Scenarios of Traceability in Model to Text
Transformations

Ggran K. Olsen and Jon Oldevik

SINTEF Information and Communication Technology Forskningsveien 1,
0373 Oslo, Norway
{goran.k.olsen, jon.oldevik}@sintef.no

Abstract. The challenges of managing change in model-driven development
are addressed by traceability mechanisms for model to text transformations. A
traceability model, tailored for representing trace information between models
and generated code, provides the basis for visualisation and analysis of the
relationships between models and code. Usage scenarios for traceability are
discussed and illustrated by our traceability implementation.

1 Introduction

Model to text transformation is one of several vital steps in model-driven development
(MDD), which makes it possible to generate an extensive amount of code from models.
This automation can reduce the development time and increase the quality of the code,
but it also introduces some new challenges that must be addressed.

Often, the people writing transformation specifications will be different from the
engineers developing the system. In this way, vital details required for understanding the
systems are hidden from the engineers within the transformations. This may be a
convenient way of separating the concerns of different actors in the development
process. On the other hand, it may also hinder sufficient understanding of the system on
the part of the engineer. One way of solving this is letting the engineer examine the
design models, the transformation specifications and the generated code. This may,
however, not be desirable since the engineer may be unfamiliar with the transformation
language. It also reveals details that are supposed to be concealed. An alternative
approach is to establish links between representations of the design artefacts and the
generated code that have semantics with the necessary information for the engineers.
Model to text transformations enable implicit or explicit creation of these links.

Manual updates of generated code are often required in the development process.
In complex systems it can be difficult to localize the places to update, and there might
also be restrictions on where changes are allowed. Traceability information can be
used to ease this task.

In this paper, we describe how traceability and traceability links can be used to
support the development of systems. We explain model to text traceability and how
this is implemented in MOFScript [1]. Several usages of MOFScript-specific trace
links are described in usage scenarios.

D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 144}156,2007.
© Springer-Verlag Berlin Heidelberg 2007

Scenarios of Traceability in Model to Text Transformations 145

2 Traceability

One of the main challenges in MDD is the management of relations between different
artefacts produced in the development process. As systems become more complex,
the number of artefacts is increasing. Furthermore, the artefacts are often generated.
Therefore, trace links are needed to fully understand the many dependencies that exist
between the different artefacts.

In the IEEE Standard Glossary of Software Engineering Terminology [2]
traceability is defined as:

“The degree to which a relationship can be established between two or more products
of the development process, especially products having a predecessor-successor or
master-subordinate relationship to one another; for example, the degree to which the
requirements and design of a given software component match”.

2.1 Establishment of Trace Links

In the past, trace links have mostly been established manually by the different persons
involved in the development process, for instance by creating trace links between
word documents and use-case model elements. This task has been known as difficult,
time consuming, and very often a source to errors both when it comes to the
establishment of new links and keeping the existing links updated and consistent [3].

Following an MDD approach and utilizing model transformations makes it
possible to generate these trace links explicitly or implicitly in the transformation
specification. By implicit, we mean that some transformation tool, e.g. MOFScript,
populates a trace model automatically when a transformation is executed. By explicit,
we mean that additional trace code must be inserted into the transformation. This can
be achieved in two ways; by writing the trace code each time or running a higher
order transformation on the transformation model. The latter approach is used in the
Atlas Transformation Language (ATL) [4]. The final adopted OMG standard MOF
Models to Text Transformation Language also requires that the ability to explicitly
create trace blocks in the code is present [5].

Storing the established trace links can be done in two ways according to Kolovos et
al. [6], either by embedding them in the models or storing them externally in a separate
new model. The first approach gives a human-friendly view of the trace links, but it
only supports trace links between elements in the same model. The external approach
has the advantage of having the trace information separated from the model and
therefore avoids polluting the models.

