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Summary. This chapter presents an introduction to the different artistic design do-
mains that make use of interactive evolutionary design approaches, the techniques
they use, and many of the challenges arising. After a brief introduction to concepts
and terminology common to most artificial genetic design, there is a survey of artis-
tic evolutionary systems and related research for evolving images and forms. While
the focus is primarily on purely aesthetic fitness landscapes, the survey also ven-
tures into areas such as product design and architecture. The overview shifts from
technique to application as organizational strategies, as appropriate. After briefly
surveying additional information sources, the chapter concludes with a discussion of
major topics of relevance to evolutionary system designers, providing context for the
following chapters. It is hoped that this snapshot of the state of the field will increase
exposure to projects and issues, discussion amongst participants, and ultimately the
accessibility of these techniques and approaches.

1.1 Introduction

In the early 1990s, both Karl Sims and William Latham (with Stephen Todd)
followed in the footsteps of scientist Richard Dawkins by combining evolution-
ary techniques and computer graphics to create artistic images of great com-
plexity [1, 2, 3]. In the succeeding decades, a generation of artists/researchers
have recombined, modified, and extended these techniques, beginning the ex-
ploration of possible applications of evolution to aesthetic design. This chapter
will survey developments in this field, and introduce issues and concepts crit-
ical to the approaches described.

The beginning of this chapter briefly introduces basic concepts and termi-
nology used in evolutionary art and design. The middle portion of this chapter
presents an overview of many of the aesthetic domains, application areas, and
techniques in which artificial evolution has been employed. Determining a
categorization strategy from the many possible options was very challenging.
At the top level of organization, examples are divided into two-dimensional,
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three-dimensional, and four-dimensional sections (image, form, and time).
Within these categories, however, two different methods are used.

In the two-dimensional artifacts section, work is discussed primarily in
terms of the technique used. Approximately 90% of the examples in the sec-
tion are applications of nonrepresentational aesthetic image creation, with
three to six examples of most techniques. The remaining 3D and 4D domains
seem more readily divided by usage, given fewer examples of each individual
approach, and greater diversity and balance of application areas. The overview
of the field concludes with pointers to additional survey materials. While this
chapter will not attempt to venture into the field of evolutionary music, it
will frequently traverse the short distance between artistic/aesthetic and more
design-oriented subjective fitness applications. While efforts have been made
to provide references primarily to works published as papers, books, etc., due
to the lack of reliability that accompanies Web-based references, there are
quite a few relevant projects, companies, and other resources included that
are available only online.1

In the space of evolutionary design research, the boundary around projects
comprising “evolutionary art” is fuzzy. Are evolved creatures art when pre-
sented at an a-life conference versus a gallery installation? Are certain regions
of software’s potential design space art, while others are not? Which is the
more critical task: the creation of evolutionary art interfaces or the crafting
of the design spaces they represent? Very few of those capable of the tech-
nical demands of programming evolutionary design software have formal art
training. While the products of evolutionary art systems are ostensibly tied to
the aesthetic sensibilities of the user, the design of the solution space usually
weighs much more heavily in the likely range of visual results.

The remainder of the chapter concludes by introducing a number of con-
cepts and concerns prevalent in the field, including a summary of critical issues
to provide context for the remaining chapters. Collectively, these point toward
a future in which software, interface, and representation will work together
to escape the local minima of current imagery and venture further into new
regions in the possibility space of evolutionary art.

1.2 Concepts and Terminology

This section will briefly introduce the basic concepts upon which most evolu-
tionary art and design approaches are based. In general, a design firm analogy
can be of use. Given a particular design assignment, a staff of artists and de-
signers creates a number of possible solutions. The director decides, using

1 While this is intended to be a comprehensive survey providing brief coverage
of representative works in a majority of the relevant areas, it is likely that many
individuals, projects, and problem domains are not mentioned. Please continue to
email missing references, which will be added to the growing online database [4].
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whatever criteria he or she feels is most appropriate, which designs seem the
most promising for further investigation. The team is then sent “back to the
drawing board” to work on variations and combinations of the chosen best de-
signs. It returns shortly to present its new solutions, which are again judged.
The best are selected, and the process repeats until satisfactory designs are
obtained.

To make use of a computer in this scenario, first the specific design prob-
lem must be represented numerically. A program produces a potentially large
number of possible solutions. The quality or “fitness” of these solutions is
then determined. In some cases, this can be done algorithmically, but in most
of the examples discussed here, a human will judge subjectively. There are a
number of means by which the best solutions can be combined and/or modi-
fied to produce new solutions similar to their antecedents. The method used is
generally determined by the design representation. Approaches can be divided
(very roughly) into two different methods, those using a fixed length string
of numbers at the heart of their representation and those that make use of a
hierarchical graph (usually representing an expression.)

