


Lecture Notes in Computer Science 4530
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



David H. Akehurst Régis Vogel
Richard F. Paige (Eds.)

Model Driven
Architecture -
Foundations andApplications

Third European Conference, ECMDA-FA 2007
Haifa, Israel, June 11-15, 2007
Proccedings

13



Volume Editors

David H. Akehurst
University of Kent, U.K.
E-mail: D.H.Akehurst@kent.ac.uk

Régis Vogel
IHG, Madrid, Spain
E-mail: Regis.vogel@ihg.net

Richard F. Paige
The University of York, U.K.
E-mail: paige@cs.york.ac.uk

Library of Congress Control Number: 2007927648

CR Subject Classification (1998): C.2, D.2, D.3, F.3, C.3, H.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-72900-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72900-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12072637 06/3180 5 4 3 2 1 0



Preface

Model-driven architecture, and model-driven approaches in general, holds the
promise of moving software development towards a higher level of abstraction.
Given the challenges in the software industry of delivering more complex func-
tionality with less effort, it is not really a question whether model-driven de-
velopment will succeed, but rather a question of when it will break through.
However, before this can happen, there are many challenging problems to con-
quer, both theoretical and pragmatic. This requires close collaboration between
academic research and industrial application.

The goal of the European Conference on Model-Driven Architecture — Foun-
dations and Applications (ECMDA-FA) is to bring together industry and
academia to tackle the problems in model-driven development. This volume in-
cludes nine foundation papers and seven application papers. ECMDA-FA 2007
also hosted six workshops on both theoretical and practical aspects of MDA. Fur-
thermore, the keynote speakers, Stuart Kent from Microsoft and Andy Schürr
from TU Darmstadt, proved that both industry and academia are interested in
MDA and its applications.

This third ECMDA-FA conference is the result of the work of the authors
who submitted a total of 60 papers, the Program Committee members who
produced careful and thoughtful reviews under significant time pressures, the
people organizing the workshops, and of course the Steering Committee. Several
hundreds of people worked hard to make this conference a success. We have the
honor of speaking for all these people in this preface and we would like to thank
each of them for their valuable contribution.

The ECMDA-FA 2007 conference was supported by the European Commis-
sion’s Information Society Technologies (IST) initiative and by IBM.

June 2007 Dave Akehurst
Regis Vogel



Organization

Organizing Committee

Conference Chair Alan Hartman (IBM)
Program Co-chairs David Akehurst (University of Kent)

Regis Vogel (IHG)
Local Arrangements Chair Ettie Gilead (IBM)
Workshops Chair Arend Rensink (University of Twente)
Tools and Consultancy Chair Regis Vogel (IHG)
Webmaster Yair Harry (IBM)
Public Relations Chair Jos Warmer (Ordina)
Publications Chair Richard Paige (University of York)

Steering Committee

Alan Hartman (IBM, Chair)
David Akehurst (University of Kent)
Richard Paige (University of York)
Philippe Desfray (Softeam)

Regis Vogel (IHG)
Arend Rensink (University of Twente)
Jos Warmer (Ordina)

Program Committee

Jan Aagedal
David Akehurst
Uwe Assmann
Terry Bailey
Jean Bézivin
Xavier Blanc
Behzad Bordbar
Manfred Broy
Krysztof Czarnecki
Miguel de Miguel
Jean-Luc Dekeyser
Serge Demeyer
Philippe Desfray
Jürgen Dingel
Gregor Engels
Jeff Gray
Alan Hartman
Gabor Karsai

Roger Kilian-Kehr
Anneke Kleppe
Jason Mansell
Tom Mens
Veronique Normand
Richard Paige
Chris Raistrick
Arend Rensink
Bernhard Rumpe
Branislav Selic
Maarten Steen
Juha-Pekka Tolvanen
Andreas Ulrich
Marten van Sinderen
Regis Vogel
Gerd Wagner
Jos Warmer
Clay Williams



VIII Organization

Additional Reviewers

Khalid Allem
Christian Basarke
Reda Bendraou
Javier F. Briones
Sebastian Cech
Anis Charfi
Norbert Diernhofer
Dolev Dotan
Cedric Dumoulin
Anne Etien
Alexander Förster
Joris van Geet
Steffen Goebel
Pieter van Gorp
Hans Grönniger
Florian Heidenreich
Antoine Honoré
Andrew Jackson
Eric Jouenne
Alexander Kofman
Dimitrios Kolovos
Holger Krahn

Katja Lehmann
Jérôme Le Noir
Stéphane Menoret
Parastoo Mohagheghi
Olaf Mulliawan
Ellen van Paesschen
Dirk Reiss
Andreas Roth
Andreas Rummler
Tim Schattkowsky
Stefan Scheidl
Martin Schindler
Hans Schippers
Marvin Schulze-Quester
Yahalomit Simionovici
Christian Soltenborn
Alin Stefanescu
Gernot Stenz
Todor Stoitsev
Hendrik Voigt
Yi Zhang
Steffen Zschaler



Table of Contents

An Open Source Domain-Specific Tools Framework to Support Model
Driven Development of OSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Achilleas Achilleos, Nektarios Georgalas, and Kun Yang

Efficient Reasoning About Finite Satisfiability of UML Class Diagrams
with Constrained Generalization Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Azzam Maraee and Mira Balaban

A Practical Approach to Model Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Mikaël Barbero, Frédéric Jouault, Jeff Gray, and Jean Bézivin

Model Transformation from OWL-S to BPEL Via SiTra . . . . . . . . . . . . . . 43
Behzad Bordbar, Gareth Howells, Michael Evans, and
Athanasios Staikopoulos

Improving the Interoperability of Automotive Tools by Raising the
Abstraction from Legacy XML Formats to Standardized Metamodels . . . 59

Mark Brörkens and Matthias Köster

Templatable Metamodels for Semantic Variation Points . . . . . . . . . . . . . . . 68
Arnaud Cuccuru, Chokri Mraidha, François Terrier, and
Sébastien Gérard

Execution of Aspect Oriented UML Models . . . . . . . . . . . . . . . . . . . . . . . . . 83
Lidia Fuentes and Pablo Sánchez

An Algebraic View on the Semantics of Model Composition . . . . . . . . . . . 99
Christoph Herrmann, Holger Krahn, Bernhard Rumpe,
Martin Schindler, and Steven Völkel

Towards the Generation of a Text-Based IDE from a Language
Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Anneke Kleppe

Constraints Modeling for (Profiled) UML Models. . . . . . . . . . . . . . . . . . . . . 130
François Lagarde, François Terrier, Charles André, and
Sébastien Gérard

Scenarios of Traceability in Model to Text Transformations . . . . . . . . . . . . 144
Gøran K. Olsen and Jon Oldevik

Human Comprehensible and Machine Processable Specifications of
Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Markus Scheidgen and Joachim Fischer



X Table of Contents

Adopting Model Driven Development in a Large Financial
Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Dov Shirtz, Michael Kazakov, and Yael Shaham-Gafni

Reverse Engineering Models from Traces to Validate Distributed
Systems – An Industrial Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Andreas Ulrich and Alexandre Petrenko

A Model Driven Software Factory Using Domain Specific Languages . . . . 194
Jos Warmer

Towards a Model Driven Approach to Automatic BPEL Generation . . . . 204
Xiaofeng Yu, Yan Zhang, Tian Zhang, Linzhang Wang,
Jianhua Zhao, Guoliang Zheng, and Xuandong Li

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 1–16, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

An Open Source Domain-Specific Tools Framework to 
Support Model Driven Development of OSS 

Achilleas Achilleos1, Nektarios Georgalas2, and Kun Yang1 

1 University of Essex, Dept. of Electronic Systems Engineering, UK 
{aachila,kunyang}@essex.ac.uk 

2 British Telecom Group, UK 
nektarios.georgalas@bt.com 

Abstract. Telecommunications companies undergo massive transformations 
which reflect onto exacting requirements for controlling the costs of new Op-
eration Support Systems (OSS) development and integration. This calls for the 
adoption of new approaches, which improve agility and reusability. Model 
Drive Development (MDD), as specified by OMG, can drastically tackle these 
issues and has, therefore, attracted the interest of the telecommunications indus-
try. Equally important is the Open Source paradigm. For MDD to gain wide in-
dustrial adoption, tools should be available to facilitate the OSS development 
process. In this paper, we specify requirements MDD tools should meet for ef-
fective application of the approach. An extensive survey is then carried out to 
evaluate existing meta-modelling frameworks over the identified tools require-
ments. Eventually, we present the Integrated Eclipse Model driven Environment 
(IEME), which comprises a unified environment of bundled Eclipse-based 
MDD facilities that also supports the automatic generation of domain-specific 
tools.  

Keywords: Meta-modelling, MDA, model-driven development, domain spe-
cific languages, modelling editor tools. 

1   Introduction 

Telecommunications companies undergo massive transformations to become agile 
organizations shifting from their traditional profile as telephony operators into pro-
viders of networked-based ICT services. Some of their main challenges are to reduce 
the costs of their IT operational support systems (OSS), increase agility, and design 
the OSS infrastructure to support fast delivery of new services and products. A major 
contributing factor in the cost of running OSS is the integration tax incurred when 
legacy is integrated with new OSS Components Off-The-Shelf (COTS). This is 
mainly due to the multiplicity of platforms and middleware used by the OSS. Al-
though advances are being made by the OSS industry towards standardising OSS  
capabilities and information models, through the OSS/J initiative [1] and the Tele-
Management Forum (TMF) [2], systems are still designed around specific middleware 
technologies such as CORBA, J2EE, and .NET. This preserves the problem of heavy 
costs and lengthy process cycles of OSS to new versions of such platforms. 



2 A. Achilleos, N. Georgalas, and K. Yang 

MDD of software, as specified by OMG [3], provides an approach that can drasti-
cally tackle the aforementioned issues. MDA provides clear distinction between mod-
els independent of technical details, namely, Platform Independent Models (PIMs) 
and models that include detail of the implementation technology, namely, Platform 
Specific Models (PSMs). MDA comprises a set of standards that enable the definition 
of Domain Specific Languages (DSLs) used to specify a system’s structure and be-
haviour. DSLs are represented as meta-models based on the Meta-Object Facility 
(MOF) and can be precisely defined using the Object Constraint Language (OCL) [4] 
for defining constraints over meta-models as well as actual models. With sequential 
transformations among various DSLs, using the Query/View/Transform (QVT) stan-
dard, system implementations can be produced for particular platforms. MOF ex-
pressed model data can be exchanged between compliant tools using XML Metadata 
Interchange (XMI) technology.  

We have practically applied MDA in several case-studies that demonstrated the 
advantages it offers in the process of designing, developing and integrating OSS in 
terms of improved quality and lower costs [5], [6], [7], [8]. In order to capitalize on 
these advantages it is instrumental that the MDA standards are implemented in the 
tools used for OSS development.  In the context of the NGOSS/MDA TMF Catalyst 
project [9], a practical evaluation of mainstream commercial tools showed limited, if 
any, implementation of the MDA standards with a strong proprietary flavour. That is, 
service providers are currently bound to limited exploitation of the MDA potential. 
Furthermore, service providers expend considerably on costly licenses and training in 
order to put such tools to enterprise-wide use, driving overall costs even higher. This 
is the reason why open source paradigms, such as Eclipse [10], have recently received 
significant attention and strong industrial support. In the TMF OpenOSS Catalyst [11] 
the general benefits of open source were investigated in the direction of driving down 
OSS development costs. However, OpenOSS did not cover the area of tooling.  

This paper specifies high-level principles, which should be complied with by tools 
for sufficient facilitation of meta-modelling and MDA. These principles get refined 
into more concrete requirements through a state-of-the-art survey of meta-modelling 
tools. Based on these requirements, the paper presents IEME, an Eclipse-based open 
source environment providing key MDA facilities for the development of software 
systems. IEME brings together Eclipse initiatives that individually implement a cer-
tain MDA aspect. Specifically, IEME uses: (i) the Eclipse Modelling Framework 
(EMF) [12], the Eclipse implementation of MOF, for specifying the abstract syntax of 
meta-models;  (iii) the Graphical Modelling Framework (GMF) [13] for specifying 
the concrete syntax of meta-models and generating dedicated graphical tools that  
support both the abstract and concrete semantics of a meta-model; (iv) the Atlas 
Transformation Language (ATL) [14] for specifying transformation rules among 
meta-models; and (v) the openArchitectureWare (oAW) [15] for building code gen-
erators and specifying constraints on meta-models and  models .  

The rest of the paper is organised as follows. Section 2 investigates the relationship 
between meta-modelling and DSL specification and lays out a rigorous set of re-
quirements that an effective MDD tools framework should satisfy. Section 3 conducts 
a survey of tools with MDD capabilities and evaluates them using the identified re-
quirements. Next, section 4 presents IEME and how it fulfils the identified require-
ments. Finally, section 5 discusses conclusions and future work. 



 An Open Source Domain-Specific Tools Framework to Support MDD of OSS 3 

2   Meta-models as Domain Specific Languages: MDD Tools  
     Framework Requirements 

According to Nytun, Prinz and Tveit [16]: A metamodel is a model that defines a lan-
guage completely including the concrete syntax, abstract syntax and semantics. 

Another definition describes meta-modelling [17] as: The construction of an object 
oriented-model, which represents the abstract syntax of a language. 

Our view on meta-modelling aligns with the former statement. That is, meta-
modelling is the process of complete and precise specification of a domain-specific 
modelling language, which in turn can be used to define models of that domain. This 
treatment places a meta-model one abstraction layer higher than domain models. This 
way, an indefinite hierarchy of abstraction layers can be built, where models at layer n 
are specified using the precise semantics of the language defined as a meta-model at 
layer n+1. In this setting, models situated at layer n are instances of meta-models at 
layer n+1. 

MDA provides such a layered architecture limiting the number of abstraction lay-
ers to four. At the top level, M3, the meta-meta-model of MOF is situated, which pro-
vides a generic language for the definition of domain-specific languages. Layer M2 is 
populated by meta-models that represent MOF-defined domain-specific languages. 
Layer M1 hosts domain models written in M2-defined DSLs. Finally M0 hosts run-
time domain objects that instantiate M1 domain entities.  

Due to their focus on a certain domain, as opposed to generic modelling languages 
such as UML [18], it is necessary to produce a precise definition for the domain spe-
cific semantics of a DSL. This requires a DSL specification paradigm that can ade-
quately facilitate the rigorous definition of the DSL abstract syntax, comprising a 
meta-model of the domain-specific concepts and constraints for precisely defining the 
domain concepts semantics. MDA is such a paradigm, as it provides MOF for meta-
model specification and OCL for the specification of meta-model constraints. Fur-
thermore, MDA can facilitate the definition of mappings between DSLs using QVT 
and the exchange of meta-model data using XMI.  

In order to render practical the use of a DSL, a high-level notation should be avail-
able, allowing designers to produce models in this DSL. Therefore, alongside its ab-
stract syntax, a DSL should encompass a concrete syntax definition specifying the 
way DSL abstract concepts can be represented within a design in a consistent manner. 
For easier use of the language, such DSL concrete syntax may be specified through a 
graphical notation, which can drive the development of DSL-specific graphical  
modelling tools. Developing such DSL tools can be a laborious and costly process, 
especially when considering the need of these tools to constantly evolve alongside 
modifications and extensions the DSL may incur in time. Therefore, looking at auto-
mating the process of generating DSL tools can be very beneficial. Automatic tool 
generation will require meta-tools, ie. more abstract DSL tool specification environ-
ments, providing a framework of meta-modelling and graphical facilities to precisely 
specify DSL abstract and concrete syntax. 



4 A. Achilleos, N. Georgalas, and K. Yang 

All aforementioned features, also grounded on our previous work and MDA case-
studies [5], [6], [7], [8], [9], describe general principles for the way we view MDD 
process applying in practice and the facilitation we believe is required by way of a 
MDD supporting tools framework. These principles are shaped into a specific set of 
requirements necessary to render a MDD framework practically efficient. The re-
quirements are outlined below: 

[R1] Abstract syntax: Any DSL shall be specified as a M2 meta-model using a  
semantic meta-meta language, such as MOF.  An effective MDD framework must en-
sure completeness of the new modelling language through its meta-meta language. 

[R2] Concrete syntax: A DSL shall additionally specify a notation, preferably graphi-
cal, to allow the concrete representation of its abstract concepts. This will enable bet-
ter understanding of the language and will make its use easier in developing domain 
models.  

[R3] Meta-model level constraints: Precision in the DSL semantics shall be provided 
by the specification of constraints onto the M2 meta-model (DSL abstract syntax) to 
ensure correctness of the language. 

[R4] Domain-specific modelling tools generation: One to one mapping must be  
enabled between the DSL abstract concepts and their corresponding concrete repre-
sentation, which shall lead to the generation of a DSL modelling tool environment. 
The tool will be used for the specification in DSL and management of M1 domain 
PIMs. 

[R5] Model level constraints: It shall be possible to specify constraints onto the actual 
M1 domain PIMs. Therefore, domain-specific tools must provide a constraints speci-
fication facility. 

[R6] Model Transformations: It shall be possible to transform a PIM to another PIM 
or PSM. This must be driven by mapping rules defined at M2 between the meta-
models which represent the abstract syntax of the DSLs used to specify the original 
and resulting M1 domain models. The mapping rules should be embedded in the gen-
erated DSL modelling tool. In its M1 model manipulation capacity, the domain mod-
elling tool should be able to execute the transformation but should provide no facility 
to change the mapping rules.  

[R7] Text-based generation: A MDD framework shall generate text-based output 
from M1 domain models. This can lead to code generation in a programming, such as 
Java, or a markup language, such as XML.  

[R8] Standards Conformance: Any MDD and supporting tools framework should be 
conformant to OMG’s MDA standards, namely, MOF, XMI, QVT and OCL.  

[R9] Accelerated adoption: Generated tools should be easy to use by the designers. In 
the context of this paper, we will restrain to assessing accelerated adoption by the ex-
tent the environment of the generated tool is compatible to a widely adopted and used 
development environment, such as Eclipse.  

From a conceptual perspective, the aforementioned requirements drive a certain 
flow of steps, a way of working in other words, that characterise a structured and 
practically effective MDD process. Figure 1, illustrates thoroughly the proposed 
MDD process flow over OMG’s 4-level architecture and the way each requirement 
matches the consecutive flow steps.  



 An Open Source Domain-Specific Tools Framework to Support MDD of OSS 5 

Principal Meta-Modelling Tool 
R1: Abstract semantics 
R2: Concrete semantics 

R3: Meta-model level constraints 
R4: Modelling tools generation 

R6: Mapping – Model Transformation 

Offspring Tool 1 
R5: Model level constraints 
R6: Model transformations 
R7: Text-based generation 
R9: Accelerated adoption 

Offspring Tool 2 
R5: Model level constraints 
R6: Model transformations 
R7: Text-based generation 
R9: Accelerated adoption

Offspring Tool N 
R5: Model level constraints 
R6: Model transformations 
R7: Text-based generation 
R9: Accelerated adoption 

R8: Standards conformance 

Model and tool 
description 
languages M3 R1 R2

Map, generate and run

R4 

DSL1 DSL2 

Mapping

R6 

PIM1
Model

PIM2
Model

Transform
Design

R6

R6 

M2 

GenerateR7
GenerateR7

Impose semantic 
constraints

R5 

M1 

M0 Note: R3 - Impose semantic & graphical constraints 

R3 

Semantic Meta-
meta language 

Graphical Meta-
meta language

DSL Semantic 
meta-model 

DSL Graphical 
meta-model

Modelling Tool

Running Object

Code PSM Model 

 

Fig. 1. Meta-modelling and frameworks 

From a practical perspective, the requirements introduce a two-layered MDD tools 
framework, as illustrated in Figure 2. The top layer refers to meta-tool environments 
with capacity to specify abstract and concrete syntax of a DSL, meta-model level con-
straints and DSL transformations. The meta-tools generate graphical modelling tools, 
which occupy the lower layer and conform to the DSL specifications. The offspring 
tools can be used to develop domain models using the DSL, to specify domain model 
constraints and to automatically generate out of the domain models either code or 
other PIMs, as dictated by the embedded meta-model transformations.  

 

 
 

Fig. 2. Generation of offspring modelling editor tools 



6 A. Achilleos, N. Georgalas, and K. Yang 

3   Comparative Study of MDD Tool Frameworks  

In this section we provide an extensive discussion on major meta-modelling frame-
works. We check how these conform to the requirements set and to the procedures 
outlined in Figure 1 and Figure 2. It must be denoted that those requirements were ex-
tracted based on our experience from previous case studies [8], [9] performed using 
such frameworks (see XMF-Mosaic). The frameworks under study are two research 
tools; (i) Generic Modelling Environment (GME) [19], (ii) DOmain Modelling Envi-
ronment (DOME) [20], two commercial tools; (iii) MetaEdit+ [21], (iv) XMF-Mosaic 
[22] and the open source framework project AndroMDA [23]. 

The first four frameworks selected are considered as the most suitable ones for 
contacting the survey. This is due to the fact that these are the most dominant ones 
and provide extensive Domain Specific Modelling (DSM) support; DSM Forum [24] 
supports also this idea. Although AndroMDA falls out of the DSM Forum group of 
tools is used in the context of this paper to demonstrate the high value of an open 
source project. DSM Forum focuses on DSL development and expresses the necessity 
for production of DSL supporting tools. DSM Forum industrial experiences and case 
studies [25] revealed that the use of DSM supplies the aforementioned benefits. Fur-
thermore, related work [26] yet again acknowledged that DSM in conjunction with 
the MDA paradigm increase productivity significantly. The major problem though 
with such an approach was the inability of frameworks to generate the appropriate 
modelling tools. Nowadays meta-modelling frameworks have significantly improved 
and provide many of the required capabilities to the developers.  

Primarily a framework needs to supply a precise meta-meta modelling language for 
the production of DSLs. This should cover both the definition of abstract properties 
and their concrete graphical representation. GME supports a proprietary meta-
modelling language called MetaGME [19] that is based on UML class diagram nota-
tion for the creation of new DSLs. Meta-models and models are represented and can 
be imported/exported using an XML format. MetaGME allows additionally definition 
of meta-model level constraints compliant with OCL 1.4. MetaGME’s OCL imple-
mentation allows the developer to generate a consistent DSL and its corresponding 
modelling editor. Additionally the framework allows the definition of OCL con-
straints at the model level for checking low-level model attributes. 

GME does not provide any explicit support for defining and executing model-to-
model transformations. The code generation functionality is restricted since it only  
allows the developer to integrate its on generator as an API add-on. GME has been 
recently incorporated into a new Eclipse project called Generic Eclipse Modelling 
System (GEMS) [27]. Its goal is to bridge qualified meta-modelling projects, such as 
GME, with the Eclipse platform and its related modelling projects; EMF and GMF. 
The aim is similar to the integration we have performed by bridging several Eclipse 
based modelling projects together to form an effective meta-modelling environment.  

DOME has its own proprietary tool specification language [28], which relies on 
concepts similar to UML. It covers abstract semantics definition but provides only ba-
sic support for concrete semantics since the graphical appearance cannot be edited in 
a visual manner. Although the graphical representation is not very powerful it still en-
ables tools generation for the defined DSLs. DOME does not support explicitly  
the OCL language but provides built-in support for certain types of frequently used 



 An Open Source Domain-Specific Tools Framework to Support MDD of OSS 7 

meta-model level constraints; with the Alter language. Additionally Alter allows the 
developer to build code generators on the basis of the domain models defined. Con-
cerning model transformations the tool does not provide any support. Models and 
meta-models are also expressed using XML syntax. 

MetaEdit+ includes several tools that compose its MetaEngine and provides in 
overall a framework that minimizes the developer’s workload. It implements a meta-
meta language called GOPRR [29]. Each letter corresponds to an element of the lan-
guage. The framework allows defining both the conceptual and graphical properties. 
From the DSL definition the modelling tool can be automatically generated including 
facilities such as diagramming editors, browsers and generators. Constraints can be 
also defined as data incorporated onto the meta-model definition. GOPRR meta-
modelling definition enables MetaEdit+ to identify several rules from which a user 
can select the most appropriate ones. The user can even alter those rules to conform 
better to its requirements. Framework’s support for model level constraints definition 
is limited. It provides also a Generator editor that facilitates both basic model-to-
model transformations and code generation. The framework grants to the developer 
the ability to integrate its own model transformation engine or code generator package 
as an API add-on. In general it facilitates many of the requirements and it seems that 
its future direction aims towards the integration of the entire set of those features.  

Table 1. Meta-modelling frameworks requirements conformance 

RS Tool features GME DOME MetaEdit+ XMF-
Mosaic 

AndroMDA

R1 Abstract 
semantics 

UML  
MetaGME 

GOOPPR XCore UML 1.4 or 
MOF XMI 

R2 Concrete  
semantics 

UML  
MetaGME 

Partially ×

R3 Meta-model 
level constraints 

OCL 1.4 
in

MetaGME 

Alter
language

As data in 
meta-model 

XOCL OCL trans-
lated to Java, 
EJB-QL and 

HQL
R4 Modelling tools 

generation
×

R5 Model level  
constraints 

OCL 1.4 × Limited 
support 

XOCL ×

R6 Transformations × × Generator
Editor or 
add-ons 

XMap
language

Defined in 
Java

R7 Code
generation

As GME 
add-ons 

Alter lan-
guage

Generator 
Editor or 
add-ons 

XMap
language

Template-
based

MOF Compliant Proprietary
language

Proprietary
language

Proprietary
language

Limited  
support 

XMI-Compliant XML  
format 

XML  
format 

XML  
format 

XML  
format 

QVT Compliant × × × ×
R8

OCL Compliant × × Executable
OCL

Limited  
support 

R9 Accelerated 
adoption

× × × Eclipse
build

×

 



8 A. Achilleos, N. Georgalas, and K. Yang 

XMF-Mosaic is the last framework of the DSM Forum group studied in this sur-
vey, which is build onto the Eclipse platform. It incorporates all requirements identi-
fied and illustrated onto Figures 1 and 2. Table 1 also reveals that fact and displays 
the features each tool provides. XMF-Mosaic uses XCORE [30] as its meta-modelling 
language, which is based on the Meta Object Facility (MOF) [31] specification. 
XCORE is used for the specification of the meta-model properties. It also supplies 
tools like XBNF and XTools that facilitate the representation of the meta-model con-
cepts into a so-called user interface model. XBNF is a grammar language and XTools 
is used to map domain concepts graphically. Additionally XTools specifies the tool-
ing for the user interfaces of the generated modelling editor. With the use of two 
powerful languages XMap and executable OCL (XOCL) it fulfils the aspects of con-
straint checking, model transformations and text-based generation. XMap is used to 
define the mappings between DSLs to perform the model transformation and addi-
tionally can be used to define code generators. XOCL enables constraint definition on 
both meta-models and models. XMF Mosaic is a very powerful meta-modelling 
framework, which conforms to OMG specifications more than any other framework. 
Despite that fact XMF-Mosaic is a commercial product, which is not freely available 
and cannot be extended or modified unless the company releases a new version. 

This is where the open source software community comes into action, since it  
covers the additional aspect of extensibility and subtracts software licence costs. An-
droMDA [31] is a very good example of an open source extensible generator frame-
work that adheres to the MDA paradigm. Its core features endeavour most of the  
requirements. It provides UML 1.4 meta-modelling language support and alterna-
tively it allows using your own MOF XMI meta-model. Comes with pre-configured 
OCL constraints and allows the addition of own specific project constraints, which are 
translated into Java, Hibernate Query Language (HQL) and Enterprise JavaBeans 
Query Language (EJBQL) validation code. Constraints are enforced onto the meta-
models. Additionally it provisions to define model-to-model transformations using 
Java and it is planned as part of the next major release of AndroMDA to provide sup-
port for the powerful QVT based ATL language. It provides also generation of text-
based output using well known template engines.  

Another valuable aspect of AndroMDA, along with the fact that it is open source, 
is its modular design that supplies a plug-in based architecture. This allows the devel-
oper to compose its own environment from various project blocks to suit specific  
requirements and needs. AndroMDA covers most of the requirements but it lacks  
support of the essential facet of modelling tools generation, which is an imperative 
feature of an MDA framework with DSM support. Furthermore, current support for 
constraint validation is deficient and model-to-model transformation using Java is not 
as powerful as with the use of a QVT based language. Finally setup of the develop-
ment environment for AndroMDA and configuration of its building blocks can be 
quite tedious and troublesome. Due to that fact, an Eclipse-based integration is one of 
the primary objectives set by the AndroMDA project and is currently under the devel-
opment process.  

Eclipse open source platform provides solutions to the issues identified from the 
evaluation of the aforementioned frameworks and guides the effort in the formulation of 
a coherent MDA environment. Recognising its tremendous impact on the industrial 
world (e.g. XMF-Mosaic is build on the Eclipse platform) and the high-value of its  



 An Open Source Domain-Specific Tools Framework to Support MDD of OSS 9 

related modelling projects we proceeded in formulating an open source environment, 
which integrates the necessary meta-modelling features. The environment is composed 
by several Eclipse projects in an intuitive manner that allows efficient application of 
model driven development. Further reference to the environment in this article is done in 
terms of its devised name that is Integrated Eclipse Modelling Environment (IEME).  

4   Integrated Eclipse Modelling Environment  

The development of IEME was mainly driven by the need to produce a meta-
modelling framework satisfying the requirements identified in section 2. Due to the 
interest in keeping IEME an open source environment, relevant MDA project initia-
tives of the Eclipse platform were considered. These initiatives were carefully evalu-
ated in practice as per their ability to best meet the aforementioned requirements and 
were suitably tailored and integrated in a coherent environment. 

There are many reasons for choosing Eclipse as the platform for creating the 
framework. Primarily is its wide acceptance amongst developers and the fact that it is 
an extensible open source development platform (R9). This provides the ability to the 
developer to modify any of its features or tools and extend or add new tools to serve 
its company specialised needs. Additionally it offers the possibility to integrate IDEs 
such as Java and C/C++ that facilitate in increasing software systems productivity. 

Figure 3 shows how the MDD process requirements are mapped accordingly to the 
capabilities of the integrated environment. Initially with the use of the Graphical 
Modelling Framework (GMF) diagram editor the domain meta-model can be defined 
 

 

Fig. 3. Model driven development using the IEME 
 

Diagram  
Definition Model

Diagram  
Mapping 
Model Tools  

Definition Model

Domain 
meta-model 

GMF Editor Tools: 
Impose Constraints 

EMF: Create

R1

R3 

R3 

R1

R1

Extract

Extract
Map

R2 

Generate 

DSL Modelling Editor 

R4R5 

oAW Check or Java OCL: 
Impose Constraints 

ATL: Transform
R6

oAW Xpand: Generate

oAW Xpand: Generate 
R7

R7

Define 
 Domain Specific 

Model 1 (PIM1) 

 Domain Specific 
Model 2 (PIM2) 

 Platform Specific 
Model (PSM) 

 Code (e.g. Java, 
C#, Perl) 



10 A. Achilleos, N. Georgalas, and K. Yang 

using the ECore meta-meta modelling language (R1). Subsequently, the diagram and 
tools definition models can be extracted automatically from the domain meta-model. 
GMF translates the abstract syntax of the domain meta-model and generates the con-
crete syntax models. These are the Diagram Definition Model (R2), which presents 
the diagrammatic figures and the Tools Definition Model (R2), which presents the 
palette element tools. Both models represent the graphical elements of the generated 
modelling editor tool. The models can be further enhanced through the use of the 
GMF modelling editor tools provided. 

Binding of the abstract and concrete syntax produces the Diagram Mapping Model 
(R2), which includes the distinct concepts found in the three models. The generation 
model is extracted from this mapping model and the Eclipse Modelling Framework 
(EMF) Java Emitter Templates (JET) generation engine is used to generate the DSL 
Modelling Editor (R4) of the domain language. The modelling editor can be used to 
define graphically application domain specific models with their semantics set ac-
cordingly through the use of the properties view of the editor. Models can be further 
improved by the imposition of constraints using the openArchitectureWare (oAW) 
Check language or by applying OCL statements through Java (R5). It must be de-
noted that GMF modelling editor tools (R3) provide capabilities for assigning both 
graphical and semantics constraints at the meta-model level during the editor’s devel-
opment process. 

Atlas Transformation Language (ATL) is another component that can be used to 
define model-to-model transformations (R6). The transformations are written in an 
ATL textual editor and are purely based onto the meta-model. Transformations can be 
from a platform independent model (PIM) to another platform independent model or 
even a platform specific model (PSM). Thus the only remaining aspect is the genera-
tion of the implementation from the model. The framework grants that capability with 
the use of the oAW Xpand language (R7). Actually the generator is build out of tem-
plates written in the XPand language something that enables code generation in any 
possible language. 

Table 2. IEME framework characteristics conformance 

Reqs Tool features IEME 
R1 Abstract semantics ECore (EMF) – ECore Diagram (GMF) 
R2 Concrete semantics GMF (GMFGraph, GMFTool, GMFMap, 

GMFGen) 
R3 Meta-model level con-

straints 
GMF modelling editor tools 

R4 Modelling tools generation EMF JET Engine 
R5 Model level constraints oAW Check language or Java 
R6 Transformations Atlas Transformation Language (ATL) 
R7 Code generation oAW Xpand language 

MOF Compliant EMF – implementation of MOF 
XMI Compliant XMI meta-models and models 
QVT Compliant ATL – implementation of QVT 

 
R8 

OCL Compliant GMF, oAW Check, Java OCL 
R9 Accelerated adoption Build on the Eclipse Platform 



 An Open Source Domain-Specific Tools Framework to Support MDD of OSS 11 

The procedure described before and illustrated in Figure 3 shows that IEME is in 
fact a complete and coherent MDA/MDD framework. Additionally Table 2 presents 
how the framework reflects each of the requirements set and attests to the claim that it 
provides a pure meta-modelling environment. Following we give a more detailed 
overview of the core components of the environment to enable better understanding 
of its features and capabilities. It must be stated that the framework provides Java and 
C/C++ IDEs that are also built-in the environment using the extensible Eclipse plug-
in architecture. IEME is composed by the following modelling core components de-
livering a versatile environment. 

Eclipse Modelling Framework (EMF) [12] is the core of the environment. It’s an 
extended implementation of MOF and lies at the meta-meta level.  It is a modelling 
framework and code generation facility that serves as the meta-meta language for de-
fining domain meta-models (ecore). EMF supplies its own tree-based editor for meta-
model definition. The domain meta-model includes the semantics of the defined DSL. 
Furthermore it provides the facilities that are essential for the automatic generation of 
the corresponding tree-based editor tool. This tool enables the creation of models of 
the defined domain specific language.  

Graphical Modelling Framework (GMF) [13] provides a generative component 
and runtime infrastructure for developing graphical editors. GMF provides graphical 
editor tools that allow the definition of the visual domain meta-model (ecorediagram), 
the diagram definition model (gmfgraph), the tooling definition model (gmftool) and 
the mapping model (gmfmap). The visual domain meta-model is the diagrammatic 
view of the domain meta-model, which provides better understanding of the defined 
DSL. Therefore definition of the visual domain meta-model using the GMF editor is 
preferred than the definition of the domain meta-model using the EMF tree-based  
 

 

Fig. 4. BPMN Meta-model definition using GMF graphical editor 



12 A. Achilleos, N. Georgalas, and K. Yang 

editor. Figure 4 shows an example of a visual domain meta-model definition using the 
GMF editor. It represents the domain meta-model semantics of the Business Process 
Modelling Notation (BPMN).  

EMF and GMF combined and used in parallel provide the essential meta-meta lan-
guages and the supporting tools that drive the entire language development process. 
Most importantly they facilitate the generation of the appropriate tools to support the 
modelling language. Both projects use XMI as the common syntax for their models. 
Next we present the projects that cover the rest of the requirements namely constraint 
checking, model transformations and code generation. The entire set of core compo-
nents are plug-ins integrated into the Eclipse platform something that preserves the 
stability and extensibility of the overall environment.  

Atlas Transformation Language (ATL) [14] is a project developed at INRIA French 
National research institution and aims to provide model-to-model transformations. 
ATL is also an Eclipse plug-in that implements the Query/View/Transformation 
(QVT) language standard. ATL is actually a domain specific language build for trans-
formations. Basically it allows defining model-to-model transformations with the use 
of appropriate editor tools. It must be denoted that the transformations are defined 
based on the meta-models. Currently ATL is adopted as the basic component, along 
with the QVT standard, of the Eclipse Model-to-Model transformation (M2M) pro-
ject. There is a variety of defined transformations already available online onto the 
Eclipse ATL ZOO something that reveals the popularity of ATL as the major trans-
formation language. 

openArchitectureWare (oAW) [15] is a framework that provides a set of modelling 
tools integrated into a coherent model driven development environment. Careful study 
of the tools developed within this project reveals that it follows exactly the same 
guidelines and characteristics for working in the context of MDA. Additionally it pro-
vides the capability to choose selectively components from the overall framework 
since these are built as Eclipse plug-ins. Some of the components of the project, 
which perform specific tasks are not quite as powerful as their counterparts; EMF, 
GMF and ATL. Therefore these were not selected. oAW though contains other pow-
erful tools with their accompanying languages that can assist in the complete and co-
herent integration of an MDA framework.  

Foremost is the Xpand template language, an extract of which is shown onto Figure 5, 
which supports advanced features for building code generators in any programming lan-
guage. It must be denoted that the environment provides an alternative code generation 
facility, which is EMF Java Emitter Templates (JET) [32], [33]. Although JET is very 
powerful itself and can be used to generate code in any language, it is more focused and 
best to use for generating Java code. Therefore Xpand template language is found to be 
more competent for text-based generation to any particular language.  

Another component is the Check language, which is an OCL based language that 
allows definition of constraints onto the EMF meta-model and directly onto the mod-
els. oAW has strong support for EMF based models but can work also with other 
models (e.g. UML2). Additionally it even allows the definition of OCL constraints us-
ing Java. A core workflow engine controls the generator's workflow, as specified in 
an XML format. The workflow definition drives the execution by invoking the corre-
sponding components for reading and instantiating models, checking for constraint 
violations and then finally, for generating code. 



 An Open Source Domain-Specific Tools Framework to Support MDD of OSS 13 

 

Fig. 5. Building code generators using XPand template language 

5   Conclusions and Future Work  

In this article we stress out the importance of tools for industrial use of meta-
modelling frameworks. Such type of frameworks should provide the ability to define 
and generate modelling tools. Additionally they must comply with some other funda-
mental requirements. There are various initiatives to formulate a coherent environ-
ment and each of them comprise of some powerful tools. Study of those frameworks 
exposed that each initiative follows the same guidelines to deliver these essential fea-
tures. Despite that fact none of them provides a complete solution to the problem. The 
commercial XMF-Mosaic covers most of the important aspects but it also lacks in 
terms of the generation of stable modelling editor tools using XTools.  

IEME is our proposition of a framework that covers all these aspects by integration 
of the most powerful tools and languages. It must be denoted that there might be other 
dominant tools and languages that also fulfil their specific goals. The most important 
reason for the selection of these is their smooth ability to integrate as plug-ins to the 
extensible open source Eclipse platform. Eclipse platform provides the flexibility and 
the dynamics required by such an environment. A developer might require adding or 
altering a facility to suit its specific company requirements. It is no secret that major 
frameworks and industrial organisations use Eclipse as their development platform. 

There are also other benefits provided by the integrated environment. These are 
namely its precise meta-meta language that is based on OMG MOF, its support for a 
common interchangeable syntax such as XMI. Someone might argue that there are so 
many versions of XMI that interoperability is not easy to achieve. The attempt though 
is to at least provide a common widely acceptable syntax for the models in order to be 
compliant with other frameworks that adopt this standard syntax. Furthermore EMF 
and GMF projects are now very mature offering remarkable capabilities for the gen-
eration of stable and user friendly modelling tools with a simplistic procedure.  



14 A. Achilleos, N. Georgalas, and K. Yang 

Constraint checking, transformations and code generation are covered in great depth 
by the appropriate projects. 

An important aspect that was identified and remains to be tackled, as future work, 
is the configuration management when porting to newer versions of the modelling 
language. Transition to another meta-model by incarcerating new semantics requires 
adjusting the modelling language’s editor tools. Therefore it can be realised that mod-
els designed using the new version of the language are dissimilar to previous models. 
The framework needs to provide the capability to convert the latter to reflect the im-
proved modelling language. An initial consideration is the usage of the powerful ATL 
transformation language to define transformations between the different versions of 
the models. Such an improvement to the framework will be very beneficial reducing 
further transition costs. 

The environment is an initial effort to provide a complete solution to the MDA 
paradigm, covering all necessary aspects. Further research and testing of the environ-
ment with examples and case studies will detect any deficiencies to further improve it. 
Since the environment is characterised by its extensibility and adaptability such al-
terations can be easily implemented. Finally another important aspect that remains 
open is the interoperability of IEME with the rest of the major frameworks presented 
in this article. MDA growth requires this interoperability amongst powerful frame-
works since it will provide the ability to the developer to make use of the most appro-
priate tools to accomplish its objectives. 

References 

[1] The OSS through Java Initiative, [Online] Available: http://www.tmforum.org/ 
browse.aspx?catID=2896  

[2] The TeleManagement Forum, [Online] Available: http://www.tmforum.org 
[3] Model Driven Architecture (MDA), Specification Guide V1.0.1, Object Management 

Group (OMG), [Online] Available: (June 2003), www.omg.org/docs/omg/03-06-01.pdf 
[4] Object Constraint Language (OCL) Specification, version 2.0, Object Management Group 

(OMG), [Online] Available (June (2005), http://www.omg.org/docs/formal/06-05-01.pdf 
[5] Ou, S., Georgalas, N., Azmoodeh, M., Yang, K., Sun, X.: A Model Driven Integration 

Architecture for Ontology-Based Context Modelling and Context-Aware Application De-
velopment. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, 
Springer, Heidelberg (2006) 

[6] Azmoodeh, M., Georgalas, N., Fisher, S.: Model-driven systems development and inte-
gration environment. In: BT Technology Journal, vol. 23(03), Springer, Berlin Heidelberg 
(2005) 

[7] Georgalas, N., Azmoodeh, M., Ou, S.: Model Driven Integration of Standards Based OSS 
Components, In: Proceedings of the Eurescom Summit on Ubiquitous Services and Ap-
plication, Heidelberg, Germany (2005) 

[8] Georgalas, N., Azmoodeh, M., Clark, T., Evans, A., Sammut, P., Willans, J.: MDA-
Driven Development of standard-compliant OSS components: the OSS/J Inventory Case-
Study, In: Proceedings of the Second ECMDA with emphasis on Methodologies and 
Transformations, Canterbury, UK (September 2004) 

[9] Georgalas, N.: NGOSS/MDA: Realising NGOSS as a Model Driven Approach, Catalyst 
project, TeleManagement World Conference, Nice, France (2005) 



 An Open Source Domain-Specific Tools Framework to Support MDD of OSS 15 

[10] Eclipse – an open development platform, [Online] Available: http://www.eclipse.org/  
[11] The OpenOSS Programme, TeleManagement Forum, [Online] Available: 

http://www.tmforum.org/browse.aspx?catID=2602&linkID=31021 
[12] Eclipse Foundation Inc. Eclipse Modelling Framework (EMF), [Online] Available: 

http://www.eclipse.org/emf/ 
[13] Eclipse Foundation Inc. Graphical Modelling Framework (GMF), [Online] Available: 

http://www.eclipse.org/gmf/ 
[14] INRIA Research Institution, Atlas Transformation Language (ATL), [Online] Available: 

http://www.eclipse.org/m2m/atl  
[15] openArchitectureWare.org, openArchitectureWare (oAW), [Online] Available: 

http://www.eclipse.org/gmt/oaw 
[16] Nytun, J.P., Prinz, A., Tveit, M.S.: Automatic Generation of Modelling Tools. In: 

ECMDA-FA: Proceedings of Second European Conference, pp. 268–283. Springer, Ber-
lin/Heidelberg (2006) 

[17] Greenfield, J., Short, K., with contributions by Cook, S., Kent, S.: Software Factories: As-
sembling Applications with Patterns, Frameworks, Model and Tools. John Willey and 
Sons, New York (2006) 

[18] Unified Modelling Language (UML), version 2.0, Object Management Group (OMG), 
[Online] Available: (June 2004), http://www.omg.org/technology/documents/formal/ 
uml.htm, 

[19] Vanderbilt University, A Generic Modelling Environment, GME 5 User’s Manual, 
[Online] Available: http://www.isis.vanderbilt.edu/projects/gme/GMEUMan.pdf 

[20] Honeywell Labs, DOmain Modelling Environment (DOME), [Online] Available: 
http://www.htc.honeywell.com/dome/index.htm. 

[21] Metacase, MetaEdit+ Version 4.5 User’s Guide, [Online] Available (2006), 
http://www.metacase.com/support/45/manuals/meplus/Mp.html 

[22] Xactium, Language Driven Development and XMF-Mosaic, White papers, [Online] 
Available: (March 2005) 

  http://whitepapers.zdnet.co.uk/0,1000000651,260134763p,00.htm, 
[23] AndroMDA.org, Open Source MDA Generator Framework, [Online] Available: 

http://www.andromda.org 
[24] DSM Forum.org, [Online] Available: http://www.dsmforum.org/  
[25] DSM Forum.org, DSM Case Studies and Examples, [Online] Available: 

http://www.dsmforum.org/cases  
[26] Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., Neema, S.: Developing 

Applications Using Model-Driven Design Environments. IEEE Computer Society Jour-
nal, Vanderbilt University (2006) 

[27] SourceForge.net, Generic Eclipse Modelling System (GEMS) User’s Guide, [Online] 
Available: 540131&big_mirror=0 (1159), http://downloads.sourceforge.net/gems/ 
gems_user_guide_2_0_5_01.pdf?modtime=, 

[28] Honeywell Labs, DOME User’s Guide V.5.2.2, [Online] Available (1999), 
http://www.htc.honeywell.com/dome/DOMEGuide.pdf 

[29] Metacase, MetaEdit+ Version 4.5, The Graphical Metamodelling Example, [Online] 
Available (2006), 

  http://www.metacase.com/support/45/manuals/Graphical%20Metamodelling.pdf 
[30] Xactium, Applied Meta-modelling: A Foundation for Language Driven Development, 

Version 0.1, [Online] Available (2004), http://www.securewebonline.com/Services/ 
AppliedMetamodellingV01.pdf 



16 A. Achilleos, N. Georgalas, and K. Yang 

[31] Meta Object Facility (MOF) Core Specification, version 2.0, Object Management Group 
(OMG), [Online] Available (January 2005), http://www.omg.org/docs/formal/06-01-
01.pdf 

[32] Azzurri Ltd. JET Tutorial Part 1, [Online] Available: http://www.eclipse.org/articles/  
Article-JET/jet_tutorial1.html  

[33] Azzurri Ltd. JET Tutorial Part 2, [Online] Available: http://www.eclipse.org/articles/  
Article-JET2/jet_tutorial2.html 



Efficient Reasoning About Finite Satisfiability of
UML Class Diagrams with Constrained

Generalization Sets

Azzam Maraee1 and Mira Balaban2,�

1 Information Systems Engineering Department
2 Computer Science Department

Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
mari@bgu.ac.il, mira@cs.bgu.ac.il

Abstract. UML class diagrams play a central role in the design and
specification of software, databases and ontologies. The model driven
architecture approach emphasizes the central role that models play, to-
wards achieving reliable software. It is important that models are correct
and that problems are detected as early as possible in the software de-
sign process. However, current case tools do not support reasoning tasks
about class diagrams and enable the construction of erroneous models.
There is an urgent need for methods for detecting analysis and design
problems. In this paper, we present a linear programming based method
for reasoning about finite satisfiability of UML class diagrams with con-
strained generalization sets. The method is simple and efficient and can
be easily added to a case tool. It improves over existing methods that
require exponential resources and extends them to new elements of class
diagrams.

Keywords: UML class diagram, finite satisfiability, consistency, car-
dinality constraints, reasoning about class diagram, generalization set
constraints, class hierarchy structure.

1 Introduction

The Unified Modeling Language (UML) is nowadays the industry standard mod-
eling framework, including multiple visual modeling diagrams collectively, re-
ferred to as a UML model. Traditionally, UML models are used for analysis and
design of complex systems. Their relevance has increased with the advent of
the Model-Driven Development (MDD) approach, in which analysis and design
models play an essential role in the process of software development. Recently,
with the emergence of web-enabled agent technology, UML models are used also
for ontology representation, and construction and extraction of ontologies [7].

In view of their wide popularity, it is highly important that UML models
provide reliable support for the designed systems, and be subject to stringent

� Supported by the Lynn and William Frankel center for Computer Sciences.

D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 17–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



18 A. Maraee and M. Balaban

quality assurance and quality control criteria [21]. Indeed, an extensive amount
of research efforts is devoted to formalization of UML models, specification of
their semantics, and development of reasoning and correctness checking methods
[2, 16]. Moreover, with the prevalence of the Model Driven Engineering approach,
it is expected that all information in a design model will be effective in its
successive models.

Modeling problems usually arise when models are scaled to model large, dis-
tributed applications. A model may originate from different sources and a large
number of designers can be involved in the modeling process. Designers are highly
prone to making mistakes, and combining information from different sources
gives rise to potential conflicts [3, 6, 10]. [14] shows that defects often remain
undetected, even if the model is read attentively by practitioners.

It is highly important that models are tested for correctness, and that prob-
lems are detected as early as possible in the software design process. Nevertheless,
current case tools do not support reasoning about UML models, and enable the
construction of erroneous ones. Furthermore, implementation languages still do
not enforce design level constraints. Hence, there is an urgent need for reasoning
methods for detecting analysis and design problems.

Class Diagrams are probably the most important and best understood among
all UML models. A Class Diagram provides a static description of system com-
ponents. It describes systems structure in terms of classes, associations, and
constraints imposed on classes and their inter-relationships. Constraints provide
an essential means of knowledge engineering, since they extend the expressiv-
ity of diagrams. UML supports class diagram constraints such as cardinality
constraints, class hierarchy constraints, and inter-association constraints. Ex-
ample 1 below, presents a class diagram that includes cardinality and hierarchy
constraints.

Example 1. Figure 1 presents a class diagram with three classes named Aca-
demic, Graduate and FacultyMember, one association advisor-student between
instances of the Academic and the Graduate classes, with roles named advisor
and student, respectively, a cardinality constraint that is imposed on this as-
sociation, and a generalization set with a super-class Academic and sub-classes
Graduate and FacultyMember. The cardinality constraint states that every Grad-
uate student must be advised by exactly one Academic, while every Academic
must advise exactly two Graduate students. The generalization set states that
Graduates and FacultyMembers are Academic as well, implying that the advisor
of a Graduate can be a Graduate or a FacultyMember or another Academic.

In the presence of constraints a class diagram may turn inconsistent, as it might
impose constraints that cannot be finitely satisfied. Figure 1, presents a multiplic-
ity constraint cycle that involves a compound class, Graduate, whose instances
must be related to Academic instances. Therefore, the number of student-advisor
links in every diagram instance must be both, G · 1 and A · 2, assuming that G
and A are the number of graduates and academics, respectively. Therefore, the
extensions of Graduate and Academic must satisfy G = A · 2, while the Grad-
uate extension is a subset of the Academic extension. This constraint can be



Efficient Reasoning About Finite Satisfiability of UML Class Diagrams 19

Fig. 1. A Class Diagram with a Finite Satisfiability Problem

satisfied only by empty or infinite extensions. Such problems are termed finite
satisfiability problems.

The problem of finite satisfiability has been studied in the context of various
kinds of conceptual schemata [1, 3, 5, 8, 10, 15, 20]. There are methods for test-
ing finite satisfiability, for detecting causes for unsatisfiability, and for heuristic
suggestions for diagram correction. Yet, no method provides a feasible solution
for detecting lack of finite satisfiability for the combination of cardinality con-
straints, class hierarchy constraints, and generalization sets constraints.

In this paper, we present a linear programming based method for reasoning
about finite satisfiability of UML class diagrams with constrained generalization
sets. The method is based on a reduction to the algorithm of Lenzerini and
Nobili [15] that was applied only to ER-diagrams without class hierarchies. It is
simple and feasible since it adds in the worst case only a linear amount of entities
to the original diagram. It improves over previous extensions of the Lenzerini
and Nobili method that require the addition of an exponential number of new
entities to the original diagram [5]. An implementation of our method within a
UML case tool is currently under development.

The paper is organized as follows: Section 2 presents the finite satisfiability no-
tion, summarizes relevant methods for detecting finite satisfiability problems in
class diagrams, introduces the Generalization Set notion of UML2.0, and clas-
sifies different class hierarchy structures. Although this paper focuses only on
finite satisfiability problems, for the sake of completeness we also introduce the
consistency notion. Section 3 describes a polynomial time algorithm for test-
ing finite satisfiability of UML class diagrams with unconstrained generalization
sets. Section 4 extends the algorithm to operate on constrained generalization
sets, and investigates the limits of this method. Section 5 is the conclusion and
discussion of future work.

2 Background

The standard set theoretic semantics of class diagrams associates a class dia-
gram with class diagram instances in which classes have extensions that are
sets of objects that share structure and operations, and associations have ex-
tensions that are relationships among class extensions. We denote class symbols
as C, association symbols as A, and role symbols as rn. Henceforth, we shorten



20 A. Maraee and M. Balaban

expressions like "instance of an extension of C" by "instance of C" and "instance
of an extension of A" by "instance of A".

A cardinality constraint (also termed multiplicity constraint) imposed on a
binary association A between classes C1 and C2 with roles rn1, rn2, respectively,
is symbolically denoted:

A(rn1 : C1[ min1, max1], rn2 : C2[ min2, max2]) (1)

The multiplicity constraint [min1, max1] that is visually written on the rn1 end
of the association line is actually a participation constraint on instances of C2.
It states that an instance of C2 can be related via A to n instances of C1, where
n lies in the interval [min1, max1]. A class hierarchy constraint between a super
class C1 and a subclass C2 is written ISA(C2, C1) and called also ISA constraint.
It states a subset relation between extensions of C2 and C1.

A legal instance of a class diagram is an instance where the class and asso-
ciation extensions satisfy all constraints in the diagram. Correctness of a class
diagram involves consistency and satisfiability notions, that are discussed in
[2, 5, 15, 20]. We further elaborate this terminology, and suggest additional no-
tions, in order to facilitate a more accurate definition of correctness.

– Consistency Notions:
1. A class diagram is consistent (satisfiable) if it has an instance with

at-least one non-empty class extension. Otherwise, it is inconsistent.
2. A class C in a class diagram is consistent if there is an instance I

in which the extension of C is non-empty (C is said to be consistent in
I). Otherwise, it is inconsistent, (unsatisfiable).

3. A class diagram is all class consistent if every class is consistent.
4. A class diagram is fully consistent if it has an instance in which all

classes are consistent.
– Finite Satisfiability Notions:

1. A class is finitely satisfiable in a class diagram if there is a finite
instance in which the class is consistent (A class diagram instance is
finite if all class extensions are finite).

2. A class diagram is all class finitely satisfiable if for every class
there is a finite instance in which the class is consistent. Lenzerini and
Nobili [15] used the notion of strong satisfiability for this term.

3. A class diagram is fully finitely satisfiable if it has a finite instance
in which all classes are consistent.

The important notions for consistency and finite satisfiability are those of
full consistency and full finite satisfiability. [17] shows that full consistency is
equivalent to all class consistency, and full finite satisfiability is equivalent to all
class finite satisfiability. Inconsistency and lack of finite satisfiability are errors in
design that might delay system development and increase its cost [13]. The first
because an inconsistent class diagram does not have a non-empty extension, and
the latter because there is no finite and non-empty extension [4]. The consistency
problem is instigated in [2, 12].



Efficient Reasoning About Finite Satisfiability of UML Class Diagrams 21

2.1 Methods for Reasoning About Finite Satisfiability of UML
Class Diagrams

The method of Lenzerini and Nobily is defined for Entity-Relationship (ER) dia-
grams that include Entity Types (Classes), Binary Relationships (Binary Asso-
ciations), and Cardinality Constraints. The method consists of a transformation
of the cardinality constraints into a set of linear inequalities whose size is poly-
nomial in the size of the diagram. All class finite satisfiability of the ER diagram
reduces to solution existence of the associated linear inequalities system. The
linear inequalities system is defined as follow:

1. For each association R(rn1 : C1[min1, max1], rn2 : C2[min2, max2]) insert
the following inequalities:
– For min2 > 0 : r ≥ min2 · c1 and for max2 �= ∗ : r ≤ max2 · c1.
– For min1 > 0 : r ≥ min1 · c2 and for max1 �= ∗ : r ≤ max1 · c2.

2. For every entity or association symbol T insert the inequality: T > 0.

Lenzerini and Nobili also present a method for identification of causes for
non-satisfiability. This method is based on a transformation of the conceptual
schema into a graph and identification of critical cycles. Similar approaches are
introduced in [20, 8]. Hartman, in [9] further develops methods for handling finite
satisfiability problems in the context of database key and functional dependency
constraints. Heuristic methods for constraint corrections are presented in [10, 11].

Calvanese and Lenzerini, in [5], extend the inequalities based method of Lenz-
erini and Nobili [15] to apply to schemata with class hierarchy constraints. The
expansion is based on the assumption that class extensions may overlap. They
provide a two stage algorithm in which the finite satisfiability problem of a class
diagram with ISA constraints is reduced into the finite satisfiability problem of
a class diagram without ISA constraints. Then, similarly to [15], they check all
class finite satisfiability of the new class diagram by deriving a special system of
linear inequalities (different from that of [15]).

The class diagram transformation process of [5] is fairly complex, and might
introduce, in the worst case, an exponential number, in terms of the input di-
agram size, of new classes and associations. The method was further simplified
in [4], where class overlapping is restricted to class hierarchy alone. The simpli-
fication of [4] reduces the overall number of new classes and associations, but
the worst case is still exponential. Example 2 presents the application of [4] to
Figure 1.

Example 2. The application of the [4] method yields four classes and eight asso-
ciations. Each class and association is represented by a variable in the resulting
inequalities system. The variables are:

1. Class variables: a1 for an Academic that is neither a Graduate nor a Facul-
tyMember ; a2 for an Academic that is a Graduate but not a FacultyMember ;
a3 for an Academic that is a FacultyMember but not a Graduate; a4 for an
Academic that is simultaneously a Graduate and a FacultyMember.



22 A. Maraee and M. Balaban

2. Association variables: {adij |1 ≤ i ≤ 4 ∧ j ∈ {2, 4}}. Every specialized
association relates two new classes, one for the advisor role and the other
for the student role. The indexes represent the indexes of the class variables.
For example, the variable r12 represents the specialization of the advisor-
student association to an association between Academics who are neither
Graduates nor FacultyMembers (the a1 variable) and Academics specialized
to Graduates but not to FacultyMembers (the a2 variable).

The inequalities system below results from application of the method of [4] to
Figure 1. Equations 1-4 translate the 2..2 multiplicity, equations 5-6 translate the
1..1 multiplicity, and the inequalities in 7-9 represent the satisfiability conditions.
The inequalities system is unsolvable, implying that the class diagram in Figure
1 is finitely unsatisfiable.

1. 2a1 = ad12 + ad14.
2. 2a2 = ad22 + ad24.
3. 2a3 = ad32 + ad34.
4. 2a4 = ad42 + ad44 .
5. a2 = ad12 + ad22 + ad32 + ad42.
6. a4 = ad14 + ad24 + ad34 + ad44.
7. a1, a2, a3, a4, ad12, ad14, ad22, ad24, ad32, ad34, ad42, ad44 ≥ 0.
8. a1 + a2 + a3 + a4 > 0.
9. ad12 + ad14 + ad22 + ad24 + ad32 + ad34 + ad42 + ad44 > 0.