2.2 Traceability on Different Abstraction Levels

Trace links can in theory be established between all artefacts in a system development
project, for instance between requirement documents and use-case diagrams, use-case
diagrams and test cases or domain and platform independent models (PIM), elements
in the PIM and platform specific models (PSM), and between the PSM and generated
text (e.g., code and documentation).

All these trace links are required to provide end-to-end traceability. End-to-end
traceability enables a number of different analyses that can be preformed on the

146 G.K. Olsen and J. Oldevik

system, e.g. checking that a requirement is fulfilled in the implementation by
following the trace links from a requirement via the PIM and the PSM to code, known
as coverage analysis [7].

The trace links required to provide end-to-end traceability are intermediate and can
also make the basis for useful functionality and analyses. In this paper we present
several different usages of model to text traceability links.

2.3 Different Trace Link Classifications

The simplest trace link is one without any type specification other than link; it only
contains references to one source and one target element which optionally can be
contained in another element. According to [7-9] this may be insufficient for many
projects. Hence, several different trace link classifications have been proposed.

Some examples of trace types are: The trace type manual, which is a trace link
established manually in the trace model. The trace type automatic is created by a tool,
and the trace type transformation means that the trace link is between a source and a
target in a transformation. In a model to text transformation this could be from a
model reference to a text segment. The trace type dependency is between two artefacts
that are dependent of each other, and the trace type verifies means that one artefact
verifies another (e.g. a test implementation) may verify a requirement.

2.4 Trace Link Usage

The reason to create and update traceability links is that the links can be used to
support and document the development process. The information can be used in
several ways, but the most obvious scenario is simple trace inspection. Through trace
inspection it is possible to browse the trace information and get insight in how the
different artefacts are connected. This is becoming more useful as an increasing
number of artefacts are generated automatically from model to model and model to
text transformations. The simple browsing can also be extended with additional
functionality as explained in the section 0.

Walderhaug et al.[7] and Ramesh et al.[9] describe several different trace analysis
scenarios:

e Change impact analysis: Change impact analysis is used to determine the
impact a change to an artefact will have on other artefacts.

e Coverage analysis: Through coverage analysis, the trace user can determine
the degree to which some artefacts of the system are followed up by other
artefacts in the system.

e Orphan analysis: Orphan analysis is used to find artefacts that are orphaned
with respect to some specified trace relations.

In the following section, we address traceability in model to text transformations
and look at how different traceability scenarios can be provided by the traceability
support in MOFScript.

Scenarios of Traceability in Model to Text Transformations 147

3 Model to Text Traceability

For traceability to be useful, we need the ability to trace artefacts through the lifecycle
of the software development process, from requirement documents to model elements
and from model elements to textual artefacts such as code. The steps required to move
from one level to the other are often automated by transformations. In this process,
the transformation tools should be able to produce trace links.

Several model to text languages exist, and some of them have support for
traceability. In the MOF Models to Text Standard [5], traceability is defined to be
explicitly created by the use of a trace block inserted into the code, as illustrated below.

[trace(c.id()+ '_definition')]
class [c.name/]

{
// Constructor
[c.name/] ()
{
[protected('user_code')]
; user code
[/protected]
}
}
[/trace]

This approach provides user-defined blocks that represent a trace to the code
generated by the block. This is specifically useful for adding traces to parts of the
code that are not easily automated. A drawback of the approach is a cluttering of the
transformation code. A complementary approach, as taken in MOFScript, is to

automate the generation of traces based solely on model element references.

3.1 Traceability in MOFScript

MOFScript is a model to text transformation tool and language. It can be used to
generate text from EMF based models. The transformation implementation contains
references to model elements that should be substituted in the generated text.

