soon as possible to avoid collisions), even by just assigning to 
it a single disparity information. Moreover the punctual approaches are lacking in 
robustness in some realistic frameworks, especially for video acquired from a mobile 
platform. Most of the algorithms available in off-the-shelf systems [23] are unable to 
deal with large uniform regions or with vibration of the cameras. On the other hand, 
some efforts have been done in the literature to improve the robustness of the 
algorithms, but at the price of a significant increase of the running time. Our method 
estimates the average depth of the whole region by an integral measure, and so has 
fewer problems with uniform regions than other methods have. The estimate of the 
position of the regions is sufficiently accurate for navigation, also in the mentioned 
cases, and it is fast enough for real time processing.  

This paper is organized as follows: Section 2 presents the related works; Section 3 
shows an overview of our approach; Section 4 is devoted to the algorithm. Finally, in 
Section 5 there is a discussion of experimental results on standard stereo database and 
also on our stereo video sequence. Conclusions are drawn in Section 6. 

2   Related Works 

We will present a brief description of the most important methods for stereo 
matching; for more details, there is a good taxonomy proposed by Scharstein and 
Szeliski [4], and a survey on stereo vision for mobile robots by Zhang [5]. There are 
two major types of techniques, in the literature, for disparity matching: the area-based 
and feature-based techniques. Moreover, the area-based algorithms can be classified 
in local and global approaches. The local area-based algorithms [6],[7],[8] provide a 
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correspondence for each pixel of the stereo pair. They assume that each pixel is 
surrounded by a window of pixels having similar disparity; these windows are 
matched using correlation or a similar technique. They produce a dense  disparity map 
(i.e. a map providing a disparity for each pixel), more detailed than it is needed for 
AMR aims. Furthermore, they can be quite unreliable, not only in homogeneous 
regions, but also in textured regions for an inappropriately chosen window size. On 
the other side, the global area-based approaches (that also yield a dense map) try to 
propagate disparity information from a pixel to its neighbors [9],[10], or they define 
and minimize some energy function over the whole disparity map [11],[12],[13]. 
They have a better performance in homogeneous regions, but they frequently have 
parameters which are difficult to set, and are highly time-consuming. The feature-
based approaches [14],[15],[16] detect and match only “feature” pixels (as corner, 
edges, etc.). These methods produce accurate and efficient results, but compute sparse 
disparity maps (disparity is available only in correspondence to the feature points). 
AMR applications require more details, such as some information about the size of 
the objects; also a rough shape of the objects is needed for guiding a robot in the 
environment or for basic recognition tasks (e.g. in industrial applications, or for 
platooning of robots).  

In the literature, there are also a few works that are based on a color segmentation 
of the stereo pair in order to enforce depth smoothness and delineate sharp depth 
boundaries [17]. Namely, they are methods that use segmentation to refine the output 
of a pixel-based algorithm in order to face problems of matching ambiguity in 
homogeneous color regions. 

All the proposed methods, as already said, look for a punctual matching in the 
stereo pair. Therefore, some constraints on the pixels being considered have been 
introduced, since the first works on the stereopsis by Marr and Poggio [9],[14] in 
order to guarantee good results and to reduce the complexity. These constraints are 
basically of two kinds: Geometric constraints on imaging system, such as the 
horizontal epipolar line constraint that reduces the two-dimensional search for 
correspondence into a one-dimensional one; Geometric and physical constraints on 
the scene, assuming that distance varies slowly almost everywhere (the so-called 
continuity constraint), that a given point from one image can match no more than one 
point from the other image (the so-called uniqueness constraint), and that matching 
pixels have similar intensity values (the so-called compatibility constraint). To 
guarantee these constraints, the stereo pair is supposed to be acquired from a 
sophisticated system, so that the energy distributions of the two images are as similar 
as possible. Moreover, a pre-processing phase is needed, before the correspondence 
finding step, to compensate the hardware setup (calibration phase), or to assume an 
horizontal epipolar line (epipolar rectification). Unfortunately, in realistic applications 
of mobile robots these constraints are not easy to guarantee. The two images of the 
stereo pair could have a different energy distribution, the motion of the mobile 
platform on a rough ground could produce mechanical vibrations of the cameras, and 
consequently local or global perturbations between the two images, that could 
undermine the initial phases of calibration and rectification. We want to relax some 
constraints on the input images in order to consider a more realistic acquisition 
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system, and consequently we add some other constraints on our goal. A good 
representation of the scene must be related to the navigation aim, so that the 
resolution of the problem has to be chosen in order to permit a good tread-off between 
efficiency and effectiveness. 

3   Overview of the Strategy 

The main idea of our approach is to obtain a disparity map looking at the distance 
between homologous regions (instead of pixels) in the stereo images. Let these 
regions be called blobs. In this way the computation of the disparity map is carried 
out on a set of pixels having the same spatial and color proprieties, producing a more 
robust performance with respect to local and global perturbations in the two images.  

 

Fig. 1. A scheme of our approach 

It should be noted that a blob is not an object; objects are decomposed into several 
blobs, so the overall shape of the object is however reconstructed, except for 
uncommon pathological cases. An example of pathological case can be a uniform 
object almost along the line of sight, but it has been satisfactorily dealt with only by 
global criteria optimization, which is extremely time consuming. 

In our approach (see Fig. 1), the left and right images are segmented and each area 
identifies a node of a graph. The segmentation process is simple and very fast. In fact, 
we are not interested in a fine segmentation, because we do not pursue a 
reconstruction aim. Anyway, we need similar segments between the left and right 
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image in order to correctly find homologous regions. This objective is possible, in fact 
the stereo images are likely similar because they represent two different view points 
of the same scene. Moreover, the segmentation process does not influence the rest of 
algorithm, because a recursive definition of the matching and a performance function 
guarantee a recovery of some segmentation problems. A bipartite graph matching 
between the two graphs is computed in order to match each area of the left image with 
only one area of the right image. This process yields a list of reliably matched areas 
and a list of so-called don’t care areas. By calculating a vertical displacement 
between the corresponding areas, a depth is found for those areas of the reference 
image (i.e. left image). The list of the don’t care areas, instead, could be processed in 
order to refine our result. As it is clear, this approach is robust even in case of uniform 
texture and it does not need a strong calibration process because it looks for area 
correspondence and not pixel correspondence. On the other hand, an effort is required 
in graph matching to assure real-time requirements. The application time is reduced 
using some constraints for a quicker computation of the bipartite graph matching. 

4   The Algorithm 

Segmentation and Graph representation. The first phase of the algorithm is the 
segmentation of the stereo images and their graph representation. We need a very fast 
segmentation process that produces similarly segmented areas between the left and 
right images. We have used a simple multi-threshold segmentation. It is essentially 
based on the quantization of the histogram in some color ranges (of the same size). 
The left and right segmentations are very similar, considering an adaptive quantizat-
ion for each image according to its lighting condition. A connected component 
detection procedure is applied on each segmented image to obtain 4-connected areas 
of the same color. Each connected area (blob) is then represented as a node of an 
attributed graph. Each node has the following attributes: 

- colMean: the RGB mean value of the blob (m_r, m_g, m_b); 
- size: the number of pixels in a connected area; 
- coord: the coordinates of the box containing the blob (top, left, bottom, right); 
- blobMask: a binary mask for the pixels belonging to the blob.  

It is easy to understand that a segmentation yielding many segments can be more 
accurate but creates lots of nodes, consequently requiring a more expensive graph 
matching process. On the other hand, a rougher segmentation process generates 
matching nodes that are very dissimilar in size and shape. As a compromise, we 
consider a segmentation process tuned to over-segment the image, and subsequently 
we filter the image in order to discard small noisy areas. 

Graph Matching. Formally our matching algorithm can be described in the 
following way. A number of nodes is identified in each frame (left and right image) 
and a progressive label is associated to each node (blob). Let GL = {N0

L,…,Nn
L} and 

GR = {N0
R,…,Nm

R} be the two graphs representing the left and right image 
respectively. The solution of the spatial matching problem, between two stereo 
frames, is an injective mapping between a subset of GL and a subset of GR. The 
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problem at hand can be represented by using a matrix whose rows and columns are 
respectively used to represent the nodes of the set GL, and the nodes of the set GR 
(correspondence matrix). The element (i,j) of the matrix is 1 if we have a matching 
between the element Ni

L with the element Nj
R, it is 0 otherwise. Each row contains no 

more than one value set to 1. If the j-th row or the i-th column contains only zeros, it 
means that it is a don’t care node. The bijective mapping τ: GL  GR solves a suitable 
Weighted Bipartite Graph Matching (WBGM) problem. A Bipartite Graph (BG) [19] 
is a graph where nodes can be divided into two sets such that no edge connects nodes 
in the same set. In our problem, the first set is GL, while the second set is GR. Before 
the correspondence is determined, each node of the set GL is connected with each 
node of the set GR, thus obtaining a Complete BG. In general, an assignment between 
two sets GL and GR is any subset of GL × GR, i.e., any set of ordered pairs whose first 
elements belongs to GL and whose second elements belongs to GR, with the constraint 
that each node may appear at most once in the set. A maximal assignment, i.e. an 
assignment containing a maximal number of ordered pairs is known as a matching 
(BGM) [20]. A cost function is then introduced, so that each edge (Ni

L, Nj
R) of the 

complete bipartite graph is assigned a cost. This cost takes into account how similar 
are the two nodes Ni

L and Nj
R. The lower is the cost, the more suitable is that edge. If 

the cost of an edge is higher than a threshold, the edge is considered unprofitable and 
is removed from the graph. Let us now introduce the cost function: 
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The matching with the lowest cost among the ones with maximal cardinality is 
selected as the best solution. The problem of computing a matching having minimum 
cost is called Weighted BGM (WBGM). This operation is generally time-consuming; 
for this reason the search area (that is the subset of possible couples of nodes) is 
bounded by the epipolar and disparity bands. These constraints come from stereo 
vision geometry, but in our case they represent a generalization. The epipolar band is 
a generalization for epipolar line, that is the maximum horizontal displacement of two 
corresponding nodes (generally its value can be a few pixel). Disparity band, instead, 
is a vertical displacement, so a node of the right image can move on the left almost 
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of α*maxdisparity pixels (with α a small integer). These two displacements are 
computed with respect to the centers of the bounding box of the two blobs. 

The graph matching process yields a list of reliably matched areas and a list of so-
called don’t care areas. The matched areas are considered in the following section for 
the disparity computation. The list of the don’t care areas, instead, is processed in 
order to group adjacent blobs in the left and right image and consequently reduce split 
and merge artifacts of the segmentation process. Finally, a new matching of these 
nodes is found. The recursive definition of this phase assures a reduction of the don’t 
care areas in few steps, but sometimes this process is not needed because don’t care 
areas are very small. 

Disparity Computation. The disparity computation is faced superimposing the 
corresponding nodes until the maximum covering occurs. The overlapping is obtained 
moving the bounding box of the smallest region into the bounding box of the largest 
one; precisely, the bounding box with the minimum width is moved horizontally into 
the other box, and the bounding box with the minimum height is moved vertically into 
the other box. The horizontal displacement, corresponding to the best fitting of the 
matched nodes, is the disparity value for the node in the reference image (left image).  

5   Experimental Results 

In the literature, tests are usually performed with standard databases composed of 
static images, well-calibrated and acquired in uniform lighting. The Middlebury web 
site [21] is a good reference for some stereo images and to compare some stereovision 
algorithms. Nowadays, in AMR and AGV applications it is not defined a quantitative 
measurement for performance evaluation. In [18] it is proposed a quantitative 
performance evaluation for disparity map, but in case of reconstruction aims. For this 
reason in this paper, it is also proposed a quantitative method to compare stereo 
algorithms when the goal is the obstacle detection and no longer the 3D reconstruct-
ion of the scene. The following Fig. 2 shows our result on the Tsukuba DB and a 
comparison with other approaches. We have selected the best methods in the 
literature: squared differences (SSD) and graph cuts (GC) [21]. The experiments have 
been performed on a notebook Intel P4 1.5 GHz, 512 Mb RAM, and we have 
considered a resolution of 384x288 pixel.  

 
Fig. 2. A comparison with other approaches 

SSD: Time < 1 sec      OOUURR:: TTiimmee 11..1144  Graph Cut: Time 70 sec
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Fig. 3. SSD and Our approach after a vertical translation of 2 pixels 

In Fig. 3 it is clear the robustness of our approach in relation to the loss of the 
horizontal epipolar constraint. In order to consider a quantitative comparison of the 
algorithms for obstacle detection aim, we define a simple module that detects the 
obstacles from the disparity map. Each 4-connected region with the same disparity 
value is identified with a bounding box and its distance from the observer. We select 
the obstacles as the connected regions that belong to a chosen range of distances, in 
fact an obstacle is an object so close to the mobile platform to forbid the navigation. 
Two performance index are defined in order to valuate: the capability of the algorithm 
to identify adequately the space occupied by each obstacle (occupancy performance); 
the correctness of depth computation (distance performance). For each frame of the 
video sequence acquired from the platform, let RG be the real obstacle regions 
(Ground Truth), let RD be the obstacle regions detected by the algorithm, and let RI be 
the subset of regions correctly detected as obstacles by the algorithm (RI = RG ∩ RD). 
The occupancy performance is evaluated with the measures of precision and recall: 
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The distance performance is evaluated with the following relative distance error: 

relative distance error (rde) = |detected distance – real distance| 
                                             real distance 

(3) 

The distance of an obstacle is related to its disparity value following the relation: 
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It should be noted that for each real obstacle (Ground Truth) could be more than one 
overlapped obstacle regions detected by the algorithm. The detected distance for that 
obstacle is supposed to be a weighted mean distance of all the overlapped regions. 
The weights are set up to the sizes of each overlapping area. We report some results 
obtained on a realistic video acquired from our mobile platform. The video sequence 
(100 frames) is characterized by camera vibration, light changing, uniform obstacles. 

 

Fig. 4. Some frames of the video sequence 

The proposed method is compared with the Small Vision System (SVS) by 
Konolige [23,24], that is the most popular system in off-the-shelf systems. Namely, 
the SSD stereo matching algorithm has been implemented in SVS, taking care the 
real-time requirement and filtering the solution to reject false stereo matches. We 
consider two different version of that algorithm: SSD and SSD multi-scale. 

   

Fig. 5. Disparity Map Results: On the left side our method, on the center side the SSD, and on 
the right side the SSD multi-scale 

Table 1. Precision and Recall 

algorithm   recall precision  Relative distance error 
our method 0.886 0.439  0.046 
SSD 0.209 0.478  0.191 
SSD multi-scale 0.469 0.349  0.180 

The results in the previous table show that our method is much better than the other 
two, especially for the occupancy performance. In fact, as it is clear from Fig. 6 and 
Fig. 7, our approach can better overlap the space occupied by the real obstacles, as 
like the SSD multi-scale algorithm has big opening areas inside the obstacles.   
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Fig. 6. Some results of our obstacle detection algorithm 

   
 

  

Fig. 7. Some results of obstacle detection from SSD multi-scale stereo algorithm 

6   Conclusions 

We have presented a stereo matching algorithm that is especially oriented towards 
AMR and AGV applications, providing a fast and robust detection of object positions 
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instead of a detailed but slow reconstruction of the 3D scene. The algorithm has been 
experimentally validated showing an encouraging performance when compared to the 
most commonly used matching algorithms, especially on real-world images. Future 
works are oriented to test our method in outdoor environment and to develop a 
temporal coherence of the solution in the video sequence. 
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Abstract. In this paper, we propose to represent shapes by graphs. Based on 
graphic primitives extracted from the binary images, attributed relational graphs 
were generated. Thus, the nodes of the graph represent shape primitives like 
vectors and quadrilaterals while arcs describing the mutual primitives relations. 
To be invariant to transformations such as rotation and scaling, relative 
geometric features extracted from primitives are associated to nodes and edges 
as attributes. Concerning graph matching, due to the fact of NP-completeness of 
graph-subgraph isomorphism, a considerable attention is given to different 
strategies of inexact graph matching. We also present a new scoring function to 
compute a similarity score between two graphs, using the numerical values 
associated to the nodes and edges of the graphs. The adaptation of a greedy 
graph matching algorithm with the new scoring function demonstrates 
significant performance improvements over traditional exhaustive searches of 
graph matching. 

Keywords: Inexact graph matching, graph based representation, shape 
matching. 

1   Introduction  

Graphs are flexible and powerful representations that have been successfully applied in 
computer vision, pattern recognition and related areas. In pattern recognition, graphs 
have been proved to be effective for representation purposes; the nodes typically 
represent objects or parts of objects, while the edges describe relations between objects 
or objects parts [1]. Concerning representation of shapes, most of the time, a classical 
technique is used that include representing shapes by thinnest representation of the 
original shape that preserves the topology. The set of idealised lines obtained by 
thinning [2] is called the skeleton or medial axis. The skeletons do not hold information 
about local thickness which can play a vital role to distinguish solid shapes and linear 
shapes. In addition to that, all thinning techniques generally introduce rough branches at 
the crossing and junction of lines (figure.1a). It is evident from figure.1b that due to 
boundary irregularity the skeleton disturbed a lot. Therefore the graphs build using 
skeletons by considering end points and junctions as vertices and branches as edges, are 
not reliable as small changes in the boundary can cause serious changes in the skeleton 
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and thus ultimately can influence the generated graphs in term of extra or missing nodes 
and/or edges. An improvement of the topological skeleton representation of a binary 
shape is presented in [3] by applying parametric morphological pruning transformations 
to eliminate short branches on a skeleton. But more complex processing is required in 
the following stages which are not always effective [4]. 

(a)     (b)  

Fig. 1. The sensitivity to noise of the medial axis: small changes in the boundary may induce 
significant changes in the medial axis 

On the other hand, a great deal of effort has been devoted over the past decades to 
devise efficient and robust algorithms for the fundamental problem of graph 
matching. An update on recent development is presented in [5]. Basically, Graph 
matching is the process of finding correspondence between the nodes and the edges of 
two graphs that satisfies some constraints ensuring that similar substructures in one 
graph are mapped to similar substructure in the other.  
     Although simple, the basic idea of graph matching suffers from a number of 
drawbacks. Computational complexity is an inherent difficulty of the graph matching 
problem. The subgraph isomorphism is proven to be NP-complete [6]. The detection 
of a maximum common subgraph, as well as the computation of graph edit distance is 
also known to be NP-hard problems [7] i.e., any of the known algorithms requires an 
exponential number of computational steps in the worst case.  
     A comparison of frequently used algorithms i.e., best backtracking methods [8] 
[9], a group theory based Naughty algorithm [10], VF algorithm and VF2 algorithm 
[11] is given in [12]. The author concludes that, it does not exit an algorithm that is 
definitely better than all others and it depend on graph type e.g., Naughty algorithm 
perform better for randomly connected graphs of quite large size, while for sparse 
graphs or more regular graphs like 2D meshes, VF2 is the best algorithm[13].  
     In this work we had tried to explore the power of graphs as a tool for structural 
representation as well as for the purpose of classification. Concerning structural 
representation of shapes, we propose a contour based approach which has a dual 
nature and is capable of representing both filled and linear shapes. We suggest 
improvements in graph matching methods to avoid exhaustive searches and we 
believe that the matching step should involve quantifiable similarities rather than 
simply “yes” or “no” type responses. A match is not merely a correspondence, but a 
correspondence that has been quantified according to its “goodness”.  
     Therefore, we propose a novel method to compute a similarity measure between 
graphs. It can be viewed as two steps process, first, choice of a mapping, and second, 
computation of a similarity score for that particular mapping between the nodes and 
arcs of the two graphs. Finally, selecting the best mapping that yield highest similarity 
score as compare to others. The attractive feature of this technique is its capability to 
restrict the search space by using a partial similarity measure and its robustness to 
noise and distortion. The method is invariant to affine transformations and has a 
polynomial time complexity.  
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     The remainder of this paper is organized as follow: In section 2, we introduce the 
structural representation construction steps. The proposed similarity measure for 
shape graphs matching is presented in section 3. In Section 4, we present results of 
experiments done in this regards. Finally, in Section 5, we draw conclusion from this 
work and discuss future works.  

2   Graph Based Representation of Shapes 

Due to their representational power, graphs are widely used to represent complex 
structures in computer vision and pattern recognition applications. The main aim of 
the representation phase is to reduce the amount of data, to outline the image 
component, and to represent them in such a way that insignificant differences among 
various instances are smoothed and to highlight the significant ones. In order to have 
a compact and transformation invariant representation of various shapes, we present a 
dual nature graph. That’s to say, if the shape is solid (see figure. 2), a vectorization 
procedure will generate a list of vectors representing the contours of the shape and 
each vector will become node of the graph with their spatial relations as edges.  

On the other hand if the shape is a linear one, which is composed of lines and arcs (see 
figure. 3), for such shapes we defined another graphic primitive-the quadrilaterals obtained 
by matching opposite contours vectors. The graph nodes in this case will represent 
quadrilaterals extracted from the shape and edges shows the spatial relationships between 
their neighbours. The detail steps are presented in the following subsections.  

2.1   Raster to Vectors Conversion 

Starting with a binary image, we describe shapes by their contours using vector 
primitives. For this purpose a polygonal approximation of contours of the shapes was 
done using Wall and Danielson iterative algorithm [14]. This step provides a sequence 
of vectors, segments between two consecutive control points, with its attributes like 
initial point P1(x1,y1), final point P2(x2,y2), length (ℓ), and angle(θ) which are stored in 
a chained list. The method only needs a single threshold i.e., the ratio between the 
algebraic surface and the length of the segments which makes this linear time 
algorithm fast and efficient.  

                                   
            (a) Original shape            (b) shape contours          (c) vectors obtained 

 
Fig. 2. Extraction of vectors from binary shape 

2.2   Vectors to Quadrilaterals  

For the representation of thin shapes or linear shapes, we used another graphic 
primitive - the quadrilateral. For this purpose contours are extracted from the image 
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and vectorized. Then a matching algorithm starts that try to match opposite close 
vectors having similar slope and parallelism criteria for generating quadrilaterals out 
of them. The detail construction steps are given in [15].  

                          
 a) Initial image         (b) Contours                (c) Vectors             (d) Quadrilaterals 

 
Fig. 3. Construction of quadrilaterals 

2.3   Graph Generation 

In our attributed relational graph, the graphic primitives extracted from shape are 
represented by graph nodes and the relationships between these graphic primitives are 
represented by arcs between such nodes. Both nodes and arcs are associated with 
attributes corresponding to properties (features) of primitives and their mutual 
relationships respectively. 

We defined our attributed relational graph G as a 4-tuple : G = (V, E, α, β ),  where  

   - V is the finite set of vertices,  
  - VVE ×⊆ is the set of edges,  

   - i
VAV →:α  function assigning attributes to vertices,  

   - j
EAE →:β   function assigning attributes to edges.  

Here, AV and AE denote sets of vertex and edge attributes, respectively, i is varying 
from 1 to δ  and j is varying from 1 to Ω . While δ  and Ω  represent the number of 
attributes associated to a vertex and an edge of the graph respectively. 

To describe binary shape in a simple way, actually, both nodes and edges of the 
graph contain only a single numerical value as an attribute.  

To search the connecting edges between nodes of the graph, a region of possible 
neighbourhood is define for each primitive; we called it “Zone of influence”. The 
dimensions of this zone of influence are computed according to length and thickness 
of the primitive (although in case of vector the thickness is 1 pixel). Thus, 
representing the primitives as nodes of the graph, the connecting edges between their 
neighbouring nodes can be found by looking at their zone of influence. Hence, the 
system picked up vectors and quadrilaterals present in the shape one by one, 
generating its zone of influence; spotting and storing all other vectors and 
quadrilaterals that fall in this particular zone as neighbours (see fig. 4). The relative 
length (λi) computed as the ratio of the length of the primitive to the length of the 
longest primitive found in that particular shape i.e., (λi =ℓi /ℓmax) is associated to 
nodes. While relative angle between the primitives i.e., φij = |θi - θj | (θi, θj are the 
angles with horizontal axis) is associated to edge attribute. 
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                         (a)                                                                (b) 

Fig. 4. (a) Zone of influence of a quadrilateral (b) Influence Zone of the quadrilaterals and their 
corresponding sub-graphs respectively 

 

Fig. 5. Attributed Relational Graphs (ARGs), relative length as node attribute and relative angle 
as edge attribute 

3   Recognition Phase 

We believe that comparing graphs using flexible selection and matching criteria of 
nodes is the key to effective and significant performance improvement. We propose a 
new similarity measure to test the effectiveness of a given mapping and used a new 
similarity measure coupled with a greedy algorithm [16] for searching possible node 
pairs in the two graphs to avoid exhaustive complete search.    

3.1   The Similarity Score Computation 

To compare two graphs with numerical attributes on vertices and edges. We propose a 
new distance based measure which is capable of computing vertex-to-vertex 
similarity and edge-to-edge similarity present in a particular mapping. We propose to 
calculate the similarity score of a given mapping (Mp) as: 
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Where, m is total number of mapped vertices in a mapping and n is the total number 

of edges in between them. The iω  and jω′ are the weights associated to the split of 

the ith vertex and the  jth edge in the given mapping (Mp) respectively. The splits are 
the association of a vertex (or an edge) in one graph to more than one vertices (or 
edges) in the other graph. The weight of the split depends on the number of attributes 
associated to the vertices or edges. 
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In formula (1), 
iVΔ  correspond to the dissimilarity measure between two mapped 

vertices, normalized between 0 and 1. The function fk  compares the values of the kth 
attribute of the two mapped vertices and return a dissimilarity value between 0 and 1. 
As in this work, only one attribute has been associated to the vertices (i.e., the relative 
length of the primitive), we can simply use 

( ) iiVV AAf ′′ −= λλ11
1 ,  (3) 

Similarly, jEΔ is corresponding to the dissimilarity measure between two mapped 

edges normalised between 0 and 1. The function gk is used to compare the two values 
of the kth attribute of the two edges. Actually, we have used only one attribute to 
compare the edges (i.e., the relative angle between primitives), we define g1 as : 
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Finally, to normalize the graph similarity measure between 0 and 1, we use: 
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Here ScMp is the score of the mapping computed according to new similarity formula 
given in eq. 1. While C is cardinality function that return the number of vertices or 
edges in a graph. While δ  and Ω  represent the number of attributes associated to the 
a vertex and an edge of the graph respectively. 

3.2   Splits: Multiple Associations of Nodes and Arcs 

The splits are the association of a vertex (or an edge) in one graph to more than one 
vertex (or edges) in the other graph. For example, in the two graphs given below, 
node “2” has been associated to node “B” as well as node “C”, thus causing the split 
of node “2” and reducing the score of the mapping. 

 

We allowed this phenomenon because due to noise and distortion the quadrilaterals 
or vectors can be either broken or unwanted parasitic quadrilaterals and vectors can 
appear. Hence, by using splits, on one hand association of nodes in the two graphs is a 
bit more flexible, while on the other hand, by considering it as a penalty the score of 
matching is controlled. 
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3.3   The Graph Matching Routine ( Simgraph ) 

The simgraph routine takes two graphs G1 and G2 as input and return best mapping of 
nodes and its score. It is an iterative incremental algorithm. Beginning with an empty 
mapping set. In each iteration possible nodes pairs are pointed out, and are allowed to 
enter into the current mapping with the assumption of increase in score. If the node 
pair increases the over all score of the mapping, it is kept in the current mapping and 
is saved as best mapping so far. On contrary if it does not bring any improvement to 
the score, the node pair is rejected and the system search for another possible 
candidate pair (combination of nodes from the two graphs excluding those which are 
already present in the current mapping). This process continues till the score stopped 
increasing and there are no more virgin edges. The Edgesvirgins are those connecting 
edges of a node which are not yet part of the current mapping; this concept is used to 
break ties in a situation when there are more than one node pairs which can equally 
increase the score function. The detail algorithm is presented below. 
 
Simgraph Algorithm 
Input: Two attributed graphs G1 and G2  
Output: Best mapping between nodes in G1 and G2, and a   
        similarity score 
Initialization:  
1. Current Mapping(Mcurrent← φ ) 
2. Best Mapping (Mbest ← φ ) 
3. Maximum Score (Scmax = 0) 
4. Repeat 
5. Select a nodes pair (vi ,vj) ∉ MCurrent 
6.   M ′ = MCurrent  ∪ (vi ,vj)  
7.     Sc = Call Mapping_Score(M ′ ) 
8.          If ( Sc > Scmax) then 
9.            Candidates ← (vi ,vj) 
10.      End if  
11. ∀ (vi ,vj)∈Candidates,Select(vi,vj)having maximum  
    Edgesvirgin (edges not present in the current mapping) 
12.       MCurrent ← MCurrent ∪ (vi ,vj) 
13.  If Mapping_Score(MCurrent)>Mapping_Score(Mbest)then  
14.            Mbest ← MCurrent 
15.            Scmax= Mapping_Score(Mbest) 
16.  End if  
17. Until 

18.  Edgesvirgin = 0 ∧  Sc ≤ Scmax 
 

For example, two different possible mappings are shown in the figure 6, When node 
“3” is mapped to node “ 2′” and node “4” to “3′ ”, the score obtained is 5.9, while in 
another combination where node “3” is mapped to node “3′ ” and node “4” to node 
“ 2′”, the score improved to 5.94. Thus the system takes the decision based on the score 
of the mapping and will keep this mapping as the best possible mapping so far.  
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Graph - G1                Graph - G2          Mapping - 1            Mapping - 2 

Fig. 6. Two possible mapping and their similarity score 

4   Results  

To test the proposed method, three datasets were used. First, a large database of 
closed binary shapes collected by the LEMS Vision Group at Brown University [17], 
second an online Encyclopedia of western signs and ideograms [18] containing 2500 
symbols, and third the linear graphic symbol database proposed for the symbol 
recognition contest (GREC’03) [19]. The tests were launched on different subsets of 
these shapes dataset. For the sake of conciseness, only the results of some prototypes 
are shown in table 1 and 2. The low similarity scores between false neighbours is a 
clear indication of discriminating power of the proposed approach. The table.3 shows 
the images retrieved based on their similarity with respect to the query shapes in a 
certain range (here it’s up to 70% similarity). 

Table 1. Score of similarity between shapes belonging to different groups 

1.000 0.535 0.445 0.566 0.517 0.645 0.529 

1.000 0.630 0.563 0.527 0.554 0.630 

 1.000 0.492 0.398 0.502 0.579 

  1.000 0.652 0.673 0.532 

   1.000 0.615 0.522 

    1.000 0.605 

     1.000 
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Table 2. Score of similarity between different instances of the same group 

1.00 0.62 0.75 0.83 0.67 0.79 0.65 

 1.00 0.58 0.63 0.72 0.66 0.57 

  1.00 0.70 0.64 0.75 0.63 

   1.00 0.67 0.74 0.79 

    1.00 0.69 0.62 

     1.00 0.74 

      1.00 
 

Table 3. Score of similarity and shape retrieved based on query shape 

Query 
shape 

Total 
shapes Rank-1 Rank-2 Rank-3 Rank-4 Rank-5 

Q1
43

1.000

bd-007

0.925

bd-030

0.888

bd-019

0.784

bd-024

0.744

bd-042

Q2
100

1.000

bf-001

0.872

bf-003

0.826

bf-026

0.792

bf-009

0.786

bf-011

Q3
100

1.000

f-026

0.801

f-075

0.793

f-044

0.774

f-065

0.733

f-046

Q4

45

1.000

v-004

0.849

v-018

0.814

V-017

0.754

v-038

0.678

v-044  

The score of similarity degrade gracefully depending on the changes in the shape 
boundaries. Similarly table 4 shows the top 5 ideograms found that were close to the 
query sign based on their mutual similarity measures. For query ideograms Q3 in 
table.4 we can see that the first 4 neighbour are the instances of the same ideograms at 
different orientations, the similarity score of 1.00 computed by the system showed 
that our proposed system is invariant of rotation as well. To test the system robustness 
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regarding vectorial distortion, a hand drawn dataset based on the graphic symbols of 
GREC-database was synthetically generated (fig. 7). 

The results obtained were quite satisfactory. However, it would be intresting to see 
the performance of the system on different levels of degradation with respect to noise. 

Table 4. Score of similarity and shape retrieved based on query shape 

Query 
shape 

Rank-1 Rank-2 Rank-3 Rank-4 Rank-5 

 
Q1 

1.000 

 
C-1106 

0.903 

 
C-1112 

0.859 

 
C-1113 

0.831 

 
C-1111 

0.789 

 
C-1107 

 
Q2 

1.000 

 
C-0304 

0.860 

 
C-0305 

0.819 

 
C-0306 

0.781 

 
C-0308 

0.709 

 
C-0307 

 
Q3 

1.000 

 
C-0206a 

1.000 

 
C-0206b 

1.000 

 
C-0206c 

1.000 

 
C-0206d 

0.534 

 
C-0202a 

 
Q4 

1.000 

 
C-430b 

0.909 

 
C-0419 

0.641 

 
C-0431b 

0.588 

 
C-0431a 

0.562 

 
 

C-0421 
 

 

Fig. 7. The three level of synthetic hand-drawn symbols 

5   Conclusion 

In this work we deal with the recognition of thin and filled shapes. We propose a 
general methodology which uses an efficient representation of shapes based on 
“Attributed Relational Graphs” (ARGs). We believe that the proposed similarity 
measure play a vital role in evaluating the appropriateness of the nodes and arcs 
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mapping between the two graphs. In addition, the use of greedy algorithm improves 
the efficiency of the search techniques and bound it to polynomial time solution.  
     The proposed graph based representations generated using graphic primitives like 
vectors and quadrilaterals are understandable, highly invariant to scaling and rotation, 
and are insensitive to small changes in shape as well. However, the results can be 
further improved by adding more attributed to nodes and edges of the graphs. Future 
works include, having a combined graph of quadrilaterals and vectors to test the 
recognition of mixed shapes (partially filled and partially linear) based on proposed 
similarity measure.  
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Abstract. In many applications of computer vision and pattern recog-
nition which use graph-based knowledge representation, it is of great
interest to be able to extract the K largest cliques in a graph, but most
methods are geared either towards extracting the single clique of max-
imum size, or enumerating all cliques, without following any particular
order. In this paper we present a novel approach for partial clique enu-
meration, that is, the extraction of the K largest cliques of a graph. Our
approach is based on a continuous formulation of the clique problem de-
veloped by Motzkin and Straus, and is able to avoid extracting the same
clique multiple times. This is done by casting the problem into a game-
theoretic framework and iteratively rendering unstable the solutions that
have already been extracted.

1 Introduction

Many applications of computer vision and pattern recognition which use graph-
based knowledge representation have to deal with the problem of finding com-
plete subgraphs (cliques) of their structural descriptions. Examples of problems
that have successfully been reduced to a clique-finding problem range from
matching [2], to category learning and knowledge discovery [17,9], to cluster-
ing [1,18], to stereo matching [13], to name just a few. Furthermore, clique finding
is also linked with the learning of graphical structure by the Hammersley-Clifford
theorem [11].

The maximum clique problem (MCP) deals with the challenge of finding the
largest complete subgraph of an undirected and unweighted graph. It falls in
the crucial class of NP-Complete problems, whose intractability forces us to fall
back on approximation methods. Unfortunately, even approximating the MCP
is intractable [12]. Due to this pessimistic state of affairs much attention has
gone into developing efficient heuristics for the MCP, for which no formal guar-
antee of performance may be provided, but are nevertheless useful in practical
applications. We refer to Bomze et al. [5] for a survey concerning algorithms,
applications, and complexity issues of this important problem.

In a recent series of papers [19,10,7] we find approaches that are centered
around a classical result from graph theory due to Motzkin and Straus [16], that
allows us to formulate the MCP as a continuous quadratic optimization prob-
lem with simplex constraints. This program is typically solved by the replicator

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 61–70, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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dynamics, well-known continuous- and discrete-time dynamical systems, devel-
oped and studied in the field of evolutionary game theory and for which it can
be shown that there exists a one-to-one correspondence between stable points
and maximal cliques of the corresponding graph.

In several contexts, it is of great interest to have an approach that can ex-
tract several large cliques, in particular, we would like to be able to efficiently
extract the K largest cliques in a graph. For example in knowledge discovery,
where categories are abstracted in terms of cliques, each element can belong to
multiple categories, and hence we are interested in discovering more than one
category [17,9]. In a completely different domain, Horaud and Skordas [13] use
the largest cliques to find stereo correspondences in image pairs. While exact
search-based enumerative algorithms are guaranteed to generate every maximal
clique, in general they cannot guarantee a specific order in which these are found,
in particular they give no guarantee about the relative size of the clique obtained
at each step.

In this paper we present an approach which uses a continuous formulation
to enumerate a user-defined number of large cliques. Ideally, we would like to
obtain the K largest maximal cliques after a small number of enumerations.
Clearly, the actual size of the extracted cliques depends on the effectiveness of
the continuous formulation, but, experimental evidence tells us that the approach
performs fairly well [19].

The basis of this approach rests on the fact that under a certain family of
quadratic problems, there is a bijection between asymptotically stable points of
the replicator dynamics and maximal cliques. Once we have extracted a maximal
clique, we would like to avoid that the dynamics converge to the same clique. In-
tuitively, what our method does is to render unstable the associated rest point.
To do this, we deal with directed graphs, and apply a particular asymmetric
graph-extension for every maximal clique we want to render unstable. By iter-
ating this extension process, we progressively reduce the set of asymptotically
stable points of the replicator dynamics, and, hence, we obtain a continuous-
based enumerative algorithm.

2 A Family of Quadratic Programs for Maximum Clique

Let G=(V, E) be an undirected graph without self-loops, where V ={1, 2, . . . , n}
is the set of vertices and E ⊆ V × V the set of edges. Two vertices u, v ∈ V
are adjacent if (u, v) ∈ E. A subset C of vertices in G is called a clique if all
its vertices are mutually adjacent. It is a maximal clique if it is not subset of
other cliques in G. It is a maximum clique if no other cliques of G have a strictly
greater cardinality. The cardinality of a maximum clique of G is also called clique
number and denoted by ω(G).

The adjacency matrix of G is the n× n symmetric matrix AG = (aij) where
aij = χE((i, j)). Here, χA(i) represents the indicator function that returns 1 if
i ∈ A, 0 otherwise.
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Consider the following constrained quadratic program.

maximize fα(x) = x′(AG + αI)x s.t. x ∈ Δ ⊂ �
n, (1)

where n is the order of G, I the identity matrix, and α is a real parameter. In
1965 Motzkin-Straus [16] established a connection between the maximum clique
problem and the program in (1) with α = 0; they related the clique number of G
to global solutions x∗ of the program through the formula ω(G) = (1−f0(x∗))−1,
and showed that a subset of vertices C with cardinality |C| is a maximum clique
of G if and only if 1 its characteristic vector xC ∈ Δ, where xC

i = χC(i)|C|−1,
is a global maximizer of f0 on Δ. Gibbons, Hearn, Pardalos and Ramana [10],
and Pelillo and Jagota [20], extended the Motzkin-Straus theorem by providing
a characterization of maximal cliques in terms of local maximizers of f0 in Δ.

A drawback of the original Motzkin-Straus formulation is the existence of
“spurious” solutions, i.e., maximizers of f0 that are not in the form of charac-
teristic vectors. Bomze et al.[6] proved that for 0 < α < 1 all local maximizer
of (1) are strict and are in one-to-one relation with the characteristic vectors of
the maximal cliques of G, hence, overcoming the problem.

In order to find the maxima of (1) we cast the problem in a game-theoretic set-
ting and use the replicator dynamics, a well-known formalization of the selection
process. In the next section we will review some concepts from evolutionary game
theory that will be useful throughout the paper and provide the link between
game theory and maximal cliques.

3 A Game-Theoretic Perspective

Let O = {1, 2, . . . , n} be the set of pure strategies available to the players and
A = (aij) the n × n payoff or utility matrix [23] where aij is the payoff that
a player gains when playing the strategy i against an opponent playing j. In
biological contexts, payoff are typically measured in terms of Darwinian fitness
or reproductive success whereas in economics applications, they usually represent
firms’ profits or consumers’ utilities.

A mixed strategy is a probability distribution x = (x1, x2, . . . , xn)′ over the
available strategies in O. Mixed strategies clearly lie in the standard simplex of
the n-dimensional Euclidean space Δ = {x ∈ �n : e′x = 1, x ≥ 0} where e is
the vector with all components equal to 1.

The support of a mixed strategy x ∈ Δ, denoted by σ(x), defines the set of
elements with non-zero probability: σ(x) = {i ∈ O : xi > 0}

The expected payoff that a player obtains by playing the element i against an
opponent playing a mixed strategy x is u(ei, x) = (Ax)i =

∑
j aijxj , where ei

is the vector with all components equal zero except for the ith-component which
is equal to 1. Hence, the expected payoff received by adopting a mixed strategy
y is u(y, x) = y′Ax.
1 In the original paper Motzkin-Straus proved the “only-if” part of this theorem. The

converse however is a straightforward consequence of their result (Pelillo & Jagota,
1995) [20].
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Evolutionary game theory considers an idealized scenario wherein pairs of
individuals are repeatedly drawn from a large population to play a two-player
symmetric game. Each player is not supposed to behave rationally or have a
complete knowledge of the details of the game, but he acts according to a pre-
programmed pure strategy. This dynamic activates some selection process that
results in the evolution of the fittest strategies.

A well-known formalization of the selection process is given by the replicator
equations [23]: ẋi = xi(u(ei, x)− u(x, x)).

If the payoff matrix is symmetric then x′Ax is strictly increasing along any
non-constant trajectory of any payoff-monotonic dynamics [23]. This result al-
lows us to establish a bijective relation between the local solutions of program (1),
namely characteristic vectors of maximal cliques of G, and asymptotically stable
points of the replicator dynamics with payoff matrix AG + αI and 0 < α < 1.

In order to obtain enumeration of maximal cliques through a continuous for-
mulation we move from undirected graphs to directed graphs, or, in other words,
from symmetric payoff matrices to asymmetric payoff matrices. If we loosen the
symmetry constraint, then all the results that bind local solutions to asymptoti-
cally stable points and maximal cliques do not hold any longer, and x′Ax is not
a Lyapunov function for the dynamics.

The best replies against a mixed strategy x is the set of mixed strategies
β(x) = {y ∈ Δ : u(y, x) = maxz u(z, x)}.

A mixed strategy x is a Nash equilibrium if it is a best reply to itself, i.e.
∀y ∈ Δ, u(y, x) ≤ u(x, x). This implies that for all i ∈ σ(x), u(ei, x) = u(x, x),
hence the payoff of every strategy in the support of x is constant, while all
strategies outside the support of x earn a payoff that is less than or equal u(x, x).

A strategy x is said to be an evolutionary stable strategy (ESS) if it is a
Nash equilibrium and for all y ∈ Δ such that u(y, x) = u(x, x) we have that
u(x, y) > u(y, y). Intuitively, ESS are strategies such that any small deviation
from them will lead to an inferior payoff.

Consider the following quadratic program

maximize π(x) = x′Ax s.t. x ∈ Δ ⊂ �
n, (2)

where A is a symmetric matrix. We have that x is a Nash equilibrium of a two-
player game with payoff matrix A, if and only if it satisfies the Karush-Kuhn-
Tucker (KKT) conditions for (2). In fact the KKT conditions can be written as

u(ei, x) = (Ax)i

{
= λ if i ∈ σ(x)
≤ λ if i /∈ σ(x)

for some real λ. However it is clear that λ = x′Ax = u(x, x) and what we obtain
is exactly the definition of a Nash equilibrium. Hence local solution of (2) are
indeed Nash equilibria, but the converse does not necessarily hold.

A two-player symmetric game where the payoff matrix is also symmetric is
called doubly-symmetric game. Loser and Akin [15] showed that for all doubly
symmetric games the average payoff u(x, x) increases along every non-stationary
solution path to the replicator dynamics.
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If we consider program (1) with 0 < α < 1, we have that the set of ESS is
equivalent to the set of maximal cliques of the related graph. We refer to [8] and
[6] for a deeper insight of the relation between ESS and maximal cliques.

Through this change in perspective, we can move from a constrained maxi-
mization problem, to a game-theoretic setting. Instead of finding local solutions
of a quadratic program, we look for ESS of a doubly symmetric game. The
advantage of this new approach is that we can generalize the Motzkin-Straus
result to non symmetric payoff matrices and, hence, directed graphs.

Let G = (V, E) be a directed graph. A doubly-linked clique of G is a set S ⊆ V
such that for all u, v ∈ S, (u, v) ∈ E implies (v, u) ∈ E. The clique is saturated
if there is no t ∈ V \ S such that for all s ∈ S, (s, t) ∈ E.

In [22] we find the following result.

Theorem 1. Let G = (V, E) be a directed graph with adjacency matrix A, S ⊆
V is a saturated doubly-linked clique of G if and only if xS is an ESS for a
two-player game with payoff matrix B = A′ + αI, where 0.5 < α < 1.

We have already seen that if we consider an undirected graph G and the payoff
matrix AG + αI with 0 < α < 1, then the ESSs of the related two-player game
are in one-to-one correspondence with maximal cliques of G. However if we
strengthen the constraint on α to lay between 0.5 and 1, then we can see that
the concept of saturated doubly-linked clique is a direct generalization to the
asymmetric case of the concept of maximal clique, i.e. ESSs are in one-to-one
correspondence with saturated doubly-linked cliques.

4 Continuous-Based Enumeration

In this section we will present our continuous-based enumeration approach and
prove its correctness. In order to render unstable a given ESS x it is enough to
drop the Nash condition for x. A simple way to do it without affecting other
equilibria, is to add a new strategy z that is a best reply to x, but to no other
ESS. This way, x will no longer be asymptotically stable.

Let G = (V, E) be an undirected graph and G′ = (V, E′) be its directed
version where for all (u, v) ∈ E, (u, v), (v, u) ∈ E′. Given a set Σ of maximal
cliques of G, we extend G′ obtaining the Σ-extension GΣ of G. The extension is
as follows. For each clique S ∈ Σ, we create a new vertex v, called Σ-vertex, and
put edges from v to each vertex in S and from each vertex not in S to v. After
this operation, each Σ-vertex v dominates a particular clique S of Σ. Further,
each vertex not in S dominates the Σ-vertex v so that it cannot be part of a
new asymptotically stable strategy.

Theorem 2. Let G = (V, E) be an undirected graph, Σ be a set of maximal
cliques of G and A be the adjacency matrix of the Σ-extension GΣ of G. Let Φ
be a two person symmetric game with payoff matrix A + αI with 0.5 ≤ α < 1.
Then x is an ESS equilibrium of G if and only if it is the characteristic vector
of a maximal clique of G not in Σ.
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Proof. (⇒) By (1) if x is an ESS of Φ then it is the characteristic vector of
a saturated doubly-linked clique S of GΣ . By construction of GΣ , the only
possible doubly-linked cliques are subsets of V , therefore S is a clique of G. It
is also maximal and not in Σ because otherwise it would not be saturated.

(⇐) Consider S /∈ Σ a maximal clique of G. Then by construction of GΣ ,
it is a saturated doubly-linked clique of GΣ and hence by [22] xS is an ESS
equilibrium of G.

The continuous-based enumerative algorithm uses this result in the following
way. We iteratively find an asymptotically stable point through the replicator
dynamics. If we have an ESS, then we have found a new maximal clique2. After
that, we extend the graph by adding the newly extracted clique to Σ, hence
rendering its associated strategy unstable, and reiterate the procedure until we
have enumerated the selected number of maximal cliques.

The space complexity of this algorithm is O{(n + K)2}, where n is the graph
order and K is the number of enumerated cliques, while the time complexity is
O{γK(n+K)2}, where γ is the average number of iterations that the replicator
dynamics require to converge (in the experiments we present in the next section
we have that γ < 15).

5 Experimental Results

In this section we asses the ability of our continuous-based enumerative heuristic
(CEH) to extract large cliques. To this end we apply the enumeration to the
extraction of the maximum clique from the DIMACS benchmark graphs. For
each graph, we run the method 20 times and took for each run, the maximum
between the first 300 enumerated maximal cliques.

In order to extract the maximal clique from a characteristic vector, we avoid
the standard thresholding technique on the value of each component of the char-
acteristic vector, but rather we use the values of each component as indicators
for a New-Best-In heuristic [14]. This is a sequential greedy heuristic that, start-
ing from an empty set of vertices, iteratively constructs a maximal clique by
inserting the clique-preserving vertex v that maximizes wv +

∑
j∈S χE((v, j))wj

where E is the set of edges of the graph, S is the set of clique-preserving vertices
and w = (w1, . . . , wn) is a weight vector, in our case the mixed strategy obtained
through the replicator dynamics. An added advantage of this approach is that
we can stop the dynamics before the dominated strategies where driven to a
hard zero, and still be able to extract the associated maximal clique. This can
significantly improve the speed of the approach as a lower number of iterations
are needed to extract each clique. the method.

In figure (1) we show the results obtained by enumerating about 450 maximal
cliques of a random graph of order 100 and density 0.25. For each enumeration
the graph plots the average size of the last 40 cliques in order to clarify the
2 We have never experienced an AS point that was not an ESS, so we strongly believe

that theorem (2) can be generalized to asymptotically stable points.
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Table 1. Comparative results on DIMACS benchmark graphs

Clique size
Name # ρ BR Min Avg.(S.Dev.) Max K Avg. time IHN AIH CBH QMS RLS

brock200 1 200 0.75 21 20 20.050 (0.224) 21 156 7.85s - 20 20 21 21
brock200 2 200 0.50 12 10 10.400 (0.503) 11 24 7.25s - 10 12 12 12
brock200 3 200 0.61 15 13 13.750 (0.444) 14 19 7.40s - 13 14 15 15
brock200 4 200 0.66 17 15 15.850 (0.587) 17 2 7.50s - 16 16 17 17
brock400 1 400 0.75 27 23 23.800 (0.410) 24 49 19.90s - 24 23 27 25
brock400 2 400 0.75 29 23 23.450 (0.510) 24 24 20.00s - 24 24 29 29
brock400 3 400 0.75 31 23 23.700 (0.657) 25 10 19.90s - 24 23 31 25
brock400 4 400 0.75 33 23 23.900 (0.641) 25 77 19.90s - 23 24 33 33
brock800 1 800 0.65 23 19 19.600 (0.503) 20 4 51.35s - 20 20 23 21
brock800 2 800 0.65 24 19 19.900 (0.447) 21 3 51.60s - 18 19 24 21
brock800 3 800 0.65 25 19 19.750 (0.550) 21 245 51.30s - 19 20 25 22
brock800 4 800 0.65 26 19 19.550 (0.510) 20 17 51.25s - 19 19 26 21
c-fat200-1 200 0.08 12 12 12 (0) 12 1 7.40s 12 12 12 12 12
c-fat200-2 200 0.16 24 24 24 (0) 24 1 7.95s 24 24 24 24 24
c-fat200-5 200 0.43 58 58 58 (0) 58 1 18.80s 58 58 58 58 58
c-fat500-1 500 0.04 14 14 14 (0) 14 1 24.70s 14 14 14 14 14
c-fat500-2 500 0.07 26 26 26 (0) 26 1 28.90s 26 26 26 26 26
c-fat500-5 500 0.19 64 64 64 (0) 64 1 41.50s 64 64 64 64 64

c-fat500-10 500 0.37 126 126 126 (0) 126 1 62.75s - 126 126 126 126
hamming6-2 64 0.90 32 32 32 (0) 32 1 2.79s 32 32 32 32 32
hamming6-4 64 0.35 4 4 4 (0) 4 1 2.23s 4 4 4 4 4
hamming8-2 256 0.97 128 128 128 (0) 128 1 9.90s 128 128 128 128 128
hamming8-4 256 0.64 16 16 16 (0) 16 1 10.15s 16 16 16 16 16
johnson8-2-4 28 0.56 4 4 4 (0) 4 1 1.11s 4 4 4 4 4
johnson8-4-4 70 0.77 14 14 14 (0) 14 1 2.68s 14 14 14 14 14

johnson16-2-4 120 0.76 8 8 8 (0) 8 1 4.28s 8 8 8 8 8
johnson32-2-4 496 0.88 16 16 16 (0) 16 1 25.50s 16 16 16 16 16

keller4 171 0.65 11 11 11 (0) 11 1 2.20s - 9 10 11 11
keller5 776 0.75 27 25 26.600 (0.681) 27 5 28.55s - 16 21 26 27
keller6 3361 0.82 ≥59 51 52.250 (0.910) 54 45 761.75s - 31 - 53 59

MANN a9 45 0.927 16 16 16 (0) 16 1 1.87s - 16 16 16 16
MANN a27 378 0.990 126 125 125.100 (0.308) 126 124 36.30s - 117 121 125 126
MANN a45 1035 0.996 345 341 342.100 (0.641) 343 85 528.00s - - - 342 345
p hat300-1 300 0.24 8 8 8 (0) 8 1 11.15s 8 8 8 8 8
p hat300-2 300 0.49 25 25 25 (0) 25 9 12.80s 25 25 25 25 25
p hat300-3 300 0.74 36 34 34.550 (0.605) 36 218 13.75s 36 36 36 35 36
p hat500-1 500 0.25 9 9 9 (0) 9 1 22.65s 9 9 9 9 9
p hat500-2 500 0.50 36 34 35.300 (0.571) 36 36 31.05s 36 36 35 36 36
p hat500-3 500 0.75 50 48 48.500 (0.510) 49 7 35.40s 49 49 49 48 50
p hat700-1 700 0.25 11 9 10.700 (0.571) 11 2 35.45s 11 9 11 11 11
p hat700-2 700 0.50 44 43 43.400 (0.503) 44 1 56.30s 44 44 44 44 44
p hat700-3 700 0.75 62 60 60.500 (0.607) 62 1 67.25s 61 60 60 62 62

p hat1000-1 1000 0.25 10 10 10 (0) 10 1 60.55s 10 - - 10 10
p hat1000-2 1000 0.50 46 44 45.250 (0.550) 46 26 104.00s 46 - - 45 46
p hat1000-3 1000 0.75 68 63 63.900 (0.718) 65 50 127.80s 68 - - 65 68
p hat1500-1 1500 0.25 12 11 11 (0) 11 1 114.95s - 10 11 12 12
p hat1500-2 1500 0.50 65 62 63.150 (0.745) 64 51 255.60s - 64 63 64 65
p hat1500-3 1500 0.75 94 88 89.750 (1.333) 92 178 326.75s - 92 94 91 94
san200 0.7 1 200 0.70 30 19 29.050 (2.964) 30 11 7.70s 30 15 15 30 30
san200 0.7 2 200 0.70 18 13 13 (0) 13 1 7.45s 15 12 12 18 18
san200 0.9 1 200 0.90 70 70 70 (0) 70 2 9.60s 70 46 46 70 70
san200 0.9 2 200 0.90 60 57 59.800 (0.696) 60 2 8.95s 41 39 36 60 60
san200 0.9 3 200 0.90 44 36 39.800 (2.375) 44 85 8.70s - 35 30 40 44
san400 0.5 1 400 0.50 13 7 7.900 (0.308) 8 20 16.55s - 7 8 13 13
san400 0.7 1 400 0.70 40 40 40 (0) 40 2 20.05s 40 20 20 40 40
san400 0.7 2 400 0.70 30 18 21.250 (4.315) 30 32 18.75s 30 15 15 30 30
san400 0.7 3 400 0.70 22 15 15.800 (0.410) 16 7 18.15s - 12 14 18 22
san400 0.9 1 400 0.90 100 100 100 (0) 100 1 27.40s 100 51 50 100 100

san1000 1000 0.50 10 8 8.400 (0.503) 9 30 59.90s 10 8 8 15 15
sanr200 0.7 200 0.70 18 17 17.850 (0.366) 18 29 7.60s 17 18 18 18 18
sanr200 0.9 200 0.90 42 39 40.550 (0.686) 42 243 8.80s 41 41 41 41 42
sanr400 0.5 400 0.50 13 12 12.750 (0.444) 13 30 17.25s 12 13 12 13 13
sanr400 0.7 400 0.70 21 19 20.250 (0.550) 21 59 19.10s 21 21 20 20 21
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Fig. 1. Average size of the extracted clique over the number of extractions

descending tendency. As it can be seen, the approach enumerates the clique in
approximately decreasing order of size.

Table (1) shows the results obtained with CEH on the DIMACS benchmark.
We compared our approach with a neural-network-based heuristic, Inverted
Neural Network (IHN) [4] and with other Motzkin-Straus -based heuristics for
MCP, i.e. Annealed Imitation Heuristic (AIH) [21], Continuous Based Heuris-
tic (CBH) [10] and Qualex Motzkin-Straus (QMS) [7]. Furthermore, we also
compare the approach with Reactive Local Search (RLS) [3], a state-of-the-art
heuristic search-based algorithm for MCP.

The table includes the name of the DIMACS graph (Name), the number of
vertices (#), the graph density (ρ), the optimum size (BR) . In the second part
we find the results obtained with CEH: the minimum (Min), the average size
and standard deviation (Avg), and the maximum size (Max) obtained among
20 runs of CEH, each enumerating 300 cliques. The column labeled with K
provides the number of enumerations required before the maximum was found.
The running times are referred to an unoptimized C implementation on 64-bit
PC with a 2 GHz AMD Opteron Processor and 1 Gb RAM. The computation
times of the other methods can be found in their respective papers, however they
are not comparable because they refer to experiments conducted with different
hardware and software settings.

The c-fat, hamming and johnson families were the easiest to solve, in fact all
algorithms find the global optima.

Though CEH, AIH and CBH use the same continuous-based technique, CEH
outperforms both algorithms on all DIMACS graphs. The comparison with IHN
is not so meaningful because it has been tested on few graph instances, but we
can notice that for all families except sanr the approaches are comparable, while
on the sanr graphs CEH is the best performer.
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QMS seems to be particularly good on the brock family, where it outper-
forms all other approaches. However, CEH outperforms QMS on MANN, keller
and sanr families and performs slightly better on the p hat family, while QMS
performs slightly better on the san family.

We can see that RLS provides the best performance on almost all DIMACS
benchmarks, with the exception of the brock family, where QMS is indeed the
best. It is worth reminding that RLS is a search based-approach while all the
other are continuous-based.

The column K of the tables represent the minimum number of enumerations
before the best clique size for the algorithm has been reached. It is in some sense
a measure of the action of the enumeration in order to achieve the maximum
result. We see that the easy instances of the benchmark are solved within the
first enumeration, while more difficult ones, for example brock, san, sanr, require
a higher number of enumerations.

6 Conclusions

In this paper we developed a partial clique enumeration algorithm based on the
Motzkin-Straus formulation. In order to perform the enumeration, we deal with
a directed form of the clique problem and we deal with an asymmetric extension.
This way we lose the original connection with the quadratic problem, but, by
casting the problem into a game-theoretic framework, we are able to prove a
relationship between the evolutionary stable strategies and maximal cliques that
have not yet been enumerated. In order to asses the usefulness of the approach we
compared it with several state-of-the-art approaches on the problem of extracting
the maximum clique from the DIMACS benchmark graphs. The approach proved
to be superior to other continuous-based approaches and competitive with the
state of the art search heuristics.
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Abstract. In this paper we propose a new lower bound to a subgraph
isomorphism problem. This bound can provide a proof that no subgraph
isomorphism between two graphs can be found. The computation is based
on the SDP relaxation of a – to the best of our knowledge – new combina-
torial optimisation formulation for subgraph isomorphism. We consider
problem instances where only the structures of the two graph instances
are given and therefore we deal with simple graphs in the first place. The
idea is based on the fact that a subgraph isomorphism for such problem
instances always leads to 0 as lowest possible optimal objective value for
our combinatorial optimisation problem formulation. Therefore, a lower
bound that is larger than 0 represents a proof that a subgraph isomor-
phism don’t exist in the problem instance. But note that conversely,
a negative lower bound does not imply that a subgraph isomorphism
must be present and only indicates that a subgraph isomorphism is still
possible.

1 Introduction

The graph isomorphism problem is a well known problem in computer science
and usually involves also the problem of finding the appropriate matching. There-
fore it is also of interest in computer vision. If an object is represented by a graph
the object could be identified as subgraph within a possibly larger scene graph.
Error-correcting graph matching [1] – also known as error-tolerant graph match-
ing – is a quite general and appropriate approach to calculate an assignment
between the nodes of two graphs. It is based on the minimisation of so called
graph edit costs which appear when one graph is turned into the other by some
predefined edit operations. Commonly introduced graph edit operations are dele-
tion, insertion, and substitution of nodes and edges. Each graph edit operation
has a cost assigned which is application dependent. The minimal graph edit cost
defines the so called edit distance between two graphs. The idea to define the
edit distance for graph matching goes back to Sanfeliu and Fu [2] in 1983. Before
that the edit distance was mainly used for string matching. Several algorithms
for error correcting graph matching have been proposed that are based on differ-
ent methods like tree search [3], genetic algorithms [4] and others (see e.g. [1]).
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In this paper we first propose an combinatorial optimisation formulation for
the subgraph isomorphism problem that can be seen as a error-correcting graph
matching approach. The integer optimisation problem we end up with is gener-
ally an indefinite quadratic integer optimisation problem which is NP-hard [5].
For example Pardalos and Vavasis showed in that indefinite quadratic programs
are NP-hard problems, even if the quadratic program is very simple (see [6]).
Then we compute a (convex) SDP relaxation of the combinatorial problem to
obtain a lower bound to the subgraph isomorphism problem. The bound can be
computed with standard methods for semidefinite programs. Finally we show
that the bound can indeed be used to proof that no subgraph isomorphism be-
tween two graphs can be found.

Several approaches have been proposed to tackle the subgraph isomorphism
problem [7,8,3,9]. Our approach differs to a more recent proposed approach that
is based on a reformulation to a largest clique problem [10,11]. Our approach in-
tends to find the full first graph as an subgraph isomorphism in the second graph
where the largest clique represents the largest common subgraph isomorphism.

2 Preliminaries

In this work we consider simple graphs G = (V, E) with nodes V = {1, . . . , n}
and edges E ⊂ V × V . We denote the first possibly smaller graph with GK and
the second graph with GL. The corresponding sets VK and VL contain K = |VK |
and L = |VL| nodes respectively. We assume that L ≥ K. We make extensive
use of the direct product C = A⊗B, which is also known as Kronecker product
[12]. It is the product of every matrix element Aij of A ∈ IRn×m with the whole
matrix B ∈ IRp×q resulting in the larger matrix C ∈ IRnp×mq.

The subgraph isomorphism is a mapping m : VK �→ V ⊂ VL of all nodes in
the graph GK to a subset V of VL with K nodes of the graph GL such that the
structure is preserved. That means that any two nodes i and j from GK that are
adjacent must be mapped to nodes m(i) and m(j) in GL that are adjacent too.
The same has to be true for the inverse mapping m−1 : V �→ VK which maps
the nodes V of the subgraph to nodes VK of GK .

3 Combinatorial Objective Function

In this section we propose and proof a formulation of the combinatorial problem
of finding a sub-graph isomorphism. The general idea is to find a bipartite match-
ing between the set of nodes from the smaller graph to the set of nodes of the
larger graph. The bipartite matching is evaluated by an objective function that
can be interpreted as a comparison of the structure between all possible node
pairs in the first graph and the structure of the node pairs to which the nodes are
matched in the second graph. A matching that leads to no structural differences
has no costs and represents a sub-graph isomorphism. Mathematically the evalu-
ation can be performed by a simple quadratic objective function x�Qx. The full
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task of finding a sub-graph isomorphism results in the following combinatorial
quadratic optimisation problem, which details are explained below:

min
x

x�Qx

s.t. AKx = eK , ALx ≤ eL (1)

x ∈ {0, 1}KL

The constraints that make use of the matrices AK = IK ⊗ e�L and AL = e�K ⊗ IL

ensure that the vector x is a 0,1-indicator vector which represents a bipartite
matching between the two node sets of the graphs. Here en ∈ IRn represents a
vector with all elements 1 and In ∈ IRn×n denotes the unit matrix. A vector
element xji = 1 indicates that the node i of the first set VK is matched to the
node j in the second set VL otherwise xji = 0. The elements of the indicator
vector x ∈ {1, 0}KL are ordered as follows:

x = (x11, · · · , xL1, x12, · · · , xL2, · · · , x1K , · · · , xLK)�. (2)

We illustrate such an indicator vector in figure 1 where a bipartite matching
between two sets of nodes and the corresponding indicator vector are shown.
The matrix Q within the objective function x�Qx of the optimisation problem

1 5

3
2

4
3

2

1

)0 0 0 0 1 0 0 0 0 0 0 1 01( 0

1

0

Fig. 1. The illustration of the 0, 1-indicator vector on the right side is a representation
of the matching which is shown on the left side of this figure

(1) can be written in a short form using the Kronecker product:

Definition 1. Relational Structure Matrix

Q = NK ⊗ N̄L + N̄K ⊗NL (3)

Here NK and NL are the 0, 1-adjacency matrices of the two graphs. The ma-
trices N̄K and N̄L represent the complementary adjacency matrices which are
computed as follows:

Definition 2. Complementary Adjacency Matrices

N̄L = ELL −NL − IL N̄K = EKK −NK − IK

These complementary adjacency matrices can be interpreted as 0, 1-indicator
matrices for non-adjacent nodes. They have the element (N̄)ij = 1 if the
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Fig. 2. An example graph and its adjacency matrix NK along with its complementary
adjacency matrix N̄K

corresponding nodes i and j are not directly connected in the graph. The ad-
jacency matrix NK for a small graph along with its complementary adjacency
matrix are shown in figure 2. In the following we show that a 0,1-solution vector
x∗ of the optimisation problem (1) with an optimal objective value of zero rep-
resents a subgraph isomorphism. We first show that zero is the smallest possible
value and than we show that every derivation of a subgraph isomorphism results
in an objective value > 0.

Proposition 1. The minimal value of the combinatorial optimisation problem
(1) is zero.

Proof. The elements of Q and x are all non-negative. In fact the elements are
either zero or one. Therefore the lowest possible value of the quadratic cost term
which can be rewritten as the following sum

x�Qx = x�(NK ⊗ N̄L + N̄K ⊗NL)x

=
K,L∑

a,r

K,L∑

b,s

[(NK)ab(N̄L)rs + (N̄K)ab(NL)rs]xraxsb (4)

is zero. ��

Proposition 2. A solution with the minimal value of zero of the quadratic op-
timisation problem (1) represents a sub-graph isomorphism.

To proof this we consider the term within the sum and show it leads only to
a cost > 0 if the considered matching violates the condition for a subgraph
isomorphism.

Proof. Only if the product xraxsb is one the term within the sum (4) can be
different from zero and the part [(NK)ab(N̄L)rs + (N̄K)ab(NL)rs] must be con-
sidered. In the following we refer to this part of the term also as structure com-
parison term. There are two cases that lead to xraxsb = 1:

– Case A: The node a and node b in GK represent the same node (a = b). But
as the diagonals of NK and N̄K are zero one obtains that (NK)aa = 0 and
(N̄K)aa = 0. In this case the term [(NK)aa(N̄L)rr +(N̄K)aa(NL)rs]xraxra is
always zero and does not contribute to the sum.
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– Case B: The nodes a and b in GK represent different nodes (a �= b) in GK

and due to the bipartite matching constraint a value xarxbs = 1 represents
the situation xar = 1 and xbs = 1 which means that the nodes a and b are
mapped to two different nodes r and s in the second graph GL, respectively.
Considering now the term [(NK)ab(N̄L)rs + (N̄K)ab(NL)rs] we observe that
all four possible structural cases between two pairs of nodes in the two graphs
are valued with a cost of zero or one.

All these sub-cases from case B that could lead to a non-zero value in the struc-
ture comparison term and therefore in the sum are listed in the table 1. In the
following we summarise the meaning of the cases and we will see that costs
are only added for every difference between the structure of graph GK and the
considered subgraph of the second graph GL.

Table 1. List of all outcomes of the structure comparison term between two different
nodes a and b of graph GK that are mapped to two different nodes r and s in the
second graph GL. Only in case I and IV the structure is preserved and can lead to an
isomorphism. No cost is added in this cases. The other cases (II and III) don’t preserve
the structure and lead to an total cost > 0. For details see the text.

case configuration (NK)ab (N̄L)rs (N̄K)ab (NL)rs cost

I a,b adjacent; r,s adjacent 1 0 0 1 0
II a,b adjacent; r,s not adjacent 1 1 0 0 1
III a,b not adjacent; r,s adjacent 0 0 1 1 1
IV a,b not adjacent; r,s not adjacent 0 1 1 0 0

– I: If the two nodes a and b in the first graph are neighbours, (NK)ab = 1,
then no cost is added in (4) if the nodes r and s in the scene graph are
neighbours, too: (N̄L)rs = 0.

– II: Otherwise if a and b are neighbours in GK and the corresponding nodes
r and s are no neighbours in the second graph, (N̄L)rs = 1, then a cost of 1
is added.

The configurations I and II are visualised in figure 3.

– III: Analogously, the structure comparison term penalises assignments where
pairs of nodes (a and b) in the graph GK become neighbours in the second
graph GL which were not adjacent before.

– IV: Finally if a and b are not adjacent in the first graph GK and the nodes
r and s in GL are also not adjacent, no cost is added.

Figure 4 illustrates situation III and IV in detail.
This shows that only mappings that lead to a change in the structure are

penelised with a cost. Structure preserving mappings which are compatible with
a subgraph isomorphism are without costs.
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Good assignment (no costs) Bad assignment (costly)

Fig. 3. Left: Adjacent nodes a and b in the graph GK are assigned to adjacent nodes
r and s in the graph GL. Right. Adjacent nodes a and b are no longer adjacent in the
graph GL after the assignment. The left assignment leads to no additional costs while
the right undesired assignment adds 1 to the total cost.

x  =1sb

GK GL

x  =1ra

graph graph
a r

sb

x  =1ra

GK GL

x   =1s’b

graph graph
a r
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b

Good assignment (no costs) Bad assignment (costly)

Fig. 4. Left: Nodes a and b which are not adjacent in the object graph GK are assigned
to nodes which are also not adjacent in the scene graph GL. Right: A pair of nodes a
and b become neighbours r and s′ after assignment. The left assignment is associated
with no additional costs in (4). The undesired assignment on the right side adds 1 to
these costs.

Note that due to the symmetry of the adjacency matrices the quadratic cost
term x�Qx is symmetric too and every difference in the compared structures of
the two graphs is considered twice resulting in a cost of 2 for every difference in
the structure.

Finally the sum (4) and therefore the objective function x�Qx considers all
possible combinations of node pairs a and b that are mapped to r and s, re-
spectively. And only for matchings which lead to no difference in the mapped
sub-structure and vice versa all the terms within the sum (4) are zero. In this
case the bipartite matching represents a subgraph isomorphism. ��

We wish to emphasise that the minimisation of (1) represents the search for a
bipartite matching which has the smallest possible structural deviation between
GK and the considered subgraph of GL. Therefore (1) can be seen as a graph
edit distance with a cost of 2 for each addition or removal of an edge that is
needed to turn the first graph into the considered subgraph of the other graph.

4 Convex Problem Relaxation

The combinatorial isomorphism approach (1) can be relaxed to a (convex)
semidefinite program (SDP) which has the following standard form:
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min Tr
[
Q̃X

]

s.t. Tr[AiX ] = ci for i = 1, . . . , m (5)
X � 0

The constraint X � 0 means that X has to be positive semidefinite. This con-
vex optimization problem can be solved with standard methods like interior point
algorithms (see e.g. [13]). Note that the solution of the relaxation (5) provides a
lower bound to (1). Below, we describe how we derive such a semidefinite program
from (1). For more information on semidefinite programming we refer to [14].

5 Convex Relaxation

The convex relaxation in this section follows the relaxation explained in detail
in [15]. In order to obtain an appropriate SDP relaxation for the combinatorial
subgraph matching problem, we start with the reformulation of the objective
function of (1)

f(x) = x�Qx = Tr
[
x�Qx

]
= Tr

[
Qxx�] = Tr

[
Q̃X

]
, (6)

We take into account the following summarised constraints of the form Tr[AiX ]
= ci which intend to include the original bipartite matching constrainst in a
suitable way. In particular we describe the constraint marices Ai. The equality
constraint

∑L
j=1 xij = 1, i = 1, . . . , K, which are part of the bipartite match-

ing constraints represent the constraint that each node of the smaller graph is
mapped to exactly one node of the scene graph. We define K constraint matri-
ces sumAj ∈ IR(KL+1)×(KL+1), j = 1, . . . , K which ensure (taking the order of
the diagonal elements into account) that the sum of the appropriate portion of
the diagonal elements of X is 1. As we deal with the diagonal elements of X
we exploit also the fact that xi = x2

i holds true for 0/1-variables. The matrix
elements for the j-th constraint matrix sumAj can be expressed as follows:

sumAj
kl =

jL+1∑

i=(j−1)L+1

δikδil for k, l = 1, . . . , KL + 1

For these constraints the constants cj are: cj , j = 1, . . . , K. As all integer solu-
tions X̃ = xx� ∈ IRKL×KL, where x represents a bipartite matching, have zero-
values at those matrix positions where IK⊗(ELL−IL) and (EKK−IK)⊗IL have
non-zero elements we want to force the corresponding elements in X ∈ IRKL×KL

to be zero. The matrices ELL ∈ IRL×L and EKK ∈ IRR×R are matrices where all
elements are 1. The matrices InnIRn×n represent the unit matrices. This can be
achieved with the constraint matrices Aars, Aŝâb̂ ∈ IRKL×KL which are deter-
mined by the indices a, r,s and ŝ, â, b̂. They have the following matrix elements

Aars
kl =δk,(aL+r)δl,(aL+s) + δk,(aL+s)δl,(aL+r) , (7)

Aŝâb̂
kl =δk,(ŝK+b̂)δl,(ŝK+â) + δk,(ŝK+â)δl,(ŝK+b̂) , (8)

where k, l = 1, . . . , KL.
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The indices a, r,s and ŝ, â, b̂ attain all valid combinations of the following
triples where s > r and b̂ > â:

(a, r, s) : a = 1, . . . , K; r = 1, . . . , L; s = (r + 1), . . . , L

(ŝ, â, b̂) : ŝ = 1, . . . , L; â = 1, . . . , K; b̂ = (â + 1), . . . , K

For this constraints the constant c has to be zero. With this we define (LL −
L)K/2 + (KK − K)L/2 additional constraints that ensure zero-values at the
corresponding matrix positions of X .

6 Early Results to the Non-isomorphism Bound

For the early results presented in this section we used our implementation de-
scribed in [15] where we had to set the similarity vector to a zero vector. Fur-
thermore we introduced a parameter α > 0 which is just a scaling parameter
for the objective function and should not have a influence on the solution other
than a scaling. An illustrative example for a subgraph isomorphism problem is
depicted in figure 5. For this example we compute a lower bound > 0 using the
SDP relaxation (5), which proves that a subgraph isomorphism does not exist
in this problem instance. Note that we did not eliminate mappings that could
not lead to an subgraph isomorphism.

The possible objective values of (1) are restricted to discrete values as the
quadratic term αx�Qx can only reach values which are multiples of 2α. The
discrete distribution of the objective values for the subgraph isomorphism
problem shown in figure 5 is depicted in figure 6 where we have set α = 0.3.
For a first preliminary investigation of this bound we created 1000 small sub-
graph matching problem instances for which we have chosen the size of the
two graphs GK and GL to be K = 7 and L = 15, respectively. The edge
probability of the graph GK was set to 0.5 and the probability for an edge
in the second graph was set to 0.2. The results for this experiment series re-
veal that for various problem instances it is indeed possible to conclude that
no subgraph isomorphism exist. We have obtained 388 problem instances with
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Fig. 5. Example for a randomly created subgraph problem. Is there a subgraph iso-
morphism ? For the shown problem instance we can compute a lower bound > 0 for
(1) which proves that no subgraph isomorphism is present.
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Fig. 6. The distribution of the objective values for the subgraph isomorphism prob-
lem which is shown in figure 5. The objective values are restricted to discrete val-
ues, as the quadratic term αx�Qx can only attain values which are multiples of
2α. Here we have set α arbitrarily to 0.3. The optimal objective value is 0.6 and
the obtained lower bound is 0.204 > 0.0, which is a non-isomorphism proof for this
problem instance.

a lower bound > 0.0 which proves that no subgraph isomorphism can occur in
this problem instances. The other 612 problem instances have a lower bound
≤ 0.0. For 436 (≈ 71%) of these problem instances the combinatorial optimum
is > 0.0 indicating that the relaxation is not tight enough to detect that no
subgraph isomorphism can occur.

7 Discussion

We proposed a bound to the subgraph isomorphism problem and showed that the
bound is not only of theoretical interest but also applies to several instances of
subgraph matching problems. It would be interesting to investigate which criteria
a subgraph matching problem has to fullfill to result in a tight relaxation. Such
insights could be usefull in the process of creating or obtaining object graphs
from images for object recognition tasks.

The tightness and therefore the lower bound can be improved by reducing
the dimension of the problem size. For example one can eliminate a mapping
i �→ j if the degree (The number of incident edges.) of an node i is larger than
the degree of node j in the second graph. Such a mapping cannot lead to a
subgraph isomorphism. An other improvement could be expected when also
inequalities are included in the SDP relaxation. None of these improvements
are used for the presented results. However, for increasing problem instances
the relaxation will probably get less tight and a lower bound ≤ 0.0 becomes
more likely. But note that even less tight solutions still lead to good integer
solutions (see e.g. [15]).
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Using the Discrete Quantum Walk
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Abstract. In this paper we consider how coined quantum walks can
be applied to graph matching problems. The matching problem is ab-
stracted using an auxiliary graph that connects pairs of vertices from the
graphs to be matched by way of auxiliary vertices. A coined quantum
walk is simulated on this auxiliary graph and the quantum interference
on the auxiliary vertices indicates possible matches. When dealing with
graphs for which there is no exact match, the interference amplitudes
together with edge consistencies are used to define a consistency mea-
sure. We have tested the algorithm on graphs derived from the NCI
molecule database and found it to significantly reduce the space of pos-
sible matchings thereby allowing the graphs to be matched directly. An
analysis of the quantum walk in the presence of structural errors be-
tween graphs is used as the basis of the consistency measure. We test
the performance of this measure on graphs derived from images in the
COIL-100 database.

1 Introduction

Quantum algorithms have recently attracted considerable attention in the the-
oretical computer science community. This is primarily because they offer con-
siderable speed-up over classical algorithms. For instance, Grover’s [8] search
method is polynomially faster than its classical counterpart, and Shor’s factor-
ization method is exponentially faster than classical methods. However, quantum
algorithms also have a richer structure than their classical counterparts since
they use qubits rather than bits as the basic representational unit [14]. Conse-
quentially, an n qubit quantum computer would manipulate a state in C2n

as
opposed to Zn

2 , which is the case classically. For instance, this structure is ex-
ploited in Shor’s algorithm where the Fourier transform is used to locate prime
factors.

It is this issue of richer representations that is the subject of this paper. We
are interested in how the idea of quantum walks can be applied to the problem
of graph matching. From a practical perspective, there have been a number
of useful applications of random walks. One of the most important of these is
the analysis of routing problems in network and circuit theory. Of more recent
interest is the use of ideas from random walks to define the page-rank index for
internet search engines such as Googlebot [4].

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 81–91, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In the pattern recognition community there have been several attempts to use
random walks for graph matching. These include the work of Robles-Kelly and
Hancock which has used both a standard spectral method and a more sophisti-
cated one based on ideas from graph seriation to convert graphs to strings, so
that string matching methods may be used [15]. Meila and Shi use a random
walk based on pairwise similarities between image pixels to carry out clustering
and thus segmentation of images [11]. Gori, Maggini and Sarti [7] on the other
hand, have used ideas borrowed from page-rank to associate a spectral index
with graph nodes and have then used standard subgraph isomorphism methods
for matching the resulting attributed graphs. In addition, Nadler, Lafon and
Coifman [12] used random walks to define a diffusion distance between data
points in order to carry out clustering and dimensionality reduction.

Quantum walks have been introduced as quantum counterparts of random
walks [10] and posses a number of interesting properties not exhibited by classical
random walks. The paths of the coined quantum walk have been used to define
a matrix representation of graphs that is able to lift the cospectrality of certain
classes of graphs that are typically hard to distinguish [6,5].

In this paper, we present a novel auxiliary graph structure, based on a
pair of graphs to be matched, and simulate a coined quantum walk on this
structure. The auxiliary structure contains auxiliary vertices connecting each
pair of vertices from the two graphs. It is on these auxiliary vertices that the
two walks interfere, and by identifying where this interference is exact we are
able to identify matches between the graphs. To test the algorithms effective-
ness at finding isomorphisms, we carry out experiments using graphs from the
US National Cancer Institute database of molecules [1]. In addition, we carry
out a sensitivity analysis in order to investigate its behaviour in the presence
of structural errors. This allows us to define a ‘consistency measure’ between
graphs which utilizes probabilities that pairs of vertices from the two graphs
match. We use this consistency measure to cluster graphs derived from real-
world data.

2 The Coined Quantum Walk

In what follows, we present a brief overview of the coined quantum walk. Let
G = (VG, EG) be a graph with vertex set VG and edge set, EG = {{u, v}|u, v ∈
VG, u adjacent to v}. The degree of a vertex u ∈ VG, denoted d(u), is the num-
ber of vertices adjacent to u. Quantum processes are reversible, and in order
to make the walk reversible a particular state of the walk must give both the
current location of the walk and its previous location [2]. To this effect each
edge {u, v} ∈ E is replaced by a pair of directed arcs (u, v) and (v, u) and the
set of these arcs is denoted DG. The basis states for the quantum walk are
vectors in a Hilbert space, H ∼= C|DG|, and are denoted, using Dirac’s bra-ket
notation, as |uv〉, where (u, v) ∈ DG. Such a state is interpreted as the walk
being at vertex v having been at u. A general state for the walk is written as a
‘superposition’
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|ψ〉 =
∑

(u,v)∈DG

αuv|uv〉

where αuv ∈ C.
The probability that a walk is in a particular state is given by, P (|uv〉) =

αuvα∗
uv where α∗

uv is the complex conjugate of αuv. Thus a state is normalized
such that

∑
(u,v)∈DG

αuvα∗
uv = 1. For the purpose of this work the amplitudes

will be real, albeit negative as well as positive. The fact that states can have
negative amplitudes is of key importance as it allows various paths to cancel out
(destructive interference) and this is utilized by our algorithm.

The evolution is linear and conserves probabilities, in addition it respects
the connectivity structure of the graph and transitions are only allowed between
adjacent vertices. Consider a state |ψ〉 = |uv〉 where the degree of v, d(v) = r+1.
That is, v is adjacent to u and a further r vertices, w1, w2, . . . , wr. For this state
one step of the walk is such that

|uv〉 → a|vu〉+ b

r∑

i=1

|vwi〉 a, b ∈ C.

Two separate amplitudes, a and b, can be used since the transitions from |uv〉
to |vu〉 can be distinguished from those to |vwi〉 without reference to any (arbi-
trary) labellings of the vertices or edges. Since probability must be conserved,
a2 + rb2 = 1. It is usual to use the ‘Grover diffusion operators’ [8] for the walk,
which are such that a = 2/d(v) − 1 and b = 2/d(v) (for transitions from vertex
v) since these provide the transition operator that is furthest from the identity.

For a general graph, with edges replaced by arcs as described above, the real-
orthogonal matrix, UG, governing the evolution of the walk can be written as

UG((u, v), (w, x)) =
{ 2

d(v) − δu,x if v = w;
0 otherwise.

for all (u, v), (w, x) ∈ DG, where δu,x is the Kronecker delta.

3 Exact Matching

Given two graphs, G and H , the basis of our approach is to create an auxiliary
graph, Γ (G, H) on which the talk walks can interfere. This graph is symmet-
ric with respect to interchanging its two arguments, and is such that if the two
graphs are isomorphic, deconstructive quantum interference will take place. Fur-
thermore, if they are isomorphic, the deconstructive interference will be exact,
in the sense that the quantum amplitudes will be zero on certain special states.
Moreover, these states directly indicate pairs of matching vertices.

Given a pair of isomorphic graphs G = (VG, EG) and H = (VH , EH) we would
like to find a mapping, φ : VG → VH such that {φ(u), φ(v)} ∈ EH if and only
if {u, v} ∈ EG. The algorithm operates by taking the two graphs that are to be
matched and connecting all pairs of vertices where one vertex is from G and one is
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from H . The coined quantum walk is then simulated on this auxiliary graph. The
intermediate vertices provide states on which quantum interference takes place
between the two walks, the final step is to simulate this interference to give a set
of quantum amplitudes indicating possible matches between pairs of vertices.

More precisely, we form a new graph Γ = (VΓ , EΓ ) whose vertex and edge
sets are given by VΓ = VG ∪ VH ∪ VA and EΓ = EG ∪EH ∪EA, where VA is the
set of auxiliary vertices and EA the set if edges connecting the two graphs by
way of these auxiliary vertices. That is

VA = {v{gi,hj}|gi ∈ VG, hj ∈ VH}
EA = {{gi, v{gi,hj}}, {hj, v{gi,hj}}|gi ∈ VG, hj ∈ VH}.

Thus the vertices gi ∈ VG and hj ∈ VH are linked via an auxiliary vertex,
denoted v{gi,hj}. The structure of the auxiliary graph is shown in Figure 1. The
auxiliary graph is similar to the association graph [3]. However, information
about the structure of the two graphs comes from incorporating the original
graphs themselves rather than through the connections between the auxiliary
vertices, as is done in the association graph.

Fig. 1. The auxiliary graph, Γ (G, H), showing the vertices g1, g2, g3 ∈ VG and
h1, h2, h3 ∈ VH connected by way of auxiliary vertices

The walk evolves in discrete steps according to the rule |ψt+1〉 = UΓ |ψt〉 from
a starting state |ψ0〉 with initial amplitudes,

α0
uv =

{
1 if {u, v} ⊂ VG or {u, v} ⊂ VH ;
0 otherwise.

After the walk has been evolved for a given number of steps, T , an interfer-
ence operator, R, acts on the state, giving the final state |ψ′〉 = R|ψT 〉. The
interference operator is such that, for all pairs of vertices, g ∈ VG and h ∈ VH ,
the difference between the amplitudes of the corresponding states |gv{g,h}〉 and
|hv{g,h}〉 determines the final amplitude of the state |hv{g,h}〉. For these pairs of
states, in the basis (|gv{g,h}〉, |hv{g,h}〉), the step corresponds to the application
of the Hadamard operator
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(
α′

gv{g,h}

α′
hv{g,h}

)

=
1√
2

(
1 1
1 −1

)(
αT

gv{g,h}

αT
hv{g,h}

)

.

Consider two graphs, G and H , such that there is an isomorphism φ : VG →
VH between them. If g ∈ VG and h ∈ VH are two vertices such that φ(g) = h
then, as a result of the symmetry of the auxiliary graph and starting state,
αt

gv{g,h}
= αt

hv{g,h}
for all times, t. Consequently, in the final state, the amplitude

α′
hv{g,h}

= 0 whenever φ(g) = h. Thus we can use the amplitudes of these states
to identify possible isomorphisms between the two graphs.

4 Structural Errors

As described above, if the two graphs are isomorphic then the amplitudes on the
interference states for matching pairs of vertices will all be zero. In many situa-
tions, however, there will exist structural errors and so no complete isomorphism
will exist. In this case it is not guaranteed that the amplitudes for the ‘correct’
matches between vertices will be exactly zero.

In order to investigate the robustness of the method in the presence of such
errors we generated a random graph together with a partner that differed from it
by a set number of edges. We found that the amplitudes for false matches could
be modelled as a Gaussian with standard deviation, σf , and zero mean. The
distribution for true matches on the other hand was much better modelled by the
more strongly peaked double-exponential distribution with standard deviation
σt and zero mean where σt < σf (Fig. 2):

Gaussian: p(α|f) =
e
− α2

2σ2
f

√
2πσf

, Double exponential: p(α|t) =
e−

√
2|α|
σt

σt

√
2
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Fig. 2. The distribution of amplitudes for ‘non-matching’ vertices (left) and ‘match-
ing’ vertices (right) for pairs of graphs on 15 vertices, differing by 2 edges, for 50
pairs of graphs. A Gaussian distribution has been fitted to the non-matching vertices
and a Gaussian (solid line) and double-exponential (dashed line) distributions for the
matching vertices.
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Since the distribution for corresponding vertices is far more strongly peaked, we
hope to still be able to distinguish between the distributions even in the presence
of noise. Calculating the probability of a true match given the amplitude, α, can
be achieved by applying Bayes’ rule and this information can be combined with
structural constraints for inexact graph matching tasks.

Given some observed interference amplitude, αhv{g,h} , (which we will hence-
forth write simply as α), we wish to know the probability that the pair (g, h) is
a true match. We model the probability distribution for α as the sum of the two
distributions, the probability it originates from true match and the probability
it originates from a false match. Hence,

p(α) = p(α|t)p(t) + p(α|f)p(f)

=
p(t)
σt

√
2
e−

√
2|α|
σt +

p(f)
√

2πσf

e
− α2

2σ2
f ,

where p(t) = 1 − p(f) = 1
n and n = |VG| = |VH |. By applying Bayes’ rule, we

can find the probability of a true match given α using

p(t|α) =
p(α|t)p(t)

p(α)

=
1

σtn
√

2
e−

√
2|α|
σt

1
σtn

√
2
e−

√
2|α|
σt + (n−1

n ) 1√
2πσf

e
− α2

2σ2
f

.

Note that, to calculate p(t|α) it is necessary to estimate the variances of
the two distributions, σ2

t and σ2
f . Let X be the set of n2 interference ampli-

tudes between the vertices of G and those of H . The set X is the union of two
disjoint sets; Xt, the set of interference amplitudes for the true matches and
Xf , the set of interference amplitudes for the false matches. The variance of
X , denoted σ2, can be measured directly and this is related to the the other
variances by

σ2 =
σ2

t

n
+

(n− 1)σ2
f

n
.

Clearly another equation linking these variances is required, and for this higher
moments of the distribution X can be utilized. The fourth central moment of a
distribution (closely related to the kurtosis) measures how strongly peaked the
distribution is. We denote the forth central moments by μ, μt and μf , and they
can be related to one another by

μ =
μt

n
+

(n− 1)μf

n
.

Since the fourth central moment of the Gaussian distribution is given by μf =
3σ4

f and that for the double exponential distribution by μt = 6σ4
t , we have

that

μ =
6σ4

t

n
+

3(n− 1)σ4
f

n
.
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Since μ and σ2 are known, the equations expressing these in terms of σ2
t and

σ2
f can be solved simultaneously to give variances for the matching and non-

matching amplitudes. Thus, given a set of interference amplitudes for the possi-
ble pairings of the vertices of G with the vertices of H , we are able to calculate
the probability that a particular pairing is part of a correct match.

5 A Correspondence Measure from the Matching
Probabilities

The probabilities for matches between pairs of vertices from the two graphs can
be combined with structural information in order to give a ‘correspondence mea-
sure’, which quantifies the quality of the match between the two graphs. Consider
two pairs of vertices (g1, h1) and (g2, h2), where g1, g2 ∈ VG and h1, h2 ∈ VH ,
corresponding to two possible matches with probabilities p(g1, h1) and p(g1, h2)
respectively. We could calculate a purely local correspondence measure between
the graphs by summing the number of times that for such pairs (g1, h1) and
(g2, h2), are edge consistent. That is, either {g1, g2} ∈ EG and {h1, h2} ∈ EH , or
{g1, g2} /∈ EG and {h1, h2} /∈ EH . In general, as structural errors are introduced
this measure will decrease. However, we can also introduce the global informa-
tion encoded in the probabilities of matches derived from the quantum walk to
improve this measure. The quantity p(g1, h1)p(g2, h2) will in general be larger
when both (g1, h1) and (g2, h2) are correct matches than if either, or neither, of
them are. Thus we can define a correspondence measure by

ME(G, H) =
1
T

∑

{g1,g2}∈EG

∑

{h1,h2}∈EH

p(g1, h1)p(g2, h2)

Alternatively, a correspondence measure can be given by

ME(G, H) =
1
T

∑

{g1,g2}/∈EG

∑

{h1,h2}/∈EH

p(g1, h1)p(g2, h2),

where T =
∑

g1,g2∈VG

∑
h1,h2∈VH

p(g1, h1)p(g2, h2) is used to normalize the mea-
sures. Thus, we include in the sum the term p(g1, h1)p(g2, h2) if the match is
consistent in terms of their edge connectivity.