2.2 UML2.0 Class Hierarchy Concepts: Generalization Sets

In UML2.0 class hierarchy constraints are expressed using the Generalization Set
(GS ) concept, which is similar to the former class hierarchy grouping construct
[18]. A GS s includes a superclass and a set of sub classes (different from the
super class). The semantics is that the sub classes denote sub sets of the set
denoted by the super class. GS s may be constrained as follows [18, 19]:

1. complete - An instance of the superclass is an instance of at least one sub-
class.

2. incomplete- There might be instances of the superclass of that are not in-
stances of any subclass.

3. disjoint - Subclasses are mutually exclusive.
4. overlapping - Subclasses may overlap.

The GS constraints can be combined to form one of the following valid com-
bination: {complete, disjoint}, {incomplete, disjoint}, {complete, overlapping},
{incomplete, overlapping}. Figure 2 shows a disjoint constraint.

2.3 Classification of Class Hierarchy Structures

Class hierarchy can arise in various structures that affect the finite satisfiability
decision algorithm. We distinguish three parameters that determine the class
hierarchy structures and content:



Efficient Reasoning About Finite Satisfiability of UML Class Diagrams 23

Fig. 2. Constrained Generalization Set

1. ISA Graph Structure: ISA constraints can form three kinds of graph
structures:
(a) Tree Structure, as in Figure 1: A subclass has a single super class.
(b) Acyclic Structure: Multiple inheritance is allowed, but the undirected

induced subgraph formed by the ISA constraints is acyclic. For example,
in Figure 3-a, the hierarchy structure is not a tree, as F is a sub class of
both C and D, but the undirected class hierarchy graph is acyclic. The
acyclic structure prevents multiple inheritance with a common ancestor-
class.

Fig. 3. Unconstrained Hierarchy Structures

(c) Graph Structure, as in Figure 3-b: unrestricted multiple inheritance.
2. Presence of GS Constraints.
3. Number of GSs per superclass, as in Figure 3-b.

We use an abbreviated notation that specifies the value of these parameters.
The hierarchy structure is denoted by one of {T,A,G}, standing for Tree struc-
ture, Acyclic graph, and Graph, respectively. The presence of GS constraints is
denoted by C, and the presence of multiple GS s per superclass is denoted by M.
The multiple GS s per superclass distinction is relevant only for tree structure
hierarchies. For acyclic on graph hierarchies, multiple GS s per a single super-
class are allowed by the graphical structure. The resulting hierarchy variants
are: [T]-GS for tree structured unconstrained hierarchy with a single GS per
superclass; [T-C]-GS for tree structured constrained GS s with a single GS per
superclass; [T-M]-GS for tree structured unconstrained hierarchy with multiple



24 A. Maraee and M. Balaban

GS s per super class; [T-C-M]-GS for a constrained tree hierarchy with multiple
GS s per super class; [A]-GS for an unconstrained acyclic hierarchy; [A-C]-GS
for a constrained acyclic hierarchy; [G]-GS for unconstrained graph hierarchy;
[G-C]-GS for a constrained graph hierarchy.

3 Reasoning About Finite Satisfiability of UML Class
Diagrams with Unconstrained GSs

In this section, we present a method for reasoning about finite satisfiability of UML
class diagrams with unconstrained GS s. We start with a tree structured hierarchy
[T]-GS, and extend it to the hierarchical structures: {[T-M],[A],[G]}-GS.

The method builds on top of the Lenzerini and Nobili [15] algorithm described
in Section 2. We reduce the finite satisfiability problem of a class diagram with
ISA constraints, into the finite satisfiability problem of a class diagram that is
handled by [15]. First, we state that all class finite satisfiability implies a full
finite satisfiability The proof is similar to the proof for the case of the restricted
ER diagrams, as presented in [15].

Theorem 1. If a class diagram is all class finitely satisfiable then it is fully
finitely satisfiable.

Proof. (Sketched) The theorem is proved by the following argument: Every two
disjoint instances can be combined into a single instance of the class diagram. The
argument holds due to the special character of UML class diagram constraints,
which are closed under disjoint instance combination. For full proof consult [17].

3.1 Testing the Finite Satisfiability of Class Diagrams with [T]-GS

Algorithm 1.

– Input: A class diagram CD that includes binary associations and [T]-GS.
– Output: True, if CD is all class finitely satisfiable; false otherwise.
– Method:

1. Class diagram reduction - Create a new class diagram CD′ as follows:
(a) Initialize CD′ by the input class diagram CD.
(b) Remove from CD′ all generalization set constructs.
(c) For every removed generalization set construct create new binary

associations between the superclass to the subclasses, with 1..1 par-
ticipation constraint for the subclass (written on the super class edge
in the diagram) and 0..1 participation constraint for the super class.

2. Apply the Lenzerini and Nobili algorithm to CD′.

Example 3. Figure 4 is the reduced class diagram of Figure 1, following step 1
in the algorithm. Applying the inequalities method of [15] (step 2) yields the
inequalities system below. We use the symbols ad for Academic, g for Graduate,



Efficient Reasoning About Finite Satisfiability of UML Class Diagrams 25

fm for FacultyMember, as for the advisor-student association, and isa1, isa2 for
the new associations ISA1 and ISA2 respectively.

as ≥ 2ad, as ≤ 2ad, as ≤ g, as ≥ g, isa1 ≥ g, isa1 ≤ g, isa1 ≤ ad, isa2 ≥ fm,
isa2 ≤ fm, isa2 ≤ ad, and

as > 0 , ad > 0, g > 0, fm > 0, isa1 > 0, isa2 > 0

This system has no solution and therefore the [15] algorithm returns False.
The same result was obtained in Section 2 by applying the [5],[4] algorithm to
Figure 1.

Fig. 4. The Reduced Class Diagram of Figure 1

Claim 1: [Correctness of Algorithm 1] Algorithm 1 tests for all class finite
satisfiability of class diagrams with [T]-GS.

Proof. (sketched) the claim builds on showing that the translated class diagram
CD′ preserves the satisfiability of the input class diagram CD. Full proof appears
in [17].

Claim 2: [Complexity of Algorithm 1] Algorithm 1 adds to the [15] method
an O(n) time complexity, where n is the size of the class diagram (including
associations, classes and ISA constraints).

Proof. The additional work involves the class diagram reduction, which creates
a class diagram with the same set of classes and one additional association that
replaces every class hierarchy constraint. Since there is a linear additional work
per ISA constraint, the overall additional work is a linear to the size of the class
diagram.

3.2 Extensions for {[T-M], [A], [G]}-GS

Algorithm 1 applies properly to the other unconstrained structures: {[T-M],
[A], [G]}-GS. The extensions preserve the correctness of the algorithm since the
reduction of all class finite satisfiability of CD to that of CD′ is still correct.
The more complex structure does not break the reduction because as long as
the GS s are not constrained, ISA constraints can be simulated by regular links
between the involved classes. Different instances of a superclass C in CD′ can
be unified into a single instance of C in CD, without breaking any constraints.



26 A. Maraee and M. Balaban

4 Reasoning About Finite Satisfiability of UML Class
Diagrams with Constrained Generalization Sets

Adding GS -constraints to the class diagram imposes additional requirements on
its finite satisfiability problem. In order to test finite satisfiability under GS -
constraints, the finite satisfiability problem of a class diagram CD with ISA
constraints, is reduced into the finite satisfiability problem of a “constrained”
class diagram CD′ without class hierarchy. The additional constraints on CD′

preserve the constraints on the GS s of CD. The inequalities system obtained by
applying the method of [15] to CD′ is expanded with new inequalities that reflect
the GS constraints. This algorithm is first introduced for single GS -constraints,
i.e., the four GS -constraints disjoint, complete, incomplete, overlapping, and then
expanded for handling combinations of pair GS -constraints. We begin with an
algorithm for deciding finite satisfiability of tree structured ([T-C]-GS) class
diagrams. We show that the algorithm applies also to [T-C-M]-GS and to [A-
C]-GS class diagrams. Finally we explore the limits of the algorithm for the
[G-C]-GS class diagrams. We show that for graph structured class hierarchies,
the algorithm can handle the overlapping and the incomplete GS -constraints,
but falls short for deciding finite satisfiability for the disjoint and the complete
GS -constraints.

The incomplete and the overlapping constraints of generalization sets have a
“possibilistic” semantics: The first states that there might be direct instances of
the superclass, and the second states that subclasses may overlap. Finite satis-
fiability for these constraints requires the realization of the possibilistic nature.
That is, the incomplete constraint requires the existence of direct instances of
the superclass, and the overlapping constraint requires the existence of common
instances for subclasses. For the finite satisfiability problem, we require the ex-
istence of an instance in which incomplete super-classes have direct instances,
and overlapping subclasses have common instances.

4.1 Testing Finite Satisfiability of Tree Structured ([T-C]-GS) Class
Diagrams

Algorithm 2.

– Input: A class diagram CD that includes binary associations and [T-C]-GS.
– Output: True, if CD is all class finitely satisfiable; false otherwise.
– Method:

1. Class diagram reduction:
(a) Steps 1.a, 1.b, 1.c from Algorithm 1.
(b) For every generalization set C, C1, ..., Cn in CD, add constraint

Const on its classes as follows:
for disjoint/overlapping constraint, Const is: “there is no/(at least
one) instance of class C which is associated with more than one in-
stance from C1,... Cn via the ISA links”;



Efficient Reasoning About Finite Satisfiability of UML Class Diagrams 27

for complete/incomplete constraint, Const is: “all/part of the in-
stances of class C are associated with the instances of the classes
C1, ..., Cn via the ISA links”.

2. Inequalities system construction:
(a) Create the inequalities system for CD′ according to the Lenzerini

and Nobili algorithm.
(b) For every single constraint Const added in step 1b, extend the in-

equalities system, as follows:
i. Const = disjoint : C ≥

∑n
j=1 Cj .

ii. Const = complete: C ≤
∑n

j=1 Cj .
iii. Const = incomplete: ∀j ∈ [1, n].C > Cj .
iv. Const = overlapping: Without inequality.

(c) For every pair of constraints added in step 1b, extend the inequalities
system, as follows:
i. disjoint, incomplete: C >

∑n
j=1 Cj .

ii. disjoint, complete: C =
∑n

j=1 Cj .
iii. overlapping, complete: C <

∑n
j=1 Cj .

iv. overlapping, incomplete: ∀j ∈ [1, n].C > Cj .
3. Apply the Lenzerini and Nobili algorithm to CD′.

Example 4. Consider Figure 2. The interaction between the cardinality con-
straint, the hierarchy, and the GS constraints causes a finite satisfiability prob-
lem. Applying the method of [15] with the extension in Algorithm 2, step 2.b.i,
to the reduced class diagram of Figure 2 yields the unsolvable inequalities sys-
tem (same variables from Example 3) presented below, implying that the class
diagram is finitely unsatisfiable.

isa1 = g, isa1 ≤ ad, isa2 = fm ,isa2 ≤ ad, as = ad, ad = g , ad > 0, as > 0,
g > 0,fm > 0, isa1 > 0, isa2 > 0, and the disjoint inequality: ad ≥ g + fm

Comment: The inequalities that are used in step (2.b) for satisfying the single
GS -constraints are not mutually exclusive. Indeed, there are solutions for the
inequalities system that can imply finite satisfiability for several constraints. For
example, a solution that yields equality in a disjoint inequality implies that the
disjoint constraint can be replaced by a complete constraint, without affecting
finite satisfiability, and vice versa. Step (2.c) handles pairs of GS - constraints
that result from combinations of disjoint / overlapping with complete / incom-
plete. The single constraint inequalities are tightened so to meet the combined
constraints.

Claim 3: [Correctness of Algorithm 2] Algorithm 2 tests for all class finite
satisfiability of class diagrams with [T-C]-GS hierarchy structure.

Proof. (Sketched) The claim builds on showing that the translated class diagram
CD′ together with its associated constraints, preserves the all class finite satis-
fiability of the input class diagram CD. As for the second step of the algorithm,
we show that for each constraint the additional inequality (or equality) provides
a necessary and sufficient condition for the existence of a CD′ instance that



28 A. Maraee and M. Balaban

satisfies the generalization set constraint. For example, inequality [i] in step 2.b
of Algorithm 2 characterizes the existence of a CD′ instance that satisfies the
referenced disjoint constraint. For full proof consult [17].

Claim 4: [Complexity of Algorithm 2] Algorithm 2 adds an O(n) time
complexity to the [15] method, where n is the size of the class diagram (including
associations, classes and ISA constraints).

Proof. The additional work involves the class diagram reduction, which creates
a class diagram with the same set of classes and one additional association that
replaces every class hierarchy constraint. In addition, every GS constraint adds
a single inequality. Since the work per generalization set is linear in its size, the
overall additional work is linear in the size of the class diagram.

The inequalities of the pair GS -constraints are not exclusive. The first and sec-
ond inequalities imply, each, the last. Therefore, finite satisfiability with the pair
constraints {disjoint, incomplete}/ {disjoint, complete} implies finite satisfiabil-
ity with the {overlapping, incomplete} constraints. This observation leads to the
following conclusion:

Conclusion: If a tree structured class diagram CD is fully finitely satisfiable,
then a class diagram CD′ which is obtained from CD by replacing pairs of
GC -constraints {disjoint, incomplete}/ {disjoint, complete} with {overlapping,
incomplete} is also fully finitely satisfiable.

4.2 Extension of Algorithm 2 to {[T-C-M], [A-C], [G-C]}-GS
Hierarchy Structure - Exploring the Limits of the Suggested
Method

Algorithm 2 extends properly to the {[T-C-M], [A-C]}-GS hierarchy structures,
but it does not extend to the full case of [G-C]-GS hierarchies. The single GS -
constraints incomplete and overlapping cause no problems. But the presence
of the disjoint or the complete constraints within cyclic class hierarchies fails
the algorithm. The reason is that in general graph structured class hierarchies,
these GS -constraints have an implicit global effect on other generalization sets
in a cycle. We now demonstrate the problems, and explain why the method of
Algorithm 2 cannot handle these cases.

Presence of a disjoint GS-Constraint in a [G-C]-GS class diagram:
Consider the class diagram in Figure 5-a. The disjoint constraint imposed on
the generalization set {A, B, C, D} implies that in every instance, the extension
of E properly includes the extension of D. But, object members of class E are
mapped in a 1:1 manner to members of D, implying that the sets have the same
size. The only solution for proper set inclusion with equal size is that the sets are
either empty or infinite. Therefore, the diagram is not fully finitely satisfiable.

Nevertheless, Algorithm 2 yields a solvable inequalities system as shown be-
low. We use the symbols a, b, c, and e for the classes A, B, C, D and E
respectively, isa1, isa2 isa3 for the new associations between A to B, A to C



Efficient Reasoning About Finite Satisfiability of UML Class Diagrams 29

Fig. 5. Constrained Graph Hierarchy

and A to D respectively, isa4, isa5 for the new associations between E to C
and E to D respectively and the symbol r for the R association.

1. The Inequalities System produced by Algorithm 2 for Figure 5-a:
(a) The Generalization Set {A, B, C, D}:

– isa1 = b, isa1 ≤ a, isa2 = c, isa2 ≤ a, isa3 = d, isa3 ≤ a.
– The disjoint inequality: a ≥ b + c + d.

(b) The Generalization Set {C, D, E}:
– isa4 = c, isa4 ≤ e, isa5 = d, isa5 ≤ e, r = d, r = e.

2. A Possible Solution: a = 3, b = c = d = e = 1, , isa1 = isa2 = isa3 =
isa4 = isa5 = 1, and r = 1.

The reason for the failure of Algorithm 2 to detect that the diagram in Figure 5-a
is not fully finitely satisfiable is lies in the projection of the disjoint constraint from
one generalization set to the other. The implied disjoint constraint on the lower
generalization set is not recorded in the inequalities system.

Presence of a complete GS-Constraint in a [G-C]-GS class diagram:
Consider the class diagram in Figure 5-b. The complete constraint states that
the union of the extensions of classes B and C is the extension of class A. Yet, B
is a subclass of C, implying that the extensions of C and A are equal. On other
hand, the elements of class C are mapped in a 1 : 2 manner to those of class A.
The only solution for having a 1 : 2, onto mapping from a set to itself is either
empty or infinite. Therefore, the class diagram is not fully finitely satisfiable.

Nevertheless, Algorithm 2 yields a solvable inequalities system as shown be-
low.

1. The Inequalities System of Figure 5-b:
(a) isa1 = b, isa1 ≤ a, isa2 = c, isa2 ≤ a, isa3 = b, isa3 ≤ c, r = 2c, r =

a.
(b) The completeness inequality: a ≤ b + c.

2. A Possible Solution: a = 2, b = c = 1, , isa1 = isa2 = isa3 = 1, and
r = 2.



30 A. Maraee and M. Balaban

The reason for the failure ofAlgorithm 2 to detect that the diagram in Figure 5-b
is not fully finitely satisfiable lies in the projection of the {B, C} generalization set
on the constraints imposed on the other generalization set. The implied constraint
for the {A, B, C} generalization set is complete, overlapping. The addition of this
constraint yields an unsolvable inequalities system.

5 Conclusions and Future Work

In this paper, we have introduced a simple and effective method for deciding
full finite satisfiability of class diagrams with constrained generalization sets.
The advantage of this method lies in its simplicity and efficiency. The method
applies to class diagram features that are not handled by other approaches, and
improves the efficiency of existing methods.

We have studied the limits of this method with respect to the interaction
between class hierarchy structure and the kind of GS constraints it includes.
Yet, it seems that the combination of graph structured class hierarchies with
the disjoint and complete GS -constraints does not occur that often. One pos-
sibility might be a combination of the expensive Calvanese-Lenzerini algorithm
with our method. That is, apply our method in most cases, and resort to the
inefficient method whenever our method does not apply. It is possible also that
proper preprocessing of the GS -constraints in a class diagram, can strengthen
our method.

In the future, we plan to explore the possible extension of the presented
method for testing full finite satisfiability in the presence of n-ary association
with complex cardinality constraints, qualifier constraints, association class con-
straints, and association constraints.

Another direction involves the possibility of expanding our method with heur-
istics for detecting and repairing finite satisfiability problems following the ideas
of [10, 11]. The intention is to apply similar strategies for repairing finite satis-
fiability problems in UML2 class diagrams with class hierarchy constraints.

References

[1] Balaban, M., Shoval, P.: MEER-An EER Model Enhanced with Structure Meth-
ods. Information Systems, vol. 27(4) ( 2002)

[2] Berardi, D., Calvanese, D., Giacomo, D.: Reasoning on UML class diagrams. Ar-
tificial Intelligence (2005)

[3] Boufares, F., Bennaceur, H.: Consistency Problems in ER-schemas for Database
Systems. Information Sciences, Issue 4 (2004)

[4] Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite Satisfiability of
UML Class Diagrams by Constraint Programming. In: Wallace, M. (ed.) CP 2004.
LNCS, vol. 3258, Springer, Heidelberg (2004)

[5] Calvanese, D., Lenzerini, M.: On the Interaction between ISA and Cardinality
Constraints. In: Proc. of the 10th IEEE Int. Conf. on Data Engineering (1994)



Efficient Reasoning About Finite Satisfiability of UML Class Diagrams 31

[6] Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description
Logic Framework for Information Integration. In: Proceedings of the Sixth Inter-
national Conference on the Principles of Knowledge Representation and Reasoning
(KR’98), pp. 2–13 (1998)

[7] Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An Ontologically well-
Founded Profile for UML Conceptual Models. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, Springer, Heidelberg (2004)

[8] Hartman, S.: Graph Theoretic Methods to Construct Entity-Relationship
Databases. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, Springer, Heidelberg
(1995)

[9] Hartman, S.: On the Implication Problem for Cardinality Constraints and Func-
tional Dependencies. Ann.Math.Artificial Intelligence (2001)

[10] Hartman, S.: Coping with Inconsistent Constraint Specifications. In: Kunii, H.S.,
Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, Springer, Heidelberg
(2001)

[11] Hartman, S.: Soft Constraints and Heuristic Constraint Correction in Entity- Re-
lationship Modeling. In: Bertossi, L., Katona, G.O.H., Schewe, K.-D., Thalheim,
B. (eds.) Semantics in Databases. LNCS, vol. 2582, Springer, Heidelberg (2003)

[12] Kaneiwa, K., Satoh, S.: Consistency Checking Algorithms for Restricted UML
Class Diagrams. In: Proceedings of the Fourth International Symposium on Foun-
dations of Information and Knowledge Systems (2006)

[13] Kozlenkov, A., Zisman, A.: Discovering Recording, and Handling Inconsistencies
in Software Specifications. Int. J. of Computer and Information Science 5(2) (2004)

[14] Lange, C., Chaudron, M., Muskens, J.: In Practice: UML Software Architecture
and Design Description. IEEE Software, vol. 23(2) (2006)

[15] Lenzerini, M., Nobili, P.: On the Satisfiability of Dependency Constraints in
Entity-Relationship Schemata. Information Systems, Vol. 15(4) (1990)

[16] Liang, P.: Formalization of Static and Dynamic UML Using Algebraic. Master’s
thesis, University of Brussel (2001)

[17] Maraee, A.: Efficient Methods for Solving Finite Satisfiability Problems in UML
class Diagrams. Master’ thesis, Ben-Gurion University of the Negev (2007)

[18] OMG.: UML 2.0 Superstructure Specification (2005)
[19] Rumbaugh, J., Jacobson, G., Booch, G.: The Unified Modeling Language Refer-

ence Manual Second Edition. Adison Wesley, London, UK (2004)
[20] Thalheim, B.: Entity Relationship Modeling, Foundation of Database Technology.

Springer, Heidelberg (2000)
[21] Unhelkar, B.: Verification and Validation for Quality of UML 2.0 Models. Addison-

Wesley, London, UK (2005)



A Practical Approach to Model Extension

Mikaël Barbero1, Frédéric Jouault1,2, Jeff Gray2, and Jean Bézivin1

1 ATLAS Group, INRIA and LINA,
University of Nantes, France

Firstname.Lastname@univ-nantes.fr
2 Department of Computer and Information Sciences,

University of Alabama at Birmingham
Lastname@cis.uab.edu

Abstract. In object technology, reusability is achieved primarily through
class inheritance. In model engineering, where reusability is also impor-
tant, it should be possible to extend a modeling artifact in a similar man-
ner to add new capabilities. This paper presents a conceptual and practical
approach to model extensibility, in which newmodels are created as deriva-
tions from base models. There are several situations where such an exten-
sibility mechanism is useful and essential (e.g., in the case of hierarchies of
metamodels). In order to achieve the goal ofmodel extension, a precise defi-
nition of the extension mechanism is needed, based on a strict model defini-
tion. After describing the context of model extension through a motivating
example, the paper outlines a practical implementation with characteriza-
tion of its main conceptual properties. The solution is being implemented
as part of the AMMA model engineering platform under Eclipse.

1 Introduction

Model-Driven Engineering (MDE) offers an advantage due to its power in pro-
viding a homogeneous view of heterogeneous artifacts [1]. The main assumption
leading to this power is summarized by “everything is a model”; i.e., models are
considered as a unifying concept in software.

The work presented here is based on precise definitions of the principles of
MDE given in [5] and [7]. According to these previous works, MDE relies on two
main relations: conformance and representation. In this paper, we introduce a
third relation called extension.

The conformance relation links one model to another model called its reference
model. Throughout this paper, we abbreviate the conformance relation as c2 (for
“conforms to”). Figure 1 illustrates this definition.

Although this first definition allows an indefinite number of conformance
layers, the layers must stop at some level for practical purposes. This is ac-
complished by giving the definitions of the three different kinds of models en-
countered in the OMG modeling stack:

1. A metametamodel is a model that is its own reference model (i.e., it conforms
to itself),

D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 32–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Practical Approach to Model Extension 33

Fig. 1. Definition of a model and its reference model

2. A metamodel is a model such that its reference model is a metametamodel,
3. A terminal model is a model such that its reference model is a metamodel.

These definitions define a modeling architecture based on three levels, which
is compatible with the OMG view.

The second foundational relation of MDE is called representation, which links
terminal models to the systems they represent. This relation is abbreviated repOf
(for “representation of”) and satisfies the principle of substitutability1 [8]. This
relation is illustrated by Fig. 2. The conformance of a terminal model to its
metamodel is also depicted.

Fig. 2. Basic relations of representation and conformance

This paper is based on the existence of an additional relation between models
called extensionOf. Let Mi be a core model representing most concepts for a
kind of system. The extension model Mf is a model, defining some new concepts
not in Mi but making references to existing Mi concepts. Figure 3 illustrates
this relation between the two models Mi and Mf .

The composition of Mi with its extension model Mf leads to a new model Mr

(see Fig. 4). Mr is the result model of the composition of initial model Mi and
fragment model Mf . This composition does not need to be actually computed, it
can be interpreted (i.e., queries over Mr are dynamically translated into queries
over Mi and Mf). However, considering the model Mf as an extension of model
Mi leads toward a consideration of model Mr.

This paper is organized as follows. Section 2 provides a motivating example. Sec-
tion 3 describes a corresponding implementation in KM3 [5], and Section 4
1 A model M is said to be a representation of a system S for a given set of questions

Q if for each question of this set Q, the model M will provide the same answer that
the system S would have provided in answering the same question.



34 M. Barbero et al.

Fig. 3. Relation of extension between two models

Fig. 4. Extension model and fragment model

gives the conceptual definitions of the model extension mechanism. Section 5 fur-
ther characterizes this mechanism. Section 6 gives an overview of related works.
Section 7 concludes and summarizes future work.

2 Motivating Example

Petri nets are a well-known formalism used to study communication between
parallel systems [12]. A classical Petri net is a set of places and transitions linked
by directed arcs. Arcs run from a place to a transition or from a transition to
a place. The following Petri net (Fig. 5) has four places (P1, P2, P3, and P4)
and two transitions (T 1, and T 2).

Fig. 5. A simple PetriNet

The metamodel depicted on Fig. 6 specifies all the concepts of a simple Petri
net like the one on Fig. 5. This metamodel describes a Petri net as a set of Arcs
and Nodes. A Node can be either a Place or a Transition.



A Practical Approach to Model Extension 35

Fig. 6. PetriNet metamodel

From the Petri net of Fig. 5, an infinite number of executions can be launched.
The metamodel does not allow the design of Petri nets with a specific execution
state. To overcome this limitation, we can extend the previous metamodel with
the concepts describing the state of a Petri net at a given time. Such a Petri net
is said to be marked. A marked Petri net can be represented by attaching a set
of Tokens to some Places. This addition does not affect the previously defined
structure of the Petri net.

An initial simplified solution would add an integer attribute to class Place.
This would give an initial marking by storing the number of tokens associated to
a place. However, this would prevent more advanced representations like colored
and value-based tokens. Therefore, our application of model extension enables
the separate modeling of tokens. Figure 7 shows the same Petri net of Fig. 5
with tokens on places P1 and P2.

Fig. 7. A simple PetriNet at a given execution state

As we previously mentioned, the base structure of the Petri net with marking is
not changed. The metamodel of the Petri net with marking is depicted on Fig. 8.
It adds the concept of Marking as a set of Tokens. Each Token is associated with a
Place. The Place class comes from the first Petri net metamodel defined in Fig. 6.

This new metamodel is an extension of the original Petri net metamodel.
The Petri net of Fig. 7 conforms to this extension. Actually, this Petri net is
conforming to the combination of the initial metamodel with its extension, which
is the metamodel given in Fig. 9. This combination merges the common concept
of Place to build the complete metamodel.



36 M. Barbero et al.

Fig. 8. Marking metamodel extension of PetriNet

Fig. 9. Result of PetriNet metamodel and marking extension combination

There are many extensions to Petri nets (e.g., colored Petri nets, hierarchical
Petri nets, timed Petri nets). The previous mechanism can be used to describe
the metamodels of those extensions without having to start anew each time, but
by extending the same base metamodel.

3 Implementation Support

In the previous section, an extension to a Petri net metamodel was introduced as
a motivating example. This section provides the definition of those metamodels in
KM3 [5] format. This format has been the foundation of a conceptual framework
that will be described in the next section and extended to a formal definition of
model extension.

The initial metamodel of PetriNet describes concepts of Arcs, Places and
Transitions. The metamodel given in Fig. 10 is exactly the same as the one in
Fig. 6, but represented using a different (textual) notation. Each concept is a
named Element having a reference to its owning Petri net. Places and Transitions
have some input and output Arcs. Arcs are linked to one source Node, and to
one target Node.

The previous metamodel describes the concepts that are shared between all
kinds of Petri nets. An extension of this metamodel has been defined to represent
marked Petri nets and is given in Fig. 11. It is the same metamodel as the one
presented in Fig. 8. All classes having the same name as one of the classes of



A Practical Approach to Model Extension 37

1 package PetriNet {
2 class PetriNet {
3 reference elements[1-*] container : Element oppositeOf net;
4 }
5 abstract class Element {
6 attribute name : String;
7 reference net : PetriNet oppositeOf elements;
8 }
9 abstract class Node extends Element {

10 reference in[*] : Arc oppositeOf to;
11 reference out[*] : Arc oppositeOf from;
12 }
13 class Arc extends Element {
14 reference from : Node oppositeOf out;
15 reference to : Node oppositeOf in;
16 }
17 class Place extends Node {}
18 class Transition extends Node {}
19 }

Fig. 10. PetriNet metamodel in KM3

the initial metamodel actually correspond to the same classes. Previous features
are not re-defined. For instance, the PetriNet class is present in both the initial
metamodel and in the extension metamodel. Only the markings reference to
Marking elements is added. The extension metamodel is also adding the concepts
of Marking and Token. A Marking contains a set of Tokens and a token is
attached to a Place.

1 package PetriNet {
2 class PetriNet {
3 reference markings[*] : Marking;
4 }
5 class Place {}
6 class Marking {
7 reference petrinet : PetriNet;
8 reference tokens[*] container : Token;
9 }

10 class Token {
11 reference position : Place;
12 }
13 }

Fig. 11. Marking metamodel extension of PetriNet in KM3

When the previous metamodel is used as an extension of the initial one, it
can be described as the “composition” of those two metamodels into a single
one. This “composed” metamodel is given in Fig 12. Each concept defined in
one of the two previous metamodels is present in this new metamodel. When a
concept exists in both previous metamodels (like Place and PetriNet), the result
of the extension is the merging of elements from the initial metamodel and from
its extension. For instance, we can see the markings reference that have been
added within the PetriNet class or the Token class added within the PetriNet
package. We are identifying common concepts in KM3 metamodels by using a



38 M. Barbero et al.

1 package PetriNet {
2 class PetriNet {
3 reference elements[1-*] container : Element oppositeOf net;
4 -- @begin extensionOf
5 reference markings[*] : Marking;
6 -- @end extensionOf
7 }
8 abstract class Element {
9 attribute name : String;

10 reference net : PetriNet oppositeOf elements;
11 }
12 abstract class Node extends Element {
13 reference in[*] : Arc oppositeOf to;
14 reference out[*] : Arc oppositeOf from;
15 }
16 class Arc extends Element {
17 reference from : Node oppositeOf out;
18 reference to : Node oppositeOf in;
19 }
20 class Place extends Node {}
21 class Transition extends Node {}
22 -- @begin extensionOf
23 class Marking {
24 reference petrinet : PetriNet;
25 reference tokens[*] container : Token;
26 }
27 class Token {
28 reference position : Place;
29 }
30 -- @end extensionOf
31 }

Fig. 12. Result of PetriNet metamodel and marking extension combination in KM3

fully qualified name. The elements that are added by the extension metamodel
are surrounded by the – @begin extensionOf and – @end extensionOf comments.

4 Conceptual Framework

The initial limitation of our implementation handled KM3 metamodel extension
by concatenating the textual representation of the the participating metamod-
els. The new implementation of metamodel extension is focused on the abstract
syntax and has been fully automated using model transformation. A first trans-
formation matches model elements by name, and a second one uses this mapping
as input to merge the initial and extension metamodels.

The motivating example introduced in the previous section described the con-
cept of model extension informally. Some examples of implementation have then
been given with the KM3 notation. This notation has been precisely defined within
a conceptual framework in a previous work [5]. The first two following definitions
come from this conceptual framework. They are repeated here for convenience. The
last definition extends those two to describe model extension formally.

Definition 1. A directed multigraph G = (NG, EG, ΓG) consists of a finite set
of nodes NG, a finite set of edges EG, and a mapping function ΓG : EG →
NG × NG mapping edges to their source and target nodes.



A Practical Approach to Model Extension 39

Definition 2. A model M = (G, ω, μ) is a triple where:

– G = (NG, EG, ΓG) is a directed multigraph,
– ω is itself a model (called the reference model of M) associated to a graph

Gω = (Nω, Eω, Γω),
– μ : NG ∪ EG → Nω is a function associating elements (nodes and edges) of

G to nodes of Gω.

Definition 3. Let Mi and Mf be two models conforming to the same reference
model ω

– Mi = (Gi, ω, μi) and Gi = (Ni, Ei, Γi)
– Mf = (Gf , ω, μf) and Gf = (Nf , Ef , Γf )
– ω = (Gω , ωω, μω) and Gω = (Nω, Eω, Γω)

Let ε : Nf → Nf ∪Ni be a mapping from nodes of Mf to nodes of Mf and nodes
of Mi. ε maps each node from Nf to that same node or to a node from Ni:

ε(x) =

{
x if ∀v ∈ Ni, v �= x or,
y if ∃y ∈ Ni, y = x

Note: Node comparison operators = and �= must be defined in a metamodel
specific way. For instance, in Section 3, classes (KM3 specific concept) were
compared according to their names. The definition of such operators is out of
the scope of this paper. We are considering this comparison as a decidable and
deterministic issue in the following definitions.

The extension Mr = Mi ⊕ε Mf of model Mi by model Mf according to ε is
the model Mr with

– Mr = (Gr, ωr, μr) and Gr = (Nr, Er, Γr)
• Nr = Ni ∪ ε(Nf ),
• Er = Ei ∪ Ef ,

• Γr(x) =

{
Γi(x) if x ∈ Ei

ε{2}(Γf (x)) if x ∈ Ef

,

• μr(x) =

{
μi(x) if x ∈ Ni ∪ Ei

μf (x) if x ∈ Nf ∪ Ef

.

The function ε{2} : N2
f → (Nf ∪Ni)2 is the bidimensional version of ε : x 	→ y

defined as ε{2} : (x, y) 	→ (ε(x), ε(y))

An illustration of model extension is given in Fig. 13. The initial model Mi

containing four elements is extended by Mf containing three elements according
to the ε mapping. ε maps the two lower nodes of Mf to themselves and the third
one to a node of Mi. The result of the extension is Mr, which contains six nodes:
all four from Mi and only two from Mf .



40 M. Barbero et al.

Fig. 13. Example of model extension

5 Characterization of Model Extension

From previous definitions, some characteristics of model extension may be lever-
aged. The following (non-exhaustive) list presents some of the characteristics of
use for model extension.

– Fragment model has no dangling edges. A dangling edge is an edge linked
to only one node. With this kind of structure, a fragment model would have
been a special entity. Because there is no dangling edge, the fragment model
is a “true” model conforming to a reference model.

– Models Mi, Mr and Mf conform to the same reference model. Even the
fragment model Mf is a model conforming to the reference model. This
result comes from the absence of a dangling edge.

– With our conceptual definitions, it is possible to define libraries of model
extensions. These libraries should have a lattice structure. For instance, we
could have a library of Petri net metamodels, with each metamodel capturing
the concepts of each type of Petri net by extending another kind of Petri net
metamodel.

6 Related Work

The problem of model extension is central to most practical model editing tasks.
Many solutions have been found in specific contexts. For intance, in case one is
dealing only with UML models (i.e., models conforming to the UML metamodel),
then specific ad-hoc solutions based on profiles have been proposed [3].

There have been a lot of discussions comparing these ad-hoc UML profil-
ing techniques and heavyweight metamodel based solutions considering MOF-
conforming metamodels. According to the specific practical context, it has been



A Practical Approach to Model Extension 41

found that one solution is better than the other for reasons of tool availability
[13,14,11,4,6].

Considering model extension, there is a similar principle in the UML 2 Infras-
tructure specification [10] called package merge. This operation was defined to
assist in modularizing the UML 2 metamodel. It also defines compliance levels
regarding the packages that are merged. We chose not to follow this specifica-
tion for several reasons. First, it is an UML-specific operation that is difficult
to express for other kinds of metamodels. Second, the package merge operation
has not been provided in a clearly defined conceptual framework. Finally, it has
been shown that UML 2 package merge has many problems and can not be used
in its present definition [15,16].

In this paper, we propose a more general approach. To this purpose, we have
chosen the KM3 minimal notation to build a conceptual and practical solution.
This has several advantages. First, since there are significant libraries of open
source metamodels in KM3, this will allow direct experimentation on the basis
of the available metamodels. Second, there are available bridges between KM3
and most popular metametamodels like MOF 1.4, MOF 2.0, Ecore, MetaGME,
and Microsoft DSL Tools. As a consequence, the extensibility solution proposed
here could be mapped to these other representation systems. Finally, since KM3
is a minimal metametamodel, this permits a basic conceptual solution that has
more chances to be independent of implementation idiosyncrasies.

7 Conclusions and Future Work

This paper introduced the extensionOf relation between models. This relation
has been formally defined within a conceptual framework. Definitions given in
Section 4 are generic and do not rely on a specific metamodel. The solution
introduced in this paper is being implemented as part of the AMMA model
engineering platform under Eclipse. This approach will lead to capabilities that
assist in the composition of models.

Metamodel extensibility is very important to define auto-adaptive tools by
coupling a core metamodel extension and a set of base tool extensions. The
Atlas Model Weaver [2] is already a proof of concept of this approach. It defines
a core weaving metamodel and a generic editor. The editor auto-adapts itself
depending on the metamodel extensions specified by the user. Moreover, it is
also possible to define extensions to each editor part for a specific metamodel
extension.

Finally, following the principles presented in [7], Domain-Specific Languages
(DSLs) [9] extension could be based on model extension. We are considering a
DSL as a set of coordinated models [7]: an abstract syntax, a concrete syntax,
and a specification of the semantics. From a model-based point of view, the
abstract syntax of a DSL is a metamodel. Thus, DSL concepts can be extended
with the mechanism described in this paper. The study of how to extend the
concrete syntax model and how it is related to grammar extension represents
areas of future work.



42 M. Barbero et al.

Acknowledgements

This work has been partially supported by the ModelPlex European integrated
project FP6-IP 034081 (Modeling Solutions for Complex Systems).

References

1. Bézivin, J.: On the Unification Power of Models. Software and Systems Model-
ing 4(2), 171–188 (2005)

2. Didonet Del Fabro, M., Bézivin, J., Valduriez, P.: Weaving Models with the Eclipse
AMW plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe 2006,
Esslingen, Germany (2006)

3. D’Souza, D., Sane, A., Birchenough, A.: First-Class Extensibility for UML Packag-
ing of Profiles, Stereotypes, Patterns. In: France, R.B., Rumpe, B. (eds.) UML ’99 -
The Unified Modeling Language. Beyond the Standard. LNCS, vol. 1723, Springer,
Heidelberg (1999)

4. Gitzel, R., Hildenbrand, T.: A taxonomy of Metamodel Hieriarchies, University of
Mannheim (January 2005)

5. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, Springer, Heidelberg
(2006)

6. Karsai, G., Maroti, M., Ledeczi, A., Gray, J., Sztipanovits, J.: Composition and
Cloning in Modeling and Meta-Modeling Languages, IEEE Transactions on Con-
trol System Technology, special issue on Computer Automated Multi-Paradigm
Modeling, 263–278 (March 2004)

7. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL Frameworks.
In: Companion to the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA, Portland, OR,
USA (October 22-26, 2006) 602–616 (2006)

8. Liskov, B., Wing, J.: A Behavioral Notion of Subtyping. ACM Transactions on
Programming Languages and Systems 16(6), 1811–1841 (1994)

9. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

10. Object Management Group: Unified Modeling Language: Infrastructure, version
2.1.1, formal/07-02-06, http://www.omg.org/cgi-bin/doc?formal/07-02-06

11. Pérez-Mart́ınez, J.E.: Heavyweight extensions to the UML metamodel to describe
the C3 architectural style. ACM SIGSOFT Software Engineering Notes 28(3), 5
(2003)

12. Peterson, J.: Petri Nets, ACM Computing Surveys, 223–252 (September 1977)
13. Rötschke, T.: Adding Pluggable Meta Models to FUJABA, In: 2nd International

Fujaba Days, 2004, 04-253, Universität Paderborn, 57–61 (2004)
14. Turki, S., Soriano, T.: A SysML Extension for Bond Graphs Support ICTA’05, 5th

International Conference on Technology and Automation, Thessaloniki, Greece,
276–281 (October 2005)

15. Zito, A., Diskin, Z., Dingel, J.: Package Merge in UML 2: Practice vs. Theory?,
Model Driven Engineering Languages and Systems, 185–199 (2006)

16. Zito, A., Dingel, J.: Modeling UML 2 Package Merge With Alloy, In: Proc. of the
1st Alloy Workshop (Alloy ’06). Portland, Oregon, USA (November 2006)

http://www.omg.org/cgi-bin/doc?formal/07-02-06


D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 43–58, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Model Transformation from OWL-S to BPEL Via  
SiTra 

Behzad Bordbar1, Gareth Howells2, Michael Evans1, and Athanasios Staikopoulos1  

1 University of Birmingham, UK 
{B.Bordbar,A.Staikopoulos,M.E.Evans}@cs.bham.ac.uk  

2 University of Kent, UK 
W.G.J.Howells@kent.ac.uk 

Abstract. Although there are a large number of academic and industrial model 
transformation frameworks available, allowing specification, implementation, 
maintenance and documentation of model transformations which provide a rich 
set of functionalities, such tools are inherently complex. In particular, for a 
newcomer to the field of model transformation and for researchers who are only 
interested in experimentation and creation of prototypes, the steep learning 
curve is a significant hurdle. There is thus a clear scope for the creation of 
model transformation frameworks that are both easy to use and able to conduct 
complex transformations. Simple Transformer (SiTra) is a model transforma-
tion framework, which was originally designed to be a “way in” for the experi-
enced programmer, to start using the concepts of model transformation, and for 
academic researchers to experiment with the creation of prototypes of imple-
mentation of their transformations. The underlying idea of SiTra is to put less 
focus on the specification language, maintenance and documentation aspects of 
transformation, by focusing on the implementation of transformations. SiTra 
makes use of Java for the specification of transformations. This alleviates the 
need to learn a new specification language or get to grips with a new tool and 
development environment. SiTra is equipped with a strong transformation en-
gine to execute the transformation behind the scenes. This paper reports on a 
case study involving transformations from Ontology Web Language-Service 
(OWL-S) to Business Process Execution Language (BPEL), demonstrating that 
SiTra can also be used to handle complex and large transformations. 

1   Introduction 

Model Driven Development (MDD) [1] is an emerging technology for software de-
velopment, promoting the role of models and automatic creation of code by prede-
fined model transformations. A variant of MDD suggested by the Object Management 
Group (OMG) is the Model Driven Architecture (MDA) [2, 3]. MDA provides an 
enabling infrastructure with standard specifications facilitating the definition and 
implementation of model transformations between Meta Object Facility (MOF) [4] 
compliant languages. The application of model transformations is expected to im-
prove the software development process in many ways, as it enhances productivity, 
portability, interoperability, ease of use, maintenance and reusability [3, 5, 6].  



44 B. Bordbar et al. 

At the moment, there are many industrial [7-9] and academic [10, 11] model trans-
formation tools available; for a detailed list refer to [12]. These tools bring enormous 
benefit to the developers. For example, they include repository of models for reuse. 
They also make use of high-level languages for defining transformation. For example, 
[7], [10] and [11] makes use of, scripting language JPython, ATL and Kermeta, re-
spectively. However, model transformation frameworks are complex. For a newcomer 
to the field of model transformation learning a framework is a serious impediment. 
Simple Transformer (SiTra) [13] is a model transformation framework, which is de-
signed to be a “way in” for experienced programmers, to start using the concepts of 
model transformation, and for academic researchers to experiment with the creation 
of prototypes of implementation of their transformations. SiTra, which is written in 
Java, also makes use of Java for specification of transformations. This alleviates the 
need to learn a new specification language or getting to grips with a new tool and 
development environment.  

SiTra has been successfully applied to the bench mark example of [14] and is do-
cumented in [13]. In this paper, we shall further evaluate SiTra by conducting a case 
study involving transformations from Ontology Web Language for Services (OWL-S) 
[15] to Business Process Execution Language (BPEL) [16]. A copy of SiTra is avail-
able for free download at [17]. 

The structure of the paper is as follows: Section 2 provides an overview of the Web 
service and model transformation in the context of Web services. Section 3 briefly 
describes SiTra and its architecture. Section 4 presents the case study of transforma-
tion from OWL-S to BPEL and discusses various outcomes of the study. Finally, 
section 5 presents a conclusion and draws a summary. 

2   Preliminaries 

This section describes introductory notions used in this paper. Firstly, a short review 
of Web Service languages such as WSDL, BPEL and OWL-S will be presented. Sec-
ondly, a brief review of existing research on model transformation for Web Services 
will be given. 

2.1   Web Services 

Web service technology [18] promises to provide a new level of functionality on top 
of the existing Web infrastructure, allowing applications to share data and to benefit 
from the capabilities of other applications, independent of the platforms and lan-
guages used to build them. The technology aims to facilitate the composition of a 
number of Web services in order to create a single service with richer functionality 
than any of the constituent services. In order to achieve this, the creation of languages 
for describing services and their interactions has received considerable attention. This 
paper deals with three such languages; Web Service Description Language (WSDL), 
Business Process Execution Language (BPEL) and Ontology Web Language – Ser-
vices (OWL-S).  



 Model Transformation from OWL-S to BPEL Via SiTra 45 

2.1.1   Web Service Description Language 
The Web Service Description Language (WSDL) [19] is an XML language for de-
scribing Web services, particularly as service interfaces. The description separates the 
abstracted functionality offered by a service from the concrete details of how and 
where that functionality is offered. Its role and purpose can be compared to that of 
IDLs in conventional middleware languages such as CORBA. 

A WSDL file has an abstract part, which specifies information such as signatures 
of operations offered by the service, the messages that are exchanged between pro-
viders and requestors as input, output and fault parameters of these operations. The 
concrete part of a WSDL file defines the protocol bindings and location of such 
services [20]. 

A WSDL file provides all the necessary information to assess and invoke the op-
erations of a service. However, WSDL files do not provide any additional (semantic) 
information indicating, for example, “what the service does” and “how it is to be 
employed”. To include such information, languages such as OWL-S are used to cap-
ture the semantics of the Web service. WSDL documents provide a mechanism for 
expressing simple behaviour. However, describing complex interactions, such as 
business processes, require using other languages such as BPEL or WSCI [21]. 

2.1.2   Business Process Execution Language 
The Business Process Execution Language for Web Services (BPEL) [16] provides an 
XML based-language for the formal specification of business processes and business 
interaction protocols. A BPEL file makes use of the WSDL file of involving services. 
Consequently, BPEL can be seen as an extension of WSDL [19] that provides basic 
one-way or request-response mechanisms for the Web service inter-communication. 
BPEL is designed for expressing processes in detail, allowing composition and coor-
dination of activities such as for sequential, parallel, iterative, conditional, compensa-
tional and fault execution [21]. Hence, business process expressing interaction  
between services can be specified elegantly. 

2.1.3   Ontology Web Language for Services 
The Ontology Web Language for Services (OWL-S) [15] is also an XML based lan-
guage, which facilitates capability-driven description of Web Services. It supports 
automatic Web service discovery, invocation, composition and interoperation based 
on the semantic descriptions of Web services (OWL Services Coalition [15]). An 
OWL-S service profile allows us to specify “who provides the service” and “what 
function is computed by the service”. In addition, the profile contains an expandable 
list of service parameters, allowing the characteristics of the service to be described in 
detail. 

OWL-S differs from other Web service languages (for example WSDL), which of-
fers descriptions of the syntax of the messages used in accessing a service, exposing 
the operations and protocols it utilizes. An OWL-S service description permits the 
inclusion of machine-readable information, which describes the service's capabilities 
in terms of the function(s) it performs, the preconditions and effects of these functions 
 



46 B. Bordbar et al. 

and how the service relates to other Web services. These features support the repre-
sentation of Web services on the (still somewhat conceptual) Semantic Web [22]. The 
computer-interpretable representation of a Web service that OWL-S enables provides 
the potential to develop software that can automatically create composite web services 
by selecting and composing existing services. Such software could represent savings 
in the time and effort expended by Web users in searching for appropriate services 
along with providing a method of selecting Web services which is much more effi-
cient and effective than searching using existing engines. 

In addition, OWL-S allows the definition of composite processes [15] which can 
be built from the basic atomic processes (grounded in WSDL) of a number of differ-
ent services. Composite processes can be defined dynamically by an agent or stati-
cally as part of the description of some virtual Web service. They are realised by 
executing atomic processes in a structured way (in a predefined sequence, for exam-
ple, or concurrently) and by passing the results of executions as inputs to other atomic 
processes. 

2.2   Model Transformation in Web Services  

Recently, application of model transformation techniques to the development of Web 
services has received considerable attention [23-26], among others. Bézivin et al [23] 
use the ATL [10] transformation language and ATLAS engine to generate Platform 
Specific models from UML class and EDOC models to three different target plat-
forms namely Java, Web Services and Java Web Service Developer Pack (JWSDP). 
UML Activity diagrams are well suited for platform independent modeling of busi-
ness processes. Transformation of such models to BPEL and WSCI are studied in [27] 
[25] and WSCI [28], respectively. Koehler et al [29] investigates model driven trans-
formations based on graph-theoretic methods to define the mapping among models 
possessing formal semantics, which in turn are used to analyze and synthesize the 
business protocol specifications. Finally, [30] uses the YATL transformation language 
to map and apply transformations from EDOC models to Web services.  

The focus of this paper is on model transformation techniques and challenges. 
However, another important focus for research is to develop tools for the transforma-
tion of OWL-S specifications to BPEL specifications; as these two languages provide 
complimentary capabilities. BPEL is well supported by the software vendors as the 
favorite choice for the execution of the web services. BPEL is not designed for ad-
dressing the challenges of the semantic web. On the other hand, OWL-S is not de-
signed for execution. Mandell and McIlraith [31] provide an interesting investigation 
into this area, by attempting to adapt BPEL4WS for the Semantic Web. This paper 
presents an alternative approach by transferring OWL-S models to BPEL, so models 
of the semantics of the system are expressed in OWL-S the execution is conducted in 
BPEL, which provides better tool and support. 

3   Simple Transformer (SiTra) 

There are many industrial and academic case tools supporting model transfor- 
mation [7-11]. It poses as a question: why to attempt introducing yet another model 



 Model Transformation from OWL-S to BPEL Via SiTra 47 

transformation framework? To answer this, it is crucial to notice that a model trans-
formation consists of two major steps. The first step is to define and specify the model 
transformation. This is often a complex task involving significant domain knowledge 
and understanding of both the source and target model domains. For example, defin-
ing a model transformation from OWL-S to BPEL, not only requires understanding of 
both languages, but also requires an analytic approach to discover the correct mapping 
between the model elements.  The second step is to execute the transformation. Cur-
rently, elegant execution of the specifications is still a research issue in many cases 
and may require significant manual intervention in order to provide a correct imple-
mentation. In a large project, it is possible to divide the specification and implementa-
tion between two different groups of people who have relevant skills. In the case of 
smaller groups of developers, newcomers to MDD, and budding academic research-
ers, the combined effort involved in becoming an expert in the two sets of skills de-
scribed above is overwhelming.  In particular, the steep learning curve associated with 
current MDD tools is an inhibitive factor in the adoption of MDD by even very ex-
perienced programmers. SiTra aims to address the above issues by proposing a simple 
Java library for supporting a programming approach to writing transformations, based 
on the following requirements: 

 
Use of Java for writing transformations: This relinquishes the programmer from 
learning a new language for the specification of transformations  
Minimal framework: To avoid the overhead of learning a new Java library, the 
presented method has a very small and simple API 

3.1   Introducing SiTra 

The architecture of SiTra is depicted in Fig.1. A transformation specifies how ele-
ments of the Metamodel of the source are mapped into the elements of the Metamodel 
of the destination. A transformation framework, creates a destination model, which is 
an instance of the destination metamodel, from a source model, which is an instance 
of the source metamodel. Because, SiTra uses Java, as depicted in the picture, Meta-
models of the source/destination and the model of the source must be created in Java.   
These could be provided using a Java implementation of a MOF repository, or more 
usually by providing an implementation of the metamodel using Java classes. For 
smaller models these can be created manually. For larger models one of numerous 
existing UML to Java tools could be used.  

As depicted in Fig.1, the transformation in SiTra is provided by a number of Java 
classes, each of which corresponds to a model transformation rule.  These classes 
must implement the SiTra interface Rule. The SiTra class and corresponding interface 
Transform are used to execute the defined transformation on a particular source mod-
el. The two simple interfaces for supporting the implementation of transformation 
rules in Java are shown below. The Rule interfaces should be implemented for each 
transformation rule written. The Transformer interface is implemented by the trans-
formation algorithm class, and is made available to the rule classes 

 



48 B. Bordbar et al. 

interface Rule<S,T> {
  boolean check(S source);
  T build(S source, Transformer t);
  void setProperties(T target, S source, Transformer t);
}
interface Transformer {
  Object transform(Object source);
  List<Object> transformAll(List<Object> sourceObjects);
  <S,T> T transform(Class<Rule<S,T>> ruleType, S source);
  <S,T> List<T> transformAll(Class<Rule<S,T>>    ruleType,List<S> source);
}

 
3.2   Rules 

A transformation problem is split up into multiple rules; the SiTra library facilitates 
this, using the Rule interface. A class that implements this interface should be written 
for each of the rules in the transformation. The methods of this interface are described 
as follows: 

1. The implementation of the check method should return a value of true if the rule is 
applicable to the source object. This is particularly important if multiple rules are 
applicable for objects of the same type. This method is used to distinguish which of 
multiple rules should be applied by the transformer. 

2. The build method should construct a target object that the source object is to be 
mapped to. A recursive chain of rules must not be invoked within this method. 

3. The setProperties method is used for setting properties of the target object (attrib-
utes or links to other objects). Setting the properties is split from constructing the 
target so that recursive calling of rules is possible when setting properties. 

 

Fig. 1. An outline of the SiTra framework 



 Model Transformation from OWL-S to BPEL Via SiTra 49 

If it is impossible to distinguish between multiple rules using the check method, 
explicit rule invocation must be used to transform objects for which multiple rules 
apply. Objects that are derived from properties of the source object should be con-
verted to objects for properties of the target object by calling the transform method on 
the transformer. However, the power transformation algorithm of SiTra manages the 
details of the transformation automatically. For example, it keeps the track of the 
objects, which are already mapped. 

3.3   Transformer 

To instantiate a SiTra transformation, the rule classes must be added to an instance of 
the SimpleTransformer class. The transformation can then be executed by calling the 
transform method with the root object(s) of the source model. An abstraction of the 
transformation algorithm is as follows: 

FOR EACH rule
 IF rule.check(source) THEN
  IF notRecorded(source, rule) THEN
    target = rule.build(source, this)
    record(source, target, rule)

 rule.setProperties(source, this)
 

The algorithm runs through all rules in order to check which rule can be applied to 
a source objects. We are only interested in the source object which are not trans-
formed yet, this is checked via the method notRecorded(). For such objects, the me-
thod build is applied which results in the creation of a target object. To ensure that a 
source object is not transformed more than once, the method record captures the cor-
respondence between the source, target and rule. Finally, the method setProperties is 
invoked to assign further properties and attributes to the source object. 

4   Case Study: Transformation from OWL-S to BPEL 

In this section we shall present our case study of applying SiTra to transformation of 
the models from OWL-S to BPEL. We shall start by presenting metamodels of  
OWL-S and BPEL in the next two sections. 

4.1   Metamodel of OWL-S 

Fig.2 presents a metamodel of the OWL-S following [15]. We shall explain some of 
the model elements. An OWL-S process is a specification of the ways a client may 
interact with a service. A process gives a detailed perspective on how to interact with 
a service. Fig.2 depicts various attributes of OWL-S process. For example, a process 
will not execute properly unless its preconditions are true. Preconditions are logical 
statement representing Conditions. The attribute has Precondition specifies one of the 
preconditions of the service and ranges over a Precondition instance defined accord-
ing to the schema in the Process ontology.  

An Atomicprocess is a (process) description of a service that expects one (possibly 
complex) message and returns one (possibly complex) message in response. In con-
trast, a composite process (not depicted in Fig.2, due to space limitations) is one that 
maintains some state; each message the client sends advances it through the process.  



50 B. Bordbar et al. 

OWL-S makes use of WsdlGrounding for referring to WSDL constructs. Each 
WsdlGrounding instance, in turn, contains a list of WsdlAtomicProcessGrounding 
instances. A WsdlAtomicProcessGrounding instance refers to specific elements with-
in the WSDL specification, using the properties such as wsdlService, wsdlPort, 
wsdlInputMessage as depicted in Fig.2. For example, wsdlService, wsdlPort present 
the URI of a WSDL service (or port) that offers the given operation. For further de-
tails on OWL-S we refer the reader to [15]. 

 

Fig. 2. A portion of OWL-S metamodel 

4.2   Metamodel for BPEL 

The BPEL specification can be represented by an equivalent MOF compliant meta-
model, as the one depicted in Fig.3. As such, the metamodel specifies a number of 
 

 

Fig. 3. A (partial) BPEL Metamodel 



 Model Transformation from OWL-S to BPEL Via SiTra 51 

model elements that are equivalent to XML constructs, defining various activity 
types, which allow sequential, parallel, conditional or repetitive processing of actions. 
In addition it defines a number of other features, such as variables, execution context 
(scope) and exceptions, allowing the creation of complicated and realistic processes, 
performing various invocation styles and data manipulations in an algorithmic man-
ner. For description of BPEL metamodel see [23] and [27]. 

4.3   Mapping of Elements 

The following tables depict the correspondence between some of the model elements 
of OWL-S processes. For example, AtomicProcess in OWL-S, the element represent-
ing the most basic class of Web service processes, is mapped to a BPEL Process. The 
mapping also requires the creation of a number of other BPEL and WSDL elements 
so that the meaning of the output model corresponds entirely to that of the input. In 
addition to the main Process element, a PortType, an Operation, a PartnerLinkType, 
an Invoke and a Role must be created. The properties of these model elements must 
correspond to those of the source OWL-S AtomicProcess. From the collection of 
inputs belonging to an AtomicProcess, a single BPEL Input can be created, along with 
an associated Message and Variable. Each of the OWL-S Inputs corresponds to a 
single Part in the BPEL Message. OWL-S outputs can be converted to BPEL in an 
identical manner. 

There are several examples in the table in which the OWL-S Process model ele-
ment does not map to anything in BPEL or WSDL. For example, OWL-S precondi-
tion and result elements are used to incorporate semantic information regarding the 
change of state that occurs when the process is executed. Such notions have no 
equivalent in BPEL, hence it is not possible to map them to BPEL.  BPEL does not 
support the representation of information of this nature, and thus no mapping exists 
for these elements. 