The references to model elements are the basis of MOFScript traceability. Any
reference to a model element that is used to produce text output, results in a trace
between that element and the target text file. The granularity is from model element
to line and column in the text file [10].
uml.Class:::main () {

file(self.name+".java")

'package 'packageName'; \n

import java.util.*;\n'
self.visibility' class ' self.name'({

self.ownedAttribute->forEach (p:uml.Property | p.association = null){

' p.visibility' ' p.type.name' _' p.name';\n'
}
self.ownedAttribute->forEach (p:uml.Property | p.association !=null){
'// Association: 'p.name':'p.type.name'('p.lower '..'p.upper')'
'"\t' p.visibility' HashMap<'p.type.name', 'p.name '>_

p.name.toLower () ';\n'

}

148 G.K. Olsen and J. Oldevik

The above transformation code generates the beginning of a Java class file where
the references are fetched from the model. If the class property visibility is set to
protected, “protected” will be written to the file instead of self.visibility. We
will use the example model in Fig. 1 to illustrate the traceability support.

=] Bookstore
] category i 1
g name : String + categories
1
+ catogory 1
l. .*
+ boaks * + authars
*
* = Book * 1* =] author
g title : String Eg name : String
+hook [printAuthor () + authorCf + autharg &2, printBooks ()

Fig. 1. Bookstore Example Model

Given the model in Fig. 1, an execution of the transformation will generate the
following Java source code for the class Book.
package org.sintef.no;

import java.util.HashMap;

public class Book {
private String _title ;

// Association: authors:Author(1..-1)
protected HashMap<String, Author>_authors;
// Association: category:Category(l..-1)

protected HashMap<String, Category>_category;
}
Each reference is substituted with the model element’s value and a trace is created,
linking the element and the code segment. The link is stored in a traceability model,
an instance of MOFScript’s traceability metamodel.

3.2 The Traceability Metamodel

The traceability metamodel in MOFScript was described in detail in [10]. Since then,
it has been slightly modified during the implementation of the traceability support.
Fig. 2 shows its concepts.

The TraceModel is the root of the model and contains traces, files and model element
references. A File contains one or more blocks, which in turn contains a set of traceable
segments. A TraceableSegment defines a position and length within a block in a file. A
Trace references an originating model element and the segment to which it traces. The
Block defines the positioning of the block within the file. Furthermore, a block is either
protected or unprotected. A protected block represents an unchangeable part of a file,
which is not meant to be modified by users. Conversely, an unprotected block
represents a part of the file that is meant to be modified by the user. This could for
example be the body of a method.

Scenarios of Traceability in Model to Text Transformations 149

(& ModelElementRef

o ID @ EString * 1 (3 TraceModel
o name : EString

o featureRef : EString

: - + modelElementRefs 1
o uri: EString 1
1
+ originatinElerment:

*
* 4 trace i fles
1 & File

(@ Trace o IO EString

o sourceCperationID : EString S UL =S

o sourceCperationtame @ EString © URI : EString
1 1
zegrent * + blocks
{3 TraceableSegment () Block
o startPos : ELong o ID : EString
o endPos ELong o startPos : ELong
o startLine ; ELong 1.* 1 o endPos ; ELong
o endling : ELong o protectedBlock | EBoolean
o startColumn : ELong + traceablesegment o startline : ELang
o endColurmn ; ELong o startColurmn : ELong

o endColurmn @ ELong
o endline : ELong

Fig. 2. Traceability Metamodel

When a transformation is executed, the MOFScript runtime populates an instance
of the traceability metamodel, which is an ecore metamodel. This results in a
traceability model. Fig. 3 shows an editor view of the traceability model generated
from the Bookstore example model in Fig. 1.

In the traceability model in Fig. 3, Book.java contains, among other things, a block
with id 3. In the property view we can see where the block starts and ends, and that it
is a protected block. This means that editing in this area is not allowed (changes in the
code will not be preserved if the file is generated again). The traceable segments
represent the references that are used in the file and hold information about start and
end position.

Unprotected Blocks. Setting the blocks’ protected block property to “true” is the
default behaviour of the trace generation. However, often it is required that the code is
edited manually. To cope with this MOFScript supports the notion of unprotected
blocks. These blocks are created with the use of the unprotect keyword in the
transformation code, as illustrated in the transformation code for operations below.