Which of the two measures, ME(G, H) or ME(G, H), gives the better results
depends on the edge density of the graphs being compared. Let |EH | ≈ |EG| =
|E|, we have that the maximum number of edges for a graph on n vertices is,
Emax = n(n−1)

2 . We have found using sets of randomly generated graphs with
structural errors introduced that if |E| < 0.5Emax then the presence of an edge
between a pair of vertices is more significant than the absence of an edge and
so ME(G, H) gives a better measure. If, on the other hand, |E| > 0.5Emax,
the absence of an edge between a pair of vertices is more significant and hence
ME(G, H) gives a better measure (if |E| ≈ 0.5Emax then both measure work
well). So as to utilize both these measures when they are at their strongest we
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define the consistency measure that we use for all graphs to be M(G, H) =
aME(G, H) + bME(G, H) where b = |E|/Emax and a = 1 − b. This measure
gives the strengths of the two separate measures for both low edge-density and
high-density graphs.

6 Experiments

6.1 Graph Matching

We present experiments carried out on graphs representing the structure of a
subset of the molecules from the NCI database of molecules [1]. In the database,
a particular molecule is represented as a graph with vertex attributes giving
the type of atom and edges representing bonds. We disregard the type of atoms
and only make use of the bond structure thereby giving a set of non-attributed
graphs, a number of which are isomorphic, the goal being to identify these. The
following experiments deal with a set of approximately 1400 of these on up to
28 vertices.

For a particular pair of graphs we use our algorithm to prune the space of
possible matches and check the matches returned. If there are multiple matches
we simply search through the possible matches in order. To avoid the possibility
that this processes is aided by the ordering of the vertices we carry out a random
permutation of the nodes of each graph. In some cases too many possible matches
remain and so if after checking 1000 possible matches more remain then we class
the question of whether two graphs are isomorphic as undecided. Some upper
limit is needed using this method although the choice of 1000 is essentially
arbitrary. The problem of large numbers of matches remaining could also be
addressed by using a more sophisticated method of searching through these
although we do not consider this here.
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Fig. 3. Left: The proportion of graphs that are isomorphic, non-isomorphic or unde-
cided as a function of the number of vertices. Right: Log plot of number of matches
searched as a fraction of the total number of permutations in order to identify the cor-
rect permutations when isomorphic graphs are compared (undecided graphs excluded).
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For the graphs tested Figure 3 shows the fraction of isomorphic graphs, non-
isomorphic graphs and those that are undecided as a function of the number of
vertices. We see that the algorithm is able to to reconstruct the match or iden-
tify that the graphs are non-isomorphic for these graphs with a low percentage
undecided, this percentage can be lowered further by allowing more than 1000
matches to be checked.

In the second experiment, for each graph we carried out a random permu-
tation of its vertices and then attempted to recover this permutation using our
algorithm. In order to analyse the performance of the algorithm we considered
the average number of matches that needed to be checked– once the search
space had been pruned– in order to reconstruct the permutation, and recorded
the fraction of graphs for which we did not recover the permutation (Figure 3
and Table 1). As can be seen, the quantum walk is able to significantly prune
the size of the search space, and hence make the problem of finding matches for
graphs on large numbers of vertices significantly easier.

6.2 Graph Clustering

Our second set of experiments test the ability of the consistency measure to
cluster similar graphs. The graphs were derived from images in the COIL-100
database, a set of images of objects viewed from a series of angles [13]. To derive
graphs from these images Harris and Stephen’s corner detector [9] was used
to detect feature points for the graph and the Delaunay triangulation of these
points were taken. We use the Delaunay graphs derived in this way since they
incorporate important structural information from the images.

Table 1. The fraction of the graphs tested for which more than 1000 matches still
remain after the interference step of the walk

|V | > 1000 matches |V | > 1000 matches

≤18 0 26 0.42
19 0.25 27 0.4
20 0.08 28 0.67
21 0.17 29 0.42
22 0.17 30 0.71
23 0.17 31 0.58
24 0.42 32 0.60
25 0.25

For each object we took 9 graphs derived from a viewing the objects at equally
space intervals of 10 ◦. We obtain graphs with on average 30 vertices and for
each pair of graphs we calculate the consistency measure. Figure 4 shows a PCA
embedding of the graphs using the consistency measure, each represented by
a thumbnail of the object from which the are derived. Although some graphs
representing different objects are grouped together, the clusters are mostly of
just one object.
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Fig. 4. A PCA embedding of the Images from the COIL database using the consistency
measure

7 Conclusion

In this paper we have looked at one of the ways in which the richer structure
inherent in quantum processes can be utilized classically. We have described an
auxiliary graph that can be used for the purpose of graph matching. By simu-
lating a discrete quantum walk on this graph, quantum interference can be used
to compare the two graphs. The walk gives rise to a set of amplitudes corre-
sponding to possible pairings of the vertices of the two graphs. If the graphs
are isomorphic then the states for which the interference is exact are used to
significantly prune the space of possible mappings between the graphs allowing
us to recover the isomorphism. We have tested the algorithm on graphs rep-
resenting molecular structures and found that it reduces the space of matches
sufficiently for us to match the graphs directly. We have analysed how the al-
gorithm behaves in the presence of structural errors and used this analysis to
develop a consistency measure that can be used for the clustering of graphs.
We carried out experiments on real world data for which such errors exist and
demonstrated the effectiveness of the consistency measure for clustering. As fur-
ther work we would like to look at the normalisation of the consistency measure
since the measure, as currently defined, can be effected unduly by the edge den-
sities of the graphs and minimizing this is likely to improve the performance of
the approach.



A Correspondence Measure for Graph Matching 91

References

1. US National Cancer Institute Database (2006) http://resresources.nci.nih.
gov/database.cfm?id=1231

2. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: A fast quantum mechanical
algorithm for database search. In: Proc. 28th ACM Symp on Theory of Computa-
tion, pp. 50–59. ACM Press, New York (1996)

3. Barrow, H.G., Burstall, R.M.: Subgraph isomorphism, matching relational struc-
tures and maximal cliques. Information Processing Letters 4(4), 83–84 (1976)

4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

5. Emms, D., Hancock, E., Severini, S., Wilson, R.C.: A matrix representation of
graphs and its spectrum as a graph invariantn. Electronic Journal of Combina-
torics 13(1), R34 (2006)

6. Emms, D., Severini, S., Wilson, R.C., Hancock, E.: Coined quantum walks lift
the co-spectrality of graphs and trees. In: Rangarajan, A., Vemuri, B., Yuille, A.L.
(eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 332–345. Springer, Heidelberg (2005)

7. Gori, M., Maggini, M., Sarti, L.: Graph matching using random walks. In: IEEE
17th ICPR, August 2004 (2004)

8. Grover, L.: A fast quantum mechanical algorithm for database search. In: STOC
’96: Proc. 28th ACM Theory of computing, pp. 212–219. ACM Press, New York
(1996)

9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of 4th
Alvey Vision Conference, Manchester, vol. 15, pp. 147–151 (1988)

10. Kempe, J.: Quantum random walks – an introductory overview. Contemporary
Physics 44(4), 307–327 (2003)

11. Meila, M., Shi, J.: A random walks view of spectral segmentation (2001)
12. Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.: Diffusion maps, spectral cluster-

ing and eigenfunctions of fokker-planck operators. In: Advances in Neural Infor-
mation Processing Systems 18, MIT Press, Cambridge, MA (2006)

13. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-100)
(1996)

14. Nielson, M., Chuang, I.: Quantum Computing and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

15. Robles-Kelly, A., Hancock, E.: Graph edit distance from spectral seriation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27, 365–378 (2005)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://resresources.nci.nih.gov/database.cfm?id=1231
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://resresources.nci.nih.gov/database.cfm?id=1231


A Quadratic Programming Approach to the

Graph Edit Distance Problem

Michel Neuhaus1 and Horst Bunke2
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Abstract. In this paper we propose a quadratic programming approach
to computing the edit distance of graphs. Whereas the standard edit
distance is defined with respect to a minimum-cost edit path between
graphs, we introduce the notion of fuzzy edit paths between graphs and
provide a quadratic programming formulation for the minimization of
fuzzy edit costs. Experiments on real-world graph data demonstrate that
our proposed method is able to outperform the standard edit distance
method in terms of recognition accuracy on two out of three data sets.

1 Introduction

In structural pattern recognition, the edit distance measure has been widely
used for error-tolerant graph matching. The successful application of graph edit
distance is mainly due to its intuitive and universal definition. Based on a node
and edge distortion model, the edit distance is defined as the minimum amount of
distortion that is needed to transform a given graph into another one [1,2], which
follows the intuitive understanding that the more dissimilar two graphs are, the
more transformation operations have to be performed. Graph edit distance is
applicable to arbitrarily labeled and arbitrarily structured graphs — and other
data structures such as strings [3], trees [4], and hyper-graphs [5] — and can
therefore be considered a universal matching scheme for complex patterns. In
practice, the flexibility of graph edit distance, which allows us to assign weights to
individual distortion operations based on the type of distortion and the involved
nodes and edges, renders edit distance applicable to various practical graph
matching tasks.

Computing the edit distance of two graphs results in a time and space com-
plexity that is exponential in the number of nodes of the two graphs. Particularly
in the presence of large graphs, the edit distance problem is computationally very
demanding. In recent years, a number of methods have been proposed to ren-
der the computation of graph edit distance feasible. In [6], an approximate edit
distance algorithm for planarly embedded nodes is introduced. The algorithm
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exploits the position node information that is available in many graph represen-
tations in pattern recognition. The approximate edit distance is computed in an
iterative procedure by successively optimizing local matching criteria. Two fast
suboptimal variants of a standard edit distance algorithms are proposed in [7].
The idea is to restrict the matching process to promising candidates by applying
a technique for search tree pruning and a re-weighting of edit costs. These ap-
proaches have in common that they attempt to refine the standard tree search
algorithm for edit distance to speed up the computation.

In the present paper, we propose to circumvent the standard inefficient algo-
rithm altogether by addressing the edit distance problem by means of quadratic
programming. The basic idea is to formulate the minimum-cost optimization
problem of edit distance in the well-known mathematical framework of quadratic
programming [8], which allows us to tackle the complex graph matching problem
using standard optimization methods. In the longer term, it would be desirable
to develop fast (possibly suboptimal) optimizers for the particular edit distance
quadratic programming formulation, which is not covered in this paper. Our
main contribution is an alternative method for the computation of edit distance.

The quadratic programming approach leads us to the notion of fuzzy edit
paths. The result of our method is either a minimum-cost fuzzy edit path or,
after defuzzification, a standard edit path between two graphs. In this respect,
the method we propose in this paper is loosely related to relaxation labeling
techniques for graph matching [9,10], where the idea is to define the matching
problem as a node labeling problem and to apply iterative procedures refining
the labeling until a sufficiently accurate matching is obtained. Unlike these relax-
ation labeling techniques, which are sometimes defined for numerically labeled
or weighted graphs only, the method we propose is applicable to arbitrarily la-
beled graphs and is closely related to the standard edit distance measure. In [11],
a linear programming method for computing the edit distance of graphs with
unlabeled edges that is somehow related to our approach is introduced.

This paper is structured as follows. In Section 2, we briefly introduce graph
edit distance. The proposed quadratic programming formulation of edit distance
is described in Section 3. Experimental results on three real-world graph data
sets are given in Section 4. Finally, in Section 5 a few summarizing conclusions
are drawn.

2 Graph Edit Distance

Graph edit distance is an error-tolerant dissimilarity measure on graphs. The edit
distance method is applicable to arbitrarily labeled graphs, that is, graphs with
any kind of labels attached to nodes and edges. A graph is commonly defined by
a four-tuple g = (V, E, μ, ν), where V denotes a finite set of nodes, E ⊆ V ×V is
a set of directed edges, μ : V → L is a node labeling function assigning each node
a label from alphabet L, and ν : E → L is an edge labeling function. Note that in
practical applications, numerical labels (attribute vectors) usually prevail. The
idea of edit distance is to define a set of basic graph distortion operations, or
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edit operations, and define the dissimilarity of two given graphs by the minimal
amount of edit operations that are needed to transform one graph into the other
one [1,2]. While the edit distance concept theoretically allows for a wide range
of edit operations, for most applications it is sufficient to consider the insertion,
deletion, and substitution of nodes and edges only. A node deletion operation,
for instance, refers to the removal of a node and its adjacent edges, and an edge
substitution operation is equivalent to changing the label of an edge. The edit
distance method can be tailored to specific application by assigning each edit
operation a cost value reflecting the strength of the corresponding distortion. For
instance, changing an edge label by a small amount might often be considered a
weaker distortion than the removal of a node together with all edges connected
to this node. In this particular case, the edge substitution would be assigned a
lower cost than the node deletion. The total edit costs of a given sequence of
edit operations transforming one graph into another one, or edit path between
the two graphs, is obtained by summing up the costs of the individual edit
operations. Finally, the edit distance of two graphs is defined as the minimum
cost edit path between them, that is, the least expensive way to edit one graph
into the other one, given an edit operation model and an edit cost function. If
we denote by P (g, g′) the set of edit paths transforming a graph g into a graph
g′ and by C the function assigning costs to edit operations, the edit distance of
g and g′ is defined by

d(g, g′) = min
(w1,...,wk)∈P (g,g′)

k∑

i=1

C(wi) , (1)

where (w1, . . . , wk) represents an edit path consisting of k edit operations.
The simplest way to compute edit distance is obviously to generate all edit

paths between two graphs and determine the one with minimum costs. In more
sophisticated approaches, lookahead techniques or heuristics are used to deter-
mine which edit paths seem to be promising candidates for exploration. A stan-
dard edit distance computation algorithm is based on an A* tree search algorithm
with efficient heuristics [1,7,12]. The idea is to systematically explore all relevant
edit paths by traversing, in a best-first fashion, a search tree with inner nodes
representing partial edit paths and leaf nodes representing complete edit paths.
The flexibility of edit distance, potentially allowing any node of one graph to be
mapped to any node of the second graph, results in exponential computational
costs in terms of time and space complexity. That is, the edit distance of graphs
is typically tractable for graphs with up to about a dozen of nodes only.

3 Quadratic Programming for Graph Edit Distance

Quadratic programming is a particular type of mathematical optimization prob-
lem [8]. It turns out that the graph edit distance problem needs only a few slight
adaptations to fit into the quadratic programming framework, which makes a
new class of algorithms available for the computation of graph edit distance.
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3.1 Quadratic Programming

Quadratic programming refers to a range of optimization problems satisfying a
general mathematical form. In the following, the quadratic programming prob-
lem will be described and briefly discussed. First, let the set of real matrices of
dimension a×b be denoted by �a×b. For a given dimension n ≥ 1, let us assume
that a symmetric matrix Q ∈ �n×n and a vector c ∈ �n are given. Furthermore
for l, m ≥ 1, let matrices R ∈ �l×n and S ∈ �m×n as well as vectors u ∈ �l

and v ∈ �m be given. The general quadratic programming problem can then be
formulated as [8]

Minimize f(x) =
1
2
x′Qx + c′x for x ∈ �� (2)

such that
Rx = u

Sx ≥ v .

Note that the vector inequality constraint in the last line means that all com-
ponents of the two vectors must satisfy the inequality. Solving the quadratic
programming problem consists of finding an x ∈ �n that minimizes f(x) such
that the given equality and inequality conditions are satisfied. The expression
quadratic programming is due to the fact that the target function f(x) is a
quadratic function of the argument x. The equality constraint can be seen as
a compact representation of l independent equality conditions (one per line of
matrix R), and similarly the inequality constraint is equivalent to m inequality
conditions.

Quadratic programming problems can always be solved, or shown to be un-
feasible, in a finite amount of time. However, the actual complexity of the com-
putation depends strongly on the characteristics of the problem, in particular
on the matrix Q and the number of relevant inequality constraints [8]. If Q is
positive definite, for instance, the quadratic programming problem can typically
be solved as efficiently as linear programming problems. Furthermore, it is also
known in this case that there exists a globally optimal solution, provided that
the equality and inequality constraints are satisfied for at least one vector. The
methods commonly used to solve quadratic programming problems can roughly
be divided into interior point methods, active set methods, and conjugate gra-
dient methods [8]. In our experiments, we use the interior point algorithm from
the Computational Optimization Program Library [13].

A classic example of a quadratic programming problem is the management
of investment portfolios [8]. The idea is to model the tradeoff between risk and
expected return for a collection of investments. Quadratic programming can
be used to derive an investment strategy that predicts high returns with low
variance. The popular support vector machine method for classification and re-
gression is another example. The maximum-margin hyperplane separating two
classes can be found by solving a quadratic programming problem [14], namely
by minimizing the squared norm of the hyperplane weight vector given a number
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of linear constraints. In the following, we will apply quadratic programming to
the graph edit distance problem.

3.2 Fuzzy Edit Path

The standard graph edit distance is defined by the minimum-cost edit path
between two graphs. A common interpretation of substitutions in an optimal
edit path is that they indicate which parts of one graph can be identified in the
other graph. That is, a set of node substitutions can be seen as a mapping of
nodes of one graph to nodes of another graph. Analogously, deleted (or inserted)
nodes and edges can be interpreted as those nodes and edges of the first graph
(second graph) that cannot be matched, with sufficient accuracy, to nodes and
edges of the second graph (first graph). Hence, given an edit path between two
graphs, each node and edge is either substituted with another node and edge, or
deleted or inserted.

The basic idea of fuzzy edit paths is to allow nodes and edges of one graph to
be simultaneously assigned to several nodes and edges of another graph. In the
following, let us assume that two graphs g = (V, E, μ, ν) and g′ = (V ′, E′, μ′, ν′)
with |V | = n and |V ′| = n′ are given. Clearly, there exist n · n′ distinct substi-
tutions of a node u ∈ V with a node v ∈ V ′, such a substitution being denoted
by u → v. A fuzzy edit path is defined by assigning a weight to each possible
node substitution. Formally, a fuzzy edit path between g and g′ is a function
w : V × V ′ → [0, 1] satisfying the conditions

∑

v∈V ′

w(u, v) = 1 for each u ∈ V and
∑

u∈V

w(u, v) = 1 for each v ∈ V ′ . (3)

This weighting function w can be understood as a kind of membership function
reflecting how well a node substitution conforms to, or how strongly it violates,
the structure and labels of the two graphs. The interpretation of a fuzzy edit
path that is optimal with respect to some matching criterion is that two nodes
u, v with a large value of w(u, v) are likely to correspond to a good structural
match, while nodes with small values of w(u, v) should rather be considered
unmatchable. The advantage of fuzzy edit paths over standard edit paths is
that they allow us to integrate ambiguity directly in the definition of edit paths,
instead of being forced to settle for one edit transformation for each node and
edge.

In order to construct a standard edit path from a fuzzy edit path, a defuzzifi-
cation procedure can be carried out. A straight-forward defuzzification method
consists in selecting from all fuzzy node substitutions those with large fuzzy
weights. The first node substitution to be inserted into the standard edit path
is obtained by selecting from all fuzzy node substitutions the one with largest
fuzzy weight, say the substitution u → v. In the following steps, all fuzzy node
substitutions involving u and v will no longer be considered. The second node
substitution of the standard edit path is obtained by selecting from the remaining
fuzzy node substitutions the one with largest fuzzy weight. Again, all fuzzy node
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substitutions containing either one of the two nodes of the selected substitution
are ignored in successive steps. This iterative procedure is continued until no
more node substitutions can be extracted. The remaining nodes are considered
equivalent to node deletions and insertions. Finally, edge operations are inferred
from node operations. Note that in the computation of fuzzy edit paths, edge
edit operation costs will be included in the definition of fuzzy weights attached
to node substitutions. That is, not only the substitution of nodes, but also the
edge structure plays a role in the defuzzification procedure outlined above.

3.3 Quadratic Programming Formulation

In the preceding paragraphs, fuzzy edit paths have been introduced as an exten-
sion to standard edit paths. The remaining question is how to compute a fuzzy
edit path between two graphs that is optimal with respect to some node and
edge matching criterion. The method we propose in this paper is based on a
quadratic programming formulation of the graph matching problem. The basic
idea is to encode node and edge edit costs in a cost matrix and minimize the
overall costs corresponding to a fuzzy edit path.

Again, let the two graphs under consideration be denoted by g = (V, E, μ, ν)
and g′ = (V ′, E′, μ′, ν′), and let |V | = n and |V ′| = n′. It is clear that there
exist n · n′ substitutions between g and g′. In view of this, we construct a real
matrix Q ∈ �nn′×nn′

where rows and columns are indexed by substitutions
u → v, where u ∈ V, v ∈ V ′. That is, each row, and the corresponding column,
of the matrix is associated with one distinct node substitution. The matrix Q
is then constructed in such a way that diagonal entries hold the costs of node
substitutions, while off-diagonal entries correspond to edge edit costs. The entry
at position (u → v, u → v) is set to the node substitution costs of u → v; the
entry at position (u → v, p → q) is set to the edge edit costs resulting from
substituting u → v and p → q, depending on the existence of edges between
u and p as well as between v and q. It should be noted that edit costs can be
defined for any kind of node and edge labels, including symbols from a finite
alphabet and complex labels such as strings. The proposed approach is thus not
limited to graphs with numerical labels, but applicable to arbitrarily labeled
graphs, which is one of the strengths of graph edit distance.

An example of two graphs with n = n′ = 3 is provided in Fig. 1, where nodes
are labeled with a two-dimensional position attribute and edges are unlabeled.
It is clear that in this example the nine possible distinct node substitutions are
A → a, A → b, A → c, B → a, B → b, B → c, C → a, C → b, C → c. When
constructing the 9× 9 matrix Q, each row and column is associated with one of
these substitutions. In Fig. 2, an example cost matrix Q is shown for the two
graphs in Fig. 1. Note that in this example, node substitution costs are set equal
to the squared Euclidean distance of the two node labels, and node and edge
insertion and deletion costs are set to a constant value of 10. The substitution
of unlabeled edges can be carried out for free. For example, since node A is
labeled with (1, 1) and node a with (1, 6), the substitution A → a results in
costs QA→a,A→a = 25. Since there exists an edge between A and B as well as
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A

(5,10)

(10,4)

(1,1)

B

C

a

(1,6)

(7,1)
b

(10,8)

c

Fig. 1. Two example graphs g (left) and g′ (right)

an edge between a and b, the substitutions A → a and B → b involve no edge
operations costs, hence QA→a,B→b = 0. As node A is not connected to itself by
an edge, the substitutions A → a and A → b involve the insertion of an edge,
which leads to QA→a,A→b = 10.

Recall that fuzzy edit paths are defined in Sect. 3.2 as functions assigning
weights to all possible node substitutions between two graphs. Also, the matrix
Q consists of one row, and column, per node substitution. In view of this, we
define a fuzzy cost function assigning each row of Q a weight according to the
rules stated in Sect. 3.2. That is, each row, and the corresponding column, is
associated with a node substitution and a fuzzy weight. It should be noted that
these fuzzy weights are not pre-defined, but to be determined in the optimization
process. Hence, the idea of the reformulated graph matching problem is to find
fuzzy weights that satisfy the conditions of a fuzzy edit path and minimize
the structural error. To this end, we propose to minimize the expression x′Qx,
where x denotes the n · n′-dimensional vector of fuzzy weights, one for each
row of Q. The minimization is carried out over all fuzzy weights x satisfying
the conditions defined in Sect. 3.2. In this optimization formulation, the weight
associated with a node substitution u→ v will influence not only the weighting
of the node substitution costs of u → v (in the diagonal entry Qu→v,u→v), but
also all edge edit costs involving the substitution u→ v (in off-diagonal entries
Qu→v,p→q and Qp→q,u→v). Clearly, this optimization process aims at assigning
large weights to node substitutions that involve low node and edge costs, and
assigning small weights to node substitutions that result in high costs. Note that
this optimization principle is not identical to the minimum cost edit path concept
in standard graph edit distance, but the intuitive interpretation of minimizing
penalty costs for structural errors is comparable.

The optimization problem described above can be formulated in the standard
quadratic programming framework. To this end, the matrix Q in Eq. 2 is defined
as the cost matrix Q described above, the solution vector x in Eq. 2 is the weight
vector x mentioned above, and vector c in Eq. 2 is the zero vector. Furthermore, it
is easy to see that the conditions of consistent fuzzy weights can be formulated in
terms of equality and inequality conditions — Rx = u stating that fuzzy weights
sum up to 1 as shown in Eq. 3, and Sx ≥ v restricting considerations to fuzzy
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Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

25 10 10 10 0 0 10 0 0
10 36 10 0 10 0 0 10 0
10 10 130 0 0 10 0 0 10
10 0 0 85 10 10 10 0 0
0 10 0 10 18 10 0 10 0
0 0 10 10 10 16 0 0 10
10 0 0 10 0 0 32 10 10
0 10 0 0 10 0 10 85 10
0 0 10 0 0 10 10 10 29

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A → a 0.662 Solution
A → b 0.297
A → c 0.041
B → a 0.000
B → b 0.619
B → c 0.381
C → a 0.338
C → b 0.084
C → c 0.578

A → . . . : 0.662 + 0.297 + 0.041 = 1 Constraints satisfied
B → . . . : 0.000 + 0.619 + 0.381 = 1
C → . . . : 0.338 + 0.084 + 0.578 = 1
. . . → a : 0.662 + 0.000 + 0.338 = 1
. . . → b : 0.297 + 0.619 + 0.084 = 1
. . . → c : 0.041 + 0.381 + 0.578 = 1

Fig. 2. Example quadratic programming problem matrix Q (corresponding to the
graphs in Fig. 1) and solution weight vector satisfying fuzzy edit path constraints

weights between 0 and 1. In Fig. 2, the result of the quadratic programming
approach to matching the two graphs in Fig. 1 is shown. The solution vector
clearly satisfies the fuzzy edit path constraints. After defuzzification, we obtain
the same optimal edit path as the standard edit distance algorithm, {A →
a, B → b, C → c}. Note that from the solution vector, it is not only possible
to extract the most likely edit path, but also other edit paths that seem to be
rather likely, such as the one with edit operations {A → b, B → c, C → a} in
our case.

4 Experimental Results

In this section, we evaluate how the proposed method performs in comparison
to the standard edit distance method on three graph data sets representing
letters, images, and diatoms. These data sets are considered difficult because of
non-compact and overlapping classes.

The letter data set consists of line drawings of 15 capital letters. Nodes are
labeled with a position attribute, and edges are unlabeled. The graphs are split
into a training set and validation set each of size 150 and a test set of size 750.
The image data set consists of 5 classes of region adjacency graphs represent-
ing images after processing and filtering [15]. Nodes contain a color histogram
attribute, and edges contain a region adjacency attribute. The diatom data set
contains a total of 162 patterns split into a training set, validation set, and test
set of equal size. The diatom data set is derived from microscopic images of
22 diatom classes. These images first undergo a segmentation process and are
then transformed into graphs [16]. Nodes contain attributes describing region
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Table 1. Recognition accuracy on validation set (VS) and test set (TS)

Data set Method Accuracy VS Accuracy TS Running time

Letter Standard 67.3 69.3 12.4’

Proposed 76.7 74.9 • 19.5’

Image Standard 64.8 48.1 9s

Proposed 72.2 59.3 • 18s

Diatoms Standard 86.5 66.7 • 8s

Proposed 54.1 47.2 15s

• Improvement over other method statistically significant (α = 0.05).

features, and edges contain a common boundary attribute. This data set is split
into a training set and validation set each of size 37 and a test set of size 36.

The recognition accuracy of a k-nearest-neighbor classifier based on the stan-
dard edit distance method [1,6] and the quadratic programming method pro-
posed in this paper are given in Table 1. Note that the relevant classification
accuracy is the one on the test set. In two out of three cases, the proposed
method outperforms the standard method significantly, while on the third data
set, the proposed method is clearly inferior. Note that the test set results marked
with a dot are significantly better than the other ones on a statistical significance
level of α = 0.05. These classification results show that the proposed method
based on quadratic programming constitutes a viable alternative to the stan-
dard edit distance method on certain data sets. As far as the running time is
concerned, the proposed method seems to require typically twice the running
time of the standard algorithm. It should be noted, however, that the efficiency
of the proposed method heavily depends on the implementation of the quadratic
programming algorithm at hand.

5 Conclusions

In this paper we propose a novel approach to computing graph edit distance.
The idea is based on fuzzy edit paths between graphs. In contrast to standard
edit distance, the result of the graph matching process is not a transformation
of one graph into the other one (an edit path), but rather for each possible
node substitution a computed fuzzy weight. The higher this fuzzy weight, the
less the corresponding node substitution violates the node and edge structure
and labels of the two graphs. For the computation of fuzzy edit paths from
standard edit operation costs, a quadratic programming algorithm can be used.
The aim is to compute a fuzzy edit path that minimizes the structural error in
a manner similar to the minimization of edit costs in graph edit distance. The
resulting fuzzy edit path can then easily be turned into a standard edit path
by means of a defuzzification procedure. An experimental evaluation on graphs
representing line drawings, images, and diatoms demonstrates that the proposed
method significantly outperforms the standard edit distance method on two out
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of three data sets, although the standard edit distance algorithm is typically
twice as fast.

In the future, we intend to further study the applicability of quadratic pro-
gramming principles to graph matching. We would like to investigate whether it
may be advantageous to use other quadratic programming formulations of the
minimum-cost edit path problem than the one presented in this paper. Also,
while applying a defuzzification procedure to fuzzy edit path turns out to be
advantageous to directly using fuzzy edit paths for classification, there does not
exist a unique way to turn fuzzy edit paths into standard edit paths. For in-
stance, applying error-minimization techniques such as Munkres’ algorithm for
defuzzification might be a viable alternative to our proposed iterative procedure.
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Abstract. We propose in this article an image classification technique based
on kernel methods and graphs. Our work explores the possibility of applying
marginalized kernels to image processing. In machine learning, performant al-
gorithms have been developed for data organized as real valued arrays; these
algorithms are used for various purposes like classification or regression. How-
ever, they are inappropriate for direct use on complex data sets. Our work con-
sists of two distinct parts. In the first one we model the images by graphs to
be able to represent their structural properties and inherent attributes. In the
second one, we use kernel functions to project the graphs in a mathematical
space that allows the use of performant classification algorithms. Experiments
are performed on medical images acquired with various modalities and con-
cerning di�erent parts of the body.

1 Introduction

Most of the traditional machine learning techniques ultimately cope with basic numeric
features given in the form of arrays [1]. Such input information is processed for various
purposes, like classification or regression.

Nevertheless, it has become clear recently that machine learning should be able to
cope equally with more complex input data, such as images, molecules, graphs or hy-
pergraphs. The attributes that one can use to describe the input information are complex
and very often inaccurate. In this context, classical learning methods do not provide a
generic solution to the problem of processing complex input data.

Instead of changing the classical machine learning algorithms, our choice is to go in
the opposite direction and to adapt the input for classification purposes so as to decrease
structural complexity and at the same time preserve the attributes that allow assigning
data to distinct classes.

As these complex structures started to emerge from various scientific areas (com-
puter science, chemistry, biology, geography), one possible approach that we also
employ in the current work has been to add a supplementary preprocessing step
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involving structure and attribute extraction. In this way, we can return to the vectorial
case by projecting a complex structure x belonging to a certain general space X into the
n-dimensional real vector space �n or in an infinite-dimensional Hilbert space. Di�er-
ent approaches have been used to project images in classifiable spaces. In one of them,
images are treated as indivisible objects [2] and only global attributes are extracted.
Another strategy has been to treat images as `̀ bags´́ that contain indivisible objects [3],
and interpret them by indexing these objects and their attributes, but ignoring whatso-
ever the relationships among them. However, the novel strategy that best defines our
approach is to interpret images as organized sets of objects [4,5,6] and extract at the
same time object attributes and structural information.

(a) Angiogram (b) MRI (c) CT

Fig. 1. Examples of medical images

We intend to use our work for the classification of 2D gray level medical images
acquired using di�erent techniques and concerning di�erent parts of the human body.
More precisely, the test base includes angiograms (Fig. 1(a)), sonograms, MRIs - mag-
netic resonance images (Fig. 1(b)), X-rays, CTs - computed tomograms (Fig. 1(c)),
acquired with di�erent imaging systems and following di�erent protocols (even in
each class). Most images also present small annotations, intended for the human re-
viewers. A good classification technique for this family of images should be able to
cope with the generality factor due to the variety of classes and of acquisition tech-
niques and equally with that due to noise (annotions, arrows) which are placed by in-
struments or by technicians and which are supposed to facilitate the work of medical
teams.

This article starts with a brief presentation of support vector machines in Section 2
and of kernel methods for graphs in Section 3, emphasizing the one that represents the
starting point for our work. Afterwards we describe in Section 4 our graph model for
images, based on a generic, non-supervised segmentation followed by attribute extrac-
tion on the resulting structure. In Section 5, we explain where the diÆculty of working
with these attributes resides, and we propose a classification method adapted for image-
issued graphs. This constitutes indeed the main contribution of the paper. Preliminary
results on medical images are discussed in Section 6.
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2 SVM Classifiers and Kernel Machines

In its basic form, a Support Vector Machine (SVM) classifier uses two sets of discrim-
inative examples for training; these examples belong to a vector space endowed with a
dot product. The main advantage of this classifier is the fact that it minimizes the classifi-
cation error while maximizing the distance from the training examples to the separating
hyperplane. It also allows the definition of a soft margin to prevent the mislabeled exam-
ples from perturbing too much the classification. Although SVMs have been originally
designed as linear classifiers, they have been extended to perform non-linear discrimina-
tion [7] by using a `̀ kernel trick´́ , that replaces the dot product needed in computation by
a non-linear positive definite kernel function. As a consequence, the examples are pro-
jected into a Hilbert space of higher dimension, called the feature space, which allows
the construction of a linear classifier that is not necessarily linear in the initial space.

An important observation is that the classifier only needs the value of the kernel
function between the examples. An additional advantage of this approch is that it allows
classifying elements issued from spaces which are not naturally endowed with inner
products (such as graph, tree or string spaces), as long as we use a valid kernel function.

3 Marginalized Graph Kernels

In this section, we briefly describe the marginalized kernel for labeled graphs.
We perform feature extraction on an undirected graph G, whose set of vertices is �.

The graph is labeled using the functions v : �� �v for its vertices and e : � ��� �e

for its edges, �v and �e being two label sets. For the sake of clarity, we note v(x) by vx

and e(x1� x2) by ex1 x2 .
Feature extraction is carried out by first creating a set of random walks [8,9]. The first

element of the walk is a vertex x1 given by a certain probability distribution over �. At
a subsequent moment during the generation, the walk will end at the current vertex xi

with a fixed (small) probability or it will continue by visiting a neighboring vertex xi�i.
For each walk h � (x1� x2� � � � � xn), labeled as lh � (vx1 � ex1 x2 � vx2 � � � � � vxn ), the proba-

bility to obtain it may be expressed as:

p(h�G) � ps(x1)
n�

i�2

pt(xi�xi�1) (1)

in which ps and pt have to be chosen in order to build p(h�G) as a probability distribution
in the random walk space ��

� ��
i�1�

i, the union of all random walk spaces of a certain
finite length i . One proposal for ps and pt, that we have also adopted for our model, is
given for example in [9].

The kernel between two graphs G and G� measures the similarity of all the possible
random walk labels, weighted by their probabilities of apparition:

K(G�G�) �
�

h

�
h�

k(h� h�)p(h�G)p(h��G�) (2)

As for the kernel between two random walk labels, a natural option is to define it as 0 if
the walks have di�erent lengths, and the product of all the kernels for their correspond-
ing constituent parts otherwise:
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k(h� h�) � kv(vx1 � vx�1
)

n�
i�2

ke(exi�1 xi � ex�i�1 x�i
)kv(vxi � vx�i

) (3)

where kv and ke denote the kernel functions used for computing vertex and edge simi-
larity, respectively. In computational chemistry, where this kernel has been extensively
and successfully used, label functions have a limited range and therefore an appropriate
kernel for assessing vertex or edge label similarity is the Dirac kernel:

kÆ(z� t) �

�
1 � i f z � t
0 � otherwise

(4)

Even so, computing the marginalized kernel for two graphs is diÆcult in the absence
of two supplementary variables [10]. The first one �s � ((�s(x� x�))(x�x�)��2 is a �������

vector containing the joint start probabilities of two vertices x � � and x� � �� if they
have the same label, and 0 otherwise. The second variable needed for the kernel com-
putation is �t � ((�t((x1� x�1)�(x2� x�2))))(x1�x�1)�(x2�x�2)��2 is a ������� � ������� square matrix
whose elements assess the joint transition probability between two pairs of vertices be-
longing to the first and to the second graph, if and only if these vertex pairs and the
corresponding edge pair are identically labeled (otherwise the probability is null):

�
�s(x� x�) � pG

s (x)pG�

s (x�)
�t((x1� x�1)�(x2� x�2)) � pG

t (x1�x2)pG�

t (x�1�x
�
2)

(5)

Using these new variables and � - the vector with all its values equal to 1, the kernel
can be evaluated as:

K(G�G�) � �T
s (I � �t)�1

� (6)

Due to the inversion of �t which dominates the computation cost, the problem has an
order of complexity of �((�X��X��)3). However, one may take advantage of the sparsity
of �t, as well as of other methods [10,11], in order to boost the performance of the
algorithm. Many of these improvements are conditioned by a small range of labels and
a low degree of vertex connectivity.

4 Graph Models of Images

The first step of our method consists in extracting and modeling image information. In
order to achieve this, we use a labeled graph support (vertices are labeled as well as
edges). The graph is obtained by first segmenting the initial image into regions, which
allow us to describe its structure and to facilitate the information extraction step. Dis-
tinct regions correspond to vertices, while edges model the spatial relationships between
regions. Beside this information brought by the structural expressivity of the graph, we
integrate in the labeling relevant intrinsic information that we describe in detail later.
Therefore, the interest of using a graph structure goes beyond the structural expressivity
and is due to the possibility that it o�ers to save various data and link them to particular
components.

Unsupervised segmentation, as the low-level processing stage of our classification
system, is an important and at the same time diÆcult task. Good results of a classifier
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with no prior information on the elements to be classified imply the use of a segmenta-
tion method that works reasonably well for any input image type.

For our processing stage we adopt a generic hierarchical image segmentation para-
digm [12,13,14]. We suppose that the image is divided into components that may be
further divided into subcomponents. This decomposition may be represented by a tree
whose root node is the whole image and whose leaf nodes represent a partition of tiny
regions built at the beginning of the processing step. This partition may be for example
the set of pixels of the image. The advantage of employing a hierarchical segmentation
method is that changes are gradual, unlike for other methods where the variation of one
parameter may induce a completely di�erent segmentation map. This aspect is relevant
because medical images which have been acquired using di�erent protocols but show
the same body parts are sensitive to segmentation methods that use absolute thresholds.
As opposed to that, hierarchical segmentation gives emphasis to relative relationships
between image subconstituents.

To generate the leaf node partition of the tree, instead of employing each pixel as a
terminal node in a tree, we use a watershed over-segmentation that leaves us however
with a very large number of small regions. At this point we start climbing in the tree
structure by merging neighboring regions that have the closest average gray levels:

di fg(r1� r2) �
���avg(r1) � avg(r2)

��� (7)

where avg(r) denotes the average gray level in the region r.
Concerning the stopping condition for the fusion process, we have chosen to set a

dynamic threshold t f . If the smallest gray level di�erence between two neighboring re-
gions is higher than the threshold, we decide that the regions are not similar enough for
the fusion to be performed and we stop. The threshold is dynamic because we compute
it at each step as a (fixed) fraction f of the di�erence between the highest and the lowest
region gray levels that exist in the image:

t f � f � (max
r�Im

avg(r) � min
r�Im

avg(r)) (8)

As an example, we present a typical mammography in Fig. 2(a), along with one
of the best possible human-assisted watershed based segmentations (Fig. 2(b)) and the
result of the unsupervised method presented above (Fig. 2(c)).

(a) Initial image (b) Direct segmentation (c) Region fusion

Fig. 2. Mammography segmentation
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Once the fusion has ended, we compute the following attributes for the resulting
regions, encoded as vertices:

– region surface in pixels,
– relative surface, a real value that represents the percent of the image covered by the

concerned region,
– average gray value of the region,
– relative average gray value, corresponding to an aÆne transform with respect to the

highest and lowest average gray values in the image, gmin et gmax:

grayrel(r) �
g � gmin

gmax � gmin
� (9)

– region perimeter,
– region compacity, in [0� 1�(4�)] and defined as the ratio between its surface and its

squared perimeter,
– number of neighboring regions.

For the time being, the only relationship encoded by the edges (implicitely) is the neigh-
borhood.

In Fig. 3, we present how the region number evolves when we modify the fusion
threshold. Regions in images with a stronger initial over-segmentation tend to merge
faster, so that for a fraction f � 0�1, results will start to be similar enough to those of
images that presented a medium and low over-segmentation due to a smaller size or to
a lower contrast, for example. This is an interesting result of our approach.
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Fig. 3. Threshold fusion fraction influence on fusion results in terms of number of regions

5 A Kernel for Image-Based Graphs

For image-based graphs, we propose a marginalized kernel di�erent of that used in
computational chemistry, which is able to better cope with specific image attributes.

A major structural di�erence in image-based graphs concerns the connectivity. While
it is uncommon that atoms present more than four links towards the rest of the structure
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they belong to, this changes dramatically in the case of image regions, where there is no
limit for the number of neighbors a region might possess. Potential optimizations based
on graph sparsity become useless and, at the same time, the region neighborhood rela-
tionship has a lower importance than it has in a chemical compound, where the number
of vertex neighbors n(x) could be a used by a Dirac type kernel, as in Eq. (4). In our case
however, the function n(x) is unreliable as it is heavily influenced by the segmentation
step, and cannot be helpful in building a vertex kernel or a significant part of it.

Another major di�erence in image-based graphs concerns the labeling. In the initial
approach, vertices and edges are labeled using a small set of chemical symbols and
possible bindings, and much information is given by the existence of the edge. The fun-
damental modification in the case of image-based graphs is that the labeling variable
space becomes continuous and multi-dimensional, and a significant part of the infor-
mation migrates from the graph structure to the labeling of its constituent parts.

The marginalized kernel presented in Section 3 employs a Dirac kernel for vertices
and edges, which is useful for assessing structural similarities but is not adapted for a
graph whose labeling is a major source of information. Under these circumstances, we
have tried to adapt the vertex and edge kernels in order to define a proper similarity
estimate for them.

The original graph kernel K(G�G�) defined in Eq. (2) is estimated by summing the
similarities of all pairs of random walks of equal length. For a certain pair of such ran-
dom walks (h� h�), let us suppose that we get simultaneously to a pair of corresponding
vertices (xi� x�i). At this point we analyze the next transition in each walk; if the labels
of the next two edges (exi xi�1 � ex�i x�i�1

) and the labels of the next two vertices (vxi�1 � vx�i�1
)

are not identical, the similarity brought by these walks will be null and we start analyz-
ing another pair of walks. Otherwise we multiply the current similarity of the walks by
the probabilities for the two transitions occurring in each walk. This leaves us with a
probability of getting these random walks from start to end of:

p(h� h�) �

�������pG
s (v)

n�
i�2

pG
t (vi�vi�1)

�					
 �
�������pG�

s (v�1)
n�

i�2

pG�

t (v�i �v
�
i�1)

�					
 (10)

in which we suppose implicitely that for the walks (h� h�), the labels of all the constituent
parts are identical. Using a Dirac similarity function for vertices and edges, it is obvious
that random walk kernels in Eq. (3) will be also Dirac functions, so the graph kernel
in Eq. (2) is reduced to the direct sum of all the probabilities p(h� h�) as in Eq. (10)
computed for identically labeled random walks.

This strategy works for discrete ranged kernel functions, but in the case of region
attributes like gray level or surface, we need a less discriminative kernel. Possible so-
lutions to this problem are the Gaussian radial basis function (RBF) kernel and the
triangular kernel [15]:

KRBF(x� y) � exp

�
�
	x � y	2

2�2

�

K�(x� y) �

�C��x�y�
C � i f 	x � y	 
 C�

0 � otherwise
(11)
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The advantage of the first kernel over the second is that it o�ers a smoother, Gaussian
discrimination compared to the uniform discrimination of the triangular kernel. How-
ever, beside an increase in computation time, the disadvantage of KRBF is that it does
not vanish at finite bounds, while the triangular kernel has a compact support.

We are entitled to use any of these kernels in the place of the Dirac kernel because
they are also known to be positive definite and their use inside the graph kernel respects
the closure properties of the family of kernel functions.

The next step is to integrate these values in the graph kernel computation. If we
employ in Eq. (2) the joint probability from Eq. (10) and we replace the generic value
k(h� h�) with that of Eq. (3), we get:

K(G�G�) �
�

h

�
h�

������kv(vx1 � vx�1
)

n�
i�2

�
ke(exi�1 xi � ex�i�1 x�i

) � kv(vxi � vx�i
)
�

� pG
s (x1) � pG�

s (x�1) �
n�

i�2

�
pG

t (xi�xi�1)pG�

t (x�i �x
�
i�1)

�������� (12)

By comparing the kernel equation Eq. (2) with its revised form Eq. (12), we can
notice the adaptation of the variables from Eq. (5) that we must perform in order to use
the same method for the computation of the new kernel function:�

�s(x� x�) � pG
s (x)pG�

s (x�) � kv(vx1 � vx�1
)

�t((x1� x�1)�(x2� x�2)) � pG
t (x1�x2)pG�

t (x�1�x
�
2) � ke(exi�1 xi � ex�i�1 x�i

)kv(vxi � vx�i
)

(13)

The vertex and edge kernel functions appear in this model as probability multipliers
along transitions, which penalize paths with respect to their constituent dissimilarities.
Using the revised variables �s and �t from Eq. (13), we can now employ Eq. (6) to
compute the revised graph kernel from Eq. (12).

In the general case of an attribute set A � �a1� � � � � an� associated to a graph compo-
nent, the kernel function will be extended in order to take into account all the elements
of A. Kernel functions related to these various attributes allow us to treat them in a uni-
fied way, merging them in a unified similarity estimate [16]. As each kernel provides
us with a partial description of data properties, we are interested in building a parame-
terized combination that employs each attribute according to its relevance. In our work,
we have employed a linear combination of base kernels:

KA �

�A��
i�1

�iKai (14)

where the multipliers �i  0 satisfy
�n

i�1 �i � 1. This time too, the weighted sum
of definite positive functions preserves the key property of definite positiviness of the
result.

6 Experimental Results

Based on this adapted marginalized kernel, we have conducted some preliminary ex-
periments, whose purpose is to assess its viability and the impact of di�erent graph
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Table 1. Recognition rates based on the relative surface attribute srel

Recognition C � 0�05 C � 0�15 C � 0�2 C � 0�5 C � 0�6 C � 1
rate � � 0�0167 � � 0�0500 � � 0�0667 � � 0�1667 � � 0�2000 � � 0�3333

K� 0.81 0.74 0.83 0.83 0.83 0.86
KRBF 0.93 0.95 0.93 0.86 0.86 0.86
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Fig. 4. Performance of a linear combination between a triangular kernel for relative surface
(C�0.2) and a triangular kernel for relative average gray level (C�0.5)

attributes on its performance. As training examples, we have used ten head X-rays
(coronal view) for the first class and ten mammographies (sagittal view) for the second
one. For the moment, edges are not, beside their implicit structural importance, taken
into account; therefore, we consider them as having the same label and we concentrate
on the richer vertex attributes. We have particularly analyzed two of them which are
adjusting to global image content: the relative surface srel with respect to the image sur-
face and the relative average gray value grayrel defined in Eq. (9). They are less prone
to perturbations, rescaling, contrast or brightness variations, etc.

In a first phase of our experiment, we have compared the performances of KRBF

and K� in Eq. (11) for the srel attribute and for di�erent parameterizations of C and
respectively �, on a testing sample of 42 images. For obvious statistics reasons, results
for the two kernels are directly comparable in the situations where the value of C is at
the 3-sigma level: C � 3�.

Results in Table 1 show that the RBF kernel performs well in the case of a strong
discrimination (i.e. if region areas di�er by more than one tenth of the image surface,
the kernel returns a very small similarity value). While simplifying the discrimination
function, the triangular kernel does not manage to discriminate as eÆciently as the RBF
kernel in the initial range of the surface attribute.
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In a second step, we have built a linear kernel as in Eq. (14) based on both srel and
grayrel, in order to analyze the classification performance as a function of the individual
kernel multipliers. The tests are performed, as before, on the sample of 42 images. The
discrimination thresholds are fixed at 0.2 and 0.5 for the surface and gray level attributes
respectively. Gray level weight is gradually increased from 0 to 1 in the unified kernel
equation.

The graph shown in Fig. 4 proves that performance may be improved drastically
by combining multiple attributes in the global kernel function. Even for the limited
use of two vertex attributes in the absence of edge labeling, preliminary results are
encouraging. The weighted combination of kernels should be able to use information
from multiple data sources by assessing the relative importance of each of them.

Triangular kernels prove to be noticeably faster than Gaussian ones and we hope that
further weight optimization [16,17] will help us increase the performance of a linear
kernel based on triangular subcomponents.

7 Conclusions

We have presented a new version of marginalized graph kernel which extends the one
being used in computational chemistry and which allows the processing of image-based
graphs. This new approach incorporates in the similarity computation specific proper-
ties of image-based graphs, such as image attributes, irrelevance of the numbers of
neighbors of a segmented region, etc. We have applied this approach to medical image
classification, based on a generic segmentation method. Preliminary results validate this
model and further work will be needed in investigating which of the possible attributes
are relevant for graph-based image representation and classification. We are also in-
terested in labeling edges with relationship attributes which go beyond planar neigh-
borhood and which are essential for expressing globally image content. In the same
direction, we could try to use some results concerning the kernel integration theory in
order to find the most suitable multipliers for a certain attribute set that we consider
relevant.
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Comparing Sets of 3D Digital Shapes

Through Topological Structures
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Abstract. New technologies for shape acquisition and rendering of
digital shapes have simplified the process of creating virtual scenes;
nonetheless, shape annotation, recognition and manipulation of both
the complete virtual scenes and even of subparts of them are still open
problems.

Once the main components of a virtual scene are represented by struc-
tural descriptions, this paper deals with the problem of comparing two
(or more) sets of 3D objects, where each model is represented by an at-
tributed graph. We will define a new distance to estimate the possible
similarities among the sets of graphs and we will validate our work using
a shape graph [1].

Keywords: graph-matching, scene comparison, structural descriptor,
shape retrieval.

1 Introduction

Object recognition is one of the main tasks of Computer Vision and Graphics.
In particular, there is a growing consensus that shapes are mentally represented
and coded in terms of relevant parts and their spatial configuration, or structure
[2]. This fact suggests that describing a shape through structural descriptors
requires a limited amount of information, focused, for instance, on the shape
topology and, if attributed, on some of its geometric features.

An important point is that the similarity between two shapes is assessed not
only in terms of identical global matching but it is based on the contribution of
common features compared to those distinguishing them. A distance measure,
in particular a metric, translates the intuitive concept of closeness in a math-
ematical environment, considering as similar two objects that are close. In our
work, 3D objects are coded using structural graphs and then compared through
a distance measure defined over attributed graphs.

In the last decades several approaches have been developed for graph match-
ing, and especially in defining distances between them.

The matching problem is solvable in polynomial time when dealing with trees.
An interesting contribution has been proposed by Torsello et al. [3], where the
authors present four distance metrics for attributed trees based on the notion
of a maximum similarity subtree isomorphism. Since many problems deal with
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graphs instead of trees, a possible solution is to reduce the graph representation
into an attributed tree obtained through edit operations (removing, adding or
replacing a vertex or an edge). Unfortunately these techniques discard a lot of
information about the original structure of the object and the tree obtained is
intrinsically non-unique.

As far as graph matching, several approaches are based on maximum common
subgraph MCS or minimum common supergraph mcs, like those proposed by
Bunke [4] and Fernández and Valiente [5]. In both cases the distances proposed
are metrics between non-attributed graphs, therefore the attributes associated to
graphs are not taken into account. Since the problem of finding the MCS or the
mcs is NP-complete, some authors have proposed algorithms for approximating
their computation (see Marini et al. [6]), obviously providing a lower bound of
the graph distance.

Another large family of methods is based on linear algebra techniques, ex-
ploiting the adjacency, incident or Laplacian matrices of a graph. For example,
Shokoufandeh et al. [7] present a signature based on a combination of the spec-
tral properties of the adjacency matrix that provides an effective mechanism for
indexing large databases of graphs. The method described by Robles-Kelly and
Hancock [8] adopts a brushfire search procedure using the rank-order of the co-
efficients of the leading eigenvector of the adjacency matrix. Similarly, Wilson
et al. [9] analyse the spectrum of the Laplacian matrix of the graph. Since we
have identified this approach as appropriate for our purposes, we describe it in
Section 2. Finally the method of Bapat [10] introduces the concept of a tree with
attached graphs and defines a distance matrix on it.

Last, the need of having flexible graph matching frameworks that admit the
mapping of many nodes into many others has led to the definition of the so-
called “many-to-many” approach. For example Demirci et al. [11] translate the
problem into a many-to-many geometric points matching task, for which the
Earth Mover’s Distance algorithm (see [12]) is well suited.

Often in real applications it is important to compare sets of objects simulta-
neously present in different scenes. For example, this is relevant when a global
view of the elements in a scene database is required, maybe for indexing or filter-
ing purposes, before handling a fine recognition analysis. In fact, when massive
volumes of data are provided, a fast and high-level analysis of the single scenes
could significantly increase the number of computations. Moreover our approach
can be adopted for comparing objects made of sets of single parts, and, therefore,
overcomes the limitation, typical when using structural descriptors, of compar-
ing objects made of a single connected component. In our context this problem
is translated in the comparison of sets of objects represented by their structural
graphs; therefore, we are interested in developing techniques able to treat sets of
graphs. In this contribution we define a distance between two of these sets, pro-
viding a result able to establish a similarity, if it exists, among the scenes, which is
our primary goal. Then two different normalizations of our distance are proposed:
the first one is useful for ranking scene databases, while the second one is better
for comparing just two sets of graphs, and corresponds to the measure proposed



116 L. Paraboschi, S. Biasotti, and B. Falcidieno

in Paraboschi et al. [13]. In this paper the focus is mainly on the first one, which
has been tested on a database of single objects and on two databases of scenes.

The remainder of this paper is organized as follows. In Section 2 we describe
our approach focusing on the properties of our distance and discussing the rela-
tion among the spectrum of the Laplacian matrix related to the scene graph and
the structural descriptor of the single scene components. Then, experiments on
datasets of scenes are discussed in Section 4. Conclusions, discussions and future
developments end the paper.

2 Graph-Based Scene Comparison

Starting from the work of Wilson et al. [9], that converts graphs into pattern
vectors by using the spectral decomposition of the Laplacian matrix and basis
sets of symmetric polynomials, we extend that approach to scene comparison
defining a novel scene graph. Moreover, two new distances are introduced to
compare two scenes and the relation between the Laplacian spectrum of the
scene graph and those of the components is discussed.

A graph G ∈ G is usually defined as a couple (V, E), where G is a set of graphs,
V is the node set (n = |V |), and E the edge set. If a function w : V ( or E)→ IR
is given, G is said to be attributed. Defining the Laplacian matrix L of a graph
as [9] (we suppose from now that the spectrum of every Laplacian matrix is in
increasing order), let ei be an eigenvector (‖ei‖2 = 1 ∀i) and λi be its eigenvalue.
If Φ = (Φi,j)i,j=1,...,n = (

√
λ1e1, . . . ,

√
λnen), then L = ΦΦt.

The graph topology is invariant for any permutation of node labels (see [9]
and [14]); it follows that the eigenvalues of L are invariant for any of these
permutations and they can be used as a spectral representation of a graph, i.e.,

λj =
n∑

i=1

Φ2
i,j . (1)

Equation (1) is a symmetric polynomial in the components of eigenvectors ei. To
measure invariant features of graphs, the authors propose to consider the set of el-
ementary symmetric polynomials Sj(v1, . . . , vn) =

∑
i1<...<ij

vi1vi2 · · · vij , j =
1, . . . , n.

Then, a matrix F = (fi,j)i,j=1,...,n, fi,j = sign(Sj(Φ1,i, . . . , Φn,i)) ln(1 +
|Sj(Φ1,i, . . . , Φn,i)|) is introduced to define the so-called feature vector of the
graph G as B = (f1,1, . . . , f1,n, . . . , fn,1, . . . , fn,n)t.

Finally, given two graphs G1, G2 ∈ G whose feature vectors Bi, i = 1, 2, are
known, a possible metric on G is given by

d(G1, G2) = ‖B1 −B2‖2 . (2)

2.1 Comparing Sets of Graphs

In order to extend the previous technique to match sets of graphs, a virtual node
X without attributes is introduced in every set (in analogy to VRML files, see
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for example the definition of grouping nodes at http://www.agocg.ac.uk/brief/
vrml.htm), and it is joined to one of the vertices of minimum degree for each
graph Gi ∈ G (see Fig.1). Since the Laplacian spectrum is invariant for node
label permutations, the choice of the vertex to which X is joined is not relevant
for the extraction of the eigenvalues of L.

Fig. 1. Two graphs joined by a virtual node X in a scene graph. Provided that for
each graph X is connected to a node of minimum degree, the choice of that node is
irrelevant (X can be indifferently joined to the two graphs by the black edges or by
the grey ones).

A single and connected graph is obtained, whose Laplacian matrix has the
form represented in (3). If the set is composed by m graphs Gi = (Vi, Ei),
|Vi| = ni, with i = 1, . . . , m, it is

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m −1 0 . . . −1 0
−1 l11,1 + 1 . . . l11,n1

. . . . . . . . .
0 l1n1,1 . . . l1n1,n1
...

. . .
−1 lm1,1 + 1 . . . lm1,nm

. . . . . . . . .
0 lmnm,1 . . . lmnm,nm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3)

L(Gh) = Lh = (lhi,j)i,j=1,...,nh
is the Laplacian matrix of the h-th graph, and the

element added to lh1,1 ∀h stresses the existence of the virtual node joined with a
component vertex (we suppose that, after a node label permutation, X is joined
to the first node of the component), whose degree increases of 1.

When dealing with attributed graphs, the same procedure described in (3) is
used to modify the expression of the attributed Laplacian matrix [9], that takes
into account both node and edge attributes.

2.2 A New Pseudo-metric and Two Possible Normalizations

To compare two sets of graphs, we introduce a new distance:

D(G1, G2) :=
∣
∣‖B1‖2 − ‖B2‖2

∣
∣ . (4)

D is a pseudo-metric: it satisfies positivity, symmetry and triangle inequality;
identity is not verified (D(G1, G2) = 0 � G1 � G2). Between D in (4) and d in
(2) the following relation holds:
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D(G1, G2) =
∣
∣‖B1‖2 − ‖B2‖2

∣
∣ ≤ ‖B1 −B2‖2 = d(G1, G2) .

In our experiments we use a normalized version of (4), which is useful to
arrange a database with m sets; let it be ‖Bī‖2 = maxi=1,...,m ‖Bi‖2; then

Dm(G1, G2) =

∣
∣‖B1‖2 − ‖B2‖2

∣
∣

‖Bī‖2
. (5)

(5) has the same properties of D, that is, it is a pseudo-metric.
We arrange the experiments in a scene repository as follows: first of all we

extract the descriptors of the scene components, and then estimate the distance
between two scenes using (5): the smaller Dm is, the more the two scenes, or
better, their structures, are similar.

Finally, we propose also another normalization of D (see [13]): DN (G1, G2) =∣
∣‖B1‖2−‖B2‖2

∣
∣

max(‖B1‖2,‖B2‖2)
; DN is a pseudo-semi-metric, that is, it satisfies neither identity

nor the triangle inequality, and it is suitable to compare just two scene graphs.
Moreover, if we define dN (G1, G2) = ‖B1−B2‖2

2max(‖B1‖2,‖B2‖2)
as a normalization of (2),

it follows that DN (G1, G2) ≤ 2dN (G1, G2), and therefore our measure is a lower
bound of the distance proposed in [9].

2.3 A Property of Laplacian Eigenvalues of the Scene

In this Section we analyse the relation between the scene graph we have defined
and the descriptors of the single scene components. In fact, from successive in-
equalities, we can find both an upper and a lower bound for the spectrum of L in
(3) which depend on the eigenvalues of the Laplacian matrices of the single scene
components. Because these graphs are described also by Laplacian eigenvalues,
the property we are going to describe guarantees that the scene graph is compa-
rable with those of singular components. Therefore these results justify the addi-
tion of a virtual node, instead of separately considering each scene components.

The introduction of X makes the set of graphs G connected, and it adds a
non-zero eigenvalue to its Laplacian matrix L: this change keeps L symmetric
and diagonally dominant, so positive definite.

Let us consider a set with just two graphs G1 and G2, whose Laplacian ma-
trices are respectively L1 and L2. Denoting λ1(L1), . . . , λn1(L

1), λ1(L2), . . . ,
λn2(L2) their eigenvalues, let L̃1 = (l̃1i,j)i,j=1,...,n be such that l̃1i,j =
{

l1,1 + 1 i = j = 1
li,j otherwise and similarly L̃2; it follows that

∑
i λi(L̃j) =

∑
i λi(Lj)+1,

because the sum of the eigenvalues is equal to the matrix trace. Moreover, we
can factor the Laplacian matrix of the scene L in (3) as L = A1 + A2, such that

A1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1
−1 l11,1 + 1 . . . l11,n1

. . . . . . . . .
l1n1,1 . . . l1n1,n1

0n2

⎞

⎟
⎟
⎟
⎟
⎠

, A2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1
0n1

−1 l21,1 + 1 . . . l21,n2

. . . . . . . . .
l2n2,1 . . . l2n2,n2

⎞

⎟
⎟
⎟
⎟
⎠

;

here 0ni means a square matrix ni × ni with all 0 entries.
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Now let G3 be the graph G1 with a node v and an edge e added (E3 = E1 +e,
V3 = V1 + v, v /∈ V1, e = (v, w), w ∈ V1), from the interlace theorem [15] it
follows:

0=λ1(L3)=λ1(L1)≤λ2(L3)≤λ2(L1) ≤ . . . ≤ λn1(L
3)≤λn1(L

1)≤λn1+1(L3) ,

where L3 denotes the Laplacian matrix of G3. As a consequence, the non-zero
eigenvalues of A1 interlace those of L̃1, and the same is valid for A2 and L̃2.

Denoting λN (L), N = n1 + n2 + 1, the maximum eigenvalue of L, Weyl’s in-
equality (see for example [16]) implies the following relation: λN (Ai) ≤ λN (L) ≤
λN (A1) + λN (A2), for i = 1, 2, since both A1 and A2 are positive semi-definite.
Therefore it follows:

max{λN (A1), λN (A2)} ≤ λN (L) ≤ λN (A1) + λN (A2) .

In addition we observe that, even if the eigenvalues of L are always non-zero
(L positive definite), the eigenvalues of the matrices Ai=1,2 factorizing L verify
λ1(Ai) = . . . = λN−1−ni(Ai) = 0, i = 1, 2. Moreover, Weyl’s inequality gives a
meaningful result when the index i is max{n1 + 1, n2 + 1}; if n1 > n2 then

λn1+1(L) ≥ max{λn1+1(A1), λn1+1(A2)} .

Analogous results hold for scenes with m elements, that is L = A1 + . . . + Am,
and for attributed graphs.

3 Shape Graph and Comparison

The construction of the descriptor of every scene component relies on the shape
graph defined in Biasotti et al. [1]: given a shape represented by a regular triangle
mesh M , the co-domain [fmin, fmax] of f : M → IR is subdivided considering
nv regular values of f , fi ∈ [fmin, fmax], i = 1, . . . , nv. The level sets of f that
correspond to these values partition the mesh M into regions (see Fig.2(b)).
Hence all points belonging to a region of a contour are identified and represented
as nodes and edges of a traditional graph (see Fig.2(c)).

Three different mapping functions f are considered in our framework, namely
the distance from the barycentre, the height function (with respect to the z axis)
and the integral geodesic distance.

For every node v ∈ V , corresponding to a region R, it is possible to associate
a property characterizing the region R or its boundary BR; in our context, they
are the minimum, maximum and average distance of the barycentre of R from
the region vertices, the superior and inferior pseudo-cone lateral areas for each
component of R, the superior and inferior BR lengths, the surface area of R, the
percentual area of R with respect to the whole object area, and the value of f
in every vertex in V .

Concerning the computational complexity of the method, the extraction of
each graph requires O(max(v log v, m), where v is the number of vertices in the
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(a) (b) (c)

Fig. 2. (a): Evaluation of the distance from the barycenter, (b): the mesh segmentation,
(c): the resulting skeleton

(a) (b)

spectacles
↓

Fig. 3. (a): Scene 1, and (b): scene 2

original mesh, and m are the vertices in the mesh after partitioning (see [1]).
When comparing graphs, the method requires O(n3) operations, where n is the
number of scene nodes, because of the eigendecomposition of the Laplacian ma-
trix. The computation of the symmetric polynomials requires O(n2) operations,
while the comparison of the pattern vectors of G1 and G2 requires O(k2) oper-
ations, where k = max{|V1|, |V2|}.

We show a simple example to explain how the distance DN behaves when
comparing two sets of objects (for more details, see [13]). The two scenes, and
their subscenes, in Fig.3 (a) and (b), are analysed comparing the scene graphs
provided by the barycentre distance function. In the first scene, there is a woman
sitting on a chair in front of a table, on which there is a cup, while in the second
one there are a table and a pair of spectacles on it, and next a woman and
a horse. When the sum of the pseudo-cone lateral areas is considered as node
attribute, the distance is DN = 0.2276, which is a quite high result. On the
contrary, if we focus on the woman and the table in both scenes, the distance
DN = 0.0074 indicates a possible, maybe strong similarity. Again, when the
table and the cup in (a) are compared with the table and the spectacles in (b),
DN = 0.1617 refers to less similar subscenes. Finally, if we analyze together the
table and the woman in (a) with the table and the horse in (b), DN = 0.0894:
this result is an example of false positive (that is, a false result of similarity), and
is explainable with the fact that the structural descriptor of the chair resembles
to that of the horse.
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4 Experimental Results

We have evaluated our method, that is, the distance Dm, using closed trian-
gle meshes from various public databases: the AIM@SHAPE repository (http://
shapes.aim-at-shape.net), the CAESAR Data Samples (http://www.hec.afrl.af.
mil/HECP/Card1b.shtml#caesar samples), the McGill 3D Shape Benchmark
(http://www.cim.mcgill.ca/∼shape/benchMark/), and the National Design Re-
pository at Drexel University (http://www.designrepository.org). In our exper-
iments we have selected various classes of models, such as tables, chairs, cups,
teddy bears and humans.

To analyse the behaviour of Dm, we adopt the precision-recall diagrams. Pre-
cision and recall are the basic measures used in evaluating search strategies;
recall is the ratio of the number of relevant records retrieved to the total number
of relevant records in the database, while precision is the ratio of the number
of relevant records retrieved to the total number of records retrieved. A few ex-
amples are proposed in Fig.4 and they refer to a database of 120 heterogeneous
models (see [1]). Supposing that every object is itself a separate scene, and we
compare our results with those obtained by Chen et al. [17] and by Kazhdan et
al. [18]. It is worth noticing that shape graphs well suit articulated models (see
http://www. cim.mcgill.ca/∼shape/benchMark/), such as humans and specta-
cles (Fig.4 (a) and (b)), while both Chen et al. [17] and Kazhdan et al. [18]
methods work better on four limbs animals (Fig.4 (c)).

(a) (b) (c)

Fig. 4. Comparison between Chen et al., Kazahdan et al. and our shape graph

We finally evaluate our new distance on various scenes. We have generated
and preclassified two databases considering in the same class two scenes if they
have the same number of objects and also the same kind of components (for
example, in a class there are scenes with a human and an animal, in another one
a human next to a chair). According to these assumptions, Data1 consists of 4
scene classes each of them with 20 scenes: in the first class there are a table and
a chair, in the second a chair and a human, in the third a table and a human,
and in the last a table and a cup. In Fig.5 we present the best precision-recall
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diagram for each class. This choice is due to the extremely large possibilities
that we have when comparing graphs. In this sense, let us remember that, in
our context, each object graph is described by 3 measuring functions, and again
for each function 10 different attributes are associated to them. Totally, we can
choose among 30 different diagrams, and we show here just the best result, which
is the diagram with the biggest bounded area.

Fig. 5. Precision-recall diagrams on the four classes of Data1

The second database (Data2) is composed by 80 scenes divided in 4 classes,
where, respectively, there are a chair, a table and a cup in the first, a chair, a
table and a human in the second, a chair, a table and a teddy bear in the third,
and, in the last, a table, a human and a cup. Again, the best precision-recall
diagrams are presented in Fig.6.

There are not large differences between the two database diagrams, that is the
method performs more or less in the same way on both of them. Moreover, we can
observe that in most of the cases the height function used for extracting graphs
is the most performing, because all the models are oriented (in the Euclidean
space) in the same way; in fact in our experiments we try to deal with scenes
from the real world, and consequently with the same orientation. Finally, it is
worth noticing that, in Data2, the method performs better on the class of scenes
with a chair, a table and a human (see Fig.6(b)) than the ones with a chair, a ta-
ble and a cup (see Fig.6(d)): this is due to the fact that human graphs are richer of
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(a) (b)

(c) (d)

Fig. 6. Precision-recall diagrams on the four classes of Data2

features (articulations) than cup ones, and consequently the shape graph of the
whole scene is more characteristic, simplifying their identification.

4.1 Numerical Properties of the Distance

Stability: ‖B‖2, and consequently Dm, is well-conditioned. In fact, it is sta-
ble with respect to graph perturbations. For example, if a class of the database
used is chosen and each model attribute is slightly perturbed (1% or 2%), the
retrieval performance of the method is unaltered. Moreover, if the distance be-
tween a graph and its perturbed one is considered, it happens that Dm is lower
than 0.08 in the 90% of cases.

Robustness: An inherent numerical error appears in computing symmetric

polynomials, that is Sj(Φ1,i, . . . , Φn,i) = λ
j
2
i

∑
k1<...<kj

Vk1,iVk2,i · · ·Vkj ,i. Actu-
ally it is typical when working with Laplacian matrices that the most significant
information on graphs is related to the first eigenvalues, and a common practice
is to eliminate some of the last ones. In our context, to guarantee coherent results,
it is necessary discarding some eigenvalues: since the last ones are significantly
bigger than the previous, a numerical error appears and distorts results. Since
the growth of the matrix spectrum has been shown to be almost linear ([19]),
the biggest eigenvalues can be automatically removed analysing the increase of
the spectrum and discarding the values that diverge from linearity.
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5 Concluding Remarks and Future Developments

Our experiments demonstrate that the method is promising. We remark that
there is a relation among the spectrum of the Laplacian matrix related to the
scene and the eigenvalues of the single components, and this fact assures us that
the scene graph is comparable with those of the singular components. Experi-
mental results let us say that the method is stable to graph perturbations, and
it is also flexible, since it is possible to consider topological and geometrical fea-
tures of the objects at the same time. Finally, we introduce a new distance able
to recover similarity between sets of graphs with a good reliability.

False positive results are possible, in particular when two objects have a similar
structure; however we plan to reduce this effect considering a more complex
description of the graph nodes and more attributes at the same time. As far
as false negatives are concerned, that is when objects similar to the query are
not recognized within the same class, we verify that, when comparing scenes,
the method retrieves about the 60% of the right class models within the first 30
scenes.

Obviously, the method has some limits. Actually, we make strong hypotheses
about the classes which the method works on (for example, the kind and num-
ber of objects). Nowadays it can not still handle the partial matching problem,
for example, if we consider in a scene a chair and a table and in another one
the same chair and table and other 10 objects, the method can not recognize
similar subparts, because it is mainly devoted to give a global answer of the
scene similarity. However, future developments might be able to improve partial
identification. Moreover, we are willing to continue the analysis of the method
with respect to the physical and mutual position of the objects, and, if possi-
ble, to compare simultaneously graphs extracted with different functions and
resolutions, in order to work every time with the most performing descriptor.
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Abstract. Segmentation algorithms based on an energy minimisation framework
often depend on a scale parameter which balances a fit to data and a regularising
term. Irregular pyramids are defined as a stack of graphs successively reduced.
Within this framework, the scale is often defined implicitly as the height in the
pyramid. However, each level of an irregular pyramid can not usually be readily
associated to the global optimum of an energy or a global criterion on the base
level graph. This last drawback is addressed by the scale set framework designed
by Guigues. The methods designed by this author allow to build a hierarchy and to
design cuts within this hierarchy which globally minimise an energy. This paper
studies the influence of the construction scheme of the initial hierarchy on the
resulting optimal cuts. We propose one sequential and one parallel method with
two variations within both. Our sequential methods provide partitions near an
energy lower bound defined in this paper. Parallel methods require less execution
times than the sequential method of Guigues even on sequential machines.

1 Introduction

Despite much e�orts and significant progresses in recent years, image segmentation
remains a notoriously challenging computer vision problem. It’s usually a preliminary
step towards image interpretation and plays a major role in many applications.

The use of an energy minimisation scheme within the region based segmentation
framework allows to define criteria which should be globally optimised over a parti-
tion. Several types of methods such as the Level set [1], the Bayesian [2], the min-
imum description length [3] and the minimal cut [4] frameworks are based on this
approach. Within these frameworks the energy of a partition P is usually defined as
E�(P) � D(P) � �C(P) where D and C denote respectively the fit to data and the
regularising term. The energy E�(P) corresponds to the Lagrangian of the constraint
problem: minimise D(P) subject to C(P) � �. Where � is a function of �. Under large
assumptions, minimising E�(P) is also equivalent to the dual problem: minimise C(P)
subject to D(P) � ��, where �� is also a function of �. Therefore � may be interpreted as
the amount of freedom allowed to minimise D (D(P) � ��) while keeping C as low as
possible. Since �� is a growing function of �, as � is growing, the constraint on D is more

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 126–137, 2007.
c� Springer-Verlag Berlin Heidelberg 2007
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and more relaxed while the importance of the term C is getting more and more impor-
tant. This parameter � may thus be interpreted as a scale parameter which represents
the relative weighting between the two energy terms.

In many approaches the parameter � is fixed experimentally and a minimisation al-
gorithm determines for a value of � a locally optimal partition from the set � of all the
possible partitions on image I. A sequence of � may also be defined a priori in order to
compute the optimal partition on each sampled value of � [5].

The scale set framework proposed by Guigues [5] is based on a di�erent approach.
Instead of performing the minimisation scheme on the whole set � of possible partitions
of an image I, Guigues proposes to restrict the search on a hierarchy H. The advantages
of this approach are twofold: firstly as shown by Guigues the globally optimal partition
on H may be found eÆciently while the search on the whole set � of partitions only
provides local minima. Secondly, Guigues shown that if the energy satisfies some ba-
sic properties, the whole set of solutions on H when � describes �� corresponds to a
sequence of increasing cuts within the hierarchy H hereby providing a contiguous rep-
resentation of the solutions for the parameter �. A method to build the hierarchy H has
been proposed by Guigues. Since the research space used by Guigues is restricted to the
initial hierarchy H the construction scheme of this hierarchy is of crucial importance
for the optimal partitions within H built in the second step.

This paper explores di�erent heuristics to build the initial hierarchy. These heuris-
tics represent di�erent compromises between the energy of the final partitions and the
execution times. We first present in Section 2 the scale set framework. The di�erent
heuristics are then presented in Section 3. These heuristics are evaluated and compared
to the method of Guigues in Section 4.

2 The Scale Set Framework

Given an image I and two partitions P and Q on I, we will say that P is finer than Q
(or Q is coarser then P) i� Q may be deduced from P by merging operations. This re-
lationship is denoted by P�Q. Let us now consider a theoretic segmentation algorithm
P� parametrised by �. We will say that P is an unbiased multi-scale segmentation algo-
rithm i� for any couple (�1� �2) such that �1 � �2, and any image I, P�1 (I)�P�2(I). If P�

is an unbiased multi-scale segmentation algorithm, P�(I) increases according to � and
the set H �

�
���� P�(I) defines a hierarchy as an union of nested partitions. Note that

the set � of partitions on I being finite, H must be also finite.
Unbiased multi-scale segmentation algorithms follow a well known causal principal:

increasing the scale of observation should not create new information. In other words
any phenomenon observed at one scale should be caused by objects defined at finer
scales. In our framework, increasing the scale should not create new contours.

The family of energies considered by Guigues corresponds to the set of AÆne Sep-
arable Energies (ASE) which can be written for any partition P of I in n regions
�R1� � � � �Rn� as:

E(P) � D(P) � �C(P) �
n�

i�1

D(Ri) � �

n�
i�1

C(Ri) �
n�

i�1

D(Ri) � �C(Ri)
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Let us consider a hierarchy H and the sequence (C�
�
(H))���� of optimal cuts within

H. The approach of Guigues is based on the following result: If E�(P) is an ASE and if
C�(P) is decreasing within �:

�(P� Q) � � P�Q � C(P) � C(Q)

then the sequence (C�
�
(H))���� is an unbiased multi-scale segmentation. The union of

all (C�
�
(H))���� defines thus a new hierarchy within H. The tree corresponding to the

hierarchical structure of
�

���� C�
�
(H) may be deduced from H by merging with their

fathers all the nodes which do not belong to any optimal cuts. Note that an equivalent
result may be obtained if no condition is imposed to C but if D is increasing according
to �.

The restriction by Guigues of the research space to a hierarchy may thus be justified
by the fact that the set of partitions produced by any unbiased multi-scale segmentation
algorithm describes a hierarchy. Conversely, given a hierarchy H, if the energy E� is
an ASE with a decreasing term C the sequence of optimal cuts of H according to E�:
(C�

�
(H))���� is an unbiased multi-scale segmentation algorithm.

Given a partition P � �, the decrease of C may be equivalently expressed as a sub-
additivity relationship:

�(R�R�) � P � R is adjacent to R� C(R � R�) � C(R) �C(R�) (1)

Note that the sub-additivity of the regularising term C in common is many applica-
tions. For example, if C is proportional to some quantity summed up along contours, C
is sub-additive due to the removal of the common boundaries between the two merged
regions. Moreover, the term C may be interpreted within the Minimum Description
Length framework [3] as the amount of information required to encode a partition.
Therefore, one can expect C to decrease when the partition gets coarser.

Given a hierarchy H, the sequence of optimal cuts C�
�
(H) within H has to be com-

puted. Let us consider one region R at the second level of the hierarchy (computed from
the base) and its set of sons S 1� � � � � S n. Let us additionally consider the tree H(R) rooted
at R within H (Fig. 1(a)). Since R is a level 2 node, the hierarchy H(R) allows only
two cuts: one encoding the partition P1 made of the sons of R whose energy is equal to
E�(P1) �

�n
i�1 D(S i)��

�n
i�1 C(S i) and one encoding the partition P2 reduced to the sin-

gle region R. The energy of P2 is equal to E�(P2) � D(R)� �C(R). Due to the sub addi-
tivity of C we have

�n
i�1 C(Ri) � C(R). Therefore, using the linear expression of E�(P1)

and E�(P2) in �, if
�n

i�1 D(S i) � D(R) the line E�(P1) �
�n

i�1 D(S i) � �
�n

i�1 C(Ri) is
below the line E�(P2) � D(R) � �C(R) until a value ��(R) of � for which the two lines
cross(Fig. 1(b)). If

�n
i�1 D(S i) 	 D(R), E�(P2) is always greater or equal to E�(P1) in

which case we set ��(R) to 0. Therefore, in both cases the partition P1 is associated to
a lower energy than P2 for � � 0 until � � ��(R). Above this value the partition P2 is
associated to the lowest energy. In terms of optimal cuts, P1 corresponds to the optimal
cut of H(R) until ��(R) and P2 is the optimal cut above this value(Fig. 1(c)). The value
��(R) is called the scale of appearance of the region R.

Guigues shown that the above process may be generalised to the whole tree. Each
node of H is then valuated by a scale of appearance. Some of the nodes of H may
get a greater scale of appearance than their father. Such nodes do not belong to any



Hierarchy Construction Schemes Within the Scale Set Framework 129

S 1. . . S n

�� ��

R

(a) H(R)

�

�

�����

�����
E� (P1)

�n
i�1 D(S i)

D(R)

E� (P2) � D(R) � �C(R)

�
�(R) �

E�

(b) E�(P1), E�(P2)

�

�

���
���

�
� (R)

�

E�
E� (C�

�
)

(c) E�(C�

�
(H(R)))

�

�

��
		









A

E�

�

(d) E�(C�

�
(H))

Fig. 1. (a) a node R of the hierarchy whose sons �S 1� � � � � S n� correspond to initial regions. (b)
the energies of the partitions associated to R and �S 1� � � � � S n� plotted as functions of �. (c) the
energy of the optimal cuts within H(R) (a). (d) an example of concave piecewise linear function
encoding the energy of the optimal cuts within a global hierarchy H.

optimal cut and are removed from H during a cleaning step which merges them with
their fathers. Each node R of the resulting hierarchy belongs to an optimal cut from
� � ��(R) until the scale of appearance of its father ��(
 (R)), where 
 (R) denotes the
father of R in H. The value ��(R) may be set for each node of the tree using a bottom-up
process. The optimal cut C�

�
(H) for a given value of � may then be determined using

a top-down process which selects in each branch of the tree the first node with a scale
of appearance lower than �. The set of selected nodes constitutes a cut of H which
is optimal by construction according to E�. The function E�(C�

�
(H)) corresponds to a

concave piecewise linear function whose each linear interval corresponds to the energy
of an optimal cut within H (Fig. 1(d)).

Given a hierarchy H and the function E�(C�
�
(H)) encoding the energy of the se-

quence of optimal cuts, the optimality of H may be measured as the area under the
curve E�(C�

�
(H)) for a given range of scales or as the area of the surface A (Fig. 1(d))

between E�(C�
�
(H)) and the energy of the coarsest cut E�(Pmax). Where Pmax denote

the partition composed of a single region encoding the whole image. We propose in
Section 4 an alternative measure of the quality of a hierarchy which allows to reduce
the influence of the initial image.

Guigues proposed to build a hierarchy H by using an initial partition P0 and a strat-
egy called the scale climbing. This strategy merges at each step the two adjacent regions
R and R� such that:

��(R � R�) �
D(R � R�) � D(R) � D(R�)
C(R) �C(R�) �C(R � R�)

� min
(R1�R2)�P2 �R1�R2

D(R1 � R2) � D(R1) � D(R2)
C(R1) �C(R2) �C(R1 � R2)

(2)
where P denotes the current partition and R1 � R2 indicates that R1 and R2 are adjacent
in P.

This process merges thus at each step the two regions whose union would appear
at the lowest scale. Such a construction scheme is coherent with the further processes
applied on the hierarchy. However, there is no evidence that the resulting hierarchy
may be optimal according to any of the previously mentioned criteria. We indeed show
in the next section that other construction schemes of a hierarchy may lead to lower
energies.
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3 Construction of the Initial Hierarchy

Many energies have been designed in order to encode di�erent types of homogeneity
criteria (piecewise constant [3,6], linear or Polynomial [3] variations,. . . ). This paper
being devoted to the construction schemes of the hierarchy, we restrict our topic to the
piecewise constant model described by Leclerc [3] and Mumford and Shah [6]. The
energy of this model may be written as:

E�(P) � D(P) � �C(P) �
n�

i�1

SE(Ri) � ��Æ(Ri)� (3)

where P � �R1� � � � �Rn� represents the partition of the image, SE(Ri) �
�

p�R cp � �R
2

is the squared error of region Ri and �Æ(Ri)� is the total length of its boundaries.
Within the Minimum Description Length framework, S E(Ri) may be understood

as the amount of information required to encode the deviation of the data against the
model, while �Æ(Ri)� is proportional to the amount of information required to encode
the shape of the model. Within the statistical framework, the squared error may also
be understood as the log of the probability that the region satisfies the model (i.e. is
constant) using a Gaussian assumption while �Æ(Ri)� is a regularising term.

Our approach follows the scale climbing strategy proposed by Guigues (equation 2).
Given a set W of regions within a partition P we thus consider the scale of appearance
of the region R defined as the union of the regions in W. The heuristics below use this
basic approach but di�er on the sets W which are considered and on the ordering of the
merge operations.

3.1 Sequential Merging

Given a current partition P, let us consider for each region R of P, its set V(R) defined
as �R� union its set of neighbours and the set ��(V(R)) of all possible subsets of V(R)
including R. Each subset W � ��(V(R)) encodes a possible merging of the region R
with at least one of its neighbour. Let us denote by RW

�
�

R��W R� the region formed
by the union of the regions in W. Note that the region RW is connected since R belongs
to W and all the regions of W are adjacent to R. Let us additionally consider the two
partitions of RW : PRW � �RW � and PW � W. The energies associated to these partitions
are respectively equal to E�(PRW ) � D(RW) � �C(RW ) and:

E�(PW) � D(W) � �C(W) �
�
R��W

D(R�) � �
�
R��W

C(R�)

where D(W) and C(W) denote respectively the fit to data and the regularising terms of
the partition PW .

Since C is sub additive (equation 1) we have C(W) � C(RW ). The energy E�(PW) is
thus lower than E�(PRW ) until a value ��(RW) called the scale of appearance of RW (Sec-
tion 2). Using the scale climbing principle, our sequential merging algorithm computes
for each region R of the partition the minimal scale of appearance of a region RW :

��min(R) � arg minW���(V(R))
D(RW) � D(W)
C(W) �C(RW)

the set W � ��(V(R)) which realises the min is denoted Wmin(R).
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Given the quantities ��min(R) and Wmin(R), our sequential algorithm iterates the fol-
lowing steps:

1. Let P denotes the current partition initialised with an initial partition P0,
2. For each region R of P compute ��min(R) and Wmin(R)
3. Compute Rmin � arg minR�P�

�

min(R) and merge all the regions of Wmin(Rmin).
4. If more than one region remains go to step 2,
5. Output the final hierarchy H encoding the sequence of merge operations.

This algorithm performs thus one merge operation at each step of the algorithm.
Note that all the regions of Wmin(Rmin) are adjacent to Rmin. Therefore, within the irreg-
ular pyramid framework, the merge operation may be encoded by a contraction kernel
of depth one composed of a single tree whose root is equal to Rmin. The computation of
��min(R) for each region R of the partition requires to traverse ��(V(R)) whose cardinal
is equal to 2�V(R)��1. Therefore, if the partition is encoded by a graph G � (V� E), the
complexity of each step of our algorithm is bounded by �(�V �2k) where �V � denotes the
number of vertices (i.e. the number of regions) and k represents the maximal vertices’s
degree of G. The cardinal of V is decreased by �Wmin(Rmin)� � 1 at each iteration. Since
�Wmin(Rmin)� is at least equal to 2, the cardinal of V decreases by at least 1. The com-
putation of ��min(R) for each region R of the partition may induce important execution
times when the degree of the vertices of the graph is important. However, experiments
presented in Section 4 show that the cardinal of the subsets W � ��(R) may be bounded
without altering significantly the energy of the optimal cuts. Let us finally note that this
algorithm includes the scale climbing approach proposed by Guigues. Indeed, the merge
operations studied by Guigues (Section 2) correspond to the subsets W � ��(V(R)) with
�W � � 2 which are considered by our algorithm.

3.2 Parallel Merge Algorithm

Our parallel merge algorithm is based on the notion of maximal matching. A set of
edges M of a graph G � (V� E) is called a maximal matching if each vertex of G is inci-
dent to at most one edge of M and if M is maximal according to this property. Moreover,
we would like to design a maximal matching M such that the scale of appearance of the
regions produced by the contraction of M is as low as possible. Let us denote by 	(e),
the two vertices incident to e. Using the same approach as in Section 3.1 we associate to
each edge e of the graph the scale of appearance ��(	(e)) (equation 2) of the region R�(e)

defined as the union of the regions encoded by the two vertices incident to e. Following,
the same approach as Haxhimusa [7] we define our maximal matching as a Maximal
Independent Set on the set of edges of the graph. The iterative process which builds
the maximal independent set selects at each step edges whose scale of appearance is
locally minimal. This process may be formulated thanks to two boolean variables p and
q attached to each edge such that:

�
p1

e ���(e)�mine���(e)��
�(e�)�

q1
e �

�
e���(e) p1

e�

and

������	
pk�1

e � pk
e �



qk

e � ��(e)�mine���(e) � qk
e�
���(e�)�

�
qk�1

e �
�

e���(e) pk�1
e�

(4)
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where 
(e) denotes the neighbourhood of the edge e and is defined as 
(e) � �e� � �e� �
E�	(e) � 	(e�) � ��.

This iterative process stops when no change occurs between two iterations. If n de-
notes the final iteration, the set of edges such that pn

e is true defines a maximal match-
ing [7] M which encodes the set of edges to be contracted. Moreover, the set of selected
edges corresponds to local minima according to the scale of appearance ��(e). Roughly
speaking if ��(e) is understood as a merge score, one edge between two vertices will be
marked (pk

e � true) at iteration k, if among all the remaining possible merge operations
involving these two vertices, the one involving them is the one with the best merge
score. Note that the construction of a maximal matching is only the first step of the
method of Haxhimusa which completes this maximal matching in order to get a deci-
mation ratio of order 2. The restriction of our method to a maximal matching allows to
restrict the merge operations to edges which become locally optimal at a given iteration.
We thus favour the energy criterion against the reduction factor. As shown by Bield [8],
the reduction factor in terms of edges induced by the use of a maximal matching is a
least equal to 2 k�1

2k�1 where k is the maximal vertex’s degree of the graph. The edge’s
decimation ratio may thus be very low for graphs with important vertices’s degrees.
Nevertheless, experiments performed on 100 natural images of the Berkeley database1

shown that the mean vertex’s decimation ratio between levels on this database is equal
to 1�73 which is comparable to the 2�0 decimation ratio obtained by Haxhimusa.

The local minima selected in equation 4 are computed on decreasing sets along the
iterations in order to complete the maximal matching. We can thus consider that the de-
tected minima are less and less significants as the iterations progress. We thus propose
an alternative solution which consists in contracting at each step only the edges selected
at the first iteration (p1

e � true). These edges correspond to minima computed on the
whole neighbourhood of each edge. This method may be understood as a combination
of the method proposed by Haxhimusa [7] and the stochastic decimation process of Jo-
lion [9] which consists in merging immediately vertices corresponding to local minima.

4 Experiments

The di�erent heuristics presented in this paper have been evaluated on the Berkeley
database. The evaluated heuristics include our parallel merge heuristic based on a max-
imal matching (MM) and the variation of this method(MM1) which merges at each step
the edges selected during the first iteration (Section 3.2). We also evaluated our sequen-
tial method (SM) and two variations of this method: the first variation (S M2), considers
for each region R of the partition the subsets of cardinal 2 of V(R). This method corre-
sponds to the heuristic proposed by Guigues. We also evaluated an intermediate method
(S M5) which restricts the cardinal of the subsets of V(R) including R to an upper thresh-
old fixed to five in these experiments. All the experiments have used an initial partition
obtained by a Watershed algorithm [10].

Fig. 2 shows 5 optimal cuts obtained for increasing values of � on the Mushroom
and Fisherman images of the Berkeley database2. The heuristics used to build the

1 Available at http:��www.eecs.berkeley.edu�Research�Projects�CS�vision�bsds�
2 Color plates are available at the following url: http:��www.greyc.ensicaen.fr��jhpruvot�Cut�
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MM

MM1

S M2

SM

S M5

� � 0�2 � � 0�4 � � 0�6 � � 0�8 � � 0�2 � � 0�4 � � 0�6 � � 0�8

Fig. 2. Partitions of the mushroom and the fisherman images at di�erent scales. Each line of the
array corresponds to an heuristic whose acronym is indicated on the first column.

hierarchies are displayed on the first column of Fig. 2. The original images are dis-
played in Fig. 4(a).

Fig. 3(a) shows the influence of the number of initial regions on the execution time.
These curves have been obtained on the Mushroom image with di�erent initial parti-
tions obtained by varying the smoothing parameter of the gradient within our Watershed
algorithm.