A key set of mappings from OWL-S to BPEL involves OWL-S ControlConstruct 
elements. These, in general, correspond to BPEL Activity objects and are used to 
describe the nature in which the components of a Web service process are executed. 
Both OWL-S and BPEL provide similar constructs for this purpose. For example, 
both languages contain a Sequence element, indicating that any processes contained 
within should be executed strictly in order. An OWL-S Sequence maps directly to a 
BPEL Sequence. Some of the other ControlConstructs map to BPEL elements in a 
similar fashion. However, some of the OWL-S ControlConstructs have no corre-
sponding BPEL Activity. For example, the OWL-S AnyOrder construct indicates 
that its component processes should all be executed, but in no particular order. 
BPEL has no corresponding construct. It is possible, though, to model OWL-S An-
yOrder elements as BPEL Sequence elements without affecting the functionality of 
the output BPEL model (this may affect the efficiency of its execution, however). 
Therefore, the following table 1 shows the corresponding BPEL element for an 
OWL-S AnyOrder to be a Sequence. A similar situation arises around OWL-S 
Choice constructs. 



52 B. Bordbar et al. 

Table 1. Equivenlent mapping of OWL-S Process and BPEL elements 

OWL-S Process BPEL 

<Process> <Process> 
<AtomicProcess> <Process> + <PortType> + <Operation> + 

<PartnerLinkType> + <Role> + <invoke>  
Operation + PortType names must be consis-
tent with the created WSDL file. 
Note: require an <invoke> call within <Proc-
ess> tags and Operation + PortType names 
must be consistent with the created WSDL 
file. 

[<input>]* (of Atomic Process) <input> + <message> + <variable> 
<input> <part> (of the <message> created for all 

inputs) 
[<outputs>]* (of Atomic Process) <output> + <message> +  <variable> 
<output> <part> (of the <message> created for all 

outputs). 
<precondition> Note: This does not really map, due to com-

plicated representation of Preconditions in 
OWL-S. 

<result> Note: This contains semantic information 
about the output of a process and does not 
map usefully to any BPEL class. The <with-
Output> property will be covered by the 
mappings described above. 

<participant>, <SimpleProcess>, 
<CompositeProcess> 

<partner>  

[<input>]* of Composite Process <message> + <variable> 
<input> <part> (of the message created for all inputs) 
[<outputs>]*of Composite Process <message>  + <variable> 
<output> <part> (of the message created for all out-

puts). 
<ControlConstruct> <Activity> (See below) 
<sequence> <sequence> 
<Iterate>, <RepeatUntil>, <Re-
peatWhile> 

<while> 

<AnyOrder> Model as <sequence> 
<Split> <flow> 
<Choice> Model as <switch> 
<IfThenElse> <switch> 
<components> of a sequence, 
split... etc. 

See below... 

 
 
 



 Model Transformation from OWL-S to BPEL Via SiTra 53 

Table 1. {Continued} 

<Binding> (as in <hasDataFrom> 
property) toParam, valueSource, 
theVar, fromProcess 

<variable> (or part thereof) corresponding to 
that generated for the given process and pa-
rameter. 

<valueSpecifier>, <SplitJoin>, 
<Perform>, <Produce> 

- 

The OWL-S Profile [15] of a Web service contains semantic information regarding 
what functionality the service offers, who is likely to use the service and what proper-
ties it shares with other similar services. BPEL provides no means of representing 
such information and therefore, there is no mapping between the OWL-S Profile and 
BPEL. However, some of the elements contained in the OWL-S Profile can be con-
verted into useful human-readable information. Where possible, the transformation 
between OWL-S and BPEL should support the conversion into text of such elements 
along with their inclusion in the output BPEL file(s). The following table 2 shows 
examples where text conversion may be useful. 

Table 2. Equivenlent mapping of OWL-S Profile and BPEL elements 

OWL-S Profile BPEL 

<input>, <output> See Process Section 
<profile>, serviceName, textDescription 
contactInformation 

Incorporate into process name(s). 
Include as plain text. 

<precondition>, <result>, <parameter>, 
<ServiceParameter>, <ServiceCategory>, 
<ServiceClassification>, <ServiceProduct>. 

- 

The Grounding section [15] of an OWL-S service model contains pointers to a 
WSDL file in which details of how to access the real Web service processes that make 
up an OWL-S process are given. The mapping between the OWL-S Grounding and 
WSDL is, therefore, trivial, with the names of OWL-S elements corresponding di-
rectly to elements in BPEL. The following table 3 shows this mapping in full. 

Table 3. Equivenlent mapping of OWL-S Grounding and WSDL/BPEL elements 

OWL-S (Grounding) WSDL/BPEL 

<owlsProcess> Mapping to BPEL dealt with by Process 
Model. 

<wsdlOperation> <wsdl:Operation> 
URI: wsdlPortType <wsdl:PortType> 
URI: wsdlService <wsdl:Service> 
URI: wsdlPort <wsdl:Port> 

 
 



54 B. Bordbar et al. 

Table 3. {Continued} 

URI: wsdlInputMessage <wsdl:Message> 
<wsdlGrounding>, <wsdlInputMes-
sageMap>, URI:owlsParameter, 
URI: xsltTransformation 

- 

URI: wsdlMessagePart <wsdl:Part> 
URI: wsdlVersion (<wsdl version=”…”>) 
URI: wsdlDocument Name of wsdl doc/target namespace. 

4.4   Model Transformation 

This section will describe examples of transformation from OWL-S to BPEL. For an 
elaborate list, see [32]. Consider transforming the model element WsdlAtomicProcess-
Grounding (for short WAPG), described briefly in section 4.1 to Business Process (for 
short BPELProcess). The WAPG correspond to an operation related to a given atomic 
process. The following snippet of code depicts a QVT-like rule for the transformation: 

 

 

Fig. 4. QVT like rules 

It can be seen that, the above snippet (Fig.4) contains two rules: The first rule, 
WAPG2BPELProcess, is implemented by calling four rules described in lines 9-12 
within the when clause. It uses two variables v1 and v2 that correspond to InputVari-
able and OutputVariable accordingly of the Invoke operation of the atomic process, 
triggered by the PartnerLink p1. The snippet also describes the rule 
WAPG2InputVariable, which maps and modifies the variable’s name and mes-
sageType. The equivalent SiTra code written in Java is depicted in Fig.5. 

The QVT-like specification of the transformation rules map quite cleanly into Java 
Classes that implements the SiTra Rule interface. The build method for each rule can be 
seen to construct a new object of the appropriate target class. The check method in these 
examples simply returns a value of true as we do not need to perform any specific 
checks. The main work in these classes is performed within the setProperties method. 
This method sets the properties of the newly constructed target object according to  
 



 Model Transformation from OWL-S to BPEL Via SiTra 55 

 

Fig. 5. SiTra Code 

either: properties of the source object as can be seen in the WAPG2InputVariable rule; 
or according to transformations of properties of the source object as illustrated by the 
WAPG2BPELProcess rule. 

5   Discussion and Related Work 

One of the important lessons learned from this case study is that the difficulty of writ-
ing transformation is independent of the choice of transformation framework. As 
explained in section 4.3, identifying correct mappings between elements is a challeng-
ing task, as it requires an understanding of the semantics of elements between two 
different domains. In this paper, as the main focus is on exploring the limitations and 
capabilities of SiTra, finding precise mapping of elements was of secondary impor-
tance. For example, we have decided to map the <AnyOrder> to <sequence>, forcing 
an order on a set of events. However, after making this decision, SiTra has helped us 
to write and implement the transformation in simple way. As result, the “difficulties 
of identifying correct transformations (whatever the language) and difficulties of 
writing transformation in SiTra (or other transformation frameworks) are different 
things”. SiTra does not make the design part of creating a good set of transformation 
simple, it just provide and easier route to the implementation.  The primary purpose of 
SiTra is to be simple. We strongly resisted the temptation of extending the trans-
former interface to overcome some limitations.  We feel that this would violate our 
primary objective of a “simple” transformation approach. This of course has a cost, 
specifically that there are limitations in that we cannot tackle some of the more com-
plex transformation problems easily. For example, a general limitations regards a 
situation in which there is more than one rule that should map to the same target ob-
ject. There is no way to determine, using SiTra, which of the rules should construct 
the target object. It is necessary for the designer of the transformation to decide which 
rule should construct the object, to avoid such non-determinisms. 

Another limitation discovered as the result of conducting the case study is regarding 
the recursive invocation of rules. We facilitate this by splitting the construction and set-
ting properties of a target object. However, there is no means to enforce this, and there 
are potential design issues regarding situations in which some properties may need to be 
 



56 B. Bordbar et al. 

set in the build() method and some not (handled via setProperties() method). Identifying 
advantages and disadvantages of each of the two is a subject for future studies.  

The graph transformation approaches [33, 34] have many merits with respect to 
formalism and a long history of use. However, they require a significant amount of 
new material to be learnt for novice users and also require significant libraries and 
development environments in terms of supporting framework. The source and target 
models are expressed using the notion of graphs, where as with SiTra, the source and 
target models are simple Java objects. The transformation specifications use similar 
concepts of rules but require a new language to be learnt for writing them, rather than 
the SiTra approach of using a programming language directly. 

The declarative rule based approaches [35-37] suffer many of the same problems. 
They all require a specific model transformation specification language to be leant. Te-
fkat [37] and ATL [36] are both supported by a transformation engine and environment 
similar in concept to our Transformer implementation class (as the engine) and a Java 
IDE (as the environment), although in a much more heavyweight manner than SiTra. 

Our Java based environment does not of course provide any specific support for 
debugging transformations; debugging has to be done via Java debugging tools, 
which are sufficient, however do make debugging a little more complex as one has to 
debug  the rules via the internal workings of the Transformer class. 

The imperative approaches such as [38] are perhaps the most similar to SiTra in 
terms of the style of writing a transformation rule. However, they too, all expect the 
transformation writer to learn a new language, and require use of a bespoke environ-
ment in which to execute the transformations. 

As stated in the introduction, the SiTra library described in this paper is not in-
tended as a replacement for a full Model Transformation Framework or as a model 
transformation specification language, rather it is intended as a “way in” for experi-
enced programmers to start using the concepts of transformations rules, without the 
need to learn a new language, or get to grips with a new framework of tools and de-
velopment environments. 

Given this purpose it can be argued that a comparison between SiTra and the exist-
ing transformation languages and frameworks is not really appropriate. However, it is 
interesting to note what can and can’t be achieved with SiTra in relation to these other 
approaches. 

6   Conclusions 

In Model Driven Development, a fundamental idea is to automatically transform models 
from one modelling domain to another. Consequently, providing suitable model trans-
formation frameworks to support such transformations is of paramount importance. This 
paper has reported on a case study involving transformation of models in OWL-S to 
BPEL, via our lightweight modelling transformation framework called SiTra. SiTra uses 
Java for the specification of the transformation rules, significantly eliminating the need 
to learn any new model transformation languages or to master complex model transfor-
mation frameworks. SiTra masks the details of the execution from the user by providing 
a powerful execution engine to implement the transformations. The paper has presented 
a mapping of important model elements from OWL-S to BPEL and describes samples 
of transformation rules written in QVT-like language and their equivalent in SiTra.  The 



 Model Transformation from OWL-S to BPEL Via SiTra 57 

case study demonstrates that the method adopted by SiTra is powerful enough to handle 
even large and complex transformations.    

Some of the concepts in OWL-S have no corresponding concepts in BPEL.  As a 
result, elements modelling such concepts cannot be mapped to BPEL. Identifying 
correct transformation between two modelling domain is a challenging task. Indeed, 
we have come to the conclusion that model transformation frameworks, including 
SiTra, do not make the design part of creating a good set of transformations simple. 
However, SiTra provides an easier route to the implementation. This is crucial, as 
easier routes to implementation open opportunities for better adoption of the MDD. 

Acknowledgement 

The authors wish to express their gratitude to David Akehurst for his assistance with 
this project.  

References 

1. Stahl, T., Volter, M.: Model Driven Software Development; technology engineering man-
agement. Wiley, Chichester (2006) 

2. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Computing. 
OMG Press (2003) 

3. MDA: Model Driven Architecture, Object Management Group (2005), www.omg.org/mda/ 
4. MOF: Meta Object Facility (MOF) 2.0 Core Spec.: Available (2004), at http://www.omg.org 
5. Kleppe, A.W., Jos & Bast, W.: MDA Explained: The Model Driven Architecture–Practice 

and Promise. Addison-Wesley, London, UK (2003) 
6. Denno, P., Steves, M.P., Libes, D., Barkmeyer, E.J.: Model-Driven Integration Using Ex-

isting Models. In: IEEE Software, vol. 20, pp. 59–63. IEEE computer Society, Los Alami-
tos, CA (2003) 

7. Arcstyler: Arcstyler 5.0- Interactive Objects (2005) 
8. OptimalJ: Compuware Software coporation (2005) 
9. XMF-Mosaic: xactium (2005), http://www.xactium.com/ 

10. ATLAS: ATLAS, Université de Nantes (2005) 
11. kermeta: Triskell Metamodelling Kernel (2005) 
12. Planetmde: Planet MDE (2005), http://www.planetmde.org 
13. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier, K.D.: Si-

Tra: Simple Transformations in Java. ACM/IEEE 9TH International Conference on Model 
Driven Engineering Languages and Systems, Vol. 4199, pp. 351–364 (2006) 

14. Bezivin, J., Rumpe, B., Schurr, A., Tratt, L.: A bench mark for model tranformation, see 
the Call for Papers at sosym.dcs.kcl.ac.uk/events/mtip05/long_cfp.pdf. Model Transforma-
tions in Practice Workshop, part of MoDELS 2005 (2005) 

15. OWL-S: OWL Services Coalition (2004), OWL-S: Semantic Markup for Web Services. 
(2004), http://www.daml.org/services/owl-s/1.1 

16. BEA, IBM, Microsoft, SAP, A., Systems, S.: Business Process Execution Language for 
Web Services. Version 1.1. (2003)  

17. SiTra: Simple Transformer (SiTra): an MDE tool http://www.cs.bham.ac.uk/b̃xb/SiTra.html 
18. W3C: Web Services Architecture (2004) 
19. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web Services Description Lan-

guage (WSDL) Version 2.0, W3C (2006), http://www.w3.org/TR/wsdl20/ 



58 B. Bordbar et al. 

20. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, Berlin (2004) 
21. W3C: Web Service Choreography Interface (WSCI) 1.0, W3C Note (2002) 
22. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: A new form of web content 

that is meaningful to computers will unleash a revolution of new possibilities. Scientific 
American (2001) 

23. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: An Experiment in Mapping Web Ser-
vices to Implementation Platforms. Technical report: 04.01. LINA, University of Nantes, 
Nantes, France (2004) 

24. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services. 
In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., 
Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) Conceptual Modeling for Advanced Appli-
cation Domains. LNCS, vol. 3289, Springer, Heidelberg (2004) 

25. Gardner, T.: UML modelling of automated business processes with a mapping to BPEL4WS. 
In: 17th European Conference on Object Oriented Programming (ECOOP) (2005) 

26. Bordbar, B., Staikopoulos, A.: Modelling and Transfomation of Behavioural aspects of 
Web Services. In: 3rd Workshop in Software Model Engineering - WiSME2004, UML 
2004, Lisbon, Portugal (2004) 

27. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services. Con-
ceptual Modelling for Advanced Application Domain (eCOMO), China, pp. 667–678 ( 2004) 

28. Bordbar, B., Staikopoulos, A.: Modelling and transforming the behavioural aspects of web 
services Third Workshop in Software Model Engineering (WiSME) at UML, Portugal (2004) 

29. Koehler, J., Hauser, R., Kapoor, S., Wu, F.Y., Kumaran, S.: A model-driven transforma-
tion method. In: Seventh IEEE International Enterprise Distributed Object Computing 
Conference, Brisbane, Australia, pp. 186–197 ( 2003) 

30. Patrascoiu, O.: Mapping edoc to web services using yatl. Eighth IEEE International Enter-
prise Distributed Object Computing, pp. 289–297 ( 2004) 

31. Mandell, D.J., McIlraith, S.A.: Adapting BPEL4WS for the semantic web: The bottom-up 
approach to web service interoperation. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) 
ISWC 2003. LNCS, vol. 2870, Springer, Heidelberg (2003) 

32. SiTra: Simple Transformer (SiTra): an MDE tool (2006) 
33. Konigs, A.: Model Transformations with Tripple Graph Grammars. Model Transforma-

tions in Practice Workshop at MoDELS 2005. In: Briand, L.C., Williams, C. (eds.) MoD-
ELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005) 

34. Taentzer, G., Ehrig, K., Guerra, E., Lara, J., Lengyel, L., Levendovszky, T., Prange, U., 
Varro, D., Varro-Gyapay, S.: Model Transformations by Graph Transformations: A Com-
parative Study. Model Transformations in Practice Workshop at MoDELS 2005. In: Briand, 
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005) 

35. Akehurst, D.H., Howells, W.G., McDonald-Maier, K.D.: Kent Model Transformation Lan-
guage. Model Transformations in Practice Workshop, part of MoDELS 2005. In: Briand, 
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005) 

36. Jouault, F., Kurtev, I.: Transforming Models with ATL Model Transformations in Practice 
Workshop at MoDELS. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, 
vol. 3713, Springer, Heidelberg (2005) 

37. Lawley, M., Steel, J.: Practical Declarative Model Transformation With Tefkat. Model 
Transformations in Practice Workshop at MoDELS 2005. In: Briand, L.C., Williams, C. 
(eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005) 

38. Kalnins, A., Celms, E., Sostaks, A.: Model Transformation Approach Based on MOLA. 
Model Transformations in Practice Workshop at MoDELS 2005. In: Briand, L.C., Wil-
liams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005) 



Improving the Interoperability of Automotive
Tools by Raising the Abstraction from Legacy
XML Formats to Standardized Metamodels

Mark Brörkens and Matthias Köster

Carmeq GmbH, Carnotstr. 4, 10587 Berlin, Germany
{mark.broerkens,matthias.koester}@carmeq.com

Abstract. Automotive system design demands frequent exchange of
data between different parties and tools. In order to improve the in-
teroperability, standardization bodies and partnerships have put high
effort in defining XML based languages for system descriptions.

However, the mere existence of a standardized XML based data
exchange format doesn’t guarantee seamless interoperability. The vali-
dation possibilities given by XML DTD or Schema are not sufficient.
Additionally, the maintenance of XML formats for the growing complex-
ity of today’s systems is an increasing challenge.

This paper describes the experiences with the model-driven approach
taken by the automotive initiative AUTOSAR. It illustrates the limi-
tations of designing data exchange formats in XML and shows how a
higher level of abstraction increases the interoperability between tools.
A powerful concept for mapping a metamodel to XML schema allows for
integrating legacy XML formats.

Furthermore, current activities on improving interoperability by au-
tomatically generating a tool framework for AUTOSAR and other auto-
motive tools are explained.

1 Introduction

The development of an automotive electric/electronic system is distributed over
many parties. Whenever information is exchanged, the involved parties need to
agree on common syntax and semantics. While exchanging data via informal
documents often was sufficient in the past, the complexity of todays automotive
systems [1][2] requires a more formal machine readable exchange of information.

An important step for improving the interoperability between different parties
is to standardize a common domain-specific language including its syntax and
semantics. Since all involved tools must be able to read and write this language,
using XML (eXtensible Markup Language)[3][4] is a good idea: Tool vendors can
use high quality off-the-shelf XML libraries for XML processing and validation.

The automotive initiative AUTOSAR (AUTomotive Open System ARchitec-
ture) [5] has started to standardize a data exchange format that covers sev-
eral steps in automotive system development including abstract description of

D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 59–67, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



60 M. Brörkens and M. Köster

software components as well as fine-grained mapping of bits to frames on com-
munication networks. Section 2 describes the (meta)model based approach for
designing and generating the AUTOSAR XML schema.

For a seamless interoperability between tools, additional consistency checks
that exceed the expressive power of W3C XML schema [4] and alternative XML
schema languages such as W3C DTD [3] or RELAX NG [6] are required. These
constraints are often defined informally and therefore are likely to be interpreted
differently by various tool vendors.

Section 3 describes the layered architecture for tool interoperability defined
by AUTOSAR. This architecture defines a hierarchy of abstraction levels and
their impact on tool interoperability.

The metamodel developed by AUTOSAR can not only be used to generate
the XML schema or documentation, it can also be used as a source for the gen-
eration of a tool platform. Since AUTOSAR itself is not developing tools, some
AUTOSAR members have formed the informal OTF for Automotive 1 initiative.
This initiative plans to develop an open platform that can be used by any tool
vendor. The current status of that initiative is presented in section 4.

2 Improving Interoperability by Standardization of Data
Exchange Formats

2.1 Standardisation on XML Level

Standardization bodies and partnerships have put high effort in defining XML
based data exchange formats for specific use cases. Some examples are:

– ASAM FIBEX [7] (Field Bus Exchange Format) focuses on message-oriented
bus communication systems. It allows to describe bus configuration, param-
eterization, design, monitoring and simulation.

– MSR SW [8] focuses on the description of automotive software

Those data exchange formats usually are defined by a formal XML DTD or XML
Schema and informal descriptions of constraints which exceed the expressive
power of generic XML validation techniques.

The XML DTDs or XML schema specified in these standards are created
manually or are assembled semi-automatically out of several XML fragments for
better maintainability. The availability of these XML formats highly improves
the interoperability and reduces development costs of tools: Generic off-the-shelf
XML libraries can be used to parse and validate XML descriptions. However,
this manual approach of creating a XML-based data exchange format is not
sufficient for the needs within the AUTOSAR development partnership:

– Complex interlinked structures are very hard to understand and maintain at
the XML level.

1 Open Tool Framework for Automotive.



Improving the Interoperability of Automotive Tools 61

– Conceptual discussions on the AUTOSAR language are often interrupted by
discussions on how to implement the concepts in a XML schema language.

– The expressive power of XML schema languages such as XML DTD or XML
schema is not sufficient for seamless tool interoperability. Additional con-
straints need to be defined separately and are (if not defined using a formal
unambiguous language) a potential risk for misinterpretations and therefore
are a risk for limited interoperability.

For reasons mentioned before, AUTOSAR decided not to create the XML-
based exchange format by directly editing XML schema descriptions. Instead,
the implementation of the language in XML was de-coupled from discussions on
the actual content. This was achieved by raising the abstraction from XML to a
metamodel.

2.2 Standardization on Metamodel Level

AUTOSAR started modeling the AUTOSAR language using class diagrams. The
increasing number of developers and growing complexity of the model required
a modeling guide. As described in "Definition and Generation of Data Exchange
Formats in AUTOSAR" [9] , the focus of that modeling guide is to support
the automotive experts in modeling their domain knowledge in the AUTOSAR
metamodel. Individual developers do not need to delve into UML modeling tech-
niques. This approach has the following advantages:

– The graphical representation allows for quickly getting a good overview, even
over highly interlinked information.

– The experts can concentrate on their domain knowledge and do not need to
care about the implementation in an XML schema language

– The replica mechanism of the UML tool Enterprise Architect [10] allowed
for distributed development of several experts on the same model.

AUTOSAR delegated the implementation of its XML schema to a small group
of modeling and XML experts. This group defined powerful rules for mapping
the AUTOSAR metamodel to XML schema. These mapping rules had to fulfill
the following requirements:

– Allow for strong validation using standard XML parsers
– Ability to reproduce existing XML structures and patterns that are well

established in the automotive domain. (See for example [11]).
– Configuration of mapping rules based on tagged values in the metamodel

Even though the AUTOSAR language is modeled using UML class diagrams,
some constraints can’t be expressed: A more powerful constraint language is
required.

Example for a Model Constraint. In the AUTOSAR metamodel, the class
ElectricalRange represents an electrical range for different applications. This



62 M. Brörkens and M. Köster

class has attributes minVoltage and maxVoltage that specify the range in volt-
age (see figure 1 for details). It also has the attribute typicalVoltage, which
must be a voltage in the specified range. This constraint can’t be expressed with
XML schema. But it can be expressed easily with an OCL constraint (Object
Constraint Language) [12]:

Fig. 1. AUTOSAR 2.0 metamodel for classes ElectricalRange and
PowerSupplyHWPort

context ElectricalRange

inv self.minVoltage <= self.typicalVoltage and
self.typicalVoltage <= self.maxVoltage

Elaborating the example above, the class PowerSupplyHWPortdescribes power
supplying and consuming hardware ports. If the direction attribute is set to in,
the port is a power supplier. If direction is set to out, the port consumes power.
A PowerSupplyHWPort has a pin of type HWPin, which can be connected via a
PinHWConnection with another port. Connecting two such pins requires that
an out and an in pin are connected and that both have a compatible electrical
range. This can be checked with the following OCL constraint:



Improving the Interoperability of Automotive Tools 63

context PowerSupplyHWPort

let out =
PinHWConnection.allInstances()

->select(conn | conn.connectedPin->includes(self.pin))
.connectedPin->excluding(self.pin).port

inv self.pin.direction = ’in’ implies
out.direction = ’out’
and
self.electricalRange.minVoltage = out.electricalRange.minVoltage
and
self.electricalRange.maxVoltage = out.electricalRange.maxVoltage

Breaking these constraints can cause severe damage, thus it’s especially im-
portant for an OEM (Original Equipment Manufacture) to ensure that the AU-
TOSAR XML descriptions from different suppliers describe a consistent system.
This can be reached by adding these constraints to the metamodel and validat-
ing them when assembling the system description from different suppliers.
Although AUTOSAR has started using OCL for formal descriptions of con-

straints in the metamodel most constraints are still described informally. A more
extensive use of OCL instead of informal descriptions would help to increase the
interoperability.

3 Layered Architecture for Tool Interoperabilty

Figure 2 shows a layered architecture for tool interoperability. On the first layer,
files are used to exchange data between different tools. On the next layer the
data format is specified. Using XML as the file format allows easy exchange
of data, but doesn’t ensure the referential integrity of the data. On the next
layer the content can be accessed as interlinked data structures and referential
integrity can be reached, but the semantic consistency of the data can’t be easily
expressed or checked. On top of the content layer is the semantic layer, where
the data consistency can be checked by validating constraints on the content.
Applications built on top of this layer can assume that the data, on which they
operate, is consistent. Regardless of the intended use all tools must implement
the lower four layers.

The upper-most levels focus on how tools present information to the users and
how the business logic is implemented. Those levels are highly dependent on the
intended use and therefore are only mentioned for the sake of completeness.

The base for any AUTOSAR tool is its ability to persist data as XML files.
Working with XML makes it possible to use generic XML validation techniques.

Representing the data as instances of metamodels (content layer) supports
the use of standard model APIs (Application Programming Interface) to access
and query the data. Rather than working with XML and textual links between



64 M. Brörkens and M. Köster

Physical Sets of files

Abstraction Level

Data format
XML

Content
Internal datastructure

Semantic Consistency rules

X>2

Presentation Graphical notation, error codes

Application Business logic

Fig. 2. Layered architecture for tool interoperability

XML elements, we are now working with references and links between classes
and objects. This makes it much easier to ensure the referential integrity of the
data. A higher level of abstraction is reached, making it easier to access and
manipulate the data.

Using a reflective standard model API makes it is possible to build a generic
validation layer on top of the model layer. This enables us to leverage the full
power of model based validation techniques (e.g. OCL[12]).

4 OTF – A Layered Framework for Tool Interoperability

The Open Tool Framework (OTF) is an implementation of the layered archi-
tecture as described in the previous section. OTF is realized as a set of Eclipse
plug-ins and uses the Eclipse Modeling Framework (EMF) [13] as its foundation.
EMF is an open source implementation of the OMG EMOF 2.0 standard [14] and
defines a mapping from EMOF to Java. This mapping can be used to generate
a metamodel specific API, but EMF also provides a reflective model API. Other
frameworks can use the reflective model API to provide generic services on top
of EMF. A transaction layer and several OCL validation engines are available as
open source.

EMF also provides an extensible framework for loading and saving models.
This framework is based on the concept of resources, which consist of a set of
model elements that should be stored at the same physical location. To specify
the physical location of a resource, a Universal Resource Identifier (URI) is used.
This rather abstract and generic approach allows support for a lot of different
storage system. EMF provides persistence to XMI (XML Metadata Interchange)



Improving the Interoperability of Automotive Tools 65

Persistent Storage (File, Database)

Transaction Layer

Model Merger

Java,
Eclipse,

EMF

Persistence Layer
SQL

Persistence Layer
AUTOSAR XML

Configured from Metamodel

Taylored
Persistence

Layer(s)

Consistency Check
Engine for OCL
configured from

AUTOSAR Metamodel

AUTOSAR EMF Model
Generated from AUTOSAR Metamodel

Consistency
Check

Engine
for Java

e.g.
Proprietary
Application

Graphical Editor

e.g.
Proprietary
Application

Code Generator

e.g.:
Converter

to Legacy Tools

Basic Tree
based Editor

(generated from Metamodel )

Fig. 3. OTF: a layered framework for tool interoperability

[15] and XML file formats, but other open source frameworks are available that
provide persistence to RDBMS (Relational Database Management System).

EMF provides extension points to add custom resource implementations. This
mechanism allows for integrating custom resources for the AUTOSAR XML
format. The rules for mapping between AUTOSAR XML and the AUTOSAR
metamodel are defined in the AUTOSAR "Model Persistence Rules for XML"
[5] specification and are implemented by the OTF persistence layer. Since we ex-
tended the standard EMF resource mechanism, all available frameworks based
on EMF and its resource system can be leveraged.

Figure 3 shows the architecture of the OTF framework. The lower three lev-
els of tool interoperability are realized by the persistence layers and the model
merger. The persistence layers transform AUTOSAR data from various repre-
sentations into an instance of the AUTOSAR metamodel. The model merger
merges data from several sources and detects redundant or conflicting informa-
tion. Consistency checks are supported using the EMF validation mechanism.
Constraints can either be defined as OCL expressions which are interpreted by
the EMF OCL validation engine or by Java classes which navigate over the AU-
TOSAR EMF model. Read and write requests from application plugins (e.g.
graphical editors, code generators, converters) are coordinated by the transac-
tion layer.

5 Summary and Outlook

The model-driven approach for designing and generating the AUTOSAR XML
schema was very successful. More than 30 domain experts have been actively work-
ing on the AUTOSAR metamodel in the last 3 years. Today the metamodel



66 M. Brörkens and M. Köster

contains more than 600 classes and more than 1300 structural features. This com-
plexity would not have been possible by manually creating a XML schema. Other
automotive standardization organizations are already adopting this model-based
approach. Future versions of the MSR Software [8] are likely to use the AUTOSAR
concept. Additionally the Requirements Interchange Format specified by the Her-
steller Initiative Software [16] is using the AUTOSAR approach.

Today the AUTOSAR metamodel is not only used as the source for generat-
ing the AUTOSAR XML schema, additionally it is used as the single source for
a substantial amount of documentation.

Furthermore, the OTF initiative has shown that the metamodel can be used
to generate an implementation of a tool platform that conforms to the designed
domain specific language. This generated platform provides features such as
reading, writing, merging and validating automotive system descriptions. Tool
vendors can build their tools on top of the OTF.

We hope that more standardisation bodies will use the approach outlined in
this paper, since this can improve the interoperability of tools dramatically.

References

1. AUTOSAR: Media release. (2006), http://www.autosar.org/download/
AUTOSAR_long_en.pdf

2. Fennel, H., et al.: Achievements and exploitation of the AUTOSAR
development partnership. (2006), http://www.autosar.org/download/
AUTOSAR_Paper_Convergence_2006.pdf

3. W3C: Extensible markup language (xml) 1.1 (2 edn.). (September 2006),
http://www.w3.org/TR/2006/REC-xml11-20060816/

4. W3C: Xml schema part1: Structures second edition. (October 2004),
http://www.w3.org/TR/xmlschema-1/

5. AUTOSAR: Official website of the autosar development partnership. (2006),
http://www.autosar.org

6. ISO: ISO/IEC FDIS 19757-2 document schema definition language (dsdl) – part
2: Regular-grammar-based validation – relax ng. (December 2002), http://www.
relaxng.org/#specs

7. ASAM: FBX, FIBEX - field bus exchange format, version 2.0. (June 2006),
http://www.asam.net/03_standards_06.php

8. ASAM: MSRSW, MSR software, version 2.3. (June 2005), http://www.asam.net/
03_standards_10.php

9. Pagel, M., Brörkens, M.: Definition and generation of data exchange formats defini-
tion and generation of data exchange formats in autosar. In: Rensink, A., Warmer,
J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 52–65. Springer, Heidelberg (2006)

10. Sparx Systems: Enterprise architect product page. (2006),
http://www.sparxsystems.com.au, http://www.sparxsystems.com.au/

11. ASAM: HDO, harmonized data objects, version 1.0. (July 2004),
http://www.asam.net/03_standards_09.php

12. OMG: UML OCL specification version 2.0. (June 2005), http://www.omg.org/
cgi-bin/doc?ptc/2005-06-06

13. Eclipse Foundation: Website of the EMF eclipse project. (2006), http://www.
eclipse.org/emf

protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmr/m/n/9 {T1/cmr/m/n/9 }T1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmr/m/n/9 {T1/cmr/m/n/9 }T1/cmr/m/n/9 size@update enc@update  http://www.autosar.org/download/AUTOSAR_long_en.pdf
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update  http://www.autosar.org/download/AUTOSAR_long_en.pdf
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.autosar.org/download/AUTOSAR_Paper_Convergence_2006.pdf
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.autosar.org/download/AUTOSAR_Paper_Convergence_2006.pdf
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/xmlschema-1/
http://www.autosar.org
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.relaxng.org/#specs
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.relaxng.org/#specs
http://www.asam.net/03_standards_06.php
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.asam.net/03_standards_10.php
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.asam.net/03_standards_10.php
http://www.sparxsystems.com.au
http://www.sparxsystems.com.au/
http://www.asam.net/03_standards_09.php
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.omg.org/cgi-bin/doc?ptc/2005-06-06
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.omg.org/cgi-bin/doc?ptc/2005-06-06
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.eclipse.org/emf
protect protect protect edef T1{T1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.eclipse.org/emf


Improving the Interoperability of Automotive Tools 67

14. OMG: Meta Object Facility (MOF) specification version 2.0. (January 2006),
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

15. OMG: XML Metadata Interchange (XMI) specification version 2.1 (September
2005)

16. Automotive HIS: Requirements interchange format, version 1.0a. (November 2005),
http://www.automotive-his.de/simutool.htm

http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.automotive-his.de/simutool.htm


Templatable Metamodels for Semantic Variation
Points

Arnaud Cuccuru, Chokri Mraidha, François Terrier, and Sébastien Gérard

CEA, LIST, Gif-sur-Yvette, F-91191, France
{arnaud.cuccuru,chokri.mraidha,francois.terrier,sebastien.gerard}@cea.fr

Abstract. In the field of Domain Languages Engineering, Semantic
Variation Points are an important issue. This crucial information is often
related to the dynamic semantics of systems. Identifying and understand-
ing it is a requisite for all model-based activities (design, simulation, test,
formal verification, etc.). Most of the time, semantic variation points are
only informally identified in a documentation associated with a meta-
model: they are not part of the metamodel itself, and there is currently
no mechanism to capture them explicitly. We propose a template-based
notation enabling semantic variation points to be clearly and explicitly
identified within the metamodel, using template parameter definitions.
Semantic variation points can then be intuitively fixed by parameter
binding at both model and metamodel levels. We illustrate our proposal
with a templated version of the UML 2 state machine metamodel. Fi-
nally, we describe a prototype implementation of our mechanisms in the
context of the Eclipse Modeling Framework. 1

1 Introduction

Metamodels, models and model transformations are the key elements of the
Model Driven Architecture [11]. For a given domain, a metamodel offers a means
for capturing commonly handled concepts, their connoted meaning and the re-
lationships existing between them. For example, a metamodel can be used to
specify an abstract syntax for a Domain Specific Modeling Language (DSML),
thus providing a kind of grammar and lexicon to which a model must conform
to comply with its reference metamodel. Transformation rules can then be ex-
pressed at the metamodel level, and applied to models that comply with their
respective metamodels.

The predominance of metamodels in model driven approaches raises the is-
sue of their potential reuse. Indeed, the ability to reuse and/or specialize (parts
of) existing metamodels is crucial in order to avoid developing new metamodels
1 This work has been performed in the context of the Usine Logicielle project

(www.usine-logicielle.org) of the System@tic Paris Region Cluster. This project is
partially funded by the "Direction Générale des Entreprises of the French adminis-
tration", the "Conseil Régional d’Île de France", the "Conseil Général des Yvelines",
the "Conseil Général de l’Essonne" and the "Conseil Général des Hauts de Seine".

D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 68–82, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Templatable Metamodels for Semantic Variation Points 69

from scratch. To do so, MOF [12] (OMG standard for metamodeling) provides
constructs inspired by object-oriented techniques such as import, inheritance or
package merge which is developed in section 2.3. Since Simula-67 and the early
days of Objects, object-oriented languages have evolved beyond what are usu-
ally considered to be the fundamentals of the Object paradigm: objects, classes,
encapsulation, inheritance and polymorphism. For reusability and capitalization
purposes, some object-oriented languages (like C++ or Java) have integrated
Genericity – a mechanism appearing in Ada 83 – which makes elements easier
to reuse and specialize by affording generic definitions based on template pa-
rameters. Generic behaviors can then be expressed (quasi-) independently of the
actual type of these generic parameters. We believe that the MOF would benefit
from following the same type of evolution, especially at a time where the Model
Driven Engineering (MDE) community recognizes a need for behaviored and
executable metamodels [4]. This assertion is particularly true for DSMLs, which
are an increasingly fundamental activity around model driven engineering.

In a DSML, the concepts handled typically go beyond the traditional use
of MOF as a way to specify a "metadata repository". These metamodels are
usually specified with a dynamic context in mind, where manifestations of the
concepts identified in the metamodel carry dynamic semantics and are assumed
to play a role in the context of an execution. If MOF could support behavioral
descriptions, the metamodel of a DSML would typically embed operational se-
mantics, so that models conforming to this metamodel could be executed. The
reuse/specialization issue mentioned in the previous paragraph is at least as cru-
cial for DSMLs. A metamodel specifications for state-based languages is a typical
case where reuse and specialization mechanisms are needed. As illustrated in [10],
state-based languages (i.e. languages using state machines as a way to specify
behaviors) share common concepts (statemachines, states, transitions, guards,
etc) and structural relationships between these concepts. They only vary in the
interpretation that can be made from a program specified with one of these lan-
guages. In the UML 2 specification [14], these various potential interpretations
are called "Semantic Variation Points", and we will be using this convenient
expression throughout our paper. For metamodel reuse/specialization purposes,
one might wish to capture these common properties in a generic metamodel.
New specialized metamodels could then be specified from this common generic
metamodel using traditional MOF specialization mechanisms, or even through
the profiling mechanism proposed by the UML 2 Infrastructure[13]. The seman-
tic variation points would then be fixed where needed through specialization of
the different concepts. More generally in the field of domain languages engineer-
ing, semantic variation points are an important issue. This crucial information is
often related to the dynamic semantics of systems. Identifying and understand-
ing them is a requisite for all model-based activities (design, simulation, test,
formal verification, etc.). However, MOF does not provide a way to explicitly
declare (and fix) the semantic variation points of the generic metamodel. This
information is accessible to users only through the associated documentation
(most of the time written in natural language, such as in the case of the UML 2



70 A. Cuccuru et al.

metamodel), or is hidden in the behavioral description if the metamodel embeds
operational semantics (in the same way as in [2]. We will give a more detailed
description of this work in section 2). To fill the currently existing "gap", we
propose to introduce the ability to define template parameters at the meta-
model level, where parameters can be bound either at the model level or at the
metamodel level.

In section 2, we examine how standard OMG mechanisms are limited for
addressing the semantic variation points issue. In section 3, we then see how
templateable metamodels could help us to explicitly and intuitively identify and
fix semantic variation points. To illustrate our discussion, we propose a defi-
nition of a behaviored and parameterized version of the UML 2 StateMachine
metamodel. To prove the feasability of our approach, section 4 briefly describes
a prototype integration of a template support mechanism (largely inspired by
UML 2 templates) as an extension of Ecore, an implementation of EMOF for
the Eclipse IDE. In our conclusion, we discuss how the mechanisms we propose
could be integrated into traditional model driven tool chains.

Note: Devising a formalism for behavioral description falls outside the scope of
this paper. The template mechanism proposed here makes very few assumptions
about the kind of formalism used to describe behaviors. The only assumption
made is that behaviors are encapsulated in operations, and triggered by opera-
tion calls. This assumption is reasonable according to the object orientation of
MOF. Even though the behavioral aspect of metamodels is not credited by the
current MOF definition (in which descriptions are purely structural, and poten-
tial behaviors only identified through operation declarations on classes), several
environments already offer a support for behavioral descriptions. This is namely
the case of the Eclipse Modeling Framework [1] (via basic Java instructions)
or Kermeta [7] (with an higher level action language completed with OCL like
queries).

2 Standard Mechanisms for Metamodel Specialization

The MOF and the UML 2 Infrastructure provide mechanisms for specializing
an existing metamodel. As we explained in our introduction, specializations are
required to fix the semantic variation points identified in the semantic description
of a metamodel. More precisely, the semantic description associated with the
specializations of a generic metamodel will serve to fix its semantic variation
points, so that specialized metamodels can be interpreted without ambiguity.
To illustrate how the mechanisms provided by these two OMG standards can be
applied, we have used a simplified version of the UML 2 state machine metamodel
(Fig.1).

2.1 UML 2 State Machines

In UML, state machines are mainly used to describe the behavior associated
with instances of active classes. A state machine owns one or more regions,



Templatable Metamodels for Semantic Variation Points 71

which in turn own vertices (pseudo states and states) and transitions that relate
vertices. Transitions are guarded by a constraint, and fired according to certain
triggers referencing a firing event. Firing a transition results in the execution
of the potentially associated effect behavior, and an evolution of the region’s
current state from the source vertex to the target vertex of the fired transition.
To simplify our presentation, we consider that a state machine contains only one
region.

Fig. 1. Simplified UML 2 StateMachine Metamodel

At execution time, the state machine accesses an event pool that is managed
by the context object owning this state machine. The context object interacts
with its environment, and updates the content of the event pool according to
certain event occurrences (reception of an operation call, a signal, etc.). The
state machine takes, dispatches and processes events from the pool only once
the previous event occurrence has been fully processed. This event processing
policy is called "run-to-completion semantics". On the base of this simple dy-
namic semantics, many semantic variation points are identified in the UML 2
Superstructure. The event selection and transition selection policies are simple
ones that we will focus on.

According to the current state of the state machine and the set of relevant
events contained in the pool (i.e. those that can trigger a transition from the
current state), the event selection policy determines an event dequeuing order,
and leaves open the possibility of modeling different priority-based schemes. In
the following sections, we consider the simple Lifo and Fifo policies as possible
concrete semantics for the event selection policy. When "highest priority events"
have been selected according to a concrete event selection policy, the transition
selection policy determines the transition to be fired in the case where several



72 A. Cuccuru et al.

events have the same priority level. In the following paragraphs, we consider a
Random policy and a Stochastic policy as concrete semantics for the transition
selection policy.

2.2 Specialization by Profiling

Profiling is a specialization mechanism provided by the UML 2 Infrastructure.
A profile specializes metaclasses from an existing metamodel in order to adapt
them for particular purposes. Basically, stereotypes can be defined to annotate
particular metaclasses, so that the basic semantics of the targeted metaclass
can be specialized. A stereotype embeds properties usually called tagged values,
representing annotations to be interpreted for the targeted domain. In Fig.2, we
define a profile that fixes the two identified semantic variation points for the
UML state machines. This simple profile contains the definition of the Unam-
biguousStateMachine stereotype, that applies to the StateMachine metaclass.
This stereotype embeds two tagged values: eventPolicy and transitionPolicy,
typed by EventSelectionPolicy and TransitionSelectionPolicy enumerations re-
spectively. These enumerations contain identifiers for the possible interpretations
associated with the semantic variation points identified in the source state ma-
chine metamodel. Note that they could be extended to account for other policies.
With an appropriate semantic description, a particular state machine model an-
notated with this profile could be interpreted unambiguously. Note that profiles
are almost exclusively used to specialize UML 2 metamodel. However, nothing
prevents users from defining profiles that specialize other metamodels.

Fig. 2. Specialization by Profiling

2.3 Specialization by Generalization and Package Merge

The MOF provides several mechanisms to enable reuse and/or specialization
of (parts of) existing metamodels. With PackageImport, the elements of an
imported package are made visible to the elements contained in the importing
Package. The UML 2 Infrastructure pragmatically defines the PackageImport
concept as "a relationship that allows the use of unqualified names to refer to
package members from other namespaces". It enables the names of the elements



Templatable Metamodels for Semantic Variation Points 73

contained in the imported package to be added in some way to the importing
package. Once these elements are imported into (i.e. made visible in) a package,
they can be specialized by means of a Generalization relationship. General-
ization is the MOF manifestation of the classical Inheritance capability of the
Object paradigm. Imported elements are indeed reused as a basis for building a
refined or specialized element. In Fig.3, the UnambiguousBehavioredStateMa-
chines package imports the content of the BehavioredStateMachines package, so
that the StateMachine metaclass is made visible for elements of the receiving
package. The SpecializedStateMachineA and SpecializedStateMachineB meta-
classes then specialize the StateMachine metaclass through a Generalization re-
lationship. The semantic descriptions associated with the specialized metaclasses
subsequently fix the semantic variation points of the StateMachine metaclass.

This solution is rather naive (one specialized metaclass for one particular inter-
pretation) and is proposed here only for illustration purpose. In [2], the authors
also use the Generalization relationship in the context of the Kermeta frame-
work, albeit with a more modular solution. In Kermeta, metamodel designers
can enrich the traditional structural part of a metamodel with an integrated op-
erational semantics. Kermeta indeed provides an action language (supplemented
by OCL-like queries) to encapsulate a behavioral description into metaclass op-
erations. The modular solution is then to apply the Strategy design pattern [8],
and exploiting the polymorphism of the action language. In the strategy de-
sign pattern, a "strategy class" embeds only one operation and is used as a
server. A client class then embeds several operations, in which the behavior of
each operation is expressed as a call for a strategy class operation. In the state
machine example, the StateMachine metaclass acts as a client with two oper-
ations: selectEvents() and selectTransition(). Each of these operations in turn
calls the operations of two abstract strategy classes: EventSelectionPolicy (with
a selectEvents() operation) and TransitionSelectionPolicy (with a selectTransi-
tions() operation). Several specializations, each implementing a different inter-
pretation for the corresponding semantic variation point, can then be proposed
for the strategy classes (i.e. LIFO, FIFO, etc).

An alternative metamodel specialization solution afforded by the MOF is the
PackageMerge relationship. According to [15] this relationship is partially in-
spired from the combination of the "and" and "join" mechanisms of the Catalysis
approach [5]. This relationship expresses how the contents of two packages are
combined. It is similar to the Generalization relationship since it specifies that
the contents of a merged package is extended in some way by the content of a re-
ceiving package. When an element of the receiving package has the same name as
an element of the merged package, the characteristics of the receiving element are
extended by the characteristics of the merged element. The result is an element
that combines all their characteristics. The PackageMerge relationship is often
used to provide several levels of detail for the definition of an element having
different uses. The UML 2 superstructure, for example, makes extensive use of
this mechanism to structure the specification with different levels of compliance
for the various concepts considered. In Fig.4, we use this mechanism to build



74 A. Cuccuru et al.

Fig. 3. Specialization by Pack-
ageImport/Generalization

Fig. 4. Specialization by PackageMerge

the specialized packages UnambiguousBehaviorStateMachineA and Unambigu-
ousBehaviorStateMachineB from the general BehaviorStateMachines package,
whereby the semantic description associated with each StateMachine metaclass
of the receiving packages fixes semantic variation points for the StateMachine
metaclass defined in the merged package.

2.4 Evaluation of Standard Mechanisms

All these specialization mechanisms are virtually equivalent, and the choice of one
or the other is a matter of taste. In all cases, the semantic variation points are fixed
by the semantic description associated with each specialized metaclass. For the
specialization part of the semantic variation point issue, these mechanisms provide
an effective solution. The main limitation of MOF concerns identification of the
semantic variation points: a metamodel alone is not enough to confirm that they
exist. This information is only and necessarily available in the textual semantic
description associated with the metamodel. For behaviored metamodels (such as
in Kermeta), it exists in the metamodel, but is hidden in the behavioral description
(e.g. when operations on abstract metaclasses are called). We believe that use of
template parameters would be an elegant and intuitive way to identify semantic
variationpoints in a metamodel. Parameter binding would then be the natural way
to specialize metamodels and intuitively fix semantic variation points.

3 Templateable Metamodels

3.1 Related Works

The potential benefits of templatable metamodels have already been partially
explored by the MDE community. The authors of [6] propose to integrate a



Templatable Metamodels for Semantic Variation Points 75

template based mechanism into GME (Generic Modeling Environment), which
is a metamodeling environment for the definition of DSMLs. Their main reason
for doing so is that recurrent structural modeling patterns appear when defining
DSMLs. Designers thus need a way to capture recurrent patterns in a generic
way, and templated metamodels are an obvious solution. Template parameters
namely enable clear identification of roles in the patterns, and specify how an
actual metamodel is derived from one or several pattern metamodels through
parameter/role binding. The generic metamodeling design patterns can then be
instantiated, composed, and specialized as needed to produce new metamodels.
The authors identify such design patterns, either ones specific to DSML such
as state charts or data flow modeling style patterns, or more general ones such
as the composite structure design pattern. A similar but more general (i.e. less
DSML-oriented) approach has been proposed in [3]. This also focuses on use of
templatable metamodels to clearly specify and identify design patterns roles as
template parameters.

These approaches share the idea that template parameters are a powerful tool
for metamodel designers and can be efficiently combined with traditional MOF
inheritance-like mechanisms (i.e. Generalization and PackageMerge) to meet the
"design for reuse" criterion. The benefits identified by the authors concern mainly
architectural aspect of metamodeling. We also share this analysis and we think
that these works support genericity expression in the large, but we believe that
benefits of templatable metamodels go beyond architectural/structural aspects.
The next section of our article shows that templatization can also impact the
semantic aspects of metamodeling and solve the semantic variation points issue.
Outside of the MDE community, use of template parameters for fixing semantic
variation points has already been investigated. In [10], the authors indeed de-
scribe the structural part of state machines as tuples, whose execution can be
parameterized by functions and predicates. The philosophy of our proposal is
similar, but is better adapted to common metamodeling practices. We provide
a methodology that addresses the issue of explicitly denoting semantic variation
points in DSML metamodels.

3.2 A Templated Version of the UML 2 State Machine Metamodel

Fig.5 illustrates how the UML 2 StateMachine metamodel can be parameterized
using the default UML notation for templates. The PackageMerge relationship
between the TemplatedBehaviorStateMachine and BehaviorStateMachine is not
a requisite. We use it here only to show how an existing, unparameterized meta-
model could be templated (the UML 2 metamodel is of course a good candidate
for such templatization). A complete view of the TemplatedBehaviorStateMa-
chine package obtained by merging is shown in Fig.6.

In the TemplatedBehaviorStateMachine package (Fig.5), the elements shown
are those that were specialized or added (based on the metamodel defined in the
merged package). To reflect the dynamic aspect of an execution, we added some



76 A. Cuccuru et al.

Fig. 5. UML 2 StateMachine Metamodel with Template Parameters

Fig. 6. Full view of the templated package resulting from the package merge



Templatable Metamodels for Semantic Variation Points 77

associations (currentState of a StateMachine), created some metaclasses (Even-
tOccurence), and declared some operations on metaclasses, to reflect a behavior
based on operation calls.

Let us now examine how an anonymous (but perceptive) reader would react
to this diagram. Two template parameters are defined for the TemplatedBehav-
iorStateMachine package. They are ESP (a type that must comply with the
EventSelectionPolicy abstract metaclass) and TSP (complying with the Tran-
sitionSelectionPolicy abstract metaclass), which are in turn referenced by the
StateMachine metaclass. The EventSelectionPolicy and TransitionSelectionPol-
icy metaclasses own operations which indicate that potential behaviors are en-
capsulated in these metaclasses. Intuitively, our perceptive reader understands
that the behavior associated with the parameters will impact the behavior of
the parameterized StateMachine metaclass. The two template parameters pro-
vide him with a means for varying the operational semantics of the StateMa-
chine. In other words, these parameters explicitly identify the points at which
the semantics of a UML state machine can vary: Its semantic variations points
have thus been explicitly and clearly identified. This intuition can be easily con-
firmed if we encapsulate an operational semantics (expressed here with a java-like
syntax) in the step operation of the StateMachine generic metaclass, in which
explicit references are made to the parameter behaviors through operation calls
(selectEventToHandle and selectTransitionToFire):

public void step() {
// local variable declarations
Event[*] relevantEvents ;
Event selectedEvent ;
Transition[*] relevantTransitions ;
Transition selectedTransition ;

// selection of the event to handle
relevantEvents := this.selectRelevantEvents() ;
selectedEvent := eventSelectionPolicy.

selectEventToHandle(relevantEvents) ;

// selection of the transition to fire
relevantTransitions := selectRelevantTransitions(selectedEvent) ;
selectedTransition := transitionSelectionPolicy.

selectTransitionToFire(relevantTransitions) ;

// the selected transition is fired
fireTransition(selectedTransitions) ;

}

Sometimes, dynamic aspects in metamodeling are defined using a separate
model of values which is linked with the abstract syntax model via some kind of
evaluation objects. In that case our approach could be applied in a similar way
by defining template parameters on the model of values specifying the dynamic
aspects.



78 A. Cuccuru et al.

Once the semantic variation points have been identified by template param-
eter definitions, the most natural way to fix them is to bind the parameters to
concrete values (i.e. the types actually handled). In Fig.7 and 8, we illustrate
how semantic variation points can be fixed both at the metamodel level and
the model level. At the metamodel level, a new package can be defined from
an existing templated package through the Bind relationship. In the resulting
metamodel, references to template parameters are resolved and are replaced by
the concrete values bound to the parameters. Using this mechanism, we create
a FIFO_Random_StateMachines package in which the state machines select
events according to a "FIFO" event selection policy, and transitions according
to a "random" transition selection policy. At the model level, we declare a state
machine with the same semantics, but binding takes place directly in the decla-
ration of the generic metaclass instance.

Fig. 7. Semantic Variation Points fixed at the
Metamodel Level (M2)

Fig. 8. Semantic Variation Points
fixed at the Model Level (M1)

4 Implementation for Ecore

In order to study the feasibility of our approach, we are currently developing an
Eclipse2 plug-in supporting the template mechanism we have illustrated in the
previous section. The first step of this implementation is to extend the definition
of Ecore (the Eclipse implementation of EMOF) used as a base for EMF. Ecore
is itself described by an Ecore metamodel (in the same way that MOF is defined
by a MOF metamodel). Extending the metamodeling capabilities of Ecore to
support template expressions thus requires an extension of the Ecore metamodel.
We base the description of the extensions we propose on the simplified view of
the Ecore metamodel illustrated in Fig.9.

The extensions integrated in the Ecore metamodel are inspired by the UML 2
metamodel subset concerning templates. Our proposal is however simplified and
adapted to metamodeling requirements, but we keep as much as possible the
UML 2 vocabulary (and the meaning associated with each identified concept) in
order to prevent UML 2 users from confusion.

2 http://www.eclipse.org



Templatable Metamodels for Semantic Variation Points 79

Fig. 9. Simplified Ecore Metamodel

4.1 Extensions for Template Declarations

Fig.10 illustrates the extensions we integrate in the Ecore metamodel in order
to support template declarations. A TemplateableElement is an element that
can optionally be defined as a template (i.e. an element that defines some for-
mal template parameters) and/or bound to other templates (i.e. the definition
of the element relies on the definition of another templateable element, and
binds its formal parameters). A templateable element may own a Template-
Signature, which in turn references a set of TemplateParameter elements. These
TemplateParameter elements identify the formal parameters of the template. A
ParameterableElement represents an element that can be bound as an actual
value for a formal template parameter. TemplateableElement, TemplateParam-
eter and ParameterableElement abstract metaclasses are then specialized for
specific uses. Concretely, all TemplateableElement sub-classes will be able to
embed template parameter definitions. TemplateParameter sub-classes will then
be defined if necessary for each ParameterableElement specialization. In our
proposal, EPackage and EClassifier specialize TemplateableElement, Classifier-
TemplateParameter specializes TemplateParemeter, and EClassifier specializes
ParameterableElement. The ETypedElement Ecore metaclass is also extended
with an association to ClassifierTemplateParameter (eGenericType role). This
association enables EOperation, EParameter and EStructuralFeature (i.e. sub-
classes of the abstract TypedElement metaclass) to be typed by a classifier tem-
plate parameter.



80 A. Cuccuru et al.

Fig. 10. Ecore Extensions for Template Declarations

Note that UML 2 goes further, and identifies other specializations for Tem-
plateableElement (i.e. Operation) and ParameterableElement (i.e. Operation,
Property and ValueSpecification). The implementation we describe here is only
a prototype version, and we only keep for the moment specializations that
are useful to support a template declaration similar to the one illustrated in
Fig.5.

4.2 Extensions for Template Parameters Binding

Fig.11 illustrates the Ecore extensions we integrate to support binding of tem-
plate parameters at the metamodel level3. A templateable element may own a
set of TemplateBinding elements. A TemplateBinding is a relationship describ-
ing that the definition of the templateable element relies on the definition of

Fig. 11. Ecore Extensions for Template Parameters Binding

3 Binding at the model level is not yet supported by the prototype, and requires further
investigations.



Templatable Metamodels for Semantic Variation Points 81

another templateable element, and binds its formal parameters. The Template-
Binding relationship references the template signature of the target template.
It owns a set of TemplateParameterSubstitution, where each substitution relates
a TemplateParameter (a formal parameter of the signature) to a Parameter-
ableElement (the actual value bound to the formal parameter).

5 Conclusion

MOF does not provide standard mechanisms for identifying and fixing the se-
mantic variation points of a metamodel, and works related to this issue do not
provide satisfactory solutions. We have proposed a solution based on template
definitions. We have shown how templateable metamodels could help us to ex-
plicitly and intuitively identify and fix semantic variation points, where a given
point can be identified by a template parameter definition, and fixed by a pa-
rameter binding. Using the UML 2 syntax, we have illustrated the use of these
mechanisms with the definition of a parameterized version of the UML 2 state
machine metamodel. To show how templates could be supported by a meta-
modeling environment, we have also described a prototype version of an Eclipse
plugin we are currently developing. For the implementation part of this work,
we have mainly focused on how the Ecore metamodel could be extended to sup-
port template definitions and template binding. However, we have not discussed
yet how templateable metamodels and the underlying tool support could be
integrated in traditional model driven tool chains.

In the ideal case, the OMG would recognize the need for templated meta-
models, and would submit a new Request For Proposal for a major revision of
MOF. "Template support" would be an explicit requirement of this request for
proposal. However, even in this ideal case, such standardized mechanisms would
not be available before several years. As we (and readers?) are of course con-
vinced by the usefulness of templates in metamodeling, we adopt a pragmatic
position while waiting for a potential standardization. The implementation we
have described in section 4 is the first step of the solution. The second one is
to provide a plug-in used as an additional layer over traditional Ecore model
driven tool chains. Our idea is that a traditional Ecore metamodel (i.e. with-
out template parameters and binding) can be easily generated from a templated
metamodel where parameters are bound. Indeed, Bertrand Meyer has already
demonstrated in [9] that everything that can be be expressed using genericity
and templates can also be expressed in some way with inheritance mechanisms.
In that perspective it would be useful to study the impact to Ecore in terms of
the memory and efficiency cost of our extensions.