150 G.K. Olsen and J. Oldevik

self.ownedOperation->forEach (o:uml.Operation) {
'‘\n 'o.visibility' void ' o.name' ()({'
unprotect {
! //User code here for operation'

" J\n
}

The resulting code, shown below, represents the unprotected block as comments
containing a #BlockStart and a #BlockEnd and an identifier for the source model
element.

public void printAuthor () {

//#BlockStart number=4 id=_MeMJULEPEdu-Vepu7rgPLg
//User code here for operation

//#BlockEnd number=4

}

Between the block comments, the user can insert or remove code, and the changes
will be preserved the next time the transformation is run. All the traces that have
references to the file after the block will also be generated in accordance with their
new position in the file. The block comment tag (here %/’) is controlled by
environment settings and can be changed to match the target language.

The next sections elaborate on how this traceability information can be utilized and
describe several scenarios.

_m Book.java

< Trace uml.Class "
<= Trace uml.Class
<= Trace uml.Property
4 File Bookstore.java
< File Author.java
=< File Book.java
[SEE-l Floick Block i
4 Traceabls Segment 39
<4 Traceable Segment 52
4 Traceable Segment 59
4 Traceabls Segment 66

i

Problems | Javadoc | Declaration | Console | B Properties 52

Property Yalue
End Calumn =26
End Line =g
End Pos =171
o] I'= Block id: 3
Protected Block = brue
Skart Column =1
Start Line =3
Skatt Pos =39

Fig. 3. Trace Model and Property View

Scenarios of Traceability in Model to Text Transformations 151

3.3 Model to Text Specific Trace Scenarios

Trace links created in MOFScript between model elements and generated text can be
utilized in several ways. This functionality can be used by different stakeholders, such
as a Transformation Architect or System Engineer.

Extended Trace Inspection. The traceability model contains logical links from
model elements to the code. These can be used to navigate and visualise traces in the
code. For example, the user might select a specific model element and visualise the
traces as highlighted code parts.

Coverage Analysis. Coverage analysis is useful for checking and ensuring that all
relevant parts of the model are actually utilised by a transformation. If there are no
traces from a particular model element, it is not used in the text transformation.

Impact Analysis. Impact analysis in text transformation can allow for checking the
impact of a model change to existing generated code. A limitation in this regard is
unprotected areas in the code that use model references, which cannot be seen from
the traceability model.

Orphan Analysis. Orphans can occur in the code if model elements are deleted.
There will then be traces from old model elements to the code. The transformation
needs to be re-run in order to synchronise the model, the code, and the traces.

Trace Documentation. The traceability model can be used to generate different kinds
of traceability documentation, for example by generated HTML documents. Such
trace documentation can be provided by reusable model to text transformations [11]
that have the trace model as source.

Unprotected Block Checking. When an unprotected region in the generated code has
been implemented, the corresponding block in the trace model should be updated to
show that it is completed. This will enable the Project Manager to check for bottle-
necks, presenting a view of the remaining unprotected blocks that needs to be
implemented, and if necessary move resources to a different part of the project.

Merging Traceability Models. Merging of traceability models may be used when
several different transformations are executed from the same source model. The traces
reference the same model elements, but sets of different target files. A merging of these
will provide a more complete view of the traces from that particular source model.

Traceability Model Evolution. As models evolve, so will traceability models
generated from those models. Histories of traceability models associated with a model
may be used to analyse the evolution of the model with respect to code generation.

Our aim is to provide a toolset that supports the identified scenarios. Currently, we
have developed a prototype that addresses some of the scenarios.

3.4 Traceability Analysis Prototype

The Traceability Model Analysis prototype is an initial version of a more complete
traceability tool that also will consist of a repository for storing trace models. At this
time, only MOFScript-specific trace analysis is supported. The prototype makes it
possible to browse the source model in a tree editor and invoke different functionality
on selected elements (Fig. 4).