Fig. 3(b) allows to compare the performance of each heuristic on the whole Berke-
ley database. However, a direct comparison of the energies obtained by the di�erent
heuristics on di�erent images would be meaningless since the shape of the function
E�(C�

�
(H)) depends both of the intrinsic performances of the heuristic used to build H

and of the image I on which H has been built. We have thus to normalise the energies
E�(C�

�
(H)) produced by the di�erent heuristics before any comparison.

Given a hierarchy H, since C�
�
(H) is an unbiased multi-scale segmentation (Sec-

tion 2), the hierarchy H obtained by each of our methods may be associated to a value
�H

max above which the optimal partition Pmax is reduced to a single region encoding the
whole image. The energy of Pmax is defined as: E�(Pmax) � DI ��CI where DI � SE(I)
denotes the global image’s squared error and CI � �Æ(I)� the perimeter of the image.
Since the energy of the optimal cuts E�(C�

�
(H)) of a hierarchy H is a piecewise linear
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(a) Execution time (b) E�(C�

�
(H))

�

�

�
�

		



�max

E�max (Pmax )

E� (Pmax )

E0 (P0)

E� (C�(H))

�

(c) Energy’s Bounds

Fig. 3. (a) execution times of the di�erent heuristics on the Mushroom image (Fig. 2) using an
initial partition with a varying number of regions. (b) mean energies of optimal cuts obtained by
our heuristics on the Berkeley database. (c) bounds of the optimal cut’s energies.

concave function of �, the function E�(C�
�
(H)) is below the energy E�(Pmax) associated

to the coarser partition(Fig. 3(c)). Moreover, if P0 denotes the initial partition, the two
points (0� E0(P0)) and (�max� E�max(Pmax)) belong to the curve. Therefore, E�(C�

�
(H))

being concave, it should be above the line connecting these two points. Finally, the
line connecting (0� 0) to (�max� E�max(Pmax)) being below the line joining (0� E0(P0)) and
(�max� E�max(Pmax)) we have for any hierarchy H and any scale � (Fig. 3(c)):

�

�max
E�max(Pmax) � E�(C�

�(H)) � E�(Pmax)

We obtain from this last inequality and after some calculus the following equation:

�� � �� x� � 1�
x� � 1

1 � x�EI
�

E�(C�
�
(H))

E�(Pmax)
� 1 with x� �

�

�max
and EI �

�maxCI

DI
(5)

Therefore, using the normalised energy,
E�(C�

�
(H))

E� (Pmax) and the normalised scale x� �
�

�max
,

any curve
E�(C�

�
(H))

E� (Pmax) lies in the upper left part of the unit cube [0� 1]2. Note that this result
is valid for any hierarchy H and thus any heuristic.

Using our piecewise constant model (equation 3), the energy E�(Pmax) is roughly
equal to the squared error of the image for small values of � and may be interpreted
as the global variation of the image. The normalised energy allows thus to reduce the
influence of the global variation of the images on the energy and to compare energies
computed with a same heuristic but on di�erent images. Note however, that the use of
the normalised scale x� �

�

�max
discards the absolute value of �max. We thus do not take

into account the range of scales for which the optimal cut is not reduced to the trivial
partition Pmax. However, the absolute value of �max varies according to each image and
each heuristics. The normalised scale allows thus to remove the influence of the image.
Moreover, our experiments shown thus that for each image, our di�erent heuristics
obtain close �max values.

Fig. 3(b) represents for each value of x� and each heuristic, the mean value of the nor-
malised energy

E� (C�

�
(H))

E�(Pmax) computed on the whole set of images of the Berckley database.

As shown in Fig 3(b) the energy of the optimal cuts obtained by the heuristic MM1

(���) is lower than the one obtained by the maximal matching heuristic (� � �). This
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(a) Original Images (b) D(R) � SE(R) (c) D(R) � S E(R)(1 �

f ( Int(R)
Ext(R) )

Fig. 4. (a) Original images. (b) and (c), partitions of the tower image built with a same heuris-
tic(SM) at a same normalised scale (x� � �8) but with energies defined using two di�erent fit to
data terms. (b) is defined using the squared error D(R) � S E(R) while (c) is defined using the
formula defined by equation 6.

result is confirmed by Fig. 2 (lines MM and MM1) where the heuristic MM removes
more details of the mushroom at a given scale. This result is connected to the greater
decimation ratio of the MM heuristic. The MM heuristic merges at each step regions
with important scale of appearance without considering regions which may appear at
further steps. The algorithms MM and MM1 induce equivalent execution times on a
sequential machine. The execution times of the method MM1 (���) are overlayed by
the ones of the method MM (� � �) in Fig. 3(a) due to the vertical scale of this figure.

The subjective quality of the partitions obtained by the heuristics MM1 and S M2

(Fig. 2) seems roughly similar. We can notice that the heuristic MM1 seems to produce
slightly coarser partitions at each scale. However, considering Fig. 3(b), the optimal
energy obtained by the heuristic S M2 (���) are lower than the one obtained by MM1

(���). Note that the heuristic MM1 produces lower execution times than S M2 even on
a sequential machine(Fig. 3(a)).

As shown by Fig. 3(b) the optimal energies produced by the heuristic S M (� � �)
are always below the one produced by the heuristic S M2 (���). Note that, the curve
(� � �) is close to the diagonal of the square [0� 1]2. This last point indicates that on
most of the images of the Berkeley database the hierarchies produced by the S M heuris-
tic provide optimal cuts whose normalised energy is closed from the lower bound of the
optimal cut’s energies (equation 5). This result is confirmed by Fig. 2 where the heuris-
tic S M preserves more details of the image at each scale. However, the heuristic S M
is the one which requires the more important execution times on a sequential machine
(Fig. 3(a)).

The heuristic S M5 may be understood as a compromise between S M2 and S M. As
shown by Fig. 3(b) the optimal energies obtained by the heuristic S M5 ( ) are close to
the one obtain by S M(� � �) and below the one obtained by S M2(���). Moreover, as
shown by Fig. 3(a), the execution times required by S M5 are between the one required
by the heuristics S M2 and S M. Finally, the partitions obtained by the S M5 heuristic in
Fig. 2 are closed from the one obtained by the heuristic S M.

Fig. 4 shows results obtained using an other fit to data criterion based on the intu-
itive notion of contrast. The basic idea of this criterion [11] states that a region should
have a higher contrast with its neighbours (called external contrast) than within its even-
tual subparts (called internal contrast). Let us denote by Ge the mean gradient computed
along the contour associated to an edge e. The internal and external contrasts of a region
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R are then respectively defined as Int(R) � maxe�CC(R)Ge and Ext(R) � mine�E�v��(e)Ge.
Where CC(R) denotes the set of edges which have been contracted to define R and
e � E�v � 	(e) denotes the set of edges incident to v. Our new energy combines the con-
trast and the squared error criteria as follows:

E�(P) �
n�

i�1

S E(Ri)

�
1 � f

�
Int(Ri)
Ext(Ri)


� ��Æ(Ri)� (6)

where f () denotes a sigmoid function.
A contrasted region will thus have a low ratio between its internal and external con-

trast. Conversely, a poorly contrasted region may have a fit to data term close to twice
its squared error. As shown by Fig. 3(b) and (c) this energy favours highly contrasted
regions. For example, the cloud merged with the sky in Fig. 3(b) remains in Fig. 3(c).
Moreover, experiments not reported here, shown us that the same type of discussion
about the advantages and drawbacks of the di�erent heuristics may be conducted on
this new energy with the same conclusions.

5 Conclusion

The Scale Set framework is based on two steps: the determination of a hierarchy accord-
ing to an energy criterion and the determination of optimal cuts within this hierarchy.
We have presented in this article parallel and sequential heuristics to build such hierar-
chies. The normalised energy of the optimal cuts, associated with these hierarchy are
bounded bellow by the diagonal of the unit square [0� 1]2. Our experimental results sug-
gest that our sequential heuristic S M provides hierarchies whose normalised energies
are closed from this lower bound. This methods may however require important exe-
cution times. We thus propose an alternative heuristic providing lower execution time
at the price of generally slightly higher optimal cut’s energies. Our parallel methods
provide greater energies than the one produced by Guigues’s heuristic. However, these
methods require less execution times even on sequential machine.

Hierarchies encoding a sequence of optimal cuts are usually composed of a lower
number of levels and regions than the initial hierarchies built by our merge heuristics.
In the future, we would like to use these hierarchies of optimal cuts in order to match
two hierarchies encoding the content of two images sharing a significant part of a same
scene.
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Abstract. Spatial relations play a crucial role in model-based image
recognition and interpretation due to their stability compared to many
other image appearance characteristics. Graphs are well adapted to rep-
resent such information. Sequential methods for knowledge-based recog-
nition of structures require to define in which order the structures have
to be recognized. We propose to address this problem of order definition
by developing algorithms that automatically deduce sequential segmen-
tation paths from fuzzy spatial attribute graphs. As an illustration, these
algorithms are applied on brain image understanding.

1 Introduction

Knowledge on the spatial organization of a scene carries important informa-
tion for analyzing and interpreting images of this scene. Spatial relations play a
crucial role in this context, since they are less prone to variability than object
appearance or shape. Using this knowledge, often represented in symbolic forms,
in high reasoning processes requires to link semantic knowledge with low level
information extracted from images. Graph representations are well adapted to
solve this semantic gap problem.

In [1], spatial relations and graph-based representations have been used for
recognizing structures in a progressive way: the recognition of a structure is
driven by its relations to previously recognized structures; these relations are
encoded in a graph representing generic knowledge. This allows recognizing “dif-
ficult” structures at later stages, once more information has been accumulated.
In this work, the order in which structures are recognized is defined in a super-
vised way. Figure 1 shows some segmentation results obtained with a manually
defined order.

In this paper, we propose to automate this step, and to infer automatically
segmentation paths using reasoning algorithms in the graph. The idea is to start
� This work has been partially funded by GET and ANR grants during J. Atif’s post-
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(a) (b) (c)

Fig. 1. (a) Slice of a 3D brain magnetic resonance image (MRI). Marked structures
are: LVl lateral ventricle, CDl caudate nucleus, THl Thalamus and PUl Putamen. (b,
c) Segmentation results from [1].

from a structure, represented as a node in the graph, which is known for being
easy to segment and recognize in the images, and to automatically deduce an
ordered sequence of structures to be recognized.

A typical application is brain image interpretation, where the domain knowl-
edge involves intensively spatial relations, as acknowledged by neuro-anatomy
textbooks [2]. These relations are relatively stable, and exhibit less inter-indivi-
dual variability than characteristics of the anatomical structures. Graph repre-
sentations have been used in particular to drive specific recognition procedures
(see e.g. [1,3,4] among others). However, in pathological cases, generic knowledge
is not always valid and information about the pathology has to be used in order
to adapt the reasoning process.

The structure of this paper is as follows. We first describe in Section 2 the
graph model, specifically for representing anatomical brain knowledge, along
with the fuzzy attributes of edges representing spatial relations. Our contribu-
tion on graph-based reasoning is presented in Section 3 for the healthy case.
Preliminary results are discussed in Section 4. Some hints towards adaptation of
the proposed approach to pathological cases are provided in Section 5.

2 Graph Model

In this paper, we follow the same approach as in [1], and we propose an original
method to determine automatically the order in which structures should be
segmented, using the spatial relations represented as edge attributes of a graph
(nodes represent individual objects, such as anatomical structures in the brain
example). Note that this way of using the graph is very different from classical
graph matching approaches, widely developed for structural recognition. Let us
now summarize the adopted formalism for representing spatial relations.

Fuzzy representations are appropriate to model the intrinsic imprecision of
several relations (such as “close to”, “behind”, etc.), the potential variability
(even if it is reduced in normal cases) and the necessary flexibility for spatial
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reasoning [5]. Two kinds of questions are raised when coping with spatial rela-
tions: (i) given two objects (possibly fuzzy), determine the degree of satisfaction
of a relation; (ii) given one reference object, define the region of space in which
a relation to this reference is satisfied (to some degree). In this paper, we deal
mainly with the second question.

Therefore we rely on spatial representations of the spatial relations: a fuzzy
set in the spatial domain S defines a region in which a relation to a given object
is satisfied. The membership degree of each point to this fuzzy set corresponds
to the satisfaction degree of the relation at this point [5]. Figure 2 depicts an
example.

We now describe the modeling of the main relations that we use: adjacency,
distances and directional relative positions.

A distance relation can be defined as a fuzzy interval f of trapezoidal shape
on R

+, as illustrated in Figure 2. A fuzzy subset μd of the image space S can then
be derived by combining f with a distance map dA to the reference object A:
∀x ∈ S, μd(x) = f(dA(x)), where dA(x) = infy∈A d(x, y).

a) b) c) d)

Fig. 2. (a) 2D view of a 3D binary lateral ventricle. (b) Fuzzy spatial representation
of “Right of the lateral ventricle”. (c) Fuzzy subset corresponding to “Near the lateral
ventricle”. (d) Trapezoidal fuzzy interval.

Directional relations are represented using the “fuzzy landscape approach”
[6]. A morphological dilation δνα by a fuzzy structuring element να representing
the semantics of the relation “in direction α” is applied to the reference object
A: μα = δνα(A), where να is defined, for x in S given in polar coordinates (ρ, θ),
as: να(x) = g(|θ − α|), where g is a decreasing function from [0, π] to [0, 1], and
|θ − α| is defined modulo π. This definition extends to 3D by using two angles
to define a direction. The example in Figure 2 has been obtained using this
definition.

Adjacency is a relation that is highly sensitive to the segmentation of the
objects and whether it is satisfied or not may depend on one point only. Therefore
we choose a more flexible definition of adjacency, interpreted as “very close to”.
It can then be defined as a function of the distance between two sets, leading to a
degree of adjacency instead of a Boolean value: μadj(A, B) = h(d(A, B)) where
d(A, B) denotes the minimal distance between points of A and B: d(A, B) =
infx∈A,y∈B d(x, y), and h is a decreasing function of d, from R+ into [0, 1]. We
assume that A ∩B = ∅.
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3 Graph-Based Reasoning in Normal Cases

In this section, we deal with normal cases. The aim of the reasoning in the graph
is to select the “best” path between a reference structure and a target structure to
be segmented and recognized in an image, by exploiting the information encoded
in the graph. Note that the number of simple paths (without loops) between two
structures is finite. Path extraction is known as an intractable task but we limit
our experiments to small graphs. Extensions to larger graphs require to address
this issue.

The reference structure, in the case of MRI images of the brain, can typically
be the lateral ventricles, which are easy to segment in such images. The notion of
“best” path refers to the constraints of the segmentation process: it should allow
segmenting a structure in the path based on relations to previous structures in
the path, as done in [1] (based on manually defined paths). We propose two
methods:

– the first one is based on the evaluation of the relevance of each spatial relation
between two structures independently, and on the optimization of the path
according to a criterion involving this relevance measure;

– in the second one, we estimate each path globally and select the best one
according to another criterion.

3.1 Evaluating Edge Relevance

In this part, we present a criterion of relevance as well as two different methods
for path selection.

In the following, G = (V, E) is an attributed relational graph, with V the set
of nodes and E the set of edges. An edge interpretor associates to each edge e
a fuzzy set μRel, defined in the spatial domain, representing the spatial relation
carried by this edge to a reference structure as defined in [6]. Similarly a fuzzy
set μObj is attached to each node.

Relevance Criterion. The relevance of a spatial relation should represent the
adequation between μRel and μObj , i.e. the degree to which the target object
fits in the region where the relation to the reference object is satisfied. The com-
parison measures and their classification according to [7] provide an appropriate
formal framework for this purpose.

For both the reference structure, used to compute μRel, and the target object,
used for μObj , we need an a priori knowledge from an anatomical atlas or from
a set of pre-segmented images.

M-measure of satisfiability: We use a M-measure of satisfiability [7] de-
fined as:

f(Rel, Obj) =
∑

x∈S min(μRel(x), μObj(x))
∑

x∈S μObj(x)
. (1)

where S denotes the spatial domain. It measures the precision of the position
of the object in the region where the relation is satisfied and is maximal if the
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whole object is included in the kernel of μRel. But the size of the region where
the relation is satisfied is not restricted and could be the whole image space.
Note that if the object is crisp, this measure reduces to

∑
x∈Obj μRel(x)

∑
x∈S μObj (x) .

Path Selection. Once every edge has been valued with the proposed relevance
measure, path selection is achieved with classical algorithms, such as shortest
path or maximal flow. Nevertheless, these algorithms have to be adapted to our
purpose.

Shortest path: The shortest path algorithm leads to a global optimization, but
does not account for potential disparities between edges. A globally satisfactory
path can include an edge with a low relevance value. Moreover, this algorithm
favors paths with a reduced number of nodes, hence leading to less segmented
structures. The adaptation we propose consists in normalizing the cost of each
path by its length (in terms of number of nodes).

Let F denote the set of the fuzzy sets over the spatial domain. Let f : F×F →
IR be a real valued cost function, here a satisfiability measure. The shortest path
between two nodes v and v′ is the path p̂ solution of:

min
p∈P

(

∑
e∈p(1− f(μRel, μObj))

card(p)
) (2)

where e is an edge in the path p, P is the set of paths from v to v′, μObj is the
target node of edge e, μRel is the fuzzy set derived from e and card(p) is the
number of edges in p.

Maximal flow: We adapt the classical maximal flow notion [8] in order to take
the weakest edges into account without penalizing the most informative paths.
This is expressed as the maximization of the minimal value along the path:

max
p∈P

(min
e∈p

(f(μRel, μObj))) (3)

where f is again a satisfiability measure. This formulation allows avoiding paths
including relations which are not well satisfied.

3.2 Globally Evaluating Path Relevance

Instead of evaluating the relevance for each edge, we propose in a second method
to evaluate the relevance of a whole path by merging spatial knowledge along
this path.

Merging Spatial Knowledge. In this approach, we combine information along
the path with prior knowledge derived from an anatomical atlas, as illustrated
in Figure 3. For each structure in the atlas and each spatial relation encoded in
the graph we compute the fuzzy set representing the region where the relation to
this structure is satisfied, as previously. Note that it is relevant to merge different
relations (distance and direction for example) since all relations use the same



Local Reasoning in Fuzzy Attribute Graphs 143

Fig. 3. Merging spatial relations. For each relation carried by an edge on a path, we
compute its representation, using a priori knowledge for the structure. Representations
of all relations along the path are then merged with a t-norm (here a minimum).

representation framework i.e. fuzzy sets in the spatial domain. The fuzzy sets
obtained for all pairs structure/relation along the path p are combined using a
t-norm (a conjonctive fusion operator):

μp = t[μRelpi
, i = 1...Np] (4)

where t is a t-norm and p a path composed of Np relations. In our experiments,
we use the minimum t-norm.

Path Evaluation Using Entropy. In this approach, the path selection method
we propose relies on a a fuzziness measure, in order to choose the “less fuzzy”
path. As a fuzziness measure, we choose the fuzzy entropy measure [9]:

H(μp) = −K(
∑

xi∈S
μp(xi) log μp(xi) +

∑

xi∈S
(1− μp(xi)) log(1 − μp(xi))) (5)

where μp is the fuzzy set resulting from the combination of all relations along p
and k is a normalizing constant.

The best path p̂ is then the path which achieves the minimum of fuzzy entropy:

p̂ = arg min
p∈P

(H(μp)). (6)

Note that this measure is meaningful for representations of relations that are
more fuzzy if they are less focused. It is actually the case with our model of
relations. For instance, it would be useless to apply this criterion on large crisp
regions which would lead to a zero entropy value even if these regions are very
extended and of limited help to constrain the segmentation.

4 Results and Discussion

Experiments have been carried out on a small graph presented in Figure 4 con-
taining four cerebral structures: the lateral ventricle (taken as the reference struc-
ture), the caudate nucleus, the thalamus and the putamen (the target structure
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Fig. 4. Small graph used in the experiments

in our experiments). All these structures exist in both brain hemispheres, but
only the left side is considered in the reported experiments. Note that the ex-
traction of the structures is supposed to exhibit the same difficulty level.

The edges encode only information about directional relative position in these
preliminary experiments. Extending our approach to other binary spatial rela-
tions can be achieved in a straightforward manner.

4.1 Edge Valuation

Measures of satisfiability obtained for each edge are presented in Figure 5. The
best path according to the satisfiability criterion with normalized shortest path
and flow measure is: LVl “left of” CDl “behind” THl “left of” PUl. This path is
exactly the one that was previously defined by hand in [1] and that led to the
results shown in Figure 1.

Another path with the highest score is: LVl “down of” THl “left of” PUl. This
path is less intuitive since it involves a few number of structures. For practical
purposes, if several paths exhibit the same global score, the longest path (in
terms of number of nodes) is retained.

(a)

edge Satisf.
Lat. ventricle “Down of” thalamus 0.97
Lat. ventricle “Left of” cau. nucleus 0.97
Cau. nucleus “Behind of” thalamus 0.97
Thalamus “In front of” cau. nucleus 0.96
Thalamus “Left of” putamen 0.92
Cau. nucleus “Left of” putamen 0.89
Cau. nucleus “Down of” thalamus 0.82
Thalamus “Up Of” cau. nucleus 0.64

(b)

Fig. 5. (a) Edges valuation with a measure of satisfiability. (b) Edge ranking according
to this measure.
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4.2 Merging of Spatial Relations

The best path according to the entropy criterion is: LVl “down of” THl “up of”
CDl “left of” PUl. Figure 6 shows a view of the resulting representation of this
path. This path contains several changes in direction which explain the strongly
focused resulting fuzzy region. More generally, paths with several changes in
direction get low entropy while simpler paths get high entropy.

Fig. 6. 2D slice of 3D representation for path LVl “down of” THl “up of” CDl “left
of” PUl after merging all spatial relations

5 Graph-Based Reasoning in Pathological Cases

The approaches introduced in Section 3 are not directly applicable in the case
of the presence of a pathology and require some adaptation. For instance, the
presence of a tumor may induce an important alteration of the appearance and
morphometric characteristics of the structure. Although spatial relations are
more stable, still modifications of the structural information may occur. Figure
7 presents an example of a pathology in a MRI brain image, illustrating the
impact of the tumor on the surrounding structures.

It has been shown in [10] that some spatial relations are more stable than
others. A pathology-dependent paradigm has been introduced to adapt a generic
reasoning process to specific cases by addressing the fundamental question: given
a pathology, which spatial relations do remain stable and to which extent? For
this purpose, we designed a computational framework for learning spatial relation
stability from a database constituted of healthy and pathological cases, where
the main anatomical structures were manually segmented. The degree of stability
is inferred from the comparison (using a M-measure of resemblance) between the
learned spatial relations for pathological cases and for healthy ones.

In this work we exploit the degree of stability concept to adapt the reasoning
approaches designed for healthy cases to pathological ones. This can be achieved
in several ways.

The initial graph is filtered so that the spatial relations with a low degree of
stability are removed. Then the proposed methods are applied on the filtered
graph instead of the initial one. This approach is very severe and does not leave
significant place to flexibility, an important property in reasoning and decision
making paradigms.

In the second method, the degree of stability is taken into account as an edge
attribute and is considered in the cost calculation of the proposed approaches.
This approach is a direct extension of the methods proposed for healthy case, and
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(a) (b) (c)

Fig. 7. (a) Axial view of MRI with a tumor close to the lateral ventricle and grey
nuclei. (b) Degree of stability learned with a class of similar tumor (in blue). Resulting
weighted satisfiability measures (in red). With the sortest path method, the selected
path becomes Ventricle “Down Of” thalamus “Left Of” Putamen. (c) Segmentation of
the putamen. The tumor is first extract then the thalamus and finally the putamen.

its implementation is straightforward. The integration of the degree of stability
must be achieved in a way so that the paths involving pathological or altered
structures are penalized. For instance, when using the shortest path method, a
weight proportional to the degree of stability is assigned to f(μRel, μObj). Figure
7 b) presents the degree of satisfiabity (in blue) learned for each edge in the case
of the tumor like the one presented in Figure 7 a) and the weighted measures
in red. In this case, the selected path becomes ventricle “Down Of” thalamus
“Left Of” Putamen. Figure 7 c) presents a segmentation of the putamen with
the same order.

In the global approach, the influence of a relation is decreased by extending
its spatial extension (for instance using a fuzzy dilation), so as to increase the
resulting degree of fuzziness, and thus unfavoring paths including this relation.

This last idea, of extending the fuzzy representation, is the basis of the third
method we propose. Since the fuzzy representation of spatial relations presents
the advantage of being flexible in the way they can be constructed, this construc-
tion could be correlated to the degree of stability. For instance, the definition of
“near the lateral ventricles”, as explained in Section 2, is modified by extend-
ing the fuzzy interval according to the degree of stability (the less the stability,
the more the extension and the more fuzzy). This induces both a lower resem-
blance and more fuzziness, hence decreasing the relevance of paths including this
relation in both approaches.

These approaches are currently being tested on different pathological cases.

6 Conclusion

The main contribution of this paper is to show that the order of structures in a
sequential segmentation process can be deduced automatically using graph-based
reasoning. We proposed relevance measures of segmentation paths based on fuzzy
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representations of spatial relations. As an illustration, we applied our method on
a small graph representing brain structures. The results are promising since the
best path actually allows driving the recognition and segmentation procedure in
3D MRI brain images.

Extensions to the pathological cases are proposed, based on the impact of
the pathology on the spatial relations. This part will be further investigated in
future work. Applications on larger graphs will also be carried out, which may
require to address potential combinatory optimization issues.
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Abstract. This paper presents a new technique based on perceptual
information for the robust segmentation of noisy 3D scenes acquired by
stereo vision. A low-pass geometric filter is first applied to the given
cloud of 3D points to remove noise. The tensor voting algorithm is then
applied in order to extract perceptual geometric information. Finally, a
graph-based segmenter is utilized for extracting the different geometric
structures present in the scene through a region-growing procedure that
is applied hierarchically. The proposed algorithm is evaluated on real 3D
scenes acquired with a trinocular camera.

1 Introduction

Segmentation is one of the most important stages in computer vision as a prelim-
inary step towards further analysis and recognition stages. Its goal is to partition
a given image into a set of non-overlapping homogeneous regions that likely cor-
respond to the different objects or geometric structures that may be perceived in
the scene. When segmentation is applied to 3D images acquired through stereo
vision, an additional problem that appears is the high presence of noise.

Although different approaches have been proposed (e.g. [3] reviews seventeen
methods), robust segmentation of noisy scenes is still a challenging problem.
In this scope, Medioni et al. proposed the tensor voting framework [6] as an
adequate scheme for extracting perceptual information from noisy 3D images.
Their approach recovers the shape of surfaces, edges and junctions present in a
given 3D image through tensors and a variant of the marching cubes algorithm
[5]. That approach has proven robust even for 3D images constituted by strongly
noisy clouds of points.
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The proposed algorithm applies the tensor voting but uses a fast graph-based
segmenter instead of the marching cubes algorithm, so in that way, the new
technique can be useful when it is preferred fast execution over getting shape
information of surfaces. Additionally, the proposed technique generates multires-
olution segmentations. This feature can be interesting when a different degree
of detail in the segmentation is necessary at different areas of the space.

The proposed segmenter is introduced in the next section. Experimental re-
sults are described and discussed in section 3. Finally, conclusions and further
research lines are given in section 4.

2 3D Image Segmentation

Several technologies can be applied to capture 3D images. One of them is based
on the use of stereo cameras, which have numerous advantages over other range
systems, such as affordable price, speed of acquisition or simplicity of usage in
various applications, both outdoor and indoor. However, there are some prob-
lems with this technology that must be taken into account: (a) the accuracy of
the range estimation depends on the distance from the camera: points too close
or too far lead to wrong estimations, (b) the accuracy of the range estimation
decreases with non-textured surfaces, (c) 3D images have often “holes” in re-
gions where range cannot be estimated, (d) the obtained data are quite noisy,
(e) quality depends on ambient factors, such as light positions, light amount, ma-
terial and size of objects, etc., (f) accuracy decreases in areas with large depth
discontinuities.

The proposed segmentation algorithm in this paper tries to overcome some of
these problems. In the following subsections the overall algorithm is described
and the main techniques utilized are introduced.

2.1 Overview of the Algorithm

The proposed algorithm consists of an iterative procedure in which a segmenta-
tion is obtained at every iteration. Each segmentation trends to be coarser than
the ones obtained in previous iterations, creating in this way, a set of segmenta-
tions at different perceptual abstraction levels.

The algorithm has the following steps: firstly, the neighborhood size is esti-
mated, this being a necessary parameter for the rest of the process. Afterwards,
an iterative procedure is run with four stages being executed at every iteration:
(a) filtering, (b) tensor voting, (c) graph creation and (d) graph segmentation.
Every iteration leads to a segmentation of the input image at a progressively
higher abstraction level. This iteration is run a given number of times m.

The algorithm returns the set of all calculated segmentations. That set can
be used in applications where is interesting to get different levels of detail in
different zones of the image.

Even though the quantity of regions has a decreasing trend as iterations in-
crease, the segmentation set does not conform a pyramid. One of the reasons
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of that is the merging effect: a region can be temporarily divided into two re-
gions in the process of being joint with another one. In the end, the generated
segmentations can be seen as a pseudo-pyramid segmentation.

In the following subsections, the main stages of the algorithm are presented.

2.2 Geometric Low-Pass Filters

As said before, 3D images acquired through stereo vision are very noisy. Hence,
it is necessary to apply a geometric low-pass filter in order to remove that noise.
In this work, local filters have been preferred to global ones since every different
region in an image has its own specific features, in particular, point density and
amount of noise. Local filtering algorithms are based on local processing of a
neighborhood NB around each 3D point B belonging to the given cloud of 3D
points P. NB may include B itself or not.

Local filters based on either averaging or function-based averaging (e.g., us-
ing a Gaussian function to give more weight to nearest neighbors) have been
discarded as they do not work well in 3D images with variable density of points,
such as the ones obtained through stereo vision. The application of that kind of
filters to those 3D images would lead to regions with high densities of points be-
coming even denser and to low density regions becoming more scattered, creating
thus holes in the 3D image or making previous holes bigger.

An alternative way to filter points is to apply 2D linear regression by project-
ing those points onto the plane (or onto another desired surface) that minimize
the squared error in the neighborhood. This technique is known as Moving Least
Squares Projection (MLS-Projection) [4]. A Gaussian can be used as a weight-
ing function in order to give more importance to nearest neighbors in the least
squares calculations.

The MLS-Projection filter prevents the point density modification problem
described above since, by projecting the points onto a plane (or surface), it does
not move them towards a specific area of neighbors. The parameters of this
filter are the standard deviation of the weighting Gaussian function, σ, and the
number of neighbors that constitute a neighborhood, ρ. In the new approach,
MLS-projection is used for filtering with a plane as the reference surface and a
Gaussian as a weighting function.

2.3 Tensor Voting Framework

The proposed technique uses the tensor voting framework to obtain perceptual
information from noisy clouds of 3D points. This framework is based on the
aggregation and propagation of local geometric data encoded as tensors. The
main steps of tensor voting are described in the next subsections.

Information Encoding. The first step of tensor voting encodes the geometric
information associated with every input 3D point from the given cloud as a ten-
sor. This method usually utilizes second order tensors represented by symmetric
semidefinite positive matrices.
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In order to extract surface likeliness from the cloud of points, the tensor T
of a point is defined according to the next three cases: (a) if the only available
information is the 3D coordinates of the point, then T is defined as the unitary
ball tensor represented as an identity matrix, T = I; (b) if a normal vector v is
already known at that point, then T = v vT ; and (c) if a tensor W is already
known at that point, then T = W. It is important to notice that vectors encoded
into tensors lose their sign because of the squares involved.

In 3D, tensors can be represented by means of ellipsoids whose shape and
orientation are conveyed by their eigenvalues λi and their corresponding eigen-
vectors ei. By convention, eigenvalues are sorted in descending order, with λ1

being the largest one. There are three degenerated cases for those ellipsoids:

– a “stick” when λ1 > 0, λ2 = 0 and λ3 = 0
– a “plate” when λ1 = λ2 > 0 and λ3 = 0
– a “ball” when λ1 = λ2 = λ3 > 0

Tensor Voting. In the second step of tensor voting, the tensor associated with
every point is propagated to the point’s neighborhood through a convolution-
like process. In order to apply this convolution, it is necessary to separate the
information encoded in tensor form into three components. Thus, a tensor T can
be written as:

T = λ1e1eT
1 + λ2e2eT

2 + λ3e3eT
3 . (1)

This can be rewritten as:

T = (λ1 − λ2)e1eT
1 + (λ2 − λ3)(e2eT

2 + e1eT
1 ) + λ3(e1eT

1 + e2eT
2 + e3eT

3 ) . (2)

Let s1 = λ1−λ2, s2 = λ2−λ3 and s3 = λ3 be the saliencies 1 to 3, ST = e1eT
1

be the stick tensor, PT = e1eT
1 + e2eT

2 be the plate tensor and BT = e1eT
1 +

e2eT
2 + e3eT

3 be the ball tensor, then:

T = s1 ST + s2 PT + s3 BT . (3)

Next, it is necessary to define appropriate voting fields, which are equivalent
to kernels in classical convolution, for the ST, PT and BT components. In the
proposed algorithm, the stick, plate and ball voting fields defined in [6] are used
since they have a good performance in propagating surface likeliness.

A stick vote at B received from A, SVB
A , is calculated as the value obtained

from the stick voting field at B weighted by saliency 1 at A, sA
1 , when that voting

field is centered and oriented at A; the plate vote at B received from A, PVB
A is

calculated in the same way using the plate voting field and saliency 2 at point
A, sA

2 , instead of the stick voting field and sA
1 ; and the ball vote BVB

A uses the
ball voting field and saliency 3 at point A, sA

3 , replacing the stick voting field
and sA

1 respectively [6].
Finally, the total vote received at B, TB , is given by:

TB =
∑

A∈NB

SVB
A +

∑

A∈NB

PVB
A +

∑

A∈NB

BVB
A (4)

where sum of tensors is defined as sum of matrices.
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The parameters of the algorithm are σ, which denotes the standard deviation
of the Gaussian decay function in the voting fields utilized, and ρ, the number
of neighbors that receive a vote [6]. These parameters were selected to be the
same as the ones used in filtering.

Analysis of Tensor Voting. After the tensor voting stage, it is necessary to
obtain eigenvectors and eigenvalues at every point in order to compute the three
aforementioned saliency measures, which allow to determine whether that point
belongs to a surface, an edge or a junction. The point likely belongs to a smooth
surface if a high saliency s1 is obtained. In that case, the estimated surface nor-
mal is given by ±e1. In turn, a high saliency s2 indicates that the point belongs
to an edge whose direction is given by ±e3. Finally, a high saliency s3 is typical
for junctions. If the three saliencies are low, the point is likely to belong to noise.

In our approach, tensor voting is applied twice: first, it is applied to the given
cloud of 3D points P by encoding unitary ball tensors at every 3D point in P. Af-
terwards, a second pass applies tensor voting again, but this time considering the
tensors obtained after the first pass at every point, instead of unitary ball tensors.

Finally, it is necessary a normalization of the sum of saliencies after applying
the tensor voting algorithm. This is done by calculating s̄i such that

∑n
i=1 s̄i = 1.

That operation can be done by means of the equation λ̄i = λi

λ1
(i.e., dividing every

eigenvalue by the largest one) and recalculating s̄i using the scaled eigenvalues
on the equations given in the previous subsection to calculate saliencies.

2.4 Graph Creation and Segmentation

At this point, every 3D point from the given 3D image is associated with three
saliency measures that denote the geometric structure (surface, edge or junction)
to which the point likely belongs to. The goal now is to group neighboring points
that are likely to belong to the same geometric structure. For that purpose, the
graph-based segmenter proposed by Felzenswalb et al. [2] is applied, since it
has been proven to be fast and to provide good results in image segmentation.
Although that segmenter was originally conceived for intensity image segmenta-
tion, it can be easily extended to 3D image segmentation as its starting point is
a graph that can be created in a variety of ways.

Graph Creation. Given the saliencies obtained in the tensor voting step, a
graph is created as described in the following paragraphs. Let ε be a small con-
stant, σ be the standard deviation used in the filtering and tensor voting stages

and let the predicate: neighbors(A, B)⇔ e−
||A−B||2

σ2 > ε, a graph is built using
the following two rules: (a) every point in the cloud P defines a graph vertex,
(b) the vertices corresponding to any pair of 3D points A and B belonging to P
are connected through an edge provided that neighbors(A, B) is true.

Every edge connecting neighboring points A and B is associated with a weight
w defined according to the following method: let eA

i and eB
i be the ith eigenvector

of the tensors calculated through tensor voting at points A and B respectively,
s̄i

A and s̄i
B be the ith normalized saliency of the tensors calculated at points A
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and B and dAB
i = 1− 2

π arccos(|eA
i eB

i |) be 1 minus the normalized angle between
the ith eigenvectors of A and B, then w = 1 − (s̄1

A s̄1
B dAB

1 + s̄2
A s̄2

B dAB
3 +

s̄3
A s̄3

B). In this way, this method uses all available saliencies and angles and
constraint 0 ≤ w ≤ 1 is guaranteed because 0 ≤ s̄i ≤ 1.

Graph-Based Segmentation. The segmentation technique is based on a
region-growing approach where a function MInt is used as a measure of dis-
tance between every pair of neighboring regions Ci and Cj in the graph. This
function is given by:

MInt(Ci, Cj) = min(Int(Ci) + τ(Ci), Int(Cj) + τ(Cj)) (5)

where Int(C) is the internal difference, defined as the largest weight of the
minimum spanning tree for region C and τ(Ci) is an arbitrary function. In [2],
parameter k is proposed to calculate τ(C) using the formula: τ(C) = k/|C|. The
segmenter has the next stages: (a) edges from the graph are sorted in ascending
order of weight; (b) a different region is created for every vertex in the graph;
(c) for each sorted edge E the following merging rule is applied: let Ci and Cj be
the neighboring regions connected in the graph by means of E and w its weight,
if w ≤ MInt(Ci, Cj), then both regions are merged; and finally (d) Int(C) is
updated every time another region is merged to C in step (c). The success of
this technique basically depends on the graph creation step and on parameter k.

Due to the noisy nature of data, this algorithm requires a post-processing
stage to avoid oversegmentation. The basic idea consists of iterating the same
segmenter in a hierarchical way. This process is described in Algorithm 1 where
“CreateUpperGraph” creates a new graph based on the previous segmentation,
with its vertices being the regions found in the previous segmentation and its
edges being created using the method described before, but using only one tensor
that represents all the tensors in the region.

Algorithm 1. Segmentation Algorithm
1: function Resegmentate( V0, E0 ) � Vertices and Edges
2: S0 ← Segmentate(V0, E0)
3: repeat
4: [Vi+1, Ei+1] ← CreateUpperGraph(Vi, Ei, Si)
5: Si+1 ← Segmentate(Vi+1, Ei+1)
6: until NumSegments(Si+1) = NumSegments(Si)
7: return Sn

8: end function

The tensor of a region is computed by adding the tensors of the elements
that constitute that region and normalizing the sum of saliencies. Edges between
regions are only calculated if in the previous iteration there is an edge connecting
an element from a region to another element from the other region. In this way,
the resulting segmentation in an iteration will not have more regions than the
segmentations obtained in previous iterations.
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2.5 Neighborhood Selection

In order to apply the filtering, tensor voting and graph creation stages, it is
necessary to define the size of the neighborhood associated with any given point
from the input cloud P. Let ρ be the number of points belonging to that neigh-
borhood. This parameter is estimated from other parameters associated with
the algorithm as follows. Let R be a set of points randomly sampled from P, σ
be the standard deviation of the Gaussian decay function used in the filtering
and tensor voting stages and neighbors be the predicate defined in Sect. 2.4; ρ
can be estimated as the average quantity of neighbors of all points A ∈ R. With
this, only those points that give relevant information to their neighbors in the
filtering and tensor voting stages are taken into account.

Filtering, tensor voting and graph creation stages use an ANN k-d tree with
3D Euclidian metric to retrieve the neighborhood of a given 3D point, using the
aforementioned parameter ρ.

3 Experimental Results

A Digiclops trinocular stereo vision camera and the Digiclops SDK and Triclops
SDK libraries [7] have been used to capture the 3D images upon which the
proposed technique has been tested. The accuracy of the estimated depth mea-
surements, z, depends on the depth itself, so points farther away than 5m are
discarded, since their accuracy is above 8.32cm [7]. Points at less than 1m have
also been discarded in being unable to do range estimation at those distances.

The aforementioned libraries only calculate depth when it is possible to do
it with a reasonable error. For example, Fig. 1(a) shows a picture taken by the
right camera, and Fig. 1(b) depicts in black all pixels whose estimated depth
could not be calculated or are too close or too far from the camera. In Fig. 1(c)
a 3D view of the test 3D scene is displayed and in Fig. 1(d) is shown a ground
truth segmentation calculated by hand using 2D information. In this example,
the libraries were able to estimate depth for 45,589 pixels from a total of 76,800,
but those numbers can change dramatically (upwards or downwards) in other
examples as stereo algorithms are very sensitive to scene conditions. Even though
some comparison frameworks have been proposed for range image segmentation
algorithms, e.g. Hoover et al. [3], none of them have been used in this work
because they were designed to compare performance on range images taken by
means of laser and structured light scanners and not on noisy images. Instead,
ground truth segmentations calculated by hand (using 2D information) were
used, taking into account that, as shown in Fig. 1(c) and Fig. 1(d), it is not pos-
sible to obtain a perfect segmentation, if results are compared with ground truth
segmentations created using 2D information, as misplacing points error of the
stereo algorithm increases near big discontinuities and distant zones of the scene.

In order to compare the use of tensors in the proposed algorithm, a non
tensor-based technique that uses the same filtering, graph creation and segmenter
processes was also implemented, changing only the way in which every edge’s
weight is calculated: let nA and nB be the estimated normals at points A and B
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(a) Right Eye (b) Registered Points

(c) 3D View (d) Ground Truth

Fig. 1. Example of 3D image

belonging to the cloud P by means of MLS-Projection with a Gaussian weighting
function applied to their neighborhoods, then the weight of the edge that connect
them in the graph is calculated as w = 1− nA nB.

The segmentation results obtained from execution of both methods with
σ = 20mm (filtering and tensor voting parameter) and k = 0.2 (segmenter
parameter) after five iterations are shown in Fig. 2(a) and Fig. 2(b). The fol-
lowing local metrics are used to evaluate performance of the tested methods:
oversegmentation metric on a specific region in the ground truth, calculated as
the average of the squared relative areas of intersecting regions in the segmented
image and undersegmentation metric, calculated in the same way by exchang-
ing ground truth and the segmented image. Global metrics can be calculated
by averaging each local metric weighted by the size of each region. Figure 2(c)
and Fig. 2(d) show in gray the local metrics calculated on each region for the
proposed algorithm where white means that the segmenter has a perfect per-
formance in that region. These metrics are calculated for all the scene (A), for
the 50% nearer points to the camera (N) and for the 50% farther points from
the camera (F). The results of the application of both algorithms to two 3D test
scenes are depicted in Table 1.

As expected, the best results for oversegmentation were obtained using the
tensor-based approach. The global oversegmentation metric is around 60% (66%
and 53%), what means that in average a region in the ground truth is segmented
approximately into 1.66 regions by the algorithm. However, it is necessary to
remark that the segmentation results were suitable in zones near the camera
where accuracy is better (86% in average). For far points this metric is around
35% (44% and 26%), i.e., a ground truth zone is divided in average into almost



156 R. Moreno, M.A. Garcia, and D. Puig

(a) Tensor-based segmentation (b) Non tensor-based segmenta-
tion

(c) Oversegmentation metric (d) Undersegmentation metric

Fig. 2. Segmentation results

Table 1. Segmentation results

Method
Indoor Scene Outdoor Scene

# Reg. Overseg. Underseg. # Reg. Overseg. Underseg.

A N F A N F A N F A N F
Tensor-based 151 0.66 0.89 0.44 0.61 0.90 0.38 215 0.53 0.83 0.26 0.83 0.98 0.69

Normals 497 0.33 0.56 0.10 0.69 0.95 0.46 681 0.21 0.38 0.08 0.90 1.00 0.79
Ground truth 52 15

three regions, which is not a bad result taking into account the distribution
of points and noise present in those zones. For undersegmentation, non tensor-
based method produced slightly better results driven by the high quantity of
generated regions.

4 Concluding Remarks

A graph-based algorithm oriented to 3D image segmentation has been proposed
in this paper. Even though the proposed algorithm obtains good results, it is
necessary to model the noise in order to improve its performance in regions
that are far away from the camera position, taking into account its anisotropic
nature. Moreover, it is very important to model the misplacing problem in big
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discontinuity regions when the depth of every point is estimated from stereo
images.

Given the pseudo-pyramid segmentation, future work will consist of deciding
the level to stop in a top-down (or bottom-up) exploration at every zone of the
space using a multiscale analysis (e.g. scale-space analysis). Furthermore, these
results will be compared to other multilevel approaches (e.g [8]).
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Morphological Operators for Flooding, Leveling

and Filtering Images Using Graphs

Fernand Meyer and Romain Lerallut

Paris School of Mines

Abstract. We define morphological operators on weighted graphs in
order to speed up image transformations such as floodings, levelings and
waterfall hierarchies. The image is represented by its region adjacency
graph in which the nodes represent the catchment basins of the image and
the edges link neighboring regions. The weights of the nodes represent
the level of flooding in each catchment basin ; the weights of the edges
represent the altitudes of the pass points between adjacent regions.

1 Introduction

It is an inspiring mental exercise to consider an image as a topographic surface
or landscape. The image content can then be expressed in terms of peaks, crests,
valleys, wells, cliffs, catchment basins, watershed lines. Morphological segmen-
tation for instance is based to a large extent on the extraction of the watershed
line of gradient images [2].

Transforming an image is the same as transforming its topography. The land-
scape is modified during the geological ages by slow erosion of the relief ; much
faster and often catastrophic modifications are due to floodings. The flood cre-
ates large flat zones or lakes, covering and masking all details underneath. As the
flood progresses, it covers more and more structures and only the most salient
peaks or crests remain visible above the flood level.

Flooding is an anti-extensive operation : the flood level is above the initial
ground level and only valleys and wells are filled. In order to erode peaks, one uses
the dual transform of flooding, called razing : one inverts the image (f → −f)
applies a flooding on −f and inverts again the result.

Combining floodings and razings makes it possible to construct auto-dual fil-
ters : they operate in a symmetrical way on the white and the black structures
in the images. Floodings are also an important step in morphological segmenta-
tion : a flooded topographic surface has far less minima and catchment basins
than the unflooded topographic surface ; furthermore each catchment basin of
the flooded relief is a union of catchment basins of the unflooded relief. The
catchment basins of a series of increasing floodings form a hierarchy, or series of
nested partitions [6].

We organize our presentation in two parts, as two companion papers. The
first paper is organized as follows. In a first part we present how floodings are
used, both for filtering and for segmenting images, In a second part we recall
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how floodings are characterized and constructed at the pixel level. In a third
part, we show how floodings can be represented on the region adjacency graph.
From a local characterization of a valid flooding on a graph we derive an algo-
rithm for constructing it. For this we define two couples of adjunct erosions and
dilations on graphs, which combined with edge contractions are the basic tools
for construction morphological operators on graphs.

The second paper analyzes the complexity of the flooding construction, both
on images and on graphs and discusses in depth under which conditions it will
be more interesting to flood an image at the pixel level or at the graph level.
Flooding the graph becomes particularly interesting if each node represents a
large number of pixels and if the same operation has to be performed a number
of times on the same graph.

2 Definition of a Flooding

Definition 1. A function g is a flooding of a function f if and only if g ≥ f
and for any couple of neighboring pixels (p, q) : gp > gq ⇒ gp = fp

This definition is equivalent to the following criterion.

Criterion 1. Flood: A function g is a flooding of a function f if and only if
g = f ∨ εg

The relation {g is a flooding of f} is reflexive, antisymmetric and transitive: it
is an order relation.
In particular, if f and h are two functions such that f ≤ h, then the family
of floodings (gi) of f verifying gi ≤ h form a complete lattice for this order
relation. The smallest element is f itself and the largest is obtained by repeating
the geodesic erosion of h above f : hn+1 = f ∨ εhn until stability, that is when
hn+1 = hn. We say that h∞ = Fl(f, h) is the flooding of f below h. The dual
operator is called razing : Rz(f, h) = −Fl( − f,−h).

A flooding g is obtained from a function f, by creating a number of lakes on
the topographic surface of f . All connected components where g > f are flat if
g is a flooding of f . We will call lake of a flooding g any flat zone of g containing
at least a pixel p for which fp > gp. Let us consider a lake L of a flooding g
of a reference function f . If all neighbors of L have a higher altitude, then L is
a regional minimum. If L has a lower neighbor, there exists a couple of pixels
(p, q), p belonging to L and gp > gq. This implies that gp = fp, meaning that the
level of the flooding g and the level of the ground f are the same at pixel p : the
lake cannot build a wall of water without solid ground to hold the water.This is
clearly illustrated in figure 1, where the right figure cannot be a valid flooding,
whereas the left figure is a valid one.

Flooding a topographic surface fills lakes, whereas razings suppress peaks.
Suppressing peaks and at the same time filling valleys will be obtained by ap-
plying both operators in sequence. The resulting operator is called a leveling [7]
and will be illustrated in the companion paper. The next paragraph presents a
simple filter obtained by the composition of a flooding and a razing.
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Fig. 1. A: a physically possible flooding ; B : an impossible flooding, where a lake is
limited by a wall of water at position p

3 Flooding for Filtering and Segmenting Images

3.1 Flooding for Filtering

A common filter is a flooding followed by its dual razing. A first flooding fills each
catchment basin up to its lowest pass point. On the resulting topographic surface
a dual razing clips each peak down to its highest pass point. Both operations
are parameter-free and can be iterated, leading with each new step to a stronger
filtering of the image, creating larger and larger flat zones. figure 2 presents
the result of 3 iterations of such a filtering on a painting by Seurat. The flat
zones of this simplified image are in much lower number and their large size will
simplify the segmentation of the image. Noteworthy is the fact that the image
is simplified, but the contours are not blurred nor displaced.

3.2 Flooding and Segmentation

Flooding Associated to Markers. Flooding is also extremely useful in the
context of morphological segmentation. For segmenting the image f in figure 3a,
first its gradient magnitude is computed (see figure 3b). The watershed line of
the gradient shows a severe over-segmentation (see figure 3c). Even the sky,
apparently rather homogeneous in the initial image is cut into multiple small
pieces. As a matter of fact, the gradient image is extremely sensitive to noise
and its minima are extremely numerous, each of them giving birth to a catchment
basin.

Fig 4 shows how to reduce this over-segmentation. We would like to segment
the image into two particular regions. In figure 4a we have indicated which
regions we are interested in. The two areas marked (one of the markers is formed
by two connected components) will be set in a marker image to the value of the
gradient image, and to the maximal gray value elsewhere. figure 4b presents
the highest possible flooding of the gradient entirely below the marker image : it
presents 3 minima, corresponding exactly to the 3 chosen markers, this operation
is called swamping. Finally, the contours which are retained by the flooding of
this swamped image are the strongest ones separating the markers, as shown in
the segmentation of figure 4c.
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Fig. 2. Initial image and filtered image, applying 3 iterations of an extreme flooding
followed by an extreme razing

Size Oriented Flooding. Size oriented flooding may be visualized as a process
where sources are placed at each minimum of a topographic surface and pour
water in such a way that all lakes share some common measure (height, volume
or area of the surface). As the flooding proceeds, some lakes eventually become
full lakes, as the level of the lowest pass point has been reached. Let L be
such a full lake. The source of L stops pouring water and its lake is absorbed
by a neighboring catchment basin X , where an active source is still present.
Later the lake present in X will reach the same level as L, both lakes merge
and continue growing together. Finally only one source remains active until the
whole topographical surface is flooded. If we construct the watershed line every
time a catchment basin is absorbed by a neighboring basin, we obtain a series
of nested partitions, also called hierarchy [1]: each region of a coarse partition is
the union of a number of regions of a finer partition.

In figure 5, a flooding starts from all minima in such a way that all lakes
always have uniform depth, as long as they are not full. The resulting hierarchy
is called dynamics in case of depth driven flooding and has first been introduced
by M.Grimaud[3]. Deep catchment basins represent objects which are contrasted
; such objects will take long before being absorbed by a neighboring catchment
basin. The most contrasted one will absorb all others. This criterion obviously
takes only the contrast of the objects into account and not their size. If we control
the flooding by the area or the volume of the lakes, the size of the objects also is
taken into consideration [8]; in multimedia applications, good results are often
obtained by using as measure the volume of the lakes, as if each source would
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a                                b                ca                                b                c
Fig. 3. a) initial image ; b) morphological gradient ; c) watershed of the gradient image

a) 3 markers placed on the
cameraman image

b) result of the swamping of
the gradient, this image has

three minima

c) resulting segmentation

Fig. 4. Using markers as a means to reduce over-segmentation

Fig. 5. Example of a height synchronous flooding. Four levels of flooding are illustrated,
each of them is topped by a figuration of the corresponding catchment basins.
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pour water with a constant flow This is illustrated by the following figures. The
topographical surface to be flooded is a color gradient of the initial image (max-
imum of the morphological gradients computed in each of the R, G and B color
channels). Synchronous volumic flooding has been used, and 3 levels of fusions
have been represented, corresponding respectively to 15, 35 and 60 regions.

Initial 15 regions 35 regions 60 regions

4 Operators on Graphs

We define a graph G = [E, N ], where E is the set of edges and N the set of
nodes. (i, j) will be the edge between the neighboring nodes i and j. Two edges
are neighbors if they have a common node as extremity. Two nodes are neighbors
if they are linked by an edge.

The weights [e, n] of the graph G are represented as two functions e and n, re-
spectively for the edges and the nodes. eij is the weight of the edge (i, j) and ni the
weight of the node i. The same graph may have various distributions of weights.

4.1 Contraction of Edges

For contracting an edge (i, j) in a graph G, one suppresses this edge and its two
extremities are merged into a unique node k (in practice, k may be one of the
preexisting nodes i or j). All edges incident to i or to j become edges incident
to the new node k and either keep the same weight, or combine their weights in
a manner suitable for the application.

4.2 Two Adjunctions on Graphs

Erosions and Dilations

Definition 2. We define now two couples of an erosion and a dilation:
- an erosion [εnen]ij = ni ∧ nj and its adjunct dilation [δene]i =

∨
eik

(k neighbs of i)

- a dilation [δnen]ij = ni ∨ nj and its adjunct erosion [εene]i =
∧

eik
(k neighbs of i)

Proposition 1. The operators we defined are pairwise adjunct or dual operators:
- (εen, δne) and (εne , δen) are respectively adjunct
- (εen, δen) and (εne , δne) are respectively dual
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Proof. Let us prove that δne and εen are adjunct operators

If G = [e, n] and G = [e, n] are two graphs with the same nodes and edges, but
with different valuations on the edges and the nodes then:

δnen ≤ e⇔ ∀i, j : ni ∨ nj ≤ eij ⇔ ∀i, j : ni ≤ eij

⇔ ∀i, j : ni ≤
∧

eij

(j neighbs of i)

= [εene]i ⇔ n ≤ εene

which establishes that δne and εne are adjunct operators.
Let us prove that εne and δne are dual operators:

[εne(−n)]ij = −ni ∧−nj = −(ni ∨ nj) = − [δnen]ij

Hence: δnen = − [εne (−n)].

Openings and Closings. As εen and δne are adjunct operators, the operator
ϕn = εenδne is a closing on n and γe = δneεen is an opening on e [4].

Similarly as εne and δen are adjunct operators, the operator ϕe = εneδen is a
closing on n and γn = δenεne is an opening on e.

Also see the works of L. Vincent [9] on erosions and dilations on graph nodes
which can be reformulated as the composition of a nodes-to-edges operations,
followed by an edges-to-nodes: εvincent = εnn = εen ◦ εne

5 Floodings on Graphs

A flooding g of f will be perfectly known as soon the level of the lakes in each
catchment basin of f is known. For this reason, it is possible to represent a
flooding of f as a particular weight distributions on the nodes of its region
adjacency graph or the derived MST. However not any distribution of weights
on the nodes will represent a valid flooding. We now establish criteria to be
respected.

5.1 Criteria for a Weight Distribution to Be a Valid Flooding

Let T = [e, n] and T = [e, n] be respectively the MSTs of a function f and of a
flooding g of f . Consider an edge (i, j). Two situations are possible

– the level of both lakes at i and j is lower than the pass-point, then:
eij = eij > (εnen)ij

– the level of both lakes at i and j is higher or equal than the pass-point eij ;
in this case both lakes and the pass-point eij have the same altitude :
eij = (εnen)ij > eij

Both situations may be summarized by e = εnen ∨ e
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5.2 First Algorithm for Constructing a Valid Flooding

We derive from these two relations n = εene ∧ n and e = εnen ∨ e an algorithm
for constructing a flooding of a function f, using its MST.

The MST of the neighborhood graph of the reference image f is computed.
Two copies of the same graph will be used :

Reference image : The edges of the MST are valuated by the altitude of the
pass points between catchment basins.

Flooded image : All edges and nodes are initialized with a valuation∞, except
the nodes containing a regional minimum of the marker function. These nodes
are initialized with the altitude of the lowest regional minimum of the marker
function.

This process is illustrated in figure 6 for a one-dimensional image.

a) Initialization : e(0) = ∞,
n(0) = lowest regional minimum
of the marker function contained
in the catchment basin n and
n(0) = ∞ in the catchment basins
without a regional minimum of the
marker function
b) Repeat until idempotence:
e(n+1) = εnen

(n) ∨ e
n(n+1) = εene(n+1) ∧ n(n)

Fig. 6. Construction of the flooding weight distribution [e, n]

5.3 A More Synthetic Flooding Algorithm

The preceding algorithm has the advantage to use the elementary erosions and
dilations we defined earlier. Most of the time we are interested by the levels n of
the lakes in the flooded image but not so much by the levels of the pass points
e. We will derive a unique formula by replacing eij = (ni ∧ nj)∨ eij by its value
in the expression of ni =

∧
eij

(j neighbs of i)

∧ ni ∧ ni. We obtain:

ni = (εen e)i ∧ ni =
∧

eij
(j neighbs of i)

∧ ni =
∧

(j neighbs of i)

[(ni ∧ nj) ∨ eij ] ∧ ni

=
∧

(j neighbs of i)

[(ni ∨ eij) ∧ (nj ∨ eij)] ∧ ni

=
∧

(j neighbs of i)

(nj ∨ eij) ∧ ni since ni ∨ eij ≥ ni

Hence we have proved the following proposition:

Proposition 2. The weight distribution [e, n] on a tree T is a flooding of the
weight distribution of [e, n] if and only if ni =

∧

(j neighbs of i)

(nj ∨ eij) ∧ ni
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From the relation ni =
∧

(j neighbs of i)

(nj ∨ eij) ∧ ni we derive ni ≤ nj ∨ eij .

Inversely, if for each neighbor j of i we have ni ≤ nj ∨ eij then
ni ≤

∧

(j neighbs of i)

(nj ∨ eij) and ni =
∧

(j neighbs of i)

(nj ∨ eij) ∧ ni

The weight distribution [e, n] on a tree T is a flooding of the weight distri-
bution of [e, n] if and only for any two neighboring nodes i and j one of the
following criteria is verified:

1. ni ≤ nj ∨ eij , which may be written as {ni ≤ nj or ni ≤ eij} . This last
formula directly leads to the two following criteria if one recalls the logical
equivalence between {A⇒ B} and {notA or B}

2. {ni > nj ⇒ ni ≤ eij} : if the level in two neighboring basins is different,
then the highest lake has a level lower than or equal to the pass-point sepa-
rating them

3. {ni > eij ⇒ ni = nj }If the level in two neighboring basins is higher than
the pass-point separating them, then both adjacent lakes have merged and
have the same level.

From this relation ni =
∧

(j neighbsof i)

(nj ∨ eij)∧ni we derive a shorter flooding

algorithm, where we compute only the level of the flooded nodes.
This process is illustrated in figure 7. The algorithm may be further speeded

up by processing the nodes n n increasing order by using a hierarchical queue
[5]. Initially the nodes corresponding to the regional minima of g are put in the
queue at a level corresponding to their altitude. As soon as a node i goes out
of the queue, its neighbors are updated and the edges adjacent to i are cut,
producing two sub-trees for each edge which is cut. These sub-trees may then
be treated independently from each other.

a) Initialization :
n(0) = lowest regional minimum
of the marker function contained
in the catchment basin n and
n(0) = ∞ in the catchment basins
without a regional minimum of the
marker function
b) Repeat until idempotence :
if j neighbor of i and ni > nj ∨ eij

then ni = nj ∨ eij

Fig. 7. Progressive construction of n using the algorithm if j neighbor of i and ni >
nj ∨ eij then ni = nj ∨ eij
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6 Conclusion

The image-based flooding operations have known three eras, which have guided
their implementations. In the beginning, all image operations were performed
using dedicated hardware which could only perform erosions, dilations and pixel-
wise operations, from this viewpoint comes the expression of the flooding as an
erosion and supremum operation. Then came the age of the sequential propa-
gation, in which few passes were required if the image was not too convoluted.
The most modern implementations of the floodings now use priority queues in
order to optimize away all redundant propagations and thus ensure that the
flooding can be performed in a single pass (though it requires random access to
the image, and is hard to implement in hardware).

However, no matter the speed of this last implementation, or the regular
improvements in computer power, the size of the datasets increases just as fast,
if not faster. From the original 2D images, we have come to process 3D, even 4D
images, sometimes with vector values (color and hyperspectral images). In the
second part of this paper, we will examine the performance of these graph-based
methods, compare them to the image-based methods and determine their areas
of effectiveness.
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Abstract. This paper concentrates on a graph-based multilevel temporal 
segmentation method for scripted content videos. In each level of the segmentat-
ion, a similarity matrix of frame strings, which are series of consecutive video 
frames, is constructed by using temporal and spatial contents of frame strings. A 
strength factor is estimated for each frame string by using a priori information of a 
scripted content. According to the similarity matrix reevaluated from a strength 
function derived by the strength factors, a weighted undirected graph structure is 
implemented. The graph is partitioned to clusters, which represent segments of a 
video. The resulting structure defines a hierarchically segmented video tree. 
Comparative performance results of different types of scripted content videos are 
demonstrated.  

Keywords: Temporal video segmentation, shot clustering, scene detection, 
video summarization, graph partitioning, normalized cuts. 

1   Introduction 

In recent years, multimedia data has received continuously increasing interest in 
humans and this content gets bigger day by day with the advances in technology. 
Most of this content is related to visual information including video data produced by 
filmmakers, TV channels, amateur camera users etc. Extracting specific information 
from such a huge amount of video content creates some difficulties to search the 
whole media like limitations on time consuming in browsing and retrieving of 
relevant data.  To overcome that application based drawbacks, the current trend is to 
develop algorithms capable of parsing them by segmenting and then indexing. On the 
other hand, temporal segmentation of a video is needed to enable an efficient indexing 
procedure for localizing and accessing the source of relevant information.  

A complete video is constructed by shots, which are the collection of consecutive 
frames that are recorded in one camera record time. Therefore, shots carry out a priori 
information to be considered as a first step of the temporal video segmentation. Then, 
shot detection is handled to solve the indexing problem, however, it cannot properly 
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contribute in some application domains and a higher-level segmented video like a 
DVD chapters is needed. For example, high-level video segments (scenes) in some 
browsing applications are more important than shots. 

Shot clustering is a hot topic in the research community. Many approaches have 
been presented to contribute the problem until now. One of the earliest proposed 
methods is a scene transition graph (STG) framework [1]. In this approach, firstly 
shots are clustered. Each shots cluster represents a node on the directed graph and the 
temporal relationship of shots constructs the edges between nodes. Yeung and Yeo [2] 
used the time-constrained clustering in STG. Time-adaptive grouping approach was 
introduced by [3] and a table-of-content (ToC) technique was demonstrated. In this 
approach, shots are clustered to an intermediate entity called video group and the 
groups are merged to construct scenes. In [4], shots were clustered into scenes using a 
strict scene definition. Zhai and Shah [5] used the Markov chain Monte Carlo 
technique in order to construct scene borders.   

Graph-based solution approaches have become very popular for the pattern 
recognition research community. A novel graph-based method called normalized cuts 
[6] was given as an efficient tool in the image segmentation problem. Graph-based 
approaches have also been presented in structuring and summarizing of videos. One 
of the graph-based approaches is the above-mentioned STG [1]. Odobez et al. [7] 
introduced the spectral method for home videos. The method is based on visual and 
temporal similarities. Rasheed and Shah [8] defined a shot similarity graph (SSG) in 
the similar way. Besides visual and temporal content similarities, it uses the motion 
content similarity. Ngo et al. [9] introduced a graph-based approach worked on two 
steps. In the first step, shots are clustered using normalized cuts algorithm [6]. In the 
second step, clustered shots are represented by a temporal directed graph similar to 
STG. Lu et al. [10] presented a novel graph-based dynamic video summarization 
method. This method also works on two steps. In the first step, shots are grouped into 
shot strings using normalized cuts algorithm [6]. In the second step, shot strings are 
represented by a spatial-temporal directed graph. Peng and Ngo [11] proposed a clip-
based similarity measures based on two bipartite graph-matching algorithms. One is a 
maximum matching on an unweighted bipartite graph and the other is an optimal 
matching on a weighted bipartite graph. Gong [12] presented a video summarization 
method using graph-based representations for audiovisual contents. In [13], a content-
adaptive analysis and representation framework using graph-based approaches was 
proposed for audio event discovery.  

In this paper, we propose a graph-based framework for a multilevel temporal 
segmentation of scripted content videos. Our proposed method is based on a weighted 
undirected graph representation for all segmentation levels. We propose a strength 
factor approach in order to improve the efficiency of graph-based clustering algorithm 
on the similarity matrix.  

The rest of the paper is organized as follows. The proposed multilevel temporal 
segmentation approach is introduced in Section 2. In Section 3, comparative 
performance results are demonstrated. Finally, conclusion remarks are given in 
section 4. 
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2   Graph-Based Multilevel Temporal Video Segmentation 

In this section, a graph-based framework for a multilevel temporal segmentation of 
scripted content videos is proposed. In briefly, the proposed method works as follows. 
In each level of segmentation, a similarity matrix of frame strings is constructed by 
using temporal and spatial contents of frame strings. Using a priori information about 
a frame string, a strength factor is estimated for each frame string. The similarity 
matrix is reevaluated from a strength function derived by these strength factors. Then, 
a weighted undirected graph is constructed by the similarity matrix. The graph is 
partitioned by using normalized cuts algorithm [6] with one additional constraint [8]. 
Each graph cluster represents one segment of a video. Therefore, a hierarchically 
segmented video tree is constructed. 

2.1   Initial Definitions 

Basic definitions in the temporal video segmentation are introduced in Figure 1. In 
addition to the definitions, frame string used in our proposed approach is introduced 
as follows.  

 

Fig. 1. Temporal video segmentation definitions 

Frame: It is the smallest temporal video segment. The ith frame of a video is 
denoted by fri. 

Shot: It is the collection of consecutive frames that are recorded in one camera 
record time. The ith shot of a video is denoted by shi. shi = { frk, frk+1,....., frk+n-1, frk+n}. 

Key Frame: It is the best representation of frame/frames in a shot. The jth key frame 
of the ith shot of a video is denoted by kfi,j. 

Scene: It is the collection of consecutive shots that are semantically related. The ith 
scene of a video is denoted by sci. sci = { shk, shk+1,....., shk+n-1, shk+n}. 

Frame String: It is the collection of consecutive frames according to one criterion. 
In the sth segmentation level,  ith frame string of a video is denoted by fss,i. It is the 
more general definition of collection set of frames. A frame string can be equal to a 
shot, a scene or any video segment. In addition, a frame string can be a collection of 
frame strings. fss,i = { frk, frk+1,....., frk+n-1, frk+n}. 
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2.2   The Proposed Method 

For each s segmentation level, there is a video segmented by Ns frame strings, which 
are not intersect. There is a temporal and spatial similarity measurement function Sims 
for each fss,i and fss,j. For an s segmentation level, there is a similarity matrix sms(i,j) 
for each frame string indexed by i and j.  

sms(i,j) = Sims( fss,i , fss,j ) . (1) 

In order to improve graph-based clustering algorithm depending on the similarity 
matrix, we propose a strength factor approach. The main idea for this issue can be 
explained as follows. If high probable correct relations between frame strings are 
strengthened and high probable false relations between frame strings are weakened, 
then it is expected that an efficient segmentation is obtained. Using prior information 
in s segmentation level, frame string strength factor sfs(i) is estimated for each fss,i. 
The similarity matrix is reevaluated by a strength factor function SFs as follows.   

SMs(i,j) = sms(i,j) . SFs( sfs(i) , sfs(j) ) . (2) 

A weighted undirected graph Gs=(Vs,Es) is constructed by using SMs. Each fss,i is 
represented by a graph vertex vs,i and SMs(i,j) is represented by an undirected edge 
es(i,j) between each vertex vs,i and vs,j. The graph is partitioned using normalized cuts 
algorithm [6] with one additional constraint [8]. The graph is recursively partitioned 

two disjoint sets A and B, A U B=Vs, A ∩ B=ø, according to normalized cuts criteria: 

)Vassoc(B,

B)cut(A,
+

)Vassoc(A,

B)cut(A,
=)BA,(Ncut

ss

 . (3) 

Graph cut cut(A,B) and association assoc(A,Vs) are defined as follow equations: 

∑
∈∈ BjA,i

s j)(i,e=)BA,(cut  , (4) 

∑
∈∈ sVjA,i

ss j)(i,e=)VA,(assoc  . 
(5) 

The graph is partitioned using one additional constraint defined in [8]: 

BvA,v  all for j)>i  orj  <(i js,is, ∈∈  . (6) 

Each graph cluster represents a new segment of a video. Frame strings in the same 
cluster are merged for a new frame string. Therefore, Ns+1 frame strings are 
constructed from Ns frame strings, where Ns+1 < Ns.  

In the next two sub-sections, an application of the proposed method to two levels 
segmentation case is explained. In other words, this application is a framework for 
scenes construction from shots. 

2.3   Level One 

In order to start segmentation process, a video is segmented to N1 frame strings. Shot 
detection process is applied for this initialization. We assume that N1 shots are 
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detected and each shot is represented by fs1,i. For this level, we modified and extended 
the scene detection method given in [8] by using our strength factor approach.  

In briefly, Rasheed and Shah’s method [8] works as follows. For each ith and jth 
indexed shots, the similarity matrix is calculated as:   

sm1(i,j) = w(i,j) . ShotSim(i,j) , (7) 

where w(i,j) is a temporal distance similarity function and ShotSim(i,j) is a similarity 
function based on visual and motion contents. ShotSim(i,j) is defined as follows: 

ShotSim(i,j)= α . VisSim(i,j) + β . MotSim(i,j) , (8) 

where α, β are constants, VisSim(i,j) and MotSim(i,j) are visual and motion similarity 
functions respectively. Key frame selection, visual and motion content calculation is 
based on HSV color histogram. A weighted undirected graph is constructed by using 
the similarity matrix. The graph is partitioned by using Eq. (3) and Eq. (6). Each 
partitioned graph cluster represents a scene.  

We have also adopted the shot goodness property from [8] to our algorithm. The 
shot that has the biggest shot goodness value in a scene is accepted as the 
representative shot of a scene. For each of ith shot, a total visual similarity in its scene 
is defined as: 

∑
∈Scenej

j)VisSim(i,=C(i)  . (9) 

Then, the shot goodness F(i) is calculated as 

Θ)+(Mot(i)log

L(i)C
=F(i) i

2 ×  , (10) 

where Li, Θ and Mot(i) are the shot length of ith shot, a small positive constant and a 
function that calculates the motion content value of ith shot respectively.  

According to our proposed approach, frame string strength factor sf1(i) is estimated 
by using the frame string length and the motion content in a frame string. This factor 
is increased with the length and decreased with the motion. Eq. (10) is used as a hint 
in the selection of these features. 

)fs (Mot

µ

µ

)fs (length
=(i)sf

i1,

mot

length

i1,
1 ⋅  , (11) 

where length(.), μlength, and μmot are a number of frames measurement function, an 
average number of frames and an average motion for all frame strings in this level 
respectively. Strength factor function SF1 is defined as follows,  

SF1(sf1(i),sf1(j))=max(sf1(i),sf1(j)) . (12) 

The similarity matrix is reevaluated by SF1. Next, the graph-based partitioning is 
applied for obtaining the next level initialization frame strings.   

2.4   Level Two 

In this level, N2 frame strings are obtained from Level One. In this level, a similarity 
matrix is calculated for each ith and jth indexed frame strings as follows.  
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sm2(i,j) = ds(i,j) . FSSim(i,j) , (13) 

where ds(i,j) is a temporal distance similarity function and FSSim(i,j) is a similarity 
function defined as follows. 

| |jie=j)ds(i, −−  , (14) 

FSSim(i,j)=c1 . L2VisSim(i,j) + c2 . L2MotSim(i,j) , (15) 

where c1, and c2 are constants, and c1 + c2 = 1. L2VisSim(i,j) is a visual similarity 
function. It is based on one-shot representation of a frame string. One shot is selected 
using Eq. (10). Only selected two shots from two frame strings are evaluated by 
VisSim(i,j) function. L2MotSim(i,j) is the motion content similarity function using an 
average motion content of all shots in a frame string. Its calculation is structurally 
similar to MotSim(i,j). It is defined as follows:   

)fs( Mot2+)fs(Mot2

))fs(Mot2),fs( Mot2(min 2
=)ji,(L2MotSim

j2,i2,

j2,i2,×  , (16) 

where Mot2(.) is an average motion content measurement function for a frame string. 

∑
∈ i2,j1
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M

1
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,

  , (17) 

where M is the total fs1,j number in fs2,i. 
Frame string strength factor sf2(i) is estimated using the frame string length, shot 

number and the motion content in a frame string. The factor is increased with the 
length and the shot number and decreased with the motion.   
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where slength(.) is a number of shots measurement function, μflength and μslength are an 
average number of frames and an average number of shots for all frame strings in this 
level respectively. The strength factor function SF2 is the same as in Level One.  

The similarity matrix is reevaluated by SF2. Then, the graph-based partitioning is 
applied for obtaining the clustered frame strings. Each of the clusters represents a scene. 

3   Experiments and Results 

3.1   Data Set and Ground-Truths 

In this work, three videos are used in the experiments to test the performance of our 
proposed method and to compare with the scene detection method presented in [8]. 
Two movies Hamlet (HA), The Karate Kid (KK) and a television series Hayat Bilgisi 
(HB) are used in the experiments. Detailed test videos information is given in Table 1. 
It can be easily seen from Table 1 that all three videos have different shot-scene 
distribution on the temporal axis. Shots and scenes ground-truths are generated by 
manually and shot detection is not taken into account in the experiments. Shot 
detection initialization process is extracted from the human generated ground-truths. 
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Table 1. Test Videos Information 

Video Name Total Shots Total Scenes Duration (Minute) 
Hamlet (HA) (Movie) 185 10 17:59 
Hayat Bilgisi (HB) (A television series) 195 5 7:30 
The Karate Kid (KK) (Movie) 94 6 18:18 
Total 474 21 43:47 

3.2   Implementation Details 

There are three important parameters suggested in the implementation of the method in 
[8]. Selection values: α=0.5 (visual similarity weight), β=0.5 (motion similarity weight) 
and d=20 (temporal decay parameter). Key frame selection, visual and motion content 
calculation is realized by ColSim(.) function which is based on HSV color histogram. 
As our implementation, we used a quantized 3-D HSV histogram. Quantization levels 
of H, S and V are 18, 3 and 3 respectively. These quantization levels are selected 
according to the work given in [11]. Moreover, two parameters c1, and c2 are selected as 
0.5 and 0.5 respectively in the implementation of Level Two method (L2M).  

3.3   Performance Evaluation 

Two error functions are applied for comparative performance tests. One is F-measure 
(F) used in [11]. It measures the quality of the detected clusters. It is in the range 
0 to 1 and F=1 shows a perfect result. This analysis is performed at the shots level, not 
at the frames level. GT and DT are sets of ground-truth clusters and detected clusters 
respectively. F-measure F is calculated as follows. 

| | { })C,f(C
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Recall (Re) and precision (Pr) functions are defined as follows: 
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Our Level One method (L1M) and Rasheed & Shah’s method presented in [8] 
(RSM) are the similar except for our strength factor approach extension. In order to 
measure the effects of it, the shots in errors (SIE) function is also applied. SIE is 
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similar to a function defined with the same name in [7]. In SIE measurement, each 
detected cluster is assigned to one ground truth cluster according to maximum 
intersection with it. After the assignment, shots that are not in the assigned ground 
truth cluster are counted. This count is divided by the total shots in the video. SIE is in 
the range 0 to 1 and SIE=0 shows no error shot in the video. 

There is a variable parameter K that is used to determine the normalized cuts 
threshold in the experiments. If normalized cuts value is smaller than K value, then 
the graph is partitioned. Normalized cuts values can be in the range of 0 to 2, and high 
values generate more clusters. K values are selected in the discrete range between 0.1 
and 2 and a step size of 0.1 in the experiments; however, meaningful results are 
demonstrated in this paper. Moreover, L2M has two normalized cuts threshold 
parameters K1 for the first level and K2 for the second level. The same above-
mentioned procedures are also applied for K1 and K2 in the experiments. 

3.4   Results 

Table 2 shows F-measure results for L1M and RSM with respect to variable K 
parameter. The mean values1 of the three results are given for each K parameter. 
Maximum mean value of L1M is obtained as 0.75 for K=0.2. RSM gives 0.75 for 
K=0.1. Therefore, if maximum mean values are taken into account, both methods 
produce the equal result. If maximum of F-measures criteria is applied for the 
evaluation, L1M has better results for two test videos and RSM has a better result for 
the one. Maximum values in L1M are calculated as 0.73, 0.91 and 0.93 for K 
parameter values of 0.5, 0.2 and 0.5 for videos HA, HB and KK respectively. RSM 
gives 0.76, 0.88 and 0.89 for K parameter values of 0.7, 0.1 and 0.5. For both 
methods, a suitable K parameter selection is a critical issue because of the content 
variation. This drawback is an important point to motivate us to propose the 
multilevel approach. In that sense, it is needed for a decision of the previous level 
segmentation of L2M. In order to decide a suitable one, SIE assessments are made. 
Table 3 shows SIE assessments between L1M and RSM. In the over segmented 
region of K values, between 0.9 to 1.1, L1M produces less or equal mean of SIE 
results. Thus, it can be said that L1M is more suitable than RSM for a previous level 
segmentation choice. In addition to SIE evaluations, next two experiments in the 
following paragraph also show that L1M is the suitable one.   

Tables 4 and 5 demonstrate L2M F-measure analysis using L1M and RSM as a 
previous level segmentation method respectively. Each of them is constructed by that 
the highest values of all videos and its mean are cropped from the total results table 
which has the results for all K1 and K2 in the discrete range between 0.1 and 2 with a 
step size of 0.1. Therefore, K1 and K2 values are different for both tables. According 
to Table 4, the maximum mean value of L2M using L1M is obtained as 0.83 for 
K1=0.9, K2=1.5. It outperforms both L1M and RSM. If maximum of F-measures 
criteria is applied for the evaluation, it has better results for all video except for KK. 
The maximum values in L2M using L1M are calculated as 0.88, 0.94 and 0.88 for 
videos HA, HB and KK respectively. L2M using L1M outperforms L2M using RSM 
according to both criterions; maximum of F-measures and maximum mean value.  

                                                           
1 Means of the results are calculated from the exact values not from the quantized values shown 

in the tables. 
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Table 2. Comparative F-measure analysis between Level One method and Rasheed & Shah's 
method [8] with respect to variable K parameter 

                     The proposed Level One method                 Rasheed & Shah's method [8] 
K HA HB KK Mean HA HB KK Mean 

0.1 0.59 0.89 0.49 0.66 0.69 0.88 0.68 0.75 
0.2 0.67 0.91 0.66 0.75 0.65 0.74 0.68 0.69 
0.3 0.71 0.80 0.66 0.73 0.72 0.71 0.76 0.73 
0.4 0.73 0.72 0.76 0.73 0.72 0.71 0.76 0.73 
0.5 0.73 0.55 0.93 0.73 0.72 0.58 0.89 0.73 
0.6 0.70 0.54 0.93 0.72 0.70 0.55 0.80 0.68 
0.7 0.69 0.54 0.83 0.68 0.76 0.53 0.80 0.69 
0.8 0.69 0.46 0.83 0.66 0.72 0.49 0.80 0.67 
0.9 0.69 0.44 0.80 0.64 0.70 0.42 0.80 0.64 

Table 3. Comparative SIE analysis between Level One method and Rasheed & Shah's method 
[8] with respect to variable K parameter 

                     The proposed Level One method                 Rasheed & Shah's method [8] 
K HA HB KK Mean HA HB KK Mean 

0.9 0.05 0.02 0.04 0.04 0.06 0.02 0.10 0.06 
1.0 0.05 0.02 0.04 0.04 0.04 0.01 0.10 0.05 
1.1 0.04 0.02 0.04 0.03 0.02 0.01 0.06 0.03 

Table 4. Level Two method F-measure analysis using Level One method as a previous level 
segmentation 

K1 K2 HA HB KK Mean 
0.9 0.9 0.66 0.94 0.53 0.71 
0.9 1.0 0.66 0.81 0.66 0.71 
0.9 1.1 0.66 0.81 0.66 0.71 
0.9 1.2 0.69 0.81 0.66 0.72 
0.9 1.3 0.76 0.75 0.76 0.76 
0.9 1.4 0.83 0.75 0.76 0.78 
0.9 1.5 0.83 0.77 0.88 0.83 
0.9 1.6 0.88 0.66 0.88 0.81 

Table 5. Level Two method F-measure analysis using Rasheed & Shah's method [8] as a 
previous level segmentation 

K1 K2 HA HB KK Mean 
1.1 0.5 0.65 0.93 0.71 0.76 
1.1 0.6 0.65 0.85 0.71 0.74 
1.1 0.7 0.65 0.90 0.83 0.79 
1.1 0.8 0.73 0.90 0.83 0.82 
1.1 0.9 0.76 0.77 0.83 0.79 
1.1 1.0 0.84 0.77 0.83 0.82 
1.1 1.1 0.80 0.72 0.83 0.78 
1.1 1.2 0.80 0.67 0.86 0.78 
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Figure 2 illustrates comparative scenes detection results with respect to ground-truth 
boundaries for HA. Figure 2(a) and (b) show the scene construction results in a constant 
cluster number (10 scenes for HA) case and maximum F-measures case respectively. 

 

(a) 

 

(b) 

Fig. 2. Hamlet scene detection results. (a) The constant cluster number case: K=0.5 for RSM, 
K=0.5 for L1M, K1=0.9 and K2=1.6 for L2M using L1M. (b) Maximum F-measure case: 
K=0.7 for RSM, K=0.5 for L1M, K1=0.9 and K2=1.6 for L2M using L1M. 
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4   Conclusions 

In this paper, a graph-based framework for a multilevel temporal segmentation of 
scripted content videos is introduced. Two error assessment measures SIE and F-
measure are applied for the performance evaluation of the proposed method. 
Experiments show that Level Two approach produces more stable F-measure results 
under the examination of the content variations. The selection of suitable K 
parameters is critical. Due to variations of videos contents, K parameters can vary in a 
quite large range in order to achieve their maximum performances. The content 
adaptive automatic selection of the suitable K parameters is an open research issue. In 
addition, the effect of the shot detection errors on the proposed method has been an 
un-answered question yet. Especially, the strength factor approach in Level One can 
be affected by shot detection errors because of the false motion and shot length 
information.   
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Abstract. Traditional image models enforce global smoothness, and
more recently Markovian Field priors. Unfortunately global models are
inadequate to represent the spatially varying nature of most images,
which are much better modeled as piecewise smooth. This paper advo-
cates the concept of local influence neighbourhoods (LINs). The influ-
ence neighbourhood of a pixel is defined as the set of neighbouring pixels
which have a causal influence on it. LINs can therefore be used as a
part of the prior model for Bayesian denoising, deblurring and restora-
tion. Using LINs in prior models can be superior to pixel-based statistical
models since they provide higher order information about the local image
statistics. LINs are also useful as a tool for higher level tasks like image
segmentation. We propose a fast graph cut based algorithm for obtaining
optimal influence neighbourhoods, and show how to use them for local
filtering operations. Then we present a new expectation-maximization
algorithm to perform locally optimal Bayesian denoising. Our results
compare favourably with existing denoising methods.

Keywords: Influence neighbourhoods, graph cuts, denoising, markov
fields, Bayesian estimation.

1 Introduction

Image models have traditionally been stationary, whether deterministic e.g.
global smoothness [1], polynomial [2] or spline models [3]. Unfortunately sta-
tionarity fails to capture the spatially varying nature of most images, which are
much better modeled as piecewise smooth. Spatially varying stochastic methods
like adaptive filters [4],[5] and Markov Random Field (MRF) priors [6],[7] are
computationally challenging. We propose an image model which allows local pro-
cessing for speed and adaptivity, but contains higher order statistical information
over an extended local neighbourhood.

We introduce the concept of local influence neighbourhoods (LINs) as a bridge
between local and global priors. The influence neighbourhood of a pixel is de-
fined as the set of its neighbours having a causal influence on it. Knowledge of
LINs allows us to restrict the domain used for estimation of a pixel quantity to
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c© Springer-Verlag Berlin Heidelberg 2007



Deducing LINs with Application to Edge-Preserving Image Denoising 181

within its appropriate local neighbourhood, without crossing object or texture
boundaries. LIN-based priors can provide higher order information about local
image statistics than pixel intensity statistics. We focus on image denoising as
a canonical application of the proposed approach. Interestingly, we show that
full Bayesian denoising under a general non-stationary edge-preserving prior can
be well-approximated by an expectation-maximization (EM) type algorithm in-
volving only local filtering using LINs, under mild and reasonable assumptions.

Intuitively, the neighborhood of the point p = (x0, y0) is the set of pixels close
to p in both space as well as in intensity. A first (but as we shall show, unsatisfac-
tory) attempt at defining a neighborhood around p can be achieved by the box

Bδ,ε(p) = {q ∈ P | ‖p− q‖ ≤ δ, |I(p)− I(q)| ≤ ε}, (1)

where I(p) is the intensity of the image at p and parameters δ and ε are based
on the local image statistics. Unfortunately the connectedness of Bδ,ε(p) is not
guaranteed since (1) operates on each pixel independently. It was proposed to
use only the central connected component of Bδ,ε(p) [8],[9]; however, connected
components are highly susceptible to noise, intensity gradients and fine local fea-
tures, and can still leave holes. A classic instance where these box methods are
liable to fail is near long, thin structures, whose elongated neighbourhoods are
hard to reproduce. The idea of influence neighbourhoods is not new [8],[10],[11].
Ad hoc efforts like adaptive morphological structuring elements [8], SUSAN [12]
and pixons [11],[13] are all location-intensity “boxes” akin to Bδ,ε(x0, y0) above.
Pixons are circularly symmetric Gaussian kernels with support on a local disk
of variable radius, amounting to boxes of adaptive diameter. A Bayesian belief
network method [10] is conceptually similar to ours, but is cumbersome, slow
and can only select a neighbourhood from six preset choices. Arbitrarily shaped
neighbourhoods are allowed in [9], a variable window method based on maximal
connected sets but no geometric constraints are used, and the problem of holes
remains. The LIN idea is also related to the work on oversegmentation of images
while preserving edges, under the so-called “super-pixel” method [14].

We introduce a MRF prior model for estimating LINs. Our approach does not
consider pixels in isolation as above, but considers the whole configuration of the
neighborhood. Figure 1 shows the neighbourhoods that can be expected from
various methods. Noise causes isolated mis-classified pixels in box approaches. In
contrast the shape and size of our LINs depicted in (e) are completely adaptive,
with no holes or isolated pixels.

Image denoising is a well-studied problem [15],[16],[17],[18], and a compre-
hensive survey is not attempted here. Our main contribution is to show that an
EM algorithm involving local filtering using LINs solves a challenging Bayesian
denoising problem.

2 MRF Approach for Local Influence Neighbourhoods

We give now the algorithm to obtain, for each pixel p in the image, the LIN
set Bp. Define a sliding rectangular window Wp of reasonable size around p
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(a) (b) (c)

(d) (e)

Fig. 1. Possible neighbourhoods obtained by various methods around p and q. (a)
Synthetic noisy image, (b) Neighbourhood using location-intensity box [8],[12] and Eq.
(1). (c) Adaptive scale [19], [11]. (d) Connected sets [9]. (e) Expected LIN from our
approach.

so that Bp ⊆ Wp. For each p ∈ P we set up a small Markov Random Field
Fp = {F p

q |q ∈ Wp}. Each random variable F p
q takes on a value fp

q in the binary
label set L = {0, 1}. Then we define the labeling

Bp = {q | fp
q = 1, q ∈ Wp}. (2)

We also define the set of LINs f = {fp|p ∈ P} which is a realization of the
random set F = {Fp|p ∈ P}. Define a neighborhood system N = {(p, q)|p, q ∈
P , ‖p− q‖ ≤ d0} where d0 is 1.0 for 4-connected neighbourhoods and 1.5 for 8-
connected neighbourhoods. We will abbreviate the joint event {Fp = fp|p ∈ P}
as F = f . We write Pr(F = f) as Pr(f), Pr(Fp = fp) as Pr(fp) etc. We
denote the observed, noisy image as the set O = {Op, p ∈ P}, and true image
as I = {Ip, p ∈ P}, with

Op = Ip + np,

{np, p ∈ P} being i.i.d. Gaussian random variables of variance σ2
n. Note we model

not intensity but local influence neighborhoods as a MRF.

2.1 Formulating a MRF Prior for Local Influence Neighborhoods

To characterize Pr(f |I) we propose the Generalized Potts potential well:

Vp,q(fp
q , fp

s ) = u(q, s) · (1− δ(fp
q − fp

s )), (3)

u(q, s) = K − |Iq − Is| (4)

Note u(q, s) specifies the depth of the potential well. The prior probability of
the MRF is given by

Pr(fp|I) = ∝ exp

⎛

⎝−λ
∑

q,s∈Wp, (q,s)∈N
u(q, s) · (1 − δ(fp

q − fp
s ))

⎞

⎠ , (5)
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Above terms are separation costs of assigning binary labels to adjacent pix-
els. This cost is zero if the adjacent labels are identical, and non-zero if they
are different. However the formulation above is incomplete because although it
encodes spatial coherence, it does not reflect our expectation that pixels in the
same neighbourhood should be close in location as well as intensity. Indeed, (5) is
maximized by the trivial solution Bp = {p}. One way to incorporate expectations
regarding geometric and intensity closeness is via the prior:

P̄ r(F p
q = 1) ∝ ψp

q = exp(−
ρ2

p,q

σ2
ρ

) · exp(−d2(p, q)
σ2

d

), (6)

where ρp,q =
√
|xp − xq|2 + |yp − yq|2 is the Cartesian distance between pixels

p and q, dp,q = |Ip − Iq| is the intensity distance, and parameters σρ and σd

select the appropriate geometric and intensity scale. We note that the above
“probability” distribution is in fact a heuristic - a useful model; unless this
model is exhaustively verified and valiadated for a vast set of imaging data, Eq
(6) will remain a design choice rather than an actual prior. It is possible that
other choices of prior might work better, and this area needs some investigation.
Maximizing (6) will lead to a “box” similar to (1). Therefore the criterion

f̂p
q = argmax

fp
q

(fp
q ψp

q + (1− fp
q )(1 − ψp

q )) (7)

clearly constitutes a first-order improvement over box methods [8], [12], [11],
[13], [9], [20], [19]. Hence we wish to combine (7) with the MRF model (5):

Pr(fp|I) = exp

⎛

⎝−λ
∑

q,s∈Wp, (q,s)∈N
u(q, s) · (1− δ(fp

q − fp
s ))

⎞

⎠

·
∏

q∈Wp

(fp
q ψp

q + (1− fp
q )(1− ψp

q )), (8)

where p ∈ P is a pixel, Wp its associated window. The new term assigns an
independent probability of including any pixel in Wp within the LIN Bp, while
the old terms continue to penalize separation between adjacent pixels. The op-
timal LIN around pixel p is the field realization which maximizes prior (8), or
equivalently, minimizes the energy

Ep(fp, I) =
∑

q,s∈Wp, (q,s)∈N
λ
(
K − |Iq − Is|)(1− δ(fp

q − fp
s )
)

+
∑

q∈Wp

(
fp

q log ψp
q + (1 − fp

q ) log (1− ψp
q )
)
. (9)

Minimization of Ep(fp, I) is over the binary random field Fp, given I:

f̂p|I = argmin
fp
{Ep(fp, I)}. (10)

Implementation of (10) makes it virtually impossible to obtain disjoint object
neighborhoods. We now describe a graph cut algorithm to minimize (10).
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2.2 A Graph Cut Algorithm to Compute LINs

Equation (10) is a 2-way mincut problem which can be efficiently solved in
polynomial time by the maxflow algorithm; for details see [21]. Let the graph
G = 〈V , E〉 have nodes V = {P , α, β}, and the two extra nodes α and β are
the source and sink, respectively. Nodes represent pixels and edges represent
their neighborhood relationships. Edges E = {T ,N} comprise two sets - T , the
set of so-called t-links, and N is the set of n-links. Figure 2 depicts the graph
construction, the mincut, and the LIN Bp. In the figure, t-link tαp ∈ T is an edge
going from α to the pixel node p in P , t-link tβp ∈ T is an edge going from β to
p, and n-link n{p,q} ∈ N is an edge going from the pixel node p to pixel node q,
both in P .