1.2.1 Genetic Algorithms

Simple cartoon faces can be used to illustrate some of the basic principles of
a genetic algorithm (GA). A particular face can be described using a list of
numbers (or parameters) that define traits like how wide the mouth is or how
big the eyes are. Creating such a parametric model2 implicitly creates a set
of possible designs or a solution space. The list of parameters can be referred
to as a genotype, with each number being thought of as a gene. The values of
these genes determine the appearance of the face. The face can be referred to
as the phenotype. A population of faces can be created by setting the values
of the genes for each face to different values (e.g., see Fig. 1.9).

Fig. 1.1. Small degree of mutation (left) vs. greater mutation (right)

2 The term “parametric” has several discipline-specific meanings. Here it will be
used primarily when referring to entities defined by a set of parameters.
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In a typical interactive evolutionary system, a population of individual
faces is initially randomly generated and displayed to a software user. The
user judges the population by selecting the most interesting faces, usually
simply by clicking on them. The system then makes use of the user’s choices
to generate a new generation of faces. This process of evaluation, selection,
and generation, is repeated until the user is satisfied.

The designs for two selected parent faces can be combined in different ways
to produce a new set of offspring face designs. Each individual offspring may
inherit some of the visual properties of one or both of the parents. Two faces
are combined or mated by mixing genes, drawing some genes from one parent
and the remaining genes from the other. One way this is commonly done is by
using a technique called crossover wherein genes are copied in sequence from
one of the parents, into the offspring. At some randomly determined point the
copying process “crosses over” to the other parent, from whom it copies the
remaining gene values. The child/offspring face could end up with the father’s
mouth but the mother’s eyes as a result.

In addition to mating, new designs can also be produced by mutation.
This involves producing variations of a current design solution by making
random adjustments to some of the genes. Changing many genes usually re-
sults in significant differences, while minor gene modifications might produce
correspondingly minor visual alterations to the phenotypes/faces (Fig. 1.1).

1.2.2 Genetic Programming

In evolutionary art, a different representation is also commonly used instead of
the fixed-length list of numbers described above. In much of the work described
in the next section, a mathematical expression is used as the genotype. An
expression like abs(sin(s ∗ 3 ∗ π) + cos(t ∗ 4 ∗ π))/2 can be represented as a
tree graph structure, made up of mathematical functions and operators at
internal nodes, and constants or variables at the leaves. When the expression
represented by the tree is evaluated at each pixel in an image by plugging in
the pixel’s coordinates, the resulting value can be used to determine the color
of a pixel. The resulting image is the phenotype. While such systems are often
still referred to as GAs by many, they are also often discussed as examples of
genetic programming (GP).

Images or forms thus created and selected can be mated using crossover
techniques once again, but now instead of combining two lists of numbers,
two node graphs must be combined. For example, one tree might be inserted
randomly into the other, or subtrees might be exchanged. Mutation likewise
still involves making small changes to the genotype. In this case, however, a
change might be made to a subtree: changing a leaf node from a constant
to a variable, inserting or deleting an internal operator node (e.g., addition
becoming subtraction), or changing a node from one function to another. As
will be seen in the following sections and chapters, there are many different
techniques for representing genetic information as well as a very diverse set of
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(a) (b) (c) (d)

Fig. 1.2. (a) Pixel intensity from horizontal s coordinate (b) pixel values from
abs(sin(s ∗ 3 ∗ π)) (c) abs(sin(s ∗ 3 ∗ π) + cos(t ∗ 4 ∗ π))/2 (d) tree representation

application domains. Choices about what functions to use, how to map values,
and so forth determine the breadth of phenotypes that can be created, and
also influence the likelihood of finding interesting results.

1.3 Evolving 2D Artifacts

1.3.1 Expression-Based Imagery

In his 1991 paper Karl Sims introduced the expression-based approach to
evolving images briefly described in the previous section [2]. His work resulted
in complex and beautiful images like the ones in Fig. 1.3. In doing so, he cre-
ated a template which has attracted the efforts of many artists and graphics
programmers ever since. A number of artists have been inspired to create sub-
stantial bodies of work using expression-based image generation techniques.
Through the 1990s, Steven Rooke in particular created one of the earliest ma-
jor bodies of expression-based image work, about which a significant amount
has been written [5, 6]. Rooke’s Web site published extensive details about
his process of evolving potentially hundreds of generations and then finally
“tuning” the colors and region of image space presented by each image.3

Tatsuo Unemi is one of a few evolutionary artists who has continued breed-
ing images from mathematical expressions for over a decade, using different
versions of his SBART software [9, 10]. The work in his online gallery pro-
vides a rare opportunity to see a progression of color and form as his software’s
capabilities have been gradually extended (Fig. 1.4b).