152 G.K. Olsen and J. Oldevik

=B «Model> Bookstore

Mew Child
Mew Sibling

<Class > Bool
= «<Propert:
= =Propert <_.:r
= «Propert:
= E < Class = Book
= «<Propert: cut
= =Propert
= E <Class> Ath —
= «<Propert:
= =Propert 3¢ Delete
./ “fssociation)

Undo Set

Copy

/ <Association! Walidate
<Data Type:= Contral, ..

£hssociation]
= Q =Class = Cate

= «<Propert: Gl
o <hssociation] DEbug As
Team
Compare ‘With
Replace With

3
*
»
5 ¥ Crphan Analysis (Trace Orphans)
»
*

‘) Impact Analysis

Fig. 4. Trace Menu for Model Bookstore

View Traces. This functionality gives a view of the traces for a selected model
element (and its descendants). It can be used for trace inspection to locate the traces

M View Traces Element: Package Bookstore

Traces
Class:Book

trace{name): 5:14-20
Property:authorof
[=) Property:name
tracetype): 7:13-19
trace{name): 7:21-25
Class:Category
1= Class:Bookstore
trace{name): 5:14-23
=) Property:books
traceltype.name): §:31-35
trace{name): §:37-42
[=)- Property:cateqaries
trace{type.name): 9:31-39
trace{name): 9:41-51
=) Property: authaors
traceltype.name): 7:31-37
trace{name): 7:39-46

File:
Author . java Block id: 2
Author . java Block id: 2
Author . java Block id: 2
Bookstore. java Block id: 0
Bookstore. java Block id: 0
Bookstore. java Block id: 0
Bookstore, java Block id: 0
Bookstore. java Block id: 0
Bookstore. java Block id: 0
Bookstore. java Block id: 0

Fig. 5. Trace View

Scenarios of Traceability in Model to Text Transformations 153

for specific model elements. Fig. 5 shows an example of this view for the Bookstore
example, showing all traces generated from elements contained in the Bookstore
package. As can be seen, the Bookstore class has several trace links to code segments
in the file Bookstore.java.

Model Coverage. This functionality shows which parts of the model that do not have
trace representations in the traceability model. It allows for checking that all intended
model elements have been processed by the transformation. Fig. 6 shows the result of a
Model Coverage analysis after adding two properties to the Book Class (isbn and price).

B Model Coverage - Untraced Elements - Package Bo... E] [E|g|

ModelElement: Type Mame
= Bookstore
[=- Package Bookstore

= Class Book

Property isbn

Property price

Fig. 6. Model Coverage

Orphan Analysis. This functionality allows for checking traces that are no longer
valid, in that they reference model elements that no longer exist. Fig. 7 shows the
result of an Orphan Analysis after the property name has been removed from the
model element Author. Following the MDD approach, the normal procedure would be
to rerun the transformation. However, on trace links that are created manually, this
will be a useful feature.

M Orphan Trace Analysis E][E| g|
Traces File Block.
Author java Block id: 2
trace: 7:21-25 Author java Block id: 2

Fig. 7. Orphan Analysis after deleting a property

Impact Analysis. The functionality provided by the impact analysis checks for
references in the generated code that will be affected by a modification of the model.
This is basically an application of the view traces functionality with the source
element as input to the query.

Functionality on Generated Files. The generated files also have traceability-specific
actions that can be performed; this includes view traces to file, which will display the
traces and the source elements that have this file as target and view unprotected
blocks, which provides the user with a presentation of the unprotected blocks in the
given file. The displayed unprotected blocks can be used for direct navigation into the
file on the unprotected block’s starting position. When the number of files and

154 G.K. Olsen and J. Oldevik

unprotected regions are many (e.g., in complex systems), this functionality will
simplify the manual development task.

When text has been inserted into an unprotected block manually, the traceability
model can be updated to reflect the new positions of the traceable blocks and
segments in the generated file.