Fig. 2. Constructing the graph over a window Wp centered at pixel p. Mincut on
this graph leads to a binary classification of every pixel in Wp, giving the influence
neighbourhood of p.

We wish to perform optimal LIN estimation for each pixel p by minimizing
the energy functional Ep(fp, I), given I. So we form a graph on Wp, the window
around p. Clique potentials in (3) involve only adjacent neighbors, so the set of
n-links is simply N .

The graph cut algorithm is described below: For each pixel p in the image

1. Form G = 〈V , E〉, V = {Wp, α, β}, E = {T ,N}; T = {(q, α), (q, β)|q ∈ Wp}.
2. Find Mincut C on G using Table 1. Define mapping fp = {fp

q , q ∈ Wp} as:

fp
q =

{
0 if tαq ∈ C
1 if tβq ∈ C

The mincut on G minimizes (10), as indicated by Theorem 1, whose proof is
suppressed to save space, but follows along the lines of previous results [21]. The
edge assignments used here are described in Table 1.

Theorem 1. Equivalence between Mincut and minimization of Ep(fp, I).
The mapping fp produced by the mincut on Wp with edge capacities as de-

scribed in Table 1 minimizes Ep(fp, I).



Deducing LINs with Application to Edge-Preserving Image Denoising 185

Table 1. Edge weight assignment

Edge Weight for

tα
q log ψp

q q ∈ Wp

tβ
q log (1 − ψp

q ) q ∈ Wp

n{q,s} |Iq − Is| q, s ∈ Wp, (q, s) ∈ N

3 Expectation-Maximization Algorithm For MAP Image
Denoising Using Local Influence Neighbourhoods

Recall the classic stationary image model enforcing global smoothness is given by
Pr(I) = exp

(
− ||D(I)||2

2σ2
d

)
, where D is a high-pass operator which may generally

be written in terms of a low-pass operator D = I − H. We modify this by
restricting the operation of the low-pass operatorH to follow the domain implied
by the LINs, and call it (Hf (I)). Hence we propose

Pr(I|f) = exp
(

−||I−Hf (I)||2
2σ2

d

)

. (11)

In the presence of i.i.d. Gaussian noise, Pr(O|I) = exp
(
− ||O−I||2

2σ2
n

)
.

Now Pr(O|I, f) = Pr(O|I), so joint maximum a posteriori (MAP) estimate
of I and f maximize

Pr(I, f |O) ∝ Pr(O|I, f) · Pr(I, f)

Since joint maximization over both I and f is challenging, we propose an
expectation-maximization (EM) type approach, which involves a two-step opti-
mization. Start with Î(0) = O, the noisy image. Then iterate:

1. f̂ (k) = argmaxf Pr(f |Î(k−1))
2. Î(k) = argmaxI Pr(I|O, f̂ (k)) = arg maxI Pr(O|I) · Pr(I|f̂ (k))

until k > kmax or ||I(k) − I(k−1)|| < ε.
The first step is identical to the method described in §2.1, Eq. (10), which is

solved using graph cuts. The second step is easily shown, from (11):

Î(k) = argmin
I

||O− I||2
σ2

n

+
||I−Hf̂ (k)(I)||2

σ2
d

.

To simplify, we introduce the approximate iteration

Î(k) = argmin
I

||O− I||2
σ2

n

+
||I−Hf̂ (k)(Î(k−1))||2

σ2
d

.

This approximation is good since Hf̂ (k) is a low-pass operator. A closed form
solution is obtained by differentiating and equating to zero:

Î(k) =
σ2

dO + σ2
nHf̂ (k)(Î(k−1))

σ2
d + σ2

n

. (12)

This is simply a local LIN-restricted kernel filtering operation.
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4 Results

First we show some typical examples of LINs obtained from the proposed tech-
nique, in Figure 4. Next we show some typical local influence neighbourhoods
obtained on real images using our approach. Figure 3 shows the first six most
frequently occurring LINs counted over a large number of test images, including
all the images displayed in this paper. These LINs were obtained using param-
eter choices described below. While parameter choice can influence the relative
frequency order of these LINs for a single image, counted over a number of im-
ages, the LINs displayed in the figure can be reasonably taken to reflect their
true frequency in commercially obtained images. The overwhelming majority of
LINs in any image is the circular neighbourhood shown in (a). This is reasonable,
since most pixels do not occur near object boundaries, and will get assigned a
circular LIN by our algorithm. We note that none of the neighbourhood choices
used in [10] figure in the most frequent list. Interestingly, the frequency rank of

Fig. 3. The 6 most frequently occurring local influence neighbourhoods. The frequency
of occurrence is indicated below each figure.

Fig. 4. Some example LINs shown for the “Lena” image
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Table 2. Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR, dB, in
brackets) of denoising algorithms

Image Noisy image Gaussian Adaptive-scale LIN filtering

Lena 35.4 53.0 27.4 23.4
(32.3) (30.5) (33.4) (34.1)

Lighthouse 72.2 218.7 64.0 63.2
(29.5) (24.7) (30.1) (30.1)

Mandill 348.1 397.6 264.9 251.8
(21.9) (21.3) (23.0) (23.3)

Peppers 338.7 66.4 65.9 50.7
(21.9) (28.9) (29.0) (30.1)

Bike 148.3 311.7 209.6 124.3
(26.4) (23.2) (24.9) (27.2)

(a) (b)

(c) (d)

Fig. 5. Noisy “Bikers” image (a), denoised by (b) kernel smoothing, (c) adaptive-scale
smoothing, and (d) LIN-restricted smoothing

the standard 3 x 3 neighbourhood used in many conventional filtering operations
was nearly 50, which suggest that using this neighbourhood is inappropriate in
almost all cases!
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(a) (b)

(c) (d)

Fig. 6. Noisy “Lena” image (a), denoised by (b) kernel smoothing, (c) adaptive-scale
smoothing, and (d) LIN-restricted smoothing

Mean square error (MSE) and peak signal to noise ratio (PSNR) are sum-
marized in Table 2. For comparison we implemented simple Gaussian kernel
smoothing and the method of [19], a good example of adaptive kernel smoothing.
We did not evaluate diffusion type methods since our main aim is to demonstrate
the power of influence neighbourhoods. Parameter choice for all results in this
paper are as follows: σρ = 2.5, λ = 0.5,Wp is the 11× 11 sliding window around
p. Three EM iterations (kmax = 3) were used in each case. σd was selected
identical to the method used in [19].

Zoomed regions of denoising results are shown in figures 5, and 6. LIN denois-
ing compares favourably with both kernel smoothing and scale-adaptive smooth-
ing. The adaptive scale method performs poorly in noisy high-frequency regions
since the scale chosen by the technique becomes too small for adequate noise
removal.

5 Conclusion and Discussion

We described an efficient graph-based algorithm for obtaining local influence
neighbourhoods. LINs were shown to provide additional local context informa-
tion to create an image model which is superior to global smoothness
assumptions. We demonstrated the use of LINs for local filtering operations,
obtaining LIN-restricted morphological filters as well as kernel filters. We then
incorporated LINs within a Bayesian denoising method, and proposed a new
expectation-maximization type denoising algorithm. We argued and provided
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some experimental evidence that using LINs in prior models can be superior to
pixel-based statistical models since they provide higher order information about
local image statistics. Our results compare favourably with existing denoising
methods like scale-adaptive kernel smoothing.

Several parameter and design choices of our algorithm have not been ad-
equately justified experimentally. For instance, we have nto investiagted teh
boundary and computational effects of changing the size ofWp, the window size.
We have not discussed a propoer determination of noise and signal variances,
nor the effect of different smoothing parameters λ. These issues are currently
being investigated experimentally.

Apart from the denoising, there are many interesting uses for optimal LINs.
LINs can be used as structuring elements for morphological operations, and
to improve segmentation and edge detection. A simple method for segmenting
images using LINs would be to iteratively merge neighbouring LINs using graph
clustering techniques [22]. Similarity metrics between neighbouring LINs can be
used as MRF priors. LINs can also be used to improve MRF formulation of
images, by restricting cliques so that no pixel pairs occur in violation of their
respective LINs. LINs can act as feature vectors for matching, target detection
and registration applications. Many workers have used local window or patch-
based feature vectors for these tasks, for example using wavelet coefficients of
a local window as feature vectors for registration in [23]. We suggest the use of
LINs in a similar fashion. LIN-based feature vectors can incorporate higher-order
local contour information than is possible by purely intensity based features.
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Abstract. A new method for smoothing both gray-scale and color im-
ages is presented that relies on the heat diffusion equation on a graph. We
represent the image pixel lattice using a weighted undirected graph. The
edge weights of the graph are determined by the Gaussian weighted dis-
tances between local neighbouring windows. We then compute the asso-
ciated Laplacian matrix (the degree matrix minus the adjacency matrix).
Anisotropic diffusion across this weighted graph-structure with time is
captured by the heat equation, and the solution, i.e. the heat kernel, is
found by exponentiating the Laplacian eigen-system with time. Image
smoothing is accomplished by convolving the heat kernel with the im-
age, and its numerical implementation is realized by using the Krylov
subspace technique. The method has the effect of smoothing within re-
gions, but does not blur region boundaries. We also demonstrate the re-
lationship between our method, standard diffusion-based PDEs, Fourier
domain signal processing and spectral clustering. Experiments and com-
parisons on standard images illustrate the effectiveness of the method.

1 Introduction

Smoothing is one of the most fundamental and widely studied problems in
low-level image processing. The main purpose of image smoothing is to reduce
undesirable distortions and noise while preserving important features such as
discontinuities, edges, and corners. During the last two decades, diffusion-based
filters have become a powerful and well-developed tool for image smoothing and
multi-scale image analysis [1]. Perona and Malik [2] was the first to formalise
anisotropic diffusion scheme for scale-space description and image smoothing.
The basic idea of this nonlinear smoothing method was to smooth images with a
direction selective diffusion that preserves edges. Catte et al. [3] identified the ill-
posedness of the P-M diffusion process and proposed a regularised modification.
Weickert [1] formulated anisotropic diffusion in terms of a diffusion tensor. This
nonlinear diffusion technique has been subsequentially extensively analysed and
developed [1,4,5]. More recently, diffusion-based PDEs has also been developed
for smoothing multi-valued images [1,6].

Most diffusion-based PDEs for image smoothing assume that the image is a
continuous two dimensional function on R2 and consider discretization for the
purpose of numerical implementation. It is desirable that the implementation
be fast, accurate, and numerically stable, but these requirements are sometimes
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difficult to achieve. Moreover, images, and especially noisy ones, may not be
sufficiently smooth to give reliable derivatives. Thus, for filtering noisy images it
is more natural to consider the image as a smooth function defined on a discrete
sampling structure.

In this paper, we present a discrete framework for anisotropic diffusion which
relies on the diffusion process on graphs. We admit the discrete nature of im-
ages from the outset, and use graphs to represent the arrangement of image
pixels. Here the vertices are pixels. Each edge is assigned a real-valued weight,
computed using Gaussian weighted distances between local neighboring win-
dows. This weight corresponds to the diffusivity of the edge. Instead of using
diffusion-based PDEs in a continuous domain, our method is based on the heat
equation on a graph [7,8]. The advantage of formulating the problem on a graph
is that it requires purely combinatorial operators and as a result no discretization
is required. We therefore incur no discretization errors. We pose the problem of
anisotropic diffusion in a graph-spectral setting using the heat kernel. We exploit
the relationship between the graph heat-kernel and the Laplacian eigensystem
to develop a new method for edge-preserving image smoothing. This is accom-
plished by convolving the heat kernel with the image. By varying the diffusion
time we control the amount of smoothing resulting from heat diffusion. The re-
sulting algorithm can be implemented in two ways. The exact solution of the
algorithm can be efficiently computed without iterations by using the Krylov
subspace projection technique [9]. The method is a type of anisotropic diffu-
sion that can be applied to smooth both gray-scale and color images. We have
also demonstrated the relationship between our method, standard anisotropic
diffusion, Fourier domain signal processing and spectral clustering.

2 A Graph Spectral Approach to Image Smoothing

This section describes the algorithm in three stages. These are a) representing an
image as a weighted undirected graph, b) establishing and solving the diffusion
equation, and c) practical details of implementation.

2.1 Graph Representation

To commence, we represent a gray-scale or color image using a weighted undi-
rected graph G = (V, E) with node (vertex) set V and edge set E ⊆ V × V .
The nodes V of the graph are the pixels of the image. An edge, denoted by
eij ∈ E, exists if the corresponding pair of pixel sites satisfies the connectivity
requirement on the pixel lattice. The weight of an edge, eij , is denoted by w(i, j).
The edge weights play an important role in our graph-based diffusion method,
since they control the flow of heat across the graph. If the edge weight w(i, j) is
large, then heat can flow easily between nodes vi and vj . By contrast, if w(i, j)
is small, it is difficult for heat to flow from vi to vj , i.e., a weight of zero means
that heat may not flow along the edge.
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i
j

l

w(i,j)

w(i,l)

Fig. 1. Illustration of the win-
dow representation of pixels.
w(i,j) is large because their
neighbouring windows are sim-
ilar. w(i,l) is much smaller.

A most popular and simply choice for charac-
terising the relationship between different pixels
is the Gaussian weighting function [2,10]. How-
ever, for noisy images, this method is not robust
to image noise. A more reliable approach is to
represent each pixel not only using the intensity
of the pixel itself, but also using the intensities of
the neighbouring pixels. Briefly, we characterise
each pixel by a window of neighbors instead of
using a single pixel alone. Thus, we can mea-
sure the similarity between two pixels using the
windows surrounding them. This method of sim-
ilarity measurement was first used for non-local
mean denoising by Buades et al. [5]. Here, we sim-
ply use square windows of fixed size n. Fig. 1 illus-
trates the square window representation of pixels
and the similarities between them. Let Ni denote
the window of pixel i, and the intensities within window Ni are encoded as a
vector Ni. Hence, we can measure the similarity between two pixels i and j using
the Gaussian weighted Euclidean distance between the windows Ni and Nj , i.e.

dσ(i, j) = ‖Ni −Nj‖2,σ = Gσ ∗ ‖Ni −Nj‖2. (1)

The Gaussian filter is used here to improve the stability of the distances to noise.
The measurement in Equation (??) is well suited for removing additive white
noise, and this type of noise alters the distance between windows in a uniform
way [5], i.e. E(‖Ni−Nj‖2,σ) = ‖Ni−Nj‖2,σ + 2ε2, where E(·) is the expecta-
tion; Ni is the window at i in the ground truth image; and ε2 is the variance of
the noise. This shows that the Gaussian weighted Euclidean distance preserves
the order of similarity between pixels. So the most similar windows to Ni in the
ground truth image are also expected to be the most similar windows to Ni in
the noisy one. We thus choose to compute the edge weight using

w(i, j) =

{

exp(− ‖Ni−Nj‖2
2,σ

κ2 ) if ‖X(i)−X(j)‖2 ≤ r,
0 otherwise.

(2)

2.2 Graph Smoothing

Since we wish to adopt a graph-spectral approach, we make use of the weighted
adjacency matrix W for the graph G where the elements are W (i, j) = w(i, j)
if eij ∈ E, and 0 otherwise. We also construct the diagonal degree matrix T
with entries T (i, i) = deg(i) =

∑
j∈V w(i, j). From the degree matrix and the

weighted adjacency matrix we construct the combinatorial Laplacian matrix
L = T −W . The spectral decomposition of the Laplacian is L = ΦΛΦT , where
Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the eigenvalues ordered ac-
cording to increasing magnitude (0 = λ1 < λ2 ≤ λ3...) as diagonal elements and
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Φ = (φ1|φ2|....|φ|V |) is the matrix with the correspondingly ordered eigenvectors
as columns. Since L is symmetric and positive semi-definite, the eigenvalues of
the Laplacian are all positive.

As noted by Chung [7], we can view the graph Laplacian L as an operator L
over the set of real-valued functions f : V �→ R such that, for a pair of nodes,
i and j ∈ V , we have Lf(i) =

∑
eij∈E(f(i) − f(j))W (i, j). In matrix form the

heat equation on a graph associated with the Laplacian L is [7,8]

∂Ht

∂t
= −LHt (3)

where the |v|× |V | matrix Ht is the heat kernel and t is time. Recently, the heat
kernel has been widely used in machine learning for dimensionality reduction,
semi-supervised learning and data clustering [8,11]. The heat kernel satisfies the
initial condition H0 = I|V | where I|V | is the |V | × |V | identity matrix. The
solution to the heat equation is found by exponentiating the Laplacian matrix
with time t, i.e.

Ht = e−tL = I − tL +
t2

2!
L2 − t3

3!
L3 + · · · . (4)

If we substitute L = ΦΛΦT into the second equality of Equation (4), we have
Ht = Φe−tΛΦT . The heat kernel is a |V | × |V | symmetric matrix. For the nodes
i and j of the graph G the resulting element is Ht(i, j) =

∑|V |
i=1 e−λitφi(i)φi(j)

When t tends to zero, then Ht � I−Lt, i.e. the heat kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then Ht � e−tλ2φ2φ

T
2 , where λ2 is the smallest non-zero eigenvalue and φ2 is the

associated eigenvector, i.e. the Fiedler vector. Hence, the large time behavior is
governed by the global structure of the graph.

In order to use the diffusion process to smooth a gray-scale image, we inject at
each node an amount of heat energy equal to the intensity of the associated pixel.
The heat initially injected at each node diffuses through the graph edges as time
t progresses. The edge weight plays the role of thermal conductivity. According
to the edge weights determined from Equation (2), if two pixels belong to the
same region, then the associated edge weight is large. As a result heat can flow
easily between them. On the other hand, if two pixels belong to different regions,
then the associated edge weight is very small, and hence it is difficult for heat
to flow from one region to another. This heat diffusion process is again governed
by the differential equation in (3), however, the initial conditions are different.
Now the initial heat residing at each vertex is determined by the corresponding
pixel intensity. If we encode the intensities of the image as a column vector I,
then the evolution of the pixel intensities for the image follows the equation

{
∂ut

∂t = −Lut

u0 = I,
(5)

where ut is a real-valued function, i.e. u(x, t) : V × R �→ [0, 255], which means
the intensity of the pixel x at time t. The solution of Equation (5) is

ut = e−tLI = HtI. (6)
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As a result the smoothed image intensity of pixel j at time t is ut(j) =
∑|V |

i=1 I(i)×
Ht(i, j). This is a measure of the total intensity to flow from the remaining
nodes to node j during the elapsed time t. When t is small, we have ut �
(I − (D−W )t)I . Since each row i of the heat kernel Ht satisfies the conditions
0 ≤ Ht(i, j) ≤ 1 for ∀j and

∑|V |
j=1 Ht(i, j) = 1, the total integrated intensity over

the set of pixels in the image is identical at all times.
In the case of color, or general vector-valued images, we let each component

of the image diffuse separately on the graph constructed from the weighting
function in Equation (2) using the neighbouring windows of color values. We
thus apply Equation (5) to each of the three independent components (RGB
in our case) of the color images, and this forms a system of three coupled heat
equations. The coupling results from the fact that the edge weight or diffusivity
of the graph depends on all the image channels.

2.3 Numerical Implementation

In practice the number of image pixels is large, e.g. 256× 256 = 65536 pixels, so
it is not tractable to calculate smoothed images by first finding the heat kernel.
To overcome this problem, here we make use of the Krylov subspace projection
technique [9], which is an iterative method for sparse matrix problems. This
allows us to compute the action of a matrix exponential operator on an operand
vector, i.e. e−tLI, without having to compute explicitly the matrix exponential
e−tL in isolation. The underlying principal of the Krylov subspace technique
is to approximate ut = etAI = e−tLI by an element of the Krylov subspace
Km ≡ span{I, (tA)I , ..., (tA)m−1I} where m is typically small compared to the
order of L. The approximation being used is

ut ≈ βVmetHmτ1, (7)

where τ1 is the first column of identity matrix Im; Vm and Hm are, respectively,
the orthonormal basis of the Krylov subspace Km and the upper Hessenberg
matrix resulting from the well-known Arnoldi process. Thus, the initial large
but sparse etA problem in Equation (6) is reduced to a much smaller but dense
etHm problem in Equation (7) which is computationally more desirable. For our
local connected graphs, the Laplacian matrix L is symmetric, positive-definite
and very sparse with few circulant nonzero elements in each row. As a result, the
above Arnoldi process can be replaced by the Lanczos process which decreases
the computational complexity and saves CPU time. The implementation of the
Krylov subspace method for solving Equation (6) in this paper relies on the
MATLAB subroutines from the Expokit package [9]. Tests on a PC with an
Intel P4 2.8GHZ CPU and 1.5GB of memory show that it requires approximately
3 ∼ 6 seconds to solve Equation (6) for the Laplacian matrix of a 4-connected
or 8-connected graph with 256× 256 nodes.

Continuous vs. Discrete Scale. Although we have presented the exact solu-
tion of our diffusion equation in (5), there also exists a discrete approximation
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of the diffusion equation, as is the case with all diffusion-based PDE methods.
If we discretise the time (or scale) t of Equation (5), we obtain the following
discrete version of our continuous diffusion process

uk+1 = (I − ϕL)uk, (8)

where ϕ > 0 is the time step size. The discrete version in Equation (8) converges
to the continuous diffusion process in Equation (5) for small ϕ. It is sometimes
difficult to set the step size ϕ and construct the graph efficiently enough to update
graph Laplacian over many time steps. Hence, we choose the exact solution for
continuous time in our implementation.

2.4 Algorithm Summary

To summarise, the steps of the algorithm are:

1. Use Equation (2) to generate edge weights of the graph for a gray-scale or
color image and encode the image intensities (or each channel of a color
image) as a long-vector I .

2. Compute ut from Equation (6) at time t for a gray-scale image (or each
channel of a color image) using the Krylov subspace technique.

3. Unpack the resulting vector ut to recover the smoothed image.

3 Analysis of the Algorithm

3.1 Relationship to Anisotropic Diffusion

We now turn our attention to the relationship between the continuous nonlinear
PDE methods and our framework of graph-spectral smoothing. In our method,
the geometry of the image is captured by the weight and connectivity struc-
ture of the graph representation. A gray-scale image I can be regarded as a
two-dimensional manifold M embedded in R3, i.e. X : (x1, x2) ∈ Ω ⊂ R2 →
(x1, x2, I(x1, x2)) ∈ M ⊂ R3. The 2 × 2 metric tensor J of the manifold M is

given by J =
(

1 + I2
x1 Ix1Ix2

Ix1Ix2 1 + I2
x2

)

where Ix1 = ∂I
∂x1 .

We can thus regard the graph representation of the image as a discrete mesh
of the manifold. Based on the idea in [11], if we set the edge weight between
two nodes i and j (corresponding to two points xi = (x1

i , x
2
i , I(x1

i , x
2
i )) and xj =

(x1
j , x

2
j , I(x1

j , x
2
j)) on M) as w(i, j) = e−

‖xi−xj‖2

4t = e−
(x1

i −x1
j )2+(x2

i −x2
j )2+(Ii−Ij)2

4t

if ‖xi − xj‖ ≤ r, and 0 otherwise. then the graph Laplacian converges to the
continuous Laplace-Beltrami operator $M of the manifold M . Thus, our graph-
based diffusion process in Equation (5) converges to the continuous heat equation
on the manifold M , i.e. ∂f

∂t = −$Mf, where f is a function defined on M , i.e.
f(x, t) : M×R→ R, with initial condition f(x, 0) = I(x). The Laplace-Beltrami
operator for M is defined as [12] $Mf = −

∑2
k=1

∑2
l=1

1√
|J|∂k(

√
|J |Jkl∂lf),

where |J | is the determinant of J ; J ij are the components of the inverse of
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the metric tensor J and ∂k = ∂
∂xk . Therefore, we have the following diffusion

equation
∂f

∂t
=

1
√

1 + |∇I|2
div(D∇f), (9)

where ∇ and div are the gradient and divergence operators defined on R2, and
the diffusion tensor D is given by

D =
√
|J |J−1 =

1
√

1 + |∇I|2

(
1 + I2

x2 −Ix1Ix2

−Ix1Ix2 1 + I2
x1

)

. (10)

Thus, for the above choice of weights, our algorithm has a similar formulation
to continuous PDE methods in the literature [1]. However, for a different choice
of graph representation, e.g. using the weighting method in Equation (2), it is
difficult to formulate our graph diffusion explicitly using a continuous PDE in
terms of a diffusion tensor. This is because it may not be easy to analyse the
geometry of the underlining graph in this case. Although our method evolves
a linear equation on a graph representation of an image, it is a highly non-
linear analysis of the image in the original spatial coordinates in R2. Thus, we
recast the problem of finding a sophisticated diffusion-based nonlinear PDE for
image smoothing to that of finding a faithful representation of the image using
a weighted graph. It is often easier to find a graph representation that preserves
image structures than to find a diffusion tensor for an equivalent continuous
PDE. This can be regarded as one of the main strengths of our method.

3.2 A Signal Processing View of the Algorithm

The present algorithm can also be understood in terms of Fourier analysis, which
is a natural tool for image smoothing. An image (a function defined on R2) nor-
mally contains a mixture of different frequency components. The low frequency
components are regarded as the image content, and the high frequency compo-
nents as the noise content. From the signal processing viewpoint, our approach
is an extension of the Fourier analysis to images (signals) defined on graphs.
This is based on the observation that the classical Fourier analysis of signals
defined in a continuous domain can be seen as the decomposition of the signal
into a linear combination of the eigenvectors of the graph Laplacian. The eigen-
values of the Laplacian represent the frequencies of the eigenfunctions. As the
frequency (eigenvalue) increases, then so the corresponding eigenvector changes
more rapidly from vertex to vertex. This idea has been used for surface mesh
smoothing in [13].

The image I defined on the graph G can be decomposed into a linear com-
bination of the eigenvectors of the graph Laplacian L, i.e. I =

∑|V |
k=1 akφk. To

smooth the image using Fourier analysis, the terms associated with the high
frequency eigenvectors should be discarded. However, because the Laplacian L
is very large even for a small image, it is too computationally expensive to cal-
culate all the terms and the associated eigenvectors for the decomposition. An
alternative is to estimate the projection of the image onto the subspace spanned
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by the low frequency eigenvectors, as is the case with most of the low-pass filters.
We wish to pass low frequencies, but attenuate the high frequencies. According
to the heat kernel picture in Fig. 2, the function e−tx acts as a transfer func-
tion of the filter such that e−tx ≈ 1 for low frequencies, and e−tx ≈ 0 for high
frequencies. This is illustrated in Fig. 2. As the value of t increases, then the
transfer function becomes steeper. Thus, the graph heat kernel can be regarded
as a low-pass filter kernel.

3.3 Relationship to Spectral Clustering
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Fig. 2. Graph of the transfer function e−tx

with different values of t

Spectral clustering has proved to
be a powerful tool for image seg-
mentation [10], and, data analysis
and clustering [11]. In its simplest
form it uses the second eigenvector
(Fiedler eigenvector) of the graph
Laplacian matrix constructed from
the weighted affinity graph for
the sample points to obtain a bi-
partition of the samples into two
groups [10]. Often, instead of con-
sidering only the second eigenvec-
tor, one uses the first k eigenvectors
(for some small number k) simulta-
neously to obtain a multi-partition
into several sets [11].

In the present algorithm, the
heat kernel reduces the effect of the
large eigenvalues to zero as time t increases (see Fig. 2). As mentioned in Sec-
tion 2.2, if t is large the behavior of the heat kernel is governed by the second
eigenvector of the graph Laplacian, i.e. Ht � I − e−tλ2φ2φ

T
2 . To smooth an im-

age, the algorithm then projects the noisy image onto the space spanned by the
first few eigenvectors. This process has a similar effect to spectral clustering al-
gorithms [10,11]. Thus, our smoothing method is structure preserving due to the
fact that the first few eigenvectors of the Laplacian encode the region-structure
of the image.

4 Experiments

In this section, we provide experimental results of applying the graph-spectral
smoothing method to a variety of image data. We also give qualitative and quan-
titative comparisons with several state of the art methods. In our experiments,
we simply choose 8-connected graphs to represent all images and set window size
5× 5 to compute edge weights from Equation (2).

Gray-scale Case: The top row of Fig. 3 shows the result of applying graph
smoothing on the standard House image. The algorithm preserves fine structures
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(a) (b) (c) (d)

Fig. 3. Column (a): noisy images. standard house (top), Brain MRI (bottom). (b):
smoothed results. The parameters for the top is t = 3, κ = 0.15, σ = 0.7, bottom image
t = 3, κ = 0.09, σ = 0. (c) and (d): zoomed portions of the noisy and smoothed images.

while removing noise. Because the image has periodic patterns, the performance
of the algorithm can hence be improved with a larger connectivity graph (large
value of r in Equation (2)). The reason is as follows. For images with repeated
texture, the neighbourhoods are very similar [5]. Thus, each pixel not only ac-
quires support from its neighbouring pixels, but also from non-local pixels. The
middle row of Fig. 3 gives the result of processing an MRI slice of a head with
complex structures. This example demonstrates that the graph smoothing can
work well on images with low intensity contrast.

We have qualitatively compared the behavior of our method with state of the
art denoisers. Fig. 4 shows results of applying our graph smoothing algorithm
(GRAPH), the regularised Perona-Malik (RPM) method [3], non-linear complex
ramp-preserving diffusion (NCRD) [4], coherence-enhancing diffusion (CED) [1],
total-variation (TV) denoising [14] and wavelet filtering (WAVELET) [15] on
the standard Lenna image with a large amount of additive zero-mean noise.
The figure shows our method gives noticeably better results than the alternative
PDE-based methods for both noise elimination and feature preservation. Wavelet
denoising may better restore the fine details of the image than the PDE-based
filters. This is the case in the region of hair in the Lenna image. However, it also
introduces some ring-like artifacts in the smooth regions.

In order to better analyse the performance of the graph-based smoothing
method, we also compare quantitatively the performance of the proposed al-
gorithm with the aforementioned alternative filters. We test each of these fil-
ters with the five images mentioned above, i.e. four standard images widely
used in the image processing literature and one MRI image. Table 1 shows the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a) noisy Lenna (b) zoomed portion (c) our graph smoothing with t = 5, κ =
0.1, σ = 1.0. (d) RPM [3] (e) NCRD [4] (f) CED [1] (g) TV [14] (h) WAVELET [15].

root-mean-square (RMS) error of the filtered images. The table shows that our
method gives smaller RMS error than the alternative PDE-based methods re-
ferred to above. The wavelet filtering [15] gives better results than our method
on the standard Barbara image and the house image. However, our algorithm
gives a smaller RMS error than that of wavelet filtering on the standard Lenna
image, the Baboon image and the MRI image. Moreover, the wavelet filtering [15]
requires significantly more CPU time than our method.

Table 1. RMS errors for graph smoothing and state-of-the-art filters

Example Initial
RMS error

Graph
smoothing

RPM [3] NCRD [4] CED [16] TV [14] WAVELET
[15]

Standard Barbara 7.3240 5.4425 6.6167 6.8175 6.1597 6.4073 5.0114
Standard Lenna 9.3648 5.4189 5.9209 7.0591 6.3288 6.0856 5.5158
Standard Baboon 9.3519 8.3403 8.7419 9.0323 8.7531 8.5902 8.4752
house 7.3230 3.8535 4.6618 7.0557 3.6956 5.1284 3.4976
MRI brain 5.6200 3.0128 4.1019 4.4023 3.9665 3.8667 3.5866

Note: The standard images of Barbara and Baboon do not appear in this paper.

We have also evaluated the performance of our method on images with dif-
ferent levels of noise. We take the standard 256 × 256 gray-scale Lenna image
as the ground truth. To create noise corrupted images, we scale the intensities
of the ground truth image to the range 0 ∼ 1.0 and corrupt it using IID ad-
ditive zero-mean noise with increasing standard deviation. We then rescale the
noisy intensities to the range 0 ∼ 255 to create a sequence of noisy images. Both
our method and the aforementioned filters, i.e., RPM [3], NCRD [4], CED [16],
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Fig. 5. RMS error comparison of graph smoothing with RPM [3], NCRD [4], CED [16],
TV [14] and WAVELET [15] on standard Lenna image corrupted by additive zero-mean
noise with increasing standard deviation

(a) (b) (c) (d)

Fig. 6. Column (a): noisy images (b): smoothed results. The parameters for the top is
t = 3, κ = 0.15, σ = 0.7, middle t = 3, κ = 0.09, σ = 0, and bottom image t = 3, κ =
0.12, σ = 0.7. (c) and (d): zoomed portions of the noisy and smoothed images.

TV [14] and WAVELET [15], were applied to the sequence of noisy images. For
each noisy image, we manually choose the parameters of each method to ob-
tain the best result. To compare these methods, we again computed the RMS
error of the reconstructed images as a function of the noise standard devia-
tion for each method. The results are plotted in Fig. 5. The plot shows that
our method gives results that are comparable to those of wavelet filtering [15]
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and also shows that our method outperforms the alternative PDE-based ap-
proaches [3,4,16,14].

Color Case: Fig. 6 shows the results of applying our graph smoothing on color
images. The results are compared with that of the curvature-preserving PDE
regularisation [6]. Fig. 6 gives the results of applying the two methods on the
standard Lenna image and the standard Airplane image. Both images are cor-
rupted by a large amount of additive noise. As the figure shows, our method not
only preserves the object boundaries and features, such as the eyes and hair of
the face of Lenna and the numbers on the Airplane, but it is also not sensitive to
noise. Although the curvature-preserving PDE [6] works fairly well and is able
to eliminate severe noise, but it has a tendency to over smooth and blur the fine
details of the objects.

5 Conclusion

In this paper, we have proposed a novel algorithm for gray-scale and color image
smoothing. Unlike most continuous PDE-based methods for image smoothing,
we formulate the problem using a graph-spectral approach. We represent images
using weighted undirected graphs, and the edge weights are computed using
distances between neighbouring windows of pixels. We smooth images by allow-
ing the image intensities to diffuse across the graph structure. The solution is
found by simply convolving the heat kernel with the original image. The nu-
merical implementation of the algorithm can be efficiently accomplished using
the Krylov subspace technique. We theoretically demonstrated the relationships
between our graph smoothing, the standard diffusion-based PDE, signal pro-
cessing and spectral clustering. Experiments demonstrate the effectiveness of
the method.
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Abstract. In this paper we develop a new formulation of probabilistic
relaxation labeling for the task of data classification using the theory
of diffusion processes on graphs. The state space of our process as the
nodes of a support graph which represent potential object-label assign-
ments. The edge-weights of the support graph encode data-proximity and
label consistency information. The state-vector of the diffusion process
represents the object-label probabilities. The state vector evolves with
time according to the Fokker-Planck equation. We show how the solution
state vector can be estimated using the spectrum of the Laplacian matrix
for the weighted support graph. Experiments on various data clustering
tasks show effectiveness of our new algorithm.

1 Introduction

The problem of data clustering is a pervasive one, and numerous algorithms
have been developed to solve it. Recently, spectral clustering methods have at-
tracted widespread interest for this task. These methods use a weighted graph
to represent and cluster data in an unsupervised manner using the eigenvec-
tors of a proximity matrix. A comparison of spectral clustering methods can
be found in Fischer and Poland’s work [6]. Since the steady state random walk
on a graph is determined by the Fiedler vector of the Laplacian matrix, spec-
tral methods are closely akin to those that employ random walks on a graph
structure. Consequently, various learning methods have exploited random walks
for data classification tasks. These are semi-supervised methods that set their
labeled data-points as the absorbing states of the walk, and pose the clustering
problem in terms of the probability of reaching one of those states. Examples
are the approaches described in [19,20,26]. These methods do not address the
problem of exploiting knowledge concerning the semantic constraints that ex-
ist between different class labels, also they do not use initial confidence in the
assignment of class labels. Zhu, Ghahramani and Lafferty [27] also use random
walks for clustering tasks. However, they pose the problem in a continuous state
space, and address only the binary classification problem. Although of limited
generality, binary labelling can be used to tasks such as foreground-background
separation in problem domains such as video surveillance and target tracking
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where interesting objects are usually manually specified at the beginning of a
data sequence [1,14].

Relaxation labeling is a widely used contextual labelling method in computer
vision and pattern recognition. The pioneering work was Waltz’s line-labeling
technique [23] which is referred to as discrete relaxation. It uses constraint re-
lations to discard inconsistent object-label assignments. Subsequent work show
how a diverse family of relaxation algorithms could be successfully applied to
problems including image processing, clustering, pattern recognition [16,7,15,25].
For example, Rosenfeld, Hummel and Zucker’s work [16] resulted in a continu-
ous relaxation scheme in which the object-label assignments are represented by
a probability vector. The probability vector is updated in a non-linear fashion
using a support function to combine evidence for the different object-label as-
signments. Later work has refined the process in a number of ways. For instance,
Faugeras and Berthod [5] have posed relaxation labelling as an optimisation pro-
cess. Hummel and Zucker [8] have shown how relaxation labelling can be viewed
as satisfying a set of variational inequalities. Hancock and Kittler [9] have posed
both discrete relaxation and probabilistic relaxation in an evidence combining
setting commencing from a Bayesian viewpoint.

Belief propagation [24,18] is also a local evidence combining and propagation
process that is widely used in machine learning. Bayesian methods are used for
inference and Markov properties are usually assumed. As a result each node in
the network depends only on its immediate parent nodes, and is independent of
the ‘past’ nodes given the current immediately connected (parent) nodes. Weiss
gives an analysis of the relationship between classical relaxation methods and
belief propagation in [24], and demonstrates an advantage of belief propagation
over traditional relaxation in terms of the rate of convergence. However, more
complex relaxation labeling methods based on product support also converge
more rapidly than those based on simple arithmetic support.

In this paper, we aim to develop a new relaxation labeling method using the
theory of Fokker-Planck diffusion processes on graphs and apply the method to
the problem of data classification. In keeping with the spirit of relaxation labelling,
we aim to use prior knowledge of the initial label confidence and the semantic con-
straints on the class labels. In so doing, we first construct a support graph which
combines the structural information of the given object-set and label constraints.
Markov diffusion processes are then defined on the graph iteratively on the basis of
the graph’s neighbourhood system together with its vertex and edge attributes.
The object-label probabilities are then the components of the state probability
vector of the Fokker-Planck diffusion process on our support graph. Experimen-
tal results on various data-sets show encouraging performances of our algorithm.

2 Relaxation Labeling

Relaxation labeling is an iterative process that propagates label probabilities
globally via local interactions. Suppose that we are given a set of objects X =
{xi}ni=1, and a set of labels Ωi = {Ωi,j}mj=1 for each object xi ∈ X . The task of
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relaxation labeling is to assign a consistent and unambiguous label ω ∈ Ωi to
each object xi ∈ X on the basis of contextual information between the objects,
and prior knowledge concerning the compatibility structure of the labeling (i.e.,
label consistency constraints). For simplicity, we assume that the label sets Ωi

are identical for the different objects, as is the case of most relaxation labeling
applications. Denote by Ω = {ωi}mi=1, where m is the size of the given label
set. The available contextual information concerning label consistency is usually
represented using compatibility coefficients or functions in the form of a matrix
R = {Rij(ωi, ωj)}, which represents the compatibility between the node xi with
a label ωi and the node xj with a label ωj. The matrix R are usually given, but
it may also be learned from training data [15]. It is also convenient to assume
spatial homogeneity, that is, the entries Rij(ωi, ωj) are invariant to location [5].

Since the early work by Waltz [23], several different approaches for relax-
ation labeling have been developed. These approaches can be loosely classified
as discrete and continuous (or probabilistic). Here we are concerned with the
continuous case where each object maintains a weight (or, probability) vector
for each label in the label-set. The labeling process then adjusts the weight for
each object-label pair according to current local label confidences and compati-
bility information. The final labels are chosen as those with the largest weights.
The choice of the compatibility functions and the initial label assignment val-
ues are crucial to performance. The former represents the constraints between
different labels, and the latter concerns the prior confidence in the object-label
assignment. The support function also plays an important role as it is responsi-
ble for combining evidence for object-label assignments using the current label
probability estimates and the label compatibilities. For a successful and efficient
relaxation labeling process, a neighbourhood system also needs to be defined in
accordance with the structure of the given problem and object arrangement. In
[8], Hummel and Zucker use the following arithmetic average support function
for assigning label ωj to object j:

S(k)(j ← ωj) =
∑

i∈Nj

∑

ωi∈Ω

Rij(ωi, ωj)p(k)(i← ωi) (1)

where Nj is the set of neighbours of node j, and p(k)(i← ωi) is the probability
that node xi is assigned label ωi at the kth iteration. A powerful alternative to
the arithmetic average support in Eq.1 is to use the product support function
(e.g., [9]) given by:

S(k)(j ← ωj) =
∏

i∈Nj

∑

ωi∈Ω

Rij(ωi, ωj)p(k)(i← ωi). (2)

With the support function to hand, the label probabilities are revised by using
the update equation, e.g., [16]:

p(k+1)(j ← ωj) =
p(k)(j ← ωj)S(k)(j ← ωj)∑

ωi∈Ω p(k)(j ← ωi)S(k)(j ← ωi)
(3)

The process is iterated until a consistent and unambiguous labeling is found.
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3 Diffusion Processes on Graphs

Diffusion processes are local probability evolution processes with the property
that the behaviour in the future is independent of the past given the current state
probabilities. During probability evolution, local state probabilities are updated
through time using a neighbourhood system defined on the state space. In this
paper, we cast probabilistic relaxation labeling as a diffusion process on a support
graph. The first reason for embarking on this study is that graphs are natural
representations of the relational information residing in a data-set. Secondly,
in common with relaxation labelling, diffusion processes propagate information
globally via local evolution. Finally, recently there has been increasing interest in
defining diffusion processes on graphs [10,2,3,11,13] and successful applications
are reported in [21,22].

3.1 The Graphical Model

Suppose we are given a graph G = (V, E) where V is the node-set, and E is the
edge-set. For a pair of nodes vi, vj ∈ V connected by an edge, that is, (vi, vj) ∈ E
(denote by ‘i ∼ j’), the edge weight matrix W of G has elements Wij = fij if
i ∼ j, and Wij = 0 otherwise. Here fij is a weight function on vertices vi and vj

that reflects the strength of the connection. Denote by D = diag(deg1, . . . , degn)
where degi =

∑
j Wij is the degree of node i. Then the normalized adjacency

matrix of graph G is given by A = D−1/2WD−1/2. For undirected graphs fij

is symmetric; that is, fij = fji and thus W and A are symmetric. Another
frequently used representation is the Laplacian matrix. The elements Lij of the
Laplacian matrix L are given by:

Lij =
{
−Wij if i ∼ j;
degi otherwise

An alternative is to use the normalized Laplacian, which is given by [3] L =
D−1/2(D −W )D−1/2 = I − A. The eigensystems of the above matrices L and
A are closely related. Suppose that the normalized weighted adjacency matrix
A has the following eigen-decomposition:

A = UΛAUT . (4)

The eigen-decomposition of the normalized Laplacian then is L = U(I−ΛA)UT .
That is, their difference in the eigensystems only resides in the eigenvalues with
ΛL = I − ΛA.

The element Pij of the (one-step) transition matrix P is the probability of
moving to a node vj given that the current step is at node vi. That is, it governs
the discrete time random walk on the graph. For weighted graphs, the elements
of P are given by Pij = Wij/

∑
k,i∼k Wik. The matrix P is, in general, not

symmetric. As a result it is not easy to compute its eigensystem. However, P
shares the same eigenvalues and has eigenvectors related to those of A. From
Eq.4, the right eigenvector of P is vl

i = D1/2ui and the left eigenvectors are



208 H.-F. Wang and E.R. Hancock

vr
j = D−1/2uj . Denote the left and right eigenvector matrix of P as V l = {vl

i}
and V r = {vr

j }, respectively, we can see that (V l)T · Vr = (V r)T · V l = I where
I is the identity matrix, and P = V lΛAV r.

3.2 Diffusion Processes and Random Walks

Given a state space Γ and a suitable probability measure, a Markov process
{y(t); t ≥ 0} is uniquely defined by an initial state probability vector p0 and a
semi-group transition function P (t,x, Γ ), t ∈ [0,∞) defined on the state space.
The function P (t,x, Γ ) evolves according to the diffusion equation:

dP (t,x, Γ )/dt = −FP (t,x, Γ ), F =
d

dx

{

a(x)
d

dx
+ b(x)

}

, (5)

where F is the so-called Fokker-Planck operator. That is, P (t,x, Γ ) is then the
solution of Eq.5, and takes on the matrix exponential form P (t,x, Γ ) = e−tF .
For simplicity, we write P (t,x, Γ ) as P (t). Given the initial state probability
distribution vector p0, the state probability vector at time t is then computed
from the formula:

pt = P (t) · p0 = e−Ft · p0 (6)

In the discrete approximation, the operator F is explicitly represented by a
matrix. The computation of the matrix exponential exp(−tF) involved can be
näıvely computed by its definition

e−tF =
∞∑

k=0

(−1)ktkFk

k!
, (7)

The convergence of the series depends on the values of t and the matrix F , and
this process is usually slow. One efficient method of computation is the scaling
and squaring method [12]. When F is real and symmetric, we can perform the
eigen-decomposition F = UΛUT , where U = (u1, . . . ,un) is the matrix formed
from the right eigenvectors of F , and Λ is the diagonal matrix containing the
corresponding eigenvalues. The solution vector of the diffusion equation is thus

pt = Ue−ΛtUT · p0. (8)

From a kernel perspective, the above development can be regarded as defin-
ing a kernel function for the graph representation, and seeking a solution from
the mapped higher dimensional space. In fact, the construction of an effective
kernel function from exponentiation can be found in recent literature. For ex-
ample, in [10,17] the matrix representation K of a given data-set is given by
K = Uρ(Λ)UT , where Λ = (λ1, . . . , λm) are the eigenvalues, and U is the cor-
responding eigenvector matrix, of the matrix K. The function ρ(λh) is required
to satisfy the condition that ρ(λh) → 0 as h → ∞. In [17], several functions
are introduced from regularization theory, including the regularized Laplacian,
ρ(λh) = 1 + σ2λh, and the diffusion kernel, ρ(λh) = exp(λh/σ2). Of these



Probabilistic Relaxation Labeling by Fokker-Planck Diffusion on a Graph 209

methods, the diffusion kernel [10] deserves special note. In [10], Kondor and Laf-
ferty derived the diffusion kernel using kernel theory. According to this viewpoint
the diffusion kernel is a symmetric and positive semi-definite function which is
computed from matrix exponentiation. That is, for a symmetric weight matrix
H whose elements are determined by a weighting function, the kernel matrix
is computed as Kβ = eβH. The matrix Kβ obtained is thus guaranteed to be
symmetric and positive semi-definite, and satisfies the diffusion equation.

4 Relaxation Labeling by Diffusion

In this section, we show how the theory of diffusion processes on graphs can
be used to formulate a new method for probabilistic relaxation labelling. We
recast relaxation labelling in a graph-setting using a support graph. Denote it
by GS(VS , ES ,AS). The node-set VS = X × Ω of the graph is the Cartesian
product of the object-set X and the label-set Ω. That is, each vertex viωi =
(xi, ωi) ∈ Vs represents the assignment of label ωi ∈ Ω to object xi ∈ X .
We then define a label probability vector for our relaxation labeling process
as pt = [pt(1 ← ω1), . . . , pt(1 ← ωm), . . . , pt(n ← ω1), . . . , pt(n ← ωm)]. Each
component pt(i ← ωi) of this vector represents the confidence of assigning a
label ωi ∈ Ω to an object xi ∈ X . The components of the state-vector can be
interpreted as the probability of a random walker residing at the node viωi at
time t.

To satisfy the Markov property for the diffusion process, a neighbourhood sys-
tem needs to be defined. Here we use the object arrangement topology to define the
neighbourhood. We determine the spatial proximity of the objects by threshold-
ing the distance function. We denote the set of neighbours of the object xi as Ni.
Hence, the objects can be represented by an attributed graph GX = (X, EX , WX)
with node-set X , edge-set EX = {(xi, xj)|xj ∈ Ni} and edge-weight-function
WX . We will give explicit examples of how to compute the edge-weight function
WX when we discus applications of our method in Section 5.

To pose the problem of relaxation labelling as a diffusion process on the sup-
port graph we need to compute the infinitesimal generator F and this requires
the weighted edge adjacency matrix A defined in Eq.9. We assign edge-weights
to the support graph so as to incorporate the a priori label compatibilities R and
the label probabilities pt. Following conventional relaxation labeling, the edge
weight on the support graph is set equal to the compatible support associated
with the object-label assignments for pairs of neighbouring nodes. Accordingly
we let

A(viωi , vjωj ) =
{

p(i← ωi)p(j ← ωj)WX(xi, xj)Rij(ωi, ωj) if xj ∈ Ni

0 otherwise (9)

The second step is to define the infinitesimal generator matrix F for the support
graph GS from the transition matrix P = D−1A of the support graph:

F = I −D−1A (10)
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where D is the degree matrix of A (as defined in the previous section). To
update the state-vector using Eq.6, we can either perform matrix exponentiation
directly or compute the exponential from the eigensystem of F . As the matrix
P is generally not symmetric, when computing the updated label probability
vectors using Eq.8, the relationship between its eigensystem and the symmetric
adjacency matrix A can be used. Suppose that the weighted adjacency matrix
A has the eigen-decomposition A = UΛUT and degree matrix D, we have:

pt = e−tF · p0

= (D−1/2U) · e−tΛ · (D1/2U) · p0 (11)

If viewed from a kernel perspective, the matrix F must be symmetric in order to
be a valid kernel. To symmetrize a matrix P , one frequently used method is to
replace P by PT P . In our experiments, this is applied to the adjacency matrix
of the object-set since the local average distance between objects is used to scale
the weight function. That is, we choose WX = W̃X

T
W̃X .

We also require a stopping criterion to halt iteration of the labeling process.
One simple approach is to halt the process after a fixed number of iterations.
A more principled approach is to use the asymptotic properties of the label
probabilities. To this end we make use of the entropy associated with the label
probability distribution:

Ht = −
∑

i∈X

∑

ωi∈Ω

pt(i← ωi) ln pt(i← ωi) (12)

The entropy can be regarded as the amount of disorder of the given system. It
reaches its largest value if pt(i ← ωi) has a uniform distribution, and decreases
to zero if pt(i← ωi) ∈ {0, 1} Thus the iteration of the relaxation process is also
halted if the total entropy decreases below a threshold, or if its change between
two consecutive iterations is small. The algorithm is summarized as follows:

1. Initialization: Set p(k−1) = p0, t, N , σ = {σi}N
i=1, H ;

2. Compute the weight matrix WX for the object-set X;
3. Compute the adjacency matrix A(k) in current iteration k using Eq.4 and p(k−1);
4. Compute the infinitesimal generator matrix F(k) using current A(k);
5. For each iteration k, compute the updated label probabilities using Eq.6;
6. Compute the entropy H using Eq.12, and the variation ΔH = H(n)−H(n−1). If either

H or ΔH is below the threshold, go to step 8 otherwise go to step 3;
7. If k ≥ N , go to step 8; otherwise go to step 3;
8. Assign maximum probability label to each object.

5 Experiments

We first experiment our newly developed algorithm on five synthetic data-sets
which are also used in [6]. These are chosen to study the performance of the
algorithm with different numbers of clusters, different cluster size, and different
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Fig. 1. Labeling results of synthetic data-set. From top to bottom, left to right: original
data-sets R2, G3, & RG and their corresponding labeling results.

cluster distributions which are considered to be the most common variations in
real world data-sets.

One advantage of relaxation labeling is its ability to reduce ambiguities in
label assignments. Thus we first assign correct labels to all objects. Next we
experiment with our algorithm by randomly selecting a fraction of the assigned
object labels and flipping the labels randomly to take on new values. The fraction
of labels to be flipped ranges from 10% to 1

|Ω| , i.e., the probability of uniform

label assignment. We use a Gaussian weight function WX(xi, xj) = exp
(
− dij

σi

)

to compute the weighted adjacency matrix A in Eq.9, where dij is the Euclidean
distance between objects xi, xj ∈ X . The value of σi in the weight function
are chosen to be a function of the average distance between nearest neighbours.
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Table 1. Representations of label compatibilities

R2 G3 RG G4 1 G4 2
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3 4
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Fig. 2. Labeling results of synthetic data-sets. Top row (left to right): The G4 1 &
G4 2 data-set; Bottom row (left to right): Results of G4 1 & G4 2.

The label compatibility matrices for each data-set are shown in Table 1. The
average clustering error on 20 runs for each data-set with different initial label
probabilities are shown in the right column of Figures 1 and 2. For each case, as
the iteration number increases then so the error falls rapidly.

We next experiment with our algorithm on two real world data-sets, namely
Iris and Wine [4]. They have already been studied in a variety of papers, e.g.,
[6]. Both data-sets contain three clusters. The dimensionality of the Iris data is
four, while that of the Wine data is nine. The results are shown in Fig.3.

The algorithms converges quickly to the stationary distribution, where the
majority of the labels are assigned correctly. When less than 50% of the labels
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Fig. 3. Labeling results of real world data-sets. Left: Iris; Right: Wine.

are initialized in error, the algorithm corrects them in just a few iterations. The
numbers of iterations required are significantly smaller than those for traditional
relaxation labeling algorithms. The results are comparable with those obtained
using alternative data-clustering algorithms.

6 Discussion

In this paper a new probabilistic relaxation labeling method is developed and
is applied to the task of data classification. The diffusion process setting of
the development ensures the global propagation of local labeling confidence and
the reduction in the number of iterations required. The essential component is
the kernel function which defines the Markov process. For the task studied in
this paper, exponential kernels are used and these are the natural choice for a
diffusion process. Experimental results show encouraging performance for both
synthetic and real world data-sets.
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Abstract. Graph-based clustering algorithms are particularly suited for dealing 
with data that do not come from a Gaussian or a spherical distribution. They can 
be used for detecting clusters of any size and shape without the need of 
specifying the actual number of clusters; moreover, they can be profitably used 
in cluster detection problems. 

In this paper, we propose a detailed performance evaluation of four different 
graph-based clustering approaches. Three of the algorithms selected for comparison 
have been chosen from the literature. While these algorithms do not require the 
setting of the number of clusters, they need, however, some parameters to be 
provided by the user. So, as the fourth algorithm under comparison, we propose in 
this paper an approach that overcomes this limitation, proving to be an effective 
solution in real applications where a completely unsupervised method is desirable. 

1   Introduction 

In Pattern Recognition and Computer Vision there is a significant number of 
applications that use clustering algorithms [1]. 

The main drawback of most clustering algorithms is that their performance can be 
affected by the shape and the size of the clusters to be detected [2]. Some well-known 
clustering algorithms (e.g. the k-means [2] or the self-organizing maps [3]), for 
example, fail if data are distributed in the feature space along a non-smooth manifold 
[4]. Such algorithms, in fact, are based on the assumption that the data are sampled 
from a Gaussian or a spherical distribution. Moreover, in order to obtain an adequate 
clustering result, these algorithms sometimes require some a priori knowledge about 
the actual number of clusters and/or require the setting of a threshold or a parameter. 

On the other hand, in some applications there is the need of grouping, in one or more 
clusters, only a part of the whole dataset. This happens when samples of interest for the 
application at hand are present together with several noisy samples. We can refer to this 
case as a cluster detection problem. It occurs, for example, in the context of image 
segmentation, as described in [5]. Here, among all the edges coming from an edge 
detection algorithm, only the interesting ones (true positives) have to be grouped together 
by a cluster detector, in order to use them for achieving a good segmentation result. 
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In these situations most clustering algorithms yield a not so useful result, as in any 
case they try to attribute each sample to a cluster. So, noisy samples, that are typically 
not similar to each other, are grouped together with true positives. Even if it would be 
theoretically possible to group together in some clusters only noisy samples, it is 
practically difficult because the number of clusters has to be provided in advance. 
This cannot be effectively done, since the actual distribution of noisy samples cannot 
be easily modeled. 

A particular family of clustering algorithms that can cope with these problems is 
the one based on graph theory. The algorithms of this family represent the problem 
data through an undirected graph. Each node is associated to a sample in the feature 
space, while to each edge is associated some distance measure between nodes 
connected under a suitably defined neighborhood relationship. A cluster is thus 
defined to be a connected sub-graph, obtained according to criteria peculiar of each 
specific algorithm. Algorithms based on this definition are capable of detecting 
clusters of various shapes and sizes, at least for the case in which they are well 
separated [4]. Moreover, isolated samples should form singleton clusters and then can 
be easily discarded as noise in case of cluster detection problems. 

In order to provide some useful suggestions about the convenience of using a 
specific graph-based clustering approach, in this paper we present a detailed 
performance evaluation of four different graph-based clustering algorithms. 
Comparisons have been made by using a set of six validity indices [6,7] that are 
commonly used for evaluating the quality of a clustering algorithm. 

In particular, we performed two kinds of experiments. In both cases we used 
synthetic data. In the first test, data to be clustered have been generated by a modified 
version of the model proposed in [8] that we have extended in order to include also a 
distance between graph nodes. The second test refers to a cluster detection problem. 
In this case, additional noise has been added to graphs obtained with the previously 
cited model, in order to simulate samples that do not belong to any cluster. 

Three of the algorithms selected for comparison have been chosen from the 
literature. In particular, we considered the Markov Clustering proposed by van 
Dongen [9], the Iterative Conductance Cutting proposed by Kannan et al. [10] and the 
Geometric MST Clustering introduced by Gaertler in [11].  

While these algorithms do not require the setting of the number of clusters, as it is 
usual in case of graph-based clustering algorithms, they need however some 
parameters to be provided by the user. The fourth algorithm under comparison is an 
approach developed by the authors that overcomes this limitation. This method, 
therefore, can be effectively used in real applications where a completely unsupervised 
method is desirable. Our proposal is based on the algorithm described by Zahn in [12]. 
The original algorithm constructs the Minimum Spanning Tree (MST) of the graph 
representing the samples. After that, it identifies inconsistent edges and removes them 
from the MST. The remained connected components are then the clusters provided by 
the algorithm. An edge is inconsistent if the distance associated to it is greater than a 
predefined threshold. The Zahn algorithm does not suggest a criterion for deriving this 
threshold, leaving it as a manually provided parameter. In order to determine 
automatically the optimal value of this threshold, in this paper we propose a method 
based on the use of the Fuzzy C-Means algorithm [13]. 

The organization of the paper is then as follows: in Section 2, the proposed 
graph-based clustering approach is described. The other algorithms under comparison 
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are presented in Section 3. In Section 4, the database used for benchmarking is 
described, while, in Section 5, the selected cluster validity indices are reviewed. A 
comparative analysis of the results obtained by the considered algorithms is reported 
in Section 6 and some conclusions are finally drawn in Section 7. 

2   The Fuzzy C-Means MST Clustering Algorithm (FMC) 

The clustering algorithm proposed in this paper is based on graph theoretical cluster 
analysis. It starts by constructing the complete graph where each node is associated to 
a sample to be clustered. The weight of each edge accounts for the distance between 
the connected nodes. Then, the Minimum Spanning Tree (MST) is computed on the 
graph. By removing all the edges with weights greater than a threshold λ, we arrive at 
a forest containing a certain number of subtrees (clusters). In this way, the method 
automatically groups nodes into clusters. As demonstrated in [11], the clustering 
induced by the subtrees is independent of the particular MST. So the clustering results 
do not depend on the algorithm chosen for deriving the MST: in this paper, we used 
the Prim’s algorithm [14]. 

It is worth noting that the optimal value of λ typically depends on the specific 
clustering problem. As a consequence, it is not possible to use a fixed value of λ for 
every case. Our proposal is then to determine the optimal value of λ by reformulating 
the problem as the one of partitioning the whole set of edges into two clusters, 
according to their weights. The cluster of the edges of the MST with small weights 
will contain edges to be preserved, while the edges belonging to the other cluster will 
be removed from the MST. In order to solve this problem we employ the Fuzzy C-
Means clustering algorithm [13]. 

Fuzzy C-Means is a clustering technique based on the minimization of the following 
objective function: 
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where m is any real number greater than 1, xi is the i-th measured data (in our case the 
weight of the i-th edge of the MST), cj is the center of the cluster, uij is the degree of 
membership of xi to the cluster j, C is the number of clusters (in our case C = 2) and N 
is the number of objects to be clustered. Fuzzy partitioning is carried out through an 
iterative optimization of the objective function shown above, with the update of 
membership uij and the cluster centers cj by: 
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where ε is a termination criterion between 0 and 1, whereas k are the iteration steps. 
This procedure converges to a local minimum or a saddle point of Jm. At the end of 
the procedure, each edge xi has been assigned to the cluster r such that: 

ij
j

ur maxarg=  

At this point, all the edges of the MST are separated into two clusters. Then, we 
remove from the MST all the edges belonging to the cluster s whose center exhibits 
the largest value, i.e.: 

j
j

cs maxarg=  

As said before, the FMC algorithm requires the user to specify the value of ε. 
Indeed, we verified that a good value for this parameter is substantially independent 
on the considered application. In particular, the value of ε can be fixed to 0.5 in every 
case. With this setting, the algorithm can be considered as really unsupervised. 

3   Algorithms Selected for the Comparison 

In this section, we will provide a brief description of the algorithms that will be used 
for our experimental comparison, together with the settings used for employing them. 

3.1   The Markov Clustering Algorithm 

The Markov Clustering algorithm (MCL) was proposed by van Dongen in his PhD 
thesis [9,15] in 2000. The rationale of the method is based on the observation that if a 
group of nodes is strongly connected inside and has few connections to the outside 
(which is the property defining a cluster), a random walk starting from one of the 
nodes in the group is more likely to remain in the group after a few steps than to go 
outside. Conceptually, it is possible to define a clustering procedure as follows: each 
edge is assigned a probability, derived by the edge attribute. Then, a large number of 
random walks is simulated starting from each node i of the graph and measuring the 
frequency of the walk arriving at each node j after k steps. Finally, two nodes i, j are 
considered to be in the same cluster if the probability of the arrival at j starting from i 
is above a threshold; the transitive closure of this relation determines a partition of the 
whole graph into clusters.  

While this Monte-Carlo approach is conceptually sound, it is unacceptably 
expensive from the computational point of view. So the MCL algorithm proposes a 
faster procedure to compute the probabilities of arrival. The algorithm has two 
parameters: an expansion exponent k (a natural number greater than 1) and an 
inflation exponent r (a positive real number, usually greater than 1). The algorithm 
alternates between two phases, expansion and inflation, until a fixed point is reached. 
In the expansion phase, the probability of the random walk is computed by raising the 
matrix of the edge probabilities to the k-th power. In the inflation phase, the matrix is 
renormalized after raising each element to r; the resulting matrix is used as input for 
the subsequent expansion. The goal of the inflation phase is to reduce towards 0 the 
smaller probabilities and to enhance towards 1 the larger ones. At the ends, the 
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clustering is determined by the resulting probabilities which are sensibly different 
from 0. Notice that there is no formal proof of convergence of the algorithm, although 
in practice it has never occurred a case in which a fixed point was not achieved after a 
few tens of iterations. 

3.2   The Iterative Conductance Cutting Algorithm 

The Iterative Conductance Cutting algorithm (ICC) was proposed by Kannan et al. in 
2000 [10]. This algorithm works in a hierarchical way: it starts with a single cluster 
comprising the whole graph and at each step it tries to split a cluster into two, as long 
as a performance measure computed on the two resulting parts is below a threshold α. 
The iteration stops when there are no more clusters that can be split remaining within 
the threshold. 

The measure used to evaluate the opportunity of the split is cluster conductance, 
defined in the same paper. Basically, this measure compares the sum of the inter-
cluster edges with the sum of all the edges incident to the nodes of the clusters. The 
lower the conductance, the better is the clustering; the maximum value of 1 is attained 
for degenerate cases such as one-node clusters or whole-graph clusters.  

An interesting aspect of this algorithm is the determination of the split to perform 
among all the possible splits of a given cluster. An exhaustive search of the split 
minimizing the conductance would require an exponential time complexity with 
respect to the size of the cluster. The authors propose instead a polynomial 
approximation based on a spectral technique. In particular, the nodes of the cluster are 
sorted according to the corresponding component of the second largest eigenvector of 
the normalized adjacency matrix (whose values are a similarity measure between 
adjacent nodes). Only the cuts consistent with this ordering (i.e. in which all the nodes 
of a part are greater than all the nodes in the other) are considered, thus avoiding a 
combinatorial explosion. The claim of the authors is that this strategy usually gives a 
good approximation of the optimal split. 

3.3   The Geometric MST Clustering Algorithm 

The Geometric MST Clustering (GMC) algorithm is an extension of the Minimum 
Spanning Tree clustering algorithm by Zahn [12]. This method, introduced by 
Gaertler in his master thesis [11] and in the paper by Brandes et al. [8], solves the 
problem of finding a suitable threshold for cutting the edges of the minimum spanning 
tree by computing for each possible threshold a performance measure and choosing 
the optimal one (note that there are at most n − 1 distinct thresholds to be considered, 
where n is the number of nodes in the graph). For non-attributed graphs, the author 
propose the use of a geometric graph embedding to define a distance between nodes 
(hence the name of the algorithm); we have not used this part of the method since the 
edges of our graphs are already attributed with the distance. In the paper by Brandes 
et al. [8], several performance measures have been used in an experimental 
comparison (coverage, performance, conductance).  

3.4   Settings Used for the Above Described Algorithms 

As clarified in the previous Section, the FMC algorithm does not require any parameter 
to be specified in advance. 
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The MCL algorithm requires a transition probability matrix, together with the two 
parameters k and r. We have derived the transition probabilities from the distances by 
assuming an exponential distribution. We have chosen k = 3 and r = 2, by optimizing 
the performance over a small subset of the database. 

The ICC algorithm requires a similarity matrix that we have defined by taking the 
inverse of the distance. Also, we have used the value 0.45 for the threshold α, which 
has been selected by optimizing the performance over a small subset of the database. 

The GMC requires the choice of a performance measure; following [8], we have 
used conductance for this purpose. Since the computation of conductance requires a 
similarity matrix, we have defined one using the same technique adopted for ICC. 

4   The Databases Used for Performance Evaluation 

We have constructed two databases of synthetic graphs, according to a model derived 
from [8], that we have extended to include also distance between graph nodes. The 
original model by Brandes et al. starts by choosing a random partition P1,...,Pk of the n 
nodes, such that the average number of nodes |Pi| is equal to a parameter s and the variance 
is s/4. Then, the nodes belonging to the same Pi are randomly linked by assigning to each 
internal edge a probability p given as another parameter. The nodes belonging to different 
subsets are randomly linked with a probability chosen so as to make the expected number 
of external edges equal to one half of the expected number of internal edges. 

In a first database, aimed at modeling pure clustering problems, we have extended 
this method by adding to each edge a distance value, chosen from an exponential 
distribution. The mean of the distribution is set to 1 for internal edges and to a 
parameter d > 1 for external ones. 

In a second database, aimed at measuring cluster detection performance, we have 
also added spurious nodes (i.e., nodes that are outside of any cluster). In particular, we 
take one of the Pi chosen at random and split it into singleton nodes, which are only 
linked by external edges. Besides this addition, the two databases have been generated 
according to the same model parameters. 

Table 1 resumes all the values we have used for the different model parameters. 

Table 1. Values of the parameters used for generating the two graph databases 

Parameter Description Values 
n number of nodes 100, 200, 300, 400 

s average cluster size n , 6/2/ nn + , 3/n  

p probability of internal edges 0.4, 0.75 

d average distance of external edges 2, 4, 8 

Note that the actual values of the s parameter are dependent on n; we have chosen 
to have a value giving (on the average) three large clusters (n/3), a value giving many 
small clusters ( n ) and a value which is intermediate between these two extremes. 

For each database, we have generated 20 graphs for each of the 72 possible 
combinations of the above mentioned parameters, obtaining 1440 “pure clustering” 
and 1440 “cluster detection” graphs. 
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5   Cluster Validity Indices 

The indices described below have been developed for the case of vector clustering, 
where a distance measure can be computed between any two vectors, and also the 
center of a cluster can be determined. In order to apply those indices to graph 
clustering, we have replaced the notion of the center of a set of vectors with the 
centroid of a set of nodes, defined as the node which minimizes the largest distance 
from any other node in the set. Furthermore, we have used as our distance measure 
the length of the shortest path on the graph between the two considered nodes. 

5.1   Davies-Bouldin Index 

The Davies-Bouldin index proposed in [16] measures the validity of the cluster as the 
average ratio between within-cluster scatter and between-cluster separation. More 
formally: 
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where C is the number of clusters, Ai is the average distance of members of cluster i 
from the centroid of the cluster and dij is the distance between the centroid of cluster i 
and the centroid of cluster j. This index should give smaller values for good clusters. 
Notice, however, that in the undesirable case in which each node belongs to a 
singleton cluster the index achieves its minimum (0). 

5.2   Dunn Index 

The index proposed by Dunn in [17] is related to the ratio between the maximum 
distance within a cluster and the minimum distance between two clusters. More formally, 

kk

ijiji
D

Δ
= ≠

max

min , δ
 

where ∆k is the maximum distance within cluster k and δij is the minimum distance 
between a node in cluster i and a node in cluster j. The larger the value of this index, 
the better should be the clustering. However, it has to be noted that, in the undesirable 
case in which each node belongs to a singleton cluster, the index achieves its 
maximum (+∞). Another weakness of this index is that it is influenced only by the 
worst clusters in the partition, instead of providing an integral validity measure. 

5.3   Calinski-Harabasz Index 

The index by Calinski and Harabasz [18] is based on the so-called trace of the 
between-cluster distances and of the within-cluster distances. Namely, the trace of the 
between-cluster distances TB is defined as the weighted sum of the squared distances 
of the centroids of the clusters from the centroid of the whole node set. Each distance 
is weighted by the number of nodes in the corresponding cluster. The trace of the 
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within-cluster distance TW is defined as the sum of the squared distances between each 
node and the centroid of its cluster. Thus, the Calinski-Harabasz index is defined as: 
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where n is the number of nodes. This index gives larger values for good clusters. Note that 
in the undesirable extreme cases where each node belongs to a singleton cluster or all the 
nodes belong to only one giant cluster, the definition implies an undefined 0/0 ratio. 

5.4   Xie-Beni Index 

Xie and Beni have defined in [19] a validity index for fuzzy clustering schemes, based 
on the normalized ratio between the compactness of a partition and its separation. 
When applied to crisp clustering, the index can be expressed as: 
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This index provides smaller values for good clusters. Note that in the undesirable 
case in which each node belongs to a singleton cluster, this index achieves its 
minimum (0); furthermore, in the opposite case in which all the nodes belong to only 
one giant cluster, the value of the index is not defined. 

5.5   C Index 

The C index introduced by Hubert and Schultz in [20], is based on the computation of 
three sets of distances between nodes. The first is the set SW of all the within-cluster 
distances. Let m be the cardinality of this set. The second set, Smin, is the set of the m 
smallest distances considering all the pairs of nodes; similarly the third set Smax is the 
set of the m largest distances. Given these sets, the C index is defined as 
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This index provides small values for good clusters. Notice that in the two extreme 
undesirable cases in which each node belongs to a singleton cluster, or in which all the 
nodes belong to only one giant cluster, this index give rise to the undefined ratio 0/0.  

5.6   \  index 

The \  index defined by Maulik and Bandyopadhyay [7] (sometime referred to as “\cal 
I”, from the LaTeX command required to obtain \  ), is based on the product of three 
terms which take into account respectively the number of clusters, the compactness of 
the clusters and their separation. Like the Xie-Beni index, it is aimed at evaluating fuzzy 
clustering algorithms. For the special case of crisp clustering, \  is defined as: 
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where E1 is the sum of the distances between each node and the centroid of the whole 
graph, and EC is the sum of the distances between each node and the centroid of the 
corresponding cluster. This index gives larger values for good clusters. Notice that in 
the undesirable case in which each node belongs to a singleton cluster, this index 
achieves its maximum (+∞). 

6   Experimental Results 

In this Section we will present tests aimed at evaluating and comparing performance 
of the above described algorithms with respect to the following two problems: pure 
clustering and cluster detection. In order to compare performance of the considered 
clustering algorithms, we employed the cluster validity indices described in the 
previous section. It should be noted that the quality of the clustering solution provided 
by a certain algorithm cannot be straightforwardly derived by considering the absolute 
values assumed by such indices. However, it is always verified that a better value 
(where better means higher or lower, depending on the type of index) assumed by an 
index corresponds to a better solution. Hence, given a certain clustering problem, 
these indices can be more profitably used for ranking the solutions provided by 
 

Table 2. Performance of the selected algorithms with respect to the pure clustering problem 

Cluster validity index FMC MCL ICC GMC 

Davies-Bouldin 395 0 0 1052 

Dunn 493 0 0 954 

Calinski-Harabasz 92 592 13 707 

Xie-Beni 269 4 0 1173 

C 265 91 109 941 

\ 151 6 454 796 

Total 1665 693 576 5623 

Table 3. Performance of the selected algorithms with respect to the cluster detection problem 

Cluster validity index FMC MCL ICC GMC 

Davies-Bouldin 1086 0 0 375 

Dunn 1192 0 0 269 

Calinski-Harabasz 249 24 3 823 

Xie-Beni 1095 0 0 366 

C 443 3 133 760 

\ 105 4 193 792 

Total 4170 31 329 3385 
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various techniques. For this reason, all the results reported in this Section take into 
account only the best algorithm for each experimental setting and for each index, 
without considering the specific value of the index itself. 

In the Tables 2 and 3 we report the performance of the four selected algorithms 
with respect to the pure clustering and the cluster detection problems, respectively. 
Each cell of the table shows the number of occurrences where a given algorithm 
obtained the best value of the cluster validity index. From the results presented in 
Tables 2 and 3, it is evident that the MST based clustering algorithms (FMC and 
GMC) performs significantly better than the remaining two algorithms with regards to 
both the considered problems. In particular, GMC performs best in case of pure 
clustering, while FMC resulted the best cluster detector. 

It is worth noting that the sum of the values on each row of the previous tables is 
not constant (and equal to the total number of graphs, i.e. 1440) as it would be 
expected; this is ascribable to the following two factors: firstly, in the undesirable 
cases in which the cluster validity indices are not defined, no winner algorithm is 
declared; secondly, in the cases in which n different algorithms obtain the same best 
score, we declare n winners. We have performed an analysis of the statistical 
significance of the results in Tables 2 and 3 using the Friedman test. Within a 
significance threshold of 0.1% all the presented results are significant.  
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Fig. 1. Performance of the four selected algorithms with respect to the number of nodes in case 
of (a) pure clustering and (b) cluster detection 

In order to have a deeper insight into the behavior of the selected algorithms with 
respect to the parameters used for constructing the dataset, we have reported some 
additional plots. In particular, the dependence of the performance with respect to the 
number of nodes, to the external/internal edge distance ratio and to the cluster size is 
shown in the Figures 1, 2 and 3, respectively, where the Y-axis shows the total 
number of wins over all the indices. We have not explicitly considered the density 
parameter, since we verified that the performance resulted quite independent of it. 
Analyzing the Figures 1-3, we can draw the conclusion that GMC performance 
improves as the number of nodes grows, while the performance of FMC is nearly 
constant or slightly decreasing; this trend is also confirmed when considering the 
average cluster size. On the other hand, FMC performance increases when the 
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external/internal edge distance ratio becomes larger; this can be explained considering 
that a larger distance ratio reinforces the basic assumption underlying FMC that the 
distances of internal edges and of external edges form two separable modes of the 
distance distribution. 

In conclusion, from the experimental analysis carried out it is possible to observe 
that the MST based clustering approaches outperform the ICC and the MCL 
algorithms. The proposed unsupervised approach seems to be better suited for facing 
the cluster detection problem than the pure clustering. Furthermore, in both cases the 
FMC can be preferred to the GMC when the distribution of the edge weights is 
bimodal and the order of magnitude of the problem (overall number of nodes and 
average cluster size) is low; in all the other cases, the GMC is to be preferred. 
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Fig. 2. Performance of the four selected algorithms with respect to the external/internal edge 
distance ratio in case of (a) pure clustering and (b) cluster detection 
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Fig. 3. Performance of the four selected algorithms with respect to the cluster size in case of (a) 
pure clustering and (b) cluster detection 

7   Conclusions 

In this paper we presented a benchmarking activity for assessing the performance of 
four graph-based clustering algorithms with regards to two different problems: pure 
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clustering and cluster detection. One of the considered algorithms (FMC) has been 
originally proposed by the authors; it is different from the others in that it does not 
require the user to set any parameter or threshold. The comparison has been carried 
out on a database of synthetically generated graphs, using a set of six cluster validity 
indices. As it could be expected, there is no algorithm that is definitively better than 
the others. However, in all the experimentations the clustering algorithms based on 
the Minimum Spanning Tree (MST) proved to be the best. In particular, in case of the 
pure clustering problem the Geometric MST Clustering (GMC) algorithm provided 
the highest performance, while the proposed method was able to better cope with the 
noise of the cluster detection problem. Furthermore, the FCM seems to be better 
suited to operate when the distribution of the edge weights is bimodal and the order of 
magnitude of the problem (overall number of nodes and average cluster size) is low. 

Future steps of this activity will regard the testing of the algorithms on a cluster 
detection problem in real computer vision applications, as well as the comparison 
with other graph-based clustering algorithms, such as those proposed in [21,22]. 
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Abstract. This paper proposes a new greedy algorithm to improve the
specified b-coloring partition while satisfying b-coloring property. The b-
coloring based clustering method in [3] enables to build a fine partition of
the data set (classical or symbolic) into clusters even when the number of
clusters is not pre-defined. It has several desirable clustering properties:
utilization of topological relations between objects, robustness to out-
liers, all types of data can be accommodated, and identification of each
cluster by at least one dominant object. However, it does not consider
the high quality of the clusters in the construction of a b-coloring graph.
The proposed algorithm in this paper can complement its weakness by
re-coloring the objects to improve the quality of the constructed parti-
tion under the property and the dominance constraints. The proposed
algorithm is evaluated against benchmark datasets and its effectiveness
is confirmed.

Keywords: clustering, graph b-coloring, graph re-coloring.

1 Introduction

Clustering, or unsupervised classification, is a fundamental data mining process
that aims to divide a set of data into groups, or clusters, such that the data within
the same group are similar to each other (intracluster cohesion) while data from
different groups are dissimilar (intercluster separation). Clustering problems are
ubiquitous in pattern recognition. For surveys on the most important clustering
methods used in pattern recognition see, for example, [10].

Clustering of data is generally based on two approaches: hierarchical and par-
titioning. Hierarchical clustering algorithms build a cluster hierarchy, or a tree of
clusters (dendrogram) whose leaves are the data points and whose internal nodes

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 228–239, 2007.
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represent nested clusters of various sizes [5]. On the other hand, partitioning clus-
tering algorithms give a single partition of the data by fixing some parameters
(number of clusters, thresholds, etc.). Each cluster is represented by its cen-
troid [7] or by one of its objects located near its center [12]. When the distances
(dissimilarities) among all pairs of data are specified, these can be summarized
as a weighed dissimilarity matrix D in which each element D(vi, vj) stores the
corresponding dissimilarity. Based on D, the data can also be conceived as a
graph where each vertex vi corresponds to a data and each edge corresponds to
a pair of vertices (vi, vj) with label d(vi, vj).

Additional techniques for the grouping operation include graph-theoretic clus-
tering methods. Many graph-theoretic clustering algorithms basically consist of
searching for certain combinatorial structures in the similarity graph. In this
case, some hierarchical approaches are related to graph-theoretic clustering. The
best-known graph-theoretic divisive clustering algorithm (the single-link algo-
rithm) is based on construction of the minimal spanning tree (MST) of the
data [13], and then deleting the MST edges with the largest lengths to generate
single-link clusters. The complete-link algorithms are also reduced to a search
for a maximal complete subgraph, namely a clique1 [10] which is the strictest
definition of a cluster. Some authors have proposed to use the vertex coloring of
graphs for the hierarchical classification purpose. In [4], the authors propose a
divisive classification method based on dissimilarity tables, where the iterative
algorithm consists, at each step, in finding a partition by subdividing the cluster
with the largest diameter into two clusters in order to exhibit a new partition
with the minimal diameter. By mapping each data item to the corresponding
vertex, the subdivision is obtained by a 2-coloring of the vertices of the maxi-
mum spanning tree built from the dissimilarity table. The derived classification
structure is a hierarchy.

On the other hand, the partitioning methods are also related to graph-
theoretic clustering. Hansen and Delattre [6] reduced the partitioning problem of
a data set into k clusters with minimal diameter, to the minimal coloring problem
of a superior threshold graph. The edges of this graph are the pairs of vertices
distanced from more than a given threshold. In such a graph, each color corre-
sponds to one cluster and the number of colors is minimal. Unfortunately, while
this method tends to build a partition of the data set with effectively compact
clusters, it does not give any importance to the cluster-separation.

Recently, [3] proposed a clustering method based on the notion of b-coloring
of a graph [9,2]. A graph b-coloring consists to color the vertices of a graph with
the largest number of colors such that (i) two neighbors have different colors
(proper coloring) and (ii) for each color there exists at least one dominating
vertex which is adjacent to all the other colors.

The b-coloring based clustering method in [3] enables to build a fine parti-
tion of the data set (classical or symbolic) in clusters even when the number of
clusters is not pre-defined. This approach exhibits more important features (1) it

1 A clique in an undirected graph G is a set of vertices V such that for every two
vertices in V , there exists an edge connecting the two.
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gives a strong solution to the problem of the single-point representation of clusters
by using the topological relations between objects to build clusters: all the objects
participate in the building of their clusters, (2) it is robust in the presence of out-
liers, (3) it can accommodate all types of data as long as a dissimilarity table can
be constructed, and (4) it identifies each cluster by at least one dominant object
which guarantees the disparity between the clusters. The building of the b-coloring
of a specified graph is given in two stages: 1) initializing the colors of vertices with
maximal colors, and 2) removing, by a greedy procedure, the colors without any
dominating vertex. However, it does not always consider the high quality of the
clusters in the construction of a b-coloring of graph (i.e. in both two stages).

This paper proposes a new greedy algorithm to improve the specified b-
coloring partition while satisfying b-coloring property. Thus, the proposed al-
gorithm can complement the weakness of the method in [3] by improving the
constructed partition. The algorithm selects the vertices which do not affect the
dominant objects in the partition, and change their colors (assignments to clus-
ters) by monotonically increasing the property of the re-colored partition. The
former guarantees both the property of dominance in each cluster and b-coloring
of clusters, and the latter guarantees the improvement of the constructed clus-
ters. The proposed algorithm is evaluated against benchmark datasets and its
effectiveness is confirmed.

2 A b-Coloring Based Clustering Algorithm

2.1 Overview of a b-Coloring Based Clustering Algorithm

In [3] a new graph b-coloring clustering algorithm is introduced. This algorithm
will be briefly reviewed in the present section. Consider the data to be clustered
as an undirected complete edge-weighted graph where the vertex set is the set of
data and the edge-weights set reflect the dissimilarities pairs of linked vertices.
The b-coloring of this complete graph is not interesting for the clustering prob-
lem. Indeed, each data is assumed to belong to one and only one cluster (color).
We use a bold italic capital letter to denote a set, e.g., V represents a set of
vertices. |V | represents the cardinality of V . Our clustering approach requires,
then, to construct a superior threshold graph G(V , E), which is a partial graph
of the initial graph. In other words, the superior threshold graph G(V , E) is
a simple graph where ∀vi, vj ∈ V , an edge (vi, vj) exists iff d(vi, vj) > θ for a
specified threshold θ among the dissimilarity matrix.

A Working Example. Suppose a set of data with the weighted dissimilarity
matrix D in Table 1 is given. Fig. 1 shows the superior threshold graph θ=0.15
for Table 1. The edges are labeled with the corresponding dissimilarities.

The b-coloring algorithm performed on this graph includes two stages: 1) ini-
tializing the colors of vertices with maximal colors (c.f. Fig. 2), and 2) removing,
by a greedy procedure, the colors without any dominating vertex. Therefore, the
partition (b-colored graph) in Fig. 3 is constructed. The vertices with the same
color (shape) are grouped into the same cluster. Thus, {A,D}, {B}, {C,E,G,I},
{F} are the clusters, and the nodes with bold letter are dominating vertices.
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Table 1. A weighted dissimilarity matrix

vi A B C D E F G H I

A 0

B 0.20 0

C 0.10 0.30 0

D 0.10 0.20 0.25 0

E 0.20 0.20 0.15 0.40 0

F 0.20 0.20 0.20 0.25 0.65 0

G 0.15 0.10 0.15 0.10 0.10 0.75 0

H 0.10 0.20 0.10 0.10 0.05 0.05 0.05

I 0.40 0.075 0.15 0.15 0.15 0.15 0.15 0.15 0
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Fig. 1. A threshold graph with
θ = 0.15 for the data in Table 1
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Fig. 2. Initializing the colors of vertices
with maximal colors in Fig. 1
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Fig. 3. A b-coloring graph constructed
from Fig. 2 by removing colors without
any dominating vertex

2.2 Validation Indices for Clustering

The clustering algorithm is an iterative algorithm which performs multiple runs,
each of them increasing the value of the dissimilarity threshold θ. The next
problem is to validate the partitions of the data set and select the best one
as the optimal output clustering, with regards to their separation and tightness
values. Many validation indices for clustering have been proposed [1] and adapted
to the symbolic framework [11]. Among them, we focus on a validation index
called generalized Dunn’s index DunnG. DunnG is designed to offer a compromise
between the intercluster separation and the intracluster cohesion. So, it is the
more appropriated to partition data set in compact and well separated clusters.

Suppose a set of vertices V is clustered or grouped into a partition P =
{C1, C2, . . . , Ck} where for ∀Ci, Cj ∈ P , Ci ∩ Cj = φ for i �= j. We abuse the
notation of P to represent both a set of clusters as well as a set of colors, because
each cluster Ci ∈ P corresponds to a color in b-coloring based clustering and
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no cluster shares the same color. Also, suppose for ∀vi, vj ∈ V , the dissimilarity
between vi and vj is defined and specified as d(vi, vj). We assume that the
function d : V × V → R+ is symmetric.

For ∀Ch ∈ P , an average within-cluster dissimilarity is defined as

Sa(Ch) =
1

ηh(ηh − 1)

ηh∑

o=1

ηh∑

o′=1

d(vo, vo′) (1)

where ηh = |Ch|2, vo, vo′ ∈ Ch.
For ∀Ci, Cj ∈ P , an average between-cluster dissimilarity is defined as

da(Ci, Cj) =
1

ηiηj

ηi∑

p=1

ηj∑

q=1

d(vp, vq) (2)

where ηi = |Ci| and ηj = |Cj |, vp ∈ Ci, vq ∈ Cj .
Dunn’s generalized index for a partition P is defined as

DunnG(P ) =
min

i,j,i�=j
da(Ci, Cj)

max
h

Sa(Ch)
(3)

where Ch, Ci, Cj ∈ P .
Basically, the partition P which produces the highest DunnG(P ) indicates

the best clustering.
By changing the threshold θ from the table 1, corresponding graphs are con-

structed and our method is applied for each graph to construct the corresponding
partitions with different DunnG. Actually, for this example,the partition with
θ=0.15 has the maximal DunnG (1.522) among other ones with different θ.

3 A Greedy Re-coloring Algorithm for b-Coloring Based
Clustering

3.1 Motivation

As explained in Section 2.1, for the data in Table 1, our clustering algorithm
gives the partition in Fig. 3 as the best one. However, even for the same num-
ber of clusters, the graph in Fig. 1 has different b-coloring with larger DunnG.
An example is shown in Fig. 4. As easily verified, the partition in Fig. 4 is a
b-coloring graph, with DunnG = 1.538, which is larger than 1.522 in Fig. 3.

As illustrated in this example, even when our algorithm described in Section 2
returns a partition P with b-coloring for a graph G, there can be other parti-
tions for the same graph G with better quality (larger DunnG) while satisfying
b-coloring. To construct a better partition, it is also important to find a parti-
tion with better quality while satisfying b-coloring. This problem is formalized
as follows.
2 Since Ch contains a set of data (vertices), we use |Ch| to denote its cardinality.
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Fig. 4. Another b-coloring with larger DunnG for Table 1

Definition 1. Re-Coloring Problem in b-Coloring based Clustering
Find a new partition P ′ of G(V , E) from a given b-coloring partition P of
G such that P ′ is better than P .

In our current approach, the quality of a partition P is measured by DunnG(P ).
In the following subsection, we describe our algorithm to solve this problem.

3.2 Notations and Definitions

For each v ∈ V , a function N(v) returns neighboring vertices for v, where
∀v′ ∈ N(v), the edge (v, v′) ∈ E. c(v) represents the color of v, and a function
Nc(v) returns a set of neighboring colors for v (i.e., Nc(v) = ∪v′∈N(v) c(v′)). A
function Cp(v) is defined as P \Nc(v) (here, P as a set of all colors in P ). Note
that Cp(v) also contains the original color c(v) of v.

Critical Vertices and Non-Critical Vertices. A set of vertices Vd contain
the dominating vertices in G. For each vd ∈ Vd, if vs ∈ N(vd) is the only vertex
with the color c(vs) in N(vd), vs is called a supporting vertex of vd.

V is divided into Vc � Vnc where Vc ∩ Vnc = φ. Each vc ∈Vc is called a
critical vertex, and each vnc ∈ Vnc is called a non-critical vertex. vnc ∈ Vnc can
be re-colored in our approach; on the other hand, vc ∈Vc is not re-colored.

Vc is further divided into Vd � Vs � Vf where there is no overlap among
them. Vf contains a set of finished vertices which are already checked for re-
coloring.

When the color c(v) of v ∈ V is re-colored to c, some vnc ∈ Vnc might become
new critical vertices, because some other vertices can become dominating vertices
or supporting ones. To reflect the change of colors in G due to re-coloring of
v, V tmp

c (v, c) represents the set of vertices which become new critical vertices
induced from this re-coloring, and P (v, c) represents the partition. In P (v, c),
only c(v) is re-colored to c and c(v′) is not re-colored for ∀v′ ∈ V , v′ �= v.
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∀v ∈ V , ∀Ci ∈ P , an average dissimilarity between v and Ci is defined as

da(v, Ci) =
1
ηi

ηi∑

p=1

d(v, vp) (4)

where ηi = |Ci|, vp ∈ Ci.

3.3 A Greedy Re-coloring Algorithm for b-Coloring Based
Clustering

A Conservative Approach for Re-coloring of Vertices. We regard that
each vd ∈ Vd is important in its own and its color should not be changed,
because by definition of a dominating vertex, vd is connected to the vertices
with all the other colors. Thus, it is far away from the other clusters (at least
greater than θ) and contributes to a large between-cluster dissimilarity. Also,
we regard that c(vs) ∈ Vs should not be changed, because changing c(vs) to
other color can make some vd ∈ Vd as non-dominating and thus deteriorates
the quality of a partition. Based on these arguments, only v ∈ V \ {Vc � Vs}
should be considered for re-coloring. Furthermore, to guarantee the termination
of re-coloring, re-coloring of v ∈ V is tried at most once. To realize this, when
re-coloring of v ∈ V is tried, it is moved into Vf .