Template support could be used as a useful tool for reasoning about models.
The identification of semantic variation points is the benefit we have focused
on, but the works described in section 3.1 have also identified other benefits
(metamodel composition, metamodeling design patterns,etc.). Then, the model
transformation rules we are developing could be applied, so that bound param-
eters of a templated metamodel would be actually replaced by concrete values



82 A. Cuccuru et al.

in the resulting metamodel, using generalization relationships where needed to
cope with semantic variations and specializations.

References

1. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison-Wesley, London, UK (2003)

2. Chauvel, F., Jezequel, J.M.: Code generation from UML models with semantic vari-
ation points. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713,
Springer, Heidelberg (2005)

3. Clark, T., Evans, A., Kent, S.: Engineering Modelling Languages: A Precise Meta-
modelling Approach. In: FASE, Fundamental Approaches to Software Engineering:
5th International Conference, Grenoble, France (2002)

4. Clark, T., Evans, A., Sammut, P., Willans, J.: An eXecutable Metamodeling Facil-
ity for Domain Specific Language Design. In: 4th OOPSLA Workshop on Domain-
Specific Modeling, DSM, Vancouver, Canada (2004)

5. D’Souza, D.F., Wills, A.C.: Objects, components, and frameworks with UML: the
catalysis approach. Addison-Wesley Longman Publishing Co., Inc, Boston, MA,
USA (1999)

6. Emerson, M., Sztipanovits, J.: Techniques for metamodel composition. In: OOP-
SLA, 6th Workshop on Domain-Specific Modeling, Portland, Oregon, USA (2006)

7. Fleurey, F., Drey, Z., Vojtisek, D., Faucher, C.: Kermeta Language Reference
Manual

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Abstraction
and reuse of object-oriented design. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 406–431. Springer, Heidelberg (1993)

9. Meyer, B.: Genericity versus inheritance. In: OOPSLA 86 Conference Proceedings,
Portland, Oregon, USA (1986)

10. Niu, J., Atlee, J.M., Day, N.A.: Template Semantics for Model-Based Notations.
In: IEEE Transactions on Software Engineering, pages vol. 29(10), pp. 866–882
(2003)

11. OMG. MDA Guide Version 1.0.1 (2003)
12. OMG. Meta Object Facility (MOF) 2.0 Core Specification (2004)
13. OMG. Unified Modeling Language: Infrastructure (2005)
14. OMG. Unified Modeling Language: Superstructure (2005)
15. Zito, A., Diskin, Z., Dingel, J.: Package merge in uml 2: Practice vs. theory? Model

Driven Engineering Languages and Systems, pp. 185–199 (2006)



Execution of Aspect Oriented UML Models�

Lidia Fuentes and Pablo Sánchez

Dpto. de Lenguajes y Ciencias de la Computación
University of Málaga, Málaga, Spain

{lff,pablo}@lcc.uma.es

Abstract. The creation of precise, complete, platform independent
models, whose implementation code can be fully generated for differ-
ent target platforms, is often considered a key factor in Model-Driven
Architecture (MDA). The execution of UML models is already a real-
ity, mainly due to the adoption of the Action Semantics. However, UML
and its action language are object-oriented based and certain concerns,
called crosscutting concerns (e.g., encryption), can not be adequately
encapsulated in single design modules. Such concerns result in scattered
and tangled representations, which hinder system development, main-
tenance and evolution as well as the reusability of individual design
modules. Aspect-Oriented Software Development (AOSD) has proven
in recent years to be a useful technology for alleviating these shortcom-
ings of object-orientation. This paper presents an extension to current
Executable UML practice for the construction and execution of Aspect-
Oriented UML models.

1 Introduction

The possibility of constructing models with a precise, complete and platform-
independent behaviour specification, which even allows generation of 100% of the
application code for several target platforms, has been considered as a crucial fac-
tor for the success of MDA [1–3]. The benefits of this approach go beyond sim-
ply reducing or skipping the coding stage. This kind of executable model helps to
ensure platform independence, avoids obsolescence (programming languages may
change, but models would stay), and, more importantly, allows verification of the
models by means of its execution. Hence, inaccuracies inherent in a design can then
be detected during the model execution, before moving on to implementation. Re-
solving such inaccuracies at design time is cheaper, faster and more desirable than
carrying out necessary code modifications later on-the fly.

The execution of UML models, thanks to the adoption of an action language,
is already a reality and several tools (Rhapsody, TAU G2, Nucleus BridgePoint
or Kennedy Carter iUML) exist with such capabilities. However, UML and its
action language are Object-Oriented, and consequently, some concerns, such as

� This work has been supported by MCYT Project TIN2005-09405-C02-01 and EC
Grants IST-2-004349-NOE and the AMPLE IST-033710.

D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 83–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



84 L. Fuentes and P. Sánchez

synchronisation, scheduling, persistence or encryption, cannot be adequately en-
capsulated into single design modules (i.e., classes), crosscutting application de-
sign modules [4]. This hampers model development, maintenance and evolution
and at the same time it decreases the reusability of individual elements.

Aspect-Oriented Software Development (AOSD) has proven in recent years to
be an appropriate technology for encapsulating crosscutting concerns in special
units, named aspects, and providing mechanisms to compose them with the soft-
ware modules they crosscut. This improves software system modularisation, and
consequently, the maintenance, evolution and reusability of individual elements
is easier [5].

The purpose of this work is to extend executable UML principles in order
to support aspect-orientation. Our aim is twofold: (1) To improve the current
modularisation of UML executable models; and (2) To bring the benefits of
executable models to the Aspect-Oriented community. In order to achieve this
goal, this paper presents two elements: (1) A UML 2.0 Profile for precise aspect-
oriented behaviour modelling, which extends the Action Semantics when needed;
and (2) A model weaver for aspect-oriented models that conforms the previous
Profile. This weaver is required in order to be able to execute aspect-oriented
models.

An Online Book Store System (OBS), taken from the existing literature [1]
about executable modeling, has been used as an example to illustrate our ap-
proach throughout this paper. It has been refactored with aspects when required.

Following this introduction, the paper is structured as follows: Section 2 pro-
vides some background on Aspect-Oriented Software Development. Section 3
gives an overview of the approach. Section 4 presents the Online Book Store
System. Section 5 outlines the principles for executing UML models. Section 6
describes the UML 2.0 Profile for AO executable modelling. Section 7 contains
the description of a static and a dynamic model weaver. Section 8 focuses on
the current tool support for our approach and the experiments carried out. Sec-
tion 9 comments on related work, and finally, Section 10 outlines conclusions
and future work.

2 Aspect-Oriented Software Development

Aspect-Oriented Software Development aims to overcome the shortcomings of
traditional software decomposition techniques, such as Object-Oriented (OO) or
Component-Based, regarding the encapsulation and composition of crosscutting
concerns such as security, monitoring or persistence.

Aspect-orientation (AO) improves the separation of concerns providing the
mechanisms for encapsulating each crosscutting concern appropriately in a sin-
gle module, called aspect, and then specifying how this aspect must be composed
with the software modules it crosscuts. AO principles are described below, to-
gether with the aspect-oriented terminology, shown in bold:

1. Software base modules (e.g., objects or components) do not contain any
reference or code related to crosscutting concerns (e.g., persistence).



Execution of Aspect Oriented UML Models 85

Base modelBase model

Aspect modelAspect model

Pointcut modelPointcut model

XMI

XMI

XMI

WeaverWeaver
Executable 

woven model
Executable 

woven model

XMI

Base modelBase model

Aspect modelAspect model

Pointcut modelPointcut model

XMI

XMI

XMI

WeaverWeaverWeaverWeaver
Executable 

woven model
Executable 

woven model

XMI

Fig. 1. Aspect-Oriented Executable UML Scenario

2. Crosscutting concerns are encapsulated in special modules, named aspects.
Aspects contain special methods, called advices, which expose the crosscut-
ting concern functionality.

3. Each software module permits the injection of crosscutting concerns at spe-
cific points, called joinpoints, of their execution flows (e.g., after they have
executed a method).

4. Special composition rules, named pointcuts, specify those joinpoints of soft-
ware modules where crosscutting concerns must be injected (e.g., after the
execution of all the methods called foo()).

5. It is the task of each AO language or platform to compose the whole sys-
tem, injecting the crosscutting concerns on the joinpoints according to the
pointcuts. This composition process, known as weaving, can be performed
at compile time (called static weaving) or at load or even runtime (called
dynamic weaving). In the latter case, the weaver may allow us to add and
remove aspects at runtime.

3 Our Approach

This section contains a general overview of our approach. Our goal is to obtain
AO models that can be executed. It is also our intention to use well-known and
widely used standards whenever possible, in order to obtain vendor-independent
solutions and avoid the need for learning new notations and languages. Hence,
UML is the most widely known and used software modelling language, there is
a wide range of tools available that support it and the execution of UML models
is already a reality.

In this paper we define a process for the construction of AO UML executable
models. This process relies on the existence of two elements: (1) a UML 2.0
Profile for the specification of AO executable models, which is called AOEM
(Aspect-Oriented Executable Modelling); and (2) a model weaver for AO models
that conforms to the AOEM profile. Using both elements, such a process is
defined (See Figure 1) as follows:

1. First of all, a common UML executable model is constructed for modelling
all the non-crosscutting concerns. The base model is obtained.

2. Crosscutting concerns, including their precise and complete behaviour, are
modelled as aspects using the AOEM Profile. This produces the aspect model.

3. The way in which crosscutting concerns must be composed with the con-
cerns they crosscut is specified by means of a pointcut model. The rules for
modelling pointcuts are also part of the AOEM Profile.



86 L. Fuentes and P. Sánchez

OBS System
<< component >> Delivery

<< component >>

CreditCard
<< component >>

Network

Fig. 2. Excerpt of the OnLine Book Store System architecture

4. The base and aspect models are composed together automatically, which
produces the woven model. This woven model is a common UML executable
model.

5. Finally, to execute the complete AO model, the woven model is imported
into a UML tool with executing capabilities (e.g., Rhapsody).

To perform the weaving and to export/import models from/into UML tools,
the UML models must be available in a standard and interoperable format. This
is possible nowadays using the XMI (XML Metadata Interchange) standard for
serialising UML models in XML documents. The model weaver presented in this
paper takes as input the XMI representations of the base, aspect and pointcut
models and produces an XMI representation of a model of the woven system as
output. The steps of this process are illustrated in the following sections using
the OBS example.

4 The Online Book Store System

An Online Book Store System(OBS), taken from the executable modeling lit-
erature [1], is used as an example to illustrate our approach. The Online Book
Store has to provide a way for customers to place orders for books. From the
set of use cases presented in [1], we focus in this paper on the ordering of books,
which is specified as follows:

1. A customer starts a new order by selecting a book and the required quantity.
2. The customer can continue adding more books to the order.
3. Once the customer is satisfied with his selections, the order goes to the

check out stage. A message is sent to the credit card company to process the
payment.

4. If the payment is approved, a shipping order is created. A message is sent
to the delivery company to inform that a new order is ready.

Additionally, two global requirements must be observed:(1) Each time an
order changes, it must be persisted; (2) All the network communications have
to be secure. Persistence and Encryption are easily identified as crosscutting
concerns in the system.

Figure 2 shows an excerpt of the OBS system architecture, which is comprised of
several components: the OBS System component, which is responsible for the OBS



Execution of Aspect Oriented UML Models 87

core functionality; and the external Credit Card and Delivery services. The commu-
nication between the OBS System and the external services is performed through a
public network, and therefore, the messages sent over it must be encrypted.

Our intention is to construct an AO executable model of the OBS system,
where Persistence and Encryption are well-modularised as aspects, without ham-
pering system maintenance, evolution or reusability.

5 Executable UML Models

In order to execute a model, two basic elements are required: (1) an actions
language, which contains the atomic platform-independent actions the models
can carry out; and (2) an operational semantics, which specifies how models
and the actions must be interpreted. Both elements in the UML standard are
described below.

5.1 Operational Semantics

The operational semantics of UML is still in the process of standardisation.
Nevertheless, several tools (e.g., Rhapsody, TAU G2 or Kennedy Carter iUML)
implementing non-standard operational semantics for UML models already exist.
The corresponding tool vendors are leading the creation of the official OMG
standard, thus it is reasonable to suppose that it will be similar to current
versions.

Fortunately, as the ideas behind them are quite similar it can be assumed
that the final adopted standard will also be similar to the current practice. The
process of constructing a UML executable model using these tools can be gener-
alised and summarised as follows: Firstly, the system is decomposed into a set of
components. Then, the structure of each component is detailed by means of class
diagrams. The behaviour of each class is specified using a protocol state machine,
whose transitions and states may have associated procedures (sets of actions),
which model behaviours. Procedures are specified using an action language.

The OBS System component (see Figure 2) is modelled using these principles
as follows: First of all, a class diagram (Figure 3 (left)) detailing component
internals is constructed. Basically, the OBS System contains a System class to
register/deregister users and to enter the application; at least one Book; some
Customer data and Clerks to pack the orders. A ShoppingCart is used to store
customers orders while they navigate the system.

Subsequently, the behaviour of each class is specified by means of a state ma-
chine. Figure 3 (right) shows the state machine for the ShoppingCart class. The shop-
ping cart is initially empty, until an event for adding a book arrives. Subsequently,
it shifts to the ItemsAdded state, where more events for adding a book can be re-
ceived. When the customer performs a checkOut operation, the ItemsAdded state is
left, and the ShoppingCart enters an orthogonal state with two concurrent substates:
WaitingForDeliveryConfirmation and WaitingForCreditConfirmation. If the actions car-
ried out in both finish successfully, a confirmation message is sent to the customer,
otherwise, he/she is informed of the error.



88 L. Fuentes and P. Sánchez

CheckOut

WaitingFor
CreditConfirmation

WaitingForDelivery
Confirmation

ItemsAdded
Empty

addItem(book:Book,quantity:int)
/UpdateItems

 [ok=false]
/notifyProblem

 [ok=true]

 / sendCreditApproval

 [ok=false] / notifyProblem

 [ok=true]

 / sendDeliveryConfirmation

addItem(book:Book, quantity:int)
/UpdateItems

checkOut()
/doCheckOut

 / sendOk

Delivery

Payment

ShoppingCart

+addItem( book : Book, quantity : int )
+removeItem( book : Book )
+checkOut()

Customer

-name : String
-creditCard : String

+getCreditCard() : String

Book

-author : String
-title : StringClerk

+packOrder()

System

+register()
+unregister()

1..*

0..*

1..*

SelectedProduct

-quantity : Integer

-books

Fig. 3. Class diagram for the OBS System internals (left) Protocol State Machine for
the ShoppingCart class

Table 1. UML actions used to model the OBS example

ReadSelf Returns a reference to the object where it is executed

CreateLinkObject Creates an association class between two objects

WriteStructuralFeature Writes a value in an attribute of an object

CallBehavior Invokes a procedure (another activity diagram)

CallOperation Invokes an object method

SendSignal Sends a signal to a target object passed as parameter

5.2 The Action Semantics

As commented before, the precise behaviour of each procedure is specified by
means of an action language. UML defines, as part of the standard, its own
action language. It defines operations that support the manipulation of objects
and the logical constructs for the specification of algorithms. The specific set of
actions used in this paper are explained in Table 1.

Intentionally, the UML action language does not enforce any notation for
drawing actions. Thus, each tool defines its own notation. To avoid the use of
notations that work specifically for proprietary tools, we have developed a UML
Profile, following the ideas presented in [6]. It is compatible with any UML tool
supporting activity diagrams and abstract actions, which is a common case. This
Profile works as follows: Procedures are represented by means of UML activity
diagrams. Actions are nodes of activity diagrams. An action is depicted using the
general action symbol (a round cornered rectangle) stereotyped with its name
(e.g., �ReadSelf�). Inputs and outputs are depicted as pins. Additionally, each



Execution of Aspect Oriented UML Models 89

<<WriteStructuralFeature>>

Quantity

value book

<<ReadSelf>>

ThisShoppingCart
<<CreateLinkObject>>

SelectedProduct

book

cart

quantity : int

book : Book

<<CallBehavior>>

GetReference

<<CallBehavior>>

GetCustomer
CreditCard

<<SendSignal>>

notCredit
Approval

target

<<CallOperation>>

creditApproval

creditCard

ok
targetObject

price

<<CallBehavior>>

GetReference
<<CallBehavior>>

Calculate
TotalPrice

...

<<Literal>>

CreditCard GUI
<<Literal>>

 [ok = false]

 [ok = true]

Fig. 4. Procedures for: addItem (left) doCheckOut (right)

specific action must have the same number of input/output pins as specified in
the standard, which is ensured by means of OCL constraints.

Figure 4 (left) shows the behaviour of the ShoppingCart object after receiving an
addItem event, modelled according to the UML Action language. This procedure
has two parameters, the selected book and the required quantity. The procedure
creates a new association link object of the SelectedProduct association class (see
Figure 3 (left)), between the ShoppingCart that hosts the behaviour (returned by
the ReadSelf action), and the selected book. The required quantity is finally written
in the corresponding attribute (structural feature) of the created link object.

Figure 4 (right) illustrates the doCheckOut behaviour, which is executed after
a ShoppingCart object receives a checkOut event. In this case, the object calculates
the total price of the order, recovers customer credit card data, and obtains a
reference to the CreditCard service. With these parameters, it requests a credi-
tApproval from the CreditCard service. If the service confirms the transaction, the
check out process continues; if the transaction is not approved, a message com-
municating the error is shown to the user. In this latter case, we used a behaviour
defined by ourselves (e.g., a subroutine) called GetReference, which serves to get
references to relevant components of the application, such as the GUI (Graphical
User Interface) or the CreditCard and Delivery external services.

The procedures modelled in Figure 4 are not complete as they do not observe
Persistence and Encryption, which are added using aspects in the next section.

6 Aspect-Oriented Modelling

This section describes how the OBS crosscutting concerns are added to the OBS
model as aspects, achieving better modularisation. To support the construction
of AO executable models, this paper presents the AOEM (Aspect-Oriented Ex-
ecutable Modeling) UML 2.0 Profile. This is integrated with the principles of
Executable UML and its action language.

In agreement with [7], the AOEM Profile is specified through the definition of
three elements: (1) The joinpoint model; (2) How aspects and their associated
elements, such as advices, are modelled; and (3) The modelling of the rules, i.e.,
the pointcuts, that inject aspects into the modules they crosscut. Each of these
elements is described in the following subsections.



90 L. Fuentes and P. Sánchez

Table 2. Aspect-oriented actions

GetMessName Returns the name of the intercepted message

GetMessArgs Returns an ordered collection with the message arguments

GetTarget Returns a reference to the target of the message

GetSource Returns a reference to the source of the message

Proceed Executes the intercepted behaviour

6.1 Joinpoint Model

In an AO approach, the joinpoint model defines the points of the base mod-
ules where aspects (crosscutting concerns) can be injected. The AOEM Profile
only allows observable execution points of classes/components to be intercepted:
(1) object creation and destruction; (2) the sending and receiving of a mes-
sage/method; (3) the throwing of an event; and (4) the raising of an exception.
This non-invasive joinpoint model is suitable for use with black-box software
modules, such as third-party components or legacy systems. Aspect advices can
be executed before, after or around (in substitution of) the execution of the
intercepted joinpoints. This paper will focus on the joinpoints related to the
sending and receiving of a message, as the other cases, at modelling level, can
be considered special cases of sending/receiving joinpoints (e.g., the raising of
an exception can be handled as the sending of a special message).

6.2 Aspect Modelling

An aspect is modelled as a common class with special operations which model
advices. Advices differ from common operations in that they are never invoked
explicitly and they are executed by the AO weaver without the knowledge of
the base class designer. For this reason, advices do not have parameters. Con-
sequently, each aspect-orientated language has to provide mechanisms to allow
advices to retrieve the information related to the intercepted joinpoint (e.g., the
arguments of a message) that they might need. A subset of the AO actions pro-
vided by the AOEM Profile to access the joinpoint context is shown in Table 2.

Thus, advices are modelled as activity diagrams (common procedures) without
input objects. They can have one or more output pins, in order to be able to
modify values of the intercepted object flow. For instance, if an advice is executed
before a message is sent, this could modify the value of message arguments.
The update values would be placed as output values of the activity diagram
representing the advice. In the particular case of advices executed around a
joinpoint, the advice and the intercepted message should have the same number
and kind of output objects.

To introduce Persistence and Encryption into the OBS system, two aspects
are created. They are associated with the PersistentStore and Encrypter common
classes. These classes have methods to persist objects and handle encrypted
communications, respectively. On the joinpoints, the task of the advices is to



Execution of Aspect Oriented UML Models 91

<<CallBehavior>>

encrypt

argsmessage

GetMessageName
<<GetMessName>><<GetTarget>>

GetTargetEncrypter
<<Literal>>

<<CallBehavior>>

GetReference

<<GetArgs>>

GetMessArgs

result

<<GetTarget>>

GetSettedComp
<<Literal>>

Persistent
Store

<<CallBehavior>>

GetReference
<<CallBehavior>>

persist

object

target

Fig. 5. Advices for: Persistence (left) Encryption (right)

collect the required data to invoke the appropriate PersistentStore or Encrypter
methods.

Figure 5 (left) shows the advice for persistence. It recovers a reference to the
object to be persisted and calls the persist(object) method of the PersistentStore
class with this data. Figure 5 (right) depicts the advice for encryption. It re-
lies on the Object[] encrypt(target:Object, method:String, arg:Object[]) method of the
Encrypter. This method sends an encrypted request to the target object for ex-
ecuting method with arg as arguments. It returns the collection of (decrypted)
values resulting from executing the method. Thus, the task of the encryption
advice (Figure 5 (right)) is to extract from the intercepted joinpoint (the send-
ing of a message) the target object, the message name and the arguments of the
message, and, with these values, to invoke the encrypt method of the Encrypter
class. The advice returns the values (decrypted) which result from executing the
method.

6.3 Pointcut Modelling

Finally, to complete our aspect-oriented model, we need to specify the rules,
pointcuts in AO terms, that establish where Persistence and Encryption must be
injected. A pointcut expression is a pattern that matches several join points and
associates them with one or more aspect advices. At modeling level, the common
practice for specifying pointcuts is to use UML diagrams with wildcards [7,
8]. As we are interested in intercepting interactions between objects (message
sending/receiving), sequence diagrams are selected because they are the main
element in UML used to represent object interactions.

Using the AOEM Profile, a pointcut is expressed by means of a sequence
diagram, stereotyped as �pointcut�. This stereotype has a tagged value called
advice: an ordered collection of aspect advices, which will be executed on the
joinpoints selected by the pointcut.

The specific message inside the sequence diagram that must be intercepted
is stereotyped as �joinpoint�. This stereotype has two tagged values: (1)point,
which indicates whether the joinpoint is either the sending (SEND) or the recep-
tion (RECEIVE) of the message; and (2) time, which specifies when the advice
must be executed in relation to the joinpoint (BEFORE, AFTER, AROUND).
Wildcards are allowed in class and method names: “*” represents any sequence
of characters and “..” any sequence of arguments.



92 L. Fuentes and P. Sánchez

*(..)

<<pointcut>>
sd CreditCardCalls

:CreditCard

<<joinpoint>>
{point = SEND, 
time  = AROUND}

{advice = Encryption.encrypt()}

add*(..)

<<pointcut>>
sd ShoppingCartUpdate 

:ShoppingCart

<<joinpoint>> {point = RECEIVE, 
time = AFTER}

{advice = Persistence.persist()}

Fig. 6. Pointcuts for: Persistence (left) Encryption (right)

The pointcuts for adding persistence to the ShoppingCart objects and the en-
cryption of all the messages sent to the CreditCard service are shown in Figure 6.
Figure 6 (left) indicates the persist advice must be executed after the reception
(i.e. after the method execution) of any message starting with “add” and with
any number and kind of arguments. This message can come from any source, as
this is not specified. Figure 6 (right) specifies that around sending any message
(“*(..)” wildcard combination) from any source (not specified) to the CreditCard
service, the encrypt advice must be executed.

In addition, a pointcut may express some constraints (e.g. the joinpoint has
to be in a specific execution flow or a specific state) that must be satisfied in
order to execute the associated advices. More powerful and complex pointcuts
than those shown in Figure 6 can be expressed in the AOEM Profile. However,
they are not included in this paper in order to avoid overwhelming the reader
with too many AO details1.

7 A Weaver for Executable Models

Finally, before executing the model, aspect behaviour must be added to the
modules they crosscut according to the pointcut specifications, i.e. the weaving
process has to be executed. The ultimate behaviour of common classes and
aspects is expressed by means of activity diagrams. Therefore, the problem of
weaving executable models can be reduced to the problem of weaving activity
diagrams. This section describes a static weaver for AO models that conforms
to the AOEM Profile. A dynamic weaving strategy is briefly outlined.

7.1 Static Weaving

The static weaver is responsible for adding the advice behaviours into the places
(joinpoints) indicated by the pointcut specifications. This is achieved in two
phases: joinpoint selection and aspect injection.

First of all, the joinpoint selector searches all the joinpoints that are selected
by the pointcuts. Each of them is marked as �selected joinpoint�. This stereotype
has as tagged values the advice that must be added and the advice execution
1 Interested readers can find further information of the AOEM Profile in

http://www.lcc.uma.es/∼pablo/ECMDA07



Execution of Aspect Oriented UML Models 93

CallOperation

arg1 arg2

target

result

O2 O3

O4

O1

arg1

arg2

result

Action1

Source Object Target Object

Action N

...

O5

O6

1

2

3

4

5

6

1

SEND RECEIVE

BEFORE

AFTER

AROUND

2

3 6

4

5

Fig. 7. Advice injection places

time. These data will be used later by the aspect injector. As the model weaver
takes as input the XMI representation (an XML document) of the models, it
allows us to use XPath expressions [9] to search the selected joinpoints. An
XPath expression specifies a pattern that matches several XML tags within an
XML document. Hence, the pattern specified by a pointcut is automatically
transformed by the model weaver (using a model to text transformation) into
a set of XPath expressions, which select all the XML tags corresponding to
joinpoints selected by such pointcut.

The second step is to inject the aspect advices into the selected joinpoints (call
actions and activities representing procedures in our particular case). Depending
on the kind of joinpoint and the execution time of the advice, it can be injected
into six different places, as illustrated in Figure 7. For instance, if an advice has
to be executed BEFORE SEND a method, it is added between the call action and
the actions that precede it (Figure 7, label 1). If it has to be executed AROUND
SEND or AROUND RECEIVE, the corresponding call action (Figure 7, label 3) or
activity (Figure 7, label 6), respectively, are substituted by the advice.

Aspect advices are injected as structured activities inside the procedures they
crosscut (See Figure 8, grey background). Each structured activity has the same
behaviour as the advice it represents. The AO actions of the original advice are
appropriately transformed to common UML actions in the structured activity.
The advice injection plus action transformation requires updating the object and
control flows of the original procedures in order to ensure the correctness of the
composition. How this is performed is outlined using the injection of the persist
and encrypt advices (Figure 5) into the base OBS model as an example.

Figure 8 (left) shows the injection of the persist advice into the addItem pro-
cedure (Figure 4 (left)). It is injected just before the final node of the addItem
procedure (an AFTER RECEIVE case (Figure 7, label 5)). The original control
flow that went from the WriteQuantity action to the final node is removed; and
the new control flows C1 and C2 are created. The GetTarget action of the original
advice ((Figure 5 (left))) is replaced by a ReadSelf action, because the advice is
injected into the target object.

The injection of the encrypt advice around the doCheckOut procedure
(Figure 4 (right)) is illustrated in Figure 8 (right). As it is an AROUND SEND case
(Figure 7, label 3), the original call action is substituted by an structued activity
representing the encrypt advice. An input parameter in such activity is created



94 L. Fuentes and P. Sánchez

<<structured>>

<<Literal>>

creditApproval
<<CallOperation>>

encrypt

args

target

message

targetComp

<<CallBehavior>>

GetReference

result

Encrypter
<<Literal>>

result

<<CallBehavior>>

GetCustomerCreditCard

<<CallBehavior>>

GetReference

ref

<<CallBehavior>>

Calculate
TotalPrice

......

target arg0 arg1

OF8

VS4

OF3
OF1 OF2

OF5

OF6 OF7

<<structured>>

<<ReadSelf>>

ThisShoppingCart

target

<<CallBehavior>>

GetReference

<<Literal>>

PersistentStore

persist
object

<<WriteStructuralFeature>>

WriteQuantitynumber
book

C1

C2

Fig. 8. addItem (left) and doCheckOut (right) procedures after weaving

by each argument of the substituted call action (arg0 and arg1). An additional
input parameter (target) is also introduced to collect the target object of the call
action. An output parameter (result) holds the return value of the substituted call
action. In order to appropriately link adequately the structured activity with the
preceding and succeeding actions, the object flows OF1, OF2, OF3 and OF8 are
generated. OF1, OF2 and OF3 supply the input parameters and the target object
to the structured activity input objects. OF8 passes the advice return value to the
following actions. The AO actions of the original encrypt advice (Figure 4 (right))
are transformed as follows: (1) GetArgs originates the object flows OF6 and OF7;
(2)GetMessName produces the literal creditApproval which feeds the message value
pin; and (3) the GetTarget action gives rise to the object flow OF5.

We would like to point out that the transformation of AO actions, the advice
injection and the object/control flows updating involve many special cases which
are not mentioned here for the sake of brevity and simplicity2. As output of the
weaving process, a common UML model, with the crosscutting concerns added
where indicated, is obtained. This model can be executed in currently available
UML tools.

7.2 Dynamic Weaving

In the case of dynamic weaving, pointcuts can be added, removed or updated at
runtime and, consequently, aspect advices are woven/unwoven at runtime, by a
dynamic weaving platform (DWP).

In this case, it is not possible to know whether a join point will trigger an
advice until just before its execution. For this reason, each potential joinpoint
is not directly executed by objects. Instead, a call to the DWP is performed,
requesting the execution of the joinpoint. Then, the DWP checks if any advice
2 Interested readers can find further information of the AOEM model weaver in

http://www.lcc.uma.es/∼pablo/ECMDA07



Execution of Aspect Oriented UML Models 95

Dynamic Weaver

+execute( source, message, target, args )
+addRule( source, target, message, point, time, advice )
+removeRule( source, target, message, point, time, advice )
-proceed() MessageName

arg1 arg2 arg3
target <<CallOperation>>

Fig. 9. Dynamic weaver interface (left) Call action problem (right)

has to be executed on such joinpoint. If it is so, the advice and the joinpoint are
executed as it is specified in the pointcuts currently active.

The interface of the DWP is shown in Figure 9 (left). It has methods for
loading/unloading pointcuts (addRule and removeRule, respectively). A pointcut
is stored as a ((source,method,target,args),(advice,point,time)) tuple in the DWP.
According to the joinpoint model of the AOEM Profile, each time an object
needs to execute a call action, it will delegate such action to the DWP, using
the execute(source, operation, target, args) method. Subsequently, the DWP searches
for all the tuples (source,operation,target,args) matching with the current joinpoint.
For each match found, the corresponding advice is executed at the specified point
and time.

Before starting the execution of an AO model with dynamic weaving, the
model must be preprocessed in order to prepare it, according to the following
process:

1. The model of the DWP is added to the base model. The DWP must be a
common UML executable model.

2. All potential joinpoints (e.g., the calls to methods) are replaced by requests
to the execute method of the DWP.

3. The information specified in the pointcuts is loaded into the DWP.
4. The aspect model is added to the base model. The AO actions of the advices

are transformed into common UML actions. All the information in the join-
point context is stored in the DWP, thus each AO action (e.g., GetSource) is
substituted by actions that read these values from the DWP. In the case of
the proceed action, this is substituted by a call to the DWP.Proceed method,
which executes the original call action.

With the current UML Action language, the execution of the delegated call
action by the DWP is limited. This issue is illustrated in Figure 9 (right). The
target object name and the method arguments are provided to the call action at
runtime, but the message name and the number of input pins must be statically
specified at modeling time (i.e. hard-coded in the action), so the complete call
action can not be composed at runtime. An ad-hoc solution would be to hard-
code all possible method calls to in the DWP during the preprocessing phase,
but this has an obvious shortcoming related to scalability. This issue could be
easily resolved using reflection mechanisms, not currently supported by the UML
Action language. However, it is not complicated technically to implement the



96 L. Fuentes and P. Sánchez

set of reflective actions we need. As UML models are executed by parsing XML
documents, the implementation of these actions would only imply changing the
appropriate values in the corresponding XML tags. A UML execution engine
supporting some reflective actions is part of our ongoing work.

8 Tool Support and Experimentation

This section describes the experiments carried out to test our approach and
the tools required to reproduce our experiments. When selecting tools, the best
choice would be to find one that supports UML executable modeling and full
XMI import/export capabilities. Unfortunately, at the present time there is no
tool in existence which satisfies both requirements at the same time. The tools
that have full XMI import/export facilities, do not simulate UML models; and
the UML tools that are able to simulate models, do not export the models to
XMI fully. Thus, we had to use different tools to test this approach.

UML modeling was done using the UML2 plugin for Eclipse3, which is the
most complete implementation of the UML 2.0 metamodel, including the whole
UML Action language. It also offers full XMI export/import capabilities. Mag-
icDraw4 was used to draw the UML diagrams.

The implementation of the static weaver is tedious but simple, since we only
have to manipulate XMI files (XML trees) following the rules of section 7. This
can be implemented in any language with XML facilities. We have developed an
small prototype, as proof of concept, of the static weaver using Java and DOM.

Finally, the woven model is simulated. There is no simulation tool that sup-
ports fully XMI importing capabilities. Several tools, such as Rhapsody or TAU,
claim to offer such import/export capabilities, but the exportation is often par-
tial, and most of the information regarding UML actions is often lost. In the
same way, these tools are not able to import the information regarding to ac-
tions, when this is stored in an XMI file. Therefore, the solution adopted was
to import the model “manually” into a simulation tool in order to check the
correctness of the generated woven models. Telelogic Rhapsody was the tool
selected for simulation.

It is evident that there is a clear lack of effective and seamless tool support
for our approach. Consequently we are now developing a UML execution engine,
which will be able to execute the UML Action language from its XMI 2.0 repre-
sentation. In addition, this tool will have some reflective properties, making the
development of dynamic weavers easier.

9 Related Work

There is some preliminary work about AO and executable modelling in the
literature. It is described in this section.
3 http://www.eclipse.org/uml2/
4 http://www.magicdraw.org



Execution of Aspect Oriented UML Models 97

Sunyé et al. [10] presented a framework for modeling aspect-oriented applica-
tions. It serves to construct aspect-oriented executable models, but the weaving
is postponed until the implementation phase and thus, the execution of the com-
plete (woven) model, including aspects, is not possible at modeling time.

Theme/UML [11] is an extension of UML for AO modelling. Theme/UML
supports all the UML 2.0 diagrams. Therefore, using Theme/UML we should be
able to weave UML executable models. However, although Theme/UML speci-
fies the weaving semantics of the approach, until now the weaving must be done
manually, since no tool support is available. Additionally, Theme/UML is not
compatible with current UML tools, and a Theme/UML tool is still not avail-
able5. We tried to implement a Theme/UML weaver, but without fruitful results
since it is quite complex and it is not precisely defined beyond sequence and class
diagrams.

Cottenier et al. [12] present an idea very similar to this paper, but based on
the Telelogic TAU G2 implementation of the Executable UML principles. They
defined an AO Profile that extends the Telelogic SDL metamodel. SDL is not
compatible at all with the current UML Action language and introduces some
proprietary features that obviously can not be exported adequately to XMI.
The weaver is implemented as a Telelogic TAU G2 add-in [12], therefore it is not
portable and tool-independent. Additionally, the weaving process is not clearly
described in their work.

Additionally, none of the previous work considers dynamic weavers. Both
weavers can be used with any UML tool able to import/export UML models to
XMI, avoiding the necessity to purchase expensive proprietary tools.

10 Conclusions and Future Work

This paper has described how to construct and execute AO models, relying on
two elements, presented by this work: a UML 2.0 Profile, called AOEM, which
supports precise modeling of aspect behaviour, and two AO model weavers. Both
weavers produce a common UML executable model as a result. This model can
be simulated using currently available tools. As the models are aspect-oriented,
the modularisation of crosscutting concerns is improved, which makes system
maintenance, development and evolution easier.

As this woven model, in the static weaving case, is a common UML executable
model, 100% of code can be automatically generated (this feature is currently
supported by some tools, such as Rhapsody and TAU G2). As the generated code
is non aspect-oriented, it allows development teams to use AO at modeling level
without AO support from the target programming language. In the dynamic
weaving case, the execution is more interactive, as the aspect execution can be
more clearly visualised. Different alternatives can be tested by simply updating
pointcuts at runtime, without requiring to re-weave the model.

Readers familiar with AO may miss some AO features in the AOEM Pro-
file, such as cflow, withincode constraints for pointcuts, inter type declarations
5 See http://www.thethemeapproach.com/downloads.html



98 L. Fuentes and P. Sánchez

or mechanisms to deal with aspect-interaction, like weaving precedence rules.
These features are contained in the AOME Profile, but are left out of this paper
for the sake of brevity and in order to avoid overwhelming non AO readers with
a lot of new concepts and terminology. However, as future work we intend to
replace the current pointcut specification by Jointpoint Designation Diagrams
(JPDD’s) [8], which allow the specification of more expressive pointcuts. We will
also investigate more flexible ways of accessing joinpoint context.

Additionally, the current implementation of the static weaving has some lim-
itations due to the technology employed: Java, DOM and XPath. These tech-
nologies imply the direct manipulation of XMI files, which lead to cumbersome
and difficult to maintain implementations. Using the same concepts and ideas
as presented in this paper, we are developing a new version of the static model
weaver using model transformations implemented in the ATL6 language.

References

1. Mellor, S., Balcer, M.: Executable UML: A Foundation for Model Driven Archi-
tecture. Addison-Wesley, London, UK (2002)

2. Raistrick, C., et al.: Model Driven Architecture with Executable UML. Cambridge
University Press, Cambridge (2004)

3. Starr, L.: Executable UML: The Models Are the Code. Model Integration Llc
(2001)

4. Tarr, P., et al.: N degrees of separation: Multi-dimensional separation of concerns.
In: Filman, R.E., et al. (ed.) Aspect-Oriented Software Development, pp. 37–61.
Addison-Wesley, London, UK (2004)

5. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

6. Bock, C.: UML 2 Activity and Action Models. Journal of Object Technology 2(4),
43–53 (2003)

7. Fuentes, L., Sánchez, P.: Elaborating UML 2.0 Profiles for AO Design. In: 8th
Workshop on AOM, 5th AOSD Conference (2006)

8. Stein, D., Hanenberg, S., Unland, R.: Expressing different conceptual models of
join point selections in aspect-oriented design. In: Proc. of the 5th AOSD (2006)

9. World Wide Web Consortium (W3C): XML Path Language (XPath) Version 1.0
( 1999), http://www.w3.org/TR/xpath.

10. Sunyé, G. et al.: Using uml action semantics for executable modeling and beyond.
In: Proc. of the 13th CAiSE (2001)

11. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Ap-
proach. Addison-Wesley, London, UK (2005)

12. Cottenier, T., van den Berg, A., Elrad, T.: Motorola weavr: Model weaving in a
large industrial context. In: Proceedings of the 6th AOSD Industry Track. (2007)
Available at http://www.iit.edu/c̃oncur/weavr/papers/

6 http://www.eclipse.org/m2m/atl/



D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 99–113, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

An Algebraic View on the  
Semantics of Model Composition 

Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler,  
and Steven Völkel 

Institute for Software Systems Engineering, Braunschweig University of Technology, 
Mühlenpfordtstraße 23 

38106 Braunschweig, Germany 
{herrmann,krahn,rumpe,m.schindler,voelkel}@sse.cs.tu-bs.de 

Abstract. Due to the increased complexity of software development projects 
more and more systems are described by models. The sheer size makes it 
impractical to describe these systems by a single model. Instead many models 
are developed that provide several complementary views on the system to be 
developed. This however leads to a need for compositional models. This paper 
describes a foundational theory of model composition in form of an algebra to 
explicitly clarify different variants and uses of composition, their interplay with 
the semantics of the involved models and their composition operators. 

Keywords: Model composition, Model merging, Semantics. 

1   Model Composition 

The complexity of software products and therefore of their development projects is 
steadily increasing. To handle this complexity models are used as an intermediate 
result to raise the level of abstraction, to enhance the understanding, and to simplify 
analysis and prediction of properties of the system under development. Nowadays 
modeling languages like the UML (Unified Modeling Language) and an increasing 
number of DSLs (Domain Specific Languages) are used for planning, architecting, 
developing, coding, deploying, and documentation purposes. Based on these 
languages a number of development approaches like OMG’s Model Driven 
Architecture can be classified as “Model Driven Engineering” (MDE). 

In any complex software system, mastering complexity means using a variety of 
semantically and syntactically precise [1,2] models to describe different aspects and 
views of the software system. Therefore it is essential to understand how these 
different models fit together and complement each other. For an integrated 
understanding, a clear definition of what composition of models means is necessary. 

Model composition has impacts on at least three different levels: 

 Syntactic level: the way the composition between models can explicitly be 
expressed as a new model in an appropriate modeling language. 



100 C. Herrmann et al. 

 Semantic level: the meaning of the composed models as a unit in terms of 
semantics of the modeling languages involved. 

 Methodic level: the integration of model composition techniques in software 
development processes and tools. 

A clear explanation of a composition mechanism of models on each of these 
dimensions is necessary to facilitate a “compositional” use of models in development 
projects. E.g., for an integrated understanding of some models describing aspects of 
the same system it is not necessary to provide a syntactic composition operator that 
explicitly produces an integrated model. Instead it is essential to understand the 
meaning of “composition” using a semantic composition. For code generation 
purposes it is however often necessary to explicitly calculate the integrated model, 
because only from there it is possible to start the generator. This is a pity, because 
already in 1972 Parnas introduced modularity in his article [3] as an important 
requisite for independent understanding, development, and compilation – something 
we have achieved on code level, but not on model level so far. It therefore depends on 
the form of use which properties a model composition operator must have.  

In contrast to concrete model composition techniques [4, 5, 6] we examine in this 
paper syntactic and specifically semantic properties of model composition as basis for 
a methodical discussion and therefore regard this paper as a first contribution to a 
wider discussion on compositionality of models.  

The rest of the paper is structured as follows. Section 2 gives a compact 
recapitulation and introduction to our understanding of syntax and semantics of a 
modeling language. Section 3 describes the properties of model composition in 
algebraic terms. We derive requirements for well-defined model composition 
operators and give a first classification of possible operators. Section 4 describes 
related work, followed by a conclusion in Section 5. 

2   Syntax and Semantics of Models  

In software engineering we are basically concerned with graphical or textual 
languages to describe structure, behavior, or interaction of systems, interfaces etc. As 
these models shall usually be understood by tools, e.g., for code generation and test 
case definition there must be a clear definition of what the language concepts are. 
This is in sharp contrast to many other forms of models, where there is no formal and 
explicit definition of the modeling language used (see, e.g., architectural or medical 
models). 

Formally, a modeling language M is a set of well-formed models. So a model 
m∈M is syntactically well-formed, both by context-free syntax as well as conforming 
to all context-conditions. Each of these models gets a semantics by mapping it from 
the language to a well-known semantic domain [1, 7]. This principle is well 
understood in the field of programming languages, where each syntactic construct has 
a well defined meaning that describes its effects in terms of operational or 
denotational semantics.  



 An Algebraic View on the Semantics of Model Composition 101 

Although standardization bodies have not yet been able to define a commonly 
accepted, formal semantics, e.g., for the UML as yet, we here assume such a semantic 
definition would be given. See [7] for a deeper discussion on semantic issues. To 
understand the meaning of composition, it is evident that the meaning / semantics of 
the involved models needs to be understood.  

2.1   Semantic Domain and Mapping 

Given a language M of models, the meaning of each element is usually given by 
explaining it in a well-known domain D, the semantic domain. This semantic domain 
describes which artifacts and concepts exist and must be well understood by both the 
language designer and the language users [7]. This principle is rather general, even so 
the details of the semantic domain as well as the form of representation vary. E.g., 
denotational as well as operational semantics can be subsumed under this form of 
approach using an abstract set of models resp. an abstract machine as semantic 
domain.  

Examples for a semantic domain are the System Model [8], Abstract State 
Machines [9], or pure mathematics [2]. 

Given the modeling language M and the semantic domain D each model m∈M 
must be mapped to D. As explained earlier, it is important to define the meaning 
(semantics) of models explicitly. So an explicit formal definition of the mapping is a 
function from M to D:   

sm: M → D (1) 

Benefits of a formal mapping function are that we are able to reason about the 
mapping and thus, about the language and the instances itself.  

2.2   Set-Valued Semantics 

A general problem of the semantics definition of a model is that models should be 
useable in early phases of development. In early phases models are usually 
underspecified and somewhat abstract. Therefore, there is usually not a single system 
that realizes a model, but a larger set of realizations. Thus, the mapping of an 
underspecified diagram to program code or any other deterministic realization would 
result in either incomplete code or code that incorporates decisions not present in the 
model. These decisions done by the translation algorithm, however, are critical for the 
model understanding, as they may not intend the developers view. Currently many 
tools help themselves, by disallowing ambiguity and thus preventing 
underspecification. A mapping to code, therefore, for principal reasons cannot serve 
as a semantics definition. To adequately handle underspecification the semantics of 
languages like Spectrum [10] or Z [11] is described as a set of systems having the 
given properties instead of a single system [12]. Such specification oriented set-
valued semantics allow us to describe and understand important properties of 
modeling languages. Thus we use set-valued semantics as a basis for further 
investigation into a model composition theory. 



102 C. Herrmann et al. 

The basic idea is to map any model m∈M to all systems which obey the constraints 
that the model imposes. Denoting the set of all systems with S the semantic domain is 
then the power set D = ℘(S) and each instance m∈M will be mapped by sm to the 
largest set of systems which fulfill the constraints.  

sm: M → ℘(S) (2) 

We do not need to further investigate into the details of S, but understand that it 
captures the relevant properties of a system. These are usually structural properties 
(objects, their values and linkage) as well as behavioral and interaction properties 
(traces of interactions, etc.). 

As an illustrative example for set-valued semantics covering underspecification 
consider a simple class diagram with one class “Person” having a String attribute 
“name”. What do we know about the system described?  

 
1. There is a class “Person” 
2. All instances of the class “Person” and all instances of subclasses have an 

attribute “name” whose type is “String” 
3. No more information can be inferred. 

 
The real semantics of this model must be given as the set of all systems obeying 1 

and 2. Usually these systems have other classes and possibly the class “Person” 
contains more attributes than “name”, but in our set-valued semantics those systems 
still fulfill the constraints defined by the model. Furthermore, it is not given that there 
will ever be an instance of class Person at all. Instead the class Person may also be 
abstract.  

This approach is called a “loose semantics” [10] and is very helpful in capturing 
underspecification. Today many developers and especially tools assume some kind of 
“completeness” of their models, which is quite conflicting with the possibility to 
compose models. 

Set-valued semantics allows to state some important properties with respect to the 
semantic mapping sm: 
 
 A model m∈M is consistent exactly if sm(m)≠∅, which means that there is at 

least one system that obeys the instance’s properties. Otherwise, there are some 
contradicting constraints in the model m itself. 

 A model m∈M does not contain information if sm(m)=S. Then any system can 
serve as an implementation. 

 A model m2 refines another model m1 exactly if sm(m2) ⊆ sm(m1). So, if we add 
more data to the model m2, it further constraints the resulting set of systems, 
which therefore will become smaller.  
 

The loose approach has an interesting aspect: the more we know, thus the more 
information is present in a model, the fewer implementations are possible. This is why 
m2 has more information and thus refines m1 exactly if sm(m2) ⊆ sm(m1). 

 



 An Algebraic View on the Semantics of Model Composition 103 

It is noteworthy that the “loose semantics” approach we use is loose on the 
behavioral as well as on the structural level. For existing behavioral elements, such as 
methods, their behavior may vary and additional structural elements (such as 
attributes, classes etc.) are possible.  

Besides set-valued semantics for some forms of models and especially for 
executable languages an “initial” or a “minimal” semantics can be given. These forms 
of semantics correspond to the idea that there is a unique realization in the set 
mentioned above with minimalistic properties. Informally spoken, such a unique 
element can be characterized by assumptions like “everything explicitly defined is 
present, but nothing more”. Class diagrams, e.g., lead to a canonical implementation 
through code generation and deterministic, completely defined state machines do have 
one single execution. Having both, a set-valued semantics for the specification of a 
system and an initial semantics, e.g., for test purposes or executable models, seems to 
be appropriate. For specification purposes, we concentrate on the set valued 
semantics. 

3   An Algebraic View on Model Composition  

When models are developed and composed, the developers as well as the tools always 
deal with their syntactic representation. But doing so, developers want to compose the 
meaning underlying these models. Thus, one goal of our algebraic theory is to clarify 
the relationships between composition on the syntactic and on the semantic level. 
Beyond that, another interesting issue consists in the question which basic 
requirements for a composition operator on the one hand and for composition tools on 
the other exist.  

3.1   Model Composition 

Model composition in its simplest form refers to the mechanism of combining two 
models into a new one. Without further information or requirements the definition of 
model composition is quite abstract. Denoting the universe of models with M we get 
the following definition of model composition operators:  
 
Definition 1. Model composition operator 
A model composition operator ⊗ is a function with two models as input, which 
produces a composed model as output: ⊗: M × M → M.  
 
Given the semantics of models, we can infer properties of the semantics of a 
composition operator ⊗ by relating the semantics on its source and resulting model. 
 
Definition 2. Property preserving (PP) composition operator  
A composition operator ⊗: M×M→M is property preserving on the left argument, if 
for any m1, m2 ∈ M it holds: sm(m1 ⊗ m2) ⊆ sm(m1). Analogously, it is property 
preserving on the right argument, iff sm(m1⊗m2) ⊆ sm(m2) and property preserving 
(PP) if both properties hold. 
 



104 C. Herrmann et al. 

The simple example shown in Figure 1 serves as basis for further explanations. 
 

Systems, where 

a class „Person“ 

exists 

each instance of 

Person or its 

subclasses have a 

name 

Systems, where 

a class „Person“ 

exists 

each instance of 

Person or its 

subclasses have 

an age 

Systems, where 

a class „Person“ 

exists 

each instance of 

Person or its 

subclasses have an 

age and a name 

  ∩ =

=⊗
Person 

- name 

Person 

- age 

Person 

- name 

- age 

 

Fig. 1. Example for composition on models and semantics 

Property preservation is important for a composition operator, as it ensures that no 
information and thus, no design decisions that were present in a source model are lost 
in the composition. We can infer that property preservation is equivalent to:  

∀ m1, m2 ∈ M:  sm(m1 ⊗  m2) ⊆ sm(m1) ∩ sm(m2) (3) 

Please note that this need not be equality, as the composition operator may be 
allowed to add further information that was not present in any of the models before. 
This can be useful, especially if there are decisions on unifications to make that are 
not unique. E.g., unnamed associations between the same classes can be identified, 
but need not.  
 
Definition 3. Fully property preserving (FPP) composition operator  
A composition operator ⊗: M×M→M is fully property preserving, iff  

∀ m1, m2 ∈ M:  sm(m1 ⊗  m2) = sm(m1) ∩ sm(m2) (4) 

 
The most important consequence of FPP is that it allows us to separately analyze and 
understand the source models and their properties individually and to trace properties 
(as well as errors) of the composed model back to the input models. Furthermore, 
with a PP composition a model developer can be sure that the requirements defined in 
his models are preserved in the implementation. And third, a PP operator makes 
model composition understandable: changes in one input model have an impact on the 
composed model within a localized, clearly identifiable area, but do not affect 
properties defined in the other models.  

A FPP composition operator neither adds nor forgets information. Unfortunately, 
we will have to live with the situation, that there are modeling languages, where there 



 An Algebraic View on the Semantics of Model Composition 105 

is no composed model that exhibits the desired properties. E.g., composing flat 
automata is not necessarily fully property preserving (depends on the assumed 
communication between these automata). In this case, emerging properties of the 
composition cannot necessarily be traced back to the original, but may result from the 
composition operator itself, which in fact is a composition and an additional 
refinement. However, adding wrong information through a composition operator may 
lead to an inconsistent result (sm(m1 ⊗  m2) = ∅) even though the models originally 
where not inconsistent with each other (sm(m1) ∩ sm(m2) ≠ ∅). We therefore 
demand that composition preserves consistency: 
 
Definition 4. Consistency preserving (CP) composition operator  
A composition operator ⊗: M×M→M is consistency preserving (CP), iff  

∀ m1, m2 ∈ M:  sm(m1) ∩ sm(m2) ≠ ∅   ⇒   sm(m1 ⊗  m2) ≠ ∅  (5) 

 
Corollary. A FPP composition operator is consistency preserving.  

Proof: by definition. 
 

In general as well as in the remainder of this paper we assume model composition to 
be property preserving as well as consistency preserving (but not in all cases fully 
property preserving). 

3.2   A Generalization for Semantic Composition Operators 

We have explained the desired properties of a composition operator using set-valued 
semantics. This technique can be generalized, assuming there is a composition 
operator ⊕ available on the semantic domain. Intersection ∩ as used above is such an 
operator.   
  
Definition 5. General Semantic Composition Operator  
The semantic composition operator ⊕ is a function with two sets of systems as input 
which produces a set of systems as output: ⊕: D × D → D.  
 
Given these operators on both levels, the semantic composition operator ⊕ can be 
understood as semantics of the syntactic operator ⊗ if the diagram in Figure 2 
commutes. 

 

            

Fig. 2. Relationship between composition operators 

M

M M M 

sm 

⊗ 

⊕ 

sm sm 

S SS 



106 C. Herrmann et al. 

We say the diagram commutes iff  

∀ m1, m2 ∈ M:  sm(m1 ⊗  m2) = sm(m1) ⊕ sm(m2) (6) 

A commuting diagram corresponds to a fully property preserving composition as 
defined above and exhibits the same advantages as discussed above. We therefore 
impose the requirement that the diagram in Fig. 2 should always commute. If not, at 
least the relaxed version must be considered:  

∀ m1, m2 ∈ M:  sm(m1 ⊗  m2) ⊆ sm(m1) ⊕ sm(m2) (7) 

Therefore, the syntactic operator ⊗ reflects the semantic composition ⊕ and an 
additional refinement. However, in the following we use intersection as semantic 
composition only. 

3.3   Syntax-Based Properties of Composition  

Examining properties of the syntactic composition ⊗, we find that there may be 
absorbing or neutral elements. In a first attempt, we may call a model m∈M right-
neutral, iff  

∀ m1 ∈ M: m1 ⊗ m = m1 (8) 

A model m∈M is called right-absorbing, iff  

∀ m1 ∈ M: m1 ⊗ m = m (9) 

Left-neutral and left-absorbing is defined analogously and neutral respectively 
absorbing is the combination of both sides. Furthermore, we might call a 
composition operator ⊗ commutative iff  

∀ m1, m2 ∈ M: m1 ⊗ m2 = m2 ⊗ m1 (10) 

and associative iff 

∀ m1, m2, m3 ∈ M: (m1 ⊗ m2) ⊗ m3  = m1 ⊗ (m2 ⊗ m3) (11) 

Of course, if the composition operator is commutative, left and right-neutrality as well 
as properties to be left-/right-absorbing will coincide.  

There may be many models that are absorbing or neutral. But, due to unlucky 
context conditions there may also be none at all. For class diagram composition, a 
neutral element could be the empty class diagram, which is not allowed in UML 2.1.  

This formalization above would allow us to identify an algebra of composition on 
the syntactic level. However, when looking at the properties, we easily can see that 
this algebra is too restrictive to be of direct use. In fact models have a concrete syntax 
and the positions of white spaces or the graphical elements usually change, when 
models are composed or somehow otherwise modified. Furthermore, the order of 
presenting elements usually does not affect the semantics, but the layout of the 
composed result. An example in Figure 3 shows a possible key problem. 

 
 



 An Algebraic View on the Semantics of Model Composition 107 

=⊗Person 

- name 

Person 

- age 

=⊗Person 

- age 

Person 

- name 

Person 

- age 

- name

Person 

- name 

-age 

 

Fig. 3. Example for non-commutative model composition (on syntactic level) 

This example leads us to two observations. First, the result syntactically depends 
on the order of the input models and thus, composition is often not commutative. 
Second, the result does not depend semantically on the input order, since the outputs 
are “semantically equal”, which means that they are mapped by sm to the same set of 
systems. Therefore, we do generalize from a purely model (syntax)-based concept of 
composition to a semantic-based version.  

3.4   Semantic-Based Composition Properties 

Instead of defining associativity, etc. on the concrete syntax of models, we abstract 
away from irrelevant syntactic sugar and concentrate on the semantic properties of a 
model. Therefore, we develop the following definitions: 

 
Definition 6. Algebraic Properties of Composition  
A model m∈M is called right-neutral vs. composition ⊗, iff  

∀ m1 ∈ M: sm(m1 ⊗ m) = sm(m1) (12) 

Model m∈M is called right-absorbing vs. composition ⊗, iff  

∀ m1 ∈ M: sm(m1 ⊗ m) = sm(m) (13) 

A model m∈M is called right-idempotent vs. composition ⊗, iff 

∀ m1 ∈ M: sm((m1 ⊗ m) ⊗ m) = sm(m1 ⊗ m) (14) 

Being left-neutral, -absorbing and –idempotent is defined in an analogous way.  
If a model is neutral (absorbing/idempotent) from both sides, it is called neutral 
(absorbing/idempotent).  
 
We call a composition operator ⊗ commutative vs. its semantics sm iff  

∀ m1,m2 ∈ M: sm(m1 ⊗ m2) = sm(m2 ⊗ m1) (15) 

and associative vs. its semantics sm iff 

∀ m1, m2, m3 ∈ M: sm((m1 ⊗ m2) ⊗ m3)  = sm(m1 ⊗ (m2 ⊗ m3)) (16) 



108 C. Herrmann et al. 

This formalization allows us to define an algebra with composition etc. based on 
semantic properties. Looking at these properties from a different angle, we can 
identify an equivalence relation ≅ on models based on the semantic mapping 
interpreted as homomorphism. 

3.5   Properties of the Semantic Mapping  

Let in this section ⊗ be a FPP composition operator. We know that (℘(S), ∩, S, ∅) 
defines a lattice, where intersection is both commutative and associative. Together 
with the semantic mapping sm we can translate the lattice properties to the language 
of models: 
 
Theorem 1.  
If a model composition ⊗ is fully property preserving, then (M, ⊗) also defines a 
commutative, associative structure with respect to sm and ⊗ is idempotent for all 
models. 
 
Proof: By definition of FPP we derive 
Assoc.: sm((m1 ⊗ m2) ⊗ m3) = sm(m1) ∩ sm(m2) ∩ sm(m3) = sm(m1 ⊗ (m2 ⊗ m3)), 
Comm.: sm(m1 ⊗ m2) = sm(m1) ∩ sm(m2) = sm(m2 ⊗ m1), and 
Idempot.: sm(m1 ⊗ m1) = sm(m1) ∩ sm(m1) = sm(m1). 

 
Respecting the semantic equivalence of two models is an important property for a 
composition operator, because then the concrete representative is irrelevant and layout 
or other minor rearrangements of the model do not affect the composition result. We 
therefore introduce the algebra of equivalence classes on models induced by the 
semantic mapping: 

Definition 7. Equivalence Classes of Models 
The semantic mapping sm defines an equivalence relation on models as follows: 

m1 ≅  m2   ⇔   sm(m1)  =  sm(m2) (17) 

The set of semantically equivalent models is denoted by  

[m1]  = { m2  |  m1  ≅ m2 } (18) 

We denote the set of equivalence classes over M by [M]. The composition operation 
can be extended to equivalence classes as follows: 

Definition 8. Composition on Model Classes 
Composition is extended to model classes by: 

[m1] ⊗  [m2]   =  { ma ⊗  mb  | ma ∈ [m1] ∧ mb ∈ [m2] } (19) 

Theorem 2. [.] is a congruence for FPPs 
If a model composition ⊗ is fully property preserving, then ([M],⊗) also defines a 
commutative, associative structure with respect to sm, all models are idempotent, and: 

[m1] ⊗  [m2]   =  [m1 ⊗ m2] (20) 



 An Algebraic View on the Semantics of Model Composition 109 

Proof: Follows from FPP and the definition of the equivalence classes. 