4 Related Work

Even though traceability is a well known problem in software engineering and the
current literature contains ample publications describing the need for traceability
solutions, little work has been done in the field of model to text traceability. The
OMG MOF Model to Text Transformation Specification [5] specifies a trace solution
with the use of trace blocks, but currently there are no implementations of the
standard available. How these trace links can be utilized is not described.

Acceleo Pro Traceability [12] is a traceability tool developed by Obeo that handles
traceability links between model elements and code and vice versa. This tool enables
round trip support; updates in the model or the code are reflected in the connected
artefacts. Analyses are also available using the traces as input, but since this is a
commercial tool, restricted information describing the solution is available. It seems
to be based on similar ideas as described in [10] where model elements are traced to
exact positions in files.

In [13] Alexander Egyed describes a bottom up approach for trace link generation
with the use of the Trace Analyser tool. The approach requires the existence of a
system that is both observable and executable, a list of artefacts from the development
(e.g., model elements), usage scenarios or test cases and some initial traces that links
the artefacts and the scenarios. This solution creates traces from lines of executed
code to requirements and thus enables traceability among all artefacts.

Reqtify [14] is a requirement traceability tool from ChiasTek. It supports
traceability through the entire project from high-level requirements to models, code,
test scripts, and test results.

Objecteering 6.0 from Softeam [15] provides trace functionality through a trace
editor that enables the user to create traces manually between artefacts. Model elements
created from wizards based on existing elements can be traced automatically.

Rational RequisitePro [16] is a requirement and use case management tool that
provides the ability to display traces between parent/child relationships and showing
requirements that may be affected by upstream or downstream changes.

CaliberRM from Borland [17] is also a requirement management tool that enables
manual creation of trace links from top level requirements to lower level descriptions.

5 Conclusion and Future Work

This paper presents a traceability solution for model to text transformations. Usage
scenarios show that the solution is viable and how the generated trace model can be
utilized.

The trace generation in MOFScript is implicit, meaning that all references to model
elements are traced. In the MOF Models to Text Specification [5] the creation of
traces is done explicit thru the use of trace blocks (it does not state that implicit traces

Scenarios of Traceability in Model to Text Transformations 155

can not be used in addition). We believe that each approach has pros and cons and
that an optimal solution should support a combination of both. Direct references from
model elements to text should be generated automatically with the granularity defined
by environment settings. There may also be situations where this is not sufficient to
produce all trace dependencies required; therefore, explicit creation of trace links
should be supported and classified accordingly. This functionality will be supported
in a future version of the toolset.

In [18], Antoniol et al. have identified several challenges that must be addressed
related to different aspects of traceability in MDD. Keeping trace information up to
date can be an inconceivable task that often makes the links erode into an inaccurate
state. The granularity of the trace links is also identified to be a challenge. The more
fine-grained the trace links are, the more error prone they become. However, when
traces are automatically generated, they are updated when the model changes and the
code is regenerated. In this work, the challenge of keeping the trace links updated is
addressed and the granularity issue is reduced.

The quantity of traces may be a challenge. In our solution, we are tracing all model
element references and the number of traces might become incomprehensible and hence
less useful. Furthermore, it might be a performance issue when the models and the
transformation become large and complex. By adding a filtering mechanism to the
traceability engine, it is possible to specify kinds of model elements that are interesting
to trace and minimise performance overhead and unnecessary trace information.

Classification of traces was discussed earlier. In many traceability scenarios it may
be useful or even essential to have meta information associated with traces, but it
depends on the usage context. In an end-to-end traceability scenario involving
different tools and artefacts, meta information will be important in order to distinguish
the different traces. The scenarios we have shown here demonstrate usefulness of
traces without classification.

The presented traceability solution implemented in MOFScript has its own specific
traceability metamodel as shown in Fig.2. Future work includes the specification of a
more generic trace metamodel (not specific to model to text) that will be implemented
in a traceability tool. This tool will provide a simple interface for trace establishment
both manually by users and automatically from several different MDD tools. The first
step will be to integrate the trace establishment from MOFScript and then provide a
user friendly interface for manual trace establishment.