In summary, we consider re-coloring of only v ∈ V \ {Vc � Vs � Vf} = Vnc,
and whenever v is checked for re-coloring, it is moved into Vf and its color is
fixed. Thus, Vnc is monotonically decreased at each re-coloring. Since the color
of v ∈ Vc is fixed once it is inserted into Vc, and other possibilities are not
explored in later, our algorithm is called a greedy algorithm.

In addition, through re-coloring of vnc ∈ Vnc, its color can be changed later.
This means that, reflecting Vnc to evaluate the quality of a partition P can be
an unreliable estimation. Thus, we do not utilize Vnc to evaluate the quality of
P in the re-coloring process and utilize only Vc.

A Vertex Selection Criterion for Re-coloring. Among vnc ∈ Vnc, we
select v ∈ Vnc with the maximal da(v, c(v)), i.e., v∗ = argmaxv∈Vnc

da(v, c(v))
is selected. Here, da(v, c(v)) corresponds to the degree of “outlier” for each v,
because it represents the average within-cluster dissimilarity of each v. On the
contrary, if v′ �= argmaxv∈Vnc

da(v, c(v)) is selected and re-colored before v∗,
|Cp(v)| can decrease because some v′′ ∈ Vnc can be moved into Vc due to the
re-coloring of v′. This amounts to putting more constraints and reducing the
possibilities of new color for v∗, |Cp(v∗)|, because Nc(v∗) can increase. Thus, if
v′ is selected before v∗, v∗ can be set to the other color, different from the one
which can maximally increase DunnG by decreasing its numerator. Based on
this argument, among Vnc, we select v∗ for re-coloring.

A Color Selection Criterion for Re-coloring. Our objective is to increase
the quality of a partition P by re-coloring some vertices while preserving proper
coloring. When the vertex v is selected for re-coloring, we check the colors in
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Cp(v) and select the one with the maximal DunnG in eq.(3). Since re-coloring
of v causes to change the values of Sa(·) and da(·, ·) as well, these should also
be updated whenever c(v) is re-colored. We conduct efficient calculation of Sa(·)
by utilizing their old values. Furthermore, although näıve calculation of da(·, ·)
takes O(n2), this can also be reduced to O(n) by utilizing the old values.

For ∃ C,Ci ∈ P , suppose v ∈ Vnc was initially assigned to C and re-assigned
(re-colored) to Ci . Due to this re-coloring, v is moved into Vf ⊂ Vc. For P =
P \{C, Ci} � {C, Ci}, by utilizing the old values, new values of Sa(·) can be
efficiently calculated using the following equations:

Snew
a (C) = Sold

a (C) (5)

Snew
a (Ci) =

|Ci|Sold
a (Ci) + |C|da(v, Ci)
|Ci|+ 1

(6)

Snew
a (Cj) = Sold

a (Cj) ∀Cj ∈ P \{C, Ci} (7)

Similarly,

dnew
a (C, Ci) =

|C||Ci|dold
a (C, Ci) + |C|da(v, C)
|C|(|Ci|+ 1)

(8)

dnew
a (Ci, Cj) =

|Ci||Cj |dold
a (Ci, Cj) + |Cj |da(v, Cj)

(|Ci|+ 1)||Cj |
(9)

dnew
a (Cj , Ch) = dold

a (Cj , Ch) ∀Cj , Ch ∈ P \{C, Ci} (10)

A Greedy Re-coloring Algorithm for b-coloring based Clustering. Our
greedy update algorithm for b-coloring based clustering is shown in Algorithm 1.
When there are multiple candidates with the same value at lines 4 and 10, one
of them is selected at random.

The proposed algorithm has the following desirable properties for clustering.

Proposition 1. Algorithm 1 creates a proper coloring P ′ of G(V , E) from P .

Proof. Algorithm 1 re-color c(v) of v ∈ V only to some c′ ∈ Cp(v). By
definition of Cp(v), c′ �∈ Nc(v) for ∀c′ ∈ Cp(v), which guarantees proper
coloring. �
Proposition 2. Algorithm 1 creates a b-coloring P ′ of G(V , E) from P .

Proof. From Proposition 1, P ′ is proper coloring. We need to show that
there is at least one dominating vertex for each color. By definition, this property
is satisfied in P . Since Algorithm 1 does not change the colors of vd ∈ Vd, there
is at least one dominating vertex for each color in P ′. �
Proposition 3. Algorithm 1 monotonically increase DunnG(C′) of G(V , E)
from P .

Proof. At lines 10 and 11, the color c(v∗) which maximizes DunnG(P ) is
selected by modifying the original color c(v) (note that it is allowed that cnew(v)
=c(v), i.e., unchanged). Since this re-coloring is repeated for ∀vnc ∈ Vnc, when
Algorithm 1 terminates, DunnG(P ′) monotonically increases. �
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Algorithm 1. A Greedy Re-coloring Algorithm for b-coloring based Clustering
Require: G(V , E); //A graph with a set of vertices and a set of edges.
Require: P ; //a partition which is a b-coloring of G(V , E)

1: C ′ = P ;
2: Divide V into Vc � Vnc

3: while Vnc = φ do
4: v∗ = arg max

v′∈Vnc

da(v′, c(v′)); //vertex selection

5: for each c ∈ Cp(v
∗) do

6: create V tmp
c (v∗, c) and P (v∗, c) induced from the re-coloring of c(v∗) into c;

7: For ∀Ci ∈ P (v∗, c), calculate da(v∗, Ci) w.r.t Vc � V tmp
c (v∗, c);

8: calculate Snew
a (Ch) and dnew

a (Ci, Cj) for ∀Ch, Ci, Cj ∈ P (v∗, c);
9: end for

10: c∗(v) = arg max
c∈Cp(v)

DunnG(P (v, c));

11: Re-color c(v∗) to c∗ in C ′; //re-coloring of C ′

12: Vnc = Vnc \{v};
13: Vf = Vf ∪ {v};
14: Vc = Vc ∪ V tmp

c (v, c) //v ∈ V tmp
c (v, c) into Vd or Vs or Vf due to its property

15: end while
16: return C ′;

4 Evaluations

The greedy clustering algorithm was tested by considering two relevant bench-
mark data sets, viz., Zoo, and Mushroom from the UCI Machine Learning Repos-
itory [8]. To evaluate the quality of the partition discovered by the greedy
algorithm (called Improved b-coloring Partition), the results are compared with
that of the best partition returned by the b-coloring clustering algorithm as the
one maximizing the DunnG value [3] (called Original b-coloring Partition), the
Optimal Hansen’s Partition based on minimal coloring technique [6] and the
Optimal Agglomerative Single-link Partition [10].

As used in [11], in addition to the value of Generalized Dunn’s index, our eval-
uation will be based on a probability matching scheme called Distinctness [11].
Such function is very powerful in the cluster validation problem because it works
independently of the number of clusters and the dissimilarity between objects.

For a partition P with k clusters {C1, C2, .., Ck}, the Distinctness is defined
as the intercluster dissimilarity using a probability match measure, namely the
variance of the distribution match. The variance of the distribution match be-
tween clusters h and l in a given partition is measured as:

V ar(Ch, Cl) =
1
m

m∑

i

∑

j

(P (ai = Vij |Ch)− P (ai = Vij |Cl))
2 (11)

where m is the number of attributes ai characterizing the objects. P (ai = Vij |Ch)
is the conditional probability of attribute ai to take the value Vij in cluster Ch.
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Table 2. Evaluation of Zoo Data

Clustering Approach # Clusters Distinctness DunnG

Re-colored b-coloring Partition 7 0.652 1.120

Original b-coloring Partition 7 0.612 1.071

Optimal Single-link Partition 2 0.506 0.852

Optimal Hansen’s Approach 4 0.547 1.028

The above equation assumes that a data object has only one value per at-
tribute (represented by j ∈ ai). The greater this value, the more dissimilar are
the two clusters being compared, and, therefore, the concepts they represent.

The Distinctness of the partition P is taken as the average variance between
clusters in that partition.

Distinctness =

k∑

h=1

k∑

l=1

V ar(Ch, Cl)

k × (k − 1)
(12)

When comparing two partitions, the one that produces the greater distinctness
should be the preferred partition since the clusters in this partition represent
the more distinct concepts [11].

4.1 Evaluation for Zoo Dataset

The Zoo data [8] uses 100 instances of animals with 17 features and 7 out-
put classes. The name of the animal constitutes the first attribute. There are
15 boolean features corresponding to the presence of hair, feathers, eggs, milk,
backbone, fins, tail; and whether airborne, aquatic, predator, toothed, breathes,
venomous, domestic, catsize. The numeric attribute corresponds to # legs.

Table 2 provides the clustering results. The Distinctness measure indicates
better partitioning for the clusters generated by the b-coloring clustering ap-
proach (for the original partition as well as for the improved partition). This
confirms that our notion of dominating vertex finds more meaningful and well-
separated clusters. In the other hand, the improved partition has the larger
DunnG value. This indicates the pertinence of the greedy algorithm to improve
the original b-coloring partition.

4.2 Evaluation for Mushroom Dataset

The mushroom data set was also obtained from [8]. Each data record contains
information that describes the 21 physical properties (e.g., color, odor, size,
shape) of a single mushroom. A record also contains a poisonous or edible label
for the mushroom. All attributes are categorical; for instance, the values that
the size attribute takes are narrow and broad, while the values of shape can be
bell, at, conical or convex, and odor is one of spicy, almond, foul, fishy, pungent
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Table 3. Evaluation of Mushroom Data

Clustering Approach # Clusters Distinctness DunnG

Re-colored b-coloring Partition 17 0.728 0.995

Original b-coloring Partition 17 0.713 0.891

Optimal Single-link Partition 20 0.615 0.866

Optimal Hansen’s Approach 19 0.677 0.911

etc. The mushroom database has the largest number of records (that is, 8124)
among the benchmark data sets we used in our experiments.

Table 3 provides the results of the clustering obtained, over the mushroom
data using the different clustering approaches. According to the Distinctness
measure, the proposed re-colored b-coloring approach generates the best cluster-
ing. The clusters are compact and well-separated. This confirms the pertinence
of the b-coloring technique to offer a compromise between the intercluster sepa-
ration and the intracluster cohesion. Moreover, the relevance of the new greedy
algorithm in the improvement stage of the DunnG index is also observed from
the table 3.

5 Conclusion and Future Work

This paper has proposed a new greedy algorithm to improve the specified
b-coloring partition while satisfying b-coloring property. The b-coloring based
clustering method in [3] enables to build a fine partition of the data set (classi-
cal or symbolic) into clusters even when the number of clusters is not pre-defined.
However, it does not consider the high quality of the clusters in the construction
of a b-coloring graph. The proposed algorithm in this paper can complement this
weakness by re-coloring the objects to improve the quality of the constructed
partition under the property and the dominance constraints. We have imple-
mented, performed experiments, and compared our approach to other clustering
approaches, and illustrated its efficiency on benchmark datasets (having espe-
cially various characteristics). The proposed techniques offers a real compromise
between the intercluster separation and the intracluster cohesion.

There are many interesting issues to pursue: (1) leading more experiments
and comparison for our algorithm on a real medical data set and a larger image
data set, and (2) extending the re-coloring concept to the critical vertices in the
sense to better improving the clustering quality, to name a few.
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Abstract. In this paper, a new way to express complex spatial relations is pro-
posed in order to integrate them in a Constraint Satisfaction Problem with 
bilevel constraints. These constraints allow to build semantic graphs, which can 
describe more precisely the spatial relations between subparts of a composite 
object that we look for in an image. For example, it allows to express complex 
spatial relations such as  “is surrounded by”. This approach can be applied to 
image interpretation and some examples on real images are presented. 

Keywords: Semantic graph, arc-consistency checking, spatial relationship, 
image interpretation. 

1   Introduction 

The large expansion of web applications leads to manipulate a huge amount of images. 
Then, interpreting correctly the content of images is a crucial step to obtain what we 
want from this huge image database. Image interpretation is also an important issue in 
medical images, particularly when it is necessary to find automatically anatomical struc-
tures such that cerebral structures linked to brain activity. However, a large gap persists 
between the semantic interpretation of an image and its low-level features. The MPEG-
7 standard has been developed to introduce high-level representations (ontology) that 
capture the semantics of a document [10], [11]. This semantic is sometimes limited to 
textual descriptors of image components according to a semantic hierarchy. Other se-
mantic descriptions may be more relevant to interpret an image. 

Usually, a complex object, like an anatomical structure, is described by the shape 
of its components and the spatial relationships between these components. Then, a 
semantic model has to integrate both spatial and morphological constraints. One could 
think that spatial relations could be simply described by a notion of adjacency as we 
can find in region adjacency graph (RAG). This formalism has some interesting prop-
erties which make it very convenient to describe an image and therefore it has been 
chosen by many authors [2], [6], [12], [13], [14]. However, the unique notion of adja-
cency is too poor to describe complex spatial organization of the different parts of 
an object. Cohn et al. [5] proposed to describe more complex spatial relations between 
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DC(E,N)    EC(E,N)       TPP(E,N)        PO(E,N)       EQ(E,N)  

Fig. 1. Illustration of the JEPD relations 

a.                                     b. 

Distance between

the two minimum bounding

boxes of border  interfaces
A

B

mbbbiw
mbbbie

 

Fig. 2. a. In that case the two regions are not overlapped and the two minimum bounding boxes 
are overlapped. The analysis of the spatial relation between these two regions is not possible by 
using minimum bounding boxes. b. mbbbiw is the minimum bounding box of the border inter-
face which is on the left of region A. mbbbie is the minimum bounding box of the border inter-
face which is on the right of region B.  

regions, in a topological framework, with a set of basic relations and they create for 
that purpose the RCC8 formalism. RCC8 deals with a set of eight Jointly Exhaustive 
and Pairwise Disjoint (JEPD) relations called basic relations: DisConnected (DC), Ex-
ternally Connected (EC), Partial Overlap (PO), Equal (EQ), Tangential Proper Part 
(TPP), Non Tangential Proper Part (NTPP) and their converses (See Fig.1). However, 
this formalism does not take into account the shape of the regions and the directional 
relations. Skiadopoulos and Koubarakis [17] circumvent this drawback by defining 
formally the Cardinal Direction Relations. These relations exploit the notion of mini-
mum bounding box (mbb) and several authors have proposed some ways to combine 
topological notions with directional relations [18]. This approach has several interest-
ing advantages: it has good properties of computation (computing the minimum 
bounding box of a region is fast), it is possible to inherit the properties of minimum 
bounding boxes inside a pyramid of adjacency graphs, it is possible to introduce a no-
tion of absolute or relative metrics and RCC8 relation can be retrieved from it [18]. 
However, the topological and directional notions should take into account that the no-
tion of distance between two regions is also a very important feature [4]. For example, 
the difference between different animal faces lies mainly on the difference of  
distances between each part of the face. The main drawback of working only on mini-
mum bounding boxes is when the two minimum bounding boxes of two regions are 
overlapped (See Fig. 2.a), it is not possible to compute any useful distance. Moreover, 
all these works consider that each object is ideally identified. In practice, this is not 
the case in a segmented image where objects are often arbitrarily over-segmented.  

In this paper, we propose new topological and directional relations able to better 
describe complex spatial relations between two objects made up of several segmented 
regions. A concrete implementation of these relations is proposed to use it in the  
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context of a constraint satisfaction problem with bilevel constraints. These relations 
are used as spatial constraints associated with the arcs of a semantic graph. Indeed, 
this formalism can describe many objects of an image [1], [3], [7], [15], [19]. In section 
2, we describe the new spatial relations. In section 3 an implementation of these rela-
tions in the context of a CSP with bilevel constraints is proposed. In section 4, we 
present some experiments with different kinds of models applied on real images.  

2   Complex Spatial Relations Between Two Composite Objects 

2.1   Cardinal Direction Formalism 

In the framework of the cardinal Direction Formalism (CDF), Skiadopoulos and Kou-
barakis [17] formally defined nine cardinal directions relations. (See Fig. 3). Let A be 
a region, the greatest lower bound of the projection of A on the x-axis (respectively y-
axis) is denoted by infx(A) (respectively infy(A)). The least upper bound of the pro-
jection of A on the x-axis (respectively y-axis) is denoted by supx(A) (respectively 
supy(A)). The minimum bounding box of A, denoted by mbb(A), is the box formed 
by the rectangle where the coordinates of the left inferior corner are x1=infx(A), 
y1=infy(A) and the coordinates of the right superior corner are x2=supx(A), 
y2=supy(A). The single-tile cardinal direction relations can be defined as follows: 

  A O B iff infx(B)≤infx(A), supx(A)≤supx(B), infy(B)≤infy(A) and supy(A)≤supy(B) 
A S B iff supy(A) ≤ infy(B), infx(B) ≤ infx(A) and supx(A) ≤ supx(B) 
A SW B iff supx(A) ≤infx(B) and supy(A) ≤infy(B) 
A W B  iff  supx(A) ≤ infx(B), infy(B) ≤ infy(A) and supy(A) ≤ supy(B) 
A NW B  iff supx(A) ≤ infx(B) and supy(A) ≤ supy(B) 
A N B iff supy(B) ≤ infy(A), infx(B) ≤ infx(A) and supx(A) ≤ supx(B) 
A NE B iff supx(B) ≤ infx(A) and supy(B) ≤ infy(A) 
A E B iff supx(B) ≤ infx(A), infy(B) ≤ infy(A) and supy(A) ≤ supy(B) 
A SE B iff supx(B) ≤ infx(A) and supy(A) ≤ supy(B) 

Each multi-tile cardinal direction relation can be defined as follows: 

a R1 : … : Rk b,  2 ≤ k≤ 9 if there exists regions a1, …, ak such that a= a1 ∪ … 
∪ak  and   a1 R1 b, a2 R2 b, …, ak Rk b. 

NW

W

SW

N

S

NE

E

SE

OA

B

 

Fig. 3. cardinal direction relation between two regions A and B 
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2.2   The Connectivity-Direction-Metric Formalism (CDMF) 

The minimum bounding boxes of two regions give some information about their spa-
tial relations but this information is sometimes very poor, for example when one box 
overlapped another (Fig. 2a). In order to describe more complex spatial organization, 
we use three kinds of basic information: 

(1) The notion of connectivity expressed in the topological framework of RCC8 by 
the primitive dyadic relation C(x,y) read as “x connects with y”. 

(2) the notion of minimum bounding box introduced in the Cardinal Direction 
Formalism. Several properties can be deduced from this notion: 

- The surface, width and height of a region can be computed.  
- The directional relations between two regions. In our context we define 
four directional relations: N (North), S (South), W (West) and E (East). 

a N b iff supy(b) ≤ infy(a), a S b iff supy(a) ≤ infy(b), 
a W b iff  supx(a) ≤ infx(b), a E b iff supx(b) ≤ infx(a) 

A

B

A

B

dg1

dg2

dg3

dg4 ds1

ds2

ds3 ds4  

Fig. 4. The 8 metrics between two minimum bounding boxes: distances between A and B and 
lateral shifts between A and B 

- Several metrics between two regions so long as the minimum bounding 
boxes of the two regions are not overlapped. Eight metrics between two 
minimum bounding boxes can be defined (see Fig. 4). For the north/south 
orientation, the definitions are: dg1(A,B) = supy(A)-infy(B) , dg2(A,B) 
=infy(A)-infy(B), dg3(A,B) = supy(A)-supy(B),  dg4(A,B)= infy(A)-supy(B),  
ds1(A,B)= supx(A)-infx(B), ds2(A,B)= supx(B)-infx(A), ds3(A,B)= infx(B)-
infx(A), ds4(A,B)=supx(A)-supx(B). The definitions for the east/west orien-
tation are similar. The eight relations defined in the CDF can be easily  
retrieved from our relations with the appropriate metrics. 

(3) A new notion of minimum bounding box of border interfaces (mbbbi) between 
two regions for each main cardinal direction (N, S, E, W). This notion is defined in 
the following section. 

Minimum bounding boxes of border interfaces between two regions. In order to 
make a more accurate spatial analysis we define the notion of minimum bounding 
boxes of “border interfaces”. We mean by “border interface” the border part of a re-
gion which, given a cardinal direction, is in front of another region (See Fig. 2b).  

Definition 1. Let R be a region (a set of connected pixels), we note p(x,y) a pixel of 
R. E(R)={p(x,y) ∈ R | ∃p(x',y') one of the 8 connected neighbors of p(x,y), p(x',y') ∉ 
R}. Let be A and B two regions: 
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- The border interface Cw(A,B) is defined by {p(x,y) ∈ E(A) such that ∃p(x’ ,y) 
∈ E(B) and ∀ p(x’’,y) such that x< x’’<x’ p(x’’,y) ∉ A and p(x’’,y) ∉ B } 

- The border interface Ce(A,B) is defined by {p(x, y) ∈ E(A) such that ∃p(x’, y) 
∈ E(B) and ∀ p(x’’, y) such that x> x’’>x’ p(x’’, y) ∉ A and p(x’’, y) ∉ B } 

- The border interface Cn(A,B) is defined by {p(x, y) ∈ E(A) such that ∃p(x ,y’) 
∈ E(B) and ∀ p(x, y’’) such that y< y’’<y’ p(x, y’’) ∉ A and p(x, y’’) ∉ B } 

- The border interface Cs(A,B) is defined by {p(x, y) ∈ E(A) such that ∃p(x ,y’) 
∈ E(B) and ∀ p(x, y’’) such that y> y’’>y’ p(x, y’’) ∉ A and p(x, y’’) ∉ B } 

Definition 2. The minimum bounding box of a border interface in the direction d 
(mbbbid) is defined by (infx(Cd(a,b)),infy(Cd(a,b))),(supx(Cd(a,b)),supy(Cd(a,b))) 

We can see on the example of Figure 2 that the two mbb of the regions A and B are 
overlapped. On the contrary the mbbbiw and the mbbbie are not overlapped.  Then, it 
is easy to know on this example that the region A is on the left side of region B. 

Additional relations between two regions. Minimum bounding boxes of border in-
terface (mbbbiw, mbbbie, mbbbin, mbbbis) allow to describe additional relations. The 
four spatial relations between A and B linked to the corresponding mbbbid can be de-
fined as follows: 

A Ei B iff supx (Cw(B,A)) ≤ infx(Ce(A,B)), 
A Wi B iff  supx(Cw(A,B)) ≤ infx (Ce(B,A)), 
A Ni B iff supy(Cn(A,B)) ≤ infy(Cs(B,A)) 

A Si B iff supy(Cn(B,A)) ≤ infy(Cs(A,B)), 

All these relations may be associated with the metric d defined as follows: d(A,B)= 
infz(A)-supz(B) where z = y for Ni or Si relationship, and z = x for Ei or Wi  
relationship. 

Elementary relations in CDMF. CDMF allows to define very complex relationships 
by a combination of elementary relationships. An elementary relationship is a  
relation: 

- (1) of connectivity or non connectivity 
- (2) of directional relationship between mbb with none or one metric relation chosen 
among the metrics dsi and dgi (i=1…4) defined before  (with inferior and superior 
limits). In that case, we have four directional relationships: N (North), S (South), W 
(West) and E (East). 
- (3) of directional relationship between mbbbi with one metric relation d defined be-
fore (with inferior and superior limits). In that case, we have four directional relation-
ships: Ni, Si, Wi and Ei. 

Property 1. For each elementary relation ℜe between A and B, A ℜe B ⇒ ∃a ∈A 
and ∃b ∈B, a ℜe b. 

Proof: ℜe of type (1). It is straightforward that  
A connected to B ⇒ ∃a ∈A and ∃b ∈B, a connected to b. 
A not connected to B ⇒ ∃a ∈A and ∃b ∈B, a not connected to b. 
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ℜe of type (2).  Let R be one of the four relations N, S, E, W and di be one of the 
eight metrics defined between two mbb (i=1 …8). Let min and max be the inferior 
and superior limits (in number of pixels) of the distance di. It is straightforward that  
A R B and min ≤di (mbb(A),mbb(B)) ≤max ⇒ ∃a ∈A and ∃b ∈B, a R b min ≤di 
(mbb(a),mbb(b)) ≤max.  

ℜe of type (3).  Let R be one of the four relations Ni, Si, Wi, Ei defined by using the 
mbbbi in section 2.2. Let d be the metric associated with the two mbbbi. Let min and 
max be the inferior and superior limits (in number of pixels) of the distance d. It is 
straightforward that A R B and min ≤d (mbbbiR (A),mbbbiR

-1(B)) ≤max ⇒ ∃a ∈A and 
∃b ∈B,  a R b min ≤d (mbbbiR (a),mbbbi R

-1 (b)) ≤max. R-1 is the opposite direction  
of R. 

3   Application of the CDMF Relations to Over-Segmented Objects: 
Integration of the CDMF in a CSP with Bilevel Constraints 

High level interpretation of images consists usually in matching each part of the im-
age with a meaningful representation. The graph formalism is a very natural and con-
venient way to represent the semantic content of an image and the CDMF may be 
used to define node and arc constraints. Among several strategies [6], [16], we choose 
to perform this matching by solving a constraint satisfaction problem (CSP), because 
it better deals with complex directional spatial relationships. This aspect has been dis-
cussed in [9]. To reduce the time complexity of matching a graph with the different 
subparts of a shape, it is possible to only take into account local constraints. In prac-
tice, as problems are usually over-constrained, the arc-consistency checking is 
enough. Several authors [3], [15], [19] have proposed fast arc-consistency checking 
algorithms. These algorithms try to associate only one value with one node. This as-
sumption supposes an ideal segmentation (one node of the graph is associated with 
only one region). In our context, the data are not ideally segmented and usually the 
objects present in an image are over-segmented in an arbitrary way depending on the 
grey level distribution in the image. The problem is: assuming A and B as two objects 
(regions) in an image, such that A ℜ B with ℜ a combination of ℜe of CDMF, how to 
define the relation ℜ’ between any subpart a ∈A and b ∈B such that a ℜ’ b ⇒  
A ℜ B ? 

The elementary relationships of CDMF have an interesting property seen previ-
ously. For each elementary relation ℜe between A and B, A ℜe B ⇒ ∃a ∈A and ∃b 
∈B, a ℜe b. Then the ℜe representing arc constraints in the graph formalism are valid 
to represent constraint on subparts of objects candidate to be matched with a node. 
However, due to the over-segmentation, a subpart of an object does not always satisfy 
all the constraints that make classical CSP fail. A solution was described in [7] by in-
troducing two level of constraints in the classical CSP. The first level is the classical 
constraint between nodes, and the second level called Cmpi is an intra-node constraint. 
This second level defines how any subpart of an object, which does not satisfy a given 
inter-node constraint, has to satisfy an intra-node constraint with another region satis-
fying the inter-node constraint. In the following section, the notion of arc consistency 
checking with bilevel constraints is defined. Then, an example of its implementation 
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and an example of using CDMF in this context are described. In particular, we will 
see how to express the complex spatial relationship like “is surrounded by”.  

3.1   Constraint Satisfaction Problem and Arc Consistency Checking with Bilevel 
Constraints 

We use the following conventions: 

• Variables are represented by the natural numbers 1, ... n. Each variable i has an as-
sociated domain Di. We use D to denote the union of all domains and d the size of 
the largest domain. 

• All constraints are binary and relate two distinct variables. A constraint relating 
two variables i and j is denoted by Cij. Cij(v,w) is the Boolean value obtained when 
variables i and j are replaced by values v and w respectively. Let R be the set of 
these constraining relations.  

We defined the Finite-Domain Constraint Satisfaction Problem with Bilevel Con-
straints (FDCSPBC). One level of constraint is between each couple of nodes (spatial 
relations between objects associated with a node) and the other one level of constraint 
is between each couple of regions classified inside one node (spatial relations between 
subparts of the object associated with a node). These constraints are called Cmpi with 
i=1 … n. This problem is defined as follows: 

Definition 3. Let Cmpi  be a compatibility relation, such that (a,b) ∈ Cmpi iff a and b 
are compatible. Clearly Cmpi is reflexive. Let Cij be constraint between i and j. Let be a 

pair Si, Sj such that Si ⊂ Di  and Sj ⊂ Dj,  Si, Sj  Cij means that (Si, Sj) satisfies the 

oriented constraint Cij. 

Si, Sj  Cij ⇔  ∀ai ∈ Si, ∃(a'i, aj) ∈ Si  x Sj, such  that (ai, a'i) ∈ Cmpi  and (a'i,aj) ∈Cij   

            and ∀aj ∈Sj, ∃(a'j,ai) ∈ Sj x Si, such  that (aj, a'j) ∈ Cmpj and (ai,a'j) ∈ Cij.  

Sets {S1 ... Sn} satisfy FDCSPBC iff   ∀ Cij    Si, Sj  Cij. 

A graph G is associated to a constraint satisfaction problem as follows: G has a node i 
for each variable i. Two directed arcs (i,j) and (j,i) are associated with each constraint 
Cij. Arc(G) is the set of arcs of G and e is the number of arcs in G. Node(G) is the set 
of nodes of G and n is the number of nodes in G.  

A class of problems called arc-consistency problems with bilevel constraints 
(ACBC), associated with the FDCSPBC is defined as follows: 

Definition 4. Let (i,j) ∈ arc(G). Arc (i,j) is arc consistent  with respect to  P(Di) and 
P(Dj) iff  ∀Si ∈P(Di)  ∃Sj ∈ P(Dj) such that ∀v ∈Si ∃t ∈Si, ∃w ∈ Sj, Cmpi(v,t) and 
Cij(t,w).(v and t could be identical) 

Definition 5. Let P= P(D1) x .... x  P(Dn). A graph G is arc-consistent with respect 
to P  iff ∀ (i,j) ∈arc(G): (i,j)  is arc-consistent with respect to P(Di) and  P(Dj).  

The purpose of an arc-consistency algorithm with bilevel constraints is, given a graph 
G and a set P, to compute P', the largest arc-consistent domain with bilevel constraints 
for G in P. 



 Qualitative Spatial Relationships for Image Interpretation by Using Semantic Graph 247 

3.2   Implementation of the Arc-Consistency Checking Algorithm with Bilevel 
Constraints 

The AC4 algorithm proposed by Mohr and Henderson [12] has been adapted to solve 
the ACBC problem. We call this algorithm AC4BC (See [7] for the details of the 
algorithm). In AC4BC, a node belonging to node(G) is made up of a kernel and a set of 
interfaces associated with each arc, which comes from another linked node. In 
addition, an intra-node compatibility relation Cmpi is associated with each node of the 
graph. It describes the semantic link between different subparts of an object, which 
could be associated with the node. As in algorithm AC4, the domains are initialized 
with values satisfying unary node constraints and there are two main steps: an 
initialization step and a pruning step. However, whereas in AC4 a value was removed 
from a node i if it had no direct support, in AC4BC, a value is removed if it has no 
direct support and no indirect support obtained by using the compatibility relation  
Cmpi. The indirect supports are found thanks to the notion of interfaces. 

3.3   Example of Implementation of the Relation “Is Surrounded” by Introducing 
the CDMF in the CSPBC 

Using the CDM Formalism, it is possible to define the notion “is surrounded by” with 
over-segmented regions (The graph can be seen in Fig. 5.1). “A is surrounded by B” 
is defined as follows: ∀a ∈ A, ∀R ∈ {N, S, W, E} ∃c ∈A or ∃c ∈B, a connected to c 
and a R c. The possibility to authorized an “or” between the two constraints the con-
sequence of the notion of quasi arc-consistency in ACBC described in [8].  

A B

Ni

Si

Wi

Ei

Ni

Si

Wi

Ei

The distance between

the mbb and the

mbbbi is zero.
A

B C

Ni, Wi Ni, Ei

A: hair

B: left eye

C: right eye

1. 2.

A: inner part

B: outer part

 

Fig. 5. 1. Graph used to work with the relation “is surrounded by” (for example, centre (A) is 
surrounded by petals (B) in a flower) 2. Graph used to work with “is partially surrounded by” 
(for example eyes are partially surrounded by hair) 

a b  

Fig. 6. a) With classical minimum bounding boxes it is not possible to compute the distance be-
tween the left eye and the hairs, b) with the mbbbi of the CDMF, it is possible to compute a  
distance 
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Another kind of relation is “partially surrounded by” with a given distance. This 
case can be encountered in the identification of the eyes and hair in a human face (See 
Fig. 6). In that case, the nodes representing the eyes and the node representing hair 
have to be related by the three constraints Ni, Ei and Wi. The distance dg4 is  
associated with the three relations (The graph can be seen on Fig. 5.2).  

4   Experiments: Application to Check the Semantic Consistency of 
a Segmentation 

Several kinds of test images representing different objects have been chosen. A set of 
images represents human faces, another set represent cars and finally another set rep-
resent flowers. For each kind of objects a semantic graph describing them has been 
built. The semantic consistency checking has been applied on the segmentation ob-
tained with a pyramidal merging process [12] to stop automatically the merging at the 
 

a. b. c. d. e.  

Fig.7. Interpretation of segmentation results of faces. Regions labelled as eyes, mouth and hair 
are shown by overlapping their edges with the original images. 

                  

Fig. 8. Interpretation of segmentation results of cars (Labelled regions are tyres and lateral 
windows) 

a. b. c.  

Fig. 9. Interpretation of segmentation results of flowers (labelled regions are centre and petals) 
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more meaningful pyramidal level (but it could be applied to other methods of segmen-
tation providing a succession of embedded results with respect to the values of their 
parameters). On Figures 7,8 and 9 the regions with white edges are the obtained seg-
mented regions correctly interpreted by the semantic analysis. In Fig. 7, the use of the 
quasi-arc consistency checking was necessary [8] to interpret the images because the 
node ”hair” may be empty (see image ’e’ of the Fig. 7).  

5   Comments and Conclusion 

In this article, we have proposed a new way to express complex spatial relation. We 
have shown that this set of new relations makes possible the expression of cardinal di-
rection relations as well as crucial topological relations such as “is surrounded by “. 
Thanks to these relations, it is possible to build very precisely semantic graph describ-
ing an object made up of several subparts. With the AC4BC algorithm, this semantic 
graph can be used to retrieve objects inside an image. Some experiments have been 
made on real images, and we have shown that it is possible to detect very different 
kind of objects such as faces, cars, and flowers. This approach can be useful in the 
framework of image indexing to find some categories of images inside very large im-
age databases. This work can be a theoretical foundation and embedding this  
approach into the MPEG-7 standard or into a realistic system can be a future work. 
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Abstract. The vascular structure of the retina consists of two kinds of
vessels: arteries and veins. Together these vessels form the vascular graph.
In this paper we present an approach to separating arteries and veins
based on a pre-segmentation and a few hand-labelled vessel segments.
We use a rule-based method to propagate the vessel labels through the
vascular graph. We embed this task as double-layered constrained search
problem steered by a heuristical AC-3 algorithm to overcome the NP-
hard computational complexity. Results are presented on vascular graphs
generated from hand-made as well as on automatical segmentation.

Keywords: Retinal vascular graph, artery, vein, constrained satisfaction
problem, constrained propagation.

1 Introduction

The automated analysis of retinal images has been an active research area for a
long time. Automated analysis tools together with interactive treatment inter-
faces help ophthalmologists to interpret the large amount of examination data
and draw their diagnostic conclusions. Typical retinal images are shown in Fig-
ures 6 to 8. For better visualisation we present the inverted and linearly stretched
green channel of the original colour RGB-image. The dark roundish area repre-
sents the so-called optical disc, where the optic nerve and all vessels enter the
interior of the eye. Starting from this anchor point the vessels spread out in a
tree-like structure over the retinal surface and become thinner when they branch
until they are invisible as capillaries. At the macula, which is the brightest re-
gion of the retina and the region of the highest density of light receptor cells, no
vessels are visible anymore.

The most important task in the field of retinal image analysis is the seg-
mentation [2,3,6,9,10] and classification of the vascular structure. Vessels are
crucial for a variety of tasks including registration, detection of other features
(drusen, microaneurisms, hard exudates or cotton woll spoons), and diagnostic
purposes.

Our focus in this work lies on labelling the vessels. Therefore, we assume
that the vascular structure is already segmented suitably. More precisely, we
claim a segmentation of a retinal image in form of a binary image, where 1

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 251–262, 2007.
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represents a vessel pixel (object) and 0 any other (background). There is a strong
medical need of the discrimination of arteries and veins. One application is the
measurement of the AV-ratio, which is the ratio of the arteries and veins calibre.
Another important reason is the selective computation of a feature (e.g. vessel
tortuosity) for arteries and veins separately, since some pathological changes
effect only one kind of vessels [4].

There are only a few works of automatically discriminating between arteries
and veins in retinal images. Simo et al. [8] proposed a Bayesian classifier for pixels
to distinguish between arteries, veins, the fovea and the retinal background using
image informations.

Furthermore, Akita et al. [1] use a structure-based relaxation scheme to prop-
agate the artery/vein labelling. They model conditional probabilities of segments
on basis of the vessel structure. These probabilities influence each other and are
updated in each iteration until a stable state is achieved. Thereby, the structure
of the vascular graph is kept fixed. Our approach is different to the one of Akita
et al. [1] in that we regard the vessel segments to be uniquely an artery or vein.
To solve conflicts, we will change the structure of the vascular graph and thus
indirectly correct segmentation errors (to some degree). To our best knowledge,
there are no other structure-based methods for separation of veins and arteries
in retinal images.

Martinez-Perez et al. [5] present an approach to extract separate vascular
sub-trees. For the extraction of the vascular graph we use similar methods, but
while Martinez-Perez et al. basically are interested in computing geometrical and
topological properties of single vessel segments and sub-trees, we focus in this
work on the vascular structure itself.

The remainder of this paper is organised as follows. In Section 2 we specify
and formalise the problem of separating the vascular graph under anatomical
aspects. Subsequently, our algorithm is presented (Sec. 3) and exemplary results
are shown (Sec. 4). We conclude this work by discussing the performance of the
results and giving an outlook on our future work (Sec. 5).

2 Formal Problem Specification

There are two different kinds of vessels on the retina. The arteries transport
oxygenated blood from the heart and the veins discharge the blood back to the
heart. We utilise two important anatomical characteristics of these structures:

1. The visible vascular structure is physically cycle-free (although its projection
onto the 2D image plane becomes a vascular graph with cycles). One artery
enters at the optic nerve head into the interior of the retina and branches
without any reconnection (i.e. without anastomosis).

2. At vessel crossings, where one vessel courses over another, only different
vessel types are involved. More precisely, an artery could never cross another
artery and the same is valid for two veins.
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Fig. 1. (a) inverted original; (b) segmentation; (c) skeleton; (d) vascular graph; (e)
edge labelling, n=normal edge, c=crossing edge (see Sec. 3) ; (f) vessel labelling

2.1 Graph-Based Representation

We compute the graph representation in a similar way as described by Martinez-
Perez et al. [5]. The precondition of the proposed approach is the segmented
vascular structure (Fig. 1(b)). Firstly, we apply a sequential skeletonisation pro-
cedure that produces an 8-connected skeleton (see Fig. 1(c)). Once the skeleton
is calculated the transformation into a graph G is straightforward. Because of
the vessels’ anatomical structure the vertices of G can only have degree 1, 3 or 4.
In contrast to Martinez-Perez et al. [5] we do not distinguish the type of vertices
on the image analysis level but on anatomical aspects of the vascular structure.

Let us assume that we can represent the vessels as curvilinear segments si,
which could branch and cross. We construct a planar graph G = (E ,V), where
each edge ei ∈ E (1 ≤ i ≤ m) corresponds to a vessel segment si in a one-to-
one relation. The nodes vj (1 ≤ j ≤ n) of the graph represent the branches or
crossings of vessel segments and are of degree three (branches) or four (crossings).
Additionally, there are nodes of degree one, where a vessel segment ends. If two
vessels cross each other, both are splitted in two vessel segments represented by
two edges. Thereby, the opposite segments form one vessel segment pair of the
same type in each case.

2.2 SAT-Problem Description

The problem we are faced with is to find a consistent labelling L (si) := Li of all
vessels segments si in arteries Li =a or veins Li =v. One can define a rule for a
consistent labelling at each vertex vj depending on its degree: In the case that
vj is a branch, we have three vessel segments with corresponding graph-edges
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Fig. 2. Possible results of operation op2 depending on the vertices’ degrees (top row
4/3, bottom row 3/3), edge labelling on the left, vessel labelling on the right

ei1 , ei2 and ei3 of same type connecting at vj . Clearly, all vessel segments should
be labelled in the same manner:

Li1 = a ⇔ Li2 = a ⇔ Li3 = a (1)
∧ Li1 = v ⇔ Li2 = v ⇔ Li3 = v (2)

From the second anatomical characteristic, we know that if vj represents a cross-
ing, then one of the involved vessels is an artery and the other is a vein. Physi-
cally, these vessels do not cross, but one is taking course above the other. Since
vessels are relatively straight, we can assume that a diagonally opposed vessel
segment pair represents the same physical vessel and hence the segments belong
to the same vessel type. Let ei1 , ei2 , ei3 and ei4 denote the graph-edges linked
at vj . Since the two pairs (ei1 , ei3) and (ei2 , ei4) belong to the same vessel, we
can formulate the following two rules:

Li1 = a ⇔ Li3 = a ⇔ Li2 = v ⇔ Li4 = v (3)
∧ Li1 = v ⇔ Li3 = v ⇔ Li2 = a ⇔ Li4 = a (4)

In this way, the extracted vascular graph G leads to a finite set S of rules. Each
rule (1) to (4) is a conjuction of simple logical clauses of the form

((Lμ �= α) ∨ (Lν = β)) ∧ ((Lν �= β) ∨ (Lμ = α)) (5)

Note that Li can be considered as boolean variable, since we can identify the
label a with true and v with false. In other words each node leads to a number
of constraints of the form (5). In a natural way we get a satisfiability problem in
m variables L1, . . . , Lm. Obviously, the rules (1) and (2) as well as rules (3) and
(4) are redundant so that we keep only the rules (1) and (3) in our rule set S.

The SAT-problem is a special case of constraint satisfaction problems and
can thus be solved by standard algorithms like AC-3 (see e.g. [7]) to overcome
the NP-hard computation trap. After solving the SAT-problem each edge of the
graph G is labelled by either a or v. Then, the subset of all edges labelled by a
and v corresponds to arteries and veins, respectively.
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2.3 Unsatisfiable Vessel Labelling

During the segmentation process and the segment identification (e.g. a skeleton
algorithm) an erroneous graph representation of the vascular structure may be
computed. Typical mistakes are (1) splitting of one crossing into two branches,
(2) missing vessel segment on a side of a crossing, (3) falsely detected, i.e. non-
existing, vessel segments. The result of these mistakes is usually a globally un-
solvable SAT-problem.

For this reason we have to manipulate the graph G at few selected vertices
so that the SAT-problem (Sec. 2.2) becomes solvable. The selection itself is con-
trolled by the algorithm described in Sec. 3. We allow the following operations:

op1 Combining two adjacent branch vertices to one crossing (Fig. 1)
op2 Defining an edge as end segment (connected to only one branch or crossing)
op3 Deleting an edge

Instead of manipulating the graph directly we introduce an auxiliary labelling
of vessel segments. To distinguish between the two different types of labelling,
we denote the following as edge labelling and the discrimination between veins
and arteries (Sec. 2.2) as vessel labelling. Possible labels for graph-edges are:

c connection between two branches, which should establish a crossing
e artificial end segment, where only one of two vertices is relevant
f falsely detected segment
n normal segment

These edge labelling allow us to adjust the set of applicable clauses at each node
in the conflict resolution phase of the algorithm.

The corresponding graph manipulation operation for a c-labelled edge e is
op1. To adapt our clause set S (Sec. 2.2) we replace the rules for the two branch
vertices, to which e is connected, with the rule (3) of a crossing vertex.

An end segment labelling e (equivalent to op2) is only allowed if at most
one of the vertices has degree three and the other has degree three or four (see
Fig. 2). The adaption of the rule set S depends on the degree of this second
vertex and can be done in a straight-forward way. Note that in the case that
both adjacent vertices have degree three, there are two possible interpretations.
Furthermore two adjacent edges/segments cannot be labelled as end segments,
to avoid an over-fragmentation.

Noisy segments (label f) are simply thrown away by removing the
corresponding edge out of G and deleting the corresponding clauses out of S.

2.4 Optimisation Task

In Section 3 we will introduce plausibility weights for the vertices and edges of
G. Based upon these ratings we are interested in that solution, which results in
a maximum average plausibility. In other words, we search a labelling of graph-
edges (Sec. 2.3) so that the resulting SAT-problem (Sec. 2.2) is solvable and the
average plausibility is maximised.
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Initially, all vertices vj are assessed with a plausibility value w(vj), which
should regard the reliability of the assessed rules of vj . Furthermore each edge ei

is assigned with the plausibility weight w(ei) = 1 or 0 if the corresponding vessel
segment is hand-labelled or not. Based upon the order of applying constraints the
weights of the new labelled segments are updated by a multiplicative propagation
scheme (see Eq. 10 in Sec. 3.2). The optimisation task is then given by minimising

1
n
·

n∑

i=1

w(ei) (6)

This average plausibility depends on the number of hand-labelled segments and
on the order of solving conflicts. Note that in case of an unsolved conflict, wide
parts of the graph are left unprocessed and hold the plausibility weight 0.

3 Graph Separation

The problem we are faced with consists of two layers. The basic layer is the struc-
ture of the vascular graph. On this layer graph edges are labelled with either c,
e, f or n. This edge labelling defines the constaint set S, which conditions the
second, high-level layer. Our approach is to apply on this higher level belief prop-
agation techniques and solve conflicts by adjusting the basic layer. More precisely,
if contradictory information are propagated to a vessel segment (competing a/v-
labelling), we do not propagate the more likely information, but reorganise the
structure. This update results in a different, more realistic graph structure.

We use a two-stage approach for the labelling of the vessel segments. In the
first stage (Sec. 3.1), we compute an initial labelling of graph-edges. All edges
are labelled by n, except for those connecting two branches. In the latter case
the edge is labelled by either n or c (indicating a merge of the two branches to
build a crossing according to graph manipulation operation op2). The decision
rule for taking one of the two labels n/c is given later in Sec. 3.1.

The second (higher-order) stage performs the labelling of the vessel segments
by a variant of AC-3 (Sec. 3.2). This algorithm tries to label all vessel segments
as arteries a or veins v. Arising conflicts, which make a consistent labelling im-
possible (i.e. AC-3 fails), are resolved by a backtracking procedure. The idea is to
modify the edge labelling at appropriate edges according to graph manipulation
operations op1–op3.

3.1 Initial Edge Labelling

To compute an initial edge labelling, we firstly decide which edges should be
labelled with c. All other edges are assumed to be normal edges (label n). It is
important to note that a c-label manipulates the graph structure by merging
two branch vertices (degree 3) to a crossing vertex (degree 4). Also the rule set
S has to be adapted accordingly.

Let sc denote a vessel segment (respectively a graph-edge) to which we want to
assign its initial labelling (c or n). Furthermore s1, . . . , s4 are the other involved
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vessel segments (see Fig. 5). Two properties help us decide if the two detected
branch vertices of sc actually belong to one vessel crossing:

P1 The distance d between two branches is relatively small
P2 The two segments s1 and s3 are roughly collinear, similarly s2 and s4

We are modelling P1 and P2 by the following two plausibility functions:

P1 : (0,∞)→ (0, 1], P1(d) = 0.95 ·min{d/dmax, 1}, dmax > 0 (7)
P2 : [−π, π]→ [0, 1], P2(β) = 0.5 · (1− cos(β)) (8)

The constant factor dmax should depend on the resolution of the retinal image.
We compute the argument β of P2 as

β = max
αi

{αi} (9)

Here α1, . . . , α4 are the inner angles between sc and s1, . . . , s4. If both P1 as well
as P2 are low, we could assume a crossing instead of two branches. We define
thresholds T1 and T2 and label the segments with c if P1 < T1 and P2 < T2.

The thresholds T1 and T2 are determined by optimising this classifier. We
hypothesise “segment sc is a normal vessel” and minimise the beta error on
a significance level α = 0%. We have examined 11 vascular graphs with 763
“inner” edges. With the conducted thresholds T1 = 0.75 and T2 = P2(π/6) all
621 normal edges are correctly labelled with n. On the other hand only 25 of
142 crossing edges are falsely labelled with n. This corresponds to a beta error
of about 17.6% and a total error of about 3.3 %.

3.2 Consistent Labelling Search

In the following an extension of the AC-3 algorithm [7] is proposed, which is
controlled by a priority queue Q ⊂ V . We presume that Q initially contains
some vertices of hand-labelled edges. Since the vascular structure at the optic
disc is very compact, which makes the differentiation of the vessels even for
human eyes hardly solvable, we define a circle around the optic disc where the
algorithm does not proceed the labelling.
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Algorithm 1. AC-3*
Require: clause set S , vertices of some hand-labelled edges in queue Q
1: while Q is not empty do
2: vi ← remove-head(Q)
3: sj ← choose-rule(vi, S)
4: if consistent-labelling(vi, sj) then
5: for all vk in neighbours[vi] do
6: if edge between vk and vi was not labelled before then
7: add vk to Q
8: end if
9: end for

10: else
11: backtracking-search(vi)
12: end if
13: end while

In each step the best vertex is taken out of Q. Since every vertex in Q has at
least one uniquely labelled edge, we can now propagate the available labels to
all other connected edges according to the vertex type.

To arrange the order of processing, we need a heuristic H(vi) that decides
“how good” a vertex v is to be treated in the next processing step. For defining
the heuristic H we weight the vertices and edges of G with values w ∈ [0, 1]. The
initial weights are defined as follows:

– w(v) = P1(d) for a crossing vertex v, where d is the distance to the nearest
neighbour of v

– w(v) = P1(d) + P2(β) − P1(d) · P2(β) for a branch vertex v and its nearest
neighbour vertex (see Fig. 5)

– w(e) = 1 if e is a hand-labelled vessel segment (edge)

All other vertices and edges are initialised with zeros and updated in the labelling
process as follows. If the vertex v is processed (i.e. taken out of Q), we take the
maximum weighted edge e at v and update the weights for the other edges e′, if
still unlabelled, by

w(e′) = w(e) · w(v) (10)

Furthermore the other vertex v′ of such an e′ is added to Q with heuristic

H(v′) = w(v′) · w(e′) (11)

Note that in the labelling propagation described above we may encounter a
conflict situation, where an edge already has a unique label which is incompatible
with the new one. In such a situation a backtracking procedure is started. To
solve the conflicts we modify the graph indirectly by using another auxiliary
labelling (Sec. 2.3). When AC-3* detects a conflict while processing a vertex vi

the backtracking procedure searches in the neighbourhood of vi for a suitable
edge, which will be labelled differently.
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Fig. 6. Vessel classification on hand-segmented retinal images

Firstly, we search either a cycle or a path which ends at two hand-labelled
vessels, which caused the conflict. Let V ′ denote the vertices on such a chain
and E ′ := {e ∈ E|∃v∈V′e incident to v} the set of incident edges. We inspect all
incident edges and relabel the most adequate edge with c. Thereby, the most
adequate edge is a n-labelled edge e, which satisfies the constraints P1 < T ′

1 and
P2 < T ′

2 (T ′
1 > T1 and T ′

2 > T2) and minimise the plausibility P1 +P2−P1 · P2.
If no suitable edge is found the algorithm assumes that there is an end segment
at vi and uses the label e accordingly.

4 Results

We have tested our vessel classification method on the STARE data set of Hoover
et al. [2]. We use their ground-truth segmentation as input for our graph compu-
tation procedure, ignore the vessels inside the optical disc and start our AC-3* al-
gorithm with a few hand-classified vessels. This user interaction could be avoided
by an automatic detection of the optic disc and an automatic classification of
close-by dominant vessels.
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(a) (b) (c)

Fig. 7. Problems originated from nearby vessel segments (a) and (b) can be solved by
introducing more hand-labelled vessels (c)

In Figure 6 results are depicted, where all conflicts could be treated suitably.
Beside the vessels at the optic disc each segmented vessel is labelled as artery or
vein. On the left hand side of Figure 6 a gray-scale version of the input image
is shown, where the labelled arteries and veins are overlaid in black and white.
The same result is given on the right hand side, by shading the segmentation to
distinguish between unlabelled vessels, veins, hand-labelled veins, hand-labelled
arteries and arteries (from light to dark).

In the top row example of Fig. 6 (im0002 in STARE) we start with 2 hand-
labelled vessel segments and end up with an average plausibility of 0.14 without
unsolved conflicts. Initially, there are 14 edges labelled with c and the conflict
solver recognise 3 additional c-edges and 1 end segment (label e). The botton
row example of Fig. 6 (im0081 in STARE) starts with 4 hand-labelled segments
and 22 c-edges. The graph separation process solves all conflicts by adding 1 end
segment and 3 more c-edges. The average plausibility of the result is 0.2.

The example in Fig. 7 (a) (im0082 in STARE) is more difficult to proceed.
If we label 4 vessel segments by hand (Fig. 7 (b)) the program stops with an
average plausibility of 0.18. Thereby, only 6 of 10 conflicts are solved and two end
segments are introduced. The problem arises mainly from the overlaid crossing
and branching in the upper right part of the retina. If such a situation occurs
the user can correct the labelling by introducing more hand-labelled vessels at
ambiguous regions of the retina. But even if we label 6 vessels by hand (Fig. 7(c))
only 7 of 9 conflicts are solved by adding 4 c-labels and 3 e-labels.

We also conducted some tests on automatic segmentations. The problem
hereby is that we need a connected representation of the vasculature. Otherwise,
the connectivity is lost and our graph separation algorithm could not proceed
the forward labelling. This problem is the main reason why our approach could
not handle conflicts suitably. Figure 8 presents two result on an automatic seg-
mented image of the DRIVE data set [10] using the publically available vessel
segmentation algorithm of Soares et al. [9]. The difficulty of the first example
(top row in Fig. 8, image 16 in DRIVE) is due to the fact that some vessels
are non-continuously segmented (main vessels at the upper right region of the
retina). Overall we get an average plausibility of 0.08, based on 6 hand-labelled
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Fig. 8. Vessel classification on automatically segmented retinal image

vessels. All conflicts are solved by introducing 6 new c-label and 0 e-labels. This
fact is partly caused by the weak connectivity of the vessel segmentation re-
sult, which eases the labelling task since there are fewer constraints compared
to a fully connected vascular graph. However, it increases the risk of making
erroneous decisions. This effect is shown by the second example (bottom row of
Fig. 8, image 10 in DRIVE), where 3 of 6 conflicts are still unsolved, since the
connectivity of the vascular structure is not adequate enough to correct falsely
labelled edges. The average plausibility of this example is with 0.03 the lowest
of the examples, which are presented in this work.

5 Discussion and Conclusions

We have presented an automated graph separation algorithm to distinguish be-
tween arteries and veins in retinal images. The performance of our algorithm
mainly depends on the quality of the vessel segmentation algorithm. Although
we could correct isolated segmentation errors, cumulatively occurred missing or
non-continuous vessels are still difficult to handle.
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On the other side this malpractice offers a chance to locate segmentation er-
rors. If there is a region, where the extracted vessels could not be arranged under
anatomical aspects, this is an indication for a segmentation error. Beside the use
of such higher level information, we are working on an extended conflict solver,
which could delete edges/vessels. Furthermore, we want to justify our algorithm
by a comprehensive quantitative study, in which our results are compared to a
ground truth labelling. Moreover, we are interested in an adaptive user interface,
which helps physicians to process their analysis in a more efficient way.

In conclusion one can say that the automatic separation of the vascular graph
into vein and artery components offers many chances to interpret characteristics
of the vessel structure on a higher information level. It could be possible to
correct errors on lower levels by a suitable interaction scheme.
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Abstract. It has been demonstrated that the difficult problem of classi-
fying heterogeneous projection images, similar to those found in 3D elec-
tron microscopy (3D-EM) of macromolecules, can be successfully solved
by finding an approximate Max k-Cut of an appropriately constructed
weighted graph. Despite of the large size (thousands of nodes) of the
graph and the theoretical computational complexity of finding even an
approximate Max k-Cut, an algorithm has been proposed that finds a
good (from the classification perspective) approximate solution within
several minutes (running on a standard PC). However, the task of con-
structing the complete weighted graph (that represents an instance of
the projection image classification problems) is computationally expen-
sive. Due to the large number of edges, the computation of edge weights
can take tens of hours for graphs containing several thousand nodes.
We propose a method, which utilizes an early termination technique, to
significantly reduce the computational cost of constructing such graphs.
We compare, on synthetic data sets that resemble projection sets en-
countered in 3D-EM, the performance of our method with that of a
brute-force approach and a method based on nearest neighbor search.

1 Introduction

The motivation for this work comes from three-dimensional electron microscopy
(3D-EM) [1]. One of the important challenges encountered in 3D-EM is the
problem of partitioning heterogeneous projection sets into their homogeneous
components. Due to the unique nature of the projection images, high level of
noise and other distortions affecting them, this image classification problem is
very difficult. Despite these difficulties, several methods have been recently pro-
posed to solve it [2,3,4]. One of these methods [4] employs graphs to achieve
the desired classification. In this method a large complete weighted graph is
constructed. Each node of this graph represents a single projection image. The
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weight of each edge describes the dissimilarity of the images represented by the
nodes it connects. The desired image classification is achieved by finding an ap-
proximate solution to the Max k-Cut problem [5] (for k = 2 this is equivalent to
finding an approximate solution of the maximum capacity cut problem [6]).

In general, solving large instances of the Max k-Cut problem is computation-
ally expensive. Even the problem of finding a good approximation to the Max
k-Cut is NP-complete [5]. However, an efficient algorithm for finding approxi-
mate Max k-Cuts of graphs that originate from (3D-EM) has been developed
[4]. Due to unique nature of such graphs, the proposed graph cutting algorithm
of [4] is able to find good (from the classification perspective) approximate Max
k-Cuts for graphs (containing thousands of nodes) within several minutes of
runtime on a standard personal computer.

In comparison to other methods, the graph-based approach to the classifi-
cation of heterogeneous projection images is quite efficient. However, the cost
of constructing the complete weighted graphs, used by this method, increases
proportionally to the square of the number of projection images. Consequently,
the vast majority of time necessary to classify large sets of projection images is
dedicated to graph construction. For example (without optimizations) it takes
approximately 24 hours on a single processor (Intel Xeon 1.7GHz) to construct
a graph for a data set obtained from 5,000 images. Since the calculations of
edge weights between different nodes of the graph are mutually independent,
the task of constructing the graph can be easily parallelized. However, signifi-
cant resources are necessary to construct graphs for large data sets, containing
tens of thousands projection images, which are frequently encountered in 3D-EM
of biological objects. The objective of the work presented here is to provide an
algorithm that reduces the computational cost of constructing such graphs.

The difficulty associated with the classification of projection images comes
from the fact that two images belonging to the same class may be less similar (in
the traditional sense) than two images belonging to different classes (see Figure
1). In order to overcome this difficulty, a special projection image dissimilarity
measure has been proposed [4]. The value of this dissimilarity measure for a pair
of 2D images x̄, ȳ is calculated as

S(X, Y ) = min
x∈X,y∈Y

s(x, y), with s(x, y) =
N∑

i=1

(xi − yi)2, (1)

where X and Y are sets of 1D projections (N -dimensional vectors x and y in
R

N , where N is typically in the range between 60 to 150) that are obtained
by projecting the images x̄ and ȳ (respectively) at several hundred (parameter
of the measure) evenly distributed projection angles within the plane of each
image. This dissimilarity measure is used to calculate the edge weights in the
graphs used to classify of 3D-EM projection images. The process of calculating a
single weight can be interpreted as finding a squared distance between two sets
of points in multi-dimensional Euclidean space.

This distance can be obtained by solving a series of nearest neighbor search
(NNS) problems. Since the NNS problem is frequently encountered in database
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Fig. 1. Left column: sample of images used in experiments; top: two 2D projections
of object S6, bottom: two 2D projections of object S6x. Right column: corresponding
noiseless projection images

searching, pattern recognition, and data compression [7,8], a number of algo-
rithms to solve it have been proposed. However, due to the high dimensionality
of our RN , not all of these algorithms can be applied to the problem of building
graphs for 3D-EM image classification. When the dimensionality of the space
is high, the computation time of NNS can be reduced only by the use of met-
ric properties of the distance [9]. Our attempt to apply NNS techniques to the
graph building problem is based on the AESA [10] algorithm. AESA was chosen
because it is one of the fastest ways of finding the nearest neighbor when the
number of points that must be considered is small (which is the case in our graph
building problem).

We also developed a new algorithm that utilizes an early termination tech-
nique to reduce the cost of constructing graphs for large instances of the image
classification problems. This algorithm was experimentally compared with NNS
and a brute-force approach, and was found to be computationally more efficient
in our application area.

2 Mathematical Background

2.1 Formal Problem Statement

Let N be the dimension of the Euclidean space RN . The distance d(x, y) between
two points x, y ∈ RN is

d(x, y) =

√
√
√
√

N∑

i=1

(xi − yi)2. (2)

We define the distance D(X, Y ) between two nonempty finite sets of points X
and Y as

D(X, Y ) = min
x∈X,y∈Y

d(x, y). (3)



266 M. Kalinowski, A. Daurat, and G.T. Herman

Note that d(x, y) =
√

s(x, y) and, hence, D(X, Y ) =
√

S(X, Y ). So finding the
S(X, Y ) of (1) is the same as finding the D(X, Y ) of (3) and squaring the result.
Our problem can be stated at follows. Given a set Ω, whose elements are subsets
of RN , find S(X, Y ) (equivalently, D(X, Y )), for all X and Y in Ω. The practical
difficulty is that our Ω typically consists of thousands of elements, each one of
which contains hundreds of elements that are high-dimensional vectors.

2.2 Brute-Force Approach

Since the computation of the square root is expensive, the brute-force approach
is to find S(X, Y ) by exhaustive examination of all pairs s(x, y) for x ∈ X and
y ∈ Y .

2.3 Nearest Neighbor Search

One of the ways to compute D(X, Y ) is suggested by the formula

D(X, Y ) = min
x∈X

D′(x, Y ), where D′(x, Y ) = min
y∈Y

d(x, y). (4)

The computation of D′(x, Y ) is equivalent to finding the distance between a point
x and its the nearest neighbor y(0) in the set Y (because d(x, y(0)) = D′(x, Y )).
In many cases, the computational cost of finding the nearest neighbor y(0) can
be significantly reduced by using the triangle inequality

d(a, b) ≥ |d(a, c)− d(b, c)|, for a, b, c ∈ R
N . (5)

Let us assume that the distances d(y(k), y(l)) are precalculated for all pairs of
vectors y(k), y(l) ∈ Y and the distances d(x, y(1)), d(x, y(2)) for y(1), y(2) ∈ Y
have been already computed. Now, if for some point y(3) ∈ Y the inequality

d(x, y(1)) ≤ |d(x, y(2))− d(y(2), y(3))| (6)

holds, then the computation of distance d(x, y(3)) is unnecessary for the purpose
of calculating D′(x, Y ), since from (6) follows that d(x, y(3)) ≥ d(x, y(1)).

2.4 Early Termination

Let I such that I �= ∅ and I ⊆ {1, . . . , N}. We define a partial sum sI(x, y), for
any two points x, y ∈ RN , as

sI(x, y) =
∑

i∈I

(xi − yi)2. (7)

Using this definition, s(x, y) can be expressed as

s(x, y) = sI(x, y) + sĪ(x, y), where Ī = {i|1 ≤ i ≤ N and i /∈ I}. (8)
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Now let us assume that we have already calculated the value s(a, b) for a pair
of points a ∈ X and b ∈ Y . Then this value constitutes an upper bound for the
calculation of S(X, Y ) because

S(X, Y ) ≤ s(a, b). (9)

If the value of sI(x, y) in (8), for some pair of points x, y, is greater or equal
to s(a, b), then the calculation of sĪ(x, y) for these points is not necessary (the
value of s(x, y) for this pair must be greater or equal to s(a, b)). If a tight upper
bound of S(X, Y ) can be found early, then the calculation of sĪ(x, y) may not
be necessary for many pairs (x, y), which results in a significant reduction of the
computational cost of finding S(X, Y ). This technique is called early termination,
and has been used in many algorithms [11].

3 Algorithms

3.1 AESA-Based Algorithm

AESA [10] is an efficient algorithm for NNS problem in multi-dimensional space.
It is based on the technique described in Section 2.3. Our generalization of
AESA (Algorithm 2) to compute the distance between two sets (X and Y )
of points in RN assumes that distance between each pair of points in Y has been
precomputed. The algorithm processes one point x ∈ X at the time and for this
point maintains two structures: a set P that contains points p ∈ Y , for which
d(x, p) have not been calculated and may be smaller than d (current estimate of
D(X, Y )) and a vector g that associates with each point y ∈ Y a lower bound
g(y) of d(x, y). Initially P contains all the elements of Y and all g(y) are set
to zero. The size of P is gradually reduced by the following process, which is
repeated until P is empty, and starts with arbitrarily selected point c.

The point c is removed from P and the value d(x, c) is calculated. If d(x, c)
is smaller than d, then d is set to d(x, c). For each p ∈ P the value of g(p) is
updated by setting it to max(g(p), |d(x, c)−d(p, c)|). All elements of P for which
g(p) is larger than d are removed from P . The element of P for which g(p) is
smallest becomes the next point c.

When P is empty, the distance d(x, y) has been either calculated or determined
to be larger than d for all y ∈ Y . Therefore the algorithm is ready to process
next point x. When all x ∈ X have been processed, d = D(X, Y ). The use of the
triangle inequality (5) sometimes significantly reduces the number of distances
d(x, y) that must be computed, and this lowers the cost of finding the distance
D(X, Y ). However, for some datasets, only few calculations of d(x, y) can be
avoided using this technique. (Unfortunately, this happens to be the case in our
application area.) In such cases, the cost of finding the distance D(X, Y ) may
increase due to the overhead associated with computation and testing of the
values g(p).
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3.2 Early Termination

Our algorithm (see Algorithm 3) utilizes, with a slight modification, the early
termination technique, that is described in Section 2.4. The computation of the
value s(x, y) is performed according to the following formula:

s(x, y) = sI1(x, y) + sI2(x, y) + sI3(x, y), (10)

where I1, I2, I3 form a partition of {1, . . . , N}. The algorithm takes these three
subsets I1, I2, I3 and an integer l as parameters. The first stage (lines 1-11)
of Algorithm 3 computes and saves the values of sI1(x, y), for all pairs (x, y) ∈
X × Y , and identifies l pairs (x, y) for which the partial sums sI1(x, y) are the
smallest. In the second stage (lines 14-15) of Algorithm 3, the values of s(x, y)
are computed for the l pairs (x, y) identified during the first stage. This is done
using (10), in which the value sI1(x, y) has been already computed in the first
stage. The minimum of values s(x, y) computed in this stage is used in the third
stage as an upper bound s for value of S(X, Y ). In the third stage (lines 16-19)
of Algorithm 3, the search for the S(X, Y ) is conducted. For each of the pairs
(x, y) ∈ X × Y the algorithm checks if the value of sI1(x, y) (calculated in first
stage) is greater than s (the current estimate of upper bound of S(X, Y )). If the
value of sI1(x, y) for a pair (x, y) is greater or equal to the value of s, then the
algorithm examines next pair. If the value of sI1(x, y) for a pair (x, y) is smaller
than the value of s, then the algorithm computes the sum sI1(x, y) + sI2(x, y).
Since the value of sI1(x, y) is already known (it was calculated in the first stage),
only sI2(x, y) must be calculated. If the value of sum sI1(x, y)+sI2(x, y) is larger
than or equal to the value of s, then the algorithm examines next pair. Otherwise
the algorithm computes the value of s(x, y) as s(x, y) = sI1(x, y) + sI2(x, y) +
sI3(x, y) (the values of the sums sI1(x, y) and sI2(x, y) are reused from previous
computations). If the computed value of s(x, y) is smaller than s, then the value
of s is set to that value. The algorithm terminates after examining all pairs (x, y)
in the third stage and returns the square root of s as the distance D(X, Y ).

4 Experiments and Results

4.1 Datasets

All data sets used in our experiments were synthetically generated by a process
designed to produce sets closely reassembling those found in 3D-EM. Each data
set contained 5, 000 images. For each of these images we produced 240 vectors
(1D projections) containing 81 real numbers. The computation of the similar-
ity measure between each pair of images required finding a distance between
two corresponding sets of points in R81, where the first set contains 240 points
representing 1D projections of first image and second one contains 120 points
representing 1D projections of second image (since the mirror image of each 1D
projection in the set is also in this set, only half of the 1D projections in second
set need be considered). In order to construct the graph representing each data
set, the similarity measure for 12,497,500 pairs must be calculated.
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Algorithm 1. Brute-Force
1: s ← +∞
2: for all x ∈ X, y ∈ Y do
3: s ← min(s, s(x, y))
4: return

√
s

Algorithm 2. AESA-Based Algorithm
1: d ← +∞
2: for all x ∈ X do
3: P ← Y
4: for all p ∈ P do
5: g(p) ← 0
6: c ← an arbitrary element of P
7: while P = ∅ do
8: P ← P \ {c}; e ← d(c, x)
9: d ← min(d, e)

10: gmin ← +∞
11: for all p ∈ P do
12: g(p) ← max(g(p), |e − d(p, c)|) {d(p, c) is precomputed, because p, c ∈ Y }
13: if g(p) > d then
14: P ← P \ {p}
15: else if g(p) < gmin then
16: gmin ← g(p); cmin ← c
17: c ← cmin
18: return d

Algorithm 3. Early Termination (I1, I2, I3 and l are parameters).
1: n ← 0, s ← ∞
2: for all (x, y) ∈ X × Y do
3: s′ ← sI1(x, y)
4: if s′ < s then
5: n ← min(n + 1, l)
6: k ← n
7: while k > 1 and s(k−1) > s′ do
8: x(k) ← x(k−1); y(k) ← y(k−1); s(k) ← s(k−1); k ← k − 1
9: x(k) ← x; y(k) ← y; s(k) ← s′

10: if n = l then
11: s ← s(l)

12: {Here (x(1), y(1)), . . . , (x(l), y(l)) are the l pairs which have the smallest sI1(x, y)}
13: s ← ∞
14: for i = 1, . . . , l do
15: s ← min(s, sI3(x(i), y(i)) + sI2(x(i), y(i)) + sI1(x(i), y(i)))
16: for all (x, y) ∈ X × Y do
17: if sI1(x, y) < s then
18: if sI2(x, y) + sI1(x, y) < s then
19: s ← min(s, sI3(x, y) + sI2(x, y) + sI1(x, y))
20: return

√
s
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4.2 Experiments with AESA-Based Algorithm

We have tested AESA algorithm with 6 datasets. Since the runtimes are quite
long, the algorithm was only run with subsets of 100 images taken randomly in
each data set. The runtimes of AESA-based algorithm for one such subset on
an Athlon 1800+ are between 204.38 and 208.46 seconds. We used the brute-
force algorithm, a direct implementation of (1) (see Algorithm 1), as the base
line reference to evaluate these results. The runtimes of brute-force algorithm on
the same datasets are between 36.56 and 36.77 seconds, which means that the
AESA-based algorithm is more than 5 times slower.

4.3 Experiments with Early Termination Algorithm

Parameters Expecting that the majority of the useful information is concen-
trated in the center of the image we decided to divide the dimensions of R81

among sets I1, I2, I3 in the following way:
I1 = {41− n1, . . . , 41 + n1}
I2 = {41− n2, . . . , 41− n1 − 1, 41 + n1 + 1, . . . , 41 + n2}
I3 = {1, . . . , 41− n2 − 1, 41 + n2 + 1, . . . , 81} = {1, . . . , 81} \ (I2 ∪ I3).

In order to determine the optimal values of parameters we tested runtimes of early
termination algorithm with different values of n1, n2, l on a randomly selected,
small subset of the projection images. Figure 2 shows some of the results of our
tests. Based on these tests we have chosen n1 = 13, n2 = 22, l = 20 for our
experiments.

n1 = 8, . . . , 21, n2 = 22,
l = 20

n1 = 13, n2 = 15, . . . , 34,
l = 20

n1 = 13, n2 = 22,
l = 1, . . . , 80

Fig. 2. CPU-time in function of the three parameters. (The CPU time 1.0 corresponds
to the brute-force algorithm).

Results. We have tested Algorithm 3 with 6 different datasets on an Athlon
1800+ computer. The runtimes are between 12.56 and 12.90 hours. As in our ex-
periments with AESA-based algorithm we used runtime of brute-force algorithm
to evaluate these results. Since the number of operations performed by brute-
force algorithm is fixed (depends only on the size of the data set), we applied
it only to one of the data sets. The brute-force algorithm required 23.60 hours
of runtime to construct the graph. Based on this test we can conclude that the
early termination algorithm is more than 45% faster.
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5 Discussion and Conclusion

The AESA-based algorithm attempts to lower the computational cost of finding
D(X, Y ) by reducing the number of pairs x ∈ X , y ∈ Y for which the computa-
tion of the distance d(x, y) is necessary. This is achieved by calculating the lower
bounds of distances d(x, y) for all the pairs x, y and testing them to identify
these pairs x, y for which d(x, y) must be larger than D(X, Y ). Since the cost of
calculating and testing the lower bound of distance d(x, y) is lower than cost of
calculating d(x, y), the time is saved on pairs x, y for which the calculation of
d(x, y) is avoided. However, the cost of calculating and testing the lower bound
of the distance d(x, y) adds to the cost of calculating d(x, y) for those pairs x, y
for which the calculation d(x, y) is necessary. The total cost of finding D(X, Y ) is
reduced only if computation of d(x, y) is avoided for a sufficiently large number
of pairs x, y. The poor performance of AESA-based algorithm can be explained
by the fact that the computation of d(x, y) was avoided only for less than 20%
of pairs x, y. Clearly the spatial distribution of points in sets representing EM
images is such that AESA-based approach cannot applied to them.

The good performance of early termination algorithm indicates that the as-
sumption about the concentration of useful information in the center of the
image was correct. The calculation of sum s(x, y) (10) was necessary only for
approximately 4% of pairs (x, y) ∈ X × Y . For approximately 65% of pairs only
the sum sI1(x, y) was computed. Remaining pairs required the computation of
sums sI1(x, y) and sI2(x, y).

Our method significantly reduces the cost of constructing graphs to classify
EM projection images by relatively simple means. Future research is necessary
to test applicability of other, more advanced methods to this task. Since the
problem of searching for nearest neighbor has been intensively studied in many
domains, the number of methods which could be considered is quite large. Several
nearest neighbor searching algorithms have been developed to quantize image
vectors (an early example of such algorithm can be found in [12]). Since these
algorithms were designed for searching in spaces with small number of dimen-
sions, their applicability to our problem may be limited. As indicated by Yianilos
[9], the methods based on kd-trees or on constructions of computational geom-
etry become inefficient as the number of dimensions increases. However, some
methods, such as the one proposed by Lai et. al. [13], are better suited for
high-dimensional spaces and are more likely to reduce the computational cost of
constructing graphs to classify EM projection images. The results of our initial
experiments with the algorithm of [13], adapted to the computation of D(X, Y ),
suggest that, when applied to the data sets that are discussed above, this al-
gorithm is approximately 13% faster than the brute-force algorithm and 63%
slower than the early termination algorithm.

We evaluated the applicability of optimization techniques to the problem of
constructing graphs to classify EM projection images. Our results indicate that
the cost of constructing such graphs can be significantly reduced by using the
algorithm employing early termination. Since even with this reduction, the graph
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construction remains the most time-consuming part of the EM image classifica-
tion process, it may be desirable to explore the applicability of additional opti-
mization techniques to the construction of graph used to classify EM projection
images.
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Abstract. This paper proposes a novel expert peering system for information ex-
change. Our objective is to develop a real-time search engine for an online com-
munity where users can query experts, who are simply other participating users
knowledgeable in that area, for help on various topics. We consider a graph-based
scheme consisting of an ontology tree where each node represents a (sub)topic.
Consequently, the fields of expertise or profiles of the participating experts cor-
respond to subtrees of this ontology. Since user queries can also be mapped to
similar tree structures, assigning queries to relevant experts becomes a problem
of graph matching. A serialization of the ontology tree allows us to use simple
dot products on the ontology vector space effectively to address this problem. As
a demonstrative example, we conduct extensive experiments with different pa-
rameterizations. We observe that our approach is efficient and yields promising
results.

1 Introduction

Document retrieval studies the problem of matching user queries to a given set of typi-
cally unstructured text records such as webpages or documents. Since user queries may
also be unstructured and can range from a few keywords to multi-sentenced descriptions
of the desired information, pre-processing steps such as stop word removal, stemming,
and keyword spotting usually precede the actual retrieval.

Given similarly purged dictionaries, most systems for document retrieval and text
classification rely on the vector space model of documents. It represents documents
and queries by term-by-document vectors and allows for approaches based on statistical
learning. Recent research in this area includes the use of support vector machines [1],
probabilistic semantic indexing [2], or spectral clustering [3].

However, despite their dominant role, methods relying on term-by-document vectors
suffer from several drawbacks. For instance, they cannot capture relations among terms
in a single document and have to assume a static dictionary in order to fix the dimension
of the vectors. Graph-based models, in contrast, easily cope with these shortcomings,
providing a promising alternative approach to document retrieval.

In an early contribution Miller [4] has considered bipartite matchings between doc-
uments and queries which are given in terms of co-occurrence graphs. More recently,
Schenker et al. [5,6] have proposed a graph structure for documents and queries that
accounts for sequences of words. Matches are computed based on a k-nearest neigh-
bors (kNN) criterion for graphs and it has been shown that this outperforms common
vector-based kNN retrieval.

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 273–282, 2007.
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In this paper, we assume a different view on graph-based document retrieval. Focus-
ing on development of a peer-to-peer (P2P) communication mechanism for an online
community, we describe a retrieval system that exploits semantic structures for text-
based classification. The online community users identify themselves as experts for
certain domains and fields of knowledge. Users may either address the community with
problems they need help on, or –if they are qualified– can respond to other users’ ques-
tions. Rather than mediating the communication between community members by an
online user forum (offline) mechanism, we aim at a solution that automatically proposes
appropriate experts given a user query in real time, who can be contacted directly via,
for example, instant messaging.

Our approach is based on a comprehensive ontology tree describing relevant fields
of knowledge where each node corresponds to a single subject or topic described by
a bag of words. Similarly, we associate each query and expert with a bag of words
of flexible size and define a similarity measure to compare two such bags. Utilizing
an algorithm which will be described in detail in Section 2, this formulation enables
us to represent entities such as queries or experts as subtrees of the ontology at hand.
Furthermore, serialization of the ontology tree allows for defining an ontology-space.
Therefore, queries as well as experts can equivalently be represented as vectors in this
linear vector space. The problem of peering queries and experts then becomes a problem
of tree matching which is addressed using dot product operations between the respective
vectors.

1.1 Related Work

Ontology-based document retrieval and search has recently become an active area of
research. Especially ontology building from a set of documents and term similarity
measures have found increased attention [7,8]. In a recent work more closely related
to our scenario, Wu et al. [9] have studied an expert matching problem similar to ours.
However, their approach differs from our solution for they apply ontologies to compute
path-length-based distances between concepts upon which they base several definitions
of similarity measures for documents. Our work, in contrast, exploits hierarchal coarse-
to-fine information contained in the ontology and measures document similarities in
semantics induced vector spaces. Moreover, while the algorithms in [9] require manual
intervention, our scheme is fully automatic. Finally, preliminary experiments we con-
duct demonstrate that our approach leads to a higher performance in terms of precision
and recall than the one in [9].

1.2 Organization

The rest of the paper is structured as follows: in Section 2 we describe our approach and
algorithms developed in detail. Section 3 presents a demonstrative experimental study
and discusses its results. The paper concludes with a summary and remarks on future
research directions in Section 4.
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Fig. 1. An example ontology tree where each node is associated with a bag (set) of words. In
our implementation, the bag of words of a higher level node contains keywords regarding the
corresponding topic as well as the union of all bags of words of its descendants.

2 Model and Approach

We present an ontology-based semantic model and approach to address the query-expert
peering problem. Specifically, we describe the structure of the ontology, a simple simi-
larity measure, and a mapping algorithm followed by the expert peering scheme.

2.1 The Ontology

We consider a strictly hierarchical ontology or knowledge tree T = (N , Σ) consisting
of a set of nodes or subjects N = {n1, . . . , nN} and a set of edges Σ between them
such that each subject n ∈ N has a unique parent node corresponding to a broader
subject (see Fig.1). Other than this assumption the approach we develop in this paper is
independent of the nature and contents of the specific ontology tree chosen.

Let us define for notational convenience C(n) as the set of children and p(n) as
the unique parent of node n. We associate each node n with a representative bag of
words B(n) := {w1, . . . , wBn}, where wi denotes the ith word. This set (bag) of words
can be for example obtained by processing a collection of related texts from online
and encyclopedic resources using well-known natural language processing methods.
Subsequently, we optimize all of the bag of words B in the ontology both vertically and
horizontally in order to strengthen the hierarchical structure of the tree and to reduce
redundancies, respectively. First, in the vertical direction, we find the union of bag of
words of each node n and the ones of its children B̄(n) = B(n)∪ [∪i∈C(n)B(i)]. Then,
we replace B(n) with B̄(n) for all n ∈ N . We repeat this process starting from leaf
nodes until the root of the tree is reached. Next, in the horizontal direction, we find the
overlapping words among all children of a node n, B̃(n) = ∩i∈C(n)B(i), subtract these
from each i ∈ C(n) such that B(i) = B(i) \ B̃(n), and repeat this for all n ∈ N .

2.2 Mapping to Ontology-Space

The ontology tree can easily be serialized by, for example, ordering its nodes from
top to bottom and left to right. Hence, we obtain an associated vector representation
of the tree v(T ) ∈ R

N . An important aspect of our algorithm is the representation of
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(a) An expert on two topics represented by leaves of the ontology can be modeled as a subtree

(b) A query on a topic represented by a leave of the ontology can be modeled as a subtree

Fig. 2. Experts and queries can be mapped to subtrees of an ontology, which creates the basis of
the peering scheme proposed

entities as subtrees of the ontology (see Fig. 2) and equivalently as vectors on the so
called ontology-space S(T ) ⊂ RN , which is a compact subset of RN . In order to map
expert profiles and queries, which are given by arbitrary keyword lists, onto subtrees
we use a similarity measure between any entity representable by a bag of words and
the ontology tree. In this paper, we choose the subsequently described measure and
mapping algorithm. However, a variety of similarity measures can be used towards this
end.

Let us consider the following example scenario to further motivate this mapping
scheme (see Fig. 2). A query on electromagnetism (a topic represented by a leave node)
is, in a wider sense, a query on theoretical physics which, in turn, is a query in the area
of physics in general. Therefore, even if there is no expert on electromagnetism is found
an expert on quantum mechanics and computational physics might be able to help the
user as these are subbranches of theoretical physics.

Let us define, for analysis purposes, a global dictionary set D := ∪n∈NB(n) of
cardinality M and an M -dimensional dictionary-space S(D) ⊂ R

M by choosing an
arbitrary ordering. Thus, each node or item i is associated with an occurrence vector
w(i) in the dictionary space indicating whether or not a word appears in the respective
bag of words:

w(i) := [I(w1), . . . , I(wM )], w(i) ∈ S(D), (1)

where I(wj) = 1 if wj ∈ B(i) and I(wj) = 0 otherwise. Note that the vectors w are
usually sparse as the cardinality of B(i) is usually much smaller than the one of D.
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Input: bag of words B(i), ontology tree T , similarity measure r
Output: corresponding subtree describing entity i and its vector representation v(i)

/* Compute the similarity between the given entity’s bag of words B(i) and the ones of the
tree nodes iteratively from top to bottom */
1. consider the highest semantic categories {nh1 , . . . , nhH }, i.e. each node n immediately

below the root node, and compute the similarities r(i, n)
2. determine the node nk ∈ {nh1 , . . . , nhH } with the highest similarity
3. add nk to the resulting subtree and set the corresponding entry in the vector to 1
4. consider the child nodes {nc1 , . . . , ncC } of nk and for each child node n compute

the similarities r(i, n)
5. compute the mean μ and the standard deviation σ of the resulting similarities
6. consider all nodes {nk} in the current set of children for which r(i, nk) > μ + ασ

where α ≥ 0 is a fixed parameter
7. for each node nk in the set {nk} continue with step 3, until the lowest level of the tree

is reached

Fig. 3. Algorithm to map an entity i characterized by an arbitrary list of keywords to a subtree of
an ontology whose nodes are associated with bags of words

We now define an example similarity measure r(i, j) between two entities i and j
(with respective bag of words B(i), B(j) and vectors w(i), w(j)):

r(i, j) :=
|B(i) ∩B(j)|

√
| B(i) |

√
| B(j) |

, (2)

where | · | denotes the cardinality of a set. Note that this measure actually corresponds
to the the cosine of the angle between occurrence vectors but clearly does not require
to assemble a global dictionary D for its computation.

Given the similarity measure we present an efficient mapping from the dictionary
space to the ontology-space S(D) → S(T ) through the algorithm in Fig. 3. Using this
algorithm, any item i can be represented as a subtree of the ontology or alternatively
as a vector v(i) ∈ S(T ) with one-zero entries on the ontology-space. We note that
the algorithm in Fig. 3 is inherently robust due to its top-to-bottom iterative nature
and usage of the ontology’s hierarchical structure. In other words, it solves a series of
classification problems at each level of the tree with increasing difficulty but in a sense
of decreasing importance. We will discuss this in the next section in more detail. The
optimizations of the ontology tree described in Section 2.1 also add to the robustness of
the mapping, especially the aggregation of bag of words from leaves to the root.

2.3 Query-Expert Peering

As the first step of query-expert peering, we convert each query to a bag of words and
associate each expert with its own bag. The experts bag of words can be derived, for
example, by processing personal documents such as resumes, webpages, blogs, etc.



278 T. Alpcan, C. Bauckhage, and S. Agarwal

The algorithm in Fig. 3 enables us then to represent any query or expert as a subtree of
the ontology as well as a binary vector on the ontology-space. Thus, the query-expert
peering problem becomes one of graph (tree) matching which we in turn address by
using the ontology tree to span the corresponding linear space. There are two important
advantages of this approach:

1. The ontology (vector) space has a much smaller dimension than the commonly used
term-by-document spaces. It also avoids the need for maintaining large, inefficient,
and static dictionaries.

2. Each dimension of the ontology-space, which actually corresponds to a node (sub-
ject), has inherent semantic relations with other nodes. One such relation is hierar-
chical and immediately follows from the tree structure of the ontology. However, it
is also possible to define other graph theoretic relations, for example, by defining
overlay graphs.

We now describe a basic scheme for query-expert peering. Let us denote by q a query
with its bag of words B(q) and by E = {e1, . . . , eE} a set of experts represented by
the respective bag of words B(ei), i = 1, . . . , E. Our objective is to find the best set of
experts given the query. Using the approach in Section 2.2 we map the query and ex-
perts to subtrees of the ontology, and hence obtain vectors v(q), and v(e1), . . . ,v(eE),
respectively, on the ontology space S(T ). Then, we define a matching score m between
a query and an expert

m(q, e) := v(q) · v(e), (3)

as the dot product of their vectors. Subsequently, those experts with the highest ranking
matching scores are assigned to the query.

3 Experiments

We conduct a set of preliminary offline experiments to numerically study the perfor-
mance of the system developed. We present next the experiment setup followed by the
numerical results and their interpretation.

3.1 Experiment Setup

We begin the experimental setup by selecting an ontology and associate each of its
nodes with a bag of words as described in Section 2.1. In this paper we choose (rather
arbitrarily) a 245 node subset of an ontology1 prepared by the Higher Education Statis-
tics Agency (HESA), an educational institution in the United Kingdom. The bag of
words for each node is obtained via the following procedure:

1. The node’s name is used in finding 10 top ranked documents through Yahoo! search
web services.2

2. The obtained HTML documents are converted to text (ASCII) format and concate-
nated into a single document.

1 http://www.hesa.ac.uk/jacs/completeclassification.htm
2 http://developer.yahoo.com/search/
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3. This resulting document is further processed using the Natural Language Toolkit
(NLTK) [10] by (a) tokenizing, (b) stop word removal, and (c) stemming with
Porter’s stemmer [11], which finally yields the bag of words.

We next randomly generate experts for the purpose of offline experiments. We con-
sider three types of experts: one knowledgeable in a single specific topic (represented
by a subtree of ontology ending at a single leaf node ), one with two specific topics
(branches), and one with three topics. Each randomly generated pool of experts con-
tains equal number of each type.

One can devise a variety of methods for random query generation. However, the
procedure for generating queries with a known answer (an ordering of best matching
experts) is more involved. We overcome this difficulty by generating a separate “query”
bag of words for each node of the ontology following the steps above. We ensure that
these bags of words are obtained from documents completely disjoint from the ones
used to obtain node-associated bag of words. Thus, we generate queries by randomly
choosing a node from the ontology and a certain number of keywords from its “query”
bag of words. Since we know which node the query belongs to, we easily find a “ground
truth” subtree or vector associated with the query which in turn allows computing the
“best” ordering of experts for peering. This yields a basis for comparison with the result
obtained from the generated query.

Finally, we use the similarity measure and mapping algorithm described in Section 2
to compute the expert peering, i.e. the set of experts R(q) with highest matching scores
given a query q. Then, as described above the “ground truth” vectors are used to calcu-
late the set of “correct” experts A(q). The recall and precision measures are calculated
as the average of N = 1000 such queries in these experiments:

recall =
1
N

N∑

i=1

| A(qi) ∩R(qi) |
| A(qi) |

, precision =
1
N

N∑

i=1

| A(qi) ∩R(qi) |
| R(qi) |

.

3.2 Numerical Results

We next present and discuss the numerical results. In the experiments we choose the
following specific parameter values: the number of query keywords (out of respective
“query” bag of words) {20, 40, 60, 80, 100}, the number of experts {50, 100}, and
the parameter α of the algorithm in Fig. 3 {0.0, 1.0}.

We first limit the cardinality of A to one, i.e. there is only a single expert in the “cor-
rect” peering set. The precision and recall versus the range of parameters in this case is
shown in Figures 4(a) and (b), respectively. Aiming to find only the single best matching
expert is clearly over restrictive and leads to poor results. In fact, given the uncertainties
within the underlying representation mechanisms it is neither very meaningful to expect
such degree of accuracy nor required for the application areas considered.

Next, the best matching experts are defined as the ones with the top three highest
ranking scores. Notice that this set may contain more than three experts in some cases.
The precision and recall improve drastically for all parameter choices as observed in
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Fig. 4. (a) Precision and (b) recall for a range of parameters when we find only the best matching
expert to each query
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Fig. 5. (a) Precision and (b) recall for a range of parameters when we find the set of experts with
the top three rankings to each query

Figures 5(a) and (b), respectively. This result demonstrates the robustness of our expert
peering scheme: its performance improves gradually when accuracy restrictions are
eased. This is further illustrated by Figures 6(a) and (b), where the performance further
increases when the set of best matching experts is defined by the ones belonging to
the top six ranks. It is important to note that for each case the set of “correct” experts
obtained from the “ground truth” vectors is defined as the set of experts with the single
highest ranking value. Our observations on and interpretations of results with respect
to the values of other parameters include:

1. Choosing the larger α = 1 value for the algorithm in Fig. 3 leads to improved
results. Since this parameter affects the branching threshold value when mapping
queries to a subtree of ontology we conclude that increasing it restricts unnecessary
branching, and hence noise.

2. The precision remains high regardless of the number of experts and α in Figures 5
and 6. We attribute this result to hierarchical structure and robustness of our system.
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Fig. 6. (a) Precision and (b) recall for a range of parameters when we find the set of experts with
the top six rankings to each query

3. With the correct set of parameters we observe in Fig. 5 and especially Fig. 6 that
both the precision and recall are relatively insensitive to the number of experts
which indicates scalability.

4. Although the precision and recall slightly increase with increasing number of words
in the queries these curves are rather flat demonstrating that our system performs
well in peering the experts even when given limited information.