We now have a quotient algebra ([M], ⊗) with a number of desired properties for a 
syntactic composition operator: 

1. Composition is fully property preserving, such that each property of the 
composed model can be traced back to one of the input models or both. 

2. Composition is consistent with the semantics, such that it is irrelevant, which 
concrete representative was chosen. Thus the composition is well defined with 
respect to the quotient algebra. 

3. Composition is commutative and associative, such that the order of composition 
is irrelevant. 

As already discussed, unfortunately a number of composition operators will exist that 
do not fit this ideal scheme for a variety of reasons. E.g., it may rather often be the 
case that an operator is PP and CP, but not FPP. In this case, it may happen that even 
if the operator is commutative and associative on models, the equivalence on models 
is not a congruence vs. composition.  

A model composition operator which depends on the order of the input or concrete 
representations of the model would be difficult to manage. E.g., the input order has to 
be saved somewhere to guarantee the equality of the results.  

From theoretical computer science, we know that composition operators need to 
conform with semantics as much as possible. This may be achieved through a number 
of mechanisms. On the one hand the composition operator may be adjusted 
accordingly. Second, the semantic domain or the semantic mapping may be redefined, 
such that they go conform with composition and third, the modeling language itself 
may be adapted. 

3.6   Summary 

In the last sections we introduced some basic properties model composition operators 
may have such as PP, FPP, or CP. Following we give a short overview of the 
definitions which allow to categorize a given composition operator. 

Table 1. Properties Overview of Composition 

Property Requirement Dependencies 
Property Preserving on 
the left (PPl) 

sm(m1 ⊗ m2) ⊆ sm(m1)  

Property Preserving on 
the right (PPr) 

sm(m1 ⊗ m2) ⊆ sm(m2)  

Property Preserving (PP) sm(m1 ⊗ m2) ⊆ sm(m1) ∩ sm(m1) PPl ∧ PPr ⇔ PP 
Fully Property Preserving sm(m1 ⊗  m2) = sm(m1) ∩ sm(m2) FPP ⇒ PP 
Consistency Preserving ∀ m1, m2 ∈ M:  sm(m1) ∩ sm(m2) 

≠ ∅ ⇒   sm(m1 ⊗  m2) ≠ ∅ 
FPP ⇒ CP 

 
 



110 C. Herrmann et al. 

Table 1. {Continued} 

Commutative (Com) ∀ m1,m2 ∈ M: m1 ⊗ m2 = m2 ⊗ m1  
Associative (Ass) ∀ m1, m2, m3 ∈ M:  

(m1 ⊗ m2) ⊗ m3  = m1 ⊗ (m2 ⊗ m3) 
 

Commutative vs. 
Semantics (Comsm) 

∀ m1,m2 ∈ M: 
sm(m1 ⊗ m2) = sm(m2 ⊗ m1) 

Com ⇒ Comsm 

Associative vs. Semanics 
(Asssm) 

∀ m1, m2, m3 ∈ M:sm((m1 ⊗ m2) ⊗ 
m3) = sm(m1 ⊗ (m2 ⊗ m3)) 

Ass ⇒ Asssm 

Furthermore, we defined special elements with respect to composition. Table 2 
gives a short overview. 

Table 2. Special elements of Composition 

Property of Element 
m 

Requirement Dependencies 

Right-neutral (Rn) ∀ m1 ∈ M: m1 ⊗ m = m1  
Left-neutral (Ln) ∀ m1 ∈ M: m ⊗ m1 = m1  
Neutral (N) ∀ m1 ∈ M: m1 ⊗ m = m ⊗ m1 

= m1 
Rn ∧ Ln ⇔ N 

Right-absorbing (Ra) ∀ m1 ∈ M: m1 ⊗ m = m  
Left-absorbing (La) ∀ m1 ∈ M: m ⊗ m1 = m  
Absorbing (A) ∀ m1 ∈ M:  

m1 ⊗ m = m ⊗ m1 = m 
Ra ∧ La ⇔ A 

Right-Idempotent 
(Ri) 

∀ m1 ∈ M:  
(m1 ⊗ m) ⊗ m = m1 ⊗ m 

 

Left-Idempotent (Li) ∀ m1 ∈ M:  
m ⊗ (m ⊗ m1) = m1 ⊗ m 

 

Idempotent (I) ∀ m1 ∈ M: m ⊗ (m ⊗ m1) =  
(m1 ⊗ m) ⊗ m = m1 ⊗ m 

Ri ∧ Li ⇔ I 

 
Right-neutral vs. 
Composition (Rncomp) 

∀ m1 ∈ M: 
sm(m1 ⊗ m) = sm(m1) 

Rn ⇒ Rncomp 

Left-neutral vs. 
Composition (Lncomp) 

∀ m1 ∈ M:  
sm(m ⊗ m1) = sm(m1) 

Ln ⇒ Lncomp 

Neutral vs. 
Composition (Ncomp)  

∀ m1 ∈ M:  
sm(m1 ⊗ m) = sm(m ⊗ m1) = 
sm(m1) 

Rncomp ∧ Lncomp ⇔ 
Ncomp 

N ⇒ Ncomp 
Right-absorbing vs. 
Composition (Racomp) 

∀ m1 ∈ M:  
sm(m1 ⊗ m) = sm(m) 

Ra ⇒ Racomp 

Left-absorbing vs. 
Composition (Lacomp) 

 

∀ m1 ∈ M:  
sm(m ⊗ m1) = sm(m) 

La ⇒ Lacomp 

 



 An Algebraic View on the Semantics of Model Composition 111 

Table 2. {Continued} 

Absorbing vs. 
Composition (Acomp) 

∀ m1 ∈ M:  
sm(m1 ⊗ m) = sm(m ⊗ m1) = 
sm(m) 

Racomp ∧ Lacomp ⇔ Acomp 

A ⇒ Acomp 

Right-Idempotent vs. 
Composition (Ricomp) 

∀ m1 ∈ M:  
sm((m1 ⊗ m) ⊗ m) =  
sm(m1 ⊗ m) 

Ri ⇒ Ricomp 

Left-Idempotent vs. 
Composition (Licomp) 

∀ m1 ∈ M:  
sm(m ⊗ (m ⊗ m1)) =  
sm(m1 ⊗ m) 

Li ⇒ Licomp 

Idempotent vs. 
Composition (Icomp) 

∀ m1 ∈ M:  
sm(m ⊗ (m ⊗ m1)) = sm((m1 ⊗ 
m) ⊗ m) = sm(m1 ⊗ m) 

Ricomp ∧ Licomp ⇔ Icomp 

I ⇒ Icomp 

4   Related Work 

Much work on specification with respect to model composition has been done in the 
formal methods community. Based on [13] the notion of fully abstract composition 
was transferred to a number of formal languages for behavioral specification. Our 
approach is very much in the spirit of this work, but tries to identify interesting sub-
properties for model composition as well. 

Model composition is also a widespread research issue in the world of UML. There 
are several works which concentrate on different kinds of UML-like diagrams, as 
class diagrams [14] or state charts [15]. Most of these works do not discuss 
composition or model management operators from a foundational, algebraic point of 
view and thus, have different objectives.  

In [4] three model composition tools, namely the Atlas Model Weaver, the Epsilon 
Merging Language, and the Glue Generator Tool which were developed in the 
Modelware project [18] are introduced and discussed in detail. Furthermore, it derives 
some common definitions from these discussions and clarifies some basic 
requirements for model composition tools and frameworks. However, our work 
concentrates on the semantic properties of model composition, whereas [4] addresses 
mainly syntactic properties and their implementation in tools. 

A generic semantics of the merge operator was presented in the MOMENT project 
[19]. It describes three steps of model merging: finding semantic equivalences, 
conflict resolution, and copying non-duplicated elements. In contrast to our work it 
concentrates on expressing semantic equalities by means of a metamodel whereas we 
discuss the semantic background of model composition. 

A more theoretical view on different model management operators is presented in 
[16]. It introduces algebraic properties of model merging such as commutativity, 
associativity, and idempotency. The theoretical results are illustrated by two 
examples, merging entity relationship models and state machines, respectively. In 
opposition to our work the algebra of model composition is not discussed in detail. 
Instead the concentration lies on a general overview of model management operators 
and their relationships. 



112 C. Herrmann et al. 

An algebra of merging incomplete and inconsistent graph-based views is discussed in 
[17]. Category theory and colimits serve as theoretical basis to express the relationships 
between different diagrams in opposition to our viewpoint of algebras. Furthermore, the 
basic intention of [17] consists in the identification of equal elements in different views 
whereas our work concentrates on the algebraic properties of model composition. 

5   Conclusion 

In this paper we gave a first contribution to shed light into the question how model 
composition operators interact with the semantics of models and what properties 
composition operators should have. For this purpose, we have abstractly described 
how semantics is defined. We then introduced an algebra of model composition that 
describes the formal relationship between the models, equivalence classes of 
semantically equivalent models, model composition and semantics. From this setting 
some results could be derived. The most important are that model composition should 
be a congruence induced by the semantic definition and a composition should be a 
commutative and associative operator with respect to the semantics. 

These theoretical results lead to practical consequences for the design of model 
composition operators, modeling languages and semantic domains. Any composition 
operator should obey the properties implied by the algebra in order to allow a modular 
model-based development of software systems with independent compilation/ 
transformation of models to other representations and levels of abstraction. 

This paper is concerned with the model composition operator and its implications. 
It can be seen as a foundation for further investigations on model management 
operations. However, there are a number of extensions to deal with: How to deal with 
a diff operator to reverse composition? How does code and test-case generation 
interact with composition and semantics? Are there impacts for the form of meta-
modeling widely used today? What are properties of an unsymmetric composition like 
aspect weaving? How do UML’s semantic variation points interact with composition? 
Will refinement preserving composition be useful and feasible? Will there be 
compositional refactorings? Many of these questions need to be solved for a 
foundational theory of model composition. 

 
Acknowledgement. The work presented in this paper is undertaken as a part of the 
MODELPLEX project. MODELPLEX is a project co-funded by the European 
Commission under the “Information Society Technologies” Sixth Framework 
Programme (2002-2006). Information included in this document reflects only the 
authors’ views. The European Community is not liable for any use that may be made 
of the information contained herein. 

References 

1. Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics and All That Stuff. 
Technical Report MCS00-16, The Weizmann Institute of Science, Rehovot, Israel (2000) 

2. France, R., Evans, A., Lano, K., Rumpe, B.: The UML as a Formal Modeling Notation. In: 
Computer Standards and Interfaces, vol. 19, pp. 325–334. Elsevier Science Publisher, 
North-Holland, Amsterdam (1998) 



 An Algebraic View on the Semantics of Model Composition 113 

3. Parnas, D.: On the criteria to be used in decomposing systems into modules In: 
Communications of the ACM, pp. 1053–1058. Vol.15(12) (December 1972) 

4. Bezivin, J., Bouzitouna, S., Del Fabro, M.D., Gervais, M.-P., Jouault, F., Kolovos, D.S., 
Kurtev, I., Paige, R.F.: A canonical scheme for model composition. In: Proceedings of the 
Second European Conference on Model-Driven Architecture (EC-MDA) 2006, pp. 346–
361, Bilbao, Spain, (July 2006) 

5. Engel, K.-D., Paige, R.F., Kolovos, D.S.: Using a Model Merging Language for 
Reconciling Model Versions. In Proc. Second European Conference on Model-Driven 
Architecture (EC-MDA) 2006, pages. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 
2006. LNCS, vol. 4066, pp. 143–158. Springer, Heidelberg (2006) 

6. Fabro, M., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic model weaver. 
In: Proceedings of the 1ères Journées sur l’Ingénierie Dirigée par les Modèles (IDM05), 
pp. 105–114, Paris (2005) 

7. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of Semantics?, In: 
IEEE Computer, Vol. 37(10), pp. 64–72, IEEE, (October 2004) 

8. Broy, M., Cengarle, M., Rumpe, B.: Towards a System Model for UML. The Structural 
Data Model. Munich University of Technology, Technical Report TUM-I0612. (June 
2006) 

9. Gurevich, Y., Kutter, P., Odersky, M., Thiele, L. (eds.): ASM 2000. LNCS, vol. 1912, pp. 
22–33. Springer, Heidelberg (2000) 

10. Broy, M., Facchi, C., Grasu, R., Hettler, R., Hußmann, H., Nazareth, D., Regensburger, F., 
Slotosch, O., Stoelen, K.: The requirements and Design Specification Language 
SPECTRUM, An Informal Introduction, Version 1.0, Part 1, Technical Report TUM-
I9312, Technische Universität München (1993) 

11. Spivey, M.: The Z Notation - A Reference Manual, 2nd edn. Prentice-Hall, Englewood 
Cliffs (1992) 

12. Rumpe, B.: A Note on Semantics (with an Emphasis on UML). In: Second ECOOP 
Workshop on Precise Behavioral Semantics, pp. 177–197, Haim Kilov, Bernhard Rumpe 
(eds.), Technische Universität München, TUM-I9813 

13. Kok, J.: A fully abstract semantics for data flow nets. In: Proceedings of the Parallel 
Architectures and Languages Europe, Volume II: Parallel Languages, pp. 351–368. 
Eindhoven, The Netherlands (June 15-19, 1987) 

14. Straw, G., Georg, G., Song, E., Ghosh, S., France, R., Bieman, J.: Model Composition 
Directives, In: Proceedings of the 7th UML Conference, pp. 87–94, Lisbon, Portugal, 
(October 10-15, 2004) 

15. Aldawud, O., Bader, A., Elrad, T.: Weaving with statecharts. In: Workshop on Aspect-
Oriented Modeling, Enschede, Netherlands (2002) 

16. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A manifesto 
for model merging. In: Proceedings of the, international workshop on Global integrated 
model management, 5-12, May, 2006, Shanghai, China ( 2006) 

17. Sabetzadeh, M., Easterbrook, S.: An Algebraic Framework for Merging Incomplete and 
Inconsistent Views, In: Proceedings of the 13th IEEE International Conference on 
Requirements Engineering (RE’05), pp. 306-318 (August 29-September 02, 2005) 

18. The Modelware Project Homepage: http://www.modelware-ist.org 
19. Boronat, A., Carsi, J., Ramos, I., Letelier, P.: Formal Model Merging Applied to Class 

Diagramm Integration. Electronic Notes on Theoretical Computer Science, pp. 5–26, Vol. 
166, Ansterdam, The Netherlands ( 2007) 



D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 114–129, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Towards the Generation of a Text-Based IDE  
from a Language Metamodel 

Anneke Kleppe*  

University Twente, Netherlands 
a.kleppe@utwente.nl 

Abstract. In the model driven world languages are usually specified by a 
(meta) model of their abstract syntax. For textual languages this is different 
from the traditional approach, where the language is specified by a (E)BNF 
grammar. Support for the designer of textual languages, e.g. a parser generator, 
is therefore normally based on grammars. This paper shows that similar support 
for language design based on metamodels is not only possible, but is even more 
powerful than the support based on grammars. In this paper we describe how an 
integrated development environment for a language can be generated from the 
language’s abstract syntax metamodel, thus providing the language designer 
with the possibility to quickly, and with little effort, create not only a new 
language but also the tooling necessary for using this language. 

Keywords: metamodeling, domain specific languages, text-based languages, 
parsing, compilers, IDE, generation. 

1   Introduction 

Currently, there is an increasing interest in the design of languages that are used 
somewhere in the software development process. First, domain specific modeling 
languages (DSMLs) are becoming more and more important. DSMLs are languages 
for modeling software, which are focused on describing a certain aspect or viewpoint 
of a software system. Second, there is a steady demand for occasional or little 
languages, i.e. languages that are used for a relatively small amount of time by a small 
group of people. For instance, in large, long-running projects often small (scripting) 
languages are being build that enable automation of specific, reoccurring tasks in that 
project. These languages are known under various names, amongst which domain 
specific languages [1]. Special to both types of DSLs is that they have a limited 
number of users, compared to general software languages like Java, C#, and UML. 

Often these new languages are specified by a metamodel, which accounts for the 
popularity of metamodeling toolkits like the Eclipse Modeling Framework (EMF) [2] 
and Microsoft’s DSL tools [3]. It is our view that metamodeling toolkits should 
support the creation of a language in full. Not only should they aid the language 
designer in his/her task of creating the metamodel, but they should also support the 
language designer in creating the tooling for the people that are going to use the 

                                                           
* The author is employed in the GRASLAND project funded by the Dutch NWO (project 

number 612.063.408). 



 Towards the Generation of a Text-Based IDE from a Language Metamodel 115 

language. Note that we use the term language designer for the person who creates the 
new language, and language user for the person who uses the newly created language 
and its supporting tools. 

The current demands on tooling are high. For instance, if a dedicated text editor is 
provided, it should have syntax-highlighting and code-completion. Specially for mod-
eling languages, tooling must include code generation software and should preferably 
include a debugger that is able to address the language user in terms of the domain 
specific model instead of the code language.  

Languages targeting a limited number of users, do not warrant the effort in 
building such sofisticated tools, simply because the costs are too high. The only way 
that a language designer is able to create sofisticated tooling for such languages, is 
when most of it is generated by the metamodeling toolkit. In other words, the 
metamodeling toolkit needs to be able to generate an integrated development 
environment (IDE) for the language specified by the metamodel. 

This paper describes the first steps towards the realisation of such a metamodeling 
toolkit, more specifically it describes the generation of a compiler front-end for a text- 
based concrete syntax of a language, based on the metamodel specification of that 
language. As this work is conducted within the Grasland project, our metamodeling 
toolkit is, for lack of a better one, named the Grasland toolkit. The Grasland toolkit is 
implemented in the form of a number of Eclipse plug-ins that build upon the 
functionality provided by the Octopus tool [4]. 

Section 2 of this paper outlines the process of language design as it is supported by 
the Grasland toolkit, and it establishes the terminology used. Sections 3 and 4 
describe the two transformations that generate a grammar from a metamodel. Section 
5 describes the generated static semantic analyzer. Finally, Section 6 describes future 
and related work. 

2   Preliminaries 

This section outlines the process of language design as it is supported by the Grasland 
toolkit, and it establishes the terminology used in this paper. Furthermore, the argu-
ments for our approach are stated in the last subsection. 

2.1   Terminology 

In this paper we will use the following terms, which are formally defined to be special 
types of graphs. 

•  Abstract Syntax Model (ASM): a metamodel that specifies the abstract syntax of 

the language, which will be called L. 
•  Abstract Syntax Graph (ASG): an instance of the abstract syntax model. 
•  Concrete Syntax Model (CSM) or Parse Model (PM): a metamodel that specifies a 

concrete syntax of the language. (When talking about text-based syntaxes we will 
use parse model, when talking about graphical syntaxes we will use concrete syn-
tax model.) 



116 A. Kleppe 

•  BNFset: the set of (E)BNF rules that specifies a text-based concrete syntax of the 
language. Note that there is a correspondence between a BNFset and a parse model. 

•  Parse Graph (PG) or Parse Tree (PT): an instance of the parse model. (When 
talking about text-based syntaxes we will use parse tree, when talking about 
graphical syntaxes we will use parse graph.) 

•  Navigations: the set of outgoing associations and attributes of a metaclass. 

Furthermore, we assume that a language can have multiple concrete syntaxes, and 
a concrete syntax can be either textual, graphical, or a hybrid one that combines 
textual parts with graphical ones, e.g. a table representation. 

2.2   The Process of Language Design 

Central to the process of language design as it is supported by the Grasland toolkit, is 
the ASM of the language. To create the tooling for the language user, the language 
designer needs to perform the tasks in Table 1, which are dependent on the type of 
concrete syntax used. Next to this, the language designer is likely to create an 
exchange format for abstract syntax graphs, for instance based on XML, as well as 
transformations from the ASM to various other metamodels, one of which will 
probably implement code generation. 

Table 1. Tasks of a language designer for the two types of concrete syntax 

Step Text-based concrete syntax Graphical concrete syntax 

1 Create the PM, which will include
classes that represent references to
other elements in the parse tree. 

Create the CSM, which will include 
classes that represent graphical items 
like rectangles and lines. 

2 Create the EBNF grammar, which will
include keywords. Take an existing
parser generator, (re)write the gram-
mar for this generator, and generate a
parser that will produce the parse tree
from a text file. 

No action needed. (Usually the CSM 
suffices to create a syntax-directed 
graphical editor, thus there is no need 
to create a parser.) 

3 Create a model transformation from
parse tree to abstract syntax graph
(this is often called static analysis, it
includes binding). 

Create a model transformation from 
parse graph to abstract syntax graph. 

4 Create a text editor dedicated to this
concrete syntax, with syntax highlight-
ing etc.  

Create a graphical editor dedicated to 
this concrete syntax. 

5 Create a tool chain such that an
abstract syntax graph is created from a
text file. 

Create a tool chain such that an 
abstract syntax graph is created from a 
diagram. 



 Towards the Generation of a Text-Based IDE from a Language Metamodel 117 

In this paper we will show how all of steps 1, 2, 3, and 5 for text-based syntaxes 
can be automated, i.e. none of the products are created by hand, they are all generated 
by the Grasland toolkit. Automation of step 4 is also possible, but not yet 
implemented in the Grasland toolkit. 

2.3   Outline of Our Approach 

Traditionally, when a new textual language is created, the main activity is to produce 
the BNFset. Next, a parser is created using some or other parser generator, e.g. [5, 6, 7]. 
The other parts of the language’s compiler are implemented by hand, often by creating 
treewalkers that traverse the parse tree generated by the parser, as shown in  Figure 1 
(the shaded parts are created by the language designer). There is, in most cases, no ex-
plicit definition of the PM, nor of the ASM, although one can always extract the set of 
pure BNF rules, which might serve as a PM description, from the parser generator 
input.  

 

Fig. 1. The normal elements in a compiler. 

In the Grasland approach, the only manual activity is to create the ASM, i.e. a met-
amodel and its invariants. From the ASM we generate a PM, which upholds certain 
requirements that will be explained in Section 3. This transformation is called 
asm2pm. From the PM we generate a BNFset, which - for practical purposes - can be 
generated in a format that is processable by the JavaCC parser generator [6]. This 
transformation is called pm2bnf. Next JavaCC generates a parser, which is able to 
produce a parse tree that is an instance of the PM in the sense that the nodes in the 
parse tree are instances of the Java classes that correspond to the classes in the PM. 
To implement the static semantic analysis, a tool is generated that transforms a parse 
tree into an ASG. This tool implements a model transformation from PM to ASM. 
Figure 2 shows the various elements in the Grasland approach; again the manually 
created elements are shaded. 

 

Fig. 2. The alternative process using metamodels 



118 A. Kleppe 

2.4   Rationale of the Approach 

Specially for text-based languages, our approach is very different from the traditional 
process. Instead of focusing on BNF rules, the language designer will focus on the 
ASM. The PM and BNFset are automatically generated from the ASM. A number of 
arguments support this new design process. 

The first argument is that at the start of the language creation process it need not be 
clear whether the new language is text based or graphical, and often the new language 
should support multiple syntaxes. So a specification of the concrete syntax cannot be 
a good starting point. 

Second, although compiler construction is a formally defined area of expertise, it 
has one obvious omission, which is that the true ASM is not defined at all. What is 
usually called an abstract syntax tree in compiler construction, we call a parse tree. 
The abstract syntax tree is embellished with binding information and often reshuffled 
to produce what we call an abstract syntax graph. Note that in compiler construction 
the term abstract syntax tree is used for both formats. More importantly, it is the 
abstract syntax tree that is used for further handling, like code generation, which 
means that these phases lack a formal description. On this point metamodeling 
certainly has something to add to the area of compiler construction. 

Furthermore, the power of metamodelling is larger than the power of BNF. One 
can express more in a metamodel. Therefore, starting with a BNF grammar and 
creating a metamodel from the grammar, as for instance described in [8], will result in 
a restricted metamodel. Most certainly, this metamodel will not be the one that the 
language designer wants to use as ASM. 

A fourth argument is that although the syntax of the majority of programming lan-
guages can be classified as context-free, the languages themselves are often context- 
sensitive. That is, the static analysis phase of the compiler adds context sensitive 
information. For instance, variable binding may be considered context-sensitive 
information because a variable 'a' is not always bound to the same variable 
declaration, the binding depends on the context in which ‘a’ is found. So, to support 
the language designer in creating a complete toolset for a text-based concrete syntax, 
we need not only consider parsing but also static analysis. Currently, there are many 
parser generators, but as far as we know there are no generators for static semantic 
analysers. 

From one argument comes another. Now that we have established that we have a 
need for a static semantic analyser, it is a good choice to generate the parse model 
from the abstract syntax model. In this way we have full control over the differences 
between the two models and therefore we will be able to automatically generate the 
static semantic analyser that bridges the two. 

Another consideration for our choice of design process, is that the field of parsing 
and compiler construction is very well established. The parser generators that result 
from this research are tried and tested and can be used without further ado. 

A final argument is a reduced ‘time to market’. In the Grasland approach the lan-
guage designer is able to 'play' with the abstract syntax model and for each change in 
this model he will be able to generate a working IDE with a single push of a button. 



 Towards the Generation of a Text-Based IDE from a Language Metamodel 119 

This means that testing the changes takes as least effort as possible. Although, as the 
title of this paper tells, we are still working towards a toolkit that is able to generate a 
complete IDE, our experiments with the generation of parts of this IDE are promising.  

The next sections describe the how the steps in Table 1 are implemented in the 
Grasland toolkit. 

3   The ASM to PM Transformation 

This section describes the algorithm for the asm2pm transformation. This algorithm 
implements the creation of the parse model (or CSM), which includes classes that 
represent references to other elements in the parse tree. Note that this algorithm 
actually is defined on the meta meta level, i.e. it is not a transformation of model to 
model, but of metamodel to metamodel.  

The algorithm, which is outlined in List 1, makes use of the composite - reference 
distinction in associations in the metamodel. We use a formal definition of metamodel 
that ensures that in any instance of the metamodel the composites form a subgraph 
that is really a tree. The composite relationships are subsequently used in the pm2bnf 
transformation to construct the BNF grammar. In the case that the subgraph formed 
by the composite associations is not a tree, but a set of unrelated trees (a forest), the 
algorithm will produce a set of unrelated sets of grammar rules. It is up to the 
language designer to decide whether this is (un)desired. Figure 4 shows an example of 
an ASM, Figure 3 shows the PM that is automatically generated from this ASM. The 
differences are marked by the colour of the classes and the font of the role names. 

Note that for each of the classes for which a reference class is created (step 3), the 
language designer must indicate which attribute of String type is used as identifier. This 
knowledge is used in the static semantic analyser to implement the binding. Implemen-
tations of the Java counterparts of the classes in the ASM are automatically generated 
using the functionality of the Octopus tool, and the same is done for the PM.  

3.1   Possibilities to Tune the asm2pm Transformation 

The algorithm in List 1 is fully automatic and produces a parse model without any 
extra user effort. However, if the algorithm for the asm2pm transformation is 
executed as is, then the differences between the ASM and PM are minimal. Often the 
language designer wants a larger difference between the two, therefore there are 
options to tune the asm2pm transformation. Note that these differences are taken into 
account in the generation of the static semantic analyser as well. 

The first option is to indicate that certain metaclasses in the ASM should not 
appear at all in the PM. Examples are the classes PrimitiveType and NullType in 
Figure 3. These types are only present in the ASM to provide for a number of basic 
elements in the language, but the language user is not meant to create new instances 
of these metaclasses. The language designer can indicate that these classes are hidden 
to the concrete syntax. Currently this is done by means of a properties file. We are 
investigating the possibility of indicating hidden elements using Eclipse project 
properties. 



120 A. Kleppe 

 

Fig. 3. Example ASM 

1. Every class in the ASM becomes a class in the PM. The language designer may indi-
cate prefix and postfix strings that are used to name the classes in the PM, in order to 
distinguish them from the classes in the ASM. E.g. the ASM class named Variable-
Declaration becomes the PM class named prefixVariableDeclarationpostfix.

2. Every composite association is retained.
3. For every non-composite association from class A to class B a new class is introduced 

that represents a reference to an instance of class B. A new composite association is 
added from class A to this new reference class. The role name of the old association is 
copied to the new one, as well as the multiplicities.

4. Every attribute with non-primitive type, i.e. whose type is another class in the meta-
model, is transformed into a composite association from the owner of the attribute to 
the class that is the attribute type. The name of the attribute becomes the role name. 
Any multiplicities are copied.

5. Enumerations and datatypes are retained.
6. Additionally, three attributes are added to every PM class. They hold the line number, 

column number, and filename of the parsed instance of the class.
 

List. 1. The algorithm for asm2pm 

The second option is to indicate that certain attributes and outgoing associations of 
a metaclass need not be present in the input text file, instead their value will be deter-
mined based on the values of other elements that are present. In fact these elements  
 



 Towards the Generation of a Text-Based IDE from a Language Metamodel 121 

 

Fig. 4. Example PM 

are what is known in OCL [9, 10] as derived elements. The language designer may 
indicate that a certain element need not be taken into account in the parse model, if an 
OCL derivation rule for this element in the ASM is provided. An example of a 
derived element in Figure 3 is the type of an Expression. 

4   The PM to BNF Grammar Algorithm 

This section describes the algorithm for the pm2bnf transformation, which implements 
the creation of the BNF rules that are used by a parser generator to produce a parser. 
Note that like the asm2pm algorithm, this algorithm too resides on the meta meta 
level, i.e. it is not a transformation of model to model, but of metamodel to 
metamodel. Alanen and Porres [11] present algorithms for the relation between PM 
and BNFset, which we have used and extended.  

The generation of the BNFset from the PM is implemented in a single algorithm. 
Yet, the language designer may choose between two different output formats; either 
BNF, or a grammar that can directly be used as input to the JavaCC parser 
generator [6]. The BNF grammar that is produced is actually an extension of EBNF 
that uses labelling of non-terminals in the right hand side of a grammar rule. (Not to 
be confused with Labelled BNF [12], which uses labels on the non-terminals at the 
left hand side of each rule.) The labels correspond with the names of the attributes or 
association roles in the PM. An example in which the labels are highlighted, can be 
found in List 3. 



122 A. Kleppe 

1. Every class in the PM becomes a non-terminal in the grammar. The rules for these non-
terminals are formed according to the following rules.

2. If a class has subclasses then the BNF rule becomes a choice between the rules for the 
subclasses. All attributes and navigations of the superclass are handled in the subclass 
rules.

3. For every composite association from A to B, B will appear in the right hand side of the 
grammar rule for A. The multiplicity is the same as in the association (for 0..1, 1, 0..*, 
1..*; multiplicities of the form 3..7 are considered to be specified using invariants). 
Using an extension of BNF, we associate the rolename with the non-terminal in the 
right hand side of the rule.

4. Every attribute, all of which have a primitive type, is transformed into an occurrence of 
a predefined non-terminal for that primitive type in the right hand side of the rule for 
its owner. (We support the primitive types String, Integer, Real.)

5. Every attribute that has Boolean type, is transformed into an optional keyword. If 
present, the attribute has value true, if not the attribute’s value is false.

 

List. 2. The algorithm for pm2bnf 

The input for the JavaCC parser generator is such that the generated parser 
produces instances of the Java implementations of the classes in the PM. The 
algorithm that implements pm2bnf is given in List 2. An example can be found in  
List 3, which shows the BNF rules generated from the parse model in Figure 4. Note 
that tokens in the right hand side of the grammar rules are surrounded by angled 
brackets (‘<‘ and ‘>’). 

4.1   Possibilities to Tune the pm2bnf Transformation 

The algorithm in List 2 is fully automatic and produces a grammar without any extra 
user effort. However, there are a number of differences between the metamodel 
formalism used for the parse model and the BNF formalism and the language designer 
is able to influence how these differences appear in the generated grammar, thus 
tuning the pm2bnf generation. 

The most apparent difference is the lack of ordering in navigations from a 
metaclass, versus the ordering of the elements in the right hand side of a BNF rule for 
a non-terminal. To indicate a certain ordering in the BNF rules the language designer 
can associate an index to all navigations This is done in a so-called properties file. An 
example can be found in List 4, where the order of the navigations from the metaclass 
ObjectType in Figure 3 is given. The first element to be included in the right hand side 
of the corresponding BNF rule is the attribute called name, the second is the optional 
reference to a super type, etc. Without directions from the language designer the 
Grasland toolkit will randomly assign an ordering. 

Another difference between a metamodel and a grammar is that most grammar 
rules contain one or more keywords, whereas the metamodel does not. These 
keywords are relevant in the parser because they enable the parser to differentiate 
between language elements (rules). Therefore the Grasland toolkit provides the option 
 



 Towards the Generation of a Text-Based IDE from a Language Metamodel 123 

************ The grammar rules **************

1. BlockStat ::= <CURLY_OPEN> ( subStats:Statement )* <CURLY_CLOSE> 
2. CreateExp::= <CREATEEXP_BEGIN> type:ObjectTypeREF <CREATEEXP_END> 
3. ExpStat ::= expression:Expression
4. Expression ::= (LiteralExp

| OperCallExp
| VarCallExp
| CreateExp) 

5. ObjectTypeREF ::= ID:<IDENTIFIER> 
6. ObjectType ::= <OBJECTTYPE_BEGIN> name:<IDENTIFIER> [ 

<OBJECTTYPE_SUPERTYPE_BEGIN> superType:ObjectTypeREF] [ 
attributes:VarDecl( <SEMICOLON> attributes:VarDecl )* <SEMICOLON> ] ( 
operations:OperDecl )* <OBJECTTYPE_END> 

7. OperCallExp ::= referredOper:OperDeclREF <BRACKET_OPEN> [ actual-
Pars:Expression( <COMMA> actualPars:Expression )* ] <BRACKET_CLOSE> [ 
<OPERCALLEXP_SOURCE_BEGIN> source:Expression ] 

8. OperDeclREF ::= ID:<IDENTIFIER> 
9. OperDecl ::= (OperImpl) 
10. OperImpl ::= name:<IDENTIFIER> <BRACKET_OPEN> [ params:VarDecl( 

<COMMA> params:VarDecl )* ] <BRACKET_CLOSE> <COLON> return-
Type:TypeREF ( locals:VarDecl )* body:BlockStat 

11. Program ::= <PROGRAM_BEGIN> name:<IDENTIFIER> startExp:ExpStat ( 
types:Type )* <PROGRAM_END> 

12. Statement ::= (BlockStat
| ExpStat) <SEMICOLON> 

13. TypeREF ::= ID:<IDENTIFIER> 
14. Type ::= (ObjectType) 
15. VarCallExp ::= referredVar:VarDeclREF [ <VARCALLEXP_SOURCE_BEGIN> 

source:Expression]
16. VarDeclREF ::= ID:<IDENTIFIER> 
17. VarDecl ::= name:<IDENTIFIER> <COLON> type:TypeREF [ 

<VARDECL_INITEXP_BEGIN> initExp:Expression]
************ The token definitions **************

CREATEEXP_BEGIN ::= "new"
CREATEEXP_END ::= "()"
NULLLITEXP_BEGIN ::= "null"
OBJECTTYPE_BEGIN ::= "class"
OBJECTTYPE_END ::= "end_class"
OBJECTTYPE_SUPERTYPE_BEGIN ::= "extends"
OPERCALLEXP_SOURCE_BEGIN ::= "on"
OPERDECL_LOCALS_BEGIN ::= "locals"
PROGRAM_BEGIN ::= "program"
PROGRAM_END ::= "end_program"
VARCALLEXP_SOURCE_BEGIN ::= "on"
VARDECL_INITEXP_BEGIN ::= "="
IDENTIFIER ::= ["a"-"z", "A"-"Z", "_"] ( ["a"-"z", "A"-"Z", "0"-"9", "_" ] )*

 

List. 3. The resulting BNF rules 



124 A. Kleppe 

BLOCKSTAT_BEGIN=CURLY_OPEN
BLOCKSTAT_END=CURLY_CLOSE
CREATEEXP_BEGIN=new
CREATEEXP_END=()
NULLLITEXP_BEGIN=null
OBJECTTYPE_ATTRIBUTES_END=SEMICOLON
OBJECTTYPE_ATTRIBUTES_SEPARATOR=SEMICOLON
OBJECTTYPE_BEGIN=class
OBJECTTYPE_END=end_class
OBJECTTYPE_SUPERTYPE_BEGIN=extends
OBJECTTYPE_ORDER_1=name
OBJECTTYPE_ORDER_2=superType
OBJECTTYPE_ORDER_3=attributes
OBJECTTYPE_ORDER_4=operations
OPERCALLEXP_ACTUALPARS_BEGIN=BRACKET_OPEN <MANDATORY>
OPERCALLEXP_ACTUALPARS_END=BRACKET_CLOSE <MANDATORY>
OPERCALLEXP_ACTUALPARS_SEPARATOR=COMMA

 

List. 4. Part of the properties file for pm2bnf 

for the language designer to indicate which keywords should be used in the grammar 
rule corresponding to a metaclass instance. Without keyword directions the Grasland 
toolkit will generate keywords based on the class and association role names. 

For each metaclass there are two options to use a keyword: (1) at the start of the 
right hand side, (2) at the end of the right hand side. An example is the keyword 
‘new’, indicated by CREATEEXP_BEGIN, that should appear at the start of a 
CreateExp instance. For each navigation there are three possibilities: (1) a keyword 
that should appear before the navigated element, (2) a keyword that should appear 
after the element, and (3) a keyword that separates the elements in a list. The last is 
sensible only when the multiplicity of the association is larger than one. In case that 
the element is optional (i.e. lower bound of multiplicity is zero), the language 
designer is able to indicate whether the keyword should still appear even if the 
element is not present. This is useful, for instance to indicate that the opening and 
closing brackets of a parameter list should be present even if there are no parameters. 
An example can be found in List 4, where the brackets are mandatory for the 
navigation OPERCALLEXP_ACTUALPARS. Note that a keyword in this approach can be 
any string, including brackets etc. 

A third difference between a metamodel and a grammar is that the parsing 
algorithm used poses a number of requirements on the rules. For instance, the JavaCC 
parser generator creates LL(n) parsers, and its input should be an LL(n) grammar, 
where n indicates the number of lookahead tokens used. If the language designer 
decides to create a grammar with too few keywords, then the parser generator will 
produce errors and/or warnings. As the Grasland toolkit is a prototype we regard 
resolving these to be the responsibility of the language designer for now. By adding 
more keywords or by adding (by hand) lookaheads to the generated grammar the 
language designer will always be able to generate a grammar that is correct. Even so, 



 Towards the Generation of a Text-Based IDE from a Language Metamodel 125 

the Grasland toolkit provides a minimal support in the form of the generation of 
lookaheads in the rule for a class with subclasses, where choice conflicts are likely 
because the attributes and navigations of the superclass appear in the rules for each 
subclass. 

5   The Static Semantic Analyser 

The two most important aspects of static semantic analysis are binding and type 
checking. This section describes how the Grasland toolkit implements these issues. 

5.1   Binding 

Binding is the general term for the binding of names to their definitions. These names 
may refer to types, for instance in a variable declaration, or to variables or operation/ 
functions, for instance in assignments or operation calls. Binding is often context sen-
sitive in the sense that not all occurrences of the same name are bound to the same 
definition, depending on the context of the name it may be bound to a different 
definition, sometimes even to a definition of a different kind of element. For instance, 
in one context “message” may be bound to a variable, in another to a type or 
operation. Such a context is usually called a namespace. 

In a Grasland generated PM all elements that need to be bound are instances of ref-
erence metaclasses (see List 1, rule 3). For each reference metaclass we know the 
metaclass from which it is derived. We call this metaclass the target metaclass.  

Simple Binding. The most primitive way of binding these elements is by searching 
the parse tree for all instances of the target metaclass and comparing their names with 
the name of the element to be bound. This is the default implementation of binding. 

However, it is possible for the language designer to indicate that certain 
metaclasses in the ASM act as namespaces. For instance in our example, the classes 
Type, OperDecl, and Program all act as namespaces. If there is a class labelled as 
namespace, then the asm2pm algorithm will produce a metamodel in which every 
class has the operation findNamespace, which will return the element’s surrounding 
namespace. An INamespace interface is added to the metaclass(es) that act as 
namespaces for this purpose. The implementation of each of the findNamespace 
operations is specified by an OCL body expression.  

The binding algorithm is in this case implemented as follows. First, find the sur-
rounding namespace of the instance of the reference metaclass, then search this name-
space for occurrences of the target metaclass and compare their names with the name 
of the reference element. If a match is found then the reference is bound to the found 
instance of the target metaclass. If no match is found, then the surrounding namespace 
of the searched namespace is searched in the same manner, and so on and so forth, 
until the outmost namespace has been searched. If no match was found, an error 
message is given. The search of a namespace goes down the parse tree to the leaves of 
the tree, unless one of the nodes is itself a namespace, then the search stops at this 
node. 



126 A. Kleppe 

Complex Binding. A more complex way of binding is based not only on the name of 
the reference element but also on the occurrence of surrounding elements. For 
instance, the binding of an operation call is usually determined not only by the name 
of the operation but also by the number and types of the parameters. In our example, 
the link called referredOper between an OperCallExp instance and an instance of the 
reference class OperDeclREF is an example of such a complex binding.  

The language designer may indicate the use of a complex binding by stating an in-
variant in the ASM that must hold after the reference element is bound. For instance, 
for the example in Figure 3, the following entry in the properties file indicates the use 
of complex binding. 

 OperCallExp.referredOper=paramsCheck 

In this case, the invariant called paramsCheck must be present for the class Oper-
CallExp. It is specified by the following OCL expression. Note that the use of names 
for invariants is a standard OCL feature. 

 context OperCallExp 

 inv paramsCheck: referredOper.params.type = actualPars.type 

Having this in place the Grasland toolkit implements complex binding more or less in 
the same manner as simple binding. First a list of possible matches is found based on 
the name only, then for each element in this list the invariant is checked. If no correct 
element is found then the search continues in the next namespace, etc. 

An advantage of this approach is that normally these invariants need to be part of 
the ASM anyhow, so there is no extra effort needed from the language designer. 
Another advantage is that all the information that the language designer must provide 
is based on the ASM. The ASM is truly the focus of the language design process, 
even though a text-based language is being specified. This leaves room for the 
creation of multiple views each based on a different concrete syntax, with the 
possibility of combining textual and graphical views all working together on the same 
ASG. 

Please note that this algorithm implements static semantic checking. This means 
that dynamic binding and dynamic scoping are by definition not covered. 

5.2   Static Checking 

An important observation with regard to static checking is that the rules that are 
checked during this phase are easily specified by OCL invariants on the ASM. These 
are the so called well-formedness rules. For instance, in our (simple) example the 
following rule provides enough information to perform type checking. 

 context VariableDecl 

 inv: self.type = initExp.type 

Static checking is therefore implemented in the generated static semantic checker 
as the checking of invariants on the abstract syntax graph. Whenever an invariant is 
broken, an error message is given to the language user. 



 Towards the Generation of a Text-Based IDE from a Language Metamodel 127 

Even more complex forms of type checking involving type conformance can be 
handled in this manner. For instance, given the existence of an operation in the Type 
class that implements the type conformance rules, the following invariant allows for 
type checking with type conformance. The type conformance operation itself can also 
be specified using OCL. 

 context VariableDecl 

 inv: self.type.conformsTo(initExp.type) 

 

 context Type::conformsTo( actualType: Type) : Boolean 

 body: if ( actualType = self) 

    then true 

    else if not actualType.superType.oclIsUndefined() 

         then self.conformsTo( actualType.superType) 

         else false 

         endif 

    endif 

The advantage of this approach is that the invariants can be used for all concrete 
syntaxes that may be defined for the ASM. Thus static checking becomes a common 
functionality instead of a functionality that needs to be implemented for each of the 
different concrete syntaxes. 

6   Conclusion and Related Work 

In this paper we have shown that it is possible to generate (parts of) an IDE, more 
specifically the front-end of a text-based compiler, from a metamodel. Given the 
tuning possibilities offered in both the asm2pm and pm2bnf transformations, the 
language designer can influence the resulting grammar considerably, with minimal 
effort from his part. Not yet mentioned is the fact that the Grasland toolkit is able to 
produce a deparser for the textual syntax, as well as a parser and deparser for an XML 
based interchange format for ASGs, and that all the generated tools described in this 
paper are combined to create an integrated language user environment. Because we do 
not foresee large difficulties in generating a language-specific editor, we conclude 
that it is indeed feasible to generate a text-based IDE from a metamodel, as was our 
initial ambition. 

The idea of generating an IDE from a language specification is not new. In fact a 
number of metacase tools exist that perform this task, e.g. [13, 14]. What is new in our 
approach is that the focus of the language designer is on the metamodel, not on the BNF 
grammar. Keeping the focus on the ASM, instead of the grammar, is much more in line 
with the model driven process in which instances of the ASM are being transformed.  

The process described by Wimmer and Kramler [8] starts with a grammar, from 
which a (raw) metamodel is built. Because this metamodel is (as they call it) “not user 
friendly”, it is transformed into an ASM. The Eclipse plug-in set xText [15] also starts 
with a grammar and produces a metamodel. Hearnden et. al. describe the use of Anti- 
Yacc [16], which also forces the language designer to create a grammar. This 



128 A. Kleppe 

grammar and a metamodel are fed to Anti-Yacc, which generates the bridging 
between the PM and the ASM. However, no evidence is given of how binding is 
handled. Finally, HUTN [17] uses an abstract base syntax that is applied to all 
models, which is customized to exploit specific properties of particular models. 
Again, our approach offers more flexibility to the language designer. 

The graph grammar community has also been working on generating IDEs, see for 
instance [18, 19, 20]. However, their focus is on visual concrete syntaxes. Likewise, 
Fondement and Baar [21] describe a way to specify a visual syntax. Here too, a com-
pletely different metamodel is defined for the concrete syntax. Their approach is com-
plementary to the one described here, as we focus on textual syntax.  

The only other reference that focuses on the ASM instead of the grammar, is 
Jouault et al. [22]. They define a template language in which the language designer 
may specify the textual syntax. This syntax specification is very similar to BNF rules, 
thus this approach does not relieve the language designer from writing a grammar(-
like) specification. Furthermore, they do not deal with complex references, nor do 
they handle type checking.  

Concluding we can state that the Grasland toolkit produces a good, workable IDE 
from a metamodel. As is always the case with the generation of software, the creation 
of an IDE by hand could produce a better and more efficient IDE. However, it is 
important to compare the time and effort needed to create a reasonable well IDE using 
the Grasland toolkit with the time and effort needed to create a perfect IDE manually. 
We are confident that the comparison will favour the Grasland approach. 

References 

[1] Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain- specific 
languages. ACM Comput. Surv. 37(4), 316–344 (2005) 

[2] The Eclipse Modeling Framework (2007), http://www.eclipse.org/emf 
[3] Microsoft DSL tools. (2007), http://msdn.microsoft.com/vstudio/DSLTools/ 
[4] Octopus: OCL Tool for Precise UML Specifications (2007) http://www.klasse.nl/octopus  
[5] Antlr (2007), http://www.antlr.org/ 
[6] JavaCC (2007), https://javacc.dev.java.net/ 
[7] Johnson, S.C.: Yacc – yet another compiler compiler. Technical Report CSTR 32, Bell 

Telephone Labs (July 1974) 
[8] Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In: WiSME 2005 4th 

Workshop in Software Model Engineering (2005) 
[9] OCL 2.0 specification. Technical Report ptc/2005-06-06, OMG (2005) 

[10] Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready 
for MDA. Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA (2003) 

[11] Alanen, M., Porres, I.: A relation between context-free grammars and meta object facility 
metamodels. Technical Report 606, TUCS, mar (2004) 

[12] Forsberg, M., Ranta, A.: Labelled BNF: a highlevel formalism for defining well-behaved 
programming languages. In: Proceedings of the Estonian Academy of Sciences: Physics 
and Mathematics, number 52, pp. 356 

[13] Reps, T., Teitelbaum, T.: The synthesizer generator. In: SDE 1: Proceedings of the first 
ACM SIGSOFT/SIGPLAN software engineering symposium on Practical software 
development environments, pp. 42–48. ACM Press, New York, NY, USA (1984) 



 Towards the Generation of a Text-Based IDE from a Language Metamodel 129 

[14] MetaEdit+ (2007), http://www.metacase.com/ 
[15] xText (2007), http://www.eclipse.org/gmt/oaw/doc/4.1/r80_xtextReference.pdf 
[16] Hearnden, D., Raymond, K., Steel, J.: MOF-to-text. In EDOC, pp. 200–211. IEEE 

Computer Society, Los Alamitos (2002) 
[17] Human-usable textual notation (HUTN) specification. Technical Report formal/04-08-01, 

OMG (2004) 
[18] Bardohl, R.: GenGEd: Visual Definition of Visual Languages based on Algebraic graph 

Transformation. PhD thesis, TU Berlin, Berlin, Germany (1999) 
[19] Minas, M.: Generating meta-model-based freehand editors. In: Proceedings of the third 

International workshop on graph based tools, 2006, EASST, pp. 1–11 (September 2006) 
[20] de Lara, J., Vangheluwe, H.: Atom3: A tool for multi-formalism and meta-modelling. In: 

Kutsche, R.-D., Weber, H. (eds.) ETAPS 2002 and FASE 2002. LNCS, vol. 2306, 
Springer, Heidelberg (2002) 

[21] Fondement, F., Baar, T.: Making metamodels aware of concrete syntax. In: Hartman, A., 
Kreische, D. (eds.) ECMDA-FA. LNCS, vol. 3748, pp. 190–204. Springer, Berlin 
Heidelberg (2005) 

[22] Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete 
syntaxes in model engineering. In: GPCE ’06. Proceedings of the 5th international 
conference on Generative programming and component engineering, pp. 249–254. ACM 
Press, New York, NY, USA (2006) 



Constraints Modeling for (Profiled) UML Models

François Lagarde1, François Terrier1, Charles André2, and Sébastien Gérard1

1 CEA, LIST, Boîte 94, Gif-sur-Yvette, F-91191, France
firstname.lastname@cea.fr

2 I3S Laboratory,
BP 121

06903 Sophia Antipolis Cédex,
France

charles.andre@unice.fr

Abstract. The growing number of UML profiles and the resulting exten-
sive application of stereotypes, is turning themodelingprocess error-prone.
In order to constrain their uses, OCL lacks mechanisms for effective evalu-
ation of stereotypes and is sometimes cumbersome. This paper describes a
set of mechanisms that allow more intuitive constraint specification. They
exploit the meta-model architecture to constrain a model with a focus on
use of stereotypes. Two examples are given to illustrate their applicability.
A dedicated assessment tool is also described.

1 Introduction

One of the purposes of Unified Modeling Language (UML) is to define a modeling
language and a collection of diagrammatic notations that suit a wide-range of
domains. To accommodate specific modeling concerns UML has a profiling mech-
anism. It adds meaning to modeling elements through stereotype applications
and is a standard way of defining a domain-specific modeling language.

When a profile is defined, it is usually necessary to enrich the concepts it
introduces with mechanisms that specify its use. One way of doing so, is to state
constraints. For example, to depict concepts belonging to a real time system
domain, we can introduce a Task concept with a stereotype «Task» and an
Entry Point concept with a stereotype «EntryPoint». One of the constraints is
to make sure that each task has exactly one entry point. In a broader modeling
context, we must however consider not only a single profile application belonging
to one domain, but also the application of more than one profile. This means
expressing constraints for relationships between profiles. One illustration would
be tying the above mentioned task concept with a Resource concept that is part
of a profile for scheduling analysis.

An already existing solution is to enrich models with rules built into the
standard Object Constraint Language (OCL). This is an effective way to describe
model elements. A good illustration is the UML superstructure [1] in which most
elements often several OCL expressions.

D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 130–143, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Constraints Modeling for (Profiled) UML Models 131

However the current OCL standard lacks effective mechanisms for evaluating
stereotype applications and suffers from complex writing. While an expert can
write an expression, most modelers cannot readily understand or maintain them.

In this context, we introduce constructs to ease constraint relationship state-
ments between model elements as well as among different models. The con-
straints can carry OCL declaration and compose rules for models having one
profile application (i.e. in an intra-domain context) as well as for multiple profile
applications (i.e. in a inter-domain context) and are obviously general enough for
models with no applied profile. The constructs are formalized with a UML pro-
file. It allows modelers to use a single UML environment and affords an intuitive
approach to specifying constraints.

The paper is organized as follows: Section 2 gives an account on prior and
related works, Section 3 presents our approach, Section 4 demonstrates its ap-
plicability by an intra-domain example and by an inter-domain example, Section
5 introduces our constraint assessment tool. We conclude with perspectives.

2 Related and Prior Work

2.1 Object Constraint Language

The Object Constraint Language (OCL) is a standard language for describing
expressions in UML models. It is a twofold (query and constraint) language and
benefits from the 4-layer meta-model architecture.

An OCL declaration has an element context and constrains its instance. The
standard way to write expressions on elements is to create a stereotype with
an extension point to the meta-element then to navigate to the element. This
navigation uses a one-way navigable association relationship from Stereotype
to MetaClass [1, p.686]. A given illustration introduces the stereotype «Home»
to depict an EJB Home component and constrains a Home to not have owned
attributes. This constraint is written as follows:

−

If we want to navigate from a model element to a stereotype, we have to
consider the OCL compliance point enabling “navigating non-navigable associa-
tions” and the role extension_Home of the association. However, its systematic
use should ensure the presence of this attribute at first. Its precaution gets this
theoretical solution too fragile to consider it as an practical one.

In order to specify efficient constraints, we often meet the need to express
rules on elements belonging to different parts of a model. The solution is then
to declare constraints in the context of the common root element. For example,
to tie elements among different packages we must create a stereotype extending
the Model meta-element to declare the constraints. This expression is then in
charge of a multitude of rules and becomes highly complex.



132 F. Lagarde et al.

To illustrate this, we consider a simplified real-time profile defining the concept
of Task and Entry Point. We also identify a Resource concept that is part of a
profile for scheduling analysis purpose. We need to make sure that: (a) each task
belonging to a package stereotyped «RT» has exactly one operation stereotyped
«entryPoint», (b) each of them should also match a class stereotyped «resource»
with an equal name in a package stereotyped «SAnalysis». In order to write our
expression, we introduce an ad-hoc function that collects the stereotypes applied
to an element.

−

−
−

−−

−

− −

−
−−

−

− −

−
−−

−
−

This expression quickly becomes unreadable and not maintainable. Dominik
Stein et al [2] have stressed that even a simple query quickly results in a complex
query expression. It is especially cumbersome when we want to query associa-
tion relationships. The other drawback is that it cannot effectively indicate the
reasons for a failure.

2.2 Model Comparison

To a certain extent, our problem could be considered part of a model comparison
problem; a set of models is well constructed if they have a clearly identified set
of elements.



Constraints Modeling for (Profiled) UML Models 133

In a recent paper, Alanen Marcus et al [3] defined an algorithm to compute dif-
ferences and unions among models built-upon the Meta Object Facilities (MOF)
which can be specifically adapted to a UML context. Yuehua Lin et al [4] emphasize
that comparing models involves providing a support to visualize their differences.
One possible solution is to use colors in a same way as the diff tools do.

However, current works on this subject relate more to version control problems
and do not deal with the profile application.

2.3 Model Transformation

The OMG defines Query/View/Transformation [5] (QVT) specification to be
used to query and to transform models built-upon the MOF. This specification
includes a check-only mechanism to ensure that models can be produced by a
transformation. Another possible way of solving our problem would be to find
transformations that models have to respect.

In a comparable way as OCL, Devon Simmonds et al [6] showed that queries
can also quickly produce complex expressions. Moreover, this specification lacks
suitable implementation tools, despite promising projects, such as the one led by
Frédéric Jouault et al [7] which promotes ATL as a possible implementation. For
a more complete survey on this subject, the reader should refer to the Wensheng
Wang report [8].

3 Our Approach

The UML superstructure defines structural information that encompasses rela-
tionships with other meta-elements and meta-properties, in addition to a set of
OCL constraints. Our approach is to use this structural information to facilitate
constraint formulation by means of rules for meta-elements. The models are kept
intact by separating them from these rules.

The underlying goal is to identify a set of constructs to characterize meta-
elements and relate them.

3.1 Conceptual Domain View

Our approach defines a set concept for the purpose of characterizing elements.
This set is an AbstractSet concept with two more specialized concepts. The Input
depicts an entry model element from which the rules have to be applied. The
Set carries two properties to characterize members of a set. The based property
states the meta-element while the stereotyped property gives a list of applied
stereotypes.

Set restriction is afforded by a Restriction abstract concept which requires
that members of one set match the elements of another set. As we work on sets,
a existence quantification condition (alike the quantifier presented by Audris
Kalnins et al [9]) is added to the constraints. This condition is satisfied if the
cardinality of a set falls between a lower bound value (property atLeast) and



134 F. Lagarde et al.

upper bound value (property atMost). The default interval value is a lower bound
equal to one and an unlimited upper bound. We also enrich this concept with
an OCL capability to constrain elements of a set or among members of two sets.

We have further specialized this concept using:

– an Own concept to impose a UML content relationship with regard to the
ownedMember property. This construct is our main construct for navigating
through the UML hierarchy,

– a Match concept for matching elements,
– a WithThisRelationship concept that imposes a particular relationship.

Hence, a rule is composed of sets and is satisfied if one set or several sets
is/are valid.

A conceptual domain view shown below (Fig. 1) sums up the key concepts and
relationships. This domain view is part of a general methodology for defining a
UML profile [10, p.22].

- name

Rule

- name

AbstractSet

- atLeast : Integer
- atMost : Integer
- ocl : String

Restriction

Input

- based [0..1]
- stereotyped [0..*]

Set

Match WithThisRelationship Own

memberEndssets
1..* 2

Fig. 1. Domain view

3.2 UML Domain View

The above domain view is transposed to a UML domain using a profile (Fig. 2).
This is a quite straightforward operation.

An «AbstractSet» extends a Class. The name of the set is the name of the
Class.

<<stereotype>>
Rule

[Package]

- name

<< stereotype >>
AbstractSet

[Class] - atLeast : Integer
- atMost : Integer
- ocl: String

<<stereotype>>
Restriction

<< stereotype >>
Input

- based : Element [0..1]
- stereotyped : Stereotype [0..*]

<<stereotype>>
Elemen <<stereotype>>

Match
[Dependency]

<<stereotype>>
WithThisRelationship

[Relationship]

<<stereotype>>
Own

[Dependency]

Fig. 2. Proposed profile



Constraints Modeling for (Profiled) UML Models 135

Our approach uses relationships to support restrictions between the sets. We
extend the Dependency meta-class to support both an «Own» constraint and a
«Match» constraint.

To state a constraint relationship we extend the Relationship meta-class with
the stereotype «WithThisRelationship». A relationship for which the stereotype
«withThisRelationship» is applied forces elements to respect this type of rela-
tionship.

4 Examples

To allow a more detailed description of our constructs, we have chosen the ex-
ample of a refinement operation for an intra-domain context. To illustrate an
inter-domain context, a model combining a data-driven with data-event domain
is used.