More recently, David Hart [11] has put significant effort into developing a
collection of images with a very different visual appearance from the majority
of expression-based, evolved imagery (Fig. 1.4a). His interest, in particular in
gaining control over the evolving colors and forms, is noteworthy. As such, his
system’s interface allows for extensive low-level tuning.

3 An extremely informative resource, Rooke’s Web site is unfortunately now only
accessible through the Internet Archive’s “Wayback Machine” site [7, 8].
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(a) (b)

Fig. 1.3. c©Karl Sims, 1991

(a) (b)

Fig. 1.4. (a) c©2005 D. A. Hart (b) c©Tatsuo Unemi

The majority of expression-based image generation systems in the spirit of
Sims use a reduced set of mathematical functions and often only local infor-
mation for determining pixel color. In different systems it is often possible to
recognize, in the images produced, emphasized reliance on specific techniques
such as fractals, polar coordinate mappings, noise functions, etc.

It is common for there to be a dozen or more Web sites at any given time il-
lustrating implementations of expression-based approaches. They are often ei-
ther Java applets or downloadable PC programs, created as short-term student
projects or by hobbyists, and many are unfortunately no longer accessible. It
can be interesting to note the similarities and differences in image galleries pro-
duced using various systems. Information about the exact function sets used
to construct genotypes is usually not available, but the characteristic results
of different functions are sometimes evident. Some online examples include
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(a) (b) (c) (d)

Fig. 1.5. (a) c©Derek Gerstmann (b) c©David K. McAllister (c) c©Tim Day (d)
c©Ashley Mills, 2005

work by Bacon [12], Davidson [13], Kleiweg [14], Maxwell [15], Mills [16], and
Saunders [17].

Specific additions to the function set or other system extensions push
system results in specific (often new) directions: Ellingsen’s distortion and it-
eration operators [18], Gerstmann’s HDR mapping (Fig. 1.5a) [19], or McAl-
lister’s evolved color palettes (Fig. 1.5b) [20] provide a few visual examples.
Some hybrid systems using expression images such as Baluja’s [21], Green-
field’s evaluations of expression evolution [22, 23, 24], and Machado’s NEvAr
system [25] will be discussed later in this chapter (as well as in chapters 17
and 18.)

Image evolution software is occasionally released for others to use as an art-
making tool with varying degrees of commercialization, interface development,
and source code availability. A few examples include ArtMatic [26], Evolvotron
(Fig. 1.5c) [27], Kandid [28], and Softology [29]. In particular, Kandid supports
a large number of different representations in addition to expressions.

In a few cases evolution software has run in conjunction with a Web server,
allowing those visiting the site to determine fitness by “voting” for images. The
original example of this was a system by Mount, Neil-Reilly, and Witbrock [30,
31]. A more recent example is the python-based online voting system using
tournament-style selection by Lee [32]. A few other voting/server systems will
be mentioned below, including those of Draves [33], Gatarski [34], and Hemert
and Jansen [35].

Besides 2D images, expressions have also been evolved to create textures
for 3D geometry, most commonly using a surface point’s coordinates as ex-
pression inputs. Sims demonstrated a few examples of his techniques applied
to 3D geometry in his early work [2, 36]. Hobden focused on GP textures
in the style of Sims [37]. RenderMan shaders making use of noise functions
were evolved by Ibrahim [38]. Hewgill and Ross focused on obtaining textures
based on sampled texture data [39].

A handful of other researchers have explored automatically evolving ex-
pressions using target images. Ibrahim [38] made some of the earliest attempts
at replicating textures. DiPaola [40] recently focused on evolving expression
images driven by portrait image targets (Fig. 1.6a). Ross’s initial work in this
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(a) (b)

Fig. 1.6. (a) Image target, upper left; c©Steve DiPaola, 2005 (b) c©JJ Ventrella,
2004

area with Wiens [41] sought to match simple test textures. Ross’s more recent
work attempts to generate expressions matching arbitrary artistic imagery [42]
(see Chap. 16).