4 Conclusion

In this paper we have presented an ontology-based approach for an expert peering and
search system. We have studied the underlying principles of a real-time search engine
for an online community where users can ask experts, who are simply other participating
users knowledgeable in that area, for help on various topics. We have described a graph-
based representation scheme consisting of an ontology tree where each node corresponds
to a (sub)topic and is associated with a bag of words. This allows us to represent the
fields of expertise (profile) of the participating experts as well as incoming queries as
subtrees of the ontology. Subsequently, we have addressed the resulting graph matching
problem of assigning queries to relevant experts on a vector space, which follows from
a serialization of the ontology tree, using simple dot products of respective vectors.

Preliminary experiments utilizing an example ontology demonstrate the efficiency,
robustness, and high performance of our algorithm over a range of parameters. These
promising results also open the way for future research. One research direction is the
refinement of our algorithm toward an adaptive update of the α parameter that controls
the branching behavior in subtree generation. Another interesting question is how to
make the underlying ontology dynamic by adding, deleting, and merging nodes. Yet
another direction is the study of time-varying expert profiles and it’s analysis as a dy-
namic system. We finally note that although the expert peering problem we focus on in
this paper has specific properties differing from document retrieval our approach can be
applied to that area as well.



282 T. Alpcan, C. Bauckhage, and S. Agarwal

References

1. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer Academic
Press, Dordrecht (2002)

2. Hofmann, T.: Latent Semantic Models for Collaborative Filtering. ACM Trans. on Informa-
tion Systems 22(1), 89–115 (2004)

3. Ding, C.: Document Retrieval and Clustering: from Principal Component Analysis to Self-
aggregation Networks. In: Proc. Int. Workshop on Artificial Intelligence and Statistics (2003)

4. Miller, L.: Document Representation Models for Retrieval Systems. ACM SIGIR Fo-
rum 14(2), 41–44 (1979)

5. Schenker, A., Last, M., Bunke, H., Kandel, A.: Classification of web documents using a graph
mode. In: Proc. Int. Conf. on Document Analysis and Recognition, pp. 240–244 (2003)

6. Schenker, A., Last, M., Bunke, H., Kandel, A.: Classification of Web Documents Using
Graph Matching. Int. J. of Patter Recognition and Artificial Intelligence 18(3), 475–496
(2004)

7. Lim, S.Y., Park, S.B., Lee, S.J.: Document retrieval using semantic relation in domain on-
tology. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS
(LNAI), vol. 3528, pp. 266–271. Springer, Heidelberg (2005)

8. Chung, S., Jun, J., McLeod, D.: A web-based novel term similarity framework for ontology
learning. In: ODBASE: Int. Conf. on Ontologies, Databases and Applications of Semantics,
Montpellier, France (2006)

9. Wu, J., Yang, G.: An ontology-based method for project and domain expert matching. In:
Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp.
176–185. Springer, Heidelberg (2005)

10. Bird, S., Klein, E., Loper, E.: The natural language toolkit (NLTK) (2001)
11. Porter, M.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)



Computing Homology Group Generators of

Images Using Irregular Graph Pyramids�

S. Peltier1, A. Ion1, Y. Haxhimusa1, W.G. Kropatsch1, and G. Damiand2

1 Vienna University of Technology, Faculty of Informatics,
Pattern Recognition and Image Processing Group, Austria

{sam,krw,ion,yll}@prip.tuwien.ac.at
2 University of Poitiers

SIC, FRE CNRS 2731, France
damiand@sic.univ-poitiers.fr

Abstract. We introduce a method for computing homology groups and
their generators of a 2D image, using a hierarchical structure i.e. irreg-
ular graph pyramid. Starting from an image, a hierarchy of the image
is built, by two operations that preserve homology of each region. In-
stead of computing homology generators in the base where the number
of entities (cells) is large, we first reduce the number of cells by a graph
pyramid. Then homology generators are computed efficiently on the top
level of the pyramid, since the number of cells is small, and a top down
process is then used to deduce homology generators in any level of the
pyramid, including the base level i.e. the initial image. We show that
the new method produces valid homology generators and present some
experimental results.

1 Introduction

Handling ‘structured geometric objects’ is important for many applications re-
lated to geometric modeling, computational geometry, image analysis, etc. One
has often to distinguish between different parts of an object, according to prop-
erties which are relevant for the application. For image analysis, a region is a
(structured) set of pixels or voxels, or more generally a (structured) set of lower-
level regions. At the lowest level of abstraction, such an object is a subdivision1,
i.e. a partition of the object into cells of dimension 0, 1, 2, 3 ... (i.e. vertices, edges,
faces, volumes ...) [1,2]. In general, combinatorial structures (graphs, combina-
torial maps, n-G-maps etc.) are used to describe objects subdivided into cells of
different dimensions. The structure of the object is related to the decomposition
of the object into sub-objects, and to the relations between these sub-objects:
basically, topological information is related to the cells and their adjacency or
incidence relations. Further information (embedding information) is associated
to these sub-objects, and describes for instance their shapes (e.g. a point, respec-
tively a curve, a part of a surface, is associated with each vertex, respectively
� Supported by the Austrian Science Fund under grants P18716-N13 and S9103-N04.
1 For instance, a Voronoi diagram in the plane defines a subdivision of the plane.
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Fig. 1. (a): a triangulation of the torus. (b): a simplicial complex made of 1 connected
component and containing one 1−dimensional hole.

each edge, each face), their textures or colors, or other information depending
on the application. A common problem is to characterize structural (topolog-
ical) properties of handled objects. Different topological invariants have been
proposed, like Euler characteristics, orientability, homology,... (see [3]).

Homology is a powerful topological invariant, which characterizes an object
by its ”p−dimensional holes”. Intuitively the 0−dimensional holes can be seen
as connected components, 1−dimensional holes can be seen as tunnels and
2−dimensional holes as cavities. For example, the torus in Fig.1(a) contains
one 0−dimensional hole, two 1−dimensional holes (each of them are an edge cy-
cle) and one 2−dimensional hole (the cavity enclosed by the entire surface of the
torus). This notion of p−dimensional hole is defined in any dimension. Another
important property of homology is that local calculations induce global proper-
ties. In other words, homology is a tool to study spaces, and has been applied in
image processing for 2D and 3D image analysis [4]. Although in this paper we
use 2D binary images to show the proof of concept, we do not encourage usage
of homology groups and generators to find connected components in 2D images,
since efficient approaches already exist [5]. However, these ’classical’ approaches
cannot be easily extended for many problems that exist in higher dimensions,
since our visual intuition is inappropriate and topological reasoning becomes
important. Computational topology has been used in metallurgy [6] to analyze
3D spatial structure of metals in an alloy and in medical image processing [7]
in analyzing blood vessels. In higher dimensional problems (e.g. beating heart
represented in 4D) the importance of homology groups and generators becomes
clear in analyzing objects in these spaces (number of connected components,
tunnels, holes, etc), because of the nice and clean formulation which holds in
any dimension. One can think of other applications, as a preprocessing step, to
speed up recognition of complex shapes in large image databases, e.g. images
are first filtered based on their topological invariants and afterward are matched
using shapes, appearances, etc.

The usage of homology groups and generators in image processing is a new
topic and is not widely spread. In this paper we introduce a new method for
computing homology groups and their generators using a hierarchical structure
which is build by using two operations: contraction and removal. These two
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operations are used also in [8] to incrementally compute homology groups and
their generators of 2D closed surfaces, but a hierarchy is not build.

The paper is structured as follows. Basic notions on homology and irregular
graph pyramids are recalled in Section 2 and Section 3. The proposed method to
compute homology groups and their generators is presented in detail in Section 4.
Experimental results on 2D images that show the correctness of the new method
are found in Section 5.

2 Homology

In this part, the basic homology notions of chain, cycle, boundary, and homology
generator are recalled. Interested readers can find more details in [9].

The homology of a subdivided object X can be defined in an algebraic way
by studying incidence relations of its subdivision. Within this context, a cell of
dimension p is called a p−cell and the notion of p−chain is defined as a sum∑nb p−cells

i=1 αici, where ci are p−cells of X and αi are coefficients assigned to
each cell in the chain. Homology can be computed using any group A for the
coefficients αi. But, the theorem of universal coefficients [9] ensures that all
homological information can be obtained by choosing A = Z. It is also known [9]
that for nD objects embedded in RD, homology information can be computed
by simply considering chains with moduli 2 coefficients (A = Z/2Z). Note that
in this case, a cell that appears twice on a chain vanishes, because c + c = 0 for
any cell c when using moduli 2 coefficients ( i.e. if a cell appears even times we
discard it otherwise we keep it). In the following, only chains with coefficients
over Z/2Z will be considered. Note that the notion of chain is purely formal
and the cells that compose a chain do not have to satisfy any property. For
example, on the simplicial complex illustrated on Fig.1(b) the sums: a1 + a4, a3

and a2 + a7 + a4 are 1−chains.
For each dimension p = 0, . . . , n, where n = dim(X), the set of p−chains forms

an abelian group denoted Cp. The p−chain groups can be put into a sequence,
related by applications ∂p describing the boundary of p−chains as (p−1)−chains:

Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0
∂0−→ 0,

which satisfy ∂p∂p−1(c) = 0 for any p−chain c. This sequence of groups is called
a free chain complex.

The boundary of a p−chain reduced to a single cell is defined as the sum of
its incident (p − 1)−cells. The boundary of a general p−chain is then defined
by linearity as the sum of the boundaries of each cell that appears in the chain
e.g. in Fig.1(b), ∂(f1 + f2) = ∂(f1) + ∂(f2) = (a1 + a2 + a7) + (a7 + a3 + a6) =
a1 + a2 + a3 + a6. Note that as mentioned before, chains are considered over
Z/2Z coefficients i.e. any cell that appears twice vanishes.

For each dimension p, the set of p-chains which have a null boundary are
called p-cycles and are a subgroup of Cp, denoted Zp e.g. a1 + a2 + a7 and
a7 +a5 +a4 +a3 are 1−cycles. The set of p-chains which bound a p+1-chain are
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Table 1. Translation of homology notions to graph theory

Homology theory Graph theory

0-cell, 1-cell, 2-cell vertex, edge, face

0-chain, 1-chain, 2-chain set of vertices, set of edges, set of faces

0-cycle, 1-cycle, 2-cycle set of vertices, closed path of edges, closed path of faces

called p-boundaries and they are a subgroup of Cp, denoted Bp e.g. a1+a2+a7 =
∂(f1) and a1 + a6 + a3 + a2 = ∂(f1 + f2) are 1−boundaries.

According to the definition of a free chain complex, the boundary of a bound-
ary is the null chain. Hence, this implies that any boundary is a cycle. Note
that according to the definition of a free chain complex, any 0−chain has a null
boundary, hence every 0−chain is a cycle.

The pth homology group, denoted Hp, is defined as the quotient group Zp/Bp.
Thus, elements of the homology groups Hp are equivalence classes and two cycles
z1 and z2 belong to the same equivalence class if their difference is a boundary
( i.e. z1 = z2 + b, where b is a boundary). Such two cycles are called homologous
e.g. let z1 = a5 +a4 +a3 +a7, z2 = a5 +a4 +a6 and z3 = a1 +a2 +a3 ; z1 and z2

are homologous (z1 = z2+∂(f2)) but z1 and z2 are not homologous to z3. Let Hp

be a homology group generated by q independent equivalence classes C1, · · · , Cq,
any set {h1, · · · , hq | h1 ∈ C1, · · · , hq ∈ Cq} is called a set of generators for Hp.
For example, either {z1} or {z2} can be chosen as a generator of H1 for the
object represented in Fig.1(b).

Note that some of the notions mentioned before could be confused with similar
notions from graph theory. Tab.1 associates these homology notions with notions
classically used in graph theory.

3 Irregular Graph Pyramids

In this part, basic notions of pyramids like receptive field, contraction kernel,
and equivalent contraction kernel, are introduced. For more details see [10].

A pyramid (Fig. 2a) describes the contents of an image at multiple levels of
resolution. A high resolution input image is at the base level. Successive levels
reduce the size of the data by a reduction factor λ > 1.0. The reduction window
relates one cell at the reduced level with a set of cells in the level directly below.
The contents of a lower resolution cell is computed by means of a reduction
function the input of which are the descriptions of the cells in the reduction
window. Higher level descriptions should be related to the original input data
in the base of the pyramid. This is done by the receptive field (RF) of a given
pyramidal cell ci. The RF(ci) aggregates all cells (pixels) in the base level of
which ci is the ancestor.

Each level represents a partition of the pixel set into cells, i.e. connected sub-
sets of pixels. The construction of an irregular pyramid is iteratively local [11].
On the base level (level 0) of an irregular pyramid the cells represent single
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pixels and the neighborhood of the cells is defined by the 4(8)-connectivity of
the pixels. A cell on level k + 1 (parent) is a union of neighboring cells on level
k (children). This union is controlled by so called contraction kernels (CK) [12],
a spanning forest which relates two successive levels of a pyramid. Every parent
computes its values independently of other cells on the same level. Thus local
independent (and parallel) processes propagate information up and down and
laterally in the pyramid. Neighborhoods on level k + 1 are derived from neigh-
borhoods on level k. Higher level descriptions are related to the original input by
the equivalent contraction kernels (ECK). A level of the graph pyramid consists
of a pair (Gk, Gk) of plane graphs Gk and its geometric dual Gk (Fig. 2b). The
vertices of Gk represent the cells on level k and the edges of Gk represent the
neighborhood relations of the cells, depicted with square vertices and dashed
edges in Fig. 2b. The edges of Gk represent the borders of the cells on level
k, solid lines in Fig. 2b, including so called pseudo edges needed to represent
neighborhood relations to a cell completely enclosed by another cell. Finally, the
vertices of Gk (circles in Fig. 2b), represent junctions of border segments of Gk.
The sequence (Gk, Gk), 0 ≤ k ≤ h is called irregular (dual) graph pyramid. For
simplicity of the presentation the dual G is omitted afterward.

4 Computing Homology Generators in a Graph Pyramid

There exists a general method for computing homology groups. This method
is based on the transformation of incidence matrices [9] (which describe the
boundary homomorphisms) into their reduced form called Smith normal form.
Agoston proposes a general algorithm, based on the use of a slightly modified
Smith normal form, for computing a set of generators of these groups [3]. Even
if Agoston’s algorithm is defined in any dimension, the main drawback of this
method is directly linked to the complexity of the reduction of an incidence ma-
trix into its Smith normal form, which is known to consume a huge amount of
time and space. Another well known problem is the possible appearance of huge
integers during the reduction of the matrix. A more complete discussion about
Smith normal algorithm complexity can be found in [13]. Indeed, Agoston’s algo-
rithm cannot directly be used for computing homology generators and different
kinds of optimisations have been proposed.

[2pt]

0

1

h

reduction window

ci

RF(ci)

(G0, G0)

Gk

Gk

a) Discrete levels b) Image to dual graphs

Fig. 2. a) Pyramid concept, and b) representation of the cells and their neighborhood
relations by a pair of dual plane graphs at the level 0 and k of the pyramid
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Based on the work of [14,15], an optimisation for the computation of homology
generators, based on the use of sparse matrices and moduli operations has been
proposed [16]. This method avoids the possible appearance of huge integers. The
authors also observed an improvement of time complexity dropping from O(n2)
to O(n5/3), where n is the number of cells of the subdivision.

An algorithm for computing the rank of homology groups i.e. the Betti num-
bers has been proposed in [17]. The main idea of this algorithm is to reduce the
number of cells of the initial object in order to obtain a homologically equiv-
alent object, made out of less cells. In some special cases (orientable objects),
Betti numbers can directly be deduced from the resulting object. However, this
method cannot directly provide a set of generators. Based on the previously
mentioned work, an algorithm for computing a minimal representation of the
boundary of a 3D voxel region, from which homology generators can directly be
deduced has been defined in [8].

4.1 Description of the New Method

The method we propose in this paper has the same philosophy as the methods
of Kaczynski and Damiand [18,19]: reducing the number of cells of an object for
computing homology. Moreover, we keep all simplifications that are computed
during the reduction process by using a pyramid. In this way, homology genera-
tors can be computed in the top level of the pyramid, and can be used to deduce
generators of any level of the pyramid. In particular, we show how generators
of the higher level can be directly down-projected on the desired level (using
equivalent contraction kernels).

Starting from an initial image, we build an irregular graph pyramid. The
method we provide here is valid as long as the algorithm used for the construc-
tion of the pyramid preserves homology. In particular, we show here that the
decimation by contraction kernels, described in Section 3 [12], preserves homol-
ogy of a subdivided object. Indeed, homology of the initial image can thus be
computed in any level of the pyramid, and in particular in the top level where
the object is described with the smallest number of cells.

Moreover, we use the notion of receptive field and equivalent contraction ker-
nel, and show that the generators of homology groups of any level of the pyramid
can be deduced from those computed on the higher level. Note that in special
cases, the higher level of the pyramid may be reduced to exactly a set of gener-
ators of the initial image, as shown in [8].

Our method can be summarized in the following steps:

1 Starting from a labeled image, a graph pyramid {G0, G1, . . . , Gk} is built
using contraction kernels of cells with the same label.

2 Homology groups generators are computed for Gk, using Agoston’s method.
3 Homology generators of any level i can be deduced from those of level i + 1

using the contraction kernels. In particular, we obtain the homology gener-
ators of the initial image.
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1
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3 3′

4

Fig. 3. Computing generators of homology groups using an image pyramid

Note that homology generators of the lowest level can directly be deduced
from the highest level using the notion of equivalent contraction kernel (arrow
3′ in Fig.3). Fig.3 illustrates the general method that we propose for computing
homology generators of an image.

4.2 Preserving Homology on Irregular Graph Pyramids

The algorithm described in [17] is based on operations of interior face reduction
that reduce the number of cells of the subdivision. The main idea is to find a
p−cell a and a (p + 1)−cell b, such that a is incident to b. Then a and b are
removed and the boundary of the other p−cells that were adjacent to a are
modified such that the new boundary ∂(b′) is defined as its initial boundary
added with the boundary of b. Indeed, if a is incident to exactly two p−cells b
and b′, the result of the corresponding interior face reduction can be seen as the
removal of a and the merging of b and b′. It is proved in [17] that interior face
reduction preserves homology.

Observing the dual graph, the operations of contraction and removal that are
used to build each level of the pyramid are interior face reduction: two faces that
are merged share a common edge that is removed, and an edge is contracted if
one of its endpoints is incident to exactly two different edges. Thus, homology
is preserved in every level of the pyramid.

4.3 Delineating Generators

A 1D generator in Gk = (V k, Ek) is a closed path connecting vertices of Gk and
surrounding at least one hole. Each vertex v ∈ Gk is the result of contracting a
tree (contraction kernel CK) of Gk−1. Each edge (v1, v2) ∈ Gk corresponds to
a surviving edge (w1, w2) ∈ Gk−1 with w1 ∈ CKk−1(v1) and w2 ∈ CKk−1(v2)
i.e. an edge that has neither been contracted nor removed2.

Given a generator in Gk, mapping it to the level below is done by identifying
the surviving edges in Gk−1 corresponding to the generator edges in Gk and,

2 Not part of any simplification.
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CK1(v)
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Fig. 4. Top-down delineation of a generator computed in G2

where the generator is disconnected, adding paths to fill in the gaps and recon-
nect. For every two consecutive edges not having a common vertex in Gk−1 but
having one in Gk, the unique path connecting their disconnected endpoints in
the contraction kernel CK ⊂ Gk−1 of their shared vertex in Gk is added.

Because each path added in Gk−1 is entirely part of a contraction kernel, with
contraction being used in the dual only for boundary simplification purposes,
never connecting two different boundaries, and because the building process
preserves homology (see Sec. 4.2) the obtained generators will be homologous to
the ones in Gk.

Reiterating this process of mapping the generator cycles of Gk from k to
k−1, . . . to 0, cycles in G0 corresponding to the generators of the top level can be
identified. By replacing the contraction kernels, with the equivalent contraction
kernels, using the same methodology, the generator cycles of Gk can be directly
mapped to G0. For an example, see Fig. 4.

5 Experiments on 2D Images

We present and discuss initial experiments that have been performed on 2D
binary shapes. For each shape, we have computed homology generators directly
on the initial image, and on the top level of the pyramid.

Tab.2 shows the number of 0D, 1D and 2D−cells on the initial image, and on
the top level of the pyramid for the shape presented on Fig.5 and Fig.6. One can
observe that for each shape the total number of cells is considerably reduced on
the higher level of the pyramid. Thus, the computation of homology generators
can be done on much smaller matrices on the top level instead of the initial image.

Table 2. The number of cells on the initial image and on the top of the pyramid

Initial image Top of the pyramid

0D-cells 1D-cells 2D-cells 0D-cells 1D-cells 2D-cells

Fig.5. 8153 15785 7630 7 10 1

Fig.6 10352 20148 9793 9 13 1
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(a) (b)

Fig. 5. (a): the homology generators computed on the initial image. (b): the down-
projected generator.

(a) (b)

Fig. 6. (a): the homology generators computed on the initial image. (b): the down-
projected generator.

In Fig.5 and Fig.6, it can be seen that our new method provides a valid set
of generators in each case.

Moreover, using the classical method, we cannot have any control of the ge-
ometry of the generators computed. More precisely, the aspect of the obtained
generators is directly linked to the construction of incidence matrices, which is
determined by the scanning of each cell of the initial image. The shape shown
on Fig.7 has been obtained from rotating Fig.5. In Fig.7(a), one can observe
that the aspect of the generators computed on the initial image ”follows” the
scanning of the cells (from top to bottom, and left to right). The generators
obtained in Fig.7(b) always fit on the boundaries of the image. It is proved in
[20] that any generator computed with our new method will always fit on some
boundaries of the initial image.

One can note that the sets of cycles obtained in Fig.5(a) and Fig.5(b) do not
surround the same (set of) 1D−holes of the shape S. Indeed, these two sets are
two different basis of the same group H1(S): let a, b and c denote the equiva-
lence class of cycles that surround respectively the left eye, the right eye, and the
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(a) (b)

Fig. 7. Influence of the scanning (compare with Fig.5)

(a) (b) (c)

Fig. 8. (a): original image. (b): segmentation. (c): down-projected generators (in black).

mouth. The set of generators in Fig.5(a) describe H1(S) in the basis {a+ b, c, a}
whereas in Fig.5(b), H1(S) is described in the basis {a, a + b + c, b}.

In Fig.8 a real world image is shown. We have first segmented the image (e.g.
one can choose the minimum spanning tree based pyramid segmentation [21], and
build generators on these segmented images, but for clarity of the presentation
we used a binary segmentation). Fig.8(a) shows the original image, Fig.8(b) the
used binary segmentation, and Fig.8(c) the brightened image with the obtained
generators in black.

6 Conclusion

We have presented a new method for computing homology groups of images
and their generators, using irregular graph pyramids. The homology generators
are computed efficiently on the top level of the pyramid, since the number of
cells is small, and a top down process (down-projection) delineates the homology
generators of the initial image. Some preliminary results have been shown for 2D
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binary images. We have also observed that the generators computed with this
new method seem to stay on boundaries.

In a future work, we plan to extend this method to 3D and nD images, using
the (already existing) structures of 3D and nD irregular pyramids. We also plan
to use the property that down-projected generators always fit on boundaries in
order to use homology generators for object matching and object tracking.
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Géometrie Discrète en Imagery, Fondements et Applications, Strasbourg, France,
pp. 259–284 (1993)

3. Agoston, M.K.: Algebraic Topology, a first course. Pure and applied mathematics.
Marcel Dekker Ed. (1976)

4. Allili, M., Mischaikow, K., Tannenbaum, A.: Cubical homology and the topological
classification of 2d and 3d imagery. In: Proceedings of International Conference
Image Processing. Vol. 2, pp. 173–176 (2001)

5. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision.
Brooks/Cole Publishing Company (1999)

6. Kaczynksi, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer,
Heidelberg (2004)

7. Niethammer, M., Stein, A.N., Kalies, W.D., Pilarczyk, P., Mischaikow, K., Tannen-
baum, A.: Analysis of blood vessels topology by cubical homology. In: Proceedings
of International Conference Image Processing. Vol. 2, 969–972 (2002)

8. Damiand, G., Peltier, S., Fuchs, L.: Computing homology for surfaces with general-
ized maps: Application to 3d images. In: Bebis, G., Boyle, R., Parvin, B., Koracin,
D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J.,
Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp.
1151–1160. Springer, Heidelberg (2006)

9. Munkres, J.R.: Elements of algebraic topology. Perseus Books (1984)
10. Jolion, J.M., Rosenfeld, A.: A Pyramid Framework for Early Vision. Kluwer, Dor-

drecht (1994)
11. Meer, P.: Stochastic image pyramids. Computer Vision, Graphics, and Image Pro-

cessing 45, 269–294 (1989) Also as UM CS TR-1871, June, 1987
12. Kropatsch, W.G.: Building irregular pyramids by dual graph contraction. IEE-

Proc. Vision, Image and Signal Processing 142, 366–374 (1995)
13. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and

Hermite normal forms of an integer matrix. SIAM Journal on Computing 8, 499–
507 (1979)

14. Dumas, J.G., Heckenbach, F., Saunders, B.D., Welker, V.: Computing simplicial
homology based on efficient smith normal form algorithms. In: Algebra, Geometry,
and Software Systems, pp. 177–206 (2003)

15. Storjohann, A.: Near optimal algorithms for computing smith normal forms of
integer matrices. In: Lakshman, Y.N. (ed.) Proceedings of the 1996 International
Symposium on Symbolic and Algebraic Computation, pp. 267–274. ACM Press,
New York (1996)



294 S. Peltier et al.

16. Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.O.: Computation of homology
groups and generators. Computers and graphics 30, 62–69 (2006)

17. Kaczynski, T., Mrozek, M., Slusarek, M.: Homology computation by reduction of
chain complexes. Computers & Math. Appl. 34, 59–70 (1998)

18. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer,
Heidelberg (2004)

19. Damiand, G., Peltier, P., Fuchs, L., Lienhardt, P.: Topological map: An effi-
cient tool to compute incrementally topological features on 3d images. In: Reulke,
R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS,
vol. 4040, pp. 1–15. Springer, Heidelberg (2006)

20. Peltier, S., Ion, A., Haxhimusa, Y., Kropatsch, W.: Computing homology group
generators of images using irregular graph pyramids. Technical Report PRIP-TR-
111, Vienna University of Technology, Faculty of Informatics, Institute of Com-
puter Aided Automation, Pattern Recognition and Image Processing Group (2007)
http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/

21. Haxhimusa, Y., Kropatsch, W.G.: Hierarchy of partitions with dual graph contrac-
tion. In: Michaelis, B., Krell, G. (eds.) Proceedings of German Pattern Recognition
Symposium. LNCS, vol. 2781, pp. 338–345. Springer, Heidelberg (2003)

http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/


Approximating TSP Solution by MST Based

Graph Pyramid�

Yll Haxhimusa1,2, Walter G. Kropatsch1, Zygmunt Pizlo2, Adrian Ion1,
and Andreas Lehrbaum1

1 Vienna University of Technology,
Faculty of Informatics, Institute of Computer Aided Automation,

Pattern Recognition and Image Processing Group, Austria
{yll,krw,ion,lehrbaua}@prip.tuwien.ac.at

2 University of Purdue,
Department of Psychological Sciences, USA

{yll,pizlo}@psych.purdue.edu

Abstract. The traveling salesperson problem (TSP) is difficult to solve
for input instances with large number of cities. Instead of finding the
solution of an input with a large number of cities, the problem is approx-
imated into a simpler form containing smaller number of cities, which is
then solved optimally. Graph pyramid solution strategies, in a bottom-up
manner using Bor̊uvka’s minimum spanning tree, convert a 2D Euclidean
TSP problem with a large number of cities into successively smaller prob-
lems (graphs) with similar layout and solution, until the number of cities
is small enough to seek the optimal solution. Expanding this tour solution
in a top-down manner to the lower levels of the pyramid approximates
the solution. The new model has an adaptive spatial structure and it
simulates visual acuity and visual attention. The model solves the TSP
problem sequentially, by moving attention from city to city with the
same quality as humans. Graph pyramid data structures and processing
strategies are a plausible model for finding near-optimal solutions for
computationally hard pattern recognition problems.

1 Introduction

Traveling salesperson problem (TSP) is a combinatorial optimization task of
finding the shortest tour of n cities given the intercity costs. When the costs
between cities are Euclidean distances, the problem is called Euclidean TSP
(E-TSP). TSP as well as E-TSP belongs to the class of difficult optimization
problems called NP-hard and NP-complete if posed as a decision problem [1].
The straightforward approach by using brute force search would be using all
possible permutations for finding the shortest tour. It is impractical for large
n since the number of permutations is (n−1)!

2 . Because of the computational
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intractability of TSP, researchers concentrated their efforts on finding approxi-
mating algorithms. Good approximating algorithms can produce solutions that
are only a few percent longer than an optimal solution and the time of solving
the problem is a low-order polynomial function of the number of cities [2,3,4].
The last few percent to reach optimality are computationally the most expensive
to achieve.

It is by now well established that humans produce close-to-optimal solutions
to E-TSP problems in time that is (on average) proportional to the number of
cities [5,6,7]. This level of performance can not be reproduced by any of the
standard approximating algorithms. Some approximating algorithms produce
smaller errors but the time complexity is substantially higher than linear, other
algorithms are relatively fast but produce substantially higher errors. It is there-
fore of interest to identify the computational mechanism used by the human
brain.

A simple way to present E-TSP to a subject is to show n cities as points on a
computer screen and ask the subject to produce a tour by clicking on the points.
In Figure 1a, an E-TSP example of 10 cities is shown and in c the solution given
by a human. The tours produced by the subjects are, on average, only a few
percent longer than the shortest tours (in Figure 1c and d the cross depicts
the starting position and the arrow the orientation used by the subject). The
solution time is a linear function of the number of cities [5,6]. Two attempts to
emulate human performance by a computational model were undertaken in [5,6].
In [5], authors attempt to formulate a new approximating algorithm for E-TSP
motivated by the failure to identify an existing algorithm that could provide a
good fit to the subjects’ data. The main aspects of the models in [5,7] are its

– (multiresolution) pyramid architecture, and
– a coarse to fine process of successive tour approximations.

They showed that performance of this model (proportion of optimal solutions
and average solution error) is statistically equivalent to human performance.
Pyramid algorithms have been used extensively in both computer and human
vision literature (e.g. [8]), but not in problem solving. The work of [5,9] was the
first attempt to use pyramid algorithms to solve the E-TSP. One of the most at-
tractive aspects of pyramid algorithms, which make them suitable for problems

a) input instance b) graph G0 c) human solution d) optimal solution

Fig. 1. E-TSP and solutions given by human and optimal solver
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such as early vision or E-TSP, is that they allow to solve (approximately) global
optimization tasks without performing a global search. A similar pyramid al-
gorithm for producing approximate E-TSP solutions with emphasis on trade-off
between computational complexity (speed) and error in the solution (accuracy)
and not on modeling human performance is formulated in [4, Chap.5], and [10].

In this paper we present a computational model for solving E-TSP approxi-
mately based on the multiresolution graph pyramid. The emphasis is on emulat-
ing human performance (time and accuracy), and not in finding an algorithm for
solving E-TSP as optimally as possible. The interested reader can consult a large
body of the literature in Operations Research for algorithms for E-TSP [4,3] that
can produce near to optimal tours. Again, these algorithms have computational
complexity that is substantially higher than linear.

Our goal is to show that the results of our model are well fitted to the results
of the humans, and the quality and speed are comparable to that of human sub-
jects. The next section presents a short overview of the pyramid representations
(Section 2). In Section 3 the solution of the E-TSP using a minimum spanning
tree (MST) based graph pyramid is introduced. The bottom-up simplification of
the input data is shown in Section 3.1, and in Section 3.2 the top-down approxi-
mative solution is described. Psychophysical experiments on E-TSP are presented
in Section 4.

2 Irregular Graph Pyramid

In our framework, the TSP input is represented by graphs where cities are rep-
resented by vertices, and the intercity neighborhoods by edges (see Figure 1b).
Each vertex of the constructed input graph must have at least two edges for
the TSP tour to exist. A level (k) of the graph pyramid consists of a graph Gk.
Moreover the graph is attributed, G = (C, N, wv , we), where we : N → R+ is a
weighted function defined on edges N . The weights we are Euclidean distances
in the E-TSP and wv : C → R+ is a weighted function defined on cities C. I.e.
each vertex (city) has as a weight its position in the Cartesian coordinate system

Finally, the sequence Gk, 0 ≤ k ≤ h is called irregular graph pyramid.
In a regular pyramid, the number of vertices at any level k is λ times higher

than the number of pixels at the next (reduced) level k +1. The so called reduc-
tion factor λ is greater than one and it is the same for all levels k. The number
of levels on top of G amounts to logλ(|G|). This implies that a pyramid is build
in O[log(diameter(G))] parallel steps [8]. Regular image pyramids are confined
to globally defined sampling grids and lack shift invariance [11]. In [12,13] it is
shown how these drawbacks can be avoided by adaptive irregular pyramids.

In Graham’s model [5], clusters are not explicitly represented. Instead, the
centers of the clusters were used in the E-TSP solution process. The centers were
modes (peaks) of the intensity distribution produced by blurring the image. To
make clusters explicit, Pizlo et. al [14] used an adaptive model in which adaptive
top-down partitioning of the plane along the axis of Cartesian system was used.
The hierarchy was represented by a binary tree. This top-down clustering had



298 Y. Haxhimusa et al.

the advantage that the entire E-TSP did not have to be represented at once in
the memory. The disadvantage was that although this algorithm was invariant
to translation, it was not invariant to rotation. Our new model uses graphs as
representation, which are invariant to both translation and rotation of the input
city constellation. However, the clustering is performed in bottom-up fashion.

3 Solving E-TSP by a Graph Pyramid

Let G0 = (C, N, wv , we) be the input graph, with weights on edges given as
distances in L2 space. The goal of the TSP is to find an nonempty ordered
sequence of vertices and edges (v0, e1, v1, ..., vk−1, ek, vk, ..., v0) over all vertices
of G0 such that all the edges and vertices are distinct, except the start and the
end vertex v0. This tour is called the optimal tour τopt and the sum of edge
weights in this tour is minimal, i.e.

τopt =
∑

e∈τ

we → min,

where we is the weight of edge e.
We use local to global and global to local processes in the graph pyramid to

find a good solution τ∗, approximating the E-TSP. The main idea is to use:

– bottom-up processes to reduce the size of the input, and
– top-down refinement to find an (approximate) solution.

The size of the input (number of vertices in the graph) is reduced such that an
optimal (trivial) solution can be found by the combinatorial search, e.g. for a 3
city instance (not all cities are co-linear) there is only one solution, not needing
any search, and this is the optimal one. For a 4 city input (not all co-linear)
there are three solutions from which two are non-optimal since they cross edges.
A pyramid is used to reduce the size of the input in the bottom-up process. The
(trivial) solution is then found at the top of the pyramid and refined in a process
emulating fovea by humans using lower levels of this pyramid, i.e. the vertical
neighborhoods (parent-children relations) are used in this process to refine the
tour. The final, in general non-optimal, solution is found when all the cities at
the base level of the pyramid are in the tour. The steps needed to find the E-TSP

solution are shown in Algorithm 1. Partitioning of the input space is treated in
Section 2. Sections 3.1 and 3.2 discuss steps 2 and 4 of Algorithm 1 in more
detail.

3.1 Bottom-Up Simplification Using an MST Pyramid

The main idea is that cities being close neighbors are put into a cluster and
considered as a single city at reduced resolution. By doing this recursively one
produces a pyramid representation of the problem. It is well known that the
human visual system represent images on multiple level of scales and resolu-
tion [15,16].
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Algorithm 1. Approximating E-TSP Solution by an MST Graph Pyramid
Input : Attributed graph G0 = (C, N, wv , we), and parameters r and s

1: partition the input space by preserving approximate location:
create graph G0

2: reduce number of cities bottom-up until the graph contains s vertices:
build graph pyramid Gk, ∀k = 0, ..., h, where s = |Gh|

3: find the optimal tour τa for the graph Gh

4: refine solution top-down until all vertices at the base level are processed:
refine τa until level 0 is reached

Output : Approximate TSP solution τ∗.

There are many different algorithms to make hierarchical clustering of cities
[17]. We choose for this purpose the MST principle, especially Bor̊uvka’s algo-
rithm [18] since it hierarchically clusters neighboring vertices. The time com-
plexity of Bor̊uvka’s algorithm is O(|E| log |V |). It can be shown that MST can
be used as the natural lower bound and for the case of the TSP with the triangle
inequality, which is the case for the E-TSP, it can be used to prove the upper
bound as well [19]. The first step in Christofides’ heuristics [2] is finding an MST

as an approximation of TSP. Christofides shows that it is possible to achieve at
least 3

2 times of the optimal solution of TSP i.e. Christofides heuristics solution
of TSP is at most 50% longer than the optimal solution.

For a given graph G0 = (C, N, wv , we) the vertices are hierarchically grouped
into trees (clustered) as given in Algorithm 2. The idea of Bor̊uvka is to do
greedy steps like in Prim’s algorithm [20], in parallel over the graph at the same
time. The size of trees (clusters) are not allowed to contain more than r ∈ N+

cities. These trees must contain at least 2 cities, due to the fact that the pyramid
must have a logarithmic height [21], since the reduction factor λ is 2 ≤ λ ≤ r.
This parameter can be related also to the number of ’concepts’ that humans can
have in their ’memory buffer’, and is usually not larger than 10.

The number s ∈ N
+ of vertices in the top level of the pyramid is chosen such

that an optimal tour can be found easily (usually s = 3, or s = 4). Note that

Algorithm 2. Reduction of the E-TSP Input by an MST Graph Pyramid
Input : Attributed graph G0 = (C, N, wv , we), and parameters r and s

1: k ← 0
2: repeat
3: ∀vk ∈ Gk find the edge e′ ∈ Gk with minimum we incident into this vertex
4: using e′ create trees T with no more than r vertices
5: contract trees T into parent vertices vk+1

6: create graph Gk+1 with vertices vk+1 and edges ek ∈ Gk \ T
7: attribute vertices in Gk+1

8: k ← k + 1
9: until there are s vertices in the graph Gk+1.

Output : Graph pyramid – Gk, 0 ≤ k ≤ h.
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larger s means a shallow pyramid and larger graph at the top, which also means
higher time complexity to find the optimal tour at the top level. Thus r and s
are used to control the trade off between speed and quality of solution.

An example of how Algorithm 2 builds the graph pyramid (only the last two
levels) is shown in Figure 2. Each vertex (black in Gh−1) finds the edge with the
minimal weight (solid lines in Gh−1). These edges create trees of no more than
r (= 4) cities. These trees are then contracted to the parent vertices (enclosed
black vertices in Gh−1 are contracted into white vertices in Gh). The parent
vertices together with edges not touched by the contraction are used to create
the graph of the next level (parallel edges and self loops can be removed, since
they are not needed for the clustering of vertices). The dotted lines between
vertices in different levels represent the parent-child relations. The new parent
vertex attribute can be the gravitational center of its child vertices, or by using
the position of the vertex near this gravitational center. The algorithm iterates
until there are s vertices at the top of the pyramid, and since s is small a full
search can be employed to find the optimal tour τa at the top quickly.

Fig. 2. Building the graph pyramid and finding the first TSP tour approximation

In our current software implementation we use the fully connected graph to
represent the input instance, as expected the bottom-up simplification algorithm
has at least O(|E|2) time complexity [22]. This time complexity can be reduced
easily to O(|E| log |V |) if instead of the fully connected graph one uses a planar
graph e.g. Delaunay triangulation.

3.2 Top-Down Approximation of the Solution

The tour τa found at level h of the graph pyramid is used as the first approxi-
mation of the TSP tour τ∗. This tour is then refined using the pyramid structure
already built. Similar to Pizlo et. al. [14] we have chosen to use the most simple
refinement, the one-path refinement. The one-path refinement process starts by
choosing (randomly) a vertex v in the tour τa. Using the parent-child relation-
ship, this vertex is expanded into the subgraph G′

h−1 ⊂ Gh−1 from which it was
created i.e. its receptive field in the next lower level. In this subgraph a path
between vertices (children) is found that makes the overall path τ ′

a the shortest
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Fig. 3. Refining the E-TSP tour by a graph pyramid

one (see Figure 3a). Since the number of vertices (children) in G′
h cannot be

larger than r, a complete search is a plausible approach to find the path with
the smallest contribution in the overall length of the tour τ ′

a. Note that edges in
the τ ′

a are not necessarily the contracted edges during bottom-up construction.
The refinement process then choses one of the already expanded vertices in

G′
h−1, say v′ and expands it into its child at the next lower level G′

h−2, and the
tour τ ′′

a is computed. The process of tour refinement proceeds recursively until
there are no more parent-children relationships (graph G0, Figure 3b vertices
of the receptive field of c, RF (c)), i.e. vertices at the base of the pyramid are
reached. E.g. in Figure 3b, the tour is refined as the shortest path between the
start vertex b and end vertex e and all the vertices (children of c) of the RF (c).
After arriving at the finest resolution, the process of refinement continues by
taking a vertex in the next upper level in the same cluster (Figure 3 vertex
b or e), and expanding it to its children and computing the tour. Note that
the process of vertex expansion toward the base level emulates the movement of
fovea (attention) in the process of solving the problem by a human observer. The
tour is refined to the finest resolution in one part whereas other parts are left in
their coarse resolution. The process converges when all vertices in the pyramid
have been ’visited’3. More formally the steps are depicted in Algorithm 3, and
Procedure 1, and 2.

Other refinement approaches can be chosen as well. One can use different
approaches of refinement for e.g. one can think of using many vertices and ex-
panding them in parallel (multi-path refinement), or use the one-path refinement
until a particular level of the pyramid and continue with the multi-path refine-
ment afterward. In these cases one needs to change Procedure 1. Note that there
is a randomness in choosing which of the vertices to refine, which is may cor-
respond to individual differences on how humans choose from which vertex to
start the tour. In this case one needs to change Procedure 2.

3 A demo is given in http://www.prip.tuwien.ac.at/Research/twist/results.php.
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Algorithm 3. E-TSP Solution by a MST Graph Pyramid
Input : Graph pyramid Gk, 0 ≤ k ≤ h and the tour τa

1: τ∗ ← τa

2: v ← random vertex of τ∗

3: repeat
4: refine(τ∗, v) /* refine the path using the children of v. See Prc. 1 */
5: mark v as visited
6: v ← nextVertex(Gk, v, τ∗) /* get next vertex to process. See Prc. 2 */
7: until v = ∅

Output : Approximation E-TSP tour τ∗.

Procedure 1. refine(τ∗, v): refine a path τ∗ using the children of v

Input : Graph pyramid Gk, 0 ≤ k ≤ h, the tour τ∗, and the vertex v.

1: (c1, . . . , cn) ← children of v /* vertices that have been contracted to v */
2: if n > 0 /* v is not a vertex from the bottom level */ then
3: vp, vs ← neighbours of v in τ∗ /* predecessor and successor of v */
4: p1, . . . , pn ← argmin{length of path {vp, cp1 , . . . , cpn , vs}} such that p1, . . . , pn is

a permutation of 1, . . . , n /* optimal order of new vertices in the tour */
5: replace path {vp, v, vs} in τ∗ with path {vp, cp1 , . . . , cpn , vs}

Output : refined TSP tour τ∗.

Procedure 2. nextVertex(Gk, v, τ∗): get next vertex to process
Input : Graph pyramid Gk, 0 ≤ k ≤ h, the vertex v, and the tour τ∗

1: repeat
2: if v has unvisited children then
3: v ← first unvisited child of v in τ∗ /* given an orientation */
4: else if v has unvisited siblings then
5: v ← first unvisited sibling of v in τ∗ /* given an orientation */
6: else if v has a parent i.e. v is not a vertex of the top level then
7: v ← parent of v
8: else
9: v ← ∅

10: until (v not visited)
∨

(v = ∅)
Output : new vertex to process v.

4 Psychophysical Evaluation of Solutions

Four subjects (including one author) were tested. Each subject solved the same
100 E-TSP problems in a different order. There were 4 different sizes 6, 10, 20,
and 50 cities, with 25 instances per problem size. The cites in each problem were
generated randomly on a 256 × 256 square grid [7]. Examples of 10 city tours
produced by the subject and by the model are presented in Figure 4. The crosses
depict the starting point chosen by the subjects and the model. BSL, OSK, and
ZP chose the clock-wise tour, whereas ZL the counter-clock-wise tour. The MST
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based pyramid model choses randomly the orientation of the tour. To test how
well the model fits the subject data, the algorithm is run 15 times with different
parameters r (2 ≤ r ≤ 7). The results of the best model fitting (as well as the
standard deviation) to the subject data are shown in Figure 5. It can be seen that
fit are quite good. The worst fit is for the case of 50-city problems (especially
for OSK). Specifically, the model’s performance is not as good as that of the
subjects. To improve the models’s performance, higher values of r would have
to be used. This is how the simulation were performed in [14].

a) BSL b) OSK

c) ZL d) ZP

e) MST pyramid model

Fig. 4. E-TSP solutions by humans subjects and the MST pyramid model

For larger instances (> 100 cities) data with human subjects are difficult to
obtain. Therefore we tested the results of the Algorithm 1 with the state-of-the-
art Concorde TSP solver4 with respect to time and with adaptive pyramid [14]
with respect to the solution error. The test is done with respect to the quality
of results, and the time needed to solve input examples with 200, 400, 600,
800, and 1000 cities. The error values are shown in Figure 6a and the time
performance in Figure 6b. The time plot is normalized to the time needed for
methods to solve the 200 city instance in one second. We have fixed the values
of the parameter r = 7 and s = 3 for these experiments. Note that the Concorde
algorithm solves the problem optimally, i.e. no error. We show that the results of
the MST-based model are comparable to humans in quality and speed, and scale
well with large input instances. This solution strategy emulates human fovea by
moving attention from city to city.

4 http://www.tsp.gatech.edu/concorde/index.html
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a) BSL b) OSK
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Fig. 5. Model fitting on human data

 

 10

 20

 30

 40

 50

 0  200  400  600  800  1000

Adaptive pyramid
MST pyramid

Solution error

Number of cities

Concorde

 

 100

 200

 300

 400

 500

 600

 0  200  400  600  800  1000

Concorde

MST pyramid

Normalized time

Number of cities

s = 3 r = 7 and s = 3
a) Solution Error b) Time performance

Fig. 6. The solution error and the time performance

5 Conclusion

Pyramid strategies convert in a bottom-up process a 2D Euclidean TSP problem
with a large number of cities into successively smaller problems with similar
layout and solution until the number of cities is small enough to seek the optimal
solution. Expanding this solution in a top-down manner to the lower levels of
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the pyramid approximates the solution. The introduced method uses a version of
Bor̊uvka’s MST construction to reduce the number of cities. A top-down process
is then employed to approximate the E-TSP solution of the same quality and at
the same speed as humans do. The new model has an adaptive spatial structure
and it simulates visual acuity and visual attention. Specifically, the model solves
the E-TSP problem sequentially, by moving attention from city to city, the same
way human subjects do. We showed that the new model fits the human data.
Pyramid data structures and processing strategies are a plausible model for
finding near-optimal solutions for NP-hard pattern recognition problems, e.g.
matching.

Acknowledgment. The authors would like to thank anonymous reviewers for
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Abstract. The Bounded Irregular Pyramid (BIP) is a mixture of reg-
ular and irregular pyramids whose goal is to combine their advantages.
Thus, its data structure combines a regular decimation process with a
union-find strategy to build the successive levels of the structure. The
irregular part of the BIP allows to solve the main problems of regular
structures: their inability to preserve connectivity or to represent elon-
gated objects. On the other hand, the BIP is computationally efficient
because its height is constrained by its regular part. In this paper the
features of the Bounded Irregular Pyramid are discussed, presenting a
comparison with the main pyramids present in the literature when ap-
plied to a colour segmentation task.

1 Introduction

The structure of a pyramid can be described as a graph hierarchy in which each
level l is represented by a graph Gl = (Nl, El) consisting of a set of nodes, Nl,
linked by a set of arcs or edges El, named intra-level edges. In this hierarchy,
each graph Gl+1 is built from Gl by computing the nodes of Nl+1 from the nodes
of Nl. Each node of Nl+1 is linked to the set of nodes of Nl which generate it by
a set of arcs or edges, named inter-level edges El,l+1.

The efficiency of a pyramid to represent the information is strongly influenced
by the data structure used within the pyramid and the decimation scheme used
to build one graph from the graph below [1]. Depending on these two features,
pyramids have been classified as regular and irregular ones. Regular pyramids
[2,3] have a rigid structure where the decimation process is fixed. In these pyra-
mids, the inter-level edges are the only relationships that can be changed to
adapt the structure to the image layout. Thanks to this rigid structure, regular
pyramids can be efficiently represented as a hierarchy of bidimensional arrays.
Each of these arrays is an image where two nodes are neighbours if they are
placed in adjacent positions of the array. This is the main advantage of this kind
of pyramids because they can be built and traversed with a low computational
cost. But of course the simplicity of the rigid structure of regular pyramids comes
with a cost [4]: non-connectivity of the obtained receptive fields and incapability
to represent elongated objects. In contrast to regular pyramids, irregular ones
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c© Springer-Verlag Berlin Heidelberg 2007
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have variable data structures and decimation processes which dynamically adapt
to the image layout. Thus, the reduction factor between adjacent levels is not
fixed and the size of each level and the height of the structure are unknown. Due
to that, the classical irregular structures [5] are not computationally efficient.
This efficiency has been recently improved using novel strategies [6,1,7,8]. These
new approaches are more computationally efficient than the classical ones, but
they still require an execution time which make impossible to use them in real
time applications, as it is showed in the results section of this paper. A detailed
revision of the main regular and irregular structures may be found in [4].

In this paper, the original structure of the Bounded Irregular Pyramid [9] has
been modified to reduce its computational cost and to correctly deal with elon-
gated objects. The BIP is a mixture of regular and irregular pyramids, whose goal
is to combine their advantages: low computational cost and accurate results. The
irregular part of the BIP allows to solve the main weaknesses of regular struc-
tures, preservation of connectivity and representation of elongated objects. On
the other hand, the BIP is computationally efficient as its height is constrained
by its regular part. A first version of this new structure was proposed in [9]. Al-
though computationally efficient, this first version had problems to combine the
regular and irregular parts of the pyramid. These problems has now been solved.
In this paper the features of the Bounded Irregular Pyramid are discussed, pre-
senting a comparison with the main regular and irregular pyramids present in
the literature. In order to do the comparisons, the height of the pyramids, their
processing time and the number of obtained regions have been studied. Besides,
a quantitative quality measurement has been employed: the Q function.

This paper is organized as follows: the data structure and the decimation
process used in the BIP are explained in Section 2. Section 3 presents the seg-
mentation procedure. The obtained experimental results and the comparisons
with other pyramidal segmentation algorithms are showed in Section 4. Finally,
Section 5 summarizes the extracted conclusions.

2 Data Structure and Decimation Process

The data structure of the Bounded Irregular Pyramid is a combination of regular
and irregular data structures: a 2x2/4 regular structure and a simple graph. The
regular structure is used in the homogeneous regions of the input image and the
irregular structure in the non-homogeneous ones. The mixture of both regular
and irregular structures generates an irregular configuration which is described
as a graph hierarchy in which each level Gl = (Nl, El) consists of a set of nodes,
Nl, linked by a set of intra-level edges El. There are two types of nodes: nodes
belonging to the 2x2/4 structure, named regular nodes, and virtual nodes or
nodes belonging to the irregular structure. Two nodes ni ∈ Nl and nj ∈ Nl

which are neighbours at level l are linked by an intra-level edge eij ∈ El.
Each graph Gl+1 is built from Gl by computing the nodes of Nl+1 from the

nodes of Nl and establishing the inter-level edges El,l+1. Therefore, each node
ni of Gl+1 has associated a set of nodes of Gl, which is called the reduction
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window of ni. This includes all nodes linked to ni by an inter-level edge. The
node ni is called parent of the nodes in its reduction window, which are called
sons. Two nodes ni and nj of Nl are said to be adjacent or neighbours at level
l, if their corresponding reduction windows wi and wj are neighbours at level
l− 1. Two reduction windows wi ∈ Nl−1 and wj ∈ Nl−1 are neighbours if there
are at least two nodes nr ∈ wi and ns ∈ wj which are connected by an intra-
level edge er,s ∈ El−1. The set of nodes in Nl which are neighbours of a node
ni ∈ Nl is called the neighbourhood of ni. An intra-level path is a sequence of
ordered nodes linked by intra-level edges. Two nodes ni ∈ Nl and nj ∈ Nl are
said to be connected if there exists an intra-level path that includes them both.
Equivalently, an inter-level path is a sequence of ordered nodes linked by inter-
level edges. Two nodes ni ∈ Np and nj ∈ Nq are said to be connected if there
exits an inter-level path that includes them both. The receptive field ri of a node
ni ∈ Nl is the set of nodes at level 0 which are connected to it by an inter-level
path.

2.1 Regular Data Structure Building

Although regular pyramids can be explained as a graph hierarchy, it is more usual
to represent them as a hierarchy of image arrays due to their rigid structure.
Therefore, in the regular part of the BIP, each regular node is represented by
(i, j, l), where l represents the level and (i, j) are the x- and y-coordinate within
the level. In each of these arrays two nodes are neighbours if they are placed in
adjacent positions of the array in an 8-neighbourhood.

The first step to build the 2x2/4 structure is a 4 to 1 decimation procedure.
In order to perform this decimation, each regular node has associated two pa-
rameters: homogeneity Hom(i, j, l) and parent link Parent(i, j, l). Regular nodes
have Hom(i, j, l) = 0 or Hom(i, j, l) = 1. Hom(i, j, l) of a regular node is set to 1
if the four nodes immediately underneath are similar according to some criteria
and their homogeneity values are equal to 1. Otherwise, it is set to 0. If the node
(i, j, l) is a node of the regular structure with Hom(i, j, l) = 1, then the parent
link of the four cells immediately underneath (sons) is set to (i, j). It indicates
the position of the parent of a regular node in its upper level. A regular node
without parent has its parent link set to a NULL value. Parent links represent
the inter-level edges of the regular part of the BIP.

All the regular nodes presenting a homogeneity value equal to 1 form the reg-
ular structure. Regular nodes with an homogeneity value equal to 0 are removed
from the structure. Fig. 1.a) shows the regular part of the BIP data structure
after being built. White nodes are the non-homogeneous ones. In this example
the used similarity criteria is the colour distance. Two nodes are similar if they
have similar colour. The base level of the structure is formed by the pixels of the
8x8 original image. The 4 to 1 decimation procedure generates a 4x4 level and
a subsequent 2x2 level.

Once the regular structure is generated using the 4 to 1 decimation procedure,
there are some regular orphan nodes (regular nodes without parent). From each
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Fig. 1. a) Regular nodes of the BIP and their inter-level edges after the generation
step, b) regular nodes of the BIP and their inter-level edges after the parent search
step, and c) two levels of the graph hierarchy

of these nodes, a search is made for a node (i1, j1, l) in its 8-neighbourhood ξ(i,j,l)

which satisfies the following conditions:

– Hom(i1, j1, l) = 1
– Parent(i1, j1, l) = (ip, jp, l + 1)
– d((i, j, l), (i1, j1, l)) < T (1)
– d((i, j, l), (i1, j1, l)) ≤ d((i, j, l), (ik, jk, l)) ∀(ik, jk, l) ∈ ξ(i,j,l)

being d(ni, nj) a similarity measurement between the nodes ni and nj and T
a similarity threshold. (i, j, l) is linked to (ip, jp, l + 1) (parent search step). For
example, in Fig. 1.b), there are four orphan nodes at level 1, but only for two of
them a suitable parent node is found that satisfies (1).

2.2 Irregular Data Structure and Decimation Process

The irregular decimation process used to build the BIP together with the parent
search step previously explained are an implementation of a union-find strategy
that has been also used by Brun and Kropatsch [1]. The union-find algorithm was
proposed by Tarjan [10] as a general method for keeping track of disjoint sets.
Basically, it allows performing of set-union operations on sets which are in some
way equivalent, while ensuring that the end product of such a union is disjoint
from any other set. Union-find algorithms use tree structures to represent sets.
Each non-root node in the tree points to its parent, while the root is flagged
in some way. A find operation looks for the parent of a node. If two nodes of
different sets or trees are similar a union operation is performed by setting one
of the roots to be the parent of the other root.

In order to implement this union-find strategy and build the irregular part of
the BIP, each virtual node ni has associated a parent link parameter Parent(ni)
and a neighbourhood vector ξni which stores all the nodes nj in its neighbour-
hood. The union-find process to compute the irregular part of Gl+1 from Gl has
three stages:
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– Intra-level twining: This stage links two orphan neighbour nodes of the reg-
ular structure if they are similar. To do that, from each regular orphan node,
(i, j, l), a search is made for a regular neighbour node (i1, j1, l) which satisfies
the following conditions:
• Hom(i1, j1, l) = 1
• Parent(i1, j1, l) = NULL (2)
• d((i, j, l), (i1, j1, l)) < T
• d((i, j, l), (i1, j1, l)) ≤ d((i, j, l), (ik, jk, l)) ∀(ik, jk, l) ∈ ξ(i,j,l)

(i, j, l) is linked to (i1, j1, l), generating a virtual node at level l + 1.
In Fig. 1.c) the two regular nodes n1 and n2 are linked, generating the virtual
node m1.

– Virtual node linking: this process links two virtual orphan nodes of the level
l if they are similar, generating a virtual node at level l+1. From each virtual
orphan node, ni, a search is made for a virtual node nj:
• Parent(nj) = NULL
• d(ni, nj) < T (3)
• d(ni, nj) ≤ d(ni, nk) ∀nk ∈ ξni

In Fig. 1.c) the two virtual nodes n5 and n8 are linked, generating the virtual
node m3.

– Virtual parent search: Each virtual orphan node ni searches for a virtual
node nj in ξni :
• Parent(nj) = njp

• d(ni, nj) < T (4)
• d(ni, nj) ≤ d(ni, nk) ∀nk ∈ ξni

ni is linked to njp . An example of this is showed in Fig. 1.c) where the virtual
node n11 is linked with m3.

When all virtual nodes at level l+1 have been generated, the intra-level edges
of Gl+1 are computed by taking into account the neighbourhood of the reduction
windows of the nodes Nl+1 in Gl.

The regular data structure building and the intra-level twinning step were
the only stages to build the first version of the BIP [9]. Specifically, in the first
version of the BIP the virtual nodes did not belong to the graph structure. They
were used only to store information about the linking of regular nodes and they
are not used when a level is built from the level below. Therefore, the first version
of the BIP could be seen as an incomplete regular structure where some nodes
are fused (using virtual nodes) in order to increase its accuracy. On the contrary,
in the proposed BIP structure each level is formed by regular and virtual nodes.
Thus, when a level is built from a level below, not only regular nodes are used
but also virtual nodes which are linked and generated level by level. In this way,
the irregularity of the BIP has been increased improving the adaptation of the
structure to the image layout.

3 Colour Image Segmentation Using the BIP

In order to introduce colour information within the BIP, all the nodes of the
structure have associated 3 parameters: chromatic phasor S � H(n), luminosity



312 R. Marfil et al.

V (n) and area A(n), where S, H and V are the saturation, hue and value of
the HSV colour space. The chromatic phasor and the luminosity of a node n are
equal to the average of the chromatic phasors and luminosity values of the nodes
in its reduction window. The area of a node is equal to the sum of the areas of
the nodes in its reduction window, i.e. the cardinality of its receptive field.

The employed similarity measurement between two nodes is the HSV colour
distance. Thus, two nodes are similar or have a similar colour if the distance
between their HSV values is less than a similarity threshold T . This threshold
is not fixed for all levels. Its mathematical expression is the following:

T (l) = Tmax ∗ α(l) (5)

being

α(l) =
{

1− l
Lreg

∗ 0.7 if l ≤ Lreg

0.3 if l > Lreg
(6)

Lreg is the highest level of the regular part of the BIP. This threshold takes
into account that usually the receptive field of a vertex in a high level is bigger
than the receptive field of a vertex in a low level. Therefore, the linking of two
vertices of a high level implies the merging of two larger regions at the base.
This threshold makes more difficult the linking process at upper levels and then,
the merging of large regions at the base.

The graph G0 = (N0, E0) is a 8-connected graph where the nodes are the
pixels of the original image. All the nodes of G0 = (N0, E0) are initialized with
Hom(i, j, 0) = 1 and A(i, j, 0) = 1. The chromatic phasors and the luminosity
values of the nodes in G0 = (N0, E0) are equal to the chromatic phasors and
luminosity values of their corresponding image pixels.

The process to build the graph Gl+1 = (Nl+1, El+1) from Gl = (Nl, El) is the
following:

1. Regular decimation process (Section 2.1).
2. Union-find process:

(a) Parent search and intra-level twining. In this step, the parent search and
the intra-level twining processes are simultaneously performed. Thus, for
each regular orphan node the parent search step is carried out (Section
2.1). The found parent can be a regular or a virtual node of Gl+1. If
for the studied node a parent is not found, then the intra-level twinning
step is performed (Section 2.2).

(b) Virtual parent search and virtual node linking. For each virtual orphan
node the virtual parent search step is performed (Section 2.2). If for
the studied node a parent is not found the virtual node linking step is
performed in order to generate a virtual node in Gl+1 (Section 2.2).

3. Intra-level edge generation in Gl+1. The intra-level edges of Gl+1 are com-
puted by taking into account the neighbourhood of their reduction windows
in Gl.

The hierarchy stops to grow when it is no longer possible to link together any
more nodes because they are not similar.
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The segmentation process can be roughly divided in two stages: a regular
stage which includes two steps (the regular decimation process and the parent
search and intra-level twinning) and an irregular stage which includes the virtual
parent search and virtual node linking step. The order in which these two stages
are performed does not modify the segmentation results. On the other hand, the
regular decimation process must be always carried out before the parent search
and the intra-level twinning steps because it is the only way to generate regular
nodes in the structure. If the parent search and intra-level twinning is performed
before, then any regular node will be generated. Fig. 2 shows an example of
the construction of the BIP. It can be appreciated as the regular decimation
process is the responsible of the generation of all regular nodes of the structure
(Fig. 2.a). The parent search process links regular nodes with nodes of the level
above (e.g., the node r3 with r4) and the intra-level twining process generates
new virtual nodes by merging regular nodes of the level below (e.g., the virtual
node v1 is generated by merging nodes r1 and r2). The goal of these processes
is to find a parent for the regular nodes which do not have a parent after the
regular decimation. Besides, the intra-level twining process generates all the
virtual nodes at level 1 because all nodes at base level are considered as regular
nodes. In subsequent levels, the generation of new virtual nodes can be achieved
due to the intra-level twining process or to the virtual node linking process.
Thus, Fig. 2.d shows the generation of a new virtual node at level 2 (v3) due to
the merging of two virtual nodes (v1 and v2). Finally, the virtual parent search
process is necessary to maintain the connectivity of irregular shaped objects.

In order to perform the segmentation, the orphan nodes are used as roots.
The receptive field of each of these nodes is a region of the segmented image.

The combination of a regular and an irregular data structures and decimation
processes within the BIP allows to solve the two segmentation problems of reg-
ular structures with a low computational cost. Therefore, the capability of the
BIP to always obtain connected regions and to represent elongated objects are
proven below.

Connectivity is preserved when the receptive field associated to every node of
the structure is connected. The receptive field ri of a node ni ∈ Nl is connected
if for every pair of nodes (ip, jp, 0), (iq, jq, 0) ∈ ri there is at least an intra-level
path with all its nodes included in ri, which connects (ip, jp, 0) and (iq, jq, 0).

In the process to build the BIP, new nodes of level l + 1 are generated either
by the regular decimation, intra-level twinning or virtual node linking. In these
processes, new nodes in l + 1 are generated from neighbour nodes of level l.
The new receptive fields of the nodes of level l + 1 are generated by grouping
the receptive fields of the nodes of level l which generate them. Besides, in the
generation of the BIP, there are two parent search processes in which regular or
virtual nodes without parent are linked to the parent of a neighbour node. In
these cases, the receptive field of the parent node is extended with the receptive
field of its new son. Therefore, in the process to build the BIP, a receptive field
is always generated or extended by the linking of neighbour nodes to the same
parent, following a bottom-up procedure that starts at the base level. It must be



314 R. Marfil et al.

Fig. 2. a) Regular nodes of the BIP and their inter-level edges after the regular dec-
imation process, b) individual examples of a parent search and a intra-level twinning
processes, c) regular and virtual nodes of the BIP and their inter-level edges after the
parent search and intra-level twining processes, and d) individual examples of a virtual
parent search and virtual node linking processes (see text for details)

noted that the receptive field of a node in the base level is formed by itself (and
is therefore connected). Thus, in order to demonstrate that the BIP preserves
connectivity, it suffices to proof that the linking of two neighbour nodes ni ∈ Nl

and nj ∈ Nl to the same parent generates a new receptive field rt = ri ∪ rj that
is always connected.

Theorem 1. If two nodes ni ∈ Nl and nj ∈ Nl are neighbours at level l, their
receptive fields ri and rj are neighbours at the base level.

Proof: If ni ∈ Nl and nj ∈ Nl are neighbours at level l, then their reduction
windows wi and wj are by definition neighbours at level l − 1. If wi and wj are
neighbours, then there are at least two nodes at l−1, nk ∈ wi and nm ∈ wj , which
are neighbours. Therefore, the reduction windows of nk and nm are neighbours
at l − 2. This can be extended until l = 0 where the studied reduction windows
will be part of the receptive fields ri and rj. Then, if these reduction windows are
neighbours, the studied receptive fields are neighbours.
According to theorem 1, if two nodes ni, nj ∈ Nl are neighbours in Gl, their
receptive fields ri and rj are neighbours. This means that there is at least a pair
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of nodes (i1, j1, 0) ∈ ri and (i2, j2, 0) ∈ rj which are neighbours at the base level.
Thus, if the receptive fields ri and rj are connected, then for every pair of nodes
(ip, jp, 0) ∈ ri and (iq, jq, 0) ∈ rj there will be at least an intra-level path with
all its nodes included in ri ∪ rj that connects them through the edge between
(i1, j1, 0) and (i2, j2, 0). Therefore, the receptive field rt = ri ∪ rj formed by the
linking of ni and nj to the same parent is connected.

The representation of elongated objects with homogenous colour is a problem
in regular pyramidal structures where the reduction windows have always a
predefined shape. Therefore, the regular part of the BIP cannot represent these
objects. However, irregular pyramids can represent elongated objects thanks to
the irregular shape of the generated reduction windows. In the BIP, elongated
objets are represented by its irregular part. The most difficult elongated object to
represent is the one-pixel width. An elongated object with homogeneous colour of
one pixel width is composed by image pixels with similar colour that only have
one or two pixels belonging to the same object in their neighbourhoods. The
representation of this type of elongated object using the BIP is proven below.

Theorem 2. If all the nodes of an elongated object of one-pixel width have
similar colour at the base level of the BIP, then there exists a virtual node whose
receptive field is formed by them.

Proof: The nodes of the homogeneous coloured elongated object of one-pixel
width conform an intra-level path at the base level formed by similar nodes. That
is, they form a sequence of ordered similar nodes linked by intra-level edges.
These nodes will be grouped in different subsets of nodes (reduction windows) in
the parent search and virtual nodes linking steps, generating a set of parents in
the upper level. These parents are connected because their reduction windows are
connected and they also form an intra-level path of similar nodes. Therefore, they
generate new nodes in the next level which form an intra-level path in that level.
This process stops when a level is reached where only one node is generated. The
receptive field of this node is the elongated object.

4 Evaluation of Segmentation Results

In this work, the performance of the BIP has been evaluated using a quantitative
measurement, the Q function [11]. This function takes into account the following
goodness indicators: i) regions must be uniform and homogeneous according with
the similarity criterium employed to perform the segmentation, i.e. colour; ii) the
interior of the regions must be simple, without too many small holes; iii) adjacent
regions must present significantly different values for uniform characteristics; and
iv) the existence of small regions is penalized.

Q(I) =
1

1000(N ·M)
√

R
∑R

i=1[
e2

i

1+logAi
+ (R(Ai)

Ai
)2]

(7)

being NxM the image size and R the number of segmented regions. Ai and ei

are the area of the region i and its average colour error, respectively. R(Ai) is
the number of segmented regions with area equal to Ai.



316 R. Marfil et al.

Table 1. Q value, processing time, height of the hierarchy employed by the segmen-
tation algorithm and number of obtained regions. Average values have been obtained
from 50 different images.

Q Processing times (sec) Hierarchy height Number of regions

Qmin Qave Qmax tmin tave tmax hmin have hmax NRmin NRave NRmax

LRP 1052.1 1570.3 2210.3 0.96 1.35 1.84 9 9 9 17 81.4 208

WRP 1133.7 1503.5 2080.8 0.31 0.42 0.59 9 9 9 18 79.6 149

ClIP 481.7 1132.8 1586.9 2.51 3.95 7.68 16 36.6 72 9 84.3 212

LIP 489.4 1011.5 1334.8 1.70 2.75 6.16 8 25.5 52 12 73.7 210

MIP 355.6 818.5 1301.1 2.41 3.42 4.49 11 32.9 64 45 107.6 201

HIP 460.5 955.1 1530.7 4.07 4.23 4.91 9 11.4 19 23 76.1 150

CoIP 430.7 870.2 1283.7 1.31 2.85 12.9 9 74.2 202 24 91.2 238

BIP 343.2 1090.9 1911.3 0.13 0.16 0.39 8 8.7 15 8 83.6 230

In order to compare the BIP with the main pyramids present in the literature,
two segmentation algorithms based on regular pyramids have been implemented:
the linked pyramid [2] (LRP), and the weighted linked pyramid with possibilistic
linking (WRP) [3]. Comparisons with five segmentation algorithms based on
irregular pyramids are also presented: the classical RAG hierarchy [5] (ClIP);
the localized pyramid [8] (LIP); the segmentation algorithm proposed by Lallich
et al. [7] (MIP); the hierarchy of image partitions by dual graph contraction
[6] (HIP) and the hierarchical segmentation algorithm based on combinatorial
pyramids [1] (CoIP). In order to quantitatively evaluate the efficiency of the
different segmentation algorithms, 50 colour images from Waterloo and Coil
100 databases have been chosen. All these images have been resized to 256x256
pixels. A 3GHz Pentium IV PC has been employed. Two of the images and the
obtained results are shown in Fig. 3. It should be mentioned that the selection
of the parameters of all algorithms has been conducted to obtain the best results
according to the Q function. In the case of the proposed BIP structure the only
used parameter is the maximum value of the colour threshold Tmax.

Table 1 presents the comparison measurements among methods. This table
shows that all irregular pyramids obtain better Q values than regular ones. It
can be also noted that the MIP and the CoIP present the best global results.
The behaviour of the MIP is excellent, although it is the method that provides
the highest number of obtained segmentation regions. In contrast, the BIP and
the LIP obtain the lowest number of regions. The results obtained by the BIP
are very similar to the ones obtained by the ClIP or the LIP. Finally, it can be
noted that although the BIP presents a Q value less than regular structures,
this value is slightly higher than in the rest of irregular approaches due to the
regular processing used in the BIP. However, the Q value obtained with the BIP
is very similar than the obtained one with the rest of irregular approaches.

Table 1 also shows the processing times, the hierarchy height and the number
of obtained regions. It can be appreciated that the two regular representations
and the BIP and HIP irregular pyramids present the minimum heights. On the
contrary, the CoIP and the MIP present the maximum height values. The BIP
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Fig. 3. Segmentation results

is the irregular pyramid with minimum height as it is constrained by its regular
part. The number of segmentation regions is very similar in all the algorithms.
The fastest algorithms are the BIP and the algorithms based on regular pyra-
mids. The main advantage of the BIP is that it is at least ten times faster than
the other irregular structures when run in a sequential PC. The BIP is faster
than irregular approaches because a large part of the image is processed fol-
lowing a classical regular pyramid approach. Besides, it is faster than regular
algorithms because it does not have a relinking process. The inter-level edges
are computed in only one pass.

5 Conclusions and Future Work

This paper has presented a new implementation of the Bounded Irregular Pyra-
mid which has been tested in a colour segmentation task. The main contribution
of this pyramid is that it combines the advantages of regular and irregular ap-
proaches by mixing a regular data structure and decimation process with an
irregular scheme. The irregular part of the BIP consists in a simple graph data
structure combined with a union-find decimation strategy. This new pyramid ob-
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tains similar segmentation results than the main irregular structures with lower
computational cost. Its processing time has been proven to be at least ten times
smaller than the processing time of other irregular structures.

Future work will be focused on increasing the degree of mixture between the
regular and irregular parts of the BIP, studying its repercussion in the efficiency
of the method.
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A New Contour Filling Algorithm Based on 2D
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Abstract. In this paper, we present a topological algorithm which al-
lows to fill contours images. The filling problem has been widely treated
and it recently appeared that it can always be split into two different
process : a generic topological process and a dedicated geometrical post-
processing which depends on the application. Our algorithm, based on a
2D topological map description of the image, addresses the first step of
processing. It is fast, generic and robust. Moreover, the complete topo-
logical description allows to easily integrate geometrical constrains and
makes our approach an interesting basis for every filling process.

Keywords: topological maps, filling process, character reconstruction.

1 Introduction

Filling algorithms are used in many applications but especially in character im-
age generation [1]. The motivation of our work comes from the handwritten
characters description. In order to use structural methods for describing a char-
acter (for example fuzzy hierarchical graphs as in [2]) one needs to extract a clean
skeleton. The filling algorithm was developed for the characters reconstruction
phase of this process. Actually, a skeleton-based graph is built from character
image through a contour approximation and a character reconstruction (Fig. 1).

Contour filling
Contour
approximation,

filtering
and thinning

Fig. 1. Processing of a chinese handwritten characters
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The problem of filling the contour of a region has been widely treated during
the last three decades. Depending on the application, this can be solved by using
an a priori knowledge on the contour topology (with contour approximations for
example) or directly with the raster graphics. Pavlidis [3] separated also the
"polygon based" techniques from the "pixel based" ones. The purpose of this
article is to present a "pixel based" algorithm using a topological description
without a priori knowledge.

There are many "pixel based" filling algorithms in the literature. They can be
divided into two broad categories [4]: parity check filling algorithms (also called
scan-line or edge filling) and seeds growing (also referred to as connectivity
filling or region growing). Filling by parity check is fast and requires less or
no additional working memory comparing with seeds growing filling. Line by
line, the background pixels are associated with a depth number according to the
number of black pixels previously encountered during the line scan. Then the
filling is done by using the depth number parity. The major difficulty facing such
a scheme is that different arcs of the contour may be mapped on the same pixel
(Fig. 2 (A)). That is the reason why it often fails to correctly handle complex
objects while seeds growing methods are theoretically more robust. Starting from
interior starting points (the seeds), seed growing algorithms are propagation
procedures that color the regions of interest. Nevertheless, the seed choice is a
non trivial issue and can not be automated without an a priory knowledge of
the contours relation.
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Fig. 2. The problem which occurred when two boundaries are shared. (A) Regions
R2 and R3 share a part of a boundary (drawn in dark grey in the figure). (B) What
we will obtain by our algorithm: both regions are filled. (C) What we want to obtain
intuitively. (D) Another configuration, topologically equivant to (A), but in this case,
intuitivelly, we want to fill both regions.

The contours relation are defined by Codrea & Al. [5] who explain that a
filling operation need a formal or explicit description of what is an interior or
exterior region. In this perspective, Martin & Al. [6] propose a topology-based
filling algorithm which uses not only inclusion relation for the filling decision but
also the ideas of dominant subobject and exteriority for addressing the images
with ambiguities. The dominant subobject is defined as the region which com-
prises most of the external perimeter of an object and exteriority allows to fill
subobjects that are outside enough of a dominant subobject even if the sharing
boundary is small. This algorithm is powerful but requires complex definitions
and thresholds. Moreover it does not allow to deal with non closed contours.
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Nevertheless, Martin & Al. outline a fundamental aspect of the filling problem.
The contour images has to be processed at two levels : a topological process
first that is quite generic for all applications and a geometrical process that is
dedicated to the application.

The topological process given by Martin & Al. is based on the inclusion re-
lation. This approach is quite poor and does not allow to propose efficient geo-
metrical constraints. The 2D topological maps used in our approach provide a
complete topological description that can be efficiently adapt to every applica-
tion. The filling algorithm proposed in this article is a topological one, generic,
complete and fast. We are not addressing the geometrical constraints at the
moment but we will explain why this approach is an interesting basis for every
filling problems.

In the next section, recalls on 2D-topological maps will be given. Then we will
present our algorithm which allows to fill contours image by using this structure.
Finally we will provide some examples and try to highlight the advantages and
the geometrical extensions of such an approach. The article will end with a
conclusion and some perspectives.

In this article, the background pixels of the images are the white ones and
contours are drawn in black. Furthermore contours are composed of digital curves
(closed or not) which connectivity is 8 with no redundancy. These properties are
guaranteed by our processing chain which applies a thinning algorithm.

2 Recalls

Topological maps are an extension of combinatorial maps [7,8,9,10] in order to
represent in a unique and minimal way a labeled image. We present here briefly
the main notions of combinatorial maps and of topological maps (see [11,12] for
more details).

2.1 Combinatorial Maps

Intuitively, a 2D combinatorial map (called also a 2-map) is an extension of a
planar graph that keeps the orientation of edges around each vertex. Each edge
of the graph is divided in two parts. Basic elements obtained are called darts and
are the unique basics of the combinatorial map definition. A 2D combinatorial
map can represent the topology of a 2D subdivision of orientable spaces without
boundary. This model has been extended to represent any type of subdivision,
orientable or not, and with or without boundaries (see [11] and Fig. 3).

More precisely, a subdivision of a 2D topological space is a partition of the
space into 3 subsets whose elements are 0D, 1D and 2D cells (respectively called
vertices, edges and faces, and noted i-cell, i = 0 . . . 2). Border relations are
defined between these cells, where the border of an i-cell is a set of (j<i)-cells.
Two cells are incident when one belongs to the border of the second, and two
i-cells are adjacent if they are both incident to a common (j<i)-cell.
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A combinatorial map is an algebra composed by a set of darts that represents
the elements of the subdivision, and 2 mappings (called β1 and β2) defined on
these darts that represent adjacency relations (this can be easily extended in
nD, with n mappings). β1 puts in relation a dart and the next dart of the same
face, and β2 puts in relation both darts incident to a same edge. These βi have to
verify some particular properties in order to ensure the validity of the represented
subdivision (β1 is a permutation and β2 is an involution, see for example [11] for
the formal definition).
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Fig. 3. Usual representation of a 2D combinatorial map. (A) A 2D object. (B) Explicit
representation where each dart and each one to one mapping are drawn. Darts are
represented by black segments, β1 by grey arrows and β2 by black arrows. (C) Implicit
representation, where βi applications are not explicitly drawn but can be deduced from
the shape of the objects. Two darts in relation by β1 are drawn consecutively, and the
arrow on darts shows the orientation of β1. Two darts in relation by β2 are drawn near,
parallel and in reverse orientation.

We can see in Fig. 3B the combinatorial map representing the object shown
in Fig. 3A. In this example, each dart and each one to one mapping are drawn.
In general, we do not use this representation but we prefer the one shown in
Fig. 3C where βi are not explicitly drawn but can be (generally) deduced from
the shape of objects.

Within the combinatorial map framework, all cells are implicitly represented
through the notion of orbit. Intuitively, an orbit < βi1 , . . . , βij > (d) is the set
of darts that can be reached with a breadth-first search algorithm, starting with
d, and using all combinations of all βik

or β−1
ik

permutations ∀k, 1 ≤ k ≤ j.
With this notion, each cell is defined as a particular orbit. Based on the cells
definition, we can retrieve the classical cell degree notion. The degree of an i-cell
c is the number of distinct (i+1)-cells incident to c. Note that in a n-dimensional
space, the degree is not defined for n-cells, since (n+1)-cells do not exist in such
a space.

2.2 Topological Maps

Topological maps are an extension of combinatorial maps in order to represent
in a unique and minimal way a labeled image.
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Fig. 4. (A) A 2D labeled image drawn with its interpixel boundaries. (B) The corre-
sponding topological map with its inclusion tree.

We can see in Fig. 4 a 2D labeled image and the corresponding topological
map. A topological map is a combinatorial map that represents a labeled image
and that verifies particular properties. Indeed, this map is minimal, complete
and unique. These properties lead to another characteristic of the topological
map: each edge represents exactly an interpixel boundary between two regions
of the image (this can be seen in Fig. 4). An interpixel boundary between two
regions Ri and Rj , is the set of maximal interpixel curves such that each linel of
these curves is incident to exactly one pixel of Ri and one pixel of Rj (see [12]
for proofs concerning topological map properties).

When a region is included into another region (as region R4 in Fig. 4 which
is included into region R3), the corresponding topological map is composed of
several connected components. There is no information in the map that allows
to place relatively the different connected components, and thus we have lost the
topological information concerning the inclusion. To solve this problem, we add
an inclusion tree to the topological map. This tree contains each region of the
image, rooted by R0

1, and a region Ri is son of a region Rj when Ri is included
into Rj . With this tree, we are now able to retrieve each inclusion relation.
Moreover, each region of this tree R is linked with a dart of the topological map
that belongs to its external boundary (called representative dart of R), and each
dart of the map is linked with its belonging region. With these two links, we can
efficiently run through all the boundaries of a given region.

Combinatorial map represents the topological part of our model: all the cells of
the space subdivision and all the adjacency and incidence relations. But it is also
necessary to represent the geometry of the image. We speak about embedding to
design this geometrical model. There are many different possibilities to represent
the geometry and the choice of one of them depends on the application. In this
work, we have chosen to use an interpixel matrix.

This matrix contains all the interpixel elements that belong to interpixel
boundaries of the corresponding image. We can see in Fig. 4(A) the correspond-
ing embedding of the topological map shown in Fig. 4(B). A linel is present in
the matrix if it is between both pixels that belong to two different regions. A
pointel is present in the matrix if it is incident to more than two linels.
1 R0 is the region which surrounds all the image, called the infinite region.
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Each dart of the topological map is linked with a doublet (p, l) that allows to
retrieve, given a dart d, the corresponding cells in the interpixel matrix. With
p we can retrieve the pointel associated with d, and so the coordinates of the
corresponding vertex. With (p, l) we can retrieve the first linel associated with
d. This linel is oriented and gives the initial direction of the edge associated with
d. To retrieve the embedding of the edge incident to dart d, we start from this
linel, and follow the path of linels until we find a pointel, or we go back to the
initial linel.

3 Using Topological Map for Filling Contours

Given a contour image obtained from a character image after contour approxima-
tion, filtering and thinning (Fig. 1), we want to fill each region which corresponds
to the interior of a character. The main idea of our solution is to use topological
map, and more precisely the inclusion tree associated with topological map in
order to retrieve one pixel for each region to fill, and then to use a classical
flood-fill algorithm starting from these germs.

Due to the type of our images, each region to fill R can be characterized by
two specific properties:

1. the color of R is white in the image;
2. the depth of R in the inclusion tree is even.

The first property can easily be deduced since black pixels in the images
belong to a boundary of a character. The second property is deduced from the
type of boundaries present in the image as we can see in Fig. 5. Indeed, in our
images, two types of boundaries are alternated: external boundaries and internal
boundaries. Indeed, each region is always composed by one external boundary.
When it has some holes, each one is represented by one internal boundary. This

1
2

3

4

3

4

A B

Fig. 5. An example of images we have to process. (A) Initial image. We have drawn
external borders in black and internal borders in grey, but this is only for the explana-
tions and all the borders are represented by black pixels in the real image. (B) Image
we want to obtain after interiors of characters are filled. The numbers correspond to
the depth of each region in the inclusion tree.
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process is repeated if there is another region included in one hole, this region is
represented by an external boundary and so on.

With these considerations, we can characterized each boundary by its depth
in the inclusion tree. By considering that a character is never incident to the
border of the image2, we are sure that the region Re associated to the external
boundary is included in the region that corresponds to the background of the
image Rb. The depth of Rb region is 1 since it is directly included in the infinite
region, and thus the depth or Re is 2 since Re is directly included in Rb.

It is important to note that the regions represented in topological map are
4-connected regions and that each external boundary is a 8-connected path.
Consequently, if an external boundary is not a single straight line, it is always
associated with more than one region. Those regions are all at a depth 2 in
the tree since each one is directly included in Rb. Furthermore, an external
boundary can not include any region. Then, the white region Rf delimited by
an external boundary is also to a depth 2 in the tree. Indeed, Rf is adjacent to
regions representing the external boundary, and by definition of inclusion tree,
two adjacent regions have the same depth. Thus we can conclude that each white
region with a depth 2 in the tree is a region delimited by an external boundary
and thus need to be filled.

Now if we consider an internal boundary, and the region Ri associated with
this boundary (we can do the same remark than for external boundary, it is
possible to have several regions associated with an internal boundary, but each
one has the same depth in the tree). The depth of region Ri is 3 since this region
is included into Rf . Indeed, otherwise, the boundary is not an internal boundary
since it is adjacent to an external boundary. The white region delimited by this
boundary has the same depth in the tree, but this region must not be filled since
this is a hole in the surrounding region.

Now, we can do exactly the same remarks for the next external boundary,
associated to a region with depth 4, and so on, to conclude that we need to fill
each white region with an even depth in the inclusion tree.

Thanks to these properties, we can deduce Algorithm 1 which, given a topo-
logical map, computes the list of each germ that belongs to a region to fill.

Given a dart that belongs to a region to fill, we need to find a pixel inside
the region. For that, we first recover the doublet (p, l) associated to the dart.
Then, depending on the linel, we can compute a pixel inside the region. Indeed,
edges of the map are counter-clockwise oriented, and thus we know that given an
edge of an external border, the interior of the region is always on the right of the
oriented edge. As we can see in Fig. 6, there are only four possible configurations,
and depending on the configuration we can directly retrieve the coordinates of
the pixel, given the coordinates of the pointel.

The complexity of Algorithm 1 is linear in number of regions of the image. In-
deed, this algorithm runs through all regions of the image and for each region to
fill, just computes the coordinates of one pixel inside the region by atomic oper-

2 Even if this property is not always true, we can easily modify the image by adding
white pixels all around it in order to verify the property.
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Algorithm 1. Computation of the list of germs that belong to all regions
to fill.

Input: A topological map M
Output: The list of pixels that are all the germs belonging to regions to fill.

res ← ∅;
foreach region r of the inclusion tree do

if the depth of r is even and the color of r is white then
d ← representative dart of r;
(p, l) ← doublet associated with d;
add the pixel associated with (p, l) in res;

return res;

g
p l

g
p

l g
pl

gp
l

A B C D

Fig. 6. The four possible configurations of a doublet (p, l) and the associated pixel g for
each case. We note (px, py) the coordinates of the pointel and (gx, gy) the coordinates of
the pixel. (A) (gx, gy)=(px, py). (B) (gx, gy)=(px − 1, py). (C) (gx, gy)=(px − 1, py − 1).
(D) (gx, gy)=(px, py − 1).

ations. This algorithm is thus very efficient since we do not need to run through
all the pixels of the image. Note that this algorithm needs a topological map,
but the computation of topological map can be considered as a pre-processing
operation. Moreover this computation can be achieved very quickly by using op-
timal extraction algorithm [12] with a complexity linear in number of pixels of
the image, but also with a single image scan and with only the minimal number
of operations to applied for each pixel.

Note that this algorithm does not work when both regions share a common
boundary (as the example presented Fig. 2). In such a case, both regions have
the same depth in the inclusion tree and thus they will be both filled or both kept
empty. This result is not intuitive but the only way to take the good decision is
to consider geometrical properties of the common boundaries. This is part of a
geometrical post-processing.

4 Experiments and Results

As mentioned in the introduction and at the end of the previous section, our
algorithm only addresses the topological part of the filling process. Fig. 7 provides
some filling examples with no contour overlapping. Note that in (A), the non
closed border over the "t" does not introduce any mistake in the filling process
as it does with simple scan line algorithms for example.
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(A)1

(B)2

(C)3

Fig. 7. Example of filling results, contour images are on the left when results are on
the right

The 2d-topological map is built with only one image scan and the seed growing
is calculated locally in linear time. The table 1 presents some computation times
obtained with a Athlon 3200+ CPU. We can notice that, comparing to the map
construction, the filling process is much quicker. It demonstrates the efficiency
of our approach.

Table 1. Computation times in milisecond

Image Dimensions Map construction time Filling time
Chinese (Fig. 1) 368×423 180 8
Seventeen (Fig. 7,(A)) 238×99 28 1
Arab (Fig. 7,(B)) 458×100 49 2
Symbol (Fig. 7,(C)) 514×514 290 5

We can see in Fig. 8 one example where the problem of common boundary
occur. In this example, we can see that three problems occur due to the problem
of common boundary: the “o” of “Lloyd”, the “o” of “done” and the “s” of “this”. In
these three cases, inner contour and outer contour are merged and thus consid-
ered as a unique contour. Note that in these three cases, the common boundary

1 Andrew Senior’s Handwriting Database:
http://www.andrewsenior.com/papers/thesis.html

2 IFN/ENIT Database: http://www.ifnenit.com/
3 GREC Symbols Database.
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Fig. 8. One example where the problem of common boundary occur. The first line
shows the contour image obtained from a character image after contour approxima-
tion, filtering and thinning. The second line shows the image obtained after our filling
algorithm. We can see the three problems: the “o” of “Lloyd”, the “o” of “done” and the
“s” of “this”.

part is very small (one or two pixels) and can thus be detected easily by adding
a geometrical criteria.

5 Conclusion

In this work we present a complete topological filling process based on 2d-
topological maps. Starting from a concrete problem of filling character contours
images, we follow the idea of Martin & Al. [6] and propose a robust, efficient
and simple algorithm for the topological part of the filling problem. Our algo-
rithm computes every regions to fill and uses a simple topological property (even
depth inclusion) for choosing the seeds which are used for the filling process. We
demonstrate on some examples the efficiency of our algorithm which computa-
tion time is in O(nR) with nR the number or regions. That is to say that we do
not need to run through all the pixels of the image.

Our topological process of filling, in this first version, does not integrate ge-
ometrical properties which would allow to fill images with contour overlapping
(Fig. 2). Nevertheless, those informations are now easily integrable as they can
be computed locally. If we consider the Martin & Al. [6] approach, dominant sub-
object and exteriority concepts can be simply addressed by a pseudo-inclusion
relation based on the common border length over the total border length ratio.
In Fig. 2 (C), R2 will be considered as pseudo-included in R3, and colored in
white, even if both regions are topologically identical. On the contrary, in Fig. 2
(D), R2 will considered as pseudo-included in R1 and colored in black. Such a
pseudo-inclusion tree can be calculated directly with the borders properties and
then computed locally with the 2d-topological map description.

The geometrical properties which allow to compute the pseudo-inclusion and
to address the contour overlapping problem, are still not integrated in the al-
gorithm but can be easily addressed in the next version since topological maps
allow to retrieve efficiently the geometry of region boundaries. Furthermore we
will extend this work for every kind of application and any type of boundaries
not only 8-connected.
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Abstract. When the ground ring is a field, the notion of algebraic topo-
logical model (AT-model) is a useful tool for computing (co)homology,
representative (co)cycles of (co)homology generators and the cup product
on cohomology of nD digital images as well as for controlling topological
information when the image suffers local changes [6,7,9]. In this paper,
we formalize the notion of λ-AT-model (λ being an integer) which ex-
tends the one of AT-model and allows the computation of homological
information in the integer domain without computing the Smith Normal
Form of the boundary matrices. We present an algorithm for computing
such a model, obtaining Betti numbers, the prime numbers p involved
in the invariant factors (corresponding to the torsion subgroup of the
homology), the amount of invariant factors that are a power of p and
a set of representative cycles of the generators of homology mod p, for
such p.

1 Introduction

There are many tasks in Vision and Image Processing that involve computing
certain topological characteristics of objects in a given image such as, for ex-
ample, connectivity and the number of holes and cavities. We focus here on
homology groups (connectivity and the number of holes and cavities can be
obtained from them), which are known to be computable in finite dimensions.
The classical algorithm for computing integer homology is based on performing
row and column operations on the boundary matrices in order to reduce them
to the Smith Normal Form (SNF). The integer homology groups can be then
determined from this canonical form (see, for example, [13]). However, explicit
examples can be given for which this algorithm has a worst-case computational
complexity which grows exponentially in both space and time [4].