4.1 A Refinement Operation

Refinement operations play a major role in the MDA process. This key concept
can be defined, as suggested by Richard F. Paige et al [11], as the production
of new models that necessarily enrich previously constructed models. It is the
main thread leading from an abstract view to a concrete view of a given system.

Our example is a refining black-box. The first view depicts a Kahn process
network and is an input point for a flow development. A Kahn process network is
a group of processing units connected by communication channels via unbounded
FIFO channels with a non-blocking writer and a blocking reader. Some of the
processing units must be refined to an object-oriented domain model. This first
view is a simplified filter specification borrowed from Rong Chen et al [12]. We
consider the following filter o(n) = k2 ∗ i(n) + o(n − 1) as performing data
processing.

We have profiled a UML activity diagram to support the Kahn’s semantics.
The UML action element is stereotyped «Unit» and depicts a processing unit.
The input port and output port are named connection points to manage channel
communication. This level of abstraction does not represent the manner in which
the input ports are connected to the output ports. We have also introduced
another stereotype «isRefinable» to show which units are to be refined. The
previous filter specification is represented in Figure 3.

Refinement Definition

The Adder action is stereotyped «isRefinable». The computation model requires
the refined model to provide support for the two input ports (p1, p3) and the
two output ports (p2, p4) and, of course, for data-processing.

To meet these requirements we apply the expert hypothesis that a processing
unit involves a class with its own execution thread and realizes interfaces to push
data into the Kahn environment and respectively uses interfaces to pull data out



136 F. Lagarde et al.

AFilter

<<unit>>
I

p1 <<unit>>
<<isRefinable>>

adder

<<unit>>
O

<<unit>>
*k2

p1 p2
p2 p3

p1 p4 p1

<<out>> control_O

Fig. 3. Filter model

ASystem

Adder

- push_p2(value: Integer)
- push_p4(value: Integer)

Adder_Kahn

- pull_p1() : Integer
- pull_p3() : Integer

Kahn_Adder

<<realizes>>

<<uses>>

Fig. 4. Refined adder unit

of the Kahn environment. These interfaces own operations for each input and
output port. They respect the naming convention push_ or pull_ followed by
the port name.

Figure 4 gives a suitable refined model.

Refinement Modeling

The refinement stage is then formalized by translating a refinement execution
into rules that must be satisfied by two models. We thus obtain a detailed re-
finement model (Fig. 5).

Its top elements are classes stereotyped «input». They maintain a mapping
to the filter model and the package containing at least the expected Adder class.
This information is given explicitly before evaluation. These elements have de-
pendency relationships stereotyped «own» between K_Unit and C_Unit with
default values.

The K_Unit class is stereotyped «set». It depicts actions stereotyped «Unit»
and «IsRefinable». Because of the stereotype «Unit» extends the Action meta-
element, we need not specify the property based. A translation could be: “consider
the K_Unit set as elements simultaneously stereotyped «unit» and «isRefinable»”.

This set is restricted. We require each member of the set K_Unit to exactly
match a C_Unit with an equal name. We support this constraint by adding



Constraints Modeling for (Profiled) UML Models 137

Refinement

<<set>>
K_Unit

{stereotyped = Unit,
isRefinable}

<<set>>
C_Unit

{based = Class}

<<own>>

<<set>>
C_Interface

{based = Interface}

<<set>>
C_OutPort

{based = Operation}

<<set>>
K_OutPort
{based = OutPin}

<<input>>
C_System

<<input>>
K_Filter

<<own>>
{atLeast = 0,

atMost = 0}

<<match>>
{atLeast = 0,

atMost = 0,
ocl = "C_OutPort.name = 

‘push_’.concat(K_OutPort.name)"}

<<match>>
{atLeast = 1,

atMost = 1,
ocl = "K_Unit.name=C_Interface.name"}

<<match>>
{atLeast = 1,

atMost = 1,
ocl = "K_Unit.name=C_Unit.name"}

<<own>>

<<withThisRelationship>>
{atLeast = 0,

atMost = 1}

<<own>>
{atLeast = 1}

<<own>>

<<own>>
<<realizes>>

Fig. 5. Refinement model

a dependency relationship stereotyped «match» between these two sets. The
property ocl carries the OCL constraint. In a similar manner, we declare another
dependency relationship stereotyped «match» from K_Unit to C_Interface. This
means that the processing unit has to match an Interface to support outgoing
communication. Owing to space limitations we do not model the symmetric
dependency relationship to manage incoming communication from K_Unit to
C_Interface.

To ensure that every output port owned by every member of the set K_Unit
implies an Operation owned by a member of the set C_Interface, we look for an
output port which does not fulfil this constraint. This reformulation is similar
to the data-base domain in which it is sometimes easier to find elements that
do not match special criteria than to find all the matching elements. Hence the
dependency relationship from K_Unit to K_OutPort has both properties atLeast
and atMost equal to zero.

According to the previous guidelines, a member of the set C_Unit in charge of
supporting a K_Unit has to realize or to use interfaces. Up to this stage, we have
only stated the existence of such interfaces without imposing any relationship.
We must thus apply the stereotype «withThisRelationship» to InterfaceRealization
relationship from the C_Unit to C_Interface. We assume that a processing unit
may have no outgoing communication and that the existence quantification con-
dition is then at least equal to zero and at most equal to one.



138 F. Lagarde et al.

It should be emphasized that this model does not ensure that each Action
simultaneously stereotyped «isRefinable» and «unit» has a Class supporting the
refinement and vice versa. The dependency relationship stereotyped «match» is
directed. In our model we only ensure that each action stereotyped «isRefinable»
and «unit» has a valid Class. To verify a symmetric relationship, we simply
declare another model to check whether or not a C_Unit matches a K_Unit.

Assessing the Refinement

We support our approach with a tool (presented in sec. 5) that assesses rules
for models. The result is provided as a graph in which nodes represent model
elements.

We use our previous rules for the filter model and its refined model. We
consider situations leading to a wrong evaluation to highlight constraint prop-
agation. We add an extra output port named p5 to the processing unit Adder
(Fig. 3), and we keep the refined model (Fig. 4) unchanged. The graph below
(Fig. 6) is the result of the assessment.

Fig. 6. Assessment graph

This graph shows that the models do not satisfy the rules. The top node
AFilter is invalid. This situation is caused by the propagation of constraints from
node p5 to AFilter. Output port p5 is valid because it cannot be matched to an
operation. Consequently, the non existence condition from the K_Unit to the p5
is not satisfied and makes the K_Filter invalid.

4.2 A Composition Operation

We reuse our previous filter in an over-simplified controller system. This filter
produces values triggering state changes in the control process over two states;
Idle state and Control state. Figure 8 above shows the UML state machine model
of the controller.



Constraints Modeling for (Profiled) UML Models 139

The overall modeling system leads to an heterogeneous interaction. On the one
hand, we have a filter with a data-driven semantics, on the other hand a finite
state machine model with event-driven semantics. To enable their interaction, a
trigger element is introduced. This element compares a value to a range of values
and sets on or off a flag. It is modeled using a new stereotype «Adapter» which
extends an Action meta-class.

The next stage is to model an acceptable architecture to connect the filter,
the triggering elements and the finite state machine.

Composition Definition

The component-based modeling approach offers valuable hints for composing
our elements. Gregor Gössler et al [13] depict a component as a superposition of
behavior models and interaction models with architectural constraints induced
by connectors. To focus on the interaction models we must provide a mean for
defining the connectable elements. Luca de Alfaro et al [14] introduce a formal
framework in which, output and input ports are connected if they are matched
by name. We have adopted this convention to depict a connectable element as
being either a UML element stereotyped «in» -to encompass a required service
concept- or a UML element stereotyped «out» -to encompass a provided service
concept-. Two connectable elements are connected if they have an equal name
and respect the in/out duality.

The unit processing O of our filter (Fig. 3) comes with an output port control_0
stereotyped «out». It is intended to produce values for triggering state changes.
The finite state machine has two transitions triggered on two events; evtControl
and evtIdle to activate the control or switch it off respectively. These events are
triggered on values computed by the filter. Because they require information from
the system, they have to be considered as input connectable elements. We therefore
apply stereotype «in» to both elements.

To adapt data-driven semantics to event-driven semantics, we introduce two
trigger elements TrigIdle and TrigControl (Fig. 7), both stereotyped «adapter».
They act as our semantic bridge and consequently have to connect the filter to
the finite state machine. According to the naming convention, both triggers have
input ports named control_0 and appropriated output ports to create binding
with the finite state-machine events.

Composition Modeling

Good modeling of connections involves making sure that the element stereo-
typed «in» match the elements stereotyped «out» with regard to the naming
convention. By complying with this rule, the modeler avoids producing models
with output ports for which there are no input ports.

The second rule relates to mixing semantics. Its purpose is to ascertain that an
element stereotyped «adapter» exists between each filter output port stereotyped
«out» and each finite state event stereotyped «in».



140 F. Lagarde et al.

Adapters

<<adapter>>
TrigIdle

<<out>> evtIdle<<in>> control_O

<<adapter>>
TrigControl

<<out>> evtControl<<in>> control_O

Fig. 7. Adapters

Controller

Idle

Control

<<in>> evtControl <<in>> evtIdle

Fig. 8. Controller behavior

Composition

<<set>>
K_Unit

{stereotyped = Unit}

<<own>>
{atLeast = 0,

atMost = 0}

<<set>>
P_K_OutPort

{stereotyped = Out,
based = OutPin}

<<input>>
K_Filter

<<own>>
{atLeast = 0,

atMost = 0}

<<match>>
{atLeast = 0,

atMost = 0,
ocl = "P_K_OutPort.name = R_InPort.name"}

<<own>>

<<own>>
{atLeast = 1,

atMost = 1}

<<own>>
{atLeast = 1,

atMost = 1}

<<set>>
FSM_Transition
{based = Transition}

<<own>>
{atLeast = 0,

atMost = 0}

<<set>>
R_Event

{stereotyped = In,
based = Trigger}

<<input>>
FSM

<<own>>
{atLeast = 0,

atMost = 0}

<<match>>
{atLeast = 1,

atMost = 1,
ocl = "P_OutPort.name = R_Event.name"}

<<set>>
KFSM_Adapter

{stereotyped = Adapter}

<<input>>
Kahn_FSM

<<set>>
R_InPort

{stereotyped = In,
based = InPin}

<<set>>
P_OutPort

{stereotyped = Out,
based = OutPin}

Fig. 9. Composition model

Figure 9 depicts theses rules and gives the general conditions to compose the
model elements.

Such a model ensures coherence from a processing unit viewpoint. This means
that we overlook any processing unit having output ports for which trigger ele-
ments are defined.

We use a naming convention to distinguish provided connectors from required
connectors. A required connector is prefixed by R_ e.g. R_Input or R_Event and
an output connector, or provided connector, is prefixed by P_.

The three classes K_Filter, K_Unit and P_K_OutPort have a dependency
relationship stereotyped «own» with the tag value atLeast and the tag value
atMost equal to zero. They initiate the question “Are there any processing units
having any output port such as . . . ”.



Constraints Modeling for (Profiled) UML Models 141

P_K_OutPort has a dependency relationship stereotyped «match» to
R_InPort. R_InPort is the set of input ports stereotyped «in» owned by an
action stereotyped «adapter». The matching condition is enhanced with anOCL
constraint to impose equal name. As we search wrong processing units, the quan-
tification existence is zero. If a P_K_OutPort element matching an R_InPort
element is found, the P_K_OutPort element becomes invalid and yet fulfils the
existence condition from K_Unit to P_K_OutPort.

The four classes Kahn_FSM, KFSM_Adaptater, R_InPort and P_OutPort
state that a, adapter is correct if it has exactly one output port stereotyped
«out» and exactly one input port stereotyped «in».

The remaining elements of the model identify event elements stereotyped «in»
that are part of a transition and look for a dual output port member of the set
P_Output.

In order to be thorough, constraint modeling could be supplemented by two
other models. The first model will serve to make sure every UML elements owning
an element stereotyped «out» has at least one dual element stereotyped «in».
The second model would be reciprocal. By adding these two models, we ensure
that all connectable elements are connected and that the previous model is
symmetric.

Assessing the Composition

Composition assessment indicates a wrong composition if the K_Filter or the
Kahn_FSM is invalid.

5 Tool Implementation

This research has led us to develop a constraint assessment tool based on Eclipse
Modeling Framework Technology (EMFT) [15] library. This library provides fa-
cilities for quering a model and includes an OCL engine.

It processes in three stages. The first stage consists in reading the model in
which the rules are to translate into a directed graph. A vertex is an element
stereotyped «element» and edges are elements stereotyped «match». This is the
support used to query and verify the models.

The following stage performs queries on models to collect the elements. It
traverses the graph with a depth-first mechanism starting from each vertex hav-
ing no incoming edges. For each vertex, a query is formulated contextually and
performed on the models. The set of matched elements is used to build a corre-
sponding graph. This step results in a new directed graph in which each vertex
is a matched element respecting the «element» conditions.

The last stage evaluates the quantification conditions for the previous graph.
Here again we use a depth-first mechanism to check conditions on each vertex. A
vertex is deemed valid if it satisfies the condition; otherwise it is deemed invalid.
This step is repeated while any state has changed.



142 F. Lagarde et al.

On the resulting graph, each vertex represents a matched element which is ei-
ther valid or not. To facilitate its interpretation, invalid elements are circled with
red. The graph provides helpful information for locating the invalid elements.

6 Conclusions and Future Directions

In this paper, we have defined constructs for facilitating constraint specification
in UML models, with a special focus on the use of stereotypes. We have also
transposed our concepts to a UML profile to allow modelers to use the same
environment for specifying and modeling constraints. The constraints are rules
composed of sets. A set depicts elements that comply with meta-element and/or
elements having a list of applied stereotypes. The sets have relationships to
express constraints.

Constraint assessment is achieved by a graph and identifies the invalid el-
ement(s). This information is especially useful for the designer to correct its
model.

Our approach is illustrated by a refinement operation and a composition op-
eration that identifies the rules to be satisfied by the models.

Our tool allowed us to apply our approach to more realistic cases. It appears
that constraints can be sometimes difficult to model. To overcome this difficulty,
we create unitary constraints (or a more simple set of constraints). Then we elab-
orate a scenario to apply these unitary constraints to ensure global constraints.

The proposed constructs are general enough for application to a wide range of
contexts. They can support development of a methodology for translating main
modeling stages into rules.

Further work will be necessary to demonstrate the benefit of our approach for
broader examples. We also require defining a theoretical foundation to support
our constructs. The graph theory seems to be as one of the best candidate [16].

References

1. Object Management Group (OMG): Unified Modeling Language: Superstructure,
ptc/06-04-02 (April 2006)

2. Stein, D., Hanenberg, S., Unland, R.: A Graphical Notation to Specify Model
Queries for MDA Transformations on UML Models. Lecture Notes in Computer
Science: Model Driven Architecture (2005)

3. Marcus, A., Ivan, P.: Difference and Union of Models. Technical Report 527, TUCS
(April 2003)

4. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Trans-
formation Testing and Version Control in Model Driven Software Development.
Best Practices for model Driven Software Development OOPSLA/GPCE Work-
shop (2004)

5. Object Management Group (OMG): MOF 2.0 Query/Views/Transformations,
ptc/05-11-01 ( 2005)

6. Simmonds, D., France, R., Ghosh, S.: Using Directives to Implement Model Trans-
formations. In: From MDD to Experiments and Illustrations. Hardback (2006)



Constraints Modeling for (Profiled) UML Models 143

7. Jouault, F., Kurtev, I.: On the Architectural Alignment of ATL and QVT. In:
Proceedings of the 2006 ACM Symposium on Applied Computing (SAC 06) pp.
1188–1195. chapter Model transformation (MT 2006) (2006)

8. Wang, W.: Evaluation of UML Model Transformation Tools. Master’s thesis,
OOLS. University of Vienna, Business Informatics Group (2005)

9. Kalnins, A., Celms, E., Sostaks, A.: Simple and Efficient Implementation of Pattern
Matching in MOLA Tool. In: Proceedings of the 7th International Baltic Confer-
ence on Databases and Information Systems (Baltic 92006) pp.159–167 (July 2006)

10. Object Management Group (OMG): UML Profile for Schedulability, Performance,
and Time, ptc/05-01-02 (January 2005)

11. Paige, R.F., Kolovos, D.S., Polack, F.A.: Refinement via Consistency Checking in
MDA. Electronic Notes in Theoretical Computer Science 137, 151–161 (2005)

12. Chen, R., Sgroi, M., Lavagno, L., Martin, G., Sangiovanni-Vincentelli, A., Rabaey,
J.: UML and platform-based design. Technical report (2003)

13. Goessler, G., Sifakis, J.: Composition for Component-Based Modeling. Science of
Computer Programming 55, 161–183 (2005)

14. de Alfaro, L., Henzinger, T.A.: Interface-based Design. In: Broy, M., Gruenbauer,
J., Harel, D., Hoare, C.A.R. (eds.) Engineering Theories of Software-intensive Sys-
tems. NATO Science Series: Mathematics, Physics, and Chemistry, vol. 195, pp.
83–104. Springer, Heidelberg (2005)

15. Eclipse Modeling Framework Technology, http://www.eclipse.org/emft
16. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software

engineering perspective. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 402–429. Springer, Heidelberg (2002)

http://www.eclipse.org/emft


D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 144–156, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Scenarios of Traceability in Model to Text 
Transformations 

Gøran K. Olsen and Jon Oldevik 

SINTEF Information and Communication Technology Forskningsveien 1,  
0373 Oslo, Norway 

{goran.k.olsen,jon.oldevik}@sintef.no 

Abstract. The challenges of managing change in model-driven development 
are addressed by traceability mechanisms for model to text transformations. A 
traceability model, tailored for representing trace information between models 
and generated code, provides the basis for visualisation and analysis of the 
relationships between models and code. Usage scenarios for traceability are 
discussed and illustrated by our traceability implementation. 

1   Introduction 

Model to text transformation is one of several vital steps in model-driven development 
(MDD), which makes it possible to generate an extensive amount of code from models. 
This automation can reduce the development time and increase the quality of the code, 
but it also introduces some new challenges that must be addressed. 

Often, the people writing transformation specifications will be different from the 
engineers developing the system. In this way, vital details required for understanding the 
systems are hidden from the engineers within the transformations. This may be a 
convenient way of separating the concerns of different actors in the development 
process. On the other hand, it may also hinder sufficient understanding of the system on 
the part of the engineer.  One way of solving this is letting the engineer examine the 
design models, the transformation specifications and the generated code. This may, 
however, not be desirable since the engineer may be unfamiliar with the transformation 
language. It also reveals details that are supposed to be concealed. An alternative 
approach is to establish links between representations of the design artefacts and the 
generated code that have semantics with the necessary information for the engineers. 
Model to text transformations enable implicit or explicit creation of these links.  

Manual updates of generated code are often required in the development process. 
In complex systems it can be difficult to localize the places to update, and there might 
also be restrictions on where changes are allowed. Traceability information can be 
used to ease this task. 

In this paper, we describe how traceability and traceability links can be used to 
support the development of systems. We explain model to text traceability and how 
this is implemented in MOFScript [1]. Several usages of MOFScript-specific trace 
links are described in usage scenarios. 



 Scenarios of Traceability in Model to Text Transformations 145 

2   Traceability 

One of the main challenges in MDD is the management of relations between different 
artefacts produced in the development process. As systems become more complex, 
the number of artefacts is increasing. Furthermore, the artefacts are often generated.  
Therefore, trace links are needed to fully understand the many dependencies that exist 
between the different artefacts.  

In the IEEE Standard Glossary of Software Engineering Terminology [2] 
traceability is defined as: 

“The degree to which a relationship can be established between two or more products 
of the development process, especially products having a predecessor-successor or 
master-subordinate relationship to one another; for example, the degree to which the 
requirements and design of a given software component match”. 

2.1   Establishment of Trace Links 

In the past, trace links have mostly been established manually by the different persons 
involved in the development process, for instance by creating trace links between 
word documents and use-case model elements. This task has been known as difficult, 
time consuming, and very often a source to errors both when it comes to the 
establishment of new links and keeping the existing links updated and consistent [3]. 

Following an MDD approach and utilizing model transformations makes it 
possible to generate these trace links explicitly or implicitly in the transformation 
specification. By implicit, we mean that some transformation tool, e.g. MOFScript, 
populates a trace model automatically when a transformation is executed. By explicit, 
we mean that additional trace code must be inserted into the transformation. This can 
be achieved in two ways; by writing the trace code each time or running a higher 
order transformation on the transformation model. The latter approach is used in the 
Atlas Transformation Language (ATL) [4]. The final adopted OMG standard MOF 
Models to Text Transformation Language also requires that the ability to explicitly 
create trace blocks in the code is present [5]. 

Storing the established trace links can be done in two ways according to Kolovos et 
al. [6], either by embedding them in the models or storing them externally in a separate 
new model. The first approach gives a human-friendly view of the trace links, but it 
only supports trace links between elements in the same model. The external approach 
has the advantage of having the trace information separated from the model and 
therefore avoids polluting the models. 

2.2   Traceability on Different Abstraction Levels 

Trace links can in theory be established between all artefacts in a system development 
project, for instance between requirement documents and use-case diagrams, use-case 
diagrams and test cases or domain and platform independent models (PIM), elements 
in the PIM and platform specific models (PSM), and between the PSM and generated 
text (e.g., code and documentation).  

All these trace links are required to provide end-to-end traceability. End-to-end 
traceability enables a number of different analyses that can be preformed on the 



146 G.K. Olsen and J. Oldevik 

system, e.g. checking that a requirement is fulfilled in the implementation by 
following the trace links from a requirement via the PIM and the PSM to code, known 
as coverage analysis [7].  

The trace links required to provide end-to-end traceability are intermediate and can 
also make the basis for useful functionality and analyses. In this paper we present 
several different usages of model to text traceability links. 

2.3   Different Trace Link Classifications  

The simplest trace link is one without any type specification other than link; it only 
contains references to one source and one target element which optionally can be 
contained in another element. According to [7-9] this may be insufficient for many 
projects. Hence, several different trace link classifications have been proposed. 

Some examples of trace types are: The trace type manual, which is a trace link 
established manually in the trace model. The trace type automatic is created by a tool, 
and the trace type transformation means that the trace link is between a source and a 
target in a transformation. In a model to text transformation this could be from a 
model reference to a text segment. The trace type dependency is between two artefacts 
that are dependent of each other, and the trace type verifies means that one artefact 
verifies another (e.g. a test implementation) may verify a requirement.   

2.4   Trace Link Usage 

The reason to create and update traceability links is that the links can be used to 
support and document the development process. The information can be used in 
several ways, but the most obvious scenario is simple trace inspection. Through trace 
inspection it is possible to browse the trace information and get insight in how the 
different artefacts are connected. This is becoming more useful as an increasing 
number of artefacts are generated automatically from model to model and model to 
text transformations. The simple browsing can also be extended with additional 
functionality as explained in the section 0. 

Walderhaug et al.[7] and Ramesh et al.[9] describe several different trace analysis 
scenarios: 

• Change impact analysis: Change impact analysis is used to determine the 
impact a change to an artefact will have on other artefacts.  

• Coverage analysis: Through coverage analysis, the trace user can determine 
the degree to which some artefacts of the system are followed up by other 
artefacts in the system.  

• Orphan analysis: Orphan analysis is used to find artefacts that are orphaned 
with respect to some specified trace relations. 

In the following section, we address traceability in model to text transformations 
and look at how different traceability scenarios can be provided by the traceability 
support in MOFScript.  



 Scenarios of Traceability in Model to Text Transformations 147 

3   Model to Text Traceability  

For traceability to be useful, we need the ability to trace artefacts through the lifecycle 
of the software development process, from requirement documents to model elements 
and from model elements to textual artefacts such as code. The steps required to move 
from one level to the other are often automated by transformations. In this process, 
the transformation tools should be able to produce trace links. 

Several model to text languages exist, and some of them have support for 
traceability. In the MOF Models to Text Standard [5], traceability is defined to be 
explicitly created by the use of a trace block inserted into the code, as illustrated below. 

[trace(c.id()+ '_definition') ] 
   class [c.name/] 
   { 
     // Constructor 
    [c.name/]() 
    { 
      [protected('user_code')] 
      ; user code 
      [/protected] 
    } 
   } 
[/trace] 

This approach provides user-defined blocks that represent a trace to the code 
generated by the block. This is specifically useful for adding traces to parts of the 
code that are not easily automated. A drawback of the approach is a cluttering of the 
transformation code. A complementary approach, as taken in MOFScript, is to 
automate the generation of traces based solely on model element references. 

3.1   Traceability in MOFScript 

MOFScript is a model to text transformation tool and language. It can be used to 
generate text from EMF based models. The transformation implementation contains 
references to model elements that should be substituted in the generated text. 

The references to model elements are the basis of MOFScript traceability. Any 
reference to a model element that is used to produce text output, results in a trace 
between that element and the target text file.  The granularity is from model element 
to line and column in the text file [10]. 
uml.Class::main(){ 
    file(self.name+".java") 
    'package 'packageName';\n 
     import java.util.*;\n' 
     self.visibility' class ' self.name'{ 
' 
  self.ownedAttribute->forEach(p:uml.Property | p.association = null ){ 
    ' ' p.visibility' ' p.type.name' _' p.name';\n'  
       
  } 

self.ownedAttribute->forEach(p:uml.Property | p.association !=null ){ 
'// Association: 'p.name':'p.type.name'('p.lower '..'p.upper')'        
'\t' p.visibility' HashMap<'p.type.name', 'p.name '>_'  

          p.name.toLower()';\n' 
  } 
 



148 G.K. Olsen and J. Oldevik 

The above transformation code generates the beginning of a Java class file where 
the references are fetched from the model. If the class property visibility is set to 
protected, “protected” will be written to the file instead of self.visibility. We 
will use the example model in Fig. 1 to illustrate the traceability support. 

 

Fig. 1. Bookstore Example Model 

Given the model in Fig. 1, an execution of the transformation will generate the 
following Java source code for the class Book. 

package org.sintef.no; 
import java.util.HashMap; 
 
public class Book {  
   private String _title ;  
// Association: authors:Author(1..-1) 
    protected HashMap<String, Author>_authors; 
// Association: category:Category(1..-1) 
    protected HashMap<String, Category>_category; 
} 

Each reference is substituted with the model element’s value and a trace is created, 
linking the element and the code segment. The link is stored in a traceability model, 
an instance of MOFScript’s traceability metamodel. 

3.2   The Traceability Metamodel  

The traceability metamodel in MOFScript was described in detail in [10]. Since then, 
it has been slightly modified during the implementation of the traceability support. 
Fig. 2 shows its concepts. 

The TraceModel is the root of the model and contains traces, files and model element 
references. A File contains one or more blocks, which in turn contains a set of traceable 
segments. A TraceableSegment defines a position and length within a block in a file. A 
Trace references an originating model element and the segment to which it traces. The 
Block defines the positioning of the block within the file. Furthermore, a block is either 
protected or unprotected. A protected block represents an unchangeable part of a file, 
which is not meant to be modified by users. Conversely, an unprotected block 
represents a part of the file that is meant to be modified by the user. This could for 
example be the body of a method. 



 Scenarios of Traceability in Model to Text Transformations 149 

 

Fig. 2. Traceability Metamodel 

When a transformation is executed, the MOFScript runtime populates an instance 
of the traceability metamodel, which is an ecore metamodel. This results in a 
traceability model. Fig. 3 shows an editor view of the traceability model generated 
from the Bookstore example model in Fig. 1. 

In the traceability model in Fig. 3, Book.java contains, among other things, a block 
with id 3. In the property view we can see where the block starts and ends, and that it 
is a protected block. This means that editing in this area is not allowed (changes in the 
code will not be preserved if the file is generated again). The traceable segments 
represent the references that are used in the file and hold information about start and 
end position. 

Unprotected Blocks. Setting the blocks’ protected block property to “true” is the 
default behaviour of the trace generation. However, often it is required that the code is 
edited manually. To cope with this MOFScript supports the notion of unprotected 
blocks. These blocks are created with the use of the unprotect keyword in the 
transformation code, as illustrated in the transformation code for operations below. 

 
 



150 G.K. Olsen and J. Oldevik 

self.ownedOperation->forEach(o:uml.Operation){ 
'\n  'o.visibility' void ' o.name'(){' 
unprotect{ 

       '    //User code here for operation' 
} 
'  }\n' 

} 

The resulting code, shown below, represents the unprotected block as comments 
containing a #BlockStart and a #BlockEnd and an identifier for the source model 
element. 

  
  public void printAuthor(){ 
  //#BlockStart number=4 id=_MeMJULEPEdu-Vepu7rgPLg 

//User code here for operation        
    //#BlockEnd number=4 

  } 

Between the block comments, the user can insert or remove code, and the changes 
will be preserved the next time the transformation is run. All the traces that have 
references to the file after the block will also be generated in accordance with their 
new position in the file. The block comment tag (here ‘//’) is controlled by 
environment settings and can be changed to match the target language. 

The next sections elaborate on how this traceability information can be utilized and 
describe several scenarios. 

 

Fig. 3. Trace Model and Property View 



 Scenarios of Traceability in Model to Text Transformations 151 

3.3   Model to Text Specific Trace Scenarios 

Trace links created in MOFScript between model elements and generated text can be 
utilized in several ways. This functionality can be used by different stakeholders, such 
as a Transformation Architect or System Engineer. 

Extended Trace Inspection. The traceability model contains logical links from 
model elements to the code. These can be used to navigate and visualise traces in the 
code. For example, the user might select a specific model element and visualise the 
traces as highlighted code parts. 

Coverage Analysis. Coverage analysis is useful for checking and ensuring that all 
relevant parts of the model are actually utilised by a transformation. If there are no 
traces from a particular model element, it is not used in the text transformation.  

Impact Analysis. Impact analysis in text transformation can allow for checking the 
impact of a model change to existing generated code. A limitation in this regard is 
unprotected areas in the code that use model references, which cannot be seen from 
the traceability model.  

Orphan Analysis. Orphans can occur in the code if model elements are deleted. 
There will then be traces from old model elements to the code. The transformation 
needs to be re-run in order to synchronise the model, the code, and the traces.  

Trace Documentation. The traceability model can be used to generate different kinds 
of traceability documentation, for example by generated HTML documents. Such 
trace documentation can be provided by reusable model to text transformations [11] 
that have the trace model as source. 

Unprotected Block Checking. When an unprotected region in the generated code has 
been implemented, the corresponding block in the trace model should be updated to 
show that it is completed. This will enable the Project Manager to check for bottle- 
necks, presenting a view of the remaining unprotected blocks that needs to be 
implemented, and if necessary move resources to a different part of the project. 

Merging Traceability Models. Merging of traceability models may be used when 
several different transformations are executed from the same source model. The traces 
reference the same model elements, but sets of different target files. A merging of these 
will provide a more complete view of the traces from that particular source model. 

Traceability Model Evolution. As models evolve, so will traceability models 
generated from those models. Histories of traceability models associated with a model 
may be used to analyse the evolution of the model with respect to code generation. 

Our aim is to provide a toolset that supports the identified scenarios. Currently, we 
have developed a prototype that addresses some of the scenarios. 

3.4   Traceability Analysis Prototype 

The Traceability Model Analysis prototype is an initial version of a more complete 
traceability tool that also will consist of a repository for storing trace models. At this 
time, only MOFScript-specific trace analysis is supported. The prototype makes it 
possible to browse the source model in a tree editor and invoke different functionality 
on selected elements (Fig. 4). 



152 G.K. Olsen and J. Oldevik 

 

Fig. 4. Trace Menu for Model Bookstore 

View Traces. This functionality gives a view of the traces for a selected model 
element (and its descendants). It can be used for trace inspection to locate the traces 
 

 

Fig. 5. Trace View 



 Scenarios of Traceability in Model to Text Transformations 153 

for specific model elements. Fig. 5 shows an example of this view for the Bookstore 
example, showing all traces generated from elements contained in the Bookstore 
package. As can be seen, the Bookstore class has several trace links to code segments 
in the file Bookstore.java. 

Model Coverage. This functionality shows which parts of the model that do not have 
trace representations in the traceability model. It allows for checking that all intended 
model elements have been processed by the transformation. Fig. 6 shows the result of a 
Model Coverage analysis after adding two properties to the Book Class (isbn and price). 

 

Fig. 6. Model Coverage 

Orphan Analysis. This functionality allows for checking traces that are no longer 
valid, in that they reference model elements that no longer exist. Fig. 7 shows the 
result of an Orphan Analysis after the property name has been removed from the 
model element Author. Following the MDD approach, the normal procedure would be 
to rerun the transformation. However, on trace links that are created manually, this 
will be a useful feature. 

 

Fig. 7. Orphan Analysis after deleting a property 

Impact Analysis. The functionality provided by the impact analysis checks for 
references in the generated code that will be affected by a modification of the model. 
This is basically an application of the view traces functionality with the source 
element as input to the query. 

Functionality on Generated Files. The generated files also have traceability-specific 
actions that can be performed; this includes view traces to file, which will display the 
traces and the source elements that have this file as target and view unprotected 
blocks, which provides the user with a presentation of the unprotected blocks in the 
given file. The displayed unprotected blocks can be used for direct navigation into the 
file on the unprotected block’s starting position. When the number of files and 



154 G.K. Olsen and J. Oldevik 

unprotected regions are many (e.g., in complex systems), this functionality will 
simplify the manual development task. 

When text has been inserted into an unprotected block manually, the traceability 
model can be updated to reflect the new positions of the traceable blocks and 
segments in the generated file.  

4   Related Work 

Even though traceability is a well known problem in software engineering and the 
current literature contains ample publications describing the need for traceability 
solutions, little work has been done in the field of model to text traceability. The 
OMG MOF Model to Text Transformation Specification [5] specifies a trace solution 
with the use of trace blocks, but currently there are no implementations of the 
standard available. How these trace links can be utilized is not described. 

Acceleo Pro Traceability [12] is a traceability tool developed by Obeo that handles 
traceability links between model elements and code and vice versa. This tool enables 
round trip support; updates in the model or the code are reflected in the connected 
artefacts. Analyses are also available using the traces as input, but since this is a 
commercial tool, restricted information describing the solution is available. It seems 
to be based on similar ideas as described in [10] where model elements are traced to 
exact positions in files.    

In [13] Alexander Egyed describes a bottom up approach for trace link generation 
with the use of the Trace Analyser tool. The approach requires the existence of a 
system that is both observable and executable, a list of artefacts from the development 
(e.g., model elements), usage scenarios or test cases and some initial traces that links 
the artefacts and the scenarios. This solution creates traces from lines of executed 
code to requirements and thus enables traceability among all artefacts. 

Reqtify [14] is a requirement traceability tool from ChiasTek. It supports 
traceability through the entire project from high-level requirements to models, code, 
test scripts, and test results.   

Objecteering 6.0 from Softeam [15] provides trace functionality through a trace 
editor that enables the user to create traces manually between artefacts. Model elements 
created from wizards based on existing elements can be traced automatically. 

Rational RequisitePro [16]  is a requirement and use case management tool that 
provides the ability to display traces between parent/child relationships and showing 
requirements that may be affected by upstream or downstream changes. 

CaliberRM from Borland [17] is also a requirement management tool that enables 
manual creation of trace links from top level requirements to lower level descriptions. 

5   Conclusion and Future Work 

This paper presents a traceability solution for model to text transformations. Usage 
scenarios show that the solution is viable and how the generated trace model can be 
utilized.  

The trace generation in MOFScript is implicit, meaning that all references to model 
elements are traced. In the MOF Models to Text Specification [5] the creation of 
traces is done explicit thru the use of trace blocks (it does not state that implicit traces 



 Scenarios of Traceability in Model to Text Transformations 155 

can not be used in addition). We believe that each approach has pros and cons and 
that an optimal solution should support a combination of both. Direct references from 
model elements to text should be generated automatically with the granularity defined 
by environment settings. There may also be situations where this is not sufficient to 
produce all trace dependencies required; therefore, explicit creation of trace links 
should be supported and classified accordingly. This functionality will be supported 
in a future version of the toolset. 

In [18], Antoniol et al. have identified several challenges that must be addressed 
related to different aspects of traceability in MDD. Keeping trace information up to 
date can be an inconceivable task that often makes the links erode into an inaccurate 
state. The granularity of the trace links is also identified to be a challenge. The more 
fine-grained the trace links are, the more error prone they become. However, when 
traces are automatically generated, they are updated when the model changes and the 
code is regenerated. In this work, the challenge of keeping the trace links updated is 
addressed and the granularity issue is reduced. 

The quantity of traces may be a challenge. In our solution, we are tracing all model 
element references and the number of traces might become incomprehensible and hence 
less useful. Furthermore, it might be a performance issue when the models and the 
transformation become large and complex. By adding a filtering mechanism to the 
traceability engine, it is possible to specify kinds of model elements that are interesting 
to trace and minimise performance overhead and unnecessary trace information. 

Classification of traces was discussed earlier. In many traceability scenarios it may 
be useful or even essential to have meta information associated with traces, but it 
depends on the usage context. In an end-to-end traceability scenario involving 
different tools and artefacts, meta information will be important in order to distinguish 
the different traces. The scenarios we have shown here demonstrate usefulness of 
traces without classification.  

The presented traceability solution implemented in MOFScript has its own specific 
traceability metamodel as shown in Fig.2. Future work includes the specification of a 
more generic trace metamodel (not specific to model to text) that will be implemented 
in a traceability tool. This tool will provide a simple interface for trace establishment 
both manually by users and automatically from several different MDD tools. The first 
step will be to integrate the trace establishment from MOFScript and then provide a 
user friendly interface for manual trace establishment.  

Furthermore, we will investigate how to support trace model merging. Tools that 
do not support the provided interface of the traceability tool can supply the populated 
trace model, and the model can be merged into the repository’s model representation. 
The goal will be to establish a MDD tool chain that in turn will populate the same 
project trace model. A typical scenario will be to model use-cases and have textual 
descriptions in Word documents, these artefacts will be traced to each other by 
manual establishment of the links. The use-cases will then be refined to different 
models and the proper trace links will be created manually or automatically by tools. 
The new models become sources to model to model transformations (e.g., an ATL 
transformation), which can populate the trace model in the repository. The generated 
target models will then act as source models to a transformation in MOFScript. The 
MOFScript transformation creates new trace links from the already existing model 
artefacts in the trace model to files, blocks and traceable segments.  



156 G.K. Olsen and J. Oldevik 

With this approach, the development chain is capable of supporting end-to-end 
traceability where most traces are automatically created. Several end-to-end analyses 
similar to the model to text specific will also be supported.      

Acknowledgements. This work is a result from the MODELPLEX project co-funded 
by the European Commission under the “Information Society Technologies” Sixth 
Framework Programme. (http://www.modelplex-ist.org/). Information included in this 
document reflects only the authors’ views. The European Community is not liable for 
any use that may be made of the information contained herein. 

References 

1. Oldevik, J., et al.: Toward Standarised Model to Text Transformations. In: Hartman, A., 
Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, Springer, Heidelberg (2005) 

2. IEEE, IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-
1990. 78 (1990) 

3. Egyed, A.: Resolving Uncertainties during Trace Analysis. 12th ACM SIGSOFT 
Symposium on Foundations of Software Engineering, pp. 3–12 (2004) 

4. Jouault, F.: Loosely Coupled Traceability for ATL. ECMDA 05 Traceability Workshop 
(2005) 

5. OMG, MOF Models to Text Transformation Language Final Adopted Specification 
Member doc: 06-11-01 (2006) www.omg.org 

6. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On-Demand Merging of Traceability Links 
with Models. ECMDA 06 Traceability Workshop Bilbao (2006) 

7. Walderhaug, S., et al.: Traceability Metamodel and System Solution. ECMDA 06 
Traceability Workshop Bilbao (2006) 

8. Aizenbud-Reshef, N., et al.: Model traceability. IBM Systems Journal 45(3), pp. 515–526 
(2006) 

9. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability. IEEE 
Transactions on Software Engineering 27(1), pp. 58–93 (2001) 

10. Oldevik, J., Neple, T.: Traceability in Model to Text Transformations ECMDA 06 
Traceability Workshop Bilbao (2006) 

11. Olsen, G.K., Aagedal, J., Oldevik, J.: Aspects of Reusable Model Transformations. 
ECMDA 06 Workshop on Composition of Model Transformations (2006) 

12. OBEO, Acceleo Pro Traceability (2007), http://www.acceleo.org/pages/additionnal-
products/en 

13. Egyed, A.: A Scenario-Driven Approach to Trace Dependency Analysis. IEEE 
Transactions on Software Engineering 29, 17 (2003) 

14. Chiastek, Reqtify (2007), http://www.chiastek.com/products/reqtify.html 
15. Softeam, Objecteering 6.0 Web-Page (2007), http://www.objecteering.com/objecteering6. 

php 
16. Software, I.R., Rational RequisitePro: reqpro/ (2007), http://www-306.ibm.com/software/ 

awdtools/ 
17. Borland, CaliberRM (2007), http://www.borland.com 
18. Antoniol, G., et al.: Problem Statement and Grand Challenges in Traceability. Center of 

Excellence for Traceability (2006) 
 



Human Comprehensible and Machine

Processable Specifications of Operational
Semantics

Markus Scheidgen and Joachim Fischer

Department of Computer Science, Humboldt Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

{scheidge,fischer}@informatik.hu-berlin.de

Abstract. This paper presents a method to describe the operational se-
mantics of languages based on their meta-model. We combine the estab-
lished high-level modelling languages MOF, OCL, and UML activities
to create language models that cover abstract syntax, runtime config-
urations, and the behaviour of runtime elements. The method allows
graphical and executable language models. These models are easy to
read by humans and are formal enough to be processed in a generic
model interpreter. We use Petri-nets as a running example to explain
the method. The paper further proposes design patterns for common
language concepts. The presented method was applied to the existing
modelling language SDL to examine its applicability.

1 Introduction

Language specifications, especially the definition of language semantics, are usu-
ally either informal or mathematical. These specifications are human readable,
even though they might be imprecise or require substantial mathematical knowl-
edge. However, it is normally hard to automatically derive computer tools from
such specifications. We want to create model based language definitions that
are both: comprehensible to humans and, at the same time, machine executable.
Such definitions can be valuable for prototyping new languages, or creating tools
for existing languages in a model driven fashion.

Meta-modelling is an already established technology to model the abstract
syntax of languages in a human appealing and yet machine processable way.
Other modelling techniques (based on meta-modelling) do the same for the lan-
guage aspects graphical and textual notation, code-generation, or model trans-
formations. Our contribution to the general goal of modelling languages is a
method that uses existing graphical (meta-)modelling languages on a high level
of abstraction to define operational semantics. We formally describe languages
and can therefore execute models solely based on the according language defini-
tion by using a generic model interpreter.

Plotkin’s structural operational semantics [1] is the standard way to define
the operational semantics of programming languages. It uses transition systems

D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 157–171, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



158 M. Scheidgen and J. Fischer

〈Γ, →〉, where Γ is a set of configurations γ and →⊆ Γ × Γ are the possi-
ble transitions between configurations. To define the operational semantics of
a meta-model based language we use its meta-model M to define sets of mod-
els ΓM . These models act as configurations. Furthermore, we use actions over
models as transitions from one model of M to another model of the same M
(γ ∈ ΓM → γ′ ∈ ΓM ). We use UML activities in combination with OCL to
describe the actions to be executed. These activities describe sequences of model
configurations: γ →∗ γ′. Meta-models and activities form language models which
define abstract syntax and operational semantics. We developed a generic model
interpreter that can process such language models. This tool interprets an in-
put model γin by changing it as defined by the activities in the corresponding
language model. The result is a model that evolves according to the specified
operational semantics: γin →∗ γ.

In the next section we continue with related work. Section 3 explains the basic
concepts of our method and shows an example language model which describes
the operational semantics of Petri-nets. In section 4 we show that more complex
languages need to distinguish between elements that describe abstract syntax
(define the models that the user can write) and runtime elements (describe ad-
ditional information that is necessary when a model is executed). Section 5
discusses reusable designs for operational semantics and presents a pattern for
instantiation as an example. Section 6 briefly describes the application of our
method to the modelling language SDL and thereby reasons that the frame-
work is applicable and scales up to practical languages. The paper closes with
conclusions in section 7.

2 Related Work

Work on generated or generic language tools includes frameworks for the de-
velopment of domain specific languages. These frameworks use meta-models as
the core of language specifications and also cover language aspects like nota-
tion, analysis, transformations, or operational semantics. Such frameworks are
GME [2], XMF [3] (originated in the MMF approach [4]), AToM3 [5] and meta-
programming facilities like MPS [6], kermeta [7], AMMA [8] MetaEdit+ [9].
Some of these frameworks define semantics through general purpose program-
ming languages (MPS, MetaEdit+), others provide specialised languages to de-
fine semantics (XMF, kermeta, AToM3). Two different approaches to semantics
can be identified: GME and AToM3 use model transformations into a different
language or formalism (semantic domain). AMMA, Kermeta, XMF, and MPS
use an action language to define operational semantics.

There are several approaches using a specific meta-language for the
definition of operational semantics. In [10] Engels et al present a graphical mod-
elling approach for UML semantics based on collaboration diagrams and graph
transformations. This approach provides strong mathematical foundations, but
results in very verbose semantic rules, which are hard to read and execute. In [8]
Abstract State Machines (ASM) are integrated into the DSL framework AMMA



Human Comprehensible and Machine Processable Specifications 159

<action kind>: <body>

<a comment>

<varname>
context pin

(always optional, if no context is 
given, the element for that the 

current activity is called is the context for the action)

additional variable pin (optional, eval only)

input pin (depends on action)

output pin (depends on action)

action symbol

call: <operation>
Calls another 
operation.

Based on MOF. The context determines the object on that the operation will be 
called. Input pins determine the used arguments. Operation return arguments 
are provided via output pins. Input/output pins (grey) depend on the operation.
Object::invoke(op: Operation, args: Argument[0..*]): Object[0..*]

create: <class>
Creates a 
new instance.

Based on MOF. The given class has to be a metaClass of the used meta model. 
The result element is provided via the output pin. 
Factory::create(metaClass: Class): Element

If this action is used on a class that is a runtime representation of another class, 
a link is created between the context and the created instance according to the 
semantics of runtime representation of (see section 4).
Factory::createLink(association: Association, firstElement:                 
Object, secondElement: Object): Link

set: <property>

set: <qualified property>

Based on MOF. The context determines the element that will be changed. 
The input pin determines the used value. If more than one input is used, the 
first input pins determine qualifiers.
Element::set(property: Property, value: Object)

Element::set(property: Property, qualifiers: Object[0..*], value: Object)
// an extension to MOF

Sets the value of a 
property with 
multiplicity  1 or 0..1.
For properties with
qualifiers additional
input pins are required

add: <property>

remove: <property>

Based on MOF. The context determines the element that will be changed. The 
input pin determines the used value. The values of the property in the given 
elements are retrieved with:
Element::get(property: Property): Object

The result of this operation is assumed to be a collection. The value is added to 
or removed from this collection.
ReflectiveCollection::add(value: Object):boolean 
ReflectiveCollection::remove(value: Object):boolean

Adds/removes an 
value to/from a 
property with 
multiplicity bigger 
than one.

<varname>

eval: <OCL expression>

Based on OCL. The context determines the value of self. Additional variables 
can be used in the expression. The value that the expression represent is 
provided through the output pin. 

Evaluates the given 
OCL expression

description
semantics

(most actions are already defined in the MOF standard, 
we refer to the according MOF operations defined in  CMOFReflection)

actions
(as symbol with possible 

parameter)

action notation

Fig. 1. A list of actions that can be used to define operational semantics

to support specification of execution semantics for DSLs, using ASMs as just an-
other DSL. Muller et al [11] use a textual action language in combination with
OCL for high level semantics descriptions. This action language is executable
and provides the foundation for the DSL framework kermeta [7]. A similar ap-
proach is used in Mosaic [3] which uses an OCL version extended with actions
to define language semantics. We recycled the idea of using OCL for expres-
sive model navigation in our approach. In [12] Gerson Sunyé et al explore the
possibility of UML action semantics [13] to create executable UML models and
already suggest the use of activities with action semantics for meta-modelling.
We use this idea and reduce the set of actions to those necessary to describe
operational semantics based on model changes.



160 M. Scheidgen and J. Fischer

We use a CMOF based modelling architecture as foundation for our approach.
The reason is that the CMOF meta-meta-model [14] provides means for feature
refinement in the context of class specialisation, which allows better expressions
of abstractions in meta-models than EMOF or similar models (MOF 1.x, EMF-
Ecore). The according MOF features were formalised by Alanen and Porres in[15],
and we provided a programming framework for CMOF based modelling in [16].

Along with structural operational semantics [1], semantics are traditionally de-
fined based on grammars for abstract syntax. A formalism, like term re-writing,
is used to describe manipulation of abstract syntax trees (AST are instances of
grammars). This describes interpretation of an input program represented by an
AST. The formal SDL semantics definition [17] uses Abstract State Machines
(ASMs) to realise a similar approach: it defines abstract syntax and runtime
states with grammars and represents corresponding ASTs as evolving algebras
manipulated by ASMs. Our approach replaces grammars/signatures with meta-
models, ASTs/algebras with models, and re-writing/ASMs with our combination
of activities, OCL, and actions.

3 Basic Concepts

Operational semantics describes transitions between models (configurations).
Such transitions can be realised by changing a model (evolving configuration).
To describe and execute operational semantics defined with such transitions we
need: (1) changeable models; (2) types of transitions, in our case atomic model
changes, which we call actions; and (3) a language to control what action is to
be executed under what conditions and in what order.

Models, as instances of meta-models, aren’t normally supposed to change. An
UML model, for instance, does not change once it is written. But because models
constantly change during editing, MOF already supports model changes. We can
dynamically create new elements or update attributes of existing elements to
change a model. We extended MOF’s CMOF model with property qualifiers (as
defined in UML). We use this extended CMOF language for our meta-models.

Fig. 1 defines a fixed set of atomic actions which we use in UML activities.
The semantics for these actions is given by the MOF standard. The semantics
for UML activities (as we use them) is founded on Petri-nets as described in
[18]. Activities are connected to the meta-model via operations. The behaviour
of each operation in a meta-model can be implemented with an activity. When a
operation is called, the according activity is interpreted. Meta-models are object-
oriented models, and calling a operation means that it is called on an instance of
the corresponding class. This also means that activities are always interpreted
in the context of an object. This context can be addressed with the value self.
Operations can also have parameters, and calling an operation requires according
arguments, which can be used in the activity.

Each model can be executed like a normal object-oriented program by calling
an operation and interpreting the according activity. One operation has to serve
as a dedicated main operation. There is usually a model element, known as the



Human Comprehensible and Machine Processable Specifications 161

outermost composite, which contains all other elements. It is reasonable practice
to define the main operation in the class that describes this element.

3.1 An Example Language – Petri-Nets

In this section we demonstrate our meta-modelling method and create a language
model for Petri-nets. This model consists of descriptions for an abstract syntax
and an operational semantics for Petri-nets. Fig. 2 shows this language model
and an example Petri-net. We choose Petri-nets as an example language, because
they have a very small abstract syntax and simple but clear semantics.

The language model specifies that a Petri-net consists of places and tran-
sitions. Places can be related to transitions, and each transition has an arbi-
trary number of input and output places. A place can contain any number of
tokens. The figure also shows an example Petri-net, an instance of the given
meta-model. This Petri-net diagram of the famous dining philosophers uses the
typical Petri-net notation: places are drawn as circles, transitions as boxes. In-
coming arcs show the input places of a transition, and outgoing arcs show their

0..*

eating

thinkinghungry

left right

pl
at

on

socrates

aristotle
becoming hungry

aquire forks release forks

context Net::enabledTransitions
derive:
    transitions->select(isEnabled())

Transition

+isEnabled(){query}
+fire()

Place

+tokens : Integer

Net

+run()

+/enabledTransitions

+outputPlaces
0..*

+inputPlaces
0..*

+places
0..*

+transitions
0..*

context Transition::isEnabled()
body:
    inputPlaces->forAll(tokens>0)

Net::run()Transition::fire()

<<iterative

eval: token - 1

set: token

eval: outputPlaces

all output places
of this transition

<<iterative>>

eval: token + 1

calculating the new
number of tokens

set: token

updating the
number of tokens

Do this for all output places.

eval: inputPlaces
enabledTransitions->size() > 0

 check for enabled transitions

eval: enabledTranistions->any(true)

chose a transition non-deterministically

call: fire

fire the selected transition

[true]

[false]

Fig. 2. Petri-nets as an example: an example net and a language model for Petri-nets
containing an abstract syntax model, OCL expressions, and activities



162 M. Scheidgen and J. Fischer

output places. Dots inside places show the number of tokens in a place. All text
in this Petri-net diagram is commentary, and no text fields are defined in the
meta-model. However, we will use these names in further explanations. Please
note that we mixed Petri-net structure (places and transitions) with Petri-net
configurations (tokens). We will address this issue in section 4.

The semantics of Petri-nets is simple. Transitions are the only active elements
in a net. They change the number of tokens in places, which are the only dy-
namic elements in a net. A transition changes the number of tokens in its input
and output places when it is fired. But a transition may only be fired when
it is enabled, and it is enabled when all its input places contain at least one
token. Given these definitions, a Petri-net has the following semantics: a transi-
tion is chosen from all the enabled transitions non-deterministically. The chosen
transition is fired. This means that the number of tokens in all input places is
reduced by one, and the number of tokens in all its output places is increased
by one. Transitions are chosen and fired until the net contains no more enabled
transitions.

We describe the operational semantics with operations and derived proper-
ties. The Petri-net meta-model contains two operations, one query operation,
and the derived association end enabledTransitions. These elements realise
the informally explained semantics in a formal and executable way. The query
operation and derived property can be fully determined by OCL expressions.
These elements need no further refinement or implementation; the OCL expres-
sions can be evaluated by the computer right away. Transition::isEnabled()
returns true when the transition contains tokens in all input places. The de-
rived association end enabledTransitions selects the collection of all enabled
transitions in a net. The OCL expressions are given in fig. 2.

The behaviour of the other two operations can be specified using the activity
language (see fig. 2). Imagine that the operation Transition::fire() is called
for the transition becoming hungry during the execution of the example net. The
first action is to evaluate the expression inputPlaces in the current context
becoming hungry. This transition has only one input place: thinking; the result
is a collection containing thinking only. After that, the collection is iterated.
The activity in the iterative expansion region is executed for each element; in
this case this is only thinking. This sub-activity evaluates token−1. This time
thinking and not becoming hungry is used as context. The value (1 − 1 = 0)
is the result and is set to the property token in the context of thinking. After
that is done, the number of tokens in each output place is increased in a similar
fashion.

The operation Net::run() acts as main operation; it executes the net. This
means it fires enabled transitions as long as there is at least one enabled tran-
sition left. A decision is used to continue or stop based on whether the set of
enabledTranitions is empty or not. When it is not empty, one transition is se-
lected non-deterministically, using OCL’s any. After that, Transition::fire()
is called on the selected transition.



Human Comprehensible and Machine Processable Specifications 163

PlaceDef

+initialTokens : Integer

: PlaceDef

initialTokens = 1

: PlaceInstance

tokens = 1

syntaxElement syntaxElement

runtimeElementruntimeElement

: PlaceInstance

tokens = 0

PlaceInstance

+tokens : Integer

meta-model model

sy
nt

ax
ru

nt
im

e

language model

user model

runtime
configuration

context Class
inv:

(self.syntaxClass->size() = 1 or
self.allParents()->collect(syntaxClass)->

size() > 0) implies self.runtimeClass->
size() = 0

context Class
inv:

self.syntaxClass->notEmpty() implies
self.allParents()->forAll(s : Class |

s.syntaxClass->empty())

Class

+syntaxClass
0..1

+runtimeClass
*

Fig. 3. A new meta-model relationship to relate syntax and runtime elements with
each other

4 Distinguishing Between Syntax and Runtime Elements

In the last section we defined operational semantics by describing model changes.
All runtime information needed to execute a model could be stored within the
model. This approach has two flaws. One, in general we need additional data
structures to describe a runtime configuration. A program, for example, is only
one part of a configuration during a program run. Other parts are slots for
variable values, heap memory, and program counters. The second problem is
that when we change the input model it will be lost for future execution. In the
moment we destroy a token in one Petri-net place and create it in another, we
destroy the original marking. When we say the initial marking is part of the
Petri-net, we would destroy the net by executing it. We should have stored the
actual number of tokens independent from the initial number of tokens.

To describe complete configurations, a meta-model has to define both: the
abstract syntax of the language and additional data-structures needed for run-
time information. We distinguish between syntax classes and runtime classes.
The set of all syntax classes describes what users of the language can write in
their models. The set of all runtime classes describes data that can be created
and used during the execution of a model. Syntax and runtime elements can be
related to each other.

Fig. 3 shows (on the left side) an extension of the MOF meta-meta-model as a
meta-model for a new relationship between classes. We call this relation runtime
representation of. This directed relationship indicates that one class denotes a run-
time representation of a syntax class. We use the UML realisation arrow (which
has no predefined meaning in MOF) to notate this relationship. Fig. 3 also shows
two corresponding OCL constraints that limit the use of this relationship: there
are no circles allowed and a class cannot be runtime representation for itself.



164 M. Scheidgen and J. Fischer

The right side of Fig. 3 shows an example of a runtime representation: a
RuntimePlace is the runtime representation of a PlaceDef. The language user,
who creates the Petri-net, determines the initial number of tokens using the cor-
responding slot in PlaceDef instances. At runtime, the numbers of tokens are
stored separately in RuntimePlace instances. That allows us to run the same
net in two runtime representations at the same time. The runtime represen-
tation of relationship will allow to navigate between instances of runtime and
corresponding syntax classes. The create action described in the previous sec-
tion, will automatically link a newly created instance of a runtime class with the
corresponding syntax class instance.

4.1 An Advanced Example Language – Hierarchical Petri-Nets

In this section we use a more sophisticated Petri-net variant to demonstrate
that most semantics descriptions require to differentiate between syntax and
runtime elements. In the previous section, we modelled a dinner table with three
philosophers. This model already contained the same philosopher pattern three
times. We model Hierarchical Petri-nets (also known as modular Petri-nets, not
to be confused with Petri-nets that use sub-nets as tokens), which allow to build
an abstraction for this pattern. We can model the common philosopher behaviour
once, and use it for multiple philosophers. Fig. 4 shows such a hierarchical Petri-
net for the dining philosophers.

Hierarchical Petri-nets contain additional concepts and notations. We can
define sub-nets, notated as a smaller net inside a box. These sub-nets have
dedicated interface places. In the example the behaviour of a philosopher is
modelled as a sub-net. The places for his left and right fork are interface places,
because each philosopher has to share this place with his right and left neighbour.
In hierarchical Petri-nets each net can contain sub-net usages which are notated
as a black box. Petri-net usages are related to regular places to connect interface
places with real places. These connections are drawn with lines that have the
respective interface place name written on them.

Since hierarchical Petri-nets contain additional concepts, we also need a dif-
ferent language model (fig. 5) with additional classes and different descriptions
of operational semantics. We have to distinguish between the definition of a
sub-net and the usage of a sub-net. NetDef represents Petri-net models. NetDef
instances can contain transitions, sub-net definitions, sub-net usages, and places.
Net usages are realised in the class NetUsage. Instances of NetUsage reference
a NetDef to characterise the used sub-net. The former class Place is now called
PlaceDef. Instances of this class are used to model places; we will need another
place class to represent places at runtime. The connection of interface places is
modelled as a qualified property of NetUsage. A qualified property works like a
map. In this case, it associates a NetUsage with a PlaceDef based on another
PlaceDef as key: a usage is connected to places, and each of those connections
is qualified by an interface place.