1.3.2 Fractals/IFS

Several researchers over the years have focused on fractals as their primary
primitive, most typically using iterated function systems. An interesting ex-
ample is the Electric Sheep project by Draves [43, 33] (discussed in Chap. 3).
Implemented as a distributed screen saver with selection capabilities, Electric
Sheep is likely the most widely used evolutionary design project to date. The
genes consist of approximately 160 parameters (Fig. 1.7b).

Chapuis and Lutton’s ArtiE-Fract project has produced a large gallery
of images with a more traditional interactive selection interface using “non-
linear 2D functions (affine and non-affine), defined either in Cartesian or polar
coordinates” [44, 45]. A Java applet with source code demonstrating a basic
IFS interactive evolution system by Rowley is available online [46].

Yoshiaki provides software which explores a very different fractal image
space based on the Mandelbrot set [47]. Ventrella generated imagery by evolv-
ing Mandelbrot parameter values using target portrait images (Fig. 1.6b) [48].
Rowley’s “Toolkit for Visual Genetic Programming” [49] and Jourdan’s Kan-
did [28] provide generic frameworks capable of evolving fractal imagery
(Fig. 1.7a).

1.3.3 Neural Networks

Several projects have evolved neural networks to generate images. The Artifi-
cial Painter for example uses neural networks with inputs involving orientation
and distance from landmark coordinates to either automatically or interac-
tively evolve abstract imagery [50].
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(a) (b)

Fig. 1.7. (a) c©Thomas Jourdan (kandid.org) (b) c©Scott Draves and the Electric
Sheep (www.electricsheep.org)

Stanley’s NEAT infrastructure was used by Fagerlund [51] to evolve
complex networks for image generation (Fig. 1.8a). Stanley demonstrates the
usage of the software for targeted evolution by interactively evolving networks
which gradually refine a spaceship design [52]. This approach is replicated in
a C# implementation by Ferstl (based on sharpNEAT) which adds several
interface extensions, in particular giving the user greater control of color [53].

Others, such as Baluja, Machado, and Saunders, have investigated the
use of artificial neural networks for fitness evaluation with the goal of auto-
matically generating interesting images [21, 54, 55]. Automated image fitness
evaluation will be discussed at the end of this chapter.

1.3.4 Image Processing

Quite a number of systems have used genetic techniques to process images
provided as source material. A number of expression-evolving projects, in-
cluding those by Sims, Unemi, and McGuire, have provided functions capable
of drawing color from source images in addition to the usual math expressions
greatly enhancing the palettes produced [2, 10, 56]. Other work that as focused
specifically on image coloring includes Machado et al. and Greenfield [57, 58].

Graf and Banzhaf’s work used image morphing and selective dissolving [59]
while Poli and Cagnoni focused on image enhancement using a pseudo-coloring
process [60]. There have been a few commercial products for image processing
which allow users to interactively select from a set of images manipulated with
different filters [61, 62].

Recently, a number of researchers have begun to use salience-based ap-
proaches to affect how different portions of an image are manipulated,
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(a) (b)

Fig. 1.8. (a) c©Mattias Fagerlund, 2005 (b) c©Gary Greenfield

including work by Wolfer using neural networks [63] and by Collomosse [64, 65]
(see Chap. 2). Neufeld and Ross evolve filters automatically based on a model
of aesthetics and high-level paint stroke primitives (see Chap. 16).

Several researchers have worked to evolve images of faces, usually through
image compositing and transformations. Among the earliest was the FacePrint
work of Caldwell and Johnston. Initially put forth in a criminal sketch artist
context, Johnston has since conducted a great deal of work on evolving nu-
merical representations of facial aesthetics (and gender) [66, 67].

Hancock and Frowd [68] used principal components analysis in an approach
based on eigenfaces to allow interactive creation of photographic face images
(see Chap. 9). Takagi and Kishi [69] recombined face parts for one of their
problem domains while studying user fatigue reduction. Lim [70] employed
image warping, pushing and pulling appropriately placed anchor points to
smoothly distort photos of faces to evolve facial expressions.

1.3.5 Lines and Shapes

Drawings, paintings, and shapes can be evolved using a wide array of tech-
niques. Much evolutionary artwork in recent years has employed ant and
swarm computing paradigms. Aupetit et al. use an interactive genetic al-
gorithm (IGA) to evolve parameters for ant paintings [71] (see Chap. 11).
Greenfield has evolved simulated ant and robot parameters, experimenting
with different automated fitness functions to achieve varying aesthetic vi-
sual results [72, 73]. Urbano investigates consensual decision making among
swarms of painter agents [74]. Moura and Ramos have also written exten-
sively about swarm art [75, 76]. Jacob provides an in-depth discussion of
swarm-based evolution [77] in Chap. 7.