Furthermore, we will investigate how to support trace model merging. Tools that
do not support the provided interface of the traceability tool can supply the populated
trace model, and the model can be merged into the repository’s model representation.
The goal will be to establish a MDD tool chain that in turn will populate the same
project trace model. A typical scenario will be to model use-cases and have textual
descriptions in Word documents, these artefacts will be traced to each other by
manual establishment of the links. The use-cases will then be refined to different
models and the proper trace links will be created manually or automatically by tools.
The new models become sources to model to model transformations (e.g., an ATL
transformation), which can populate the trace model in the repository. The generated
target models will then act as source models to a transformation in MOFScript. The
MOFScript transformation creates new trace links from the already existing model
artefacts in the trace model to files, blocks and traceable segments.

156 G.K. Olsen and J. Oldevik

With this approach, the development chain is capable of supporting end-to-end
traceability where most traces are automatically created. Several end-to-end analyses
similar to the model to text specific will also be supported.

Acknowledgements. This work is a result from the MODELPLEX project co-funded
by the European Commission under the “Information Society Technologies” Sixth
Framework Programme. (http://www.modelplex-ist.org/). Information included in this
document reflects only the authors’ views. The European Community is not liable for
any use that may be made of the information contained herein.

References

1. Oldevik, J., et al.: Toward Standarised Model to Text Transformations. In: Hartman, A.,
Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, Springer, Heidelberg (2005)

2. IEEE, IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-
1990. 78 (1990)

3. Egyed, A.: Resolving Uncertainties during Trace Analysis. 12th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pp. 3—12 (2004)

4. Jouault, F.: Loosely Coupled Traceability for ATL. ECMDA 05 Traceability Workshop
(2005)

5. OMG, MOF Models to Text Transformation Language Final Adopted Specification
Member doc: 06-11-01 (2006) www.omg.org

6. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On-Demand Merging of Traceability Links
with Models. ECMDA 06 Traceability Workshop Bilbao (2006)

7. Walderhaug, S., et al.: Traceability Metamodel and System Solution. ECMDA 06
Traceability Workshop Bilbao (2006)

8. Aizenbud-Reshef, N., et al.: Model traceability. IBM Systems Journal 45(3), pp. 515-526
(2006)

9. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability. IEEE
Transactions on Software Engineering 27(1), pp. 58-93 (2001)

10. Oldevik, J., Neple, T.: Traceability in Model to Text Transformations ECMDA 06
Traceability Workshop Bilbao (2006)

11. Olsen, G.K., Aagedal, J., Oldevik, J.: Aspects of Reusable Model Transformations.
ECMDA 06 Workshop on Composition of Model Transformations (2006)

12. OBEO, Acceleo Pro Traceability (2007), http://www.acceleo.org/pages/additionnal-
products/en

13. Egyed, A.: A Scenario-Driven Approach to Trace Dependency Analysis. IEEE
Transactions on Software Engineering 29, 17 (2003)

14. Chiastek, Reqtify (2007), http://www.chiastek.com/products/reqtify.html

15. Softeam, Objecteering 6.0 Web-Page (2007), http://www.objecteering.com/objecteering6.
php

16. Software, I.R., Rational RequisitePro: reqpro/ (2007), http://www-306.ibm.com/software/
awdtools/

17. Borland, CaliberRM (2007), http://www.borland.com

18. Antoniol, G., et al.: Problem Statement and Grand Challenges in Traceability. Center of
Excellence for Traceability (2006)

	Introduction
	Traceability
	Establishment of Trace Links
	Traceability on Different Abstraction Levels
	Different Trace Link Classifications
	Trace Link Usage

	Model to Text Traceability
	Traceability in MOFScript
	The Traceability Metamodel
	Model to Text Specific Trace Scenarios
	Traceability Analysis Prototype

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