Hierarchical Petri-nets use one sub-net several times. We use several instances
of the same net definition to to store the number of tokens in each sub-net



Human Comprehensible and Machine Processable Specifications 165

eating

thinkinghungry

left right

becoming hungry

aquire forks release forks

ph
ilo

so
ph

er

le
ft

rig
ht

philosopher

left

right
philosopher

left

right

philosopher
left

right

philosopher
leftright

philosopher

Fig. 4. A hierarchical Petri-net for the dining philosophers

instance separately. We cannot use the semantics definition from the place/
transition Petri-net example, because the places in one sub-net are now used sev-
eral times in multiple usages of the same sub-net. When the number of tokens in
a place of one instance changes, it would also change in the same place of all the
other instances.

The definition classes NetDef and PlaceDef are syntax classes. They are
used within the Petri-net model; they are classes for things the user draws in
a Petri-net diagram. The dining philosopher model is a NetDef instance, the
philosopher sub-net is a NetDef instance; all places in the model are PlaceDef
instances. The other two classes RuntimeNet and RuntimePlace are runtime
classes. A RuntimeNet can contain instances of sub-nets (other RuntimeNet in-
stances) and contains RuntimePlaces using a qualified property with the ac-
cording PlaceDefs as keys.

When a user provides a hierarchical Petri-net it will only contain instances of
the syntax classes. Creating runtime class instances is part of the semantics. It
is part of the semantics to initially instantiate the dining philosophers Petri-net,
create sub-net instances for all the usages of philosopher. This instantiation task
is modelled in the operation NetDef::instantiate. This operation will create a
runtime representation of itself and all its contained places; it will furthermore
create runtime representations of all used sub-nets recursively and connect its in-
terface places to real places. Fig. 5 shows the activity diagram for this operation.

After NetDef::instantiatewas called for the top-level Petri-net, we can use
the created RuntimeNet by calling its run operation. Even though run’s signature
hasn’t changed from the previous section, it works a little different due to the
changes in the meta-model. Transitions can only be fired in the context of a
RuntimeNet. Since transition is only a syntax class with no runtime counterpart,
it is also only related to PlaceDef (the syntax class for places). The input and
output places of a transition are instances of PlaceDef and the number of tokens
cannot be accessed or changed directly on them. The operations of transition
have to access the corresponding RuntimePlace using a RuntimeNet as context.
The run operation itself (not shown) also works different: it still choses one
transition from all enabled transitions. But because one transition can be enabled



166 M. Scheidgen and J. Fischer

RuntimeNet

+run()
+connectInterface(interface: PlaceDef, 
    usage: NetUsage, containingNet: RuntimeNet)

Transition

+isEnabled( context : RuntimeNet )
+fire( context : RuntimeNet )

PlaceDef

+initialTokens : Integer

+instantiate(containingNet: RuntimeNet)

NetDef

+instanciate() : RuntimeNet

NetUsage

+createSubnet(containingNet:
    RuntimeNet)

RuntimePlace

+tokens : Integer

+places
0..*

+inputPlaces
0..*

+outputPlaces
0..*

definition : PlaceDef+places
1

interfacePlace : PlaceDef

+connection
0..1

+definition
1

+subnetUsages

0..*

+subnets
0..*

+transitions
0..*

+/enabledTransitions
0..*

+subnetDefs0..*

context Transition::isEnabled(context: RuntimeNet)
body:
    inputPlaces->forAll(ip|context.places[ip].tokens > 0)

set: places

eval: containingNet.places
[usage.connection[interface]]

interface

usage.connection[interface]->notEmtpy()

[true][false]

create: RuntimeNet

eval: places

<<iterative>>

call: instantiate

instantiate all places

eval: subnetUsage

<<iterative>>

call: createSubnet

instantiate all subnets

call: instantiate

eval: definition

eval: definition.places

<<iterative>>

call: connectInterface

connect all interfaces to the real places in 
the containing net

self

containingNet

create: RuntimePlace

set: places

eval: initialTokens

set: tokens

self

containingNet

NetDef::instantiate()

PlaceDef::instantiate(containingNet: RuntimeNet)

RuntimeNet::connectInterface(
    interface: PlaceDef,
    usage: NetUsage, 
    containingNet: RuntimeNet)

NetUsage::createSubnet(containingNet: RuntimeNet)

context RuntimeNet::enabledTransitions
derive:
    subnets->collect(enabledTransitions)->union(
        syntaxElement.transitions->select(isEnabled(self))

Fig. 5. A Language Model for Hierarchical Petri-nets



Human Comprehensible and Machine Processable Specifications 167

in different sub-nets (in the starting configuration, becoming hungry is enabled
in all five philosophers) run must also chose one of these sub-nets that the chosen
transition is enabled in. After transition and RuntimeNet are chosen, run fires
the transition using the chosen RuntimeNet as context argument.

5 Language Design Patterns

Patterns in software engineering form a basis for reusing working designs [19,20].
We want to use patterns for language modelling. A language design pattern
describes an abstract language concept. We implement these patterns as abstract

Create

+create( context : Instance ) : Instance

StructuralFeature

+instanciate( context : Instance ) : Slot

Classifier

+instanciate() : Instance

Instance Slot

Feature

Class
(Java)

Object
(Java)

NetDef
(PetriNets)

Field
(Java)

Type

Value

TypedElement

RuntimePlace
(PetriNets)

NewOperator
(Java)

RuntimeNet
(PetriNets)

PlaceDef
(PetriNets)

NetUsage
(PetriNets)

FieldSlot
(Java)

{redefines type}
+type
1

{subsets feature}
+fields0..*

{redefines value}
+value
0..1

feature : Field
{subsets slot}

+fieldSlots

0..*

{redefines feature}
+places

0..*

definition : PlaceDef

{redefines slot}

+places
0..1

feature : StructuralFeature
0..1

+slot1

{readOnly,union}

+/feature
0..*

+/featuringClassif ier

{readOnly,union}
0..*

{redefines classif ier}

+classToInstantiate
1

{redefines classif ier}

+definition
1

+value
0..*

0..1

+type
0..1

+typedElement
0..*+classif ier1

0..*

Fig. 6. A general pattern for classifier and instances



168 M. Scheidgen and J. Fischer

libraries (similar to the abstraction libraries in the UML meta-model). Each of
these pattern implementations consists of abstract classes for syntax and runtime
elements as well as their operations’ behaviour. The pattern implementations can
be used by usual object-oriented means: a general pattern class is specialised and
its features refined to fulfil a specific purpose in a concrete context.

Fig. 6 shows such a pattern implementation (white classes) and how it is used
by specialisation in two examples (grey and dark grey). This pattern describes
the abstract concept instantiation. It defines Classifiers, which define sets of
instances with common attributes defined as Features. These features can have
a type. A Classifer’s Instance provides a Slot for each Feature. Each Slot
can hold Values of the corresponding Type.

This pattern is common to many languages, including MOF and UML. With-
out knowing it, we already used this pattern in the previous section, where we
had NetDef (classifiers of sub-nets that can be instantiated at different places)
and its runtime counterpart RuntimeNet (runtime representations of sub-nets).
NefDefs have PlaceDefs as features and RuntimeNets have RuntimePlaces as
corresponding slots. We don’t need the type/value part of this pattern, because
the number of tokens is always stored as an integer. But here we could extend
the language if we wanted to introduce objects for tokens as in Object Petri-nets.

The other example application for this patterns are Classes and Fields (also
known as member variables) in object-oriented languages such as Java. This
application of the pattern also uses Types and Values, even though we simplified
the problem in this example: classes are the only types and conclusively objects
the only values. Another application for this pattern are procedure-like concepts.
Procedures are classifiers, parameters and variables are features, call frames are
procedure instances with proper slots for variable or parameter values.

6 SDL: A Case Study

In order to reason about the applicability our meta-modelling method, we applied
it to SDL—the Specification and Description Language[21]. This is an existing
graphical modelling language, widely used in the telecommunication sector. It is
similar to UML but has unambiguous semantics. SDL supports structural mod-
elling, similar to UML components, provides a data-type definition language,
and allows behavioural modelling with concurrent processes, signal-based com-
munication, and state charts.

We described the use of tools in language specifications in [22] and presented
a general architecture for the meta-model-based specification of SDL and related
languages in [23]. We created an experimental tool-chain for SDL, including a
parser, semantics analyser, model transformations, and code-generator. We use
the method from this paper to create a simulator for SDL specifications [24].

To define the operational semantics, we created a meta-model which includes
runtime classes, and according operation implementations for SDL. We started
to define the semantics for a representative subset of SDL. This meta-model al-
ready contains 108 classes with 257 properties and 105 operations. We composed



Human Comprehensible and Machine Processable Specifications 169

the SDL meta-model from several design patterns. These patterns were realised
in abstract libraries, which were (re-)used several times throughout the SDL lan-
guage model. 30 classes are part of pattern implementations and 78 are SDL spe-
cific classes. In a first prototype we specified the operation’s behaviour with Java,
which is now replaced more comprehensible activities.

Three pattern implementations are used in the SDL model: the instantiation
pattern, introduced in the previous section, a pattern for concurrent processes
and communication, and a pattern for the evaluation of terms. The structural
part of SDL is dominated by the instantiation pattern, because SDL-structures
are defined by object-oriented classifiers, called agents. Agents can be recursively
composed: an agent instance (instance) is a feature of another agent type (classi-
fier). Agents can be connected through communication channels and gates. This
is a combination of two patterns. The instantiation pattern is used to describe
agent type and instance relations and the concurrency pattern describes inter-
action of different agent instances. The SDL behaviour is characterised by state
machines and statements. State machine behaviour, the triggering of transitions,
is realised as part of the concurrency pattern: communication as synchronisa-
tion of processes (processes in SDL are nested state machines as part of agent
instances). Statements, the other part of SDL behaviour, are similar to other
imperative programming languages. Expressions and data types used in those
statements are realised with the evaluation pattern.

The SDL language model can be executed with our generic model interpreter.
Input SDL specifications are transformed into a model representation accord-
ing to the SDL language model using the tools presented in [23]. The generic
interpreter runs this input SDL specification: it initially creates a runtime con-
figuration for the specification and changes it during execution. As part of the
defined operational semantics, Message Sequence Chart models are created from
the changing runtime configuration to visualise the running SDL system.

7 Conclusions

We combine MOF meta-models with an action language based on UML activities
and OCL to create language models that contain definitions for abstract syntax
and operational semantics. We developed a generic model interpreter which can
be configured with language models. It takes a model as input and executes the
model based on the semantics defined in the language model. The used languages
allow human readable graphical models of language structure and operational
semantics. These language models are at the same time formal enough to be ma-
chine interpretable. With such characteristics, the method is ideal for language
prototyping, creation of reference tools, and the development of domain specific
languages. We created a language model for a subset of SDL. This experience
showed that our method scales up to a practical language of reasonable size.

We have all tools necessary to create and interpret language models. We use
a normal UML case tool (class diagrams in MagicDraw) to define the struc-
ture part of language models. We augment MagicDraw models with activities



170 M. Scheidgen and J. Fischer

using a graphical editor, specifically developed with GEF (eclipse). As a future
work, we are developing a runtime environment based on the abstract eclipse
debugging plug-ins. This should allow to support the development process of
language models (debugging meta-models) and also provide generic debugging
facilities (debugging models).

We have to critically admit: the assessment that operational semantics mod-
elled with our approach results in more human readable language specifications
than comparable techniques (ASMs, mathematical semantics definitions, or even
natural language text) is purely based on the graphical modelling argument and
our prejudice experiences with it. This hyphothesis has yet to be proven by ei-
ther more representable experiences or sound usability evaluations. But formal
graphical models of operational semantics could play the same role that normal
meta-models play for the definition of abstract syntax.

On the machine execution side, we have disadvantages and advantages. Un-
fortunately, but as expected, model execution, based on language models and
our generic tool, compared to equivalent hand crafted tools performs less by
magnitudes. It is future work to analyse and antagonize the reasons for that. An
advantage, however, is that we have a meta-model based representation of the
model’s runtime state. Besides the fact that we can execute models right away,
we can use other modelling techniques to analyse these runtime states, e.g. define
constraints over them, or use model transformations on them to create different
representations, e.g. record test cases.

References

1. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

2. Agrawal, A., Karsai, G., Ledeczi, A.: An End-to-End Domain-Driven Software
Development Framework. In: OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ACM Press, New York (2003)

3. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodeling, A
Foundation for Language Driven Development. Xactium ( 2004), http://www.
xactium.com

4. Clark, T., Evans, A., Kent, S., Sammut, P.: The MMF Approach to Engineering
Object-Oriented Design Languages. In: Workshop on Language Descriptions, Tools
and Applications (April 2001)

5. The Modelling, Simulation and Design lab (MSDL), School of Computer Science of
McGill University Montreal, Quebec, Canada: AToM3 A Tool for Multi-Formalism
Meta-Modelling, http://atom3.cs.mcgill.ca/index.html

6. Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm.
onBoard, electronic monthly magazin (November 2004)

7. Team, T.: Triskell Meta-Modelling Kernel. IRISA, INRIA., http://www.kermeta.
org

8. Ruscio, D.D., Jounault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for Supporting Dynamic Semantics Specifications of SDLs, technical report
( 2006)

http://www.xactium.com
http://www.xactium.com
http://atom3.cs.mcgill.ca/index.html
http://www.kermeta.org
http://www.kermeta.org


Human Comprehensible and Machine Processable Specifications 171

9. Case, M.: MetaEdit+, http://www.metacase.com
10. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A

Graphical Approach to the Operational Semantics of Behavioral Diagrams in UML.
In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, Springer,
Heidelberg (2000)

11. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Executability into Object-
Oriented Meta-languages. In: Model Driven Engineering Languages and Systems.
8th International Conference. LNCS, Springer, Heidelberg (2005)

12. Sunyé, G., Pennaneac’h, F., Ho, W.M., Guennec, A.L., Jézéquel, J.M.: Using UML
Action Semantics for Executable Modeling and Beyond. In: Advanced Information
Systems Engineering. 13th International Conference. LNCS, Springer, Heidelberg
(2001)

13. OMG: Action Semantics for the UML. Object Management Group, ad/2001-08-04
(2001)

14. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Object Management
Group, ptc/03-10-04 (October 2003)

15. Alanen, M., Porres, I.: Basic Operations over Models Containing Subset and Union
Properties. In: 9th International Conference Model Driven Engineering Languages
and Systems. LNCS, Springer, Heidelberg (2006)

16. Scheidgen, M.: CMOF-Model Semantics and Language Mapping for MOF 2.0 Im-
plementations. In: MBD/MOMPES, IEEE Computer Society, Los Alamitos, CA
(2006)

17. ITU-T: SDL formal definition: Dynamic semantics. In: Specification and Descrip-
tion Language (SDL). International Telecommunication Union, Z.100 Annex F3
(November 2000)

18. Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activities.
In: Software Engineering (2005)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Abstraction and
Reuse in Object-Oriented Designs. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS,
vol. 707, Springer, Heidelberg (1993)

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software, 1st edn. Addison-Wesley Professional, Lon-
don, UK (1995)

21. ITU-T: ITU-T Recommendation Z.100: Specification and Description Language
(SDL). International Telecommunication Union (August 2002)

22. Fischer, J., Holz, E., Prinz, A., Scheidgen, M.: Tool-based Language Development.
In: Workshop on Integrated-reliability with Telecommunications and UML Lan-
guages (November 2004)

23. Fischer, J., Kunert, A., Piefel, M., Scheidgen, M.: ULF-Ware – An Open Framework
for Integrated Tools for ITU-T Languages. In: Prinz, A., Reed, R., Reed, J. (eds.)
SDL 2005. LNCS, vol. 3530, Springer, Heidelberg (2005)

24. Systeman Alysis and Modelling Group, Department of Computer Science,
Humboldt-Universität zu Berlin: An Operational Semantics Model for SDL,
http://www.informatik.hu-berlin.de/sam/meta-tools/sdl

http://www.metacase.com
http://www.informatik.hu-berlin.de/sam/meta-tools/sdl


D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 172–183, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Adopting Model Driven Development in a Large 
Financial Organization 

Dov Shirtz1, Michael Kazakov2, and Yael Shaham-Gafni2 

1Hanegev 11, Tel Aviv, Israel 
2Metaphor Vision LTD., Givat Ram, POB 39158, Jerusalem 91391, Israel 

dovshirtz@gmail.com, {mkazakov,yshahamgafni}@metaphor.co.il 

Abstract. Two years ago the IT Division of a large financial organization in 
Israel made a strategic decision to adopt Model Driven Development as its 
major development methodology. This decision was based on assessing the 
results of several pilot projects that had run during the previous year using this 
methodology. The QA Department that was the main advocate of this move 
took upon itself to lead the adoption effort. In this paper we report on the 
process of adopting Model Driven Development in the IT Division of the 
financial organization, from inception to successful maturation. We provide 
details on the methodology, models and tools, and describe the challenges, 
benefits, and lessons learnt. 

1   Introduction 

In the beginning of 2005 the QA Department of a large financial organization in Israel 
presented its vision to the IT Division management: "Provide the IT Division with the 
ability to support the organization in its business goals efficiently and effectively by 
producing high quality software systems on time".  To realize this vision the QA 
Department proposed three action items: 

1. Change the perception of quality assurance in the IT Division. 
2. Employ a new model driven development methodology throughout the software 

lifecycle. 
3. Deploy modern software development tooling and lifecycle support tooling. 

The benefits we hoped to achieve through these actions were: 

1. Information sharing and improved communication between the different 
stakeholders involved in the development process: managers, users, analysts, 
testers, and developers. 

2. Consistent terminology across different projects and different phases of the lifecycle. 
3. Increased rate of reuse of development work-products (not necessarily code). 
4. Automated generation of various work products such as documents, database 

schemas, tests, etc. 
5. Significant improvement in the quality of software, and the software development 

process. 
6. Accessible information and measures on project status and quality.  



 Adopting Model Driven Development in a Large Financial Organization 173 

7. Lowering development and maintenance costs 
8. Faster development cycles to accelerate response to changing market needs. 

In this paper we report on the process of adopting Model Driven Development in the 
IT Division of a large financial organization. We begin with a description of our model-
driven development methodology in section 2 "Methodology and Tools". In section 3 
"Adoption Process", we describe how the adoption process was performed. Section 4, 
"Measuring Improvement", describes our scheme for measuring improvements in 
productivity and quality. Section 5, "Lessons Learned", describes our insights on the 
challenges and lessons learnt. We conclude with future plans and challenges in section 6 
"Conclusion". 

2   Methodology and Tools 

The classic model driven approach focuses on generating a concrete implementation 
in the context of a given target architecture from an abstract specification. This 
approach puts a lot of emphasis on design models, which are automatically 
transformed into the implementation.   

The approach we chose in the organization emphasized using models in the early 
phases of the software lifecycle, especially during inception and elaboration [1]. 
Another area that we focused on was testing. The following principles guided us in 
formulating the methodology: 

1. Adopting standards: 
− The model is the focus of the development process. 
− The model is written in the standard modeling language UML [2].. 
− Aiming of a component based architecture. 

2. Adapting standards and tools  
− Adapting UML to the terminology, organizational standards and development 

disciplines by defining Domain Specific Languages (DSLs) [3]. 
− Enforcement of standards through the modeling tools throughout the software 

lifecycle. 
− Integrating modeling tools with existing development tools. 

3. Establishing an uniform and interlinked development stream 
− Covering all disciplines of the complete development life cycle 
− Integrating models of different kinds 
− Maximum automation and reuse possible 

2.1   Models and Tools in the Software Development Lifecycle  

The methodology we developed for the financial organization is derived from the 
Rational Unified Process [1] and based on several models along the software lifecycle 
each related to a specific phase. Fig. 1. presents an overview of the lifecycle phases 
we consider: inception, elaboration, and construction, the roles relevant for each 
phase, and the activities performed.. Fig. 2. depicts the models, the relations between 
them, and the tools. For the modeling tool IBM Rational XDE was chosen. Metaphor 
BuilderTM [4] provides the specialized models for the different phases of the lifecycle 
and additional adaptations for XDE. 



174 D. Shirtz, M. Kazakov, and Y.Shaham-Gafni 

 

Fig. 1. Roles and Activities along the Software Development lifecycle 

Business
Model - XDE

Analysis Model
– XDE

Requirements
RequisitePro

Test Model -
XDE

Test Plan -
QC

Code Model
.Net - XDE

.Net
Visual Studio

Java
Eclipse

Design Model
MF - XDE

Code Model
Java - XDE

Data Model -
XDE

Database
DB2

CC
ClearCase

CRM
ClearQuest

Automatic
Tests - QTP

 

Fig. 2. Models in the Software Development lifecycle in the organization 

2.1.1   Inception Phase: The Business Model and Requirements 
During the inception phase a Business Analyst builds the Business Model and specifies 
the system requirements. The motivation for creating a Business Model is to analyze 
and understand the problem and to determine the initial scope for the project, and the  
 



 Adopting Model Driven Development in a Large Financial Organization 175 

boundaries of the system. The Business Model captures all significant information about 
the problem and the developing solution, and is based on Metaphor Vision's Business 
Modeling language:  

• Terminology definitions 
• Business goals 
• Existing and planned business process flows 
• Requirements 
• Business entities (e.g. screens, persistent data, etc.) 
• Business rules 

Figure 2 depicts the structure of a Business Model. The model contains Business Areas each 
containing packages organizing the information described above. 

 

Fig. 3.  Business Model structure 

The Business model is automatically transformed into a skeleton for the Analysis 
Model, maintaining traceability between source and target elements. The Business 
Process Document, which is the lifecycle milestone of the inception phase, is 
generated automatically from the Business Model. 

High-level requirements are always managed within the Business Model. The 
major benefit of this approach is the ease of maintaining requirements traceability. 
For small projects a Business Model remains the only tool capturing and managing 
requirements. Large projects continue managing their detailed requirements with IBM 
Rational RequisitePro. 

2.1.2   Elaboration Phase: Architecture and the Analysis Model 
During the elaboration phase Analysts define the system components and analyze 
each component resulting in the Analysis Model. The purpose of the Analysis Model 
is to analyze in detail the use cases [5] of the planned system, going into particulars of 
the screens, the user interaction, and the data model. The Analysis Model is based on 
Metaphor Vision's Analysis language and captures detailed information about the 
solution: 

 
 



176 D. Shirtz, M. Kazakov, and Y.Shaham-Gafni 

• Use cases  
Use case details are specified in a structured way by utilizing flow charts (UML 
Activity Diagrams) and storyboards (UML Sequence Diagrams). 

• User Interface (UI) 
Different kinds of UI elements can be specified: Forms, Tabbed pages, Menus, 
Reports. In addition the structure of the screens is captured by field and control 
model elements. Relationships between screens (containment, navigation) are 
also kept in the analysis model.  

• Data 
Data is modeled at the logical level, describing business objects and their fields. 

As can be seen in Figure 3 the Analysis Model is the heart of the development 
process, and serves as a source for several models further down the development 
lifecycle. The analysis model is organized into components [6]. It is the role of an 
architect to define the system components. In the development organization there is 
no "Architect" job definition, and thus the Analysts define the system components. 
Once the architecture of the components is defined an automatic transformation is 
applied to create the initial use cases, business objects and UI forms from the 
Business Model. The Analysts drag the automatically generated elements to the 
correct component, and detailed analysis for each component proceeds. Figure 3 
shows the structure of an Analysis Model. The top level packages are components, 
and each component is divided into layers (according to the scheme in [6]) that 
organize the relevant information. 

 

Fig. 4. Analysis Model Structure 

The Analysis Document, which is the lifecycle milestone of the elaboration phase, 
is generated automatically from the Analysis Model. 

The Analysis Model serves as the basis for the various Design Models and is 
automatically transformed into a skeleton of the Test Model. 

2.1.3   Elaboration Phase: Test Model 
An additional activity that takes place during the elaboration phase is creating the Test 
Plan. This is where we get much of the return on investing in models in earlier phases. 
Testers transform the Analysis Model into a Skeleton Test Model, which is kept 
synchronized with the Analysis Model. The Test Model is then elaborated adding 
values, check points, and additional test cases. The Test Model is then automatically 
transformed into Mercury's Quality Center (QC) and Quick Test Professional (QTP), 



 Adopting Model Driven Development in a Large Financial Organization 177 

in which the tests are maintained and executed. The test Model and the QC/QTP tests 
are kept synchronized via traceability information. The integration between the Test 
Model and Mercury QC/QTP is one of the features of Metaphor BuilderTM..  

2.1.4   Construction Phase: Design Model 
The financial organization's IT systems are heterogeneous, and thus so are the 
development target languages and environments. Accordingly there are also several 
kinds of design models. For J2EE, .NET and data models we adopted the standard 
design models provided by XDE that we do not elaborate in the scope of this paper. 
For Mainframe applications we developed our own design language – Metaphor 
Vision's MF Design language, in which the MF Design Models are expressed. The 
language elements relate to terms used in Cobol and capture detailed information 
about the structure of the implementation on the target system: 

• JCLs 
• Programs 
• Routines 
• Sections 
• Copy Members 
• Parameters 
• Data Schemes 

During the construction phase Mainframe Designers define the various design 
elements and divide them into coding portfolios, each designated for a Coder. The 
designers may use elements from the analysis model in their own model, and maintain 
traceability to the Analysis Model by creating realization relationships between 
Design elements and the corresponding Analysis element. Currently there is no 
automatic code generation from the Design Model. Design Coding Portfolio 
Documents are generated automatically form the Design Model. 

3   Adoption Process 

The process of adopting MDD in the financial organization began as an initiative of 
the QA Department. Prior to this initiative most of the development in the financial 
organization was document based, i.e., apart from writing code the work-products of 
all efforts during a project lifetime were documents.  

3.1   Early Preparations 

Our first step was to devise a first draft of the new methodology and the 
accompanying Domain Specific Languages (DSLs). We made a decision early on not 
to abandon the documents completely; rather the documents were kept and served as 
the interface between the different lifecycle phases and development roles. The main 
difference was that the documents were generated automatically from the models.  

In the same time we achieve a few pilots in different fields, each in the 
project/department ready to volunteer for new technology. It gave us arguments to 
represent for the first time our vision to IT Division management. In result we got a 
mandate to conduct a number of pilots along the entire division. 



178 D. Shirtz, M. Kazakov, and Y.Shaham-Gafni 

3.2   Implementing Pilot Projects 

Our second step was to implement the methodology in several pilot projects 
throughout the IT Division. We allotted six months during 2005 for this step, 
improving the methodology and the DSLs as the pilots progressed. A total of 25 pilot 
projects took place covering the various systems and environments in the financial 
organization. One of the arguments we were confronted by frequently was that UML 
models cannot work with MF systems which are not Object Oriented. This obstacle 
was removed by creating a special DSL for mainframe design – the MF Design 
Language. At the end of September 2005 we had working proof that the new 
methodology works. We were ready to finally approach high management. 

3.3   High Level Management Decision 

In order to assess the pilot results we devised a survey and ran it through the personnel 
of the different pilot projects (60 people). The results showed 85-95% satisfaction. On 
one of the questions 85% of the survey participants answered that they felt that the new 
modeling methodology contributed and promoted them personally. 

The survey results and status of pilot projects was presented before the high 
management of the financial organization's IT Division. As a result of this 
presentation high management made a bold decision to adopt the new methodology 
and tools throughout the IT Division of the financial organization. The QA 
Department received a green light to proceed with the adoption process. 

3.4   Wide-Scale Adoption  

The QA Department set out to plan the adoption. Organization wide adoption of a 
new methodology required careful planning and staging. Our adoption plan included 
the following items: 

• Elaborating and documenting the new development methodology. Additional 
phases were added (such as the Business Modeling) and integration between the 
phases was enhanced. Each phase was documented by a detailed User Guide 

• DSLs were improved according to feedback from the pilot projects. 
• Courses were designed for the different professions to jumpstart the adoption. 
• Special attention was given to document generation in order to produce concise 

and readable documents from the models. 
• We understood that the change was not only a change of tools; rather it was a 

change in mindset, which required support. Additional consultants were hired to 
support the adoption process. 

• Integration between tools along the lifecycle, especially between modeling and 
testing tools.  

• Reuse of existing infrastructure and content. This included integration with 
organizational meta data repositories (data dictionary, message dictionary, etc.) 

• Integrated management and quality measures 
• Detailed staging where we set Analysis as a start point followed by Business 

Analysis, Test Plan and design disciplines 
• Two directions of adoption – by both organization unites and large projects 



 Adopting Model Driven Development in a Large Financial Organization 179 

Today every new project in the IT Division must employ the new Model Driven 
methodology.  

4   Measuring Improvement 

One of the major challenges we face in the process of adopting a new development 
methodology is proving that it is in actual fact better. This is extremely important for 
management making the decisions on investment in the change. There is a need to 
show numbers that justify the cost. For this purpose we have devised a measurement 
scheme based on function points [7]. We have chosen this method for measuring the 
"size" of a project for several reasons. First, it is independent of the amount of 
resources invested in a project. Second, it is independent on technology (in 
comparison to measuring lines of code for example). Finally, having such a 
normalized measure  allows comparison between projects in the organization, and 
projects in a benchmark database. 

4.1   Computing the Complexity of a Software System  

The method described here is taken from Garmus & Herron's book "Function Point 
Analysis" [7]. The computation of the Adjusted Function Points (AFP) of a software 
system is based on the analysis model/document of the system and is done in 
cooperation with the system analyst. We consider five types of functional elements:  

1. Internal logical files (Ilf) 
2. External interface files (Eif) 
3. External inputs (Ei) 
4. External outputs (Eo) 
5. External inquiries (Eq) 

Each elements is evaluated and given a grade (Low/Average/High), which is then 
translated into a number. We obtain the measures for each of these elements directly 
from the analysis model, by running different kinds of analysis on the model (e.g. 
counting fields, etc.) For example, for the first element, internal logical files, we 
evaluate two parameters: (i) DET – Data Element Type: The number of fields in the file 
record. (ii) RET – Record Element Type: The number of fields that are references to 
other record types (similar to a foreign key in a database). We then look up the grade 
and its corresponding numeric value in provided tables (see Table 1 and Table 2). For 
example, a file with 23 record fields and 2 record types will have grade Average and 
numeric value 10. The computations of the grades of other elements can be found in [7]. 

Table 1. Grades for the element  Internal Logical File 

Data Element Type  
1 - 19 20 - 51 >=51 

1 Low Low Average 
2 - 5 Low Average High 

Record 
Element Type 

> 5 Average High High 



180 D. Shirtz, M. Kazakov, and Y.Shaham-Gafni 

Table 2. Numeric values for element grades 

 Function Levels 
Component Low Average High 

ILF 7 10 15 

The sum of the grades of the elements is the Unadjusted Function Points (UFP). 

( )∑
=

=
5

1i
ifunElemgradeUFP   

Next we compute the Technical Complexity Factor (TCF), which is based on 14 
technical properties of the project (e.g. communication, data processing, transactions, 
etc.). For each property there is a question to grade the system in the range of 0-5. For 
Example, for the property "Data Communications" the grade is assigned according to 
the criteria in Fig 5. The list of properties and criteria for grading each property can be 
found in [7]. 

The Data Communications property describes the extent of communication
used to access external data. The grade is assigned according to the following
criteria:

0 – pure batch processing or stand alone. 
1 – batch processing with remote data entry or remote printing 
2 – batch processing with remote data entry and remote printing 
3 – interactive data entry or teleprocessing to another batch process or data

warehouse 
4 – interactive data entry with one type of communication protocol 
5 – interactive data entry with more than one type of communication 

protocol
 

Fig. 5. Example: Grade assignment for Data Communications property 

The TCF is computed according to the following formula: 

( )∑
=

+=
14

1

01.065.0
i

ipropertygradeTCF  

Finally the adjusted function points are computed according to the formula below: 
UFPTCFAFP ∗=  

This computation produces a number that measures the system complexity. Once we 
have this number we can use it to compare different projects. 

4.2   Comparing Projects 

In order to compare projects we gather for each project the following information: 

• Team size 
• Total resources (person months) 



 Adopting Model Driven Development in a Large Financial Organization 181 

• Duration (calendar months) 
• Number of defects during testing 
• Number of defects after deployment 

Dividing the number by the AFP number provide a measure for comparing projects. 
For example assume we have two projects A and B with the following numbers: 

Project Team size per 
AFP 

Productivity 
(person 
months per 
AFP) 

Delivery speed 
(AFP per 
month) 

Quality 
(defects per 
AFP) 

A 0.023 16 26 0.5 
B 0.017 11.5 41 0.7 

We can see that project B has better productivity (less person months per function 
point) but was slower in delivery and has more defects. 

At this stage we have defined the measures and built the infrastructure to obtain 
measures automatically from the models. We are now in the process of gathering data 
on existing projects, and hope to evaluate results in the near future. 

5   Lessons Learned 

This section is organized as a list of questions and answers. 
Q: How do you convince a large organization to adopt MDD? 
A: Ultimately it has to be a high-level management decision. The real question is how 
to lay the groundwork for the decision to go through. It is best to start with one 
supporter in middle management, and with their support begin pilot projects. The 
choice of pilot projects is crucial. Choose projects that are run by people that like to 
be at the cutting edge of technology, appreciate taking risks, and have an autonomous 
work style. When enough promising results are gathered through pilots, go to high 
management. 

Q: What maturity of the methodology and tools is needed to begin? 
A: It is important to be successful, i.e. show benefits, on the first project. Therefore 
the methodology and tools need to be relatively mature, although they can be 
improved along the adoption process. 

Q: What is the best way to stage adoption throughout the organization? 
A: It is best to stage adoption according to the organization hierarchy, covering 
departments rather than projects. Projects are usually running in tight schedules and 
by the time you start to employ a new technology in one phase, the project has moved 
to the next phase. 

Q: What is the best development phase to begin with? 
A: We believe that the elaboration phase and Analysis Model are the best starting 
point since they are at the heart of the development process.  

Q: How do you show ROI? 
A:  The most immediate ROI of employing analysis models is in testing. 



182 D. Shirtz, M. Kazakov, and Y.Shaham-Gafni 

Q: How do you measure ROI? 
A: Methods we have employed are function points metrics and surveys. It is 
important to measure the extent to which models are being used, and to assess what is 
the level of detail and maturity of the models.  

Q: What is the best way to teach people the new tools and work methods? 
A: Courses are important to jumpstart adoption. Courses should be tailored for the 
different professions: Business Analyst, Analyst, Designer, Tester, etc. 
Documentation and User Guides are also useful. Personal consulting and support is 
important both for marketing the new method and easing the mindset change. The 
consultant should never build models themselves; their job is to teach, coach and 
support. Finally, creating local knowledge centers, in the different departments is 
essential. 

Q: How do you measure success? 
A: An important measure is the actual amount of people working with the new 
methodology and tools. 

Q: What is the importance of adapting standards and tools for the organization? 
A: We believe that it is crucial to adapt the methodology, and the modeling languages 
for each discipline along the lifecycle, and sometimes even at the project level (for 
large enough projects).  

Q: What is the best strategy for building the methodology and tools support team. 
A: Usually it is best to hire new people when a concrete need emerges. It is very 
difficult to convince management to provide the required human resources up front. 
The team should include people local to the organization, and new hires that have 
required knowledge. 

Q: Any additional insights? 
A: With respect to tools, it is most important to introduce lifecycle support tools early 
on: configuration management tools, etc. A good relationship with the tool company 
is essential; usually problems are encountered along the way that requires timely 
solutions. 

Q: What to promise? 
A: Most important is to manage expectations. Never promise what you cannot 
provide, always be realistic. 

Q: What is the key to success? 
A: Adapt standards and tools to organization and not vice versa. 

6   Conclusion 

Introducing changes in a large organization is a challenging task. In this paper we 
have described our experience with moving the IT Division of a large organization 
towards a model driven development methodology. We described the methodology 
we employed emphasizing the difference between the standard MDA view and our 
interpretation of MDD. We described the goals we hoped to achieve and the ways we 
devised to measure our progress. The adoption process is in full progress; hundreds of 



 Adopting Model Driven Development in a Large Financial Organization 183 

analysts and designers are using the model driven methodology. We believe that the 
reason for this success is the ability to customize UML, using DSLs and Metaphor 
Builder. Yet our task is far from being finished. We still face many challenges in the 
future: better integration between the different phases of the lifecycle and the different 
tools used; more automation at the construction phase of the lifecycle (design and 
coding); and gathering actual project data in order to compare projects that were 
document centric with model driven projects. 

References 

[1] Kruchten, P.: Rational Unified Process-An Introduction. Addison-Wesley, London, UK 
(1999) 

[2] Object Management Group, OMG Unified Modeling Language Specification, Version 
2.0 

[3] Cooke, S.: Domain-Specific Modeling and Model Driven Architecture, MDA Journal 
(January 2004) 

[4] Metaphor BuilderTM Model Driven Development Based on Domain Specific 
Languages, http://www.metaphor.co.il/Extras/MBExecutivePaperV1.0.pdf 

[5] Jacobson, Christerson, M., Jonsson, P., Overgard, G.: Object-Oriented software 
engineering: A use case driven approach. Addison-Wesley, London, UK (1992) 

[6] Herzum, P., Sims, O.: Business Components Factory: A Comprehensive Overview of 
Component-Based Development for the Enterprise. John Wiley & Sons, Inc, New York 
(2000) 

[7] Garmus, D., Herron, D.: Function Point Analysis - Measurement Practices for 
Successful Software Projects. Addison-Wesley, London, UK (2000) 



D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 184–193, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Reverse Engineering Models from Traces to Validate 
Distributed Systems – An Industrial Case Study 

Andreas Ulrich1 and Alexandre Petrenko2 

1Siemens AG, Corporate Research & Technologies CT SE 1 
Otto-Hahn-Ring 6, 81730 Munich, Germany 
andreas.ulrich@siemens.com 

2CRIM, 550 Sherbrooke West, Suite 100, Montreal, H3A 1B9, Canada 
petrenko@crim.ca 

Abstract. The paper targets the applicability of model-driven methodologies to 
the validation of complex systems and presents a case study of a mobile radio 
network. Validation relies on the availability of a collection of models formally 
describing various aspects of the system behavior and an execution trace ob-
tained through monitoring the system during the execution of designated test 
cases. The models describe system properties and are derived from existing  
(informal) system specifications or other traces. The recorded trace is reverse-
engineered to produce a model of the system that is used to visualize the archi-
tecture of the system during test execution and to verify the system against the 
specified properties using model checking technology. The obtained results and 
lessons learned from this case study are discussed. 

Keywords: Model-driven development, reverse engineering, model verification, 
trace analysis, system validation, telecommunication industry, experience report. 

1   Introduction 

Model driven development (MDD) methodologies allow the separation of domain 
concerns from implementation details, which provides better quality, maintainability, 
and portability of the developed systems across different platforms. However, design 
models, which are essential to the success of the MDD approach, are not always suf-
ficiently expressive to allow full automation of critical development activities, such as 
code generation. Moreover, models of complex systems, e.g., distributed applications, 
are seldom complete and, at best, cover only parts of the whole system. These limita-
tions affect the applicability of MDD methodologies to system development. Never-
theless, partial models can still be used in reasoning about the developed system and 
its behavior. A (partial) model serves as a property that describes a singular aspect of 
the system. During validation, the violation or satisfaction of the property in an execu-
tion trace recorded during test execution of the system can help evaluate the func-
tional correctness, the quality, and even the performance of the developed system. 

Thus, there is a need for tools that rely on monitoring functions of distributed sys-
tems to produce log files of execution traces that can be analyzed further. This type of 
analysis is also known as runtime verification or passive testing of distributed systems 



 Reverse Engineering Models from Traces to Validate Distributed Systems 185 

[2]. In this context, an approach has been developed [5, 6, 7] that takes as input an 
execution trace of the system obtained during the execution of a test scenario. Such a 
recorded trace, which contains a causally ordered sequence of send/receive events or 
messages exchanged between system components, is reverse-engineered to produce a 
model in the form of a system of communicating state machines that reflects the sys-
tem behavior as it occurred during the execution of that particular test scenario. The 
obtained model is then used to verify the specified system properties using a standard 
model checker. The collection of verified system properties can later be used as a 
partial formal model of the system. 

While the underlying theoretical aspects of such approaches to system validation 
are understood, much work remains to be done before the appropriate technology is 
widely accepted in industry. In particular, we believe it is important to conduct nu-
merous industrial case studies to a) raise awareness about it, b) stimulate development 
of better tools, c) identify ways of making validation technology more lightweight, 
and d) identify directions for further research in the field. This paper reports on such 
an industrial case study. 

The rest of the paper is organized as follows. The next section gives a short over-
view of the case study. Section 3 discusses the system validation approach using trace 
analysis. Next, Section 4 describes an example in more detail. Before the paper is 
concluded, Section 5 discusses and summarizes the results and experiences gained 
from this case study. 

2   Case Study Overview 

A model checking approach to validation is particularly useful when distributed sys-
tems allow an easy capturing of their internal communications. Such monitoring is 
often used in telecommunication networks for debugging purposes, relying often on 
protocol analyzers and network tracers. In the chosen industrial case study, we focus 
on the applicability of a model checking based validation technology we developed 
earlier [5] to end-to-end testing of a 3GPP UMTS radio network [11]. Our goal is not 
only to demonstrate to testers that MDD can be of help to them, but also to identify 
research direction for improving the applicability of this technology. 

UMTS
Radio Network

Network
Tracer

Mobile
Phone

Mobile
Phone

UMTS
Radio Network

UMTS
Radio Network

Network
Tracer

Mobile
Phone

Mobile
Phone

 

Fig. 1. Schematic overview of the UMTS radio network, which serves as SUT 



186 A. Ulrich and A. Petrenko 

When an entire 3GPP UMTS radio network is tested end-to-end, the result of a test 
run cannot be concluded alone from the behavior observed at the mobile phones (test 
probes) because of the high complexity of the network. Therefore, the communication 
at various internal interfaces is analyzed in addition to compute the final test verdict. 
In this system, communications are monitored in a non-intrusive way using desig-
nated tracing tools (network tracers) and are recorded in execution traces. Note that 
the whole UMTS radio network comprising several nodes (Node-Bs, RNCs etc.) 
serves as the system under test (SUT) as shown in Fig. 1. 

3   Validation Using a Trace Analysis Approach 

3.1   Outline of the Approach 

The approach to validate the system based on observed traces is illustrated in Fig. 2 
and can be summarized as follows: 

   

UMTS
Radio Network

Monitoring Tool

Event

...
Event

Trace

Property Pattern 
Library

Partial System 
Models

Monitoring Tool 

EventEventEvent

...
EventEventEvent

Trace

Results: 1. Property satisfied or not
2. Failure scenarios

Backend

SPIN Model Checker

Trace Model Property
Database
Handling

TASPIN Front End

User 
Interface

Property 
Specification Filtering Trace/Result 

Visualization

UMTS
Radio Network

Monitoring Tool

EventEventEvent

...
EventEventEvent

Trace

Property Pattern 
Library

Partial System 
Models

Monitoring Tool 

EventEventEventEvent

...
EventEventEventEvent

Trace

Results: 1. Property satisfied or not
2. Failure scenarios

Backend

SPIN Model Checker

Trace Model Property
Database
Handling

Results: 1. Property satisfied or not
2. Failure scenarios

Backend

SPIN Model Checker

Trace Model Property
Database
Handling

TASPIN Front End

User 
Interface

Property 
Specification Filtering Trace/Result 

Visualization

TASPIN Front End

User 
Interface

Property 
Specification Filtering Trace/Result 

Visualization
User 

Interface
Property 

Specification Filtering Trace/Result 
Visualization

 

Fig. 2. Workflow of the modeling and system validation approach 

• A trace during test case execution is captured that records the messages exchanged 
internally between different network nodes involved in the communication of two 
or more mobile phones. 

• Traces are fed into the TASPIN front-end tool (Eclipse based) that converts the 
trace into a behavioral model (here: a Promela model that is input to the Spin 
model checker) 



 Reverse Engineering Models from Traces to Validate Distributed Systems 187 

• Properties describing partial aspects of the system are specified in UML2 dia-
grams; currently sequence diagrams are used to express so-called base patterns of 
unique network features and activity diagrams to describe base pattern composi-
tion; a library of patterns is also built. 

• Model verification: The reconstructed behavioral model (in Promela) plus the de-
sired properties (UML2 diagrams converted to Promela Never Claim expressions) 
are fed into the Spin model checker backend. 

• Verification results (failure traces) and the trace model itself are visualized as 
UML2 sequence diagrams. 

The properties considered are derived from specifications of the 3GPP standards [1] 
and serve as a reference that must be matched in the recorded communication trace 
and ultimately by the SUT. They can be also considered as a repository of partial 
system models that are used to validate test scenarios. This repository of models will 
grow over time because more models are added during the course of testing and vali-
dation. The models assist not only the system validation; they are also of help when 
an MDD approach to develop new system features is next followed. 

3.2   Implementation of the Approach 

The workflow for system validation has been implemented in an Eclipse environment 
[3] using Spin as a model checker [8, 10] in the background. The implemented com-
ponents are briefly explained (cf. Fig. 2). 

• Eclipse user interface: Eclipse is used as the implementation environment for all 
the components of the tool. It comprises the following functionalities: 
• Loading and accessing traces and results in the database 
• Trace and result visualization 
• Filtering 
• Modeling in Promela 
• Property specification and selection 
• Controlling Spin 

• Database handling: The heart of the module is the MySQL database [9] that man-
ages all information relevant for system validation. 
• Saving/retrieving trace information into/from the database: The module takes 

UMTS traces recorded in XML format and stores them in the database. 
• Loading/retrieving analysis results into/from the database: Once the verification 

is done and the corresponding example/counter example is produced, the result 
file generated by the Spin model checker is read in order to retrieve the informa-
tion in the original trace. 

• Filtering: Filtering is implemented using SQL queries that select the desired mes-
sages from the database. So far there are three main categories of filters that can be 
combined to form user defined filters that respond to his needs and understanding 
of the trace: 
• Filtering by messages 
• Filtering by protocol layers 
• Filtering by parameters 



188 A. Ulrich and A. Petrenko 

• Visualization of traces and analysis results: This component is implemented 
using the Eclipse TPTP platform [4]. Its tracing and monitoring tools allow show-
ing traces as lists of messages or as interactions between processes in a UML se-
quence diagram like representation. The same visualization mechanism is used to 
visualize both the trace and the analysis results read from output files generated by 
Spin. 

• Property specification: The properties are obtained from an in-house UML editor 
that has been implemented as an Eclipse plug-in. The component also allows to se-
lect and instantiate a property to be considered for system validation. The detailed 
property specification procedure is described in Section 3.3. 

• Trace modeling: The basic function for this module is to read the messages se-
lected by the desired query from the database and write a model in Promela to rep-
resent them. There can be two different models produced: 
• Generate a model that does not take into account the concurrency within the 

SUT. In such a case, the model will consist of a single linear automaton that de-
picts the exchange of the recorded messages in the order of their appearance in 
the trace file. 

• Generate a model that features the communications between the processes and 
reflects the concurrent nature of the SUT. The tool generates the Promela model 
from a trace by defining a signal corresponding to each message and creating 
channels that carry the defined signals. The produced model in Spin is an asyn-
chronous model, where processes communicate over unidirectional channels. 

3.3   Property Specification 

A pragmatic approach has been chosen to identify the common properties to be vali-
dated in UMTS traces. It mainly relies on the standardized 3GPP specifications of the 
network services that define the functionality of the UMTS network and deduces the 
patterns that make up the services and functions from them. 

The main idea of the approach is to define so-called base patterns first and then to 
combine them to obtain more complex patterns. Base patterns describe a certain ser-
vice taking place between the relevant network nodes. UML2 sequence diagrams (i.e., 
message sequence charts supporting alternative, parallel, iterative, optional and other 
behavior specifications) are used to specify the behavior in a base pattern. Typically 
the base patterns encode the behavior the system should normally exhibit (the ex-
pected behavior), but they can be also used to formulate undesired behavior, e.g., the 
occurrence of unexpected (error) messages. 

Moreover, base patterns are parameterized by message data fields to make them ap-
plicable for other traces and re-usable for other system validation tasks. Classifying and 
storing base patterns in a library will foster re-use and reduce total validation efforts. 

In a typical system validation task, the system engineer decides what kind of ser-
vices the recorded trace of an executed test case should contain and in what order they 
should occur. She/he takes out the required base patterns from the library if available 
or creates them beforehand. In a next step, the base patterns are composed in a UML2 
activity diagram to specify the expected ordering of their occurrence in the trace. 
Eventually the base patterns are instantiated replacing the formal parameters by actual 
values taken from the test run. 



 Reverse Engineering Models from Traces to Validate Distributed Systems 189 

The following list describes the possible ways to combine base patterns: 

• Sequentially: The last message of the first pattern occurs before the first message 
of the second pattern. 

• Concurrently: The messages of the two patterns can interleave. 
• Alternatively: If the messages of the first pattern appear in a certain trace segment, 

the messages of the second pattern shall not occur in the same segment. 
• Iteratively: The messages of a pattern are repeated for a finite number of times.  

Properties to be verified by Spin can be written in LTL or in Never Claim expressions 
[8]. For purposes of implementation and practicality, we have chosen Never Claim 
representations. First of all, LTL is more difficult to understand and to write for end 
users and even model-checking experts. Also it does not map well to the adopted 
UML diagrams.  

The range of properties that can be verified in the Spin approach is defined by the ex-
pressiveness of the Never Claim expressions of the Promela language itself. In this pro-
ject, we are concerned more about defining meaningful properties that help evaluate the 
system and offering a lightweight approach to model-checking that is acceptable by prac-
titioners. Never Claims are sufficiently expressive for the properties considered in this 
project so far. Base patterns can be repeated in a trace several times and in various orders. 

3.4   Using Patterns 

Patterns can be devised and used for system validation following various strategies 
depending on, for example, the current level of confidence about system correctness. 
At the initial stage of testing, the system engineer may need to devise patterns from 
existing (informal) system specifications. If she/he already trusts several executions 
traces, she/he may want to make sure that certain patterns are repeated also in a newly 
obtained trace. Starting from a trace that is known to be correct and complete in terms 
of certain services and features, some base patterns can be identified and a reference 
trace (in terms of UML2 sequence and activity diagrams) is defined. The reference 
trace can then be used to check new traces. The traces that violate the reference trace 
are declared faulty unless they have been analyzed further and are known for sure to 
be correct, in which case the reference trace must be updated. 

4   Example 

The example discussed in this paper refers to a test case implementing a user scenario 
that tests the execution of a package-switched call between two mobile phones in 
order to transfer data from one mobile phone to the other one using the FTP com-
mand. Naturally, a number of network services at different network nodes and inter-
faces are involved in this user scenario. 

In our trace-based approach to system validation we describe each required  
network service as a base pattern and combine them according to their temporal  
appearance and ordering in the user scenario as recorded in the trace. As an example 
of a base pattern, Fig. 3 shows the message flow of a so-called “RRC connection 
establishment” procedure that is issued each time a mobile phone attempts to establish 
a connection. Other base patterns are modeled in a similar way, but could contain 
more complex control structures such as parallel or alternative messages and loops. 



190 A. Ulrich and A. Petrenko 

 

Fig. 3. Base pattern “RRC Connection Establishment” 

Next, a set of base patterns is combined in a composite pattern (Fig. 4) to reflect 
the expected behavior of the user scenario in the trace. The UML activity diagram 
uses different swim lanes for each service group, here RRC and GPRS services. This 
kind of structuring improves the readability of the diagram in particular. The compos-
ite pattern in Fig. 4 can be also viewed as a reference trace that must reoccur each 
time the associated test case is performed. 

A recorded trace in this example contains several hundred messages that occurred at 
various interfaces of the radio network during test case execution. Only about 30 mes-
sages are relevant because they are part of one or another base pattern that needs to be 
verified. These relevant messages could be filtered out from the trace prior to generating 
a Promela model. Otherwise the model is unnecessarily cluttered with unneeded mes-
sages that only slow down the model verification. At the moment, filtering is a manual 
process. However, we are currently discussing an approach to automatically filter out 
messages from the trace based on the selected patterns to be verified. 

The generated Promela model of the recorded trace and the composite pattern of 
the expected behavior translated into a Never Claim expression are eventually fed into 
the Spin model checker. In the simplest case a linear Promela model is used, which 
does not pose much stress on the model checker. Even when using a concurrency 
model for the trace (see Section 3.2), the approach remains scalable if the relevant 
messages were filtered out before model creation. 

The result of the model-checking task is a simple statement whether the verified 
property is contained in the model or not. In our context it means that we get assur-
ance whether the composite pattern is matched by the recorded trace or not. In the 
negative case a failure scenario is produced by Spin that depicts the path from the 
initial state of the model, i.e., from the first message in the trace, to the state, at which 
diverging behavior is detected. The failure scenario is mapped back to the original 
trace by our tool such that the system engineer gets hints, which message violated the 
specified behavior of the provided composite pattern. 

System engineers at Siemens used the described approach mainly during regression 
testing of radio network elements to validate the correct execution of user scenarios.  
Their validation task becomes now much simpler since before they had to analyze the 
produced large trace files manually in a text-based trace viewer. By means of our tool they  
 



 Reverse Engineering Models from Traces to Validate Distributed Systems 191 

FTP-DL-bad-pattern activity 'FTP-DL' {1/1}

 

'GPRS Services'
 

 

'RRC Services'
 

'RRC Connection 
Establishment'

 

 

 

'Security Mode 
Control'

'Readio Bearer 
Establishment'

 

'Transport Channel 
Reconfiguration'

 

'Physical Channel 
Reconfiguration'

Paging

'Connection 
Mobility'

'RRC Connection 
Release'

'GPRS Management'

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'Initial Downlink 
Uplink Transfer'

 

 

 

 

 

 

 

 

  

 

 

FTP-DL-bad-pattern activity 'FTP-DL' {1/1}

 

'GPRS Services'
 

 

'RRC Services'
 

'RRC Connection 
Establishment'

 

 

 

'Security Mode 
Control'

'Readio Bearer 
Establishment'

 

'Transport Channel 
Reconfiguration'

 

'Physical Channel 
Reconfiguration'

Paging

'Connection 
Mobility'

'RRC Connection 
Release'

'GPRS Management'

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'Initial Downlink 
Uplink Transfer'

 

 

 

 

 

 

 

 

  

 

 

 

Fig. 4. Composite pattern of the expected trace behavior 

are enabled to quickly decide about the correctness of network services. The graphical 
representation of base patterns and composite patterns is in particular helpful for them to 
understand the validation results and discuss them with other project members. 

5   Results and Experiences Obtained 

The presented approach to system validation is based on an analysis of traces re-
corded during the execution of test cases or by some other means. Therefore it is 
particularly well suited for poorly documented systems. Our approach produces a set 
of partial system models (base patterns and compositions) that are used to verify the 



192 A. Ulrich and A. Petrenko 

correct behavior of services and other system features. They can be considered also as 
a starting point to reverse engineer (parts of) the system if it is desirable, e.g., for 
maintenance reasons. 

With our trace analysis approach we also attempt to make sophisticated solutions 
like model-checking techniques available to practitioners who are not well trained in 
theoretical computer science at all. Up to now, formal verification is still an area that 
receives little attention in practice. We believe that this promising area can only suc-
ceed if the entry hurdle of this technology is sufficiently low. This refers in particular 
to the way how system properties are specified. UML seems to be again an appropri-
ate mean for this purpose. Although it might have a smaller expressiveness compared 
to temporal logic languages that are commonly used in model checking, its graphical 
format and easy readability are of major benefit. 

System models are modeled in terms of base patterns and composite patterns. This 
kind of abstraction works well for the discussed telecommunication domain. It might 
be interesting to see how this concept could be transferred to other application do-
mains as well. Nevertheless, the mapping from UML2 sequence diagrams and activity 
diagrams to Promela Never Claim expressions as used in our approach is still prelimi-
nary since the semantics on the composition of base patterns in particular requires 
further research. While simple compositions are easily supported by our tool, our 
experience in specifying complex patterns indicates that there is a need to define a 
formal language for pattern specification. 

In this case study it can be concluded that the chosen system validation approach 
based on reengineering models from traces is feasible and produces valuable results. 
At the same time, the integration of an UML editor used to specify system properties 
with an off-the-shelf model-checker is still a daunting task. So far, UML behavioral 
diagrams such as sequence diagrams and activity diagrams have to be transformed 
into an appropriate input of the model-checker. It would be desirable that future mod-
eling tools would integrate model-checking techniques on their own such that model 
validation can be done more easily. 

6   Conclusions 

We used in our case study a model-checker approach for system validation based on 
traces recorded during test execution of a UMTS radio network acting as the system 
under test. The tool has been implemented within Eclipse and integrates with a UML 
editor used for the specification of properties and Spin as the model-checker. The 
main open problems are the completion of an extensive library of base patterns for 
properties in UML and a refinement of the integration with Spin. Such a refinement 
should result in an improved user interface to the verification task. 

We believe that the presented approach to system validation is also applicable to 
other types of distributed systems provided that expressive traces during system run-
time can be obtained. Besides applying the approach during end-to-end system test-
ing, it could also be used in an uncontrollable environment, e.g. during field testing. 
Furthermore, reverse-engineering of traces seems the only feasible way to deal with 
systems that lack sufficient and up-to-date design documentation. 



 Reverse Engineering Models from Traces to Validate Distributed Systems 193 

Acknowledgement 

Crucial contributions of Hesham Hallal and ElHachemi Alikacem (CRIM) to tool 
development and support are acknowledged. 

References 

1. 3GPP Specifications Home; accessed, 2007-03-29 (2007) http://www.3gpp.org/specs/ 
specs.htm 

2. Colin, S., Mariani, L.: Run-Time Verification. In: Broy, M., Jonsson, B., Katoen, J.-P., 
Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, 
vol. 3472, pp. 525–556. Springer, Heidelberg, ISBN 978-3-540-26278-7 (2005) 

3. Eclipse – An Open Development Platform; accessed 2007-03-29, (2007) 
http://www.eclipse.org/ 

4. Eclipse Test and Performance Tools Platform (TPTP) Project; accessed 2007-03-29, 
(2007) http://www.eclipse.org/tptp/ 

5. Hallal, H.H., Boroday, S., Petrenko, A., Ulrich, A.: A formal approach to property testing 
in causally consistent distributed traces. Formal Aspects of Computing 18(1), 63–83 ISSN 
0934-5043 (2006) 

6. Hallal, H., Boroday, S., Ulrich, A., Petrenko, A.: An Automata-based Approach to Prop-
erty Testing in Event Traces. In: Proc. of the IFIP TC6/WG6.1 XV International Confer-
ence on Testing of Communicating Systems (TestCom 2003), pp. 180-196. Sophia 
Antipolis, France (May 2003) 

7. Hallal, H., Petrenko, A., Ulrich, A., Boroday, S.: Using SDL Tools to Test Properties of 
Distributed Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, 
vol. 2154, Springer, Heidelberg (2001) 

8. Holzmann, G.J.: The SPIN Model Checker; Addison-Wesley; ISBN. Addison-Wesley, 
London, UK, ISBN 978-0-321-22862-8 (2004) 

9. MySQL – The world’s most popular open source database; accessed 2007-03-29, (2007) 
http://www.mysql.com/ 

10. On-the-fly, LTL Model Checking with SPIN; accessed 2007-03-29, (2007) 
http://spinroot.com/spin/whatispin.html 

11. Sauter, M.: Communication Systems for the Mobile Information Society. John Wiley, 
New York, ISBN 978-0-470-02676-2 (2006) 



D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 194–203, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

A Model Driven Software Factory Using  
Domain Specific Languages 

Jos Warmer 

Ordina, The Netherlands 
jos.warmer@ordina.nl 

Abstract. This paper describes the development of the SMART-Microsoft 
Software Factory. This factory is a fully model driven factory that makes 
extensive use of the Microsoft DSL Tools and is bases on the Microsoft Service 
Oriented Architecture. We describe the process used for developing the factory 
and share the experience gained in the first projects in which this factory has 
been used. The first project has 73% of the delivered code being generated.  