Our aim is the computation of integer homology information avoiding the
computation of the SNF in the integer domain. In fact, our approach allows the
computation of Betti numbers, the prime numbers p involved in the invariant
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factors (corresponding to the torsion subgroup of the homology), the amount
of invariant factors that are a power of p and a set of “moduli” representative
cycles of the generators of homology in polynomial time. Moreover, our method
is not only valid for simplicial complexes but also for other combinatorial objects
such as cubical complexes or simploidal complexes since we deal with the group
structures.

In the first part of the paper, we recall classical definitions from Algebraic
Topology. We also present previous tools for computing topological information:
AT-models and AM-models, and we recall the main properties of these struc-
tures. Furthermore, we define the notion of λ-AT-model, study its properties,
give an algorithm for computing it and study its complexity. Finally, we describe
how to obtain homology information in the integer domain from a λ-AT-model.
The last section is devoted to conclusions and future works.

2 Definitions and Prior Work

This section introduces the background needed throughout the paper which is
essentially extracted from Munkres’ book [13]. We also recall briefly the concepts
of AT-model and AM-model and their properties.

A chain complex C is a sequence {Cq, dq} of abelian groups Cq and homomor-
phisms dq : Cq+1 → Cq,

· · · d3−→ C2
d2−→ C1

d1−→ C0
d0−→ 0 ,

such that, for all q, dqdq+1 = 0. The set of all the homomorphisms dq (q ≥ 0)
is called the differential of C. The chain complex C is free if Cq is a free abelian
group for each q. It is finite if there exists an integer n > 0 such that Cq = 0 for
q > n and each abelian group Cq is finitely generated. In this case, if Cn �= 0,
we say that dim of C is n, and then, C can be encoded as a pair (C, d), where
C =

⋃n
q=0 Bq, being Bq a basis of Cq and d the matrix corresponding to the

differential of C with respect to the basis C. Suppose that Bq = {a1, . . . , amq}.
A q-chain a ∈ C is a formal sum of elements of Bq, a =

∑mq

i=0 λiai, where λi ∈ Z
and ai ∈ Cq. In this case, dim a = q and ca(ai) denotes the coefficient λi.

Since our goal is the computation of homology information of “finite” ob-
jects (for example, objects explicitly represented within a computer), all chain
complexes are finite and free.

Example 1. Shapes are classically modelled with a cellular subdivision. Several
combinatorial structures may represent such subdivision. Simplicial complexes
have proven to be a useful tool to model a geometric object. Roughly speaking,
they are collections of simplices (convex hulls of a set of affinely independent
points) that fit together in a natural way to form the object. For every simplicial
complex K, one can define a chain complex C(K) canonically associated to it.
The homology of K is then defined as the homology of C(K) [13]. Another
way to extract combinatorial information from a geometric structure arising
naturally, for example, from tomography, numerical computations and graphics,
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is by means of cubical grids, which subdivide the space into cubes with vertices
in an integer lattice. This approach, that can be generalized to an arbitrary
dimension, is a cubical complex. The homology of a given cubical complex is the
homology of the cubical chain complex associated to it [11]. Finally, simploidal
sets [1] include simplicial complexes and cubical complexes as particular cases.
They can be used for representing “hybrid” grids coming from finite element
methods. In [15], a free chain complex is associated to a simploidal set and the
homology of the simploidal set is defined as the homology of the associated chain
complex.

We base all formulas and algorithms in this paper on an ordered basis of the chain
complex C where each prefix of the ordering contains the basis of a subcomplex.
We call such an ordering a filter. In other words, given a chain complex C,
C = {a1, . . . , am} is a filter if it is a basis of the chain complex C and for each
j (where 1 ≤ j ≤ m), C = {a1, . . . , aj} is a basis of a subcomplex of C. For
instance, given a chain complex D = (D, d), a reordering D′ = {c′1, . . . , c′m} of
D such that dim c′i ≤ dim c′j when i < j, is always a filter of D.

Example 2. Consider the simplicial complex S derived from the triangulation of
the Klein bottle given in Figure 1 and the chain complex C(S) associated to S.
Then,

C(S) = { a, d, ad, f, af, df, adf, b, ab, bf, abf, c, bc, cf, bcf, g, cg, fg, cfg,
ac, ag, acg, e, ae, eg, aeg, de, ef, def, h, fh, eh, efh, gh, fgh, i,
gi, hi, ghi, ei, egi, di, dei, ah, aeh, bh, abh, bi, bhi, ci, bci, ai, aci, adi },

where v0 · · · vn denotes the simplex spanned by the vertices v0, . . . , vn, is a filter
of C(S).

The chain a is a q-cycle if a ∈ Ker dq. If a ∈ Im dq+1 then a is called a q-boundary.
Denote the groups of q–cycles and q–boundaries by Zq and Bq respectively.
Define the integer qth homology group to be the quotient group Zq/Bq, denoted

Fig. 1. The Klein bottle and a triangulation of it
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by Hq(C;Z). We say that a is a representative q–cycle of the homology generator
a + Bq (denoted by [a]). For each q, the integer qth homology group Hq(C;Z) is
a finitely generated abelian group. Then Hq(C;Z) is isomorphic to Fq⊕Tq where

Fq = Z⊕ · · · ⊕ Z and Tq = (Z/α(q,1))⊕ · · · ⊕ (Z/α(q,s))

are the free subgroup and the torsion subgroup of Hq(C;Z), respectively. The
rank of Fq, denoted by βq, is called the qth Betti number of C. Each α(q,i) is
a power of a prime, α(q,i) = p

t(q,pi)

i . They are called the invariant factors of
Hq(C;Z). The numbers βq and α(q,i) are uniquely determined by Hq(C;Z) (up
to a rearrangement). Therefore, this representation is in some sense a “canonical
form” for Hq(C;Z).

The qth homology group of C with coefficients in Z/p for p a prime, denoted
by Hq(C;Z/p), is a vector space. Its rank, denoted by β(q,p), depends on the
prime p. Universal Coefficient Theorem for Homology [13, p. 332] implies that
for each prime p,

T(0,p) = β(0,p) − β0 and T(q,p) = β(q,p) − βq − T(q−1,p) for q > 0;

where T(i,p) is the number of invariant factors of Hi(C;Z) that are a power of p.
Let C = {Cq, dq} and C′ = {C′

q, d
′
q} be two chain complexes. A chain map f :

C → C′ is a family of homomorphisms {fq : Cq → C′
q} such that d′qfq = fq−1dq

for all q ≥ 0. A chain map f : C → C′ induces a homomorphism f∗ : H(C;Z)→
H(C′;Z) where f∗[a] = [f(a)] for [a] ∈ H(C;Z). If f, g : C → C′ are chain maps,
then a chain homotopy φ : C → C′ of f to g is a family of homomorphisms
{φq : Cq → C′

q+1} such that fq − gq = d′q+1φq + φq−1dq.
A chain contraction of a chain complex C to another chain complex C′ is a

set of three homomorphisms (f, g, φ) such that: f : C → C′ and g : C′ → C are
chain maps; fg is the identity map of C′ and φ : C → C is a chain homotopy of
the identity map of C to gf , that is, φd + dφ = idC − gf . Important properties
of chain contractions are: C′ has fewer or the same number of generators than
C; and C and C′ have isomorphic homology groups.

An AT-model [6,7,9] for a chain complex C = (C, d) is a chain contraction of C
to a chain complex H with null differential. An AT-model can be stored as a set
((C, d), H, f, g, φ), where C and H are basis of C and H, and f , g and φ are the
matrices corresponding to the homomorphisms that defines the chain contraction
of C to H. Observe that the homology of C is isomorphic to H. If the ground
ring is Z/p, being p a prime, the following algorithm computes an AT-model for
a given chain complex. This algorithm is a straightforward modification of that
in [9].

Algorithm 1. Computing an AT-model for a chain complex C over Z/p.

Input: a filter C = {a0, . . . , am} of the chain complex C,
and the matrix of the differential d for the basis C.

H := { }, f := 0, g := 0, φ := 0.
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For i = 0 to m do
If fd(ai) = 0, then

H := H ∪ {ai}, f(ai) := ai, φ(ai) := 0, g(ai) := ai − φd(ai).
If fd(ai) �= 0, then:

μi := min {cfd(ai)(aj), j = 0, .., i− 1},
k := max {j such that cfd(ai)(aj) = μi, j = 0, ..., i− 1},
H := H\{ak}, f(ai) := 0, φ(ai) := 0.
For j = 0 to i− 1 do,

λaj := cf(aj)(ak),
f(aj) := f(aj)− μ−1

i λaj fd(ai),
φ(aj) := φ(aj) + μ−1

i λaj (ai − φd(ai)),
Output: the set ((C, d), H, f, g, φ).

The key idea of this algorithm is the same as in [3]: in the ith step, the element
ai of the filter C is added and then, a homology class is created or destroyed. The
algorithm runs in time at most O(m3), where m is the number of elements of C.
Recall that the notion of AT-model is an useful tool for computing (co)homology,
representative cycles of (co)homology generators and the cup product on coho-
mology of nD digital images as well as for controlling topological information
when the image suffers local changes [6,7,9]. The main problem of the computa-
tion of AT-models over Z/p is that if the object under study contains torsion,
then the Betti numbers β(q,p) can change when p varies.

Example 3. The Betti numbers of the simplicial complex S (see Figure 1) com-
puted over the field Z/p, for p = 2, 3, 29.

β(0,p) β(1,p) β(2,p)

Z/2 1 2 2
Z/3 1 1 0
Z/29 1 1 0

An AM-model [5] for a chain complex C = (C, d) is a chain contraction (f, g, φ)
of C toM = (M, d′) such that the matrix A of the differential d′ coincides with
its Smith normal form and satisfies that any non-null entry of A is greater than
1. Working with coefficients in the integer domain, an AM-model for C can al-
ways be computed. Moreover, the integer (co)homology of C and representative
cycles of (co)homology generators can be directly obtained from M [8].

The algorithm for computing AM-models given in [8] needs to reduce the ma-
trix of the differential to its Smith Normal Form (SNF). Explicit examples can
be given for which the computation of SNF has a worst-case computational com-
plexity which grows exponentially in both space and time [4]. Many algorithms
have been devised to improve this complexity bound [10,17,2,14].

Our aim in this paper is the computation of integer homology information
avoiding the computation of the SNF in the integer domain.
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3 Extending the Notion of Algebraic Topological Model

In this section we will consider that the ground ring is Z. We first define the
notion of λ-AT-model which is a generalization of the one of AT-model. We study
its properties, give an algorithm for computing it and study its complexity.

Definition 1. Let C = (C, d) be a chain complex, λ a non-null integer and
H = (H, d′) a chain complex with null differential (that is, d′ = 0). Let f :
C → H, g : H → C and φ : C → C be three homomorphisms. Then the set
((C, d), H, f, g, φ, λ) is a λ-AT-model if f and g are chain maps, fg = λ · idH

and φ is a chain homotopy of λ · idC to gf , that is, λ · idC − gf = φd + dφ.

Proposition 1. Given a λ-AT-model, a rational AT-model (i.e., an AT-model
over Q) can directly be obtained as well as rational (co)homology and represen-
tative cycles of (co)homology generators. Concretely, if ((C, d), H, f, g, φ, λ) is a
λ-AT-model for a chain complex C, then ((C, d), H, 1

λf, g, 1
λφ) is an AT-model for

C over Q and {g(h) : h ∈ H} is a set of representative cycles of the generators
of H(C;Q).

Corollary 1. Let ((C, d), H, f, g, φ, λ) be a λ-AT-model. Then H (the chain
complex generated by H with null differential) is isomorphic to the free sub-
group of H(C;Z). Moreover, the set {g(h) : h ∈ H} is a set of independent
non-boundary cycles of C over Z.

Proposition 2. Given a λ-AT model ((C, d), H, f, g, φ, λ) and a prime p such
that p does not divide λ, then ((C, dp), H, fp, gp, φp), where dp = d mod p, fp =
λ−1f mod p, gp = g mod p and φp = λ−1φ mod p, is an AT-model for C over
Z/p and {gp(h) : h ∈ H} is a set of representative cycles of the generators of
H(C;Z/p).

Proposition 3. Let ((C, d), H, f, g, φ, λ) be a λ-AT-model. Let a ∈ C such that
d(a) = 0. If there exists b ∈ C such that d(b) = αa where α ∈ Z and α �= 0, then
f(a) = 0.

Proof. Suppose that b ∈ C such that d(b) = αa where α ∈ Z and α �= 0, and
f(a) �= 0. Then αf(a) �= 0 (since the ground ring is Z). On the other hand,
αf(a) = f(αa) = f(d(b)) = 0, a contradiction. ��

Corollary 2. Let ((C, d), H, f, g, φ, λ) be a λ-AT-model. Let a ∈ C such that
d(a) = 0. If there exists b ∈ C such that d(b) = αa where α ∈ Z, α �= 0, and for
each β, where 0 < β < α, βa �∈ Im d. then α divides λ.

Proof. By Proposition 3, we have f(a) = 0. Since λa − gf(a) = φd(a) + dφ(a),
then λa = dφ(a). Suppose that α does not divide λ. There exists c, r ∈ Z, such
that 0 < r < α and λ = cα + r. On one hand, ra �∈ Im d; on the other hand,
ra = (λ− cβ)a = d(φ(a)− cb) ∈ Im d, a contradiction. We conclude that alpha
divides λ. ��
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Corollary 3. Let ((C, d), H, f, g, φ, λ) be a λ-AT-model. If α = pt(q,p) is an
invariant factor of Hq(C;Z), then p divides λ.

Algorithm 2. Algorithm for computing a λ-AT-model for a chain complex C.

Input: a filter C = {a0, . . . , am} of the chain complex C,
and the matrix of the differential d for the basis C.

H := { }, λ := 1, f := 0, g := 0, φ := 0.
For i = 0 to m do

If fd(ai) = 0, then
H := H ∪ {ai}, f(ai) := ai, φ(ai) := 0, g(ai) := λai − φd(ai).

If fd(ai) �= 0, then
μi := min {|cfd(ai)(aj)|, j = 0, .., i− 1},
k := max {j such that |cfd(ai)(aj)| = μi, j = 0, ..., i− 1},
λk := cfd(ai)(ak),
H := H\{ak}, f(ai) := 0, φ(ai) := 0.
For j = 0 to i− 1,

λaj := cf(aj)(ak),
f(aj) := λkf(aj)− λaj fd(ai),
φ(aj) := λkφ(aj) + λaj (λai − φd(ai)),
λ := λλk.

Output: The set ((C, d), H, f, g, φ, λ).

Theorem 3. The set ((C, d), H, f, g, φ, λ) obtained applying Algorithm 2 defines
a λ-AT-model for the chain complex C = (C, d).

Proof. Assume that ((Ci−1, d), Hi−1, fi−1, gi−1, φi−1, λi−1) is the λi−1-AT-model
obtained using the algorithm above for the filter Ci−1 = {a0, . . . , ai−1}. Assume
that the annihilation properties fi−1φi−1 = 0, φi−1gi−1 = 0 and φi−1φi−1 = 0
hold. We will prove that the set (Ci, d), fi, gi, φi, λi) obtained after adding ai to
the filter Ci−1 is a λi-AT-model. More concretely, we will prove that fid =
0, dgi = 0, figi = λi · id, λi · id − gifi = φid + dφi, fiφi = 0, φigi = 0
and φiφi = 0. We deal only with the case fi−1d(ai) �= 0; the other case is
left to the reader. First, fid(ai) = λkfi−1d(ai) − λkfi−1d(ai) = 0. Second,
φid(ai) + dφi(ai) = λkφi−1d(ai) + λk(λi−1ai − φi−1d(ai)) = λiai = λiai −
gifi(ai). Finally, it is clear that fiφi(ai) = 0 and φiφi(ai) = 0. Now, let aj ∈
Ci−1, then fid(aj) = λkfi−1d(aj) which is null by induction; φid(ai) + dφi(ai)
= λkφi−1d(aj) + λd(aj)(λi−1ai − φi−1d(ai)) + λkdφi−1(aj) + λaj (λi−1d(ai) −
dφi−1d(ai)) = λk(λi−1aj − gi−1fi−1(aj)) + λaj gi−1fi−1d(ai) = λiaj − gifi(aj).
Moreover, fiφi(aj) = fi(λkφi−1(aj) +λaj (λi−1ai − φi−1d(ai))) = 0; φiφi(aj) =
φi(λkφi−1(aj) + λaj (λi−1ai − φi−1d(ai))) = 0. If aj ∈ Hi, then dgi(aj) =
dgi−1(aj) = 0, by induction; figi(aj) = λkfi−1gi−1(aj) − λgi−1(aj)fi−1d(aj) =
λkλi−1aj = λiaj . Finally, it is easy to see that φigi(aj) = 0. ��

To study the complexity, fix the dimension of the complex, n, and count the
number of elementary operations involved in the algorithm. In the ith step,
we have to evaluate fi−1d(ai). The numbers of elements of C involved in d(ai)
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and fi−1(aj) for 1 ≤ j < i is at most n and m, respectively. Therefore, the
evaluation of fi−1d(ai) costs O(nm) = O(m). If fi−1d(ai) �= 0, we have to
update fi−1(aj) and φi−1(aj) for 1 ≤ j < i. The total cost of these operations
is O(m2). Therefore, the total algorithm runs in time at most O(m3).

The following proposition shows that AT-models over Z/p, p being any prime,
can also be computed using Algorithm 2.

Proposition 4. If the output of Algorithm 2, working with coefficients in Z/p,
p being any prime, is (C, d), H, f, g, φ, λ), then ((C, d), H, λ−1f, g, λ−1φ) is an
AT-model over Z/p. Furthermore, {g(h) : h ∈ H} is a set of representative
cycles of the generators of H(C;Z/p).

Example 4. Consider the simplicial complex S derived from the triangulation of
the Klein bottle given in Figure 1 and the chain complex C(S) associated to S.
Let C(S) be the filter of C(S) given in Example 1. Running the algorithm above,
we obtain a 2-AT-model of C(S), (C(S), HS, fS, gS, φS, 2), where HS = {a, ac}.
The value of fS on each vertex of S is 2a. The value of fS on each edge marked
in red in Figure 1, is 2ac. The value of fS on the rest of the simplices of S is
zero. For the map gS, we obtain that gS(a) = a and gS(ac) = ac − bc − ab. On
each vertex of S, φS gives a path connecting this vertex with a, multiplied by
2; for example, φS(g) = 2(ab + bc + cg). On the edges of S, the key idea is the
same, that is, on each edge of S, φS gives a “path” connecting this edge with
ac, multiplied by 2; for example, φS(gh) = 2(fgh− cfg + bcf + abf). On each
triangle of S, the value of φS is zero.

Summing up, given a filter C of a chain complex C, it is possible to compute a λ-
AT-model, λAT = (C, d), H, f, g, φ, λ), in O(m3) if C has m elements. The Betti
numbers and a set of independent non-boundary cycles of C over Z can directly
be obtained from λAT . Moreover, the integer λ provides the prime numbers
involved in the invariant factors of the torsion subgroup of H(C;Z). This last
information will be essential in the next section for designing an algorithm for
computing “moduli” representative cycles of the generators of the free and the
torsion subgroups of H(C;Z).

4 Computing Integer Homology Information

As we have said before, a λ-AT-model for a given chain complex C provides
information of the free subgroup of H(C;Z) as well as the prime numbers involved
in the invariant factors of H(C;Z). For obtaining “moduli” representative cycles
of the generators of the free and the torsion subgroups of H(C;Z) we only have
to compute AT-models for C over Z/p, for each prime p dividing λ. Observe
that for this last task, since we work with coefficients in Z/p, we can use either
Algorithm 1 or Algorithm 2.

Algorithm 4. Computing integer homology information and “moduli” repre-
sentative cycles of homology generators of a chain complex C.
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Input: a filter C = {a0, . . . , am} of the chain complex C of dim n,
and the matrix of the differential d for the basis C.

Apply Algorithm 2 with coefficients in Z for computing a
λ-AT-model for (C, d), ((C, d), H, f, g, φ, λ);
βq := number of elements of H of dim q, for q = 0 to n;
G := {g(h) : h ∈ H}.

For each prime p dividing λ do
Apply Algorithm 2 with coefficients in Z/p for computing an

AT-model for C over Z/p, ((C, dp), Hp, fp, gp, φp);
T(0,p) = β(0,p) − β0;
T(q,p) = β(q,p) − βq − T(q−1,p), for q = 1 to n;
Gp = {gp(hp) : hp ∈ Hp}.

Output: The sets G, {Gp : p being a prime dividing λ}, {β1, . . . , βn},
and {T(q,p) : 0 ≤ q ≤ n and p being a prime dividing λ}.

Summing up, after computing a λ-AT-model and an AT-model over Z/p, for
each p dividing λ, for a given chain complex C, we obtain:

– the Betti numbers βq for 0 ≤ q ≤ n, and a set G of independent non-
boundary cycles of C over Z (in fact, G is also a set of generators of H(C;Q));

– the prime numbers p involved in the invariant factors corresponding to the
torsion subgroup of H(C,Z), the amount of invariant factors in each dimen-
sion q that are a power of p, T(q,p), and a set Gp of representative cycles of
the generators of H(C;Z/p) for each prime p dividing λ.

Example 5. In Example 1, we applied the Algorithm 2 and computed a 2-AT-
model for C(S) and the Betti numbers of C; β0 = 1, β1 = 1 and β2 = 0. Now, we
apply Algorithm 2 for compute an AT-model for (C, d) with coefficients in Z/2
to obtain ((C, d)), H2, f2, g2, φ2) where H2 = {a, ac, de, adi}. Then, β(0,2) = 1,
β(1,2) = 2, β(2,2) = 1 and G2 = {a, ac + bc + ab, ad + de + ae, adf + abf + bcf +
cfg+acg+aeg+def+efh+fgh+ghi+egi+dei+aeh+abh+bhi+bci+aci+adi}.
Therefore, t(0,2) = 0, t(1,2) = 1 and t(2,2) = 0. We conclude that H0(S) = Z and
H1(S) = Z⊕ Z/2.

5 Conclusions and Future Work

A λ-AT-model for a chain complex C can be computed in cubic time. It provides
information of the free subgroup of H(C;Z) and also the primes p that are
candidates to be involved in an invariant factor of H(C;Z). For obtaining the
amount of invariant factors that are a power of p and “moduli” representative
cycles of homology generators, we compute an AT-model with coefficients in Z/p
for such primes p.

A future work is to study if it is possible to obtain generators with inte-
ger coefficients of the torsion subgroup of H(C;Z). Another task is to study if
cohomology features can be computed over Z from a λ-AT-model.

Concerning to the complexity, Algorithm 4 runs in time O(m3ψ(λ)) in the
worst case, ψ being the Euler function. Therefore, one important question is to
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bound the coefficient λ. In order to improve the complexity we might first com-
pute a chain contraction to obtain a smaller chain complex with same homology
in the integer domain and apply Algorithm 4 to a “thinned” complex.
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Abstract. In this paper, we propose a novel method for the unsuper-
vised clustering of graphs in the context of the constellation approach to
object recognition. Such method is an EM central clustering algorithm
which builds prototypical graphs on the basis of fast matching with graph
transformations. Our experiments, both with random graphs and in re-
alistic situations (visual localization), show that our prototypes improve
the set median graphs and also the prototypes derived from our previ-
ous incremental method. We also discuss how the method scales with a
growing number of images.

1 Introduction

Structural criteria, graph matching, and even graph learning, have been consid-
ered as fundamental elements in the set up of the constellation (part/features-
based) approach to object recognition [12]. Most of research in such direction
has been concentrated in exploiting feature (local) statistics, whereas structural
(global) statistics have been typically confined to the joint Gaussian of feature
locations [5]. However, there has been a recent interest in modelling and learn-
ing structural relationships. This is the case of the tree-structured models [6][10]
and the k-fans graph model [3]. However, models with higher relational power
are often needed for solving realistic situations. In this regard, a key question
is to find an adequate trade-off between the complexity of the model and the
computational cost of learning and using it.

In this paper, we present a novel method for the unsupervised learning of
general graph models under the constellation approach. Here, we follow cen-
tral graph clustering [2][14][7], and the core element is prototype building or
graphs fusion. In [16] we proposed an incremental method which depends on the
order in which the graphs are fused. In this paper, we present an alternative
method which overcomes such problem. It is based on the information provided
by the diffusion kernels [4][11] in order to decide which matches are preferable
to be considered in order to fuse the nodes of the graphs in the set. Our algo-
rithm works both with continuous graph-matching methods like Softassign, or
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our kernelized version [15], and with faster alternative discrete matching meth-
ods. From this point of view, as in the constellation approach node attributes
coming from describing salient features play a key role, here we also propose
graph-transformation matching [1] a novel fast and reliable method, emerging
from putative matches between feature sets, which yields a consensus graph,
provided that such subgraph exists.

Our graph-learning method for the constellation approach is tested in a visual
localization (scene recognition) context. The early approach is coarse-to-fine: (i)
Given an input image, an appearance-based classifier, trained with the optimal
(minimal) number of features finds the most probable submap; (ii) The statistics
of the sub-map are exploited to speed-up the extraction of invariant salient fea-
tures [9]; (iii) Given proper feature descriptors [13] graph-transformation match-
ing finds common subgraphs with images in the same submap; (iv) The image
with the highest number of nodes in the subgraph is chosen as output and the
viewing coordinates are reported. Here, we compare this early design with the
one resulting from replacing (iii) by finding the closest structural prototype in
the submap and then match the input image only to the images in such cluster.

The rest of the paper is organized as follows. The core of our proposal, the
graph-fusion method, is presented in Section 2. In Section 3 we describe the
graph-transformation matching and its implications in the EM clustering algo-
rithm, together with graph-fusion. Experimental results are presented in Sec-
tion 4, and, finally, in Section 5 we present our conclusions and future works.

2 Mapping Graphs to Prototypes Via Diffusion Kernels

2.1 Building the Super-Graph

Given a set of graphs S, with N = |S|, to be clustered, each graph Gi ∈ S is a
3-tuple Gi = (Vi, Ei, βi) where: Vi is the set of nodes, Ei ⊆ V × V is the set of
edges, βi : Vi −→ IRn are the node attributes (descriptors of salient points). In
order to obtain the prototype, firstly it is necessary to obtain O(N2) pairwise
matching matrices M ij between all pairs < Gi,Gj >∈ S × S with i �= j. With
respect to the incremental method [14][16], pairwise matchings will be computed
only once, which is critical for the efficiency of the EM-clustering (more precisely
to the E-steps).

Super-Graph. The latter matching matrices will be used in order to build a
super-graph GM which encodes the possible matchings among the graphs in S.
This super-graph is a 5-tuple GM = (VM , EM , θ, ν, ξ), where

– VM = ∪|S|
i=1Vi is the union of the nodes from all the graphs in S,

– θ : VM −→ S, is a function assigning each node in the super-graph with its
corresponding graph in the original set,

– ν : VM −→ ∪|S|
i=1Vi, is a function assigning each node in the super-graph with

its corresponding node on the graphs of the original set,
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– EM = {< i, j >, i, j ∈ VM : M
θiθj
νiνj = 1}, that is, two nodes will be connected

if, and only if, their corresponding nodes in the graphs in the set S are
matched, and

– ξ : EM −→ IR+ is a weighting function for the edges.

Graph Partitions. Discrete matchings M
θiθj
νiνj (when applying Softassign-like

methods continuous variables before cleanup are even more useful) induce dis-
joint partitions Pα = {i : i ∈ VM}. In an ideal case, each partition would have
at the most one node coming from each graph in S:

∀i ∈ Pα, � ∃j ∈ Pα : θi = θj , j �= i, ∀Pα ⊂ VM (1)

In this case, the fusion is easy. Each partition corresponds to a node in the
prototype graph (see Fig. 2-top-left). However, in a real case, due to the matching
ambiguity and errors, a partition could have some nodes from the same graph (see
Fig. 2-bottom-left). We must then decide which matches are going to be taken
into account in order to build the prototype, and which ones will be discarded.
Matches with a higher value in the matching matrix will be preferred, because
the higher is this value, the lower is the ambiguity of this match. However, there
will be many nodes with the same value in the matching matrix. In order to
decide which of them is preferred their kernel values will be used. Therefore,
each edge < i, j > from the super-graph will be weighted by a function ξ that is
defined as

ξ(< i, j >)←−M θiθj
νiνj

+ αΦθiθj
νiνj

, ∀ < i, j >∈ EM (2)

where α is a small value (i.e. α ∼ 0.01) and Φ is an affinity measure between
matched vertices νi and νj . In this case, we define Φ

θiθj
νiνj = exp{−(Kθi

νi
−K

θj
νj )2}

being K the diffusion kernel associated to the Laplacian of the graph θ ∈ S
containing vertex νi (respectively νj), that is, K = exp{−(β/m)L} being L =
D−A where m is the number of vertices of θ, D is the diagonal matrix registering
the degree of each vertex and A is the adjacency matrix. Consequently, we have
that Kθi

νi
= Kθi

νiνi
is the νi−th element of the diagonal (similarly K

θj
νj = K

θj
νjνj ).

As it is well known , the values in the diagonal of a diffusion kernel encode the
probability that a lazy random walk remains at such vertex, and such probability
encodes how the graph structure is seen from a given vertex.

The latter weights Φ
θiθj
νiνj , which encode structural compatibility, will be used to

insert all the edges in EM into a sorted list Le. The elements with higher weights
will be taken first. These edges will be used in order to build the partitions of
the graph, taking into account the constraints in 1. For each edge < i, j >, there
are 4 possible cases:

– Neither i nor j are assigned to any partition. In this case a new partition is
created, and both i and j are assigned to it.

– i is assigned but j is not. Add j to the partition of i if doing this the con-
straints are satisfied. If not, add j to a new partition.

– j is assigned but i is not. Add i to the partition of j if doing this the con-
straints are satisfied. If not, add i to a new partition.
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Algorithm Kernelized Fusion {
GM ← BuildSuperGraph(S)
P ← ObtainPartitions(GM )
GP ← BuildPrototype(S,P )
Return GP

}

Algorithm Build Super-Graph {
α ← 0.01
For each pair of graphs < GA, GB >,

GA, GB ∈ S

MAB ← GraphMatching(GA, GB)
KA ← Kernel(GA)

End For
GM = (VM , EM , θ, ν, ξ)
For each i ∈ VM

For each j ∈ VM

If M
θiθj
νiνj > 0

EM ← EM ∪ < i, j >

ξ(< i, j >) ← M
θiθj
νiνj + αΦ

θiθj
νiνj

End If
End For

End For
Return GM

}

Algorithm Obtain Partitions {
Le ← Sortw({< i, j, w >:< i, j >∈ EM ,

w = ξ(< i, j >)})
While Le = ∅

< i, j, w >← Remove first Le

Switch
Case Li = ∅, Lj = ∅

l ← new label
Li, Lj ← l
Pl ← {i, j}
Ol ← [0]1×|S|
Olθi , Olθj ← 1

Case Li = ∅, Lj = ∅
If OLjθi = 1

Li ← Lj

PLi ← PLi ∪ {i}
OLiθi ← 1

End If
Case Li = ∅, Lj = ∅

If OLiθj = 1
Lj ← Li

PLj ← PLj ∪ {j}
OLjθj ← 1

End If
Case Li = ∅, Lj = ∅

If Li = Lj

If (OLiO
T
Lj

= 0)

OLi ← OLi + OLj

For each k : Lk = Lj

Lk ← Li

End For
PLi ← PLi ∪ PLj

Remove partition Pj

End If
End If

Return P
}

Fig. 1. Kernelized graph-fusion algorithm

– Both i and j are assigned to a partition. If both i and j are assigned to the
same partition, there is nothing to do. In other case, fuse the partitions of i
and j if it satisfies the constraints.

The algorithm for obtaining the partitions is detailed in Fig. 1. In this algo-
rithm a set of auxiliary variables Li and Oαθ are introduced. Each variable Li

maps a vertex i ∈ VM to its corresponding partition α. The boolean variables
Oαθ indicate whether the partition α contains a node from the input graph θ.
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These variables are used to ensure that in each partition there is no more than
one node from each graph from the input set.

2.2 Building the Prototypes

After the process described above, a set of partitions PS will be obtained, satisfy-
ing

⋃
Pi∈PS

Pi = VM . Each partition Pi ∈ PS corresponds to a node in the fusion
graph (prototype). Such graph is an approximation of the median graph[8] and
it is defined by the 6-tuple Ḡ = (V̄ , Ē, β̄, γ, λ,M), where:

– V̄ = {Pi ∈ PS} and Ē = {< i, j >: ∃k ∈ Pi, l ∈ Pj |< k, l >∈ Eij} where
Eij = {< k, l >: k ∈ Pi, l ∈ Pj , θk = θl, < νk, νl >∈ Eθk ≡ Eθl}.

– β̄ : V̄ −→ IRn are the averaged attributes defined as ¯γPi =
∑

k∈Pi
πθk

βνk
,

where πθk
: S −→ [0, 1] indicate the probability that graph θk belongs to the

class defined by prototype.
– γ : V̄ −→ [0, 1] is the probability density of node Pi in the prototype, and it

is defined as γPi =
∑

k∈Pi
πθk

. Such probabilities will be properly normalized
so that the sum of probabilities of all nodes is unitary.

– λ : Ē −→ [0, 1] are the edge weights defined as λ(< i, j >) =
∑

<k,l>∈Eij πθk
.

Thus, such weights are defined by integrating the weights of the graphs to
which the nodes implied in the connections belong.

– M : V̄ ×S −→ ∪|S|
i=1Vi defines the correspondence of a vertex in the prototype

and a graph with the matched vertex in the latter graph, that is MPiA =
νk, k ∈ Pi : θk = A. Having such matches we bypass the solving of a graph
matching problem between each graph in S and each prototype.

As stated above, the probabilities πθk
that a graph belongs to a given pro-

totype are here considered as external information comming from the EM algo-
rithm (see next section) and we define the prototype as the mixture

Ḡ =
N∑

k=1

πkGθk
= π1Gθ1 + . . . + πNGθN (3)

where πkGθk
denotes the weighting of each graph by its probability.

3 Graph-Transformation Matching and EM Clustering

3.1 One-to-One Matching

Given two images Ii and Ij , to be clustered, let Li = {sk} and Lj = {pl} be
their respective sets of salient points. Such salient points are obtained through
a Bayesian optimization of the entropy-based Kadir and Brady dectector [17].
However, for matching purposes we consider their SIFT 128−length descriptors
D and for each sk we match it with pl when Dkl = argminpl∈Lj{||Dk −Dl||}
and Dkl/Dkl(2) ≤ τ being Dkl(2) the Euclidean distance to sl(2)the second
best match for sk, and τ ∈ [0, 1] a distinctivity threshold usually set as τ = 0.8.
Consequently, we obtain a set of, say M matchingsM = {(k, l)}, and we denote
by L̂i and L̂j the sets resulting from filtering, in the original ones, features
without a matching in the M set.
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Fig. 2. Illustrating kernelized fusion. Left: Prototype building in an ideal case (top),
and a real one where kernels are needed (bottom). Rigth: Step-by-step fusion showing
partitions wrt median graph (left) and the difference between kernelized (middle) and
incremental (bottom) fusion.

3.2 Iterative Filtering and Consensus Graph

Considering the two sets of M points L̂i ) sk and ∈ L̂j ) pl, where sk matches sl

we build their associated median K-NN graphs as follows. Graph Gi = (Vi, Ei) is
given by vertices Vi associated to the positions of the M points. A non-directed
edge < k, a > exists in Ei when sa is one of the K = 4 closest neighbors of
sk and also ||sk − sa|| ≤ η, being η = med<r,t>∈Vi×Vi ||sr − st|| the median of
all distances be tween pairs of vertices, which filters structural deformations
due to outlying points. If there are not K vertices that support the structure
of sk then this vertex is disconnected completely. The graph Gi, which is not
necessarily connected, has the M ×M adjacency matrix Aka where Aka = 1
when < k, a >∈ Ei and Aka = 0 otherwise. Similarly, the graph Gj = (Vj , Ej)
for points pl has adjacency matrix Blb, also of dimension M ×M because of the
one-to-one initial matchingM.

Graph Transformational Matching (GTM) relies on the hypothesis that out-
lying matchings inM may be iteratively removed: (i) Select an outlying match-
ing; (ii) Remove matched features corresponding to the outlying matching, as
well as this matching itself; (iii) Recompute both median K-NN graphs. Struc-
tural disparity is approximated by computing the residual adjacency matrix
Rij = |Aka − Blb| and selecting jout = arg maxj=1...M

∑M
i=1 Rij , that is, the

one yielding the maximal number of different edges in both graphs. The se-
lected structural outliers are the features forming the pair (sjout ,pjout), that is,
we remove matching (k, jout) from M, sk from L̂i, and pjout from L̂j . Then,
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after decrementing M , a new iteration begins, and the median K-NN graphs are
computed from the surviving vertices. The algorithm stops when it reaches the
null residual matrix, that is, when Rij = 0, ∀i, j, that is, it seeks for finding a
consensus graph (initial experimental evidence shows that the pruning with the
residual adjacency matrix may be too agressive). Considering that the bottleneck
of the algorithm is the re-computation of the graphs, which takes O(M2 log M)
(the same as computing the median at the beginning of the algorithm) and
also that the maximum number of iterations is M , the worst case complexity is
O(M3 log M).

3.3 From Pairwise Matching to EM Clustering

Given N input images I1, . . . , IN to be clustered and characterized by their SIFT
descriptors, the first step consists of performing N × (N − 1)/2 GTM matchings
between all pairs of images, and these matching will be only performed once.
The role of the pairwise consensus subgraphs is to yield mappings between the
SIFT descriptors. For input image Ii, its graph for clustering purposes will be
Gi = (Vi, Ei, βi) where the vertices Vi are associated to the positions of all the
salient points in the image, the edges in Ei are derived from the median K-NN
graph considering all salient points, and βi = Di.

Given N input graphs Gi = (Vi, Ei, βi), the goal of the Asymmetric Clustering
Model (ACM) for graphs [15][16] is to find K (also unknown) graph prototypes
Ḡα = (V̄α, Ēα, β̄α, γα, λα,Mα) and the class-membership variables Iiα ∈ {0, 1}
maximizing the cost function

L(Ḡ, I) = −
N∑

i=1

K∑

α=1

IiαFiα, Fiα =
∑

k∈V̄α

||β̄αk − βiMki
α
|| (4)

Alternatively, Fiα may be defined in terms of the number of matchings, that is
the number of vertices k ∈ V̄α satisfying ||β̄αk − βiMki

α
|| ≤ τ after GTM (the

dimension of the consensus graph).

Initialization. For a fixed K, after a greedy process yielding initial prototypes
and membership variables, the supergraph GM = (VM , EM , π, θ, ν, ξ) (in which
all graphs are mapped) is built. As stated above, this step, which implies a
quadratic number of GTM processes, will be done only once.

E-step. Membership variables are updated following a deterministic annealing
process (with temperature T ) and depending on the disparities Fiα with respect
to the prototypes (N ×K evaluations without performing graph matching):

It+1
iα =

ρt
αe−

Fiα
T

∑K
δ=1 ρt

δ e−
Fiδ
T

, being ρt
α =

1
N

N∑

i=1

It
iα , (5)
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Fig. 3. Robustness with respect to increasing noise levels. Top: Edge noise. Bottom:
Node noise. Left: 10% edge density. Center: 30% edge density. Right: 50% edge density.

M-step. After the E-step we have the new membership variables It+1
iα and it is

time to update the K prototypes on the basis of graph mixtures whose weights
rely on the current membership variables:

Ḡt+1
α =

N∑

i=1

πiαGi , where πiα =
It+1
iα

∑N
k=1 = It+1

kα

, (6)

Modifying weights πiα implies changing the configuration (recompute par-
titions) of the associated fusion graph GMα = (VMα, EMα, πα, θα, να, ξα) and
hence changing the prototypes (but not the supergraph), and hence their at-
tributes β̄α. After such recomputation, we proceed to prune the prototypes by
discarding vertices (edges) with γα < 0.5 (λα < 0.5) and also their attributes.

Fusion-step. For a variable K, the complete process is started with Kmax

classes and at the end of each EM epoch a statistical test determines whether
the two closest prototypes may be fused or not. Then, we compute a fused
prototype

Ḡγ =
N∑

i=1

πiγGi when hγ < (hα + hβ)μ (7)

being hα =
∑N

i=1 Fiαπαi the heterogeneity of a class, and μ ∈ [0, 1] a merge
factor usually set to 0.6.

4 Experimental Results and Discussion

Experiment 1. We have performed two kind of experiments: random graphs,
and realistic visual localization. In the first case (see Fig. 3) we have evaluated
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Fig. 4. Results of pairwise matchings using GTM. Left: A small environment with 34
images. Right: A larger one with 64 images.

Fig. 5. Graph prototypes and classified images. Each column shows the prototype and
sample images of the corresponding class.

how representative is a prototype by measuring the average distance of the
graphs in the class to that prototype in different situations. Compared to the
set median graph and the results of our previous incremental method, the new
method yields more representative (informative) prototypes: it yields a slower
rate of increase of distances with the prototype as the noise level increases.

Experiment 2. Realistic visual localization experiments where performed by
considering two types of indoor environments: a small one (N = 34 images), and
a larger one (N = 64 images). Initial pairwise matchings (confusion matrices)
are showed in Fig. 4. The obtained prototypes for the first environment (K = 6
classes) are showed in Fig. 5, and the likelihood (expressed as the number of
matched nodes with the prototype) of each image with respect to each prototype
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Fig. 6. Likelihoods for both environments. Left: Small environment. Right: Larger
(medium-size) one.

are plotted in Fig. 6-left. Some bimodalities (due to geometric ambiguities) arise,
but in general it is possible to find, in this case, a simple threshold (above ≈ 5
matches) to report membership. In addition, we observe that the overlap between
classes is minimal. We have also estimated the localization error both for the
early version, which does not use graph clustering, and the new one proposed
in this paper. We have found that the percentage of error with respect to the
ideal localization is 86.4% in the early version, but 58.13% in the new one. This
indicates an improvement of the localization quality besides the computational
savings derived from comparing only with images in the same cluster for fine
localization.

Experiment 3. The good results outlined above encouraged us to find the limit
of scalability of the approach when the number of images to cluster increases
significantly. In this experiment we have tested the method in a larger environ-
ment (N = 64 images) where our algorithm has unsupervisedly found K = 12
classes. Analyzing the pairwise matching matrix (see Fig. 5-right) it has a con-
sistent diagonal with medium-size clusters. On the other hand, the analysis of
the likelihoods (Fig. 6-right) reveals few multi-modal classes, and none of them
has a unique member. With respect to the localization error, clustering yields a
12.22% less than our early version.

5 Conclusions and Future Works

We have presented a novel method for unsupervised central graph clustering
and we have successfully tested it in the context of scene recognition (visual
localization). We have found a good generalization conditioning which in turn
yields useful structural indexing in coarse-to-fine visual localization provided
that the number of ambiguous images does not grow significantly, specially in
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indoor environments where there are many natural symmetries. We are currently
working on building a wearable device for incorporating these elements and also
in testing the algorithm in other environments.
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Universitat Rovira i Virgili, Tarragona, Spain
francesc.serratosa@urv.cat

Abstract. Given a set of elements, the median can be a useful concept
to get a representative that captures the global information of the set.
In the domain of structural pattern recognition, the median of a set of
graphs has also been defined and some properties have been derived. In
addition, the maximum common subgraph of a set of graphs is a well
known concept that has various applications in pattern recognition. The
computation of both the median and the maximum common subgraph
are highly complex tasks. Therefore, for practical reasons, some strategies
are used to reduce the search space and obtain approximate solutions for
the median graph. The bounds on the sum of distances of the median
graph to all the graphs in the set turns out to be useful in the definition
of such strategies. In this paper, we reduce the upper bound of the sum of
distances of the median graph and we relate it to the maximum common
subgraph.

1 Introduction

A fundamental problem in pattern recognition is the selection of suitable repre-
sentations for objects and classes. In the structural approach to pattern recogni-
tion, an object can be represented using graphs. Nevertheless, the main drawback
of representing the data and prototypes by graphs is the computational complex-
ity of comparing two graphs. The time required by any of the optimal algorithms
may in the worst case become exponential in the size of the graphs. The approx-
imate algorithms, on the other hand, have only polynomial time complexity, but
do not guarantee to find the optimal solution. Moreover, in some applications,
the classes of objects are represented explicitly by a set of prototypes, which
means that a huge amount of model graphs must be matched with the input
graph and so the conventional error-tolerant graph matching algorithms must
be applied to each model-input pair sequentially. As a consequence, the total
computational cost is linearly dependent on the size of the database of model
1 This work was sponsored research Fellowship number 401-027 (UAB) / Cicyt
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graphs and exponential (or polynomial in subgraph methods) with the size of the
graphs. For applications dealing with large databases, this may be prohibitive.

To alleviate these problems, some attempts have been made to try to reduce
the computational time of matching the unknown input patterns to the whole
set of models from the database. Assuming that the graphs that represent a set
or class are not completely dissimilar in the database, only one structural model
is used to represent the set, and thus, only one comparison is needed for each
class. While in the domain of statistical pattern recognition it is easy to define
the representative of a set of objects, it is not so clear how to define the represen-
tative of a set of graphs in the structural domain. Thus, there are some different
methodologies to represent the set in the literature. In the probabilistic methods,
the clusters are described in the most general case through a joint probability
space of random variables ranging over graph vertices and arcs. They represent
the graphs in the cluster, according to some synthesis process, together with its
associated probability distribution [1,2,3]. In the non-probabilistic methods, sets
are usually represented by attributed graphs. The set might be represented by
a network of graphs [4] or by only one graph. In this last case, a common choice
is the median graph. Given a set of graphs, the median is defined as the graph
that has the smallest sum of the distances to all graphs in the set [5].

The computation of the median graph is exponential in the number and size
of the input graphs. As a consequence, in order to make the practical use of the
median-graph concept possible, we have to resort to approximate solutions. In
[5], a genetic algorithm is used to synthesize good approximations of the median
graph. Nevertheless, it was crucial to deduct the bounds of the sum of distances
between the median graph and the graphs of the set to achieve a good solution.
To that aim, they show that the sum of the distances between the median graph
and the graphs of the set was lower or equal than the sum of the number of
nodes of all the graphs.

In this paper, using a particular cost function and the relation between the edit
distance and the maximum common subgraph, both introduced in [6], we reduce
the upper bound of the sum of distances of the median graph and we relate it to
the maximum common subgraph of a set of graphs. This reduction may lead to
an increase in the efficiency of both exact and approximate algorithms for the
computation of the median graph.

The rest of the paper will be as follows. In section 2 we introduce the basic
terminology used in the paper. In section 3, we present the previous results that
are the basis of our work. Section 4 contains the main contribution of this paper
and a practical example to verify the theoretical results. Finally, some discussions
conclude the paper.

2 Definitions

2.1 Basic Definitions

Let L be a finite alphabet of labels for nodes and edges.
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Definition 1. A graph is a triple g = (V, α, β) where, V is the finite set of
nodes, α is the node labeling function (α : V −→ L), and β is the edge labeling
function (β : V × V −→ L).

We assume that our graphs are fully connected, i.e., E = V × V . Consequently,
the set of edges is implicitly given. Such assumption is only for notational con-
venience, and it doesn’t impose any restriction in the generality of our results.
In the case where no edge exists between two given nodes, we can include the
special label null in the set of labels L. The number of nodes of a graph g is
denoted by |g|.

Definition 2. Given two graphs g = (V, α, β), and g′ = (V ′, α′, β′), g′ is a
subgraph of g, denoted by g′ � g if,

– V ′ � V
– α′(x) = α(x) for all x ∈ V ′

– β′((x, y)) = β((x, y)) for all (x, y) ∈ V ′ × V ′

From definition 2 it follows that, given a graph g = (V, α, β), a subset V ′ � V of
its vertices uniquely defines a subgraph. Such subgraph is called the subgraph
induced by V ′.

Definition 3. Given two graphs g1 = (V1, α1, β1), and g2 = (V2, α2, β2), a
graph isomorphism between g1 and g2 is a bijective mapping f : V1 −→ V2

such that,

– α1(x) = α2(f(x)) for all x ∈ V1

– β1((x, y)) = β2((f(x), f(y))) for all (x, y) ∈ V1 × V1

In the real world, when encoding objects into graph-based representations some
degree of distortion may be introduced due to multiple reasons. Hence, graph
representations of two identical objects may not have an exact match. Therefore,
it is necessary to introduce some degree of error tolerance into the matching
process. Hence, we need an algorithm for error-correcting graph matching [7]
or equivalently, a method to compute a similarity measure between two given
graphs.

Definition 4. Let g1 = (V1, α1, β1) and g2 = (V2, α2, β2) be two graphs. An
error-correcting graph matching (ecgm) from g1 to g2 is a bijective function
f : V̂1 −→ V̂2, where V̂1 � V1 and V̂2 � V2.

We say that node x ∈ V̂1 is substituted by node y ∈ V̂2 if f(x) = y. If α1(x) =
α2(f(x)) then the substitution is called identical. Otherwise it is called non-
identical. In addition, any node from V1 − V̂1 is deleted from g1 and any node
from V2 − V̂2 is inserted in g2 under f .

As described above, the mapping f directly implies an edit operation on each
node in g1 and g2, i.e. nodes are substituted, inserted or deleted. Indirectly, the
mapping f implies the same edit operations on the edges of g1 and g2. Thus,
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Fig. 1. Two graphs g1(a) and g2 (b)

if f(x1) = y1 and f(x2) = y2, then the edge (x1, x2) is substituted by edge
(f(x1), f(x2)) = (y1, y2). In addition, if a node x is deleted in g1 then any edge
incident to x is also deleted. Similarly, if a node x′ is inserted in g2, then any
edge incident to x′ is also inserted. In this way, any ecgm f can be seen as a
sequence of edit operations namely, substitution, insertion and deletion of both
nodes and edges, that transform a given graph g1 into another given graph g2.

A possible ecgm from g1 to g2 of figure 1 is f : 1 −→ 5, 2 −→ 6, 3 −→ 7.
Under this ecgm nodes 1, 2 and 3 ∈ V1 are substituted by nodes 5, 6 and 7
∈ V2 respectively. In consequence, edges (1, 2) and (1, 3) ∈ E1 are substituted by
edges (5, 6) and (5, 7) ∈ E2. Note that in all of these substitutions no changes in
node or edge labels are involved. In addition, under f , node 4 and edges (2, 4)
and (3, 4) are deleted, while node 8 and edge (7, 8) is inserted. There are, of
course other ecgm from g1 to g2.

Definition 5. The cost of an ecgm f : V̂1 −→ V̂2 from a graph g1 = (V1, α1, β1)
to a graph g2 = (V2, α2, β2), denoted by c(f), is the sum of the costs of insertion,
deletion and substitution of both nodes and edges. These costs are represented by
cni(x), cnd(x), cns(x), cei(e), ced(e), ces(e) respectively.

All costs are real non-negative numbers and are used to model the probability of
errors and distortions that may change the original model. Usually, the higher the
probability of a distortion is to occur, the lower is its cost. Normally, it is assumed
that the cost of an identical node/edge substitution is zero, while the cost of any
other edit operation is greater than zero. The set of all costs is the cost function
γ and is usually written in a tuple form, i.e. γ = {cni, cnd, cns, cei, ced, ces}. If
the cost function γ is explicitly given the notation cγ(f) for the ecgm is used
instead of c(f).

Definition 6. Given a cost function γ, and an ecgm f from g1 to g2, f is called
an optimal ecgm under γ if there is no other ecgm f ′ from g1 to g2 such that
cγ(f ′) < cγ(f). The cost of an optimal ecgm, cγ(f) is also called the edit distance
between g1 and g2 denoted by d(g1, g2), and it can be seen as the sequence of graph
edit operations that transforms g1 into g2 with the minimum cost.

d(g1, g2) = min(cγ(f)) (1)
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Notice that for a given cost function γ there are usually more than one optimal
ecgm from a graph g1 to another graph g2.

2.2 Maximum Common Subgraph

Definition 7. Let g1 = (V1, α1, β1) and g2 = (V2, α2, β2) be two graphs, and
g′1 � g1, g′2 � g2. If there exists a graph isomorphism between g′1 and g′2 then,
both g′1 and g′2 are called a common subgraph of g1 and g2.

Definition 8. Let g1 = (V1, α1, β1) and g2 = (V2, α2, β2) be two graphs. A
graph gM is called a maximum common subgraph (MCS) of g1 and g2 if gM is
a common subgraph of g1 and g2 and there is no other common subgraph of both
g1 and g2 having more nodes than gM .

2.3 Generalized Median Graph

Definition 9. Let U be the set of graphs that can be constructed using labels
from L. Given S = {g1, g2, ..., gn} ⊆ U , the generalized median graph ḡ of S is
defined as follows:

ḡ = arg

⎛

⎝min
g∈U

∑

gi∈S

d(g, gi)

⎞

⎠ (2)

In other words, the generalized median graph is a graph g ∈ U which mini-
mizes the sum of distances (SOD) from g to all the graphs in S.

3 Interesting Results Based on the Previous Definitions

In this section we introduce three properties derived from the definitions given
above which will be the basis to develop our hypothesis. We first show a par-
ticular cost function introduced in [6]. Then, we remind an interesting relation
between the edit distance and the maximum common subgraph also given in [6]
derived from the introduced cost function. Finally, the bounds for the median
graph based on the sum of distances given in [5] are shown.

3.1 A Particular Cost Function

From this point to the rest of this paper we will use a particular cost function
given in [6] where the cost of node deletion and insertion (cnd(x) and cni(x)) is
always 1, the cost of edge deletion and insertion (ced(e) and cei(e)) is always 0
and the cost of node and edge substitution (cns(x) and ces(e)) takes the values
0 or ∞ depending on whether the substitution is identical or not, respectively.
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3.2 Relation Between Edit Distance and MCS

In [6] it has been proven that, using the previous cost function, the edit distance
between two graphs is related to their MCS, gM , by means of this expression:

d(g1, g2) = |g1|+ |g2| − 2 |gM | (3)

3.3 Bounds for the Median Graph

Let U be the set of graphs that can be constructed using labels from L and
S = {g1, g2, ..., gn} ∈ U . In [5] it is shown that the empty graph ḡe and the
union graph ḡu are meaningful candidates for the median graph. In this situation,
for the true median graph ḡ, SOD (ḡ) ≤ min {SOD (ḡe) , SOD (ḡu)} holds. In
addition, for any partition ℘ = ((gl1, gl2) · · · (gln−1, gln)) ∈ S and for the sum
of distances between its elements, SOD(℘) = d(gl1, gl2) + d(gl3, gl4) + · · · +
d(gln−1, gln), the following inequality holds, max {SOD(℘)} ≤ SOD (ḡ). Thus,
the bounds for the true median graph related to the sum of distances are,

max {SOD(℘)} ≤ SOD (ḡ) ≤ min {SOD (ḡe) , SOD (ḡu)} (4)

4 Reducing the Upper Bound for the Median Graph

In this section we prove that it is possible to reduce the upper bound for the
median graph given in expression (4), using the concept of maximum common
subgraph of a set of graphs, the cost function introduced in the previous section
and expression (3).

Definition 10. Let S = {g1, g2, ..., gn} be a set of graphs. A graph gMS is
called a maximum common subgraph of S if gMS is a common subgraph of
{g1, g2, · · · , gn} and there is no other common subgraph of {g1, g2, · · · , gn} hav-
ing more nodes than gMS .

As an example, if we take the set of graphs S = {g1, g2, g3, g4} of figure 3(a),
then a possible common subgraph of S is shown in figure 2.

1 2

X Y
a

Fig. 2. gMS corresponding to the set S = {g1, g2, g3, g4} in the figure 3(a)

The following theorem relates the upper bound of SOD(ḡ) to gMS :

Theorem 1. Given the cost function presented in section 3, the SOD(ḡ) falls
in the limits

max {SOD(℘)} ≤ SOD (ḡ) ≤ SOD(gMS ) ≤ min {SOD (ḡe) , SOD (ḡu)} (5)
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Proof. First, we start by computing the term min {SOD (ḡe) , SOD (ḡu)}. Using
the definition of distance given in expression (3):

SOD (ḡe) =
n∑

i=1

d(gi, ḡe) =
n∑

i=1

|gi|+ |ḡe| − 2|ḡe| =
n∑

i=1

|gi|

Notice that, in this expression ḡe is the empty graph. Then, the MCS between
any graph gi and ḡe in expression (3) is ḡe, and |ḡe| = 0. A similar reasoning can
be done for SOD (ḡu). In this case, the MCS between any graph gi and ḡu is gi,
and |ḡu| =

∑n
i=1 |gi|. Therefore,

SOD (ḡu) =
n∑

i=1

d(gi, ḡu) =
n∑

i=1

|gi|+ |ḡu| − 2|gi| = (n− 1)
n∑

i=1

|gi|

Thus, for n ≥ 2

min {SOD (ḡe) , SOD (ḡu)} = min

{
n∑

i=1

|gi|, (n− 1)
n∑

i=1

|gi|
}

=
n∑

i=1

|gi|

Now we derive an expression for the term SOD(gMS ). If gMS is the maximum
common subgraph of S, then any gi will have precisely gMS as a maximum
common subgraph between itself and gMS . Therefore,

SOD(gMS ) =
n∑

i=1

d(gi, gMS ) =
n∑

i=1

|gi|+ |gMS | − 2|gMS | =
n∑

i=1

|gi| − n|gMS |

(6)
Thus, we have that SOD(gMS ) ≤ min{SOD(ḡe), SOD(ḡu)} =

∑n
i=1 |gi|. In ad-

dition, by the definition of median graph, the inequality SOD(ḡ) ≤ SOD(gMS )
holds. Consequently, equation 5 holds. ��

This result shows that the upper bound for the term SOD(ḡ) can be reduced
from

∑n
i=1 |gi| to

∑n
i=1 |gi| − n|gMS |. This reduction can be used to introduce

some improvements in the existing algorithms to compute the true median graph.
For instance, in the exact algorithm presented in [8], the configurations where
the SOD is greater than the SOD(gMS ) do not have to be explored, reducing
in this way the search space and the computational complexity. In [5], the same
authors present an approximate algorithm for the median graph based on genetic
search. In this case, the reduction in the upper bound for the median graph could
be used to introduce some improvements in the initialization and mutation of
the population of chromosomes, discarding such chromosomes with SOD greater
than some factor of SOD(gMS ).

4.1 Practical Example

In this section we present a detailed example in order to show, in a more in-
tuitive way, the implications of theorem 1. Consider the situation where S =
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{g1, g2, ..., gn}. In this framework, basically 4 situations can appear regarding to
the maximum common subgraph of S:

1. At least one maximum common subgraph of all graphs in S exists: gMS �= ∅

(a) All pairs of graphs in any possible partition share only this maximum
common subgraph: gMij = gMS ∀ pair (gi, gj) i, j = 1..n; i �= j.

(b) Some pairs of graphs in any partition share more than this maximum
common subgraph: ∃ a pair (gi, gj) i, j = 1..n; i �= j such that gMij >
gMS .

2. No maximum common subgraph between all graphs in S exists: gMS = ∅

(a) All pairs in any partition are disjoint: gMij = ∅ ∀ pair (gi, gj) i, j =
1..n; i �= j.

(b) Some pairs in any partition share some subgraph of them: ∃ a pair (gi, gj)
i, j = 1..n; i �= j such that gMij �= ∅.
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Fig. 3. A set S = {g1, g2, g3, g4} of graphs and the 4 possible situations 1a (a), 1b (b),
2a (c) and 2b (d) in terms of the maximum common subgraph of S

Figure 3 shows an example of such situations for S = {g1, g2, g3, g4}. Figures
3(a) and 3(b) correspond to situations, 1.a and 1.b respectively, i.e. a maximum
common subgraph of S exists. While in figure 3(a) only the maximum common
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Table 1. Results for ḡ, gMS , SOD(ḡ), SOD(gMS ) and
∑n

i=1 |gi| for the situations of
figure 3

Situation ḡ gMS SOD(ḡ) SOD(gMS )
∑n

i=1 |gi|

1a
1 2

X Y
a

1 2

X Y
a

5 5 13

1b

1 2

3

X Y

Z

b

a

1 2

X Y
a

3 5 13

2a 13 13 13

2b

1

43

X

TZ

b

d

1 2

G H
t

13 13 13

subgraph equal to gMS exists between any pair of graphs, in figure 3(b) some
graphs have a maximum common subgraph greater than gMS . Figures 3(c) and
3(d) correspond to situations 2.a and 2.b respectively. In these situations, no
common subgraph exists among all the graphs in S. While in figure 3(c) there is
no maximum common subgraph between any pair of graphs in S, in figure 3(d)
some pairs of graphs have a maximum common subgraph.

For each situation in figure 3, the true median ḡ and the maximum common
subgraph gMS of S were manually obtained. Then the sum of distances for ḡ and
gMS , SOD(ḡ) and SOD(gMS ), respectively, were calculated. Finally, the term∑n

i=1 |gi| was also computed. The results for these 5 features are summarized in
table 1. Each row corresponds to one of the four situations in figure 3.

As can be seen in table 1, the equation 5 holds in all cases. In particular,
in the situations 1.a and 1.b, i.e. when the maximum common subgraph among
all graphs in S exists, the upper bound fixed by the term SOD(gMS ) is less
than the upper bound fixed by the expression

∑n
i=1 |gi|. Another interesting

fact from table 1 is the relation between the terms SOD(ḡ) and SOD(gMS ).
Concretely, in the situations 1.a and 2.a, i.e. when any pair of graphs have the
same maximum common subgraph, the true median and the maximum common
subgraph among all graphs in S are the same, and consequently, the terms
SOD(ḡ) and SOD(gMS ) coincide. However, in the situations 1.b and 2.b, i.e.
when some pair of graphs have a maximum common subgraph greater than
the maximum common subgraph among all graphs in S, the true median is (or
may be in general) greater or equal than the maximum common subgraph of all
graphs and then the term SOD(ḡ) is lower or equal than SOD(gMS ).
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5 Conclusions

The median graph concept as an alternative to represent prototypes of a set of
graphs has been turned out very useful, but the computation of both exact and
approximate solutions has been shown very hard.

In this paper we show that under a certain cost function, the upper bound
for the median graph related to the sum of distances can be reduced using the
concept of maximum common subgraph. This result is not only interesting from
the theoretical point of view. In order to prove the usefulness of this result,
a detailed example has been presented. The results show that, in some cases,
when the maximum common subgraph of all graphs in the set exists, the term
SOD(gMS ) is less than

∑n
i=1 |gi|, and then some reduction in the space where

the median is searched for can be introduced. As a consequence the time spent
for the computation of the median graph could be reduced. For example, this
fact could be used to introduce some improvements in the computation of both
exact [8] and approximate solutions [5] for the median graph. Finally, under
more restrictive conditions about the MCS of any pair of graphs, the maximum
common subgraph of all graphs in the set is equal to the median graph. In
this sense, it should be investigated in further detail if the maximum common
subgraph can be a good approximation of the median graph in more general
situations.
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Abstract. In this paper, a graph classification approach based on a multi-
objective genetic algorithm is presented. The method consists in the learning of 
sets composed of synthetic graph prototypes which are used for a classification 
step. These learning graphs are generated by simultaneously maximizing the 
recognition rate while minimizing the confusion rate. Using such an approach 
the algorithm provides a range of solutions, the couples (confusion, recognition) 
which suit to the needs of the system. Experiments are performed on real data 
sets, representing 10 symbols. These tests demonstrate the interest to produce 
prototypes instead of finding representatives which simply belong to the data 
set. 

Keywords: graph classification, multi-objective optimization, machine lear-
ning, graph dissimilarity measure. 

1   Introduction 

Graphs are powerful tools to represents structured objects and they have been applied 
in many fields of computer science. Graphs unify in a single formalism, web pages 
[1], molecules [2] and graphic symbols [3] since their vertices represent object 
components while edges represent relations between components. Symbols can be 
naturally described in a graph model using primitives (vectors, arcs, connected 
components, loops…) and geometric relations between these primitives 
(neighborhood, connection, parallelism…). In this context, the pre-segmented symbol 
recognition question turns into a graph classification problem which involves 
comparing graphs, i.e., matching graphs to identify their common features [4]. Only 
error tolerant matching methods can be efficient due to the noise and the shape 
variability present in graphic documents. The identification phase is to assign a graph 
describing an unknown symbol to its class using a learning database.  

In this paper, a system able to classify graphs representing symbols is described. It 
uses a learning database to take into account the variability which can occur in 
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symbol image representation. Our algorithm aims at learning sets of graph prototypes 
to consider the possible distortions. Then, these prototypes are used in a classification 
step in order to determine the class of an unknown and noisy symbol in a recognition 
system. Our approach can be decomposed into 3 steps. First, a corpus of noisy symbol 
images [5], representing N symbol classes with M distorted symbol images per class, 
is used to extract a set of M graphs per class. Then, from this learning set, a graph 
based Genetic Algorithm (GA) is applied. Its aim is to generate sets of K graph 
prototypes for each class. The values to be optimized by the multi-objective GA are 
the recognition rate and the confusion rate which are obtained in the simulation of a 
classification algorithm using the selected prototypes as learning samples and a test 
database. Both steps (prototypes learning and classification) use a dissimilarity 
measure called graph probing in order to evaluate the similarity between graphs [20]. 
This measure has been chosen after a comparative study between different 
approaches. Finally, in a validation step, a classification algorithm is applied using the 
selected prototype set as learning elements, a validation database and the same 
dissimilarity measure. The paper is organized as follows: In the second section, the 
graph probing concept is introduced. Then, the third section presents the genetic 
algorithm in use, and particularly the specific genetic operators involved. The fourth 
section presents the application to the symbol recognition problem, the comparative 
study between the tested dissimilarity measures and the obtained classification results. 
Finally, a conclusion is given and future works are brought in section 5. 

2   Dissimilarity Measures 

Measures of dissimilarity between complex objects which have a structure (sets, lists, 
strings, …) are based on the quantity of shared terms. The simplest similarity measure 
between two objects is the matching coefficient, which is based on the number of 
common terms. Using this idea as a starting point, dissimilarity measures which take 
into account the maximal common subgraph (MCS) of two graphs were proposed in 
[6]. Another method which proposes a metric distance in the universal set of graphs is 
the edit distance. It represents the minimum-cost sequence of basic editing operations 
(e.g. insertion or deletion of vertices and edges with associated costs). The graph edit 
distance and MCS computation are equivalent to each other under a certain cost 
function associated to edit operations [7]. These distances between graphs have worst 
case exponential running times. In our application, we use a genetic algorithm which 
employs intensively computations of dissimilarities between graphs.  

Hence, we have to find faster algorithms which compute dissimilarities, eventually 
approximations. In such a context, the graph topology can be approximated 
considering independently the set of vertices and arcs, for instance, edge matching 
distance or vertex matching distance [8]. Edge matching distance proposes a cost 
function for the matching of edges and then derives a minimal weight maximal 
matching between the edge sets of two graphs. This matching has a worst case 
complexity of O(n3), where n is the number of edges of the largest graph. 

Another possibility to define a similarity measure is to count the number of 
occurrences of a set of sub graphs (named fingerprints or probes in different contexts) 
from each graph and to describe the objects to be compared as vectors [9]. In this 
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setting (named graph probing), the similarity between graphs is the similarity between 
the two associated vectors. These methods are fast since they can be run in linear 
time, however, when the distance between two graphs is 0, it does not imply that the 
two graphs are isomorphic. However, a lower bound relation within a factor of four 
exists between the graph probing and the edit distance [9]. An experimental 
comparison between graph probing and other approaches is presented in section 4. 

3   The Genetic Algorithm in Use 

3.1   Genetic Operators Dedicated to Graphs 

Genetic Algorithms (GAs) are adaptive heuristic optimization algorithms based on the 
evolutionary ideas of natural selection and genetics. The basic concept of GAs is 
designed to simulate natural processes, necessary for evolution of artificial systems. 
They represent an intelligent exploitation of a random search within a defined search 
space to solve a problem. As can be seen on fig 1, after a random initialization of a 
population of possible solutions, GA’s are based on a sequential ordering of four main 
operators: selection, replication, crossover and mutation. In order to apply genetic 
algorithms to a given problem, three main stages are necessary: the coding of the 
problem solutions, the definition of the objective function which attributes a fitness to 
each individual, and the definition of the genetic operators which promote the 
exchange of genetic material between individuals. In most existing GA applications, a 
linear representation of individuals is used. Problem parameters are encoded through 
a binary or a real string. Crossover is then applied through a single-point or two-point 
based exchange of genes. Regarding mutation, it is applied through a random 
modification of a small number of genes chosen randomly. 

 

 

Fig. 1. Overview of a genetic algorithm 

In our context of pattern recognition using graph, each individual has to encode a 
set of graphs (the KxN prototypes). Consequently, the evolution of the individuals 
through GA implies to revisit classical operators since they have to modify graphs. 
Concerning mutation, our operator is based on the six unary edit operations which can 
be applied to a graph: add or remove a node or an edge and modify a node or an edge 
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Fig. 2. The crossover operator 

label. For each mutation operation, we first decide to apply or not the operator 
according to a pre-defined rate. If mutation has to be applied, one of the six 
possibilities is chosen randomly, as well as the new label if the operation is a label 
modification. 

To perform crossover between individuals (see fig. 2), we first randomly partition 
the set of nodes of each graph in two subsets (see the label of nodes on figure 2). We 
call internal edges, the edges of the initial graph the nodes of which are in the same 
subset (continuous lines). At the opposite, edges the nodes of which are in different 
subsets are called external edges (dotted lines). Then, a node is said to be an output 
node if it is a source of external edge, and an input node if it is the destination of an 
external edge. Finally, according to the nature of nodes and edges, fragments are 
swapped and edges are recombined so that all external edges now point to randomly 
selected input nodes. Crossover and mutation are combined sequentially as shown in 
figure 1, after a classical selection process using a fitness based roulette wheel 
approach. 

3.2   The Multi-objective Optimization Concept 

When an optimization problem involves more than one objective function, the task of 
finding one or more optimum solutions is known as multi-objective optimization. 
Some classical textbooks on this subject have been published, e.g. [10]. We just recall 
here some essential notions in order to introduce the proposed algorithm. The main 
difference between single and multi-optimization tasks lies in the requirement of 
compromises between the various objectives in the multi-optimization case. Even 
with only two objectives, if they are conflicting, the improvement of one of them 
leads to a deterioration of the other one. For example, in the context of graph 
classification, the decrease of the reject rate generally leads to an increase of the 
confusion rate. Two main approaches are used to overcome this problem in the 
literature.  
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The first one consists in the combination of the different objectives into a single 
one (the simpler way being to use a linear combination of the various objectives), and 
then to use one of the well-known techniques of single objective optimization (like 
gradient based methods, simulated annealing or classical genetic algorithm). In such a 
case, the compromise between the objectives is a priori determined through the choice 
of the combination rule. The main critic addressed to this approach is the difficulty to 
choose a priori the compromise. It seems a better idea to postpone this choice after 
having several candidate solutions at hand. This is the goal of Pareto based method 
using the notion of dominance between candidate solutions. A solution dominates 
another one if it is better for all the objectives. This dominance concept is illustrated 
on figure 3. Two criteria J1 and J2 have to be minimized. The set of non-dominated 
points that constitutes the Pareto-Front appears as ‘O’ on the figure, while dominated 
solutions are drawn as ‘X’. Using such a dominance concept, the objective of the 
optimization algorithm becomes to determine the Pareto front, that is to say the set of 
non-dominated points. Among the optimization methods that can be used for such a 
task, genetic algorithms are well-suited because they work on a population of 
candidate solutions. They have been extensively used in such a context. The most 
common algorithms are VEGA – Vector Evaluated Genetic Algorithm – [11], MOGA 
– Multi-Objective Genetic Algorithm –approach [12], SGA – Non-Dominated Sorting 
Genetic Algorithm – [13], NSGA II [14], PAES – Pareto Archived EvolutionStrategy 
– [15] and SPEA – Strength Pareto Evolutionary Algorithm – [16]. A good review 
can be found in [17]. 

 

Fig. 3. Illustration of the Pareto Front concept 

The proposed genetic algorithm is elitist and steadystate. This means that (i) it 
manages two populations and (ii) the replacement strategy of individuals in the 
populations is not made as a whole, but individual per individual. The two 
populations are a classical population, composed of evolving individuals and an 
“archive” population composed of the current Pareto Front elements. These two 
populations are mixed during the iterations of the genetic algorithm. The first 
population guarantees space exploration while the archive guarantees the exploitation 
of acquired knowledge and the convergence of the algorithm. This algorithm has been 
designed in order to be applied to various problems. In the current implementation, 
the replacement strategy is defined in such a way that the candidate has to be inserted 
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within the archive if no archive element dominates it. In the same time, archive 
elements dominated by the candidate are eliminated from the archive. 

4   Application 

In this section, the graph construction step is explained. Then, a comparative study 
concerning dissimilarity measure is described. It justifies our decision to use graph 
probing in our context. Finally, the symbol recognition application is presented, 
results are measured up to another approach and a two objective optimization is 
performed taking into account the notion of reject.  

4.1   Graph Data Set Construction 

Our data are made of graphs corresponding to a corpus of 180 noisy symbol images, 
generated from 10 ideal models proposed in a symbol recognition contest (GREC 
workshop). In a first step, considering the symbol binary image, we extract both black 
and white connected components. These connected components are automatically 
labeled with a partitional clustering algorithm [18] applied on a set of features called 
Zernike moments [4]. Using these labeled items, a graph is built. Each connected 
component represents an attributed vertex in this graph. Then, edges are built using 
the following rule: two vertices are linked with an undirected and unlabeled edge if 
one of the nodes is one of the h nearest neighbors of the other node in the 
corresponding image. The two values h and c, concerning respectively, the cluster 
number found by the clustering algorithm and the number of significant neighbors, 
are issued from a comparative study. An example of the association between two 
symbol images and the corresponding graphs is illustrated in fig 4. 

4.2   Test on Dissimilarity Distances 

In order to choose the best dissimilarity measure in the context of our application, a 
study has been led concerning the correlation values between the dissimilarity 
measures proposed in section 2.  

Two experiments compose this study. First, we have computed Pearson correlation 
coefficients (cor) between the different dissimilarity measures. Results are presented 
on the first line of table 1. The second experiment concerns the correlation between a 
userdefined ground truth order (or partial order) and the order calculated using the 
distance between representations. Such a correlation has to be as high as possible 
since our objective is the classification of graphs. This correlation can be measured 
using the Kendall rank correlation coefficient (tau) [19]. Using these values, we can 
select a graph representation and a dissimilarity measure which satisfies both running 
time constraints and high correlation with the groundtruth of our application. The 
obtained values, associated with the corresponding run time complexity, point out the 
trade-off to be made between the quality (agreement with the ground truth) of a 
similarity measure and its run time complexity. Since our application is quite 
demanding of dissimilarity measures, graph probing seems more suitable, showing a 
better trade-off: meaningful and operating in linear time. 
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Fig. 4. From symbols to Graphs 

Table 1. Correlation between the edit distance: (ED), the edge matching distance(EMD), graph 
probing(GP) and Ground Truth (GT) 

 ED GP EMD 
ED using cor 1 0.58 0.63 
ED using tau 1 0.53 0.63 
GT using tau 0.699 0.622 0.657 

4.3   Classification Experiments: Mono-Objective 

In a first step, with an aim of comparison, we focus on a mono-objective problem 
which will be extended in the next par to multi-objective. Under such conditions, the 
learning algorithm consists in the generation of K graph prototypes per symbol class 
for a group of N classes.  

These prototypes are produced by a graph based GA, the aim of which is to find 
the near optimal solution of the recognition problem using the selected prototypes. In 
such a context, each individual in our GA is a vector containing K graphs per class, 
that is to say K feasible solutions (prototypes) for a given class. Hence, an individual 
is composed of KxN graphs. For the initialization of the population, each graph of 
each individual is selected randomly from the initial graph corpus. The fitness (the 
suitability) of each individual is quantified thanks to the classification rate obtained 
using the corresponding prototypes and a test database. The classification is processed 
by a 1-NN classifier using the graph probing distance. Then, using the operators 
described in section 3, the GA iterates, in order to optimize the classification rate. The 
stopping criterion is the generation number. At the end of the GA, a classification step 
is applied on a validation database in order to evaluate the quality of the selected 
prototypes. The obtained results are compared with an approach which also finds K 
representatives in a set of objects, described only by their reciprocal matrix distance. 
This approach which minimizes (unsquared) distances from objects to representatives 
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is called Partition Around Medoids (PAM) [18]. PAM gives us its K best prototypes 
for a given class. Using these prototypes and the graph probing distance, we can 
compute the recognition rate. Table 2 gives the comparative results for K=1,2,3 
prototypes per class, and a group of 10 classes. One can also note that using only the 
ideal models as learning set, a 1NN classification using graph probing provides a 
88,28% recognition rate. All these results show the interests of the prototype selection 
using GA combined with the graph probing approach. According to us, the main 
reason is that the learning application creates NxK synthetic elements thanks to the 
genetic operators in order to obtain the best representation of a particular class. 
Hence, our range of possibilities is not limited to the graphs constituting the class. 

Table 2. Global classification rate 

K 1 2 3 
PAM 91,42% 94,28% 96,66% 
GA 95,29% 96,47% 98,23% 

4.4   Multi-objective Experiments 

In another step, we add one more objective to the problem: the confusion rate 
minimization. Therefore, from now, the classifier has distance rejection capability, the 
capacity not to take decision in case of ambiguity. Consequently, the relation between 
the recognition rate and the confusion rate is defined as follow:  

Confusion rate = 1 – (Recognition rate + Reject rate). 

Hence, the problem becomes to find all dominant solutions, the L couples(confusion, 
recognition), where one couple represents a set of KxN graphs, K prototypes per class 
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Fig. 5. Example for K=1, Pareto Front of two criteria: [Confusion, Recognition]. The left axis 
corresponds to the reject rate curve (triangles) and the axis on the right goes with recognition 
rate (squares). 
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for N classes. We perform our multi-objective algorithm on the learning data in order 
to discover the Pareto Front and finally the found solutions are evaluated on the test 
database (Fig 5). 

The Figure 5 illustrates clearly the tradeoff to be made between Confusion rate and 
Recognition rate. Among the range of possibilities found by the method, we spot two 
specific cases: (i)A confusion rate equal to zero has been found but in against part, the 
classifier has rejected a lot. (ii)On the other hand, a high recognition rate has been 
discovered too but this solution implies some classification errors. This choice depends 
on what are the system needs. The advantage of providing a range of solutions 
corresponds completely with an adaptive system which will see its constraints changed 
dynamically, and at any time, the most suitable prototype set could be picked up among 
the heap of dominant solutions. In such a case, no need to relearn new graph prototypes, 
since each solution represents an adaptation of the learning. The way of reaching many 
objectives at once, gives to our method a wider field of action and even if we have 
performed only a two objective optimization during our experiments, we precise that the 
approach can be generalized to other criteria. 

5   Conclusion 

In this paper, a graph classification algorithm has been proposed with an application to 
symbol recognition. The approach is based on the learning of graph prototypes using 
multi-objective genetic algorithm and a fast dissimilarity measure called graph probing. 
This measure has been judged more efficient from the computation speed point of view. 
The obtained results, compared with a classification using PAM to select prototype, 
have shown the interest to generate synthetic prototypes through the use of genetic 
operators rather than finding them among the elements defining the classes.  

In addition, the reject is integrated to the method in terms of multi-optimization 
without including a priori knowledge. A wide range of solutions is provided to fulfill 
the system needs. Our further works concern different points. The first of them 
consists in enriching the symbol description as graph, for example through the use of 
contour vectorization results. A second one consists in testing the approach on a more 
important database. Another one consists in comparing the approach with the use of 
graph kernel SVM. And finally, we are investigating some studies to increase the 
dissimilarity measure relevance. In this direction, we improve the information 
extracted from graphs, in taking into account in each probe the neighborhood notion. 
The idea is to give a more significant interpretation of graph topologies in increasing 
the sub-graph sizes used as probes. In such a context, each probe is a vision of graphs 
for a certain level of neighborhood. 

References 

1. Schenker, A., Last, M., Bunke, H., Kandel, A.: Classification of web documents using a 
graph model. In: Proceedings of the 7th International Conference on Document Analysis 
and Recognition (ICDAR), pp. 240–244 (2003) 

2. King, R.D., Sternberg, M.J.E., Srinivasan, Muggleton, S.H.: Knowledge discovery in a 
database mutagenetic chemicals. In: proceedings of the workshop Statistics, machine 
leaning, discovery in databases at the ECML-95 (1995) 



370 R. Raveaux et al. 

3. Cordela, L.P., Vento, M.: Symbol recognition in documents: a collection of techniques? 
International Journal on Document Analysis and Recognition 3(2), 73–88 (2000) 

4. Khotazad, A., Hong, Y.H.: Invariant image recognition by Zernike Moments. PAMI 12(5), 
489–497 (1990) 

5. Valveny, E., Dosch, P.: Symbol Recognition Contest: A Synthesis. In: Lladós, J., Kwon, 
Y.-B. (eds.) GREC 2003. Lecture Notes in Computer Science N°, vol. 3088, pp. 368–385. 
Springer, Heidelberg (2004) 

6. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. 
Pattern Recogn. Lett. 19, 255–259 (1998) 

7. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. 
Pattern Recogn. Lett. 18, 689–694 (1997) 

8. Kriegel, H.P., Schönauer, S.: Similarity Search in Structured Data. In: Kambayashi, Y., 
Mohania, M.K., Wöß, W. (eds.) Data Warehousing and Knowledge Discovery. Lecture 
Notes in Computer Science, N°, vol. 2737, pp. 309–319. Springer, Heidelberg (2003) 

9. Lopresti, D.P., Wilfong, G.T.: A fast technique for comparing graph representations with 
applications to performance evaluation. International Journal on Document Analysis and 
Recognition 6, 219–229 (2003) 

10. Deb, K.: Multi-Objective optimization using Evolutionary algorithms. Wiley, London 
(2001) 

11. Schaffer, J.D., Grefenstette, J.J.: Multiobjective learning via genetic algorithms. In: 
Proceedings of the 9th international joint conference on artificial intelligence, Los 
Angeles, California, pp. 593-595 (1985) 

12. Fonseca, C.M., Fleming, P.J.: Genetic algorithm for multi-objective optimization: 
formulation, discussion and generalization. In: Stephanie editor, Proceedings of the fifth 
international conference on genetic algorithm, San Mateo, California, pp. 416–423 (1993) 

13. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic 
algorithm. Evolutionary Computation 2, 221–248 (1994) 

14. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast and elitist multi-objective genetic 
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2000) 

15. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto 
archived evolution strategy. Evolutionary computation 8, 149–172 (2000) 

16. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative study and the 
strength pareto approach. IEEE Transactions on Evolutionary Computation 3, 257–271 
(1999) 

17. Coello, C.A.: Coello: Coello, “A short tutorial on Evolutionary Multiobjective 
Optimisation”, In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. In: Zitzler, E., 
Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. Lecture Notes in 
Computer Science n°, vol. 1993, pp. 21–40. Springer, Heidelberg (2001) 

18. Kaufman, L., Rousseeuw, P.J.: Finding groups in data. John Wiley & Sons, Inc, New York 
(1990) 

19. Kendall, M.G.: Rank Correlation Methods. Hafner Publishing Co, New York (1955) 
20. Sorlin, S., Solnon, C.: Reactive Tabu Search for Measuring Graph Similarity. In: Brun, L., 

Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer, Heidelberg 
(2005) 



Graph Embedding Using Quantum Commute

Times

David Emms, Richard C. Wilson, and Edwin Hancock

Department of Computer Science
University of York
YO10 5DD, UK

Abstract. In this paper, we explore analytically and experimentally the
commute time of the continuous-time quantum walk. For the classical
random walk, the commute time has been shown to be robust to errors
in edge weight structure and to lead to spectral clustering algorithms
with improved performance. Our analysis shows that the commute time
of the continuous-time quantum walk can be determined via integrals
of the Laplacian spectrum, calculated using Gauss-Laguerre quadrature.
We analyse the quantum commute times with reference to their classical
counterpart. Experimentally, we show that the quantum commute times
can be used to emphasise cluster-structure.

1 Introduction

Random walks on graphs have been used to develop a powerful battery of pat-
tern analysis algorithms. The steady state random walk on a graph is deter-
mined by the leading eigenvector of the weighted adjacency matrix or equiva-
lently the Fiedler vector of the Laplacian matrix [6]. Random walks are there-
fore intimately related to graph-spectra. For example Melia and Shi [8] have
used random walks to learn image segmentation. Zhu, Ghahramani and Lafferty
[13] have performed semisupervised learning using random walks on a labelled
graph structure. Robles-Kelly and Hancock [12] have developed a graph-spectral
method inspired by random walks to seriate graphs, i.e. to place the nodes in
string order. Borgwardt et al have developed a kernel that preserves the path
length distribution of a random walk on a graph, and have used this to anal-
yse protein data [1]. This kernel has been used by Neuhaus and Bunke [10] to
kernelise the computation of graph edit distance, and measure the similarity of
graphs. Finally, Qiu and Hancock [11] have shown how the commute times of
random walks can be used to render graph-spectral clustering algorithms robust
to edge weight errors, and have explored the application of the method to image
segmentation, multibody motion tracking and graph-matching. The commute
time allows the nodes of a graph to be embedded in a low dimensional space,
and the geometry of this embedding allows the nodes to be clustered into disjoint
subsets.

One of the problems of spectral approaches to the analysis of graphs using
random walks is that of cospectrality. That is graphs of different structure can
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give the same the pattern of eigenvalues. Emms et al [4] have recently shown
how coined quantum walks can be used to lift the problem of co-spectrality,
particularly for strongly regular graphs. Quantum walks [5] differ from their
classical counterparts in that the real-valued vector of probabilities is described
indirectly via a complex-valued state vector. The evolution of the walk depends
on the richer representation given by this state vector, allowing effects such as
quantum interference to take place.

Quantum walks clearly offer powerful tools for the analysis of graphs, and the
aim in this paper is to take their study one step further. Results for hitting times
on certain graphs with high levels of symmetry have been studied [2]. However,
to date there has been little effort devoted to the study of properties such as
hitting time or commute time of walks on more general graphs. Specifically, our
aim is to explore whether the commute time associated with the continuous-time
quantum walk can be used to embed the nodes of a graph in a low dimensional
vector space and to explore the properties of the embedding. When contrasted
with the classical walk there are a number of interesting conclusions that can
be drawn. First, while the embedding associated with the classical commute
time is close to unidimensional, that associated with the quantum walk needs
more dimensions to capture its behaviour. This is closely linked to the problem
of cospectrality. Second, although mean commute times of the quantum and
classical walks are both correlated with path length, in any particular instance
they are not correlated with each other: both measure different properties of the
graph. Thirdly, the embeddings obtained can distinguish clusters more clearly
than those obtained using the classical commute times.

2 Random Walks

Let G = (V, E, W ) be a weighted graph with vertex set, V , and edge set,
E = {{u, v}|u, v ∈ V , u adjacent to v}. The graph has a weighted adjacency
matrix, W , which is symmetric, W (u, v) = W (v, u), and the entry W (u, v) gives
the weight on the edge {u, v}. Let n = |V | be the total number of vertices in the
graph. We define the degree matrix to be the matrix D = diag(d(1), d(2), . . . ,
d(n)) where d(u) =

∑
v W (u, v) is the degree of vertex u. An unweighted graph

corresponds to the particular case where W (u, v) = 1 if {u, v} ∈ E and 0 oth-
erwise. In this case, the degree of a vertex is the number of vertices adjacent
to it.

The Laplacian matrix, L = W −D, for the graph is the graphical equivalent
of the Laplacian operator in Euclidean space and has elements

Luv =

⎧
⎨

⎩

W (u, v) if {u, v} ∈ E;
−d(u) if u = v;

0 otherwise.

The Laplacian matrix is used to define the time evolution of the quantum
walk on the graph. Before describing the quantum walk, however, we give a brief
summary of the classical random walk.
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2.1 Classical Random Walk

The continuous-time quantum walk is motivated by (classical) continuous-time
Markov chains. We introduce the quantum walk by way of the classical random
walk. The state space for the classical random walk is the set of vertices, V . The
state of the walk at time t is given by a vector, p(t) ∈ R|V |, whose uth entry,
pu(t), is the probability that the walk is at the vertex u at time t. The axioms of
probability give that pu(t) ∈ [0, 1] for all u ∈ V , t ∈ R+ and

∑
u∈V pu(t) = 1 for

all t ∈ R+. The connectivity structure of the graph is respected by requiring that
transitions are only allowed between adjacent vertices. Additionally, a transition
between a vertex and one of the vertices adjacent to it is proportional to the
weight of the edge connecting them. Thus, the state of the walk at time t + 1
is given by p(t + 1) = Tp(t) where T is the transition matrix, given by T =
D−1W . The classical continuous-time random walk is obtained by introducing
a transition rate, μ, that gives the probability of a transition between any pair
of neighbouring vertices per unit time. The state vector the walk satisfies the
differential equation

d

dt
p(t) = μLp(t).

2.2 Quantum Random Walk

The state space for a the continuous-time quantum random walk is again the
set of vertices, V . However, the state is described by a complex state vector
which we write (using Dirac’s notation) as |ψt〉 ∈ C|V |. This can be written
componentwise as

|ψt〉 =
∑

u∈V

au|u〉

where |u〉 is the vector corresponding to the walk being at vertex u, in the
following sense. Let Xt be the random variable giving the state of the walk at
time t. The probability of the walk being at a particular vertex u ∈ V is given,
indirectly, by the complex state vector according to the rule P (Xt = u) = aua∗

u

where a∗
u is the complex conjugate of au. (We can rewrite this as P (u) = |〈u|ψt〉|2

where, for any vector |φa〉 =
∑

u au|u〉 in the Hilbert space H ≡ C|V |, 〈φa| is the
linear functional that maps every vector |φb〉 =

∑
u bu|u〉 ∈ H to the standard

inner product 〈u|φ〉 = (|u〉, |φ〉) =
∑

u aub∗u.) For the quantum walk, the axioms
of probability give that |au(t)| ∈ [0, 1] for all u ∈ V , t ∈ R+, and

∑
u∈V aua∗

u = 1.
Again, transitions only occur between adjacent vertices and the evolution of the
state vector is given by

d

dt
|ψt〉 = −iμL. (1)

Since the evolution of the probability vector of the walk at time t depends on
the state vector of the walk (not merely the probability vector), the quantum
walk is not a Markov chain. However, given an initial state, |ψ0〉, Equation 1 can
be solved to give |ψt〉 = e−iμLt|ψ0〉 allowing the walk to be analysed using the
Laplacian spectrum, as demonstrated in the following section.
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3 Commute Times

In this section we will consider the expected time for the quantum walk to
travel between each pair of vertices in a graph. For the walk with starting state
|ψ0〉 = |u〉, let Xt

(u) be the random variable giving the state of the walk at time t.
Let H(u, v) be the random variable giving the first hitting time of the vertex v.
That is, H(u, v) = min{t|Xt

(u) = v}. We note that, due to the symmetry of the
Laplacian matrix, L, we have H(u, v) = H(v, u). The commute time, C(u, v),
between a pair of vertices is defined as the expected time for the walk to travel
from the vertex u to v and back to u again. Thus C(u, v) = O(u, v) + O(v, u)
where O(u, v) is the expected value of the first hitting time. From the symmetry
of the walk this is Q(u, v) = 2O(u, v). The expected hitting time between a pair
of vertices can be calculated using

O(u, v) =
∫ ∞

0

P
(
H(u, v) = t

)
t dt (2)

To calculate P
(
H(u, v) = t

)
, we consider the state vector, |ψt〉 = e−iLt|u〉.