1   Introduction 

Within Visual Studio 2005 Microsoft has introduced the DSL Tools [5]. Using these 
tools anyone can define his own visual Domain Specific language (DSL). It allows 
one to define the concepts in the language, their visual representation, but also the 
corresponding code generation. The DSL Tools generate a visual editor for the 
language, which is seamlessly integrated into Visual Studio. Domain Specific 
Languages play a central role in Microsoft’s Software Factories concept [1]. This 
eases the  software development process and improves both productivity and quality 
through code generation. 

During 2006 a complete model driven software factory has been built within the 
Microsoft Development Centre of Ordina. This factory is called the SMART-
Microsoft Software Factory [4]. Within this factory we have used DSL technology 
extensively. This paper describes how we came to the DSLs that we needed and how 
this has led to an effective and flexible software factory. The first part describes the 
type of applications that the factory is targeting. The architecture of these applications 
plays a central role. The second part describes which DSLs we have developed to 
enable us to develop this type of applications as efficient as possible. We will show 
how the architecture has been one of the guiding principles in this process.  

2   Architecture 

Modern, service oriented, software systems are always based on some architecture. By 
defining an architecture that incorporates aspects as maintainability, security, reuse, 
scalability, availability etc., we are able to build better software systems. Luckily, we do 
not have to build a new architecture for each system. Many best practices are bundled in 
reference architectures. Microsoft has developed such a reference architecture for 
building .Net applications. Our SMART-Microsoft architecture is based on this  



 A Model Driven Software Factory Using Domain Specific Languages 195 

Microsoft architecture. The Microsoft architecture is defined at a rather high conceptual 
level. Therefore, for developing real applications we have made every part of the 
architecture explicit and defined the components and framework that we would use to 
build these parts of the architecture.  

 

Fig. 1. The SMART-Microsoft architecture 

The SMART-Microsoft architecture consists of multiple layers, with different parts 
within each layer. We will describe all layers in just enough detail to understand their 
responsibilities. This paper does not focus on architecture, therefore we will not 
discuss the architecture in detail. 

2.1   Presentation Layer 

The presentation layer consists of two parts. The UI Components part are web pages 
or windows forms. These are meant only to show information and do not contains any 
logic, except for input field validation. The UI Process part includes all navigation, 
state management and is responsible for calling services to either fetch information to 
be shown to the user, or to execute the command that the user requested. Services are 
always called through a generated proxy. 



196 J. Warmer 

2.2   Data Contract Layer 

In a service oriented architecture data contracts are part of the service contract. In the 
architecture data contracts are also the definition of the data that the presentation layer 
uses. Because the data contract is used inside two architectural layers we have chosen to 
make the data contract explicit and allow both layers to refer to the same data contracts. 

2.3   Business Layer 

The business layer consists of several parts, The main characteristics are that a 
business layer is always called through a service interface. The service interface 
supports authentication, logging and error handling. The service interfaces delegates 
the execution of the business logic to a business workflow or a business process. 
Scalability is achieved by keeping the service interface stateless.  

2.4   Data Layer 

The data layer is responsible for retrieving data and persisting data.  All business 
objects can be persisted through this layer. Usually an object in the business layer is 
instantiated using data from the data layer. From this a data transfer object is created 
which is handed over to the user interface layer. For handling large amounts of data, 
as typically used in overview lists, this overhead often becomes prohibitive. For this 
reason, the architecture allows to directly create data transfer objects through a query 
to the database. This data is read-only and cannot be updated.  

2.5   Utilities 

Next to the layers in the architecture, we provide a number of supporting utilities for 
logging, configuration and security, which can be used in all layers. 

3   Requirements to the Domain Specific Languages 

The software factory described is a fully model driven factory. The goal of the models is 
to aid the developer to be more productive. We have formulated several requirements 
that we have used during the development of the DSLs. 

3.1   Models Must Be Easier That the Equivalent Code 

A model must always be at a higher abstraction level than the generated code. We do 
not target “coding in pictures”. This means that we put concepts into a DSL, only 
when the concept is easier to model than it is to code. Things that take as much effort 
to model as to code won’t become part of our DSL. A direct consequence of this 
approach is that we do not necessarily model 100 percent of the application. We 
always assume that part of the system will be modelled and part will be done in code. 
The code generation from the DSLs has been designed such that handwritten code is 
always added separately from the generated code. We have made extensive use of C# 
partial classes, abstract base classes, etc. to allow the developer to add his own code 
in separate files. 



 A Model Driven Software Factory Using Domain Specific Languages 197 

3.2   Models Must Be Productive for Less Experienced Developers 

One of the goals of the software factory is to make less experienced developers with 
less architectural knowledge productive. This has been achieved by hiding technical 
details behind the models. A consequence is that a model should remain relatively 
simple. This has been achieved by defining multiple DSLs, each of which has a 
limited focus. We also allow the developer to use multiple models per DSL, such that 
models can remain small and understandable. 

3.3   Generated Code Must Be Readable and Maintainable 

The relationship between models and the generated code must be clear, especially for 
the more experienced developers that have the task of adding handwritten code to the 
generated code. For this reason the various DSLs are based on the chosen architecture. 
Each DSL has an explicit connection with one or more architectural parts and generates 
code for exactly these parts. 

3.4   Regeneration Must Always Remain Possible 

Code generation is only useful if you can regenerate at any moment in time. A one-off 
code generation where the generated code is changed by hand helps only at the very 
start of a project, but won’t give any structural benefits. Therefore, code generation 
from the DSL models must always remain possible, while retaining any handwritten 
code. This goal influences the structure of the generated code directly. We make 
extensive use of frameworks and techniques as patterns, virtual operations, partial 
classes, abstract base classes, etc. Although this aspect does not influence the 
concepts in the DSLs directly, this is a mandatory requirement to be able to use the 
DSLs in a productive and repeatable way.  

3.5   The Different DSLs Should Be Useable Separately and in Collaboration 

Many MDA tools that we have encountered over the years have a tendency to be 
either useable completely or not useable at all. This all-or-nothing feature makes 
many potentially useful tools applicable in only few situations. In our environment we 
have many different customers with different requirements. Still we need to get as 
much return on investment from the DSLs that we develop as possible. By designing 
the DSLs as independent languages, we are able to use them separately. Still we need 
to ensure that the DSL can collaborate as good as possible when they are used 
together. This includes full validation between different DSL models, e.g. when 
References (see next sections) to model elements are being used. 

4   The SMART-Microsoft DSLs 

Currently we have defined four Domain Specific Languages. Each of the DSLs can be 
mapped to specific parts in the architecture as shown in figure 2. 



198 J. Warmer 

 

Fig. 2. DSLs and mapping to the architecture 

4.1   Web Scenario DSL 

The Web Scenario DSL is used to model the presentation layer. As most of our 
customers require web applications we have chosen to create a DSL for web interfaces. 
We have investigated the use of one DSL for both Web and Windows user interfaces. 
However, the structure of these interfaces is quite different. Instead of trying to 
generalize this, we have chosen to stay close to our target architecture. If we have enough 
customers that require windows interfaces, we plan to develop a separate Windows 
Forms DSL, which can then be used as an alternative to the Web Scenario DSL.  

The key concept in the Web Scenario DSL is the user action, a combination of 
showing a web page to the user and performing an action by the user. Figure 3 shows 
an example of a Web Scenario Model. In this model Search Orders is a user action of 
type List. It contains a Reference to OrderDTO, a model element that has been 
defined in another Data Contract model (see figure 4). The Edit Order is an Edit 
Action with a reference to OrderDTO. From this model web pages (ASPX) are 
generated that allow editing of an OrderDTO. Note that the Reference elements are 
defined in properties, which are not shown in the example model. 



 A Model Driven Software Factory Using Domain Specific Languages 199 

For the condition “Is Order Open” in the model the skeleton code is generated, 
such that it will be called at the right place. We decided that modelling conditions is 
as much work as writing them in C#, the developer should write the actual condition 
in C#. This is an example of how we combine generated and hand-written code in a 
well-defined way. 

The element Add Product is a reference to another Web Scenario, defined in a sep-
arate Web Scenario model.  

 

Fig. 3. Example Web Scenario Model 

4.2   Data Contract DSL 

A Data Contract model is used to define Data Transfer Objects (DTO). They allow us to 
define all data objects that are used to communicate between the layers in the 
architecture using services. Figure 4 shows several DTO objects. OrderDto, 
ProductDto, CustomerDto and OrderLineDto are business DTO’s, which means they 
represent a business object. A view DTO, like CustomerOrdersDto is used for 
modelling lists. ProductDescriptionDTO is a filter DTO and represents a limited view 
on the attributes of a business DTO. The example also shows a composite DTO named 
OrderOrderlineDTO, which is a composition of a OrderDTO and its OrderlineDTO’s.  

4.3   Service DSL 

SMART-Microsoft has a service oriented architecture. Therefore, we needed a DSL 
to model the services. The parameters of the services always are DTOs, which are 
defined in a Data Contract model. This is done by special Reference to DTO model 
elements in the Service model. 



200 J. Warmer 

 

Fig. 4. Example Data Contract Model 

When generating code we follow the architecture; we generate the service 
interfaces, and also the skeletons of the business processes that implement the 
services. For standard services like the CRUD (Create, Read, Update, Delete) services 
for business objects the implementation of the business process is generated as well. 
The implementation of other services is done in C#, using partial classes to separate 
the handwritten code from the generated code. 

Figure 5 shows the CRUD services with types <<Insert>>, <<Select>>, 
<<Update>>, and <<Delete>>. The input and output parameters are references to 
DTOs defined in a Data Contract model. ImportProducts is a custom service, for 
which the developer needs to write the implementation by hand.  

4.4   Business Entity DSL 

The Business Entity DSL allows the developer to model business classes, including 
their attributes and relationships. From the Business Entity DSL the code for the Busi-
ness Class layer is generated. We also generate the complete code for the data layer 
from the business entity model. 

Figure 6 defines five business entities. Apart from the attributes and relationships 
Customer also has a business rule MaximumOpenOrders. As with conditions on the 
Web Scenario, the implementation of the business rule is written in C#. The 
generation process ensures that the business rule is called at the right places at the 
right time. 

 



 A Model Driven Software Factory Using Domain Specific Languages 201 

 

Fig. 5. Example Service Model 

The Business Entity DSL doesn’t contain operations or methods. The added value of 
putting these in the models is too limited, all we can do is generate the method template. 
Writing the method template directly in C# is just as much work. One of our goals was 
that models should save work, and this doesn’t apply for methods. Therefore we have 
chosen to write methods for business classes in C# through partial classes. 

5   Project Experience 

The first release of the model driven software factory went into production in 
September 2006. The first project (a fixed price, fixed date customer project) was 
finished in December 2006 on time and within budget. After finishing the project, 
measurements showed that 73% of the code was generated. The developers in the 
project had no experience with the underlying architecture, but the model driven 
approach ensured that they could develop the application within the time planned, 
fully compliant to the architecture. More than 50 different domain specific models 
were used.  



202 J. Warmer 

 

Fig. 6. Example Business Entity Model 

Currently several other projects using the factory are in progress, but it is too early 
to show any numbers. The success of the first project has led to the decision that the 
SMART-Microsoft software factory will be used as the default development environ-
ment for all projects. 

In the near future we expect to extend the software factory with additional DSLs, 
thereby making it applicable to a wider variety of application.   

6   Conclusion and Lessons Learned 

Below we summarize the main conclusions that we can draw from both developing 
and using the software factory.  

 Before developing SMART-Microsoft we had extensive experience with 
more traditional MDA approaches using UML with a separate modelling tool 
as the modelling language. Using small DSLs has been a positive experience 
compared with the traditional approaches. 

 Taking the target architecture in account while defining DSLs has proved to 
be a good choice. It ensures that the models are suitable for the architecture. 
Also, it ensures that the models can easily be mapped to specific parts of the 
architecture. This allows incremental code generation per DSL model.  

 Taking the target architecture as the basis for the DSLs leads to a natural 
boundary of the domains for the different DSLs. 



 A Model Driven Software Factory Using Domain Specific Languages 203 

 Within the Microsoft DSL Tools a DSL model is stored in one file. 
Managing models through these small model files has proven to be a positive 
experience. A model file is handled the same way as a code file. All tools for 
version control and multi-user access can be used as is. 

 Having multiple models allows us to mix and match which DSLs we use in a 
given project. The applicability is much wider than with typical “Main 
Model” approaches. 

 Validation between DSL models is neccesary. As the Microsoft DSL Tools 
didn’t support this, we built our own component to allow information 
exchange between models for validation and other purposes. 

 The combination of modelling and programming works very well. Full 
integration of the DSLs in the VisualStudio IDE makes it much more 
accessible for developers to use. In this environment the approach of mixing 
models and code seems to be a natural one to developers. It is neccesary to 
coach developers where they can extend the generated code. For this purpose 
we have established a Wiki, where all developers add their project 
experience. 

One of the differences with typical MDA approaches is that we work with multiple 
small DSLs and multiple small models per DSL. We call this approach Partial 
Models. A preliminary paper on this has been published at the OOPSLA workshop on 
Domain Specific Languages [3]. A more extensive in-depth paper has been submitted 
to ECDMA 2007 [2]. 

Our experience has been gained with the Microsoft DSL Tools. However, the con-
clusions are applicable to any other environment where tools exist to easily create 
your own DSLs. One example of such an environment is the Graphical Modelling 
Framework (GMF) [6] in Eclipse. The same approach can be used to develop a model 
driven software factory in such an environment. 

References 

[1] Greenfield, J., Short, K., Cook, S., Kent, S. (eds.): Software Factories, Assembling 
Applications with Patterns, Models, Frameworks, and Tools. John Wiley & Sons, New 
York (2004) 

[2] Warmer, J., Kleppe, A.G.: Partial Models: Getting rid of mthe “Main” model. Submitted 
to ECMDA-FA (2007) 

[3] Warmer, J., Kleppe, A.G.: 2. Building a Flexible Software Factory Using Partial Domain 
Specific Models. In: Proceedings of the 6th OOPSLA Workshop on Domain-Specific 
Modeling (DSM’06), Computer Science and Information System Reports, Technical 
Reports, TR-37, University of Jyväskylä, Finland, ISBN 951-39-2631-1 ( 2006) 

[4] SMART-Microsoft Website, http://www.ordinasoftwarefactory.nl/Default.asp/id,285/ 
index.htm 

[5] Microsoft dsl tools (2006), http://msdn.microsoft.com/vstudio/DSLTools/,  
[6] The Eclipse Graphical Modeling Framework (2006), http://www.eclipse.org/gmf 



Towards a Model Driven Approach
to Automatic BPEL Generation�

Xiaofeng Yu, Yan Zhang, Tian Zhang, Linzhang Wang,
Jianhua Zhao, Guoliang Zheng, and Xuandong Li

State Key Laboratory for Novel Software Technology
Department of Computer Science and Technology
Nanjing University, Nanjing, P.R. China 210093

yuxiaofeng@seg.nju.edu.cn, lxd@nju.edu.cn

Abstract. Both complex separate Web services and composite Web services
need orchestration specification. However, on one hand, the process of manu-
ally creating orchestration specification is time-consuming and error-prone; and
on the other hand, application developers are in a dilemma to choose between vi-
rous orchestration languages and engines. In this paper, to reduce the complexity
of creating Web services orchestration specification, and to make orchestration
models isolate from orchestration languages and engines, we propose a model
driven approach to generate orchestration specification. Web services orchestra-
tion is modeled using the CCA (Component Collaboration Architecture) of the
UML profile for Enterprise Distributed Object Computing (EDOC). Then trans-
form CCA specified orchestration models to BPEL via transformation rules. The
same orchestration model can be transformed to different orchestration specifica-
tions though we take BPEL as the transformation target. Moreover, the transfor-
mation process is automatic.

Keywords: model transformation, EDOC, BPEL generation.

1 Introduction

Web Services are emerging as the most promising technologies to implement loosely
coupled distributed applications, and to perform application integration within and
across organization boundaries. Each Web service exposes interface via a WSDL file
which defines fairly atomic and low-level operations. If a Web service has a complex
interface consisting of several operations which are invoked in a sequence according to
a specification, a WSDL file is not able to define the behavioural detail of this spec-
ification. On the other hand, to increase reuse and to dealing with complex business
processes, there is great need to orchestrate discrete Web services into a higher value
composite Web service. But before implementing composite Web services, there is some
issues to be addressed such as orchestration specification. Therefore, either a complex
separate Web service or a composite Web service needs a orchestration specification

� Supported by the National Natural Science Foundation of China (No.60673125,
No.60425204), and the National Grand Fundamental Research 973 Program of China
(No.2002CB312001).

D.H. Akehurst, R. Vogel, and R.F. Paige (Eds.): ECMDA-FA 2007, LNCS 4530, pp. 204–218, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Towards a Model Driven Approach to Automatic BPEL Generation 205

to describe dynamic behaviors. However, the process of manually creating orchestra-
tion specification for Web services is time-consuming and error-prone. Though there are
CASE tools such as IBM Websphere [1], Oracle BPEL Process Manager [2] which
offer a user-friendly visual interface for designing and creating orchestration specifica-
tion, these tools are specific to orchestration languages. Unfortunately, more than one
orchestration languages exist currently, such as BPEL [3], WSCI [4] and BPML [5],
but none of them has been declared as the winner up to now. Moreover, each orches-
tration engine can execute only one language. Therefore, developers using such tools
have to face the risk of exhausting migration between different orchestration languages
and execution engines.

The Model Driven Architecture (MDA) [6] initiated by OMG is an innovative soft-
ware development method which focuses on separating system functions from the plat-
forms that the system will be implemented on. MDA makes models the first entities in
systems. The models which specify the functions of a system without taking into con-
sideration of the technology platforms of the system are called Platform Independent
Models (PIMs). Whereas the models which specify technical details of the platform
that the system will be implemented on are called Platform Dependent Models (PSMs).
A PIM can be transformed to different PSMs via different transformation rules, thus
isolating business logic from implementation platforms.

In this paper, to reduce the complexity of manually creating orchestration specifi-
cations, and more important is to separate orchestration from languages and execution
engines, we present a MDA based approach. This approach models Web service or-
chestration as PIMs using EDOC CCA, then transforms CCA described PIMs to BPEL
specified PSMs through transformation rules. The BPEL generation process of this ap-
proach is automatic, thus decreasing the complexity of manual work. Moreover, in this
approach, the same orchestration model can be transformed to different orchestration
language defined specifications by applying different rules, thus liberating developers
from migration nightmare. Though we make BPEL as the target orchestration language
in this article, the approach is applicable to other orchestration languages.

The remainder of this work is structured as follows. Section 2 and section 3 give
an overview of EDOC CCA and BPEL respectively. Section 4 presents detailed trans-
formation rules from EDOC CCA to BPEL process. The transformation rules are then
illustrated through a case study in section 5. Section 6 discusses the related work. The
last section concludes and outlines the future work.

2 Overview of EDOC CCA

The UML Profile for EDOC (Enterprise Distributed Object Computing) [7] conforms
to MDA and provides facilities to model distributed component based enterprise com-
puting. The EDOC Profile consists of several profiles each of which is constituted by a
set of Profile Elements. The Component Collaboration Architecture (CCA) is the core
Profile Element of the EDOC Profile. CCA models the structure and behavior of the
components that comprise a system in a platform independent way. In our approach,
the structural aspects of PIMs are specified with CCA Structural Specification, whereas



206 Xiaofeng Yu et al.

PortOwner

Port

DataElement

CompositeData

+type

+type

0..*
+attrs

Document Model

Enumeration
Value

+initial

1

1 *

+enumeration

+values

+owner
1

0..* +features

1

1..*

+owner

+ports

ProtocalPort

OperationPort

FlowPort

DataType

Enumeration

Attribute

ProcessComponent

Protocol

uses

1

Fig. 1. CCA Structural Spec. Meta-model

1 1

+nodes n +target

+source

+incoming

+outging
n

n

1

1

0:1

n

+subtypes

+supertype

1
+represents

PseduoState
-kind:PseudostateKind

PortUsage

Port

-name:String
-isSync:Boolean
-isTransactional:Boolean
-direction:DirectionType
-postCondition:Status

<<enumeration>>
PseudostateKind

+choice
+fork
+initial
+join
+failure

Transition
-preCondition

AbstractTransitionNode
-name:String

Choreography

Fig. 2. CCA Choreography Meta-model

the dynamic behavior of the PIMs are specified with CCA Choreographies. The sim-
plified meta-models of CCA Structural Specification and CCA Choreography are illus-
trated in Fig. 1 and Fig. 2 respectively.

As shown in Fig. 1, the primary elements of the CCA Structural Specification are:

– ProcessComponent - It describes the contract for a component.
– Port - It realizes a conversation for a ProcessComponent or Protocol.
– FlowPort - It is a Port which produces or consumes a single data type on behalf of

the owning component or protocol.
– OperationPort - It represents the typical call/return pattern of an operation.
– ProtocolPort - It is a Port which uses a Protocol to realize complex two-way

interactions between components.
– Protocol - It specifies the conversation between two ProcessComponents.

The cental elements of the CCA Choreography meta-model are shown in Fig. 2:

– Choreography - It is an abstract class inherited by Protocol and ProcessCom-
ponent which expresses the behavior of ProcessComponents. A Choreography
specifies how messages will flow between PortUsages.

– Node - It is an abstract element that specifies something that can be the source
and/or target of a transition and thus ordered within the choreographed process.

– PortUsage - It expresses the usage of a Port as part of a Choreography.
– PseudoState - It specifies starting, ending or intermediate states in the Chore-

ography. A PseudoState depends on it’s kind attribute which can be one of the
following enumeration values: choice, fork, initial, join, success and failure.

– Transition - It specifies the ordering that the related nodes will activate.



Towards a Model Driven Approach to Automatic BPEL Generation 207

3 Overview of BPEL

BPEL is an XML-based language for orchestrating Web services. Fig. 3 depicts the
simplified meta-model for BPEL based on [3].

Partner
name

name
Operation

Target
linkName

Link

Sequence

Invoke
partnerLink
operation
inputVariable
outputVariable

Receive
partnerLink
portType
operation
variable
createInstance

Reply
partnerLink
portType
operation
variable
faultName

Process
name
targetNamespace
queryLanguage
expressionLanguage
suppressJoinFailure
enableInstanceCompensation
abstractProcess

1..*

Resposibility
      1

myrole
 1

PartnerRole
 1

0..* 0..*

partnerLinkType

partners
0..*

Partner
Link

PortType
name

variables
0..*

1 do activity
0..1
faultHandlers

0..* catches

1..*
cases

do activity

1..*

name
partnerLinkType
myrole
partnerRole

PartnerLinkType
name

Role

name

Varaible

Activity
name
joinCondition
supressJoinFailure
source
target

Role

Switch

1

Case
condition

Source
linkName
transitionCondition

name
FaultHandler

name
Flow

PartnerLink

Catch
faultName
faultVarialbe

Fig. 3. A Simplified Meta-model for BPEL

We briefly sketch the BPEL concepts that are relevant for the proposed mapping
from CCA as follows:

– Process - It is the root in the BPEL specification.
– PartnerLink - It represents a bilateral message exchange between two parties via a

reference to a PartnerLinkType.
– PartnerLinkType - It defines the roles and PortTypes of two partner services.
– Variable - It holds workflow data and messages exchanged between parties.
– FaultHandler - It provides a way to define custom fault-handling activities.
– Invoke -It denotes a synchronous request/response or an asynchronous one-way

operation to invoke a Web service.
– Receive - It denotes receiving a request from other web services.
– Reply - It denotes sending a response to a request previously accepted via a syn-

chronous Receive activity.
– Sequence - It specifies that Activities are executed sequentially.
– Flow - It specifies that Activities are executed in parallel, possibly with some syn-

chronous Links.
– Switch - It specifies that alternative branches are chosen to be executed based on

the value of some Variables.



208 Xiaofeng Yu et al.

4 From CCA to BPEL Using OMG’s QVT

Several transformation languages and specifications have been proposed to specify
transformation rules, such as OMG’s Final Adopted QVT Specification [8], YATL [9],
ATL [10]. Since the OMG Final Adopted QVT Specification defines standard transfor-
mation languages, we use this specification to define transformation rules. This spec-
ification defines three QVT languages: Relations, Core, and Operational Mappings.
However, only the Operational Mappings language provides constructs commonly
found in imperative languages (loops, conditions, etc.) which are very useful to spec-
ify complex transformation rules. Therefore we define transformation rules using the
Operational Mappings language in this work. The syntax of this language references
to [8].

4.1 Preparation for Transformation

To simplify transformation process, we need to make some assumptions, add some
constraints, properties and operations to the CCA meta-model. However, it does not
mean that we intend to alter the CCA Profile. On the contrary, we add these new features
to the input CCA models by a plugin before transformation.

The assumptions we have made are as follows:

– MultiPort is not used in system modeling.
– If a FlowPort or an OperationPort is directly contained in a ProcessComponent,

we assume that this FlowPort or OperationPort is contained by a cognominal
ProtocolPort which is directly contained in the ProcessComponent.

The constraint validProtocol is added to the CCA meta-model which specifies that
a Protocol can be inherited by only one pair of ProtocolPorts. Thus we can navigate
between ProtocolPorts which use the same Protocol. This constraint is defined using
the Object Constraint Language (OCL) (the OCL code is left out).

The following properties are added to the CCA meta-model to facilitate the transfor-
mation process (the OCL expression of these properties is omitted):

– outermostProtocolPort: It represents the ProtocolPort which contains the current
Port and is directly owned by a ProcessComponent.

– partnerPort: It represents the Port which interacts with the current Port.
– ownPort: It represents the Ports with respect to the ’responder’ role of the Proto-

col that the current ProtocolPort uses.
– lastNodeType: It represents the types of the last nodes of all branches of the cur-

rent ChoiceState. It is a set which consists of SucessState, FailureState, Mer-
ageState, and JoinState

– isSync: It is a Boolean value which indicates whether the current Transition is used
as a synchronous control between two concurrent Nodes. If the current Transition
works as a synchronous control, this property must be set with ’true’. Otherwise the
value of this property must be ’false’. The default value of this property is ’false’.



Towards a Model Driven Approach to Automatic BPEL Generation 209

The operations we add to the CCA meta-model is listed below(OCL code of these
operations is very big, so we omit the details):

– getNextNode: It returns the next Node to the current Node.
– getPreviousNode: It returns the previous Node to the current Node.
– getMatchJoinState: It returns the matching JoinState of the current ForkState.
– getMatchForkState: It returns the matching ForkState of the current JoinState.
– getSyncTrans : It returns the synchronous control Transitions which will be

mapped to BPEL <links> in a corresponding BPEL <flow>.
– getRootTrans: It checks whether a Transition is directly nested in a ForkState.
– getLinks: It returns the <links> which are mapped from the synchronous control

Transitions directly nested in the current ForkState.

Besides, we define a PseudoState named MergeState. A MergeState has one
outgoing Transition and several optional incoming Transitions only one of which can
be enabled at a time. A MergeState is used to merge the outgoing Transitions of a
corresponding ChoiceState.

4.2 From CCA to BPEL

Based on semantic equivalence and the new features we defined for the CCA meta-
model, we propose the rules mapping from CCA Choreography to BPEL (see Table 1):

Table 1. The rules mapping from CCA Choreography to BPEL

Rule Input(CCA) Constraint Output(BPEL)
fp2var FlowPort <variable>
fp2ch FlowPort in OperationPort <catch>

postcondition !=’success’
direction =’responds’
owner.direction =’initiates’

fp2inv FlowPort not in OperationPort <invoke> with <inputVariable>
direction =’initiates’

fp2rec FlowPort not in OperationPort <receive>
direction = ’responds’ or
in OperationPort
direction =’responds’
owner.direction =’responds’

fp2rep FlowPort in OperationPort <reply>
direction =’initiates’
owner.direction =’responds’

op2inv OperationPort direction =’initiates’ <invoke> with <inputVariable> and
<outputVariable>

ProPort2x ProtocolPort <PartnerLinkType> and <PartnerLink>
fs2fl ForkState <flow>
pc2def ProcssComponent WSDL <definition>
cca2bpel Choreography <process>

Table 1 shows that not all the BPEL concepts can be transformed from CCA mod-
els. For those BPEL elements, such as <assign>, <pick>, <correlations>, there are
no corresponding elements in CCA that have equivalent semantic to them. The complete



210 Xiaofeng Yu et al.

description of all these rules in Table 1 is very big, therefore we only give the code for
part of these rules: fp2rep, op2inv, fs2fl and cca2bpel.

The rule fp2rep (see Fig. 4) maps a FlowPort to a BPEL <reply> activity. If an ’ini-
tiates’ FlowPort is owned by a ’responds’ OperationPort, it is used to return messages
to synchronous calls from other ProcessComponents. Therefore such a FlowPort
can be mapped to a BPEL <reply> activity.

transformation fp2rep(in cca:CCA, out bpel:BPEL)
main(){cca.objectsOfType(FlowPort)→map fp to rep();}
mapping FlowPort::fp to rep():Reply{

when{this.owner.oclIsTypeOf(OperationPort) and this.owner.direction=’responds’
and this.direction=’initiates’}

partnerLink := this.outermostProtocolPort.resolveone(#BPEL::PartnerLink);
portType := this.partnerPort.outermostProtocolPort.resolveone(#WSDL::PortType);
operation := this.owner.resolveone(#WSDL::PortTypeOperation);
Variable := this.resolveone(#BPEL::Variable);}

Fig. 4. The transformation rule fp2rep

The rule op2inv (see Fig. 5) maps a CCA ’initiates’ OperationPort to a BPEL
<invoke> operation. Since an OperationPort represents a synchronous call/return op-
eration, the generated <invoke> has both the <inputVariable> and <outputVariable>.

transformation op2inv(in cca:CCA, out bpel:BPEL)
main(){cca.objectsOfType(OperationPort)→map op to inv();}
mapping OperationPort::op to inv():Invoke{

when{this.direction = ’initiates’}
var iPort := this.ports→select(fp|fp.direction = ’initiates’);
var oPort := this.ports→select(fp|fp.direction = ’responds’ and
fp.postcondition = ’success’);

partnerLink := this.outermostProtocolPort.resolveone(#BPEL::PartnerLink);
portType := this.partnerPort.outermostProtocolPort.resolveone(#WSDL::PortType);
operation := this.partnerPort.resolveone(#WSDL::PortTypeOperation);
inputVariable := iPort.resolveone(#BPEL::Variable);
outputVariable := oPort.resolveone(#BPEL::Variable);}

Fig. 5. The transformation rule op2inv

The rule fs2fl (see Fig. 6) maps a CCA ForkState to a BPEL <flow> activity.
Each outgoing branch of the ForkState is mapped to a BPEL <sequence> which will
be added into the corresponding BEPEL <flow>. The transitions which are used to
express synchronization dependencies are mapped to <links>.

The rule cca2bpel (see Fig. 7) calls all the other rules sequentially to map a Chore-
ography of a ProcessComponent to a BPEL <process>. This rule traverses a
Choreography from its initial node to its end nodes, and applies other transforma-
tion rules to each node according to the type of the node. Since a <process> needs to
refer to its WSDL specified interface, the rule cca2bpel reuses the rules mapping from
CCA ProcessComponent to WSDL that we have proposed in [22] (see Table 2).



Towards a Model Driven Approach to Automatic BPEL Generation 211

transformation fs2fl(in cca:CCA, out bpel:BPEL)
main(){cca.objectsOfType(ForkState)→map fs to fl();}
mapping ForkState::fs to fl():Flow{
links := this.getLinks();
activity := this.outgoing.iterate(og; acc:Set(BPEL::Sequence)|
var seq : BPEL::Sequence;
var nd : CCA::Node := og.target;
while (nd <>this.getMatchJoinState){
seq.activity→append(nd.resolveone(#BPEL::Activity));
nd := nd.getNextNode();}

acc→including(seq);)
}

Fig. 6. The rule fs2fl

transformation cca2bpel(in cca:CCA, out wsdl:WSDL, out bpel:BPEL)
extends transformation dt2pdt(DM,WXS); extends transformation en2st(DM,WXS);
extends transformation cd2ct(DM,WXS); extends transformation fp2x(CCA,WSDL);
extends transformation opp2ptop(CCA,WSDL); extends transformation fp2var(CCA,WSDL);
extends transformation fp2ch(CCA,WSDL); extends transformation fp2inv(CCA,WSDL);
extends transformation fp2rec(CCA,WSDL); extends transformation fp2rep(CCA,WSDL);
extends transformation op2inv(CCA,WSDL); extends transformation proPort2x(CCA,WSDL);
extends transformation syncTran2lk(CCA,WSDL); extends transformation cs2sw(CCA,WSDL);
extends transformation fs2fl(CCA,WSDL); extends transformation pc2def(CCA,WSDL);
extends transformation choreography2bpel (CCA,BPEL);
main(){
cca.objectsOfType(DataType)→map dt to pdt();
cca.objectsOfType(EnumerationType)→map en to st();
cca.objectsOfType(FlowPort)→map fp to x();
cca.objectsOfType(OperationPort)→map opp to ptop();
cca.objectsOfType(FlowPort)→map fp to var();
cca.objectsOfType(FlowPort)→map fp to ch();
cca.objectsOfType(FlowPort)→map fp to inv();
cca.objectsOfType(FlowPort)→map fp to rec();
cca.objectsOfType(FlowPort)→map fp to rep();
cca.objectsOfType(OperationPort)→map op to inv();
cca.objectsOfType(ProtocolPort)→map protocolPort to x();
cca.objectsOfType(Transition)→map syncTran to lk();
cca.objectsOfType(ChoiceState)→map cs to sw();
cca.objectsOfType(ForkState)→map fs to fl();
cca.objectsOfType(ProcessComponent)→map pc to definition);
cca.objectsOfType(Choreography)→map choreography to bpel();

}

Fig. 7. The rule cca2bpel

Table 2. The rules mapping from CCA to WSDL

Rule Input(CCA) Constraint Output(BPEL)
dt2pdt DataType <PrimitiveDataType>

en2st Enumeration <SimpleType>

cd2ct CompositeData <ComplexType>

fp2x FlowPort <Message> and <PortTypeOperation>

opp2pto OperationPort <PortTypeOperation>



212 Xiaofeng Yu et al.

5 The Illustrative Example

To exemplify how our approach works, we choose an illustrative example of an E-Store.
The E-Store provides customers with on line purchasing service. A customer sends an
order to the E-Store, then the E-Store calculates the price, arranges the shipment and
the shipping schedule. Finally, the E-Store sends an invoice to the customer.

Fig. 8 illustrates the CCA specified E-Store PIM and its collaborative partners. The
ProcessComponent E-Store includes four ProtocolPorts which are selling, ship-
pingCallBack, invoiceCallback and scheduling. The ProtocolPort selling has an
’responds’ OperationPort sendOrder, the ProtocolPort shippingCallback has an
’initiates’ OperationPort requestShipping and a non-operationPort-owned FlowPort
sendSchedule, the ProtocolPort scheduling and invoiceCallback only contain non-
operationPort-owned FlowPorts. Each of these ProtocolPorts interact with its partner
port using a corresponding Protocol (see Fig. 9).

E-Store

invoiceCallback

sendInvoice

sendShippingPrice

shippingCallback

requestShipping

shipping

shippingMsg

orderDenied

selling

sendOrder

invoice

orderDenied

order

Shipping

shipping

requestShipping

shippingMsg

orderDenied

shipping

sendSchedule

Invoice

sendShippingPrice

sendInvoice

initiatePriceCalc

computePrice

Customer

buying

sendOrder

order

invoice

orderDenied

sendSchedule

scheduling

sendSchedule

requestSchedule

Scheduling

requestSchedule

sendSchedule

scheduling

initiatePriceCalc

Fig. 8. The PIM of the E-Store and its partners

The Choreography of E-Store ProcessComponent is depicted in Fig. 10. The
Choreography shows that, firstly, a customer makes a purchase order to a E-Store
component. Then the E-Store component uses an Invoicing component to calculate
the price, uses a Shipping component to arrange the shipment, and uses a Schedul-
ing component to handle scheduling. The E-Store component performs these three
tasks concurrently. There are two control dependencies: the shipping price is required
to complete the final price calculation and the shipping date is required to complete the
scheduling. Finally, the E-Store component sends an invoice to the customer.

After the necessary information for transformation is available, we can apply the
transformation rule cca2bpel to the E-Store ProcessComponent and its Choreog-
raphy, thus automatically generating the WSDL file and the BPEL file in listing 1.1 and



Towards a Model Driven Approach to Automatic BPEL Generation 213

<<Protocol>>
invoicing

<<Protocol>>
scheduling

<<ProtocolPort>>
shipping

<<ProtocolPort>>
scheduling

<<ProtocolPort>>
computePrice

<<Protocol>>
shipping

<<ProtocolPort>>
shippingCallback

<<Protocol>>
purchasing

<<ProcessComponent>>
Customer

<<Process
Component>>

E-Store

<<ProcessComponent>>
Shipping

<<ProcessComponent>>
Invoice

<<ProcessComponent>>
Scheduling

<<ProtocolPort>>
buying

<<ProtocolPort>>
scheduling

<<ProtocolPort>>
selling

<<ProtocolPort>>
invoiceCallback

Fig. 9. The contract of the E-Store

listing 1.2 respectively in the appendix. In order to automatize the transformation pro-
cess, we are engaged in developing an execution engine. A plugin is also in the process
of development which adds the new features to the input CCA models. These features
include the properties and operations that we have defined for the CCA meta-model.
The transformation process with the execution engine and the labelling plugin is shown
in Fig. 11. Firstly, a CCA model expressed in XMI (XML Metadata Interchange) is in-
put into the labelling plugin. Secondly, the plugin adds new features to the CCA model
and transmit the altered CCA model into the execution engine. Finally, the engine exe-
cutes transformation rules to generate a BPEL process and a WSDL file for the altered
CCA model.

6 Related Work

The interface models for Web services are specified using WSDL, whereas the or-
chestration models are specified using one of the various nonstandard orchestration
languages, such as BPEL and BPML. Our previous work covers model driven WSDL
generation from CCA Structural Specification [22]. This article focuses on model driven
BPEL generation from CCA Structural Specification and CCA Choreography.

Besides our work, [11] presents a model driven approach to semi-automatically gen-
erate BPEL from healthcare domain workflows. However, our approach is independent
of application domains. [12] shows how BPEL process definitions for parties involved
in a choreography can be derived from a global WS-CDL [13] choreography model.
However, WS-CDL is not a modelling language, hence, mapping from WS-CDL to
BPEL is not usable during the analysis and design phases of the development cycle. In
contrast, this article generates BPEL from EDOC CCA models. Since the EDOC profile
is a standard modelling language, our approach is applicable to both the analysis and
design phases.

BPMN [14] provide a business process modeling notation that is readily usable by
business analysts, technical developers and business people. [15] provides a technique
which can generate BPEL from BPMN automatically. Since UML is the most widely
used modelling language and we use a standard UML profile (the EDOC profile) to
specify the source models in transformation, our approach is more widely applicable
than that of [15]. In the OMG BPMN specification [16], a mapping between BPMN and



214 Xiaofeng Yu et al.

   selling     <<responds>>

  <<initiates>>
  invoiceCallback

<<initiates>>
initiatePriceCalc

<<initiates>>
sendShippingPrice

    buying  <<initiates>>

  <<initiates>>
  sendOrder

<<responds>>
invoice

<<responds>>
orderDenied

  <<responds>>
  sendOrder

<<responds>>
order

<<initiates>>
invoice

<<initiates>>
orderDenied

  <<initiates>>
  shippingCallback

  <<initiates>>
  requestShipping

<<initiates>>
shipping

<<responds>>
shippingMsg

<<responds>>
orderDenied

<<responds>>
sendSchedule

<<responds>>
sendInvoice

  <<responds>>
  scheduling

<<initiates>>
requestSchedule

<<initiates>>
sendSchedule

  <<responds>>
  shipping

  <<responds>>
  requestShipping

<<responds>>
shipping

<<initiates>>
shippingMsg

<<initiates>>
sendSchedule

  <<responds>>
  computePrice

<<initiates>>
sendInvoice

<<responds>>
initiatePriceCalc

<<responds>>
sendShippingPrice

  <<initiates>>
  scheduling

<<responds>>
requestSchedule

<<responds>>
sendSchedule

Success

<<initiates>>
orderDenied

Failure

Customer E-Store

Shipping

Invoice

Scheduling

<<initiates>>
order

Fig. 10. The Choreography of the E-Store purchasing process

BPEL is also provided. On one hand, BPMN does not to provide an executable business
process and no system can directly execute BPMN models, but BPEL processes can be



Towards a Model Driven Approach to Automatic BPEL Generation 215

Transformation

Engine

XMI Labelling
Plugin

CCA

model
XMI

New

Features

Transformation

Rules

WSDL
Interface

BPEL
Process

altered CCA
model

Fig. 11. The transformation process with an execution engine and a labelling plugin

directly execute by many engines. On the other hand, we intend to generate executable
orchestration models from design models. Therefore, we choose to specify a mapping
between CCA and BPEL instead of between CCA and BPMN.

Further related work is BPEL generation from UML in MDA context. [17] proposes
a method to generate BPEL from UML 1.4 Activity models. However, this method de-
pends on their own profile which is not a standard UML profile. In addition, [17] does
not provide formal transformation rules. On the contrary, our approach sits on the top of
the ECOC profile which is a standard UML profile, furthermore, we give detailed formal
transformation rules. [18] presents a mapping from UML Activity diagrams to BPEL
without any author added constructs , but the authors do not provide complete transfor-
mation rules. [19] shows how PIMs specified by UML 2.0 Sequence diagrams can be
transformed to BPEL, and gives informal definition of the transformation rules. [20]
provides the transformation from UML 2.0 Activity diagrams to BPEL, and shows few
transformation rules. The difference between our approach and [18,19,20] is twofold.
First, this work is part of our whole project as introduced in [22] which aims to support
model driven development for component based enterprise distribute computing sys-
tems, therefore, we use the EDOC profile instead of the pure UML 1.4 or UML 2.0 to
specify PIMs. Second, we present much more complete formal transformation rules .

Finally, as far as we know, the closest work to ours is [21], one of the focuses of
which is to transform EDOC behavior models to BPEL. However, [21] does not give
any concrete transformation rules. On the contrary, we propose detailed transformation
rules which are critical to BPEL generation from EDOC behavior models.

7 Conclusions and Future Work

The core contribution of this work is to propose model driven transformation rules
which can automatically generate BPEL specified Web service orchestration specifica-
tion from EDOC CCA models. Though currently we do not provide formal proof for
semantic consistency in transformation, we have implemented a prototype of these rules
as a proof of concept. This approach can reduce the complexity and speed up the process
of creating Web service orchestration specification by generating BPEL automatically.
Further, this work offers a substantial approach to leverage the reuse of design artifacts
advocated in the MDA, because we can apply this approach to other target platforms



216 Xiaofeng Yu et al.

(BPML, WSCI, etc), or to later version of the same platform based on the same source
models by revising the transformation rules. Therefore, this works provides a platform
independent approach to create Web service orchestration specifications.

This work reveals that not all the elements of CCA can be transformed to BPEL, and
not all the elements of BPEL can be transformed from CCA meta-model. In CCA, a
MultiPort combines a set of ports which are behaviorally related and each of them will
”buffer” information sent to it until all of them have received data. However, there is
no such an element in BPEL corresponding to CCA MulitPort. In BPEL, the <assign>
activity copies data from one variable to another. Nevertheless, there is no element in
CCA corresponding to BPEL <assign>. If we want to generate a BPEL Process which
includes all the elements of BPEL specification, either we need to add BPEL related
elements to the CCA meta-model, or we need to add some elements to the generated
BPEL Process manually. Since on one hand, adding BPEL related elements to CCA
meta-model will make the EDOC profile more BPEL specific, and on the hand, most of
the BPEL elements can be generated automatically using our approach, we choose to
alter the Process manually if needed.

Two-way transformation is not supported in our current approach, because when
one CCA element is mapped to more than one BPEL elements, the reverse mapping
is impossible. But we are planning to enable two-way transformation for one-to-one
mappings.

Integrating nonfunctional artifacts into the transformation process and deriving defi-
nitions on other orchestration languages are both our current consideration.

References

1. http://www-306.ibm.com/software/websphere/
2. http://www.oracle.com/technology/products/ias/bpel/index.html
3. Andrews, T., et al.: Business Process Execution Language for Web Services, Version 1.1.,

BEA, IBM, Microsoft, SAP, Siebel (2003)
4. Arkin, A., Askary, S., Fordin, S., Kawaguchi, K., et al.: Web Service Choreography Interface

(WSCI) 1.0. W3C Note 8 August World Wide Web Consortium (2002)
5. Arkin, A.: Business Process Modeling Language (BPML). Specification, BPMI.org (2002)
6. OMG. Model Driven Architecture (MDA)- document number ormsc/2001-07-01 (2001)
7. Object Management Group. UML Profile for Enterprise Distributed Object Computing Spec-

ification(EDOC). OMG Document Number: ptc/2001-12-04 (2001)
8. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, Final Adopted Specification, ptc/05-11-01 (November 2005)
9. Patrascoiu, O.: YATL: Yet Another Transformation Language.First European Workshop

MDA-IA (2004)
10. ATLAS Group. ATLAS Transformation Language. Reference site: (February 2005),

http://www.sciences.univ-nantes.fr/lina/atl/ or

11. Anzbök, R., Dustdar, S.: Semi-automatic Generation of Web Services and BPEL Processes -
A Model-Driven Approach. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F.
(eds.) BPM 2005. LNCS, vol. 3649, pp. 64–79. Springer, Heidelberg (2005)

12. Mendling, J., Hafner, M.: From WS-CDL Choreography to BPEL Process Orchestration.
Technical Report JM-2006-07-24. Vienna University of Economics and Business Adminis-
tration (2006)

http://www.eclipse.org/gmt

http://www-306.ibm.com/software/websphere/
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.sciences.univ-nantes.fr/lina/atl/
http://www.sciences.univ-nantes.fr/lina/atl/


Towards a Model Driven Approach to Automatic BPEL Generation 217

13. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of the Web Service Choreography
Description Language (WS-CDL). BPTrends Newsletter 3 (2005)

14. White, S.A.: Business Process Modeling Notation (BPMN) Version 1.0. Business Process
Management Initiative, BPMI.org May( 2004)

15. Ouyang, C., van der Aalst, W., Dumas, M., ter Hofstede, A.: Translating BPMN to BPEL.
BPM Center Report BPM-06-02, BPMcenter.org (2006)

16. Object Management Group. Business Process Modeling Notation Specification. Final
Adopted Specification dtc/06-02-01

17. Skogan, D., Grønmo, R., Solheim, I.: Web Service Composition in UML. In: Proceed-
ings of the 8th IEEE International Enterprise Distributed Object Computing Conference
(EDOC’04), pp. 47-57 (2004)

18. Bézivin, J., Hammoudi, S., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA approach
to B2B applications: A road map. In: Proceedings of the Workshop on Model Driven Devel-
opment (WMDD 2004), The 18th European Conference on Object-Oriented Programming
(ECOOP 2004) workshops (2004)

19. Bauer, B., Müller, J.P.: MDA Applied: From Sequence Diagrams to Web Service Choreog-
raphy. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp.
132–136. Springer, Heidelberg (2004)

20. Bordbar, B., Staikopoulos, A.: On behavioural model transformation in Web Services. In:
Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., Mangina, E.E.,
Song, I.-Y., Mayr, H.C. (eds.) Conceptual Modeling for Advanced Application Domains.
LNCS, vol. 3289, pp. 667–678. Springer, Heidelberg (2004)

21. Kath, O., Blazarenas, A., Born, M., Funabashi, M., Hirai, C.: Towards Executable Models:
Transforming EDOC Behavior Models to CORBA and BPEL. In: Proceedings of the 8th
IEEE International Enterprise Distributed Object Computing Conference (EDOC’04), pp.
267-274 (2004)

22. Xiaofeng, Y.U., Jun, H.U., ZHANG, Y., ZHANG, T., WANG, L., ZHAO, J., LI. X.: A Model
Driven Development Framework for Enterprise Web Services. In: Proceedings of the 10th
IEEE International Enterprise Distributed Object Computing Conference (EDOC’06), pp.
75-84 (2006)

Appendix

Listing 1.1. snippet of the generated WSDL file of the E-Store ProcessComponent
1 <definition name="purchasing" targetNamespace=" "

2 ...

3 <types>

4 <xs:complexType name = "ShippingInfo">

5 <xs:elemente name = "problem" type= "xs:string"/>

6 <xs:elemente name = "keyword" type= "xs:string"/>

7 </xs:complexType>

8 ...

9 </types>

10 <message name="order">

11 <part name="order" type="CustomerOrder"/>

12 </message>

13 ...

14 <portType name="purchasingPT">

15 <operation name="sendOrder">

16 <input message="order"/> <output message="invoice"/> <fault name="orderDenied" message="orderDenied"/>



218 Xiaofeng Yu et al.

17 </operation>

18 </portType>

19 ...

20 <plnk:partnerLinkType name="invoicingLT">

21 <plnk:role name="invoice">

22 <plnk:portType name="computePricePT"/>

23 </plnk:role>

24 <plnk:role name="invoiceCallback">

25 <plnk:portType name="invoiceCallbackPT"/>

26 </plnk:role>

27 </plnk:partnerLinkType>

28 ...

29 </definition>

Listing 1.2. snippet of the BPEL process of the E-Store ProcessComponent

1 <process name="purchasing" targetNamespace=" "

2 ...

3 <partnerLinks>

4 <partnerLink name="invoicingLK" partnerLinkType="invoicingLT" myRole="invoiceCallback" partnerRole="invoice"/>

5 ...

6 </partnerLinks>

7
8 <variables>

9 <variable name="order" messageType="order"/>

10 <variable name="invoice" messageType="invoice"/>

11 ...

12 </variables>

13
14 <faultHandlers> ...</faultHandlers>

15
16 <sequence>

17 <receive partnerLink="purchasing" portType="purchaseOrderPT" operation="sendPurchaseOrder" variable="PO"/>

18 <flow>

19 <links>

20 <link name="requestShipping_to_sendShippingPrice"/>

21 <link name="sendSchedule_to_sendSchedule"/>

22 </links>

23 <sequence>

24 <invoke partnerLink="shipping" portType="shippingPT" operation="requestShipping" inputVariable="shipping"

25 outputVariable="shippingMsg">

26 <source linkName="requestShipping_to_sendShippingPrice"/>

27 </invoke>

28 <receive partnerLink="shipping" portType="shippingCallbackPT" operation="sendSchedule"

29 variable="sendSchedule">

30 <source linkName="sendSchedule_to_sendSchedule"/>

31 </receive>

32 </sequence>

33 ...

34 </flow>

35 <switch>

36 <case condition = "order is denied"> </case>

37 <otherwise> </otherwise>

38 </switch>

39 <reply partnerLink="purchasing" portType="purchasePT" operation="sendOrder" variable="sendOrder"/>

40 </sequence>

41 </process>



Author Index

Achilleos, Achilleas 1
André, Charles 130

Balaban, Mira 17
Barbero, Mikaël 32
Bézivin, Jean 32
Bordbar, Behzad 43
Brörkens, Mark 59

Cuccuru, Arnaud 68

Evans, Michael 43

Fischer, Joachim 157
Fuentes, Lidia 83

Georgalas, Nektarios 1
Gérard, Sébastien 68, 130
Gray, Jeff 32

Herrmann, Christoph 99
Howells, Gareth 43

Jouault, Frédéric 32

Kazakov, Michael 172
Kleppe, Anneke 114
Köster, Matthias 59
Krahn, Holger 99

Lagarde, François 130
Li, Xuandong 204

Maraee, Azzam 17
Mraidha, Chokri 68

Oldevik, Jon 144
Olsen, Gøran K. 144

Petrenko, Alexandre 184

Rumpe, Bernhard 99

Sánchez, Pablo 83
Scheidgen, Markus 157
Schindler, Martin 99
Shaham-Gafni, Yael 172
Shirtz, Dov 172
Staikopoulos, Athanasios 43

Terrier, François 68, 130

Ulrich, Andreas 184

Völkel, Steven 99

Wang, Linzhang 204
Warmer, Jos 194

Yang, Kun 1
Yu, Xiaofeng 204

Zhang, Tian 204
Zhang, Yan 204
Zhao, Jianhua 204
Zheng, Guoliang 204


	Title page
	Preface
	Organization
	Table of Contents
	An Open Source Domain-Specific Tools Framework toSupport Model Driven Development of OSS
	Introduction
	Meta-models as Domain Specific Languages: MDD Tools Framework Requirements
	Comparative Study of MDD Tool Frameworks
	Integrated Eclipse Modelling Environment
	Conclusions and Future Work
	References

	Efficient Reasoning About Finite Satisfiability ofUML Class Diagrams with ConstrainedGeneralization Sets
	Introduction
	Background
	Methods for Reasoning About Finite Satisfiability of UML Class Diagrams
	UML2.0 Class Hierarchy Concepts: Generalization Sets
	Classification of Class Hierarchy Structures

	Reasoning About Finite Satisfiability of UML Class Diagrams with Unconstrained GSs
	Testing the Finite Satisfiability of Class Diagrams with [T]-GS
	Extensions for {[T-M], [A], [G]}-GS

	Reasoning About Finite Satisfiability of UML Class Diagrams with Constrained Generalization Sets
	Testing Finite Satisfiability of Tree Structured ([T-C]-GS) Class Diagrams
	Extension of Algorithm 2 to {[T-C-M], [A-C], [G-C]}-GS Hierarchy Structure - Exploring the Limits of the Suggested Method

	Conclusions and Future Work

	A Practical Approach to Model Extension
	Introduction
	Motivating Example
	Implementation Support
	Conceptual Framework
	Characterization of Model Extension
	Related Work
	Conclusions and Future Work

	Model Transformation from OWL-S to BPEL ViaSiTra
	Introduction
	Preliminaries
	Web Services
	Model Transformation in Web Services

	Simple Transformer (SiTra)
	Introducing SiTra
	Rules
	Transformer

	Case Study: Transformation from OWL-S to BPEL
	Metamodel of OWL-S
	Metamodel for BPEL
	Mapping of Elements
	Model Transformation

	Discussion and Related Work
	Conclusions
	References

	Improving the Interoperability of AutomotiveTools by Raising the Abstraction from LegacyXML Formats to Standardized Metamodels
	Introduction
	Improving Interoperability by Standardization of Data Exchange Formats
	Standardisation on XML Level
	Standardization on Metamodel Level

	Layered Architecture for Tool Interoperabilty
	OTF -- A Layered Framework for Tool Interoperability
	Summary and Outlook

	Templatable Metamodels for Semantic VariationPoints
	Introduction
	Standard Mechanisms for Metamodel Specialization
	UML 2 State Machines
	Specialization by Profiling
	Specialization by Generalization and Package Merge
	Evaluation of Standard Mechanisms

	Templateable Metamodels
	Related Works
	A Templated Version of the UML 2 State Machine Metamodel

	Implementation for Ecore
	Extensions for Template Declarations
	Extensions for Template Parameters Binding

	Conclusion

	Execution of Aspect Oriented UML Models
	Introduction
	Aspect-Oriented Software Development
	Our Approach
	The Online Book Store System
	Executable UML Models
	Operational Semantics
	The Action Semantics

	Aspect-Oriented Modelling
	Joinpoint Model
	Aspect Modelling
	Pointcut Modelling

	A Weaver for Executable Models
	Static Weaving
	Dynamic Weaving

	Tool Support and Experimentation
	Related Work
	Conclusions and Future Work
	References

	An Algebraic View on theSemantics of Model Composition
	Model Composition
	Syntax and Semantics of Models
	Semantic Domain and Mapping
	Set-Valued Semantics

	An Algebraic View on Model Composition
	Model Composition
	A Generalization for Semantic Composition Operators
	Syntax-Based Properties of Composition
	Semantic-Based Composition Properties
	Properties of the Semantic Mapping
	Summary

	Related Work
	Conclusion
	References

	Towards the Generation of a Text-Based IDEfrom a Language Metamodel
	Introduction
	Preliminaries
	Terminology
	The Process of Language Design
	Outline of Our Approach
	Rationale of the Approach

	The ASM to PM Transformation
	Possibilities to Tune the asm2pm Transformation

	The PM to BNF Grammar Algorithm
	Possibilities to Tune the pm2bnf Transformation

	The Static Semantic Analyser
	Binding
	Static Checking

	Conclusion and Related Work
	References

	Constraints Modeling for (Profiled) UML Models
	Introduction
	Related and Prior Work
	Object Constraint Language
	Model Comparison
	Model Transformation

	Our Approach
	Conceptual Domain View
	UML Domain View

	Examples
	A Refinement Operation
	A Composition Operation

	Tool Implementation
	Conclusions and Future Directions

	Scenarios of Traceability in Model to TextTransformations
	Introduction
	Traceability
	Establishment of Trace Links
	Traceability on Different Abstraction Levels
	Different Trace Link Classifications
	Trace Link Usage

	Model to Text Traceability
	Traceability in MOFScript
	The Traceability Metamodel
	Model to Text Specific Trace Scenarios
	Traceability Analysis Prototype

	Related Work
	Conclusion and Future Work
	References

	Human Comprehensible and MachineProcessable Specifications of OperationalSemantics
	Introduction
	Related Work
	Basic Concepts
	An Example Language -- Petri-Nets

	Distinguishing Between Syntax and Runtime Elements
	An Advanced Example Language -- Hierarchical Petri-Nets

	Language Design Patterns
	SDL: A Case Study
	Conclusions

	Adopting Model Driven Development in a LargeFinancial Organization
	Introduction
	Methodology and Tools
	Models and Tools in the Software Development Lifecycle

	Adoption Process
	Early Preparations
	Implementing Pilot Projects
	High Level Management Decision
	Wide-Scale Adoption

	Measuring Improvement
	Computing the Complexity of a Software System
	Comparing Projects

	Lessons Learned
	Conclusion
	References

	Reverse Engineering Models from Traces to ValidateDistributed Systems – An Industrial Case Study
	Introduction
	Case Study Overview
	Validation Using a Trace Analysis Approach
	Outline of the Approach
	Implementation of the Approach
	Property Specification
	Using Patterns

	Example
	Results and Experiences Obtained
	Conclusions
	References

	A Model Driven Software Factory UsingDomain Specific Languages
	Introduction
	Architecture
	Presentation Layer
	Data Contract Layer
	Business Layer
	Data Layer
	Utilities

	Requirements to the Domain Specific Languages
	Models Must Be Easier That the Equivalent Code
	Models Must Be Productive for Less Experienced Developers
	Generated Code Must Be Readable and Maintainable
	Regeneration Must Always Remain Possible
	The Different DSLs Should Be Useable Separately and in Collaboration

	The SMART-Microsoft DSLs
	Web Scenario DSL
	Data Contract DSL
	Service DSL
	Business Entity DSL

	Project Experience
	Conclusion and Lessons Learned
	References

	Towards a Model Driven Approachto Automatic BPEL Generation
	Introduction
	Overview of EDOC CCA
	Overview of BPEL
	From CCA to BPEL Using OMG's QVT
	Preparation for Transformation
	From CCA to BPEL

	The Illustrative Example
	Related Work
	Conclusions and Future Work

	Author Index