Taking as out transition rate, μ = 1, the probability that this walk is at v at
time t is given by

P (Xt
(u) = v) = |〈v|e−iLt|u〉|2

=
( n∑

j=1

φj(u)φj(v)e−iλj t

)( n∑

k=1

φk(u)φk(v)e−iλkt

)∗

=
n∑

j=1

n∑

k=1

φj(u)φj(v)φk(u)φk(v)e−i(λj−λk)t

where λk is an eigenvalue of L and φk its corresponding eigenvector. As P (Xt
(u) =

v) is a real number we need only consider the real parts, since the imaginary
parts must cancel. Hence, we have that

P (Xt
(u) = v) = 2

n∑

j=1

(
∑

k>j:λj �=λk

φj(u)φj(v)φk(u)φk(v) cos((λk − λj)t)

. . . +
∑

k:λj=λk

φ2
j (u)φ2

j (v)

)

= F +
∑

(A,B)∈X
A cos(Bt),

where the pairs (A, B) ∈ X , and are defined by

X =
{(

φj(u)φj(v)φk(u)φk(v), λj − λk

)∣
∣
∣
∣1 ≤ j ≤ n, 1 ≤ k < j, λk �= λj

}
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and
F =

∑

j,k: λj=λk

φj(u)φj(v)φk(u)φk(v).

For a particular u, v ∈ V , let r(t) be the probability density function for the
first hitting time, H(u, v), and R(t) its cumulative distribution function. The
probability function P (Xt

(u) = v) is referred to as the hazard function for the
walk arriving at v. It is such that the probability of the walk arriving at v in
the interval (τ, τ + dτ), given that it has not previously arrived at v, is given by
P (Xτ

(u) = v)dτ . For a given hazard function, P (Xt
(u) = v), we have that

d

dt
(1−R(t)) = −P (Xt

(u) = v)(1−R(t)).

Hence,

1−R(t) = (1−R(0)) exp
(

−
∫ t

0

F +
∑

(A,B)∈X
A cos(Bτ) dτ

)

= exp
(

− Ft−
∑

(A,B)∈X

A

B
sin(Bt)

)

,

since R(0) = 0. The probability density function for the random variable H(u, v)
is then given by r(t) = (1−R(t))P (Xt

(u) = v), hence

r(t) =
{

exp
(
− Ft−

∑

(A,B)∈X

A

B
sin(Bt)

)}(

F +
∑

(A,B)∈X
B cos(Bt)

)

.

Thus, usingEquation 2, we can calculate the commute time, Q(u, v) = 2O(u, v),
for the vertex v for the walk starting at u.

Q(u, v) = 2
∫ ∞

0

t
(
F +

∑

(A,B)∈X
A cos(Bt)

)
e−Ft−∑ (A,B)∈X

A
B sin(Bt)dt

= 2
[
− te−Ft−∑ (A,B)∈X

A
B sin(Bt)

]∞

0
+ 2

∫ ∞

0

e−Ft−∑ (A,B)∈X
A
B sin(Bt)dt

= 2
∫ ∞

0

e−Ft−∑ (A,B)∈X
A
B sin(Bt)dt

In order to calculate this numerically we use Gauss-Laguerre quadrature.
Given a function, f ∈ L1(0,∞) we have that

∫ ∞

0

f(x)dx =
∫ ∞

0

e−x[exf(x)]dx �
n∑

k=1

w(xk)exkf(xk).

The abscissas, for xk, k = 1, . . . , n, for the quadrature order n are given by the
roots of the Laguerre polynomial Ln(x) = ex

n!
dn

dxn (e−xxn) and the weights are,
w(xk) = xk

(n+1)2(Ln+1(xk))2 .
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3.1 Embedding Graphs Via Commute Times

Given the commute times, Q(u, v), between all pairs of vertices u, v ∈ V in a
graph, we use Multidimensional Scaling (MDS) to embed the vertices in 2D space.
The first step of MDS is to calculate a matrix, M , whose (u, v) entry is given by
M(u, v) = − 1

2 (Q(u, v)2−Q̂2
u.−Q̂2

.v +Q̂2
..), where Q̂u. = 1

n

∑n
v=1 Q(u, v) is the av-

erage distance over the uth row, Q̂.v is the averagedistance over the vth column and
Q̂.. = 1

n2

∑n
u=1

∑n
v=1 Q(u, v) is the average distance over all rows and columns of

the distance matrix, in this case the matrix of commute times Q.
We subject the matrix M to an eigenvector analysis to obtain a matrix of

embedding coordinates Y . If the rank of M is k, where k < n, then we will have
k non-zero eigenvalues. We arrange these k non-zero eigenvalues in descending
order, i.e. l1 ≥ l2 ≥ . . . ≥ lk ≥ 0. The corresponding ordered eigenvectors
are denoted by xi where li is the ith eigenvalue. The embedding coordinate
system for the graphs is Y = [

√
l1x1,

√
l2x2, . . . ,

√
lkxk]. For the vertex u, the

vector of coordinates for the embedding, yu, is a row of matrix Y , i.e. yu =
(Yu,1, Yu,2, . . . , Yu,k)T .

In the following section we compare the quantum commute times with the clas-
sical commute times on a graph, and the embeddings obtained. In [11] Qiu and
Hancock show that the commute time for a classical random walk is given by

C(u, v) = vol

|V |∑

j=2

1
λj

(φj(u)− φj(v))2

where the λj and φj are the eigenvalues and corresponding eigenvectors of the
Laplacian, as before. They use these classical commute times between vertices
to embed graphs. Further, they show that the matrix of coordinates, Θ, for
the classical commute time embedding can be calculated directly using Θ =√

volD−1/2ΦT where Φ = [φ1|φ2| . . . |φn].

4 Analysis of Quantum Commute Time Embeddings

In this section we analyse the differences between the quantum and classical
commute time embeddings. We use graphs randomly generated according to one
of two different models. The first model is the randomly connected graph on n
vertices with connection probability p. Here, each pair of vertices is connected
with probability p. Our second model is the banded adjacency graph [3]. For
the purposes of constructing each graph we take a set of vertices numbered 1
to n. With probability p, the vertex u is then connected to each vertex, v ∈
{u− b, u− b + 1, . . . , u + b}. In terms of its adjacency matrix, such a graph only
has non-zero entries within a band of width 2b centred on the main diagonal.
Such graphs approximate many real-world structures, for example, molecules
or VLSI circuits. The randomly generated graphs model graphs where no such
restriction is obvious, for example, hyperlinks between webpages.
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We begin by considering the relationship between commute times and path
length. The path length between a pair of vertices is the number of edges that
must be traversed along the shortest path between them. It is a less sophisticated
measure of distance than commute time since it only takes into account the single
shortest path between pair of vertices. The commute time, on the other hand,
decreases as the number of alternative paths between the vertices increases. This
expresses mathematically the understanding that a pair of vertices with many
paths between them of length l should be considered more closely connected
than a pair of vertices with just one path of length l connecting them.

Figure 1 shows the mean quantum commute times and mean classical com-
mute times as a function of path length. We see that the functions are both
monotonically increasing, however, the quantum commute time has a non-linear
relationship with path length. Larger path lengths do not correspond to propor-
tionally larger quantum commute times, as they do in the classical case. Similar
behaviour has been observed for the quantum walk on the line [9] and the cir-
cle [5] where hitting times were shown to be quadratically faster. We will see
this behaviour has important consequences when we consider the treatment of
outliers in the embedding of graphs via commute times.
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Fig. 1. The average quantum commute time (left) and average classical commute time
(right) as a function of path length for a banded adjacency graph on 50 vertices with
band width 10 and p=0.3. Note, the error bars show the standard deviation not the
standard error.

Although Figure 1 shows that the mean quantum and classical commute times
are functions of path length, the standard deviation about these functions are
large. Thus, we wish to investigate if there is a relationship between the quan-
tum commute time, Q(u, v), and the classical commute time, C(u, v), for a given
pair of vertices, (u, v). Figure 2a shows a scatter plot of the classical commute
times between pairs of vertices versus the quantum commute times for a set
of 10 randomly connected graphs with n = 10, p = 0.3. We see that there is
very little correlation between the commute times for particular vertices. How-
ever, as the classical (or quantum) commute time increases, the lower bound for
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the corresponding quantum (or classical) commute time does also increase by a
significantly smaller fraction.

To investigate any correlation further, let dC
k be the kth decile for the classical

commute times and dQ
j the jth decile for the quantum commute times for a

particular graph. We consider the set of probabilities P (C(u, v) < dC
k |Q(u, v) <

dQ
j ). Figure 2b shows a plot of this function. The figure shows that P (C(u, v) <

dC
k ) is almost completely independent of any condition of the form Q(u, v) < dQ

j .
This demonstrates that the two commute times emphasise different measures of
distance.
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Fig. 2. a) Left: Scatter plot of classical commute times against the quantum commute
times for 10 graphs. b) Right: The probability that the classical commute time between
a pair of vertices is less than the kth decile of the classical commute times between all
pairs of vertices in the graph, given that the quantum commute time is less than the
jth decile of the quantum commute times. 10 graphs, n = 35, p = 0.3 for both plots.

We now give some sample embeddings, using both the classical and quan-
tum commute times, for the two different models of randomly generated graphs.
Figure 3 shows an example of the quantum and classical commute time embed-
dings for a randomly connected graph. The most obvious difference between the
two embeddings is the classical commute time embedding’s tendency to pro-
duce a few outliers while confining the majority of the vertices to a small area.
The problem of one distance outweighing all others is mush less of a problem
for the quantum commute time embedding, and consequently the vertices are
distributed more evenly. Embeddings of a banded adjacency graph are given in
Figure 4. The classical commute time embedding allows the distance along the
band to outweigh the others distances, causing the graph to lie almost entirely
along a curve, obscuring almost all of the local structure. The quantum commute
time embedding, however, shows both the band structure (principally captured
by the x component of the embedding) and the local structure along the band
(principally captured by the y component).
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Fig. 3. Graph embeddings using the quantum commute time (left) and the classical
commute time (right) for a graph with 30 vertices and probability of each pair of
vertices being connected 0.3
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Fig. 4. Graph embeddings using the quantum commute time (left) and the classical
commute time (right) for a banded adjacency graph with 50 vertices, band width b = 5
and probability of each pair of vertices in the band being connected p = 0.5

5 Experiments

We consider the problem of producing a 2D embedding of a set of graphs in
order to cluster them. Given a set of graphs we calculate distances between
them using the Euclidean distance between their Laplacian spectra. We use the
Laplacian spectra as a vehicle to test our approach, its use in this context has
been well studied in the literature [7]. We represent the set of graphs using a
weighted data similarity graph (WDSG). The vertices of the WDSG graph are
the original graphs from the set we wish to cluster. We then use the classical
and quantum commute times to embed these graphs. We also embed the graphs
directly using Multidimensional Scaling (MDS) on the distances for comparison.

Let S be our set of m graphs. We denote by xk the vector of the ordered
eigenvalues of the Laplacian matrix, Lk, of the kth graph. We append zeros to
the shorter vectors so that all the vectors of eigenvalues are of the same length.
The graph, G, representing this data set is the complete graph G = (V, E, W ),
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Fig. 5. Embeddings of the house sequences using MDS on the spectral distances di-
rectly (left) and the quantum commute times (right)

where V = {1, . . . , k}, E = {{u, v}|u, v ∈ V, u �= v} and the weights are given
by W (u, v) = e−||xu−xv||, where ||xu − xv|| is the standard Euclidean distance.

We use the standard CMU, MOVI and chalet house sequences as our dataset
[7]. The houses are viewed at angular intervals and Delaunay triangulations are
derived from these to form the set of graphs. The embeddings obtained using
MDS on the distances between the spectra, the classical commute times, and
the quantum commute times are given in Figures 5 and 6. The embedding using
the quantum commute times clearly distinguishes between the 3 clusters. A
reasonably good separation of the houses is also obtained using MDS on the
spectral distances directly. However, the embedding using MDS on the spectral
distances directly is effectively one dimensional, this is a common problem with
using MDS on graph distances [7]. For datasets with more than three classes
this is likely to prevent this method from successfully clustering different classes
separately. The quantum commute time embedding, however, fully utilizes the
available dimensions.

The embedding using the quantum commute times distinguishes between the
different classes far more clearly than the embedding using the classical commute
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Fig. 6. Embeddings of the house sequences using MDS on the classical commute times



Graph Embedding Using Quantum Commute Times 381

time is able to. One problem with the embedding using the classical commute is
that it does not fully utilize the available dimensions. This problem can be seen
to be a result of outliers which cause the majority of the nodes to be restricted
to submanifolds within the embedding space. In Figure 6 we can see that the
majority of the points in the embedding using the classical commute time are
restricted to a single line. In comparison, the embedding using the quantum
commute time fully utilizes the available dimensions, clearly and unambiguously
distinguishing the three clusters.

6 Conclusions

We have shown how the commute time between a pair of vertices in a graph can
be calculated for the continuous time quantum walk on a graph. The commute
time between vertices can be used as a more robust measure of distance between
vertices than the path length between vertices. We analyse how the quantum
commute time compares with the classical commute time which was considered
in [11]. The commute times between the vertices of a graph can be used to embed
that graph in a low dimensional space. We show how the quantum commute time
produces enbeddings of graphs that are less prone problems caused by outliers
than classical commute time embeddings. In addition, quantum commute time
embeddings make full use of both dimensions of the embedding space rather
than restricting the graph to a submanifold, as can occur with classical commute
time embeddings. We show how quantum commute time embeddings can be used
to cluster real-world datasets effectively. In future work we hope to apply the
quantum commute time embedding to the problem of image segmentation.
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Abstract. The field of statistical pattern recognition is characterized
by the use of feature vectors for pattern representation, while strings
or, more generally, graphs are prevailing in structural pattern recog-
nition. In this paper we aim at bridging the gap between the domain
of feature based and graph based object representation. We propose a
general approach for transforming graphs into n-dimensional real vector
spaces by means of prototype selection and graph edit distance com-
putation. This method establishes the access to the wide range of pro-
cedures based on feature vectors without loosing the representational
power of graphs. Through various experimental results we show that the
proposed method, using graph embedding and classification in a vector
space, outperforms the tradional approach based on k-nearest neighbor
classification in the graph domain.

1 Introduction

The field of pattern recognition can be divided into two sub-fields, namely the
statistical and the structural approach. In statistical pattern recognition, pat-
terns are represented by feature vectors (x1, . . . , xn) ∈ Rn. The recognition pro-
cess is based on the assumption that patterns of the same class are located in a
compact region of Rn. In recent years a huge amount of methods for clustering
and classification of patterns represented by feature vectors have been proposed,
such as k-means clustering, Bayes classifier, neural network, support vector ma-
chine, and many more. Object representations given in terms of feature vectors
have a number of useful properties. For example, object similarity, or distance,
can easily be computed by means of Euclidean distance. Computing the sum or
weighted sum of two objects represented by vectors is straightforward, too. Yet,
graph-based representations, which are used in the field of structural pattern
recognition, have a number of advantages over feature vectors. Graphs are much
more powerful and flexible than vectors, as feature vectors provide no direct
possibility to describe structural relations in the patterns under consideration.
Furthermore, vectors are constrained to a predefined length, which has to be
preserved for all patterns encountered in a particular application. Obviously,
graphs have a higher representational power than feature vectors. On the other
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hand, a major drawback of graph representations is their lack of suitable meth-
ods for clustering and classification. This is mainly due to the fact that some of
the basic operations needed in clustering and classification are not available for
graphs. Hence, up to a few exceptions [1] classification of patterns represented
by graphs is more or less limited to nearest-neighbor classifiers using some graph
distance measure.

In this paper we describe a general method that aims at preserving the best
of both approaches, that is the high representational power given by graphs and
the large amount of algorithms for clustering and classification in feature vector
spaces. Our approach is based on graph embedding in an n-dimensional feature
vector space by means of prototype selection and edit distance computation.
Originally, this idea was proposed in order to map patterns into dissimilarity
spaces [2,3]. Later it was extended so as to map string representations into vec-
tor spaces [4]. In the current paper we go one step further and generalize the
methods described in [4] to the domain of graphs. The key-idea of our approach
is to use the distances of an input graph to a number of training graphs as vec-
torial description of the graph. Consequently, any statistical pattern recognition
method will be applicable to such a pattern representation. In the remainder of
this paper we will use the term graph embedding for the task of mapping graphs
from the graph space into a vector space.

2 Graph Edit Distance

In contrast to statistical pattern recognition, where patterns are described by
vectors, graphs do not offer a straightforward distance model like the Euclidean
distance. However, a common approach to define a distance model for graphs
is given by graph edit distance, which is one of the most flexible graph distance
measures that is applicable to various kinds of graphs [5,6]. The key idea of
graph edit distance is to define the dissimilarity, or distance, of graphs by the
amount of distortion that is needed to transform one graph into another. These
distortions are given by insertions, deletions, and substitutions of nodes and
edges. Given two graphs – the source graph g1 and the target graph g2 – the idea
is to delete some nodes and edges from g1, relabel some of the remaining nodes
and edges (substitutions) and possibly insert some nodes and edges, such that
g1 is finally transformed into g2. A sequence of edit operations that transforms
g1 into g2 is called an edit path between g1 and g2. One can introduce cost
functions for each edit operation measuring the strength of the given distortion.
The idea of such cost functions is that one can define whether or not an edit
operation represents a strong modification of the graph. Hence, between two
structurally similar graphs, there exists an inexpensive edit path, representing
low cost operations, while for structurally different graphs an edit path with high
costs is needed. Consequently, the edit distance of two graphs is defined by the
minimum cost edit path between two graphs. The edit distance can be computed,
for example, by a tree search algorithm [5,7]. Typically, the edit distance is used
to classify an input graph by computing its distance to a number of training
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graphs and feeding the resulting distance values into a nearest-neighbor classifier.
In our approach we make use of edit distances to construct a vectorial description
of a given graph.

3 Graph Embedding by Means of Prototype Selection

The idea of embedding a population of graphs in an m-dimensional real vec-
tor space is motivated through the lack of suitable classification and clustering
algorithms in the graph domain. An approach to graph embedding has been pro-
posed in [8]. This method is based on algebraic graph theory and utilizes spectral
matrix decomposition. In our approach we will explicitly make use of graph edit
distance. Hence, we can easily deal with various kinds of graphs (labelled, un-
labelled, directed, undirected, etc.) and utilize domains specific knowledge in
defining the dissimilarity of nodes and edges through edit costs. Thus a high
degree of robustness against various graph distortions can be achieved. The idea
underlying our method was originally developed for the problem of embedding
sets of feature vectors in a dissimilarity space [2,3,9,10]. In this paper we in-
troduce an extension of this method to the domain of graphs. Assume we have
a labeled set of training graphs, T = {g1, . . . , gn}, and a dissimilarity measure
d(gi, gj). After having selected a set P = {p1, . . . , pm} of m < n prototypes from
T , we compute the dissimilarity of a graph g ∈ T to each prototype p ∈ P . This
leads to m dissimilarities, d1 = d(g, p1), . . . , dm = d(g, pm), which can be inter-
preted as an m-dimensional vector (d1, . . . , dm). In this way we can transform
any graph from the training set, as well as any other graph from a validation
or testing set, into a vector of real numbers. Note that whenever a graph from
the training set, which has been choosen as a prototype before, is transformed
into a vector x = (x1, . . . , xm) one of the vector components is zero. Formally,
if T = {g1, . . . , gn} is a training set of graphs and P = {p1, . . . , pm} ⊆ T
is a set of prototypes, the mapping tPm : T → Rm is defined as a function
tPm(g) �→ (d(g, p1), . . . , d(g, pm)) where d(g, pi) is a dissimilarity measure — in
our case graph edit distance — between the graph g and the i-th prototype.

3.1 Prototype Selectors

The first problem to be solved is an appropriate choice of the prototype set
P = {p1, . . . , pm}. A good selection of m prototypes seems to be crucial to
succeed with the classification algorithm in the feature vector space. Intuitively,
the prototypes should mirror the distribution of the graphs in T as well as
possible. That means protoypes should avoid redundancies in terms of selection
of similar graphs, and prototypes should include as much information as possible.
Hence, they should be uniformely distributed over the whole set of patterns.
In this section we discuss five different algorithms for the task of prototype
selection, one randomized method and four deterministic algorithms. Assume
there are k different classes c1, . . . , ck represented in the training set T . We
distinguish between class-wise and class-independent selection, that is to say that
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the selection can be executed over the whole training set T to get m prototypes,
or the selection can be performed individually for each of the k different classes
c1, . . . , ck. In the latter case, li prototypes are selected independently for each
class ci such that

∑k
i=1 li = m. Whether the class-wise or class-independent

method is more convenient depends on a number of factors, including the size of
T , the structure of the graphs in T , whether or not classes are balanced, and the
application. The five prototype selectors used in this paper are described below.

– Centers. The Centers prototype selector selects prototypes situated in
the center of the graph set T . Assume that the set median graph of a set
S, median(S), is the most central graph. That is, the set median graph
median(S) ∈ S is the graph whose sum of distances to all other graphs
gi ∈ S is minimal: median(S) = argming1∈S

∑
g2∈S d(g1, g2). Then the set

of prototypes P = {p1, . . . , pm} is iteratively constructed as follows:

Pi =

{
∅ if i = 0
Pi−1 ∪ {gi} if 0 < i � m , where gi = median(T \ Pi−1).

It seems that the Centers prototype selector is not a very appropriate
idea for selecting m prototypes, because it neither avoids redundancies nor
distributes the prototypes uniformely. Nevertheless, we mention it here for
the purpose of completeness. To obtain a better distribution, one can apply
the Centers prototype selector also class-wise (CentersC). In this case,
supposably, the prototypes mirror the given distribution better than the
class-independent version.

– Random. A random selection of m prototypes from T is performed. Of
course, the Random prototype selector can be applied class-independent or
class-wise (RandomC). RandomC provides a random selection of li proto-
types per class ci.

– Spanning. A set of prototypes, P , is selected by the Spanning prototype
selector by means of the following iterative procedure. The first prototype
selected is the set median graph. Each additional prototype selected by the
spanning prototype selector is the graph the furthest away from the already
selected prototype graphs.

Pi =

⎧
⎨

⎩

median(T ) if i = 1
Pi−1 ∪ {pi} if 1 < i � m , where pi = argmax

g∈T\Pi−1

min
p∈Pi−1

d(g, p).

The Spanning prototype selector can be applied class-independent or class-
wise (SpanningC).

– k-Centers. The k-Centers prototype selector tries to choose m graphs
from T so that they are evenly distributed with respect to the dissimilarity
information given by d. The algorithm proceeds as follows:
1. Select an initial set of m prototypes: P0 := {p1, . . . , pm}. One can choose

the initial prototypes randomly or by a more sophisticated procedure,
for example, the above-mentioned spanning prototype selector.
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2. Construct m sets Si where each set consists of one prototype: S1 =
{p1}, . . . , Sm = {pm} For each graph g ∈ T \P find its nearest neighbor
pi ∈ P and add the graph under consideration to the set Si corresponding
to prototype pi. This step results in m disjoint sets with T =

⋃
1�i�m Si.

3. For each set Si find its center ci, that is the graph for which the maximum
distance to all other objects in Si is minimum.

4. For each center ci, if ci �= pi, replace pi by ci in Si. If any replacements
is done, return to step 2, otherwise stop.

The procedure stops when no more changes in the sets Si occur. The pro-
totypes are given by the centers of the m disjoint sets. The k-Centers

prototype selector can be applied class-independent as well as class-wise
(k-CentersC). Note that this prototype selector is similar to k-means clus-
tering [11].

– Targetsphere. The Targetsphere prototype selector first looks for the
center graph gc in T . The center graph is the graph for which the maximum
distance to all other graphs in T is minimum. After finding the center graph,
the graph the furthest away from gc, i.e. the graph gf ∈ T whose distance
to gc is maximum, is located. Both graphs (gc and gf ) are selected as pro-
totypes. The distance dmax = d(gc, gf ) is then divided in m − 1 partitions
with interval = dmax

m−1 . The m− 2 graphs that are located the nearest to the
interval borders in terms of edit distance are selected as prototypes:

Pi =

⎧
⎨

⎩

{gc, gf} if i = 0

Pi−1 ∪ {gi} if 0 < i � m − 2 , where gi = argmin
g∈T\Pi−1

|d(g, gc) − i · interval|.

The Targetsphere prototype selector can be applied class-independent
as well as class-wise (TargetsphereC).

Of course, one can imagine other techniques and strategies for prototype selec-
tion. The intention of all methods remains the same — finding a good selection
of m prototypes that lead to a good performance of the resulting classifier in the
vector space.

4 The Classification Problem

4.1 Classification in Graph Spaces — k-NN Classifier

The traditional approach to addressing the classification problem in a graph
space is to apply a k-nearest-neighbor classifier (k-NN) in conjunction with edit
distance. Given a labeled set of training graphs, an unknown graph is assigned to
the class that occurs most frequently among the k nearest graphs (in terms of edit
distance) from the training set. Formally, let us assume that a pattern space X , a
space of class labels Y , and a labeled training set of patterns {(xi, yi)}i=1,...,m ⊆
X × Y is given. If {(x(1), y(1)), . . . , (x(k), y(k))} ⊆ {xi, yi)}i=1,...,m are the k pat-
terns that have the smallest distance d(x, x(i)) to a test pattern x, the k-NN
classifier f : X → Y can be defined by

f(x) = argmax
y∈Y

|{(x(i), y(i)) : y(i) = y}|
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If k = 1 the k-NN classifiers decision is based on just one element from the
training set, no matter if this element is an outlier or a true class representative.
Obviously, a choice of parameter k > 1 reduces the influence of outliers by
evaluating which class occurs most frequently in a neighborhood around the test
pattern. This classifier in the graph domain will serve us as a reference system.

4.2 Classification in Vector Spaces — Support Vector Machine
Classifier

As already pointed out, in vector spaces a large amount of methods for pat-
tern classification exist. Besides the k-NN classifier, one can choose among more
sophisticated algorithms, such as neural network, Bayes classifier, decision tree
classifier, support vector machine, and others. Pattern classification by means
of support vector machines (SVMs) has become very popular recently. In the
present paper we want to compare the classification accuracy achieved by k-NN
classifiers in the graph domain with k-NN classifiers and SVM in vector spaces.
It is our objective to find out if we can outperform the classification accuracy
obtained by k-NN classifiers in the graph space by classifiers relying on vectorial
representations after embedding the graphs in an m-dimensional vector space,
especially by SVM. For the sake of completeness, we give a brief overview of
SVMs below. For a more thorough introduction we refer the reader to [12,13,14]

The basic idea of SVM is to separate classes of patterns by hyperplanes. As-
sume a pattern space X = R

n, two classes Y = {−1, +1} and a labeled training
set {(xi, yi)}i=1,...,m ⊆ X×Y are given, and the two classes are linearly seperable.
Then, there exist infinitely many possible separating hyperplanes that correctly
classify the training data. The fact that all patterns are classified correctly can
be written as yi · (〈w, xi〉 + b) > 0 for i = 1, . . . , m, with parameters w ∈ Rn

and b ∈ R. Intuitively, one would choose a hyperplane such that its distance
to the clostest pattern of either class is maximal. Such hyperplanes are com-
monly called maximum-margin hyperplanes. The sum of the distances from the
hyperplane to the closest pattern of each class is commonly termed margin. The
maximum-margin hyperplane is expected to perform best on an independent test
set. Since multiplying the parameters w and b with a constant does not change
the hyperplane, one can rescale them such that mini=1,...,m |〈w, xi〉 + b| = 1.
This rescaled hyperplane is called to be in canonical form. Assume a hyperplane
in canonical form is given. Then it is obvious that margin = 2

||w|| . Hence, the
smaller the length of the weight vector ||w||, the larger is the margin. Since we
are looking for an optimal hyperplane, which maximizes margin, we have to find
parameters w and b such that

– margin = 2
||w|| is maximum

– subject to yi · (〈w, xi〉+ b) � 1 for i = 1, . . . , n.

The first line corresponds to the maximization of margin, while the second line
assures that all training samples are classified without error. In a more realistic
scenario the two classes would not be linearly seperable anymore. Thus the
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second condition does not hold. In order to handle linearly non-seperable data, so
called slack variables ξ are used. Whenever a training element xi is misclassified
by the hyperplane, the corresponding slack variable ξi is greater than zero. Thus
we have to find parameters w and b such that

– margin = ||w||2
2 + C

∑m
i=1 ξi is minimum

– subject to yi · (〈w, xi〉+ b) � 1− ξi for i = 1, . . . , m.

Minimization of ||w||2
2 is equivalent to the maximization of margin. Quantity

C � 0 denotes a regularization parameter to control whether the maximization
of margin or the minimization of the sum of errors is more important. Finally,
we have to deal with general non-linear classification problems, where a linear
hyperplane will not work any longer. Fortunately, one can show that we can
transform a linear to a non-linear classifier by only substituting the original dot
product with a specific kernel function K [13,14]. Hence, by changing the dot
product to a kernel function we can get different non-linear classifiers. In our
experiments we used the following kernel functions:

– Linear: K(u, v) = u′ · v
– Polynomial: K(u, v) = (γ · u′ · v)d

– Radial Basis Function (rbf): K(u, v) = exp(−γ · ||u− v||2)

where γ ∈ R and d ∈ N.

5 Experimental Results

As main contribution of this paper, we have introduced a general approach for
transforming graphs into n-dimensional real vector spaces by means of prototype
selection and graph edit distance. It is furthermore our intention to demonstrate
that certain classification tasks can be better solved with methods that use the
resulting vectorial patterns rather than the original graph representation. Hence,
the reference system in our experiments is given by a k-NN classifier in the graph
domain, while the proposed statistical classifiers in real vector spaces are given
by different SVMs. Note that k-NN classifiers are the only classifiers that can
be directly applied in the original graph domain. In each of our experiments we
make use of three disjoint graph sets, viz. validation set, test set and training
set. The validation set is used to determine optimal parameter values for graph
embedding and classification. The embedding parameters consist of the number
of prototypes, i.e. the dimensionality of the resulting feature vector space, and
the best performing embedding method, while the parameters for classification
consist of parameter k for the nearest neighbor classifier and the different pa-
rameters for the SVMs, i.e. C, γ and d. That is, for each embedding method and
dimensionality an individual SVM is trained. The parameter values, the embed-
ding method, and the dimensionality that result in the lowest classification error
on the validation set are then applied to the independent test set.
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5.1 Letter Database

The first database used in the experiments consists of graphs representing dis-
torted letter drawings. In this experiment we consider the 15 capital letters of the
Roman alphabet that consists of straight lines only (A, E, F, ...). For each class,
a prototype line drawing is manually constructed. To obtain aribtrarily large
sample sets of drawings with arbitrarily strong distortions, distortion operators
are applied to the prototype line drawings. This results in randomly shifted,
removed, and added lines. These drawings are then converted into graphs in a
simple manner by representing lines by edges and ending points of lines by nodes.
Each node is labeled with a two-dimensional attribute giving its position. The
graph database used in our experiments is composed of a training set, a validation
set, and a test set, each of size 750. In Table 1 we give the classification accuracy
of a k-nearest neighbor classifier in the graph space, a k-nearest neighbor clas-
sifier in the feature vector space, and the 3 different SVM-classifiers. The best
accuracy on the validation set with all SVMs is achieved by the k-CentersC

prototype selector (Distortions 0.1 and 0.5) and the TargetsphereC prototype
selector (Distortions 0.3, 0.7 and 0.9). Therefore, these prototype selectors have
been used for all SVMs when classifying the test set. It turns out that classifica-
tion accuracy can be improved by all considered SVMs on all distortion levels.
Note that 9 out of 15 improvements are statistically significant.

Table 1. Letter Database: Classification accuracy in the graph and vector space

Ref. System Embedding classifiers

Distortion k-NN (graph) k-NN (vector) SVM (lin) SVM (poly) SVM (rbf)

0.1 98.27 98.53 98.93 98.40 98.53
0.3 97.60 97.47 98.53 ◦ 98.53 ◦ 98.80 ◦
0.5 94.00 93.60 97.07 ◦ 97.20 ◦ 96.93 ◦
0.7 94.27 92.53 • 95.33 95.47 95.47
0.9 90.13 91.20 92.93 ◦ 92.93 ◦ 92.93 ◦

◦ Statistically significantly better than the reference system (α = 0.05).
• Statistically significantly worse than the reference system (α = 0.05).

5.2 Real World Data

For a more thorough evaluation of the proposed methods we additonally use
three real world data sets. First we apply the proposed method to the problem
of image classification. Images are converted into graphs by segmenting them into
regions, eliminating regions that are irrelevant for classification, and representing
the remaining regions by nodes and the adjacency of regions by edges [15]. The
Le Saux image database consists of five classes (city, countryside, people, snowy,
streets) and is split into a training set, a validation set and a test set of size 54
each. The best accuracy on the validation set with all SVMs is achieved by the
Targetsphere prototype selector. The classification accuracies obtained by the
different methods are given in the first row of Table 2. We note that the SVM
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Table 2. Fingerprint-, Image- and Molecules Database: Classification accuracy in the
graph and vector space

Ref. System Embedding classifiers

Database k-NN (graph) k-NN (vector) SVM (lin) SVM (poly) SVM (rbf)

Le Saux 57.4 48.2 59.3 57.4 64.8
NIST-4 82.6 81.8 85.4 ◦ 82.4 85.0 ◦
Molecules 97.1 95.9 • 97.7 98.2 ◦ 98.1 ◦
◦ Statistically significantly better than the reference system (α = 0.05).
• Statistically significantly worse than the reference system (α = 0.05).

with polynomial kernel results in the same error rate as the reference system,
while the other two kernels lead to lower error rates. Although the SVM with
the rbf kernel function improves the accuracy by 7.4%, this improvement is not
statistically significant. This is due to the small size of Le Saux database.

The second real world dataset is given by the NIST-4 fingerprint database [16].
We construct graphs from fingerprint images by extracting characteristic regions
in fingerprints and converting the results into attributed graphs [17]. We use a
validation set of size 300 and a test and training set of size 500 each. In this
experiment we address the 4-class problem (arch, left-loop, right-loop, whorl).
Validation of parameter values needed by linear and polynomial SVM prove to
be difficult. With many parameter value combinations, both SVMs are not able
to terminate the optimization in a reasonable time. Thus, the optimization of
the parameter values is based on a subset of all parameter combinations only.
Nevertheless, the linear and rbf kernel SVMs achieve statistically significantly
better results than the reference system. These results are achieved by the Tar-

getsphereC prototype selector. The number of choosen prototypes per class is
proportional to the respective class size.1

Finally, we apply the proposed method of graph embedding and subsequent
SVM classification to the problem of molecule classification. To this end, we con-
struct graphs from the AIDS Antiviral Screen Database of Active Compounds
[18]. Our molecule database consists of two classes (active, inactive), which rep-
resent molecules with activity against HIV or not. We use a validation set of
size 250, a test set of size 1500 and training set of size 250. Thus, there are 2000
elements totally (1600 inactive elements and 400 active elements). The molecules
are converted into graphs in a straightforward manner by representing atoms as
nodes and the covalent bonds as edges. Nodes are labeled with the number of
the corresponding chemical symbol and edges by the valence of the linkage. The
results achieved on this database are shown in the third row of Table 2. Although
the accuracy of the reference system in the graph domain is quite high, it can
be improved by graph embedding and SVM classification. In two out of three
cases, the improvement is statistically significant. On this data set the Spanning

prototype selector obtains the best result on the validation set and is therefore
used on the test set.

1 In contrast with other databases, the individual classes are of different size.
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6 Conclusions

Although graphs have a higher representational power than feature vectors, there
is a lack of suitable methods for pattern classification using graph representa-
tions. By contrast, a large number of methods for classification have been pro-
posed for object representations given in terms of feature vectors. In this paper,
we propose a general approach for bridging the gap between structural and sta-
tistical pattern recognition. The idea is to map graphs to an n-dimensional real
vector space by means of prototype selection and graph edit distance. To this
end, we discuss different prototype selectors with the objective of finding a good
distribution of these prototypes. With the proposed graph embedding a large
number of different methods from statistical pattern recognition become avail-
able to graph representations. It has been our intention in this paper to improve
the accuracy achieved by nearest neighbor classifiers in the graph domain by
classifiers operating on vectorial representations. We used SVMs as a popular
method from statistical pattern recognition and showed that this approach out-
performs the nearest neighbor classifiers in the graph domain. From the results
of our experiments, one can conclude that the classification accuracy can be sta-
tistically significantly enhanced by most SVMs and different prototype selection
algorithms. In our future work we will study additional statistical classifiers and
try to further improve the recognition accuracy by using classifier ensembles.
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Abstract. We introduce a new framework for feature grouping based on fac-
tor graphs, which are graphical models that encode interactions among arbitrary
numbers of random variables. The ability of factor graphs to express interactions
higher than pairwise order (the highest order encountered in most graphical mod-
els used in computer vision) is useful for modeling a variety of pattern recognition
problems. In particular, we show how this property makes factor graphs a natu-
ral framework for performing grouping and segmentation, which we apply to the
problem of finding text in natural scenes. We demonstrate an implementation of
our factor graph-based algorithm for finding text on a Nokia camera phone, which
is intended for eventual use in a camera phone system that finds and reads text
(such as street signs) in natural environments for blind users.

1 Introduction

The ability to read street signs and other informational signs would be very useful to
people who have visual impairments that make it difficult or impossible to find and
read signs. A growing body of work in computer vision tackles the problem of finding
text in natural scenes [1–4], a task that is especially challenging in highly cluttered en-
vironments; once text is located, well-established OCR (optical character recognition)
techniques can be used to read it. So far almost all of this work on finding text has been
implemented on standard personal (e.g. desktop or laptop) computers. While comput-
ers are continually improving in terms of power and portability, they are still too heavy,
bulky and expensive to be convenient for most visually impaired users.

An attractive hardware alternative is the camera cell phone (or smart phone), which
is lightweight, inexpensive, multi-purpose and nearly ubiquitous. Since most people
already carry a cell phone, it has the added benefit of requiring no additional device to
purchase or carry.

However, an important limitation of the camera phone is that it has substantially less
processing power than a standard computer. The camera phone CPU is significantly
slower than the kind found in desktop computers; in addition, the camera phone lacks
a floating point processing unit (FPU), which means that floating point calculations – a
mainstay of most computer vision algorithms – are particularly slow. Integer arithmetic
is faster on the camera phone, but it is still up to an order of magnitude slower than on
a standard computer.

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 394–403, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The need for an algorithm to find text efficiently enough to run on a camera phone
has motivated us to develop a new framework for simple, fast text segmentation. To
this end we have adapted a graphical model-based framework originally developed for
finding pedestrian crosswalks in traffic intersections [5] to the problem of finding text in
natural scenes [6]. In this approach, we cast text detection as a problem of segmenting
edge-based text features extracted from an image into figure or ground. The signature
of a text region is an abundance of text features that are aligned in a fairly regular way.
By contrast, text features occur more sparsely outside of text regions, and are spaced
less regularly. The purpose of the graphical model framework is to exploit this pattern
to segment all the text features in an image into figure or ground, corresponding to text
or non-text regions, respectively. The graphical model achieves the desired behavior by
expressing appropriate grouping criteria among the text features.

In this paper we describe a new framework for segmentation that is an outgrowth of
our previous work, which provides for more expressive grouping criteria, and which is
simpler and faster. The framework is based on factor graphs [7], which provide a con-
venient way of expressing interactions of any order in a graphical model. We have used
this framework to develop a text-finding algorithm that relies almost entirely on integer
arithmetic calculations, which enables an efficient camera phone implementation. Pre-
liminary experiments demonstrate the ability of the algorithm to segment text regions
in an image in several seconds on a camera phone (Nokia 6681, 220 MHz ARM CPU).

2 Past Work on Text Detection

A large body of work addresses the problem of detecting and reading printed text, but
so far this problem is considered solved only in the domain of OCR (optical character
recognition). This domain is limited to the analysis of high-resolution, high-contrast
images of printed text with little background clutter. The broader challenge of detecting
and reading text in highly cluttered scenes, such as indoor or outdoor scenes with infor-
mational signs, is much more difficult and is a topic of ongoing research. (We focus on
the problem of segmentation in this paper, leaving the task of reading segmented text
for future research.)

Many text segmentation algorithms employ deterministic, bottom-up processes for
grouping text features into candidate text regions using features such as edges, color or
texture [1–4]; a recent and comprehensive survey is found in [8]. Statistical methods
have recently been developed, such as an Adaboost-based algorithm [9] that uses a
cascade of filters trained from a labelled data set of natural scenes containing text.

We build on our recent work [6] casting text detection as a figure-ground segmen-
tation problem represented using a probabilistic graphical model. We now propose to
use a novel factor graph grouping technique that permits a more expressive graphical
model to be used – specifically, one that allows higher-order interactions among sev-
eral features, rather than being restricted to pairwise interactions (between pairs of fea-
tures). The advantage of the factor graph grouping framework is that it allows grouping
to be performed on very simple features that can be extracted rapidly from an image.
The simple features can be grouped according to complex criteria using higher-order
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factors. As we will see later, the computational complexity that could arise from the use
of higher-order factors is avoided because of the particular form of the factor graph.

Recent work related to ours [10, 11] also uses a graphical model framework. Unlike
our approach, the former work tackles text detection solely in documents, and the latter
work uses color to initiate the segmentation and requires images in which individual
letters are clearly visible. By contrast, we have designed our algorithm to process natural
grayscale images with letters that may be poorly resolved (e.g. Fig. 5). This allows us
to segment text in images in which the letters appear small and/or process the images at
coarser scales (which decreases the amount of computation required for segmentation).

3 Grouping with Factors

Most methods devised for clustering or grouping data (such as normalized cuts [12]
and graphical-model based typical cuts [13]) rely on affinities defined on pairs of data
points to express the likelihood that two points should be grouped together. However,
many clustering problems necessitate the use of higher-order affinities; for instance,
the problem of grouping points on a 2-D plane into lines requires an affinity defined
on triplets of points, since every pair of points is trivially collinear. Some recent work
[14] has investigated hypergraph partitioning techniques for handling these higher-order
affinities.

We propose that a particular form of graphical model known as a factor graph [7]
provides a natural framework for grouping with higher-order affinities that results in
simple and efficient grouping algorithms. Our framework is well suited to modeling
object-specific figure-ground segmentation, which is how we cast the problem of text
detection. It is inspired by object-specific figure-ground segmentation work by [15] and
from work on clustering using graphical models [13].

The factor graph provides a convenient way of representing interactions among arbi-
trary numbers of variables, generalizing the pairwise interactions often used in graphical
models. An important property of factor graphs is that, as for all graphical models, rapid
inference can be performed on them using a form of belief propagation (BP).

In the next subsection we introduce factor graphs and factor graph BP and demon-
strate how they can be used to implement figure-ground segmentation. The application
of figure-ground segmentation to text detection is described subsequently.

3.1 Factor Graphs and Belief Propagation

Factor graphs [7] provide a convenient framework for representing graphical models in
a way that shows interactions of any order in a visual format. Fig. 1 shows an example
of a factor graph. Each square node represents a factor, or interaction, among one or
more variables, depicted by circles, and the topology of the factor graph indicates how
the joint distribution of all variables factors.

Belief propagation (BP) can be extended to factor graphs. Here we present a brief
overview of factor graph BP, using notation similar to that of [7]. We note that factor
graph BP is very similar to standard BP: messages are sent from one node to another,
and each message is a function of the state of one node variable. However, a chief
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Fig. 1. Factor graph. This graph represents a distribution on four variables w,x,y,z (drawn as
circles) using three factors f , g, h (drawn as squares). Edges connect factors with the vari-
ables they influence. The joint distribution represented by this factor graph is P (w, x, y, z) =
f(w, x, y)g(x, y, z)h(y, z).

difference is that there are two types of messages in factor graph BP, those that are sent
from variables to factors and those sent from factors to variables. We consider the max-
product version of factor BP rather than the sum-product version because the former can
be implemented very efficiently in the log domain using only addition and subtraction,
without the need for multiplication. (We convert to the log domain by taking the log of
the original max-product equations, and renaming the messages and factors to absorb
the logs.) As we will see, this arithmetic simplification is key to our ability to implement
factor BP efficiently on a camera phone CPU.

The max-product version of factor graph BP is expressed in the log domain according
to the following update equations:

mx→f (x)←
∑

h∈n(x)\{f}
mh→x(x) (1)

where n(x) is the set of neighbors of x, and

mf→x(x)← max
∼{x}

(

f(X) +
∑

y∈n(f)\{x}
my→f (y)

)

(2)

where X = n(f) is the set of arguments of function f , and ∼ {x} denotes the set of all
arguments of f except for x. (The sums in these two equations correspond to products
before converting to the log domain.) Note that, for each factor f and neighboring
variable x, updating all messages mf→x(x) has worst-case complexity O(|S|m), where
m is the number of variables coupled by factor f and |S| is the number of allowed
states of each of the m variables (assuming the state spaces are the same size for each
variable). This is because Eq. 2 must be iterated for each value of x on the left-hand
side, and for each value of x the max must be evaluated over the remaining m − 1
variables ∼ {x}.

Once the messages have converged to some value (which, in general, we can only
hope happens after enough message updates), we can calculate the “belief function” for
each node:

b(x) =
∑

f∈n(x)

mf→x(x) (3)
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In sum-product BP, the belief is an estimate of the marginal probability of each node.
In max-product BP, the belief is a function with a weaker property: the state that max-
imizes the belief of a node is an estimate of the node’s state in the most likely global
configuration of states across the entire graphical model (i.e. the MAP estimate if the
graphical model is interpreted as representing a posterior distribution).

3.2 Factor Graphs for Figure-Ground Segmentation

We now specialize our discussion of factor graphs to the problem of figure-ground
segmentation. In this context, each node variable xi in the factor graph is binary-valued:
xi = 1 and xi = 0 represent figure and ground states, respectively. A factor of m
variables f(x1, . . . , xm) expresses the likelihood of every possible assignment of states
to all m variables, irrespective of the other variables in the factor graph. A unitary factor
of one node variable f(x) enforces a prior bias towards figure or ground, independent
of other nodes.

A simple form of this type of factor graph – a graphical model with only unitary
factors and pairwise interactions – was used in our previous work on figure-ground
segmentation [6]. Generalizing from that form, we now stipulate that each factor in our
graph has a special form: f(x1, . . . , xm) is non-zero only when x1 = . . . = xm = 1, i.e.
when all the variables are in figure states, and f(x1, . . . , xm) = 0 otherwise. In other
words, the factor can only assume two possible values: one value when its arguments
(variables that it influences) are in the “figure” state, and zero otherwise.

We make a further non-negativity requirement that Kf
.= f(x1 = 1, . . . , xm =

1) ≥ f(x1 = 0, . . . , xm = 0) = 0. This additional requirement implies great com-
putational savings: factor BP for this factor graph will converge in only one iteration
of message updates. It is straightforward to show this by first initializing all messages
mf→x and mx→f to zero and noticing that the first update will yield mf→x(0) = 0 and
mf→x(1) = Kf . (The messages from variables to factors all remain zero: mx→f (x) =
0 for x = 0 and x = 1.) Thanks to the non-negativity requirement, subsequent message
updates will leave the message values unaltered (provided the messages are “normal-
ized” after each iteration by uniformly shifting them by an appropriate amount – an
operation that does not affect the outcome of BP).

The beliefs then have the following simple form: bx(x = 1) =
∑

f∈n(x) Kf and
bx(x = 0) = 0. Since bx(x = 0) = 0 is fixed and only the difference bx(x = 1) −
bx(x = 0) matters, we use a simplified notation to represent the beliefs:

Bx =
∑

f∈n(x)

Kf (4)

This result shows that the beliefs can be calculated without the need for any message
updates! This computational savings comes at a price, however. First, the non-negativity
requirement means that a unitary prior favoring ground over figure (e.g. f(x = 0) =
0, f(x = 1) < 0) is not allowed. As a result, the state configuration that maximizes the
sum of all the (non-negative) factors in the graph is simply x = 1 for all node variables
x, which is a degenerate result. A simple way to work around this problem is to omit
all unitary factors but to assign each node variable x to figure only if its belief Bx is
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sufficiently large. In this way, only nodes with sufficient support from other nodes will
be assigned to figure, and the rest will be assigned to ground.

Second, the fact that BP converges in only one iteration means that information will
not be propagated over long distances in the factor graph. Such propagation can be
very useful for “filling in” an image region that has weak evidence with stronger ev-
idence outside the region. However, the benefit of our simple factor graph is that it is
easy to include factors of arbitrarily high order, whereas in general the computational
complexity increases exponentially with the factor order (see the complexity analysis
immediately following Eq. 2). Since information is still propagated within overlapping
factors – which can be of very high order and thus encompass large regions of an image
– this means that information can still be propagated over long distances.

4 Grouping Text Features

We have devised a bottom-up procedure for grouping edges into composite features
that are signatures of regions containing text. The next subsection describes how these
features are constructed, and the subsequent subsection explains how the features are
grouped into factors.

4.1 Constructing Features

Speed is a major consideration, so we used a very simple edge detector to provide the
basic elements to be grouped. First, the image is blurred slightly, converted to grayscale
and decimated to 640 × 480 pixels or smaller. Two kinds of edges are detected, cor-
responding to local maxima or minima of the horizontal and vertical image intensity
derivatives. The edges are grouped into line segments, which are approximately straight
and fully connected sequences of edge pixels (with between 3 and 20 pixels, which sets
an appropriate range of scales for text detection). There are two kinds of line segments,
those that are oriented (approximately) vertically and those that are oriented (approx-
imately) horizontally. Vertical segments that are sufficiently close together and have
opposite polarity are grouped into “weakly matched vertical edges”, shown in Fig. 2(a).
“Weakly matched horizontal edges” are determined in a similar way (see Fig. 2(b)). As
the figure suggests, weakly matched edges are features designed to be prevalent along
the borders of letter strokes.

Next we prune the set of weakly matched vertical segments to obtain our final
features, “anchored verticals” (see Fig. 3). An anchored vertical feature is a weakly

Fig. 2. Edge features used to construct text features shown on cropped image of street sign. Left,
weakly matched vertical edge segments. Right, weakly matched horizontal edge segments. Edges
shown in red and green to indicate opposite polarities.
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Fig. 3. Anchored verticals. Left, anchored verticals shown for image in previous figure. Right,
shown for an image. Note density and regularity of anchored verticals in text region, where bot-
toms and tops tend to be at the same level. By contrast, anchored verticals are scattered sparsely
and irregularly throughout rest of the image.

matched vertical segment whose topmost or bottommost pixel lies sufficiently close
to the leftmost or rightmost pixel of a weakly matched horizontal segment. By “suffi-
ciently close” pixels we mean that they are either identical or one pixel is one of the
eight nearest neighbors of the other.

As Fig. 3 shows, anchored verticals have a distribution on text regions that is sig-
nificantly different from the distribution outside of text regions. Anchored verticals are
distributed densely on text regions, and their bottoms and tops tend to be aligned to
the same level. By contrast, outside of text regions, anchored verticals are distributed
more sparsely and irregularly. We will exploit this differential distribution of anchored
verticals to segment out text regions in an image.

4.2 Building Factors

Having constructed a set of useful anchored vertical features that have a distinctive
signature in text regions, we now proceed to construct a factor graph based on these
features. In the factor graph, each anchored vertical is a variable node. Factor nodes are
defined as groups of anchored verticals that may plausibly belong to one text region. As
we have shown, our particular factor graph has the advantage that the results of BP can
be calculated very simply without any iterative message updating. However, the trade-
off is that the search for building suitable factor nodes is computationally intensive,
since many of these factors are high-order (i.e. they bind many anchored verticals).

The search for factors is conducted by means of a sliding window of size 5 pixel
rows by 30 pixel columns. Rather than having to slide the window pixel by pixel across
each column and row of the image, the left side of the window is aligned to the top or
bottom of each node (anchored vertical), one after the other. For each node the window
is aligned to (which we call the “reference” node), all node tops or bottoms to its right
are found that lie in the window. Two kinds of factors are constructed, one linking the
tops of the nodes and the other linking the bottoms. For simplicity we will describe the
case of linking node tops; the same procedure is followed for linking node bottoms.
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For each candidate factor f , we calculate a measure of alignment with respect to a
horizontal line at the level of the top of the reference node. This alignment measure is
the maximum of the absolute value of the vertical pixel distance between each node top
and the horizontal line, where the maximum is taken over all nodes in the window. To
accomodate text that may be slightly off-horizontal, we also calculate similar alignment
measures for two other lines, one with a slope of 1/10 and the other with slope -1/10.
The final error measure Ef corresponding to factor f equals the minimum of the three
alignment errors, divided by the number of nodes in the sliding window.

Empirically we find that error measures Ef of 5 or more correspond to very weak
factors, so we discard any factor f for which Ef ≥ 5. Otherwise, we define Kf =
5− Ef , so that a lower error equates to a stronger factor.

One of the strengths of our max-product factor BP approach is that almost all calcu-
lations can be done in simple integer arithmetic, which greatly speeds up the algorithm
on a camera phone CPU (which lacks a floating-point unit). Rather than using floating-
point to calculate and represent the error measure Ef (which is defined above using
division), we rescale it by a factor of 100 into a suitable range of integers. Obviously,
this rescaling is implicit in all subsequent calculations.

5 Experimental Results

We implemented our algorithm in Symbian C++ on a Nokia 6681 camera phone. Al-
though the built-in camera has a resolution of approximately 1 megapixel, our algorithm
decimated the images to 640× 480 or smaller to speed execution.

Fig. 4. Experimental results. Left, text segmentation from Fig. 3(b) demonstrating robustness to
non-uniform lighting. Right, result demonstrating performance in high clutter.

Fig.’s 4-5 show results of the algorithm for pictures taken by the camera phone of
local street scenes. The algorithm took several seconds per image to execute. Note the
algorithm’s ability to handle considerable amounts of scene clutter. The algorithm’s
robustness to non-uniform lighting conditions is shown in Fig. 4. However, false pos-
itives still occur, especially in image regions characterized by periodic structures such
as windows or fences that resemble text at a local scale (Fig. 5).
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Fig. 5. More experimental results

6 Discussion

We have demonstrated the feasibility of a novel grouping framework, based on factor
graphs, which we have applied to the problem of segmenting text in natural scenes.
The algorithm is simple and fast enough to implement on a camera phone. Future work
will focus on improving the false positive and false negative rates, which may be ac-
complished in part by learning the potentials [13] from training samples of manually
segmented text. In order for our algorithm to function as part of a practical system for
finding and reading text, we will also have to use the text features output by it to deter-
mine appropriate bounding boxes to enclose the text, and use OCR to actually read the
text. We note that the OCR stage will have the benefit of discarding some false positives
which cannot be ruled out by our algorithm alone.
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Abstract. We compare different statistical characterizations of a set of
strings, for three different histogram-based distances. Given a distance,
a set of strings may be characterized by its generalized median, i.e., the
string —over the set of all possible strings— that minimizes the sum
of distances to every string of the set, or by its set median, i.e., the
string of the set that minimizes the sum of distances to every other
string of the set. For the first two histogram-based distances, we show
that the generalized median string can be computed efficiently; for the
third one, which biased histograms with individual substitution costs, we
conjecture that this is a NP-hard problem, and we introduce two different
heuristic algorithms for approximating it. We experimentally compare
the relevance of the three histogram-based distances, and the different
statistical characterizations of sets of strings, for classifying images that
are represented by strings.

1 Motivations

To manage the huge data sets that are now available, and more particularly
classify, recognize or search them, one needs statistical measures to characterize
them. This statistical characterization is both well defined and easily computed
when data are numerical values, or more generally vectors of numerical values.
However, many objects are poorly modelized with such vectors of numerical
values, that cannot express the sequentiality of attributes. Strings are symbolic
structures that allow a richer modelization by integrating a notion of order.

To exploit sets of strings, one needs a statistical characterization of these
sets. This characterization depends on a distance measure, that quantifies the
dissimilarity of two strings: given a distance, a set of strings may be characterized
by its generalized median, i.e., the string —over the set of all possible strings—
that minimizes the sum of distances to every string of the set, or by its set
median, i.e., the string of the set that minimizes the sum of distances to every
other string of the set.

The complexity of the computation of generalized and set median strings
depends on the considered distance. For example, for the well known edit distance
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of Levenshtein, the set median string may be computed in polynomial time,
whereas the computation of the generalized median string is a NP-hard problem
[dlHC00, SP01].

In this paper, we focus on three histogram-based distances for strings: the
first one, called dH , considers strings as sets of symbols and is basically defined
as a sum of differences of distributions of symbols; the second one, called dHω

integrates a notion of order by associating weights to positions in strings; the
third one, called dHω,c , biased distances with individual substitution costs of
symbols occurring at a same position, in order to express the fact that some
symbols are rather similar, whereas some others are very different. These three
histogram-based distances have the same computational complexity, which is
linear with respect to the size of the strings and the alphabet, and are an order
quicker than the edit distance.

A goal of this paper is to study statistical characterizations of sets of strings
when considering these histogram-based distances. For the first two distances, we
show that the generalized median string can be computed efficiently; for the third
one, that biased histograms with individual substitution costs, we conjecture that
this is a NP-hard problem, and we introduce two different heuristic algorithms
for approximating it.

An application in image classification is proposed as an illustration of these
results.

2 Background

2.1 Notations

The alphabet is noted A and symbols of A are noted αi with 1 ≤ i ≤ |A|. Strings
are finite length sequences of symbols from A and are noted sj with j ≥ 1. The
set of all strings from A is noted A∗. The length of a string sj is noted |sj |, and
the kth symbol of a string sj is noted sk

j .

2.2 Statistical Characterisation of a Set of Strings

Let d : A∗ × A∗ → R+ be a distance or a dissimilarity measure for any pair
of strings from A (see 3). The first moment, also called generalized median, of
a set of strings S ⊆ A∗ is defined as a string of A∗ that minimizes the sum of
distances to every string of S, i.e.,

generalized median(S) = arg min
sj1∈A∗

∑

sj2∈S

d(sj1 , sj2) (1)

The complexity of the computation of the generalized median string depends
on the distance considered. When this complexity is too high, one may approx-
imate the generalized median string by constraining the search to the set S,
yielding the set median of S as

set median(S) = arg min
sj1∈S

∑

sj2∈S

d(sj1 , sj2) (2)
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3 Distances Between Strings

3.1 Edit Distance

The most famous distance between strings has been proposed by Levenshtein,
e.g., the edit distance [Lev66]. The edit distance between two strings sj1 and sj2 ,
denoted by de(sj1 , sj2), is defined by the minimum cost set of edit operations
required to transform sj1 into sj2 . Three edit operations are allowed (substitu-
tion of a symbol by another symbol, deletion of a symbol, and insertion of a
symbol); costs are associated with these operations. A simple algorithm using
dynamic programming for computing the edit distance can be found in [WF74].
Its computational time complexity is in O(|sj1 | · |sj2 |).

For this edit distance, the computation of the generalized median string is a
NP-hard problem [dlHC00, SP01]. The generalized median string may be ap-
proximated by using heuristic algorithms, such as greedy algorithms [MHJC00]
or genetic search [JBC04].

3.2 Histogram-Based Distance dH

An alternative to the edit distance is to consider a sequence not as a string but
as a set of symbols. Thus a basic distance between two sets is the comparison of
the distributions of symbols defined as:

dH(sj1 , sj2) =
∑

αi∈A
abs(H(sj1 , αi)−H(sj2 , αi)) (3)

where H(sj , αi) is the number of occurrences of symbol αi in string sj , and abs
is the function that returns the absolute value1. The main advantage of this
distance is its computational cost which is in O(|sj1 |+ |sj2 |+ |A|)2. For strings
of different sizes, the histograms must be normalized before comparison.

For this histogram-based distance, the generalized median string of a set of
strings S can be constructed as follows: starting from an empty string, for each
symbol αi ∈ A, insert k times the symbol αi to the string, where k is the
median value of the set {H(sj , αi), sj ∈ S}. This generalized median string can
be computed in O(|S| · (l + |A|)), where l is the length of the strings of S3.
1 There exists many other different histogram-based distances such as, e.g., kullback-

Leibler or Kolmogorov-Smirnov. Our work, based on a distance defined by means
of absolute differences of distributions, could be extended to other histogram-based
distances as well.

2 In case of very large alphabets, one may use a hashing table in order to consider
only the symbols of the alphabet that actually occur in the strings, thus computing
the distance in O(|sj1 | + |sj2 |).

3 Note that the median element of a set can be selected in linear time with respect to
the size of the set by using a “divide-and-conquer” approach similar to the one used
for the quicksort [CLR90]: the idea is to partition the set in two parts containing
elements greater than (resp. lower or equal to) a given element; depending on the
cardinalities of these two parts, the search for the median element can be recursively
continued in one of the two parts.
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3.3 Weighted Histogram-Based Distance dHω

The histogram-based distance dH does not take into account the order the sym-
bols appear in the strings. One could integrate information on the sequentiality of
the symbols by using n-grams, thus comparing the distributions of sub-sequences
of n symbols. However, in some applications (as the one described in section 5),
the order of the symbols in a string may not express a strong sequentiality, but
a difference in the importance of the symbols. In this case, the fact that a sym-
bol is just before another symbol is not very significant; the main information
contained in the string structuring is the global position of symbols, those at the
beginning of a string being more important than those at the end.

In this case of decreasing importance strings, one may associate a weight ωk

with every position k in strings. To emphasize differences at the beginning of
the strings, this weight may be defined, e.g., by ωk = 1 + l − k where l is the
length of the string. To compare strings of different sizes, it is then necessary to
complete the shortest string with a new extra symbol until the two strings have
the same size.

Hence, we define the weighted histogram associated with a string sj and a
symbol αi:

Hω(sj , αi) =
∑

1≤k≤|sj |,sk
j =αi

ωk

and the weighted histogram-based distance between two strings sj1 and sj2 :

dHω (sj1 , sj2) =
∑

αi∈A
abs(Hω(sj1 , αi)−Hω(sj2 , αi)) (4)

This distance has the same computational cost than the basic histogram-based
distance dH .

For this weighted histogram-based distance, one can construct a “generalized
median weighted histogram” of a set of strings S as follows: for each symbol
αi ∈ A, set the weighted histogram value associated with αi to the median value
of the set {Hω(sj , αi), sj ∈ S}. This generalized median weighted histogram can
be computed within the same time complexity than for the histogram-based
distance, i.e., in O(|S| · (l + |A|)), where l is the length of the strings of S. Note
that it may not be possible to construct a string corresponding to this weighted
histogram. However, it may be used to statistically characterize a set of strings.

3.4 Weighted Histogram-Based Distance with Substitution Costs
dHω,c

The histogram-based distances dH and dHω assume that all symbols are “equally
different”. However, some symbols may be considered as rather similar, whereas
some others may be very different. Therefore, [RLJS05] has proposed a new
distance, which has the same computational complexity as dH and dHω , but
which is biased with individual substitution costs of symbols occurring at a
same position.
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This new distance is based on weighted histograms with substitution costs.
Given two strings sj1 and sj2 and a symbol αi, these histograms are defined as
follows

Hω,c(sj1 , αi) =
∑

1≤k≤|sj1 |,sk
j1

=αi

ωk · c(αi, s
k
j2)

Hω,c(sj2 , αi) =
∑

1≤k≤|sj2 |,sk
j2

=αi

ωk · c(sk
j1 , αi)

where c : A × A → R+ is a function which defines the cost of substituting one
symbol by another symbol.

Then, the weighted histogram-based distance with substitution costs is defined
by

dHω,c(sj1 , sj2) =
∑

αi∈A
abs(Hω,c(sj1 , αi)−Hω,c(sj2 , αi)) (5)

Note that this distance is not a metric, and does not satisfy the triangular
inequality property.

The fact that the histogram is biased by the individual substitution cost of
every pair of symbols occurring at a same position implies that one cannot
construct a “generalized median weighted histogram” of a set of strings S, inde-
pendently from any candidate median string. Therefore, we conjecture that the
computation of the generalized median string of a set of strings is NP-hard.

4 Approximations of the Generalized Median String for
dHω,c

This section describes two algorithms for approximating the generalized median
string of a set of strings S ⊆ A∗, when considering the weighted histogram-based
distance with substitution costs dHω,c .

We shall assume that all strings of S have the same length l: if this is not the
case, it is always possible to complete every string that is shorter than l with a
new extra symbol.

4.1 Greedy Algorithm

The generalized median string of S may be approximated in a greedy way:
starting from an empty string sgreedy, symbols are iteratively added at the end
of sgreedy until the length of sgreedy is equal to l. At each step, one selects the
symbol αi ∈ A that minimizes the sum of distances between sgreedy ·αi and every
string of S (restricted to the |sgreedy |+ 1 first symbols).

A key point to keep a low time complexity is to incrementally evaluate the
sum of distances induced by each candidate symbol. This is done by maintaining,
at each iteration l′ ≤ l:
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– for every string sj ∈ S, two arrays Hj
1 and Hj

2 such that for every symbol
αi ∈ A:

Hj
1 [αi] =

∑

1≤k<l′,sk
j =αi

ωk · c(αi, s
k
greedy)

Hj
2 [αi] =

∑

1≤k<l′,sk
greedy=αi

ωk · c(αi, s
k
j )

– an array sum such that for every string sj ∈ S,

sum[sj] =
∑

αi∈A
abs(Hj

1 [αi]−Hj
2 [αi])

Thanks to these data structures, the choice of the next symbol to add is done
in O(|A| · |S|). Each time a new symbol is added at the end of the string, these
data structures are updated in O(|S|). As a consequence, the time complexity
of the greedy algorithm is in O(l · |A| · |S|).

4.2 Local Search

The generalized median string of S may also be approximated by iteratively
modifying an initial string of length l: at each iteration, a symbol of the string
is replaced by a new symbol such that the sum of distances to every string of S
is decreased; these replacements are performed until no more replacement can
decrease the sum of distances, thus obtaining a locally optimal string that cannot
be improved by a simple replacement.

We have compared different strategies (including meta-heuristics such as tabu
search) for selecting the next replacement to perform at each step. On average,
the best compromise between solution quality and CPU-time has been reached
when considering a “first-improvement” strategy, i.e., when selecting the first
found replacement that decreases the sum of distances.

This local search process may be started from different initial strings, e.g.,
from the set median string of S, from the string constructed by the greedy
algorithm, or a string which is randomly generated from A∗.

The same data structures than for the greedy algorithm may be used to eval-
uate replacements at low cost. With such data structures, given a position k and
a new symbol αi, the replacement of the symbol at position k by αi may be
done in O(|S|) so that the time complexity of the local search algorithm is in
O(n · |S|) where n is the number of replacements that are evaluated. Of course,
n depends on the strategies considered for selecting the replacements to perform
and for building the initial string from which starting the local search; it also
depends on the length of the string.

4.3 Experimental Results

Table 1 compares the quality of the different approximations of the general-
ized median string introduced previously, e.g., the set median string, the string
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Table 1. Comparison of approximations of the generalized median string: each line
first gives the length of the strings and the sum of distances to the set median string,
and then the percentage of improvement of this sum of distances when considering
strings computed by the greedy and local search algorithms (average results for the 10
classes of the SIMPLIcity base described in 5, each class having 100 strings)

Length set median greedy LS(set median) LS(greedy) LS(random)

100 468.87 13.76% 13.63% 14.28% 14.31%

200 425.57 16.56% 16.50% 17.20% 16.98%

400 381.29 19.41% 19.18% 20.06% 19.79%

800 329.93 21.29% 20.93% 22.09% 21.63%

Table 2. Comparison of CPU-times: each line displays the length of the strings and
the CPU times (in seconds) spent to compute the different approximate generalized
median strings (average results for the 10 classes of the SIMPLIcity base described in
5, each class having 100 strings)

Length set median greedy LS(set median) LS(greedy) LS(random)

100 0.02 0.29 2.59 1.67 2.32

200 0.03 0.51 5.44 4.40 5.03

400 0.04 1.01 14.62 10.38 13.35

800 0.09 2.13 33.45 32.24 34.47

computed by the greedy algorithm (greedy), and the strings computed by the
local search algorithm starting from different initial strings, i.e., from the set
median string (LS(set median)), the string computed by the greedy algorithm
(LS(greedy)) and a randomly generated string (LS(random)).

This comparison is done on strings of the SIMPLIcity base described in section
5. This base contains 10 classes of 100 strings of 4000 symbols. The table gives
average results on the 10 classes, when successively limiting the length of the
strings to the 100, 200, 400, and 800 first symbols. For each length, the table
first displays the sum of distances to the set median string, and then, for each
approximation of the generalized median string, the percentage of improvement
with respect to this sum of distances.

Both greedy and local search algorithms significantly better approximate the
generalized median string than the set median string. The best improvements are
usually obtained by local search, when it is started from the string generated by
the greedy algorithm. Surprisingly, starting local search from the set median string
often leads to a slightly worse approximation than starting from a randomly gen-
erated string. However, all approximations obtain rather close results.

Table 1 also shows that the larger the strings, the better improvements: when
strings are limited to the 100 first symbols, the sum of distances to the greedy
approximation is 13.76% as small as the sum of distances to the set median string;
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when considering the 200 (resp. 400 and 800) first symbols, this percentage of
improvement rises to 16.56 (resp. 19.41 and 21.29).

Table 2 compares CPU-times spent to compute the different approximations
on a 2.16GHz Intel dual core with a 2MB cache. This table shows us that
computing the set median string is more than ten times as fast as computing an
approximation with the greedy algorithm, which itself is more than ten times
as fast as computing an approximation with the local search approaches. Also,
when starting local search from the string generated by the greedy algorithm,
CPU time is slightly smaller than when starting from a set median or a randomly
generated string.

The quality improvement is thus balanced by the CPU-time cost. However, in
applications such as classification of unknown strings in already known clusters,
the best representative of each cluster, e.g., the generalized median string, is
computed off-line, one-for-all.

5 Classification Results in the Image Domain

5.1 Representing Images by Strings

We introduced in [SJ05] a new representation of images based on strings of
symbols. This signature, both precise and compact, is based on notions such as
interest points, contrast and order. First, a given image is binarized such that it
keeps all the contrasts. Then local maxima of the contrast energy are extracted
and associated with their local 3×3 binary neighborhood in the binary image. We
thus get a 2D map of symbols, e.g. the 3×3 binary patterns. As any local maxima,
e.g. interest points, is also characterized by a measure of contrast energy, we
use this measure to sort the points, yielding a string of symbols. The contrast
energy measure is no longer kept in the final signature. In this application, the
alphabet is made of 512 symbols, corresponding to the 29 different 3× 3 binary
neighborhoods.

Note that with this representation of images by strings, the edit distance of
Levenshtein is not relevant and gives very disappointing results for classification
purposes. Indeed, the edit distance mainly considers the “local” order of symbols
—their relative positions— whereas we are more interested in a “global” order of
symbols —their global positions in the string, as symbols are sorted with respect
to their contrast energy and we consider very long strings: we mainly want to
distinguish symbols with high contrast energy, at the beginning of the strings,
from symbols with low contrast energy, at the end of the strings. Moreover, the
edit distance is an order slowler, which makes it prohibitive on large strings of
more than one thousand symbols length.

5.2 Test Suite and Experimental Settings

We have performed experiments on the SIMPLIcity database [WLW01] which
contains 1000 images of size 384×256 extracted from the well known old commer-
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cial COREL database4. The database contains ten clusters representing semantic
generalized medianingful categories such as Africa people and villages, beaches,
buildings, buses, dinosaurs, elephants, flowers, food, forses and mountains and
glaciers. There are 100 images per cluster. Each image of the database is repre-
sented by a string of 4000 symbols max, as described in the previous section.

For distances dHω and dHω,c , which associate a weight ωk with every position
k in strings, we have defined ωk = l− k + 1, where l is the length of the strings,
in order to emphasize differences at the beginning of the strings.

For the distance dHω,c , which biased histograms with individual substitution
costs, we have tuned costs for this database by a basic adaptive process. Let M
be a 512× 512 matrix initialized to 0. We scan all the possible pairs of symbols
(sk

j1
, sk

j2
). If the strings sj1 and sj2 belong to the same cluster, M(sk

j1
, sk

j2
) is

decreased by 1 else it is increased by 1
1−NC where NC is the number of clusters

(in order to take into account the a priori probability of two strings to belong to
the same cluster). The final cost matrix is then discretized based on the sign of
M and we set each cost c(αi1 , αi2) to 1 (resp. 2 and 3) if M(αi1 , αi2) is negative
(resp. null and positive).

We have classified the strings extracted from the SIMPLIcity base according
to a nearest neighbour approach: to classify a string, we compute the distance
between this string and the representative of every class (the set median, or an
exact or approximated generalized median); the closest representative determines
the class. We have computed representatives of every class according to a “leave-
out-one” principle: the string which is classified is removed from its class before
computing its representatives.

We have performed experiments with different lengths of strings: strings ex-
tracted from images have 4000 symbols (some strings were shorter, but we have
completed them with a new extra symbol); to study the influence of the length
of the strings, we report experimental results obtained when limiting the number
of symbols to different lengths varying from 50 to 2500.

5.3 Experimental Results

We now compare the different histogram-based distances (dH , dHω , and dHω,c),
and the different statistical characterizations (set median string, exact general-
ized median string for dH and dHω , and approximated generalized median string
for dHω,c ), for classifying strings representing images of the SIMPLIcity database.

Table 3 compares global classification rates (GCR), i.e., percentages of strings
which have been assigned to the right classes. Let us first compare GCR when
classes are characterized by set median strings for the three different histogram-
based distances introduced in 3. We note that introducing weights ωk to empha-
size differences at the beginning of the strings improves GCR when strings are
long enough (i.e., for lengths greater than a thousand or so symbols), whereas
it decreases GCR for shorter strings. Note also that introducing individual sub-
stitution costs significantly improves GCR.
4 The SIMPLIcity database can be downloaded on the James Z. Wang web site at

http://wang.ist.psu.edu/jwang/test1.tar.
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Table 3. Comparison of global classification rates (GCR) (average results for the 10
classes of the SIMPLIcity base, each class having 100 strings). Each line successively dis-
plays the length of the strings, the GCR obtained when representatives are set median
strings (for distances dH , dHω , and dHω,c), and the GCR obtained when representa-
tives are generalized median strings (for distances dH and dHω ), and approximations
computed by greedy and local search algorithms (for distance dHω,c); GCR obtained
with (exact or approximated) generalized median strings are followed in brackets by
the improvement with respect to the set median string.

set median strings (exact or approximated) generalized median strings

Length H Hω Hω,c H Hω Hω,c

Greedy LS(Greedy)

50 28.4 27.2 35.6 33.2 (+4.8) 33.4 (+6.2) 41.0 (+5.4) 43.9 (+8.3)

100 35.2 34.3 41.4 43.7 (+8.5) 41.0 (+6.7) 45.7 (+4.3) 44.6 (+3.2)

300 44.1 45.3 48.6 60.5 (+16.4) 57.8 (+12.5) 55.0 (+6.4) 56.8 (+8.2)

500 55.3 48.1 52.5 63.8 (+8.5) 61.8 (+13.7) 61.0 (+8.5) 61.7 (+9.2)

800 57.2 52.5 61.9 68.1 (+10.9) 66.4 (+13.9) 65.1 (+3.2) 63.9 (+2.0)

1000 59.5 57.8 60.8 69.6 (+10.1) 67.8 (+10.0) 65.1 (+4.3) 65.3 (+4.5)

1250 62.0 58.4 63.4 69.7 (+7.7) 68.9 (+10.5) 67.4 (+4.0) 66.8 (+3.4)

1500 60.7 61.9 65.5 70.3 (+9.6) 70.5 (+8.6) 68.6 (+3.1) 69.4 (+3.9)

1750 62.9 63.3 63.9 68.8 (+5.9) 71.8 (+8.5) 67.9 (+4.0) 68.7 (+4.8)

2000 57.5 64.3 62.7 63.9 (+6.4) 71.4 (+7.1) 68.2 (+5.5) 68.0 (+5.3)

2500 53.7 61.0 62.6 63.3 (+9.6) 70.1 (+9.1) 66.5 (+3.9) 65.9 (+3.3)

avg. 52.4 52.2 56.3 61.4 (+9.0) 61.9 (+9.7) 61.0 (+4.7) 61.4 (+5.1)

Let us now compare GCR when classes are characterized by exact or approxi-
mated generalized median strings. We note that these (approximated) generalized
median strings are better representatives than set median strings. However, exact
generalized median strings, computed for the distances dH and dHω , improve more
significantly GCR than approximated ones, computed for the distance dHω,c : on
average, the GCR is improved by 9 (resp. 9.7) points for dH (resp. dHω ) when rep-
resenting classes by generalized instead of set median strings; however, this GCR
is only improved by 4.7 (resp. 5.1) points for dHω,c when representing classes by
approximations computed by the greedy (resp. local search) algorithm.

Note finally that GCR obtained with approximations computed by local
search are not significantly better than GCR obtained with approximations com-
puted by the greedy algorithm: on average, the GCR is improved of 0.4 points
only.

6 Discussion

We introduced in this paper three histogram-based distances for strings. For the
first two ones, the generalized median string can be computed in polynomial
time, and we experimentally show that classification is significantly improved
when characterizing classes with generalized median strings instead of set me-
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dian strings. However, we conjecture that the computation of generalized median
strings for the third histogram-based distance is a NP-hard problem, so that we
have proposed two heuristic algorithms for approximating generalized median
strings in this case. Experimental results showed us that, if classification is im-
proved when characterizing classes with these approximations, they are not as
relevant as we would like and improvements are twice as small as improvements
obtained with exact generalized median strings. Hence, further work will first
concern an explanation of these disappointing results: are they due to the fact
that our heuristic algorithms build approximations that are far from optimality,
or are they due to the distance itself? Actually, we need information on the
distribution of strings with respect to distances. We thus are currently working
on the definition of a probability density function on such space and algorithms
to approximate this function.

Another trend will be to relate our string-based approach to the more usual
graph-based representation of images. Of course, we shall investigate the seri-
ation of a graph-based representation of an image but also alternatives such as
graphs or trees of strings, each string being related to a localized area in an
image.
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Lozano, Miguel Angel 25, 340

Marfil, R. 307
Martinez-Perez, M. Elena 25
Medrano, Belén 330
Metzen, Jan Hendrik 13
Meyer, Fernand 158
Molina-Tanco, L. 307
Moreno, Rodrigo 148

Neuhaus, Michel 1, 92, 383

Paraboschi, Laura 114
Peitgen, Heinz-Otto 13
Pelillo, Marcello 61
Peltier, Samuel 283
Percannella, Gennaro 215
Pizlo, Zygmunt 295
Pruvot, Jean-Hugues 126
Puig, Domenec 148

Qureshi, Rashid Jalal 49

Raj, Ashish 180
Ramel, Jean-Yves 49



416 Author Index

Raveaux, Romain 361

Real, Pedro 330

Rhiem, Paul 251
Riesen, Kaspar 1, 383

Rothaus, Kai 251

Sakarya, Ufuk 168
Sandoval, F. 307

Sansone, Carlo 215
Schellewald, Christian 71

Schenk, Andrea 13
Serratosa, Francesc 351

Shen, Huiying 394

Solnon, Christine 404
Suau, Pablo 340

Telatar, Ziya 168
Thakur, Kailash 180
Torsello, Andrea 61
Trupin, Eric 361

Valveny, Ernest 351
Vento, Mario 37, 215

Wang, Hong-Fang 204
Wilson, Richard C. 81, 371

Yoshida, Tetsuya 228
Young, Karl 180

Zhang, Fan 191
Zidowitz, Stephan 13


	Title Page
	Preface
	Organization
	Table of Contents
	Bipartite Graph Matching for Computing the Edit Distance of Graphs
	Introduction
	GraphEditDistance
	Munkres’ Algorithm for Graph Matching
	Munkres’ Algorithm
	Plain-Munkres and Adjacency-Munkres

	Experimental Results
	Letter Database
	Image Database
	Fingerprint Database

	Conclusion
	References

	Matching of Tree Structures for Registration of Medical Images
	Introduction
	State of the Art
	Methods
	Association Graph
	Unary Constraints
	Binary Constraints

	Results
	Conclusions
	References

	Graph-Based Methods for Retinal Mosaicing and Vascular Characterization
	Introduction
	ImageFeatureExtraction
	Graph Transformation Matching
	Mosaicing
	Spectral Vascular Characterization
	Conclusions
	References

	Stereo Vision for Obstacle Detection: A Graph-Based Approach
	Introduction
	Related Works
	Overview of the Strategy
	The Algorithm
	Experimental Results
	Conclusions
	References

	Graph Based Shapes Representation and Recognition
	Introduction
	Graph Based Representation of Shapes
	Raster to Vectors Conversion
	Vectors to Quadrilaterals
	Graph Generation

	Recognition Phase
	The Similarity Score Computation
	Splits: Multiple Associations of Nodes and Arcs
	The Graph Matching Routine ( Simgraph )

	Results
	Conclusion
	References

	A Continuous-Based Approach for Partial Clique Enumeration
	Introduction
	A Family of Quadratic Programs for Maximum Clique
	A Game-Theoretic Perspective
	Continuous-Based Enumeration
	Experimental Results
	Conclusions
	References

	A Bound for Non-subgraph Isomorphism
	Introduction
	Preliminaries
	Combinatorial Objective Function
	Convex Problem Relaxation
	Convex Relaxation
	Early Results to the Non-isomorphism Bound
	Discussion
	References

	A Correspondence Measure for Graph Matching Using the Discrete Quantum Walk
	Introduction
	The Coined Quantum Walk
	Exact Matching
	Structural Errors
	A Correspondence Measure from the Matching Probabilities
	Experiments
	Graph Matching
	Graph Clustering

	Conclusion
	References

	A Quadratic Programming Approach to the Graph Edit Distance Problem
	Introduction
	GraphEditDistance
	Quadratic Programming for Graph Edit Distance
	Quadratic Programming
	Fuzzy Edit Path
	Quadratic Programming Formulation

	Experimental Results
	Conclusions
	References

	Image Classification Using Marginalized Kernels for Graphs
	Introduction
	SVM Classifiers and Kernel Machines
	Marginalized Graph Kernels
	Graph Models of Images
	A Kernel for Image-Based Graphs
	Experimental Results
	Conclusions
	References

	Comparing Sets of 3D Digital Shapes Through Topological Structures
	Introduction
	Graph-Based Scene Comparison
	Comparing Sets of Graphs
	A New Pseudo-metric and Two Possible Normalizations
	A Property of Laplacian Eigenvalues of the Scene

	Shape Graph and Comparison
	Experimental Results
	Numerical Properties of the Distance

	Concluding Remarks and Future Developments
	References

	Hierarchy Construction Schemes Within the Scale Set Framework
	Introduction
	The Scale Set Framework
	Construction of the Initial Hierarchy
	Sequential Merging
	ParallelMerge Algorithm

	Experiments
	Conclusion
	References

	Local Reasoning in Fuzzy Attribute Graphs for Optimizing Sequential Segmentation
	Introduction
	Graph Model
	Graph-Based Reasoning in Normal Cases
	Evaluating Edge Relevance
	Globally Evaluating Path Relevance

	Results and Discussion
	Edge Valuation
	Merging of Spatial Relations

	Graph-Based Reasoning in Pathological Cases
	Conclusion
	References

	Graph-Based Perceptual Segmentation of Stereo Vision 3D Images at Multiple Abstraction Levels
	Introduction
	3D Image Segmentation
	Overview of the Algorithm
	Geometric Low-Pass Filters
	Tensor Voting Framework
	Graph Creation and Segmentation
	Neighborhood Selection

	Experimental Results
	Concluding Remarks
	References

	Morphological Operators for Flooding, Leveling and Filtering Images Using Graphs
	Introduction
	Definition of a Flooding
	Flooding for Filtering and Segmenting Images
	Flooding for Filtering
	Flooding and Segmentation

	Operators on Graphs
	Contraction of Edges
	Two Adjunctions on Graphs

	Floodings on Graphs
	Criteria for a Weight Distribution to Be a Valid Flooding
	First Algorithm for Constructing a Valid Flooding
	A More Synthetic Flooding Algorithm

	Conclusion
	References

	Graph-Based Multilevel Temporal Segmentation of Scripted Content Videos
	Introduction
	Graph-Based Multilevel Temporal Video Segmentation
	Initial Definitions
	The Proposed Method
	Level One
	Level Two

	Experiments and Results
	Data Set and Ground-Truths
	Implementation Details
	Performance Evaluation
	Results

	Conclusions
	References

	Deducing Local Influence Neighbourhoods with Application to Edge-Preserving Image Denoising
	Introduction
	MRF Approach for Local Influence Neighbourhoods
	Formulating a MRF Prior for Local Influence Neighborhoods
	A Graph Cut Algorithm to Compute LINs

	Expectation-Maximization Algorithm For MAP Image Denoising Using Local Influence Neighbourhoods
	Results
	Conclusion and Discussion
	References

	Graph Spectral Image Smoothing
	Introduction
	A Graph Spectral Approach to Image Smoothing
	Graph Representation
	Graph Smoothing
	Numerical Implementation
	Algorithm Summary

	Analysis of the Algorithm
	Relationship to Anisotropic Diffusion
	A Signal Processing View of the Algorithm
	Relationship to Spectral Clustering

	Experiments
	Conclusion
	References

	Probabilistic Relaxation Labeling by Fokker-Planck Diffusion on a Graph
	Introduction
	Relaxation Labeling
	Diffusion Processes on Graphs
	The Graphical Model
	Diffusion Processes and Random Walks

	Relaxation Labeling by Diffusion
	Experiments
	Discussion
	References

	Assessing the Performance of a Graph-Based Clustering Algorithm
	Introduction
	The Fuzzy C-Means MST Clustering Algorithm (FMC)
	Algorithms Selected for the Comparison
	The Markov Clustering Algorithm
	The Iterative Conductance Cutting Algorithm
	The Geometric MST Clustering Algorithm
	Settings Used for the Above Described Algorithms

	The Databases Used for Performance Evaluation
	Cluster Validity Indices
	Davies-Bouldin Index
	Dunn Index
	Calinski-Harabasz Index
	Xie-Beni Index
	C Index
	$\oint$ index

	Experimental Results
	Conclusions
	References

	A New Greedy Algorithm for Improving b-Coloring Clustering
	Introduction
	A b-Coloring Based Clustering Algorithm
	Overview of a b-Coloring Based Clustering Algorithm
	Validation Indices for Clustering

	A Greedy Re-coloring Algorithm for b-Coloring Based Clustering
	Motivation
	Notations and Definitions
	A Greedy Re-coloring Algorithm for b-Coloring Based Clustering

	Evaluations
	Evaluation for Zoo Dataset
	Evaluation for Mushroom Dataset

	Conclusion and Future Work
	References

	Qualitative Spatial Relationships for Image Interpretation by Using Semantic Graph
	Introduction
	Complex Spatial Relations Between Two Composite Objects
	Cardinal Direction Formalism
	The Connectivity-Direction-Metric Formalism (CDMF)

	Application of the CDMF Relations to Over-Segmented Objects: Integration of the CDMF in a CSP with Bilevel Constraints
	Constraint Satisfaction Problem and Arc Consistency Checking with Bilevel Constraints
	Implementation of the Arc-Consistency Checking Algorithm with Bilevel Constraints
	Example of Implementation of the Relation “Is Surrounded” by Introducingthe CDMF in the $CSP^BC$

	Experiments: Application to Check the Semantic Consistency of a Segmentation
	Comments and Conclusion
	References

	Separation of the Retinal Vascular Graph in Arteries and Veins
	Introduction
	Formal Problem Specification
	Graph-Based Representation
	SAT-Problem Description
	Unsatisfiable Vessel Labelling
	Optimisation Task

	Graph Separation
	Initial Edge Labelling
	Consistent Labelling Search

	Results
	Discussion and Conclusions
	References

	A Fast Construction of the Distance Graph Used for the Classification of Heterogeneous Electron Microscopic Projections
	Introduction
	Mathematical Background
	Formal Problem Statement
	Brute-Force Approach
	Nearest Neighbor Search
	Early Termination

	Algorithms
	AESA-Based Algorithm
	Early Termination

	Experiments and Results
	Datasets
	Experiments with AESA-Based Algorithm
	Experiments with Early Termination Algorithm

	Discussion and Conclusion
	References

	An Efficient Ontology-Based Expert Peering System
	Introduction
	RelatedWork
	Organization

	Model and Approach
	The Ontology
	Mapping to Ontology-Space
	Query-Expert Peering

	Experiments
	Experiment Setup
	Numerical Results

	Conclusion
	References

	Computing Homology Group Generators of Images Using Irregular Graph Pyramids
	Introduction
	Homology
	Irregular Graph Pyramids
	Computing Homology Generators in a Graph Pyramid
	Description of the New Method
	Preserving Homology on Irregular Graph Pyramids
	Delineating Generators

	Experiments on 2D Images
	Conclusion
	References

	Approximating TSP Solution by MST Based Graph Pyramid
	Introduction
	Irregular Graph Pyramid
	SolvingE-TSP by a Graph Pyramid
	Bottom-Up Simplification Using an MST Pyramid
	Top-Down Approximation of the Solution

	Psychophysical Evaluation of Solutions
	Conclusion
	References

	The Construction of Bounded Irregular Pyramids with a Union-Find Decimation Process
	Introduction
	Data Structure and Decimation Process
	Regular Data Structure Building
	Irregular Data Structure and Decimation Process

	Colour Image Segmentation Using the BIP
	Evaluation of Segmentation Results
	Conclusions and Future Work
	References

	A New Contour Filling Algorithm Based on 2D Topological Map
	Introduction
	Recalls
	Combinatorial Maps
	Topological Maps

	Using Topological Map for Filling Contours
	Experiments and Results
	Conclusion
	References

	Extending the Notion of AT-Model for Integer Homology Computation
	Introduction
	Introduction
	Definitions and Prior Work
	Extending the Notion of Algebraic Topological Model
	Computing Integer Homology Information
	Conclusions and Future Work
	References

	Constellations and the Unsupervised Learning of Graphs
	Introduction
	Mapping Graphs to Prototypes Via Diffusion Kernels
	Building the Super-Graph
	Building the Prototypes

	Graph-Transformation Matching and EM Clustering
	One-to-One Matching
	Iterative Filtering and Consensus Graph
	From Pairwise Matching to EM Clustering

	Experimental Results and Discussion
	Conclusions and Future Works
	References

	On the Relation Between the Median and the Maximum Common Subgraph of a Set of Graphs
	Introduction
	Definitions
	Basic Definitions
	Maximum Common Subgraph
	Generalized Median Graph

	Interesting Results Based on the Previous Definitions
	A Particular Cost Function
	Relation Between Edit Distance and MCS
	Bounds for the Median Graph

	Reducing the Upper Bound for the Median Graph
	Practical Example

	Conclusions
	References

	A Graph Classification Approach Using a Multi-objective Genetic Algorithm Application to Symbol Recognition
	Introduction
	Dissimilarity Measures
	The Genetic Algorithm in Use
	Genetic Operators Dedicated to Graphs
	The Multi-objective Optimization Concept

	Application
	Graph Data Set Construction
	Test on Dissimilarity Distances
	Classification Experiments: Mono-Objective
	Multi-objective Experiments

	Conclusion
	References

	Graph Embedding Using Quantum Commute Times
	Introduction
	Random Walks
	Classical Random Walk
	Quantum Random Walk

	CommuteTimes
	Embedding Graphs Via Commute Times

	Analysis of Quantum Commute Time Embeddings
	Experiments
	Conclusions
	References

	Graph Embedding in Vector Spaces by Means of Prototype Selection
	Introduction
	Graph Edit Distance
	Graph Embedding by Means of Prototype Selection
	Prototype Selectors

	The Classification Problem
	Classification in Graph Spaces — $k$-NN Classifier
	Classification in Vector Spaces — Support Vector Machine Classifier

	Experimental Results
	Letter Database
	Real World Data

	Conclusions
	References

	Grouping Using Factor Graphs: An Approach for Finding Text with a Camera Phone
	Introduction
	PastWork on Text Detection
	Grouping with Factors
	Factor Graphs and Belief Propagation
	Factor Graphs for Figure-Ground Segmentation

	Grouping Text Features
	Constructing Features
	Building Factors

	Experimental Results
	Discussion
	References

	Generalized vs Set Median Strings for Histogram-Based Distances: Algorithms and Classification Results in the Image Domain
	Motivations
	Background
	Notations
	Statistical Characterisation of a Set of Strings

	Distances Between Strings
	Edit Distance
	Histogram-Based Distance $d_H$
	Weighted Histogram-Based Distance $d_{H_\omega}$
	Weighted Histogram-Based Distance with Substitution Costs $d_{H_{\omega,c}}$

	Approximations of the Generalized Median String for $d_{H_{\omega,c}}$
	Greedy Algorithm
	Local Search
	Experimental Results

	Classification Results in the Image Domain
	Representing Images by Strings
	Test Suite and Experimental Settings
	Experimental Results

	Discussion
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