Dudek developed an OS9 freeware program for interactively evolving draw-
ings using a LOGO-like language, intended as a tool for teaching children
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Fig. 1.9. c©Matthew Lewis, 2000

about evolution [78]. Dehlinger has written about his generative drawings in
an evolutionary context [79]. In some of the earliest evolutionary work, Baker
modified the positions of line segments, allowing a user to select the “best”
images, from drawings of faces as one example [80].

Pagliarini and Parisi allowed users to evolve expressions on cartoon faces
in a system intended to allow children to learn about facial expressions’ con-
veyance of mood [81]. Nishio et al. created a cartoon face space with twelve
parameters in order to study ways to reduce user fatigue by combining an IGA
with different fitness assignment strategies [82]. The time to evolve a target
face was compared for different approaches. Lewis used cartoon face evolution
as one domain when developing the interactive evolutionary design platform
“Metavolve” within a commercial 3D animation environment (Fig. 1.9) [83].

Lund used parametric fonts to compare interactive evolution and direct
manipulation interfaces, observing that evolution yielded better results for
creative exploration while direct manipulation was easier given a targeted
design task [84]. Schmitz created a Flash-based program which allows the user
to experiment with breeding different typefaces with an emphasis on drag-and-
drop mating (Fig. 1.10) [85]. The Alphabet Synthesis Machine by Levin et al.
creates abstract alphabets from a physically based writing simulation, using
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Fig. 1.10. c©Michael Schmitz, UdK Berlin

a GA with a fitness function based on user input [86]. Butterfield and Lewis
presented populations of fonts created from letters deformed by groups of
blending implicit surfaces [87]. Unemi demonstrated a prototype with ten
parameters for Japanese Katakana font design [88].

1.3.6 Additional Techniques

Many other approaches to evolving 2D artifacts for a number of problem
domains have been investigated. Ashmore employs “cartesian genetic pro-
gramming” in which genotypes consisting of a string of numbers encode small
function networks that map coordinates to colors [89]. Hemert and Jansen
evolve Mondriaan, mandala, van Doesburg, and fractal style images using a
CGI-based Web interface, which has the ability to collect data about people’s
aesthetic selections [35]. Lewis’s image generation approach involves layering
patterns created with varying degrees of irregularity, generated using proce-
dural shader techniques with explicit embedding of basic principles of visual
design [90].

Bachelier uses a process in which traditional art-making techniques are
combined with computer-assisted methods such as selection masking, local-
ized scaling, rotation, and translation, distortion, etc. to generate painterly
images while working in an interactive evolution paradigm [91] (Fig. 1.11a
and Chap. 12). McCabe’s images combine interactive selection with auto-
mated fitness calculation based on diversity metrics measured at different
scales (Fig. 1.11b) [92, 93].

Greenfield has continually explored a large number of varied image gen-
eration techniques with an eye primarily toward investigating potential non-
interactive fitness functions. In addition to the drawing approaches mentioned



1 Evolutionary Visual Art and Design 15

(a) (b)

Fig. 1.11. (a) c©Günter Bachelier, 2004 (www.aroshu.de) (b) c©Jonathan McCabe,
2006

earlier, other examples include his generated mosaics using image and
convolution filter coevolution [94], as well as cellular processes [95] (Chap. 17).

Gatarski presented work in which banner advertisement designs for Web
pages were automatically evolved using user click-through as a fitness met-
ric [34]. Monmarché et al. investigated Web page visual design properties
(colors, fonts, etc.) by interactively evolving style sheets [96]. Oliver et al.
then extended this work to include page layout [97].

1.4 Evolving 3D Artifacts

Artists, scientists, and designers have used a wide range of techniques to evolve
3D geometry in a number of domains. The earliest efforts were the product
of artist William Latham working with Stephen Todd of IBM UK around
1990 [3]. The complex branching (frequently animated) organic forms created
using their software proved to be a strong inspiration for many of the earliest
evolutionary artists.

There have been several implementations of their technique both as in-
dividual projects and as commercial software. Rowbottom’s Form software
provided an early PC-based implementation of Latham’s approach [98]. Lin-
termann created a real-time installation (using a high-end SGI) called Mor-
phogenesis [99]. Groboto is an interface which allows children to build and
experiment with these sorts of forms [100] . A few commercial implementa-
tions existed, like Notting Hill’s Cyberation/Dancer DNA [101], but are no
longer available.

Todd and Latham’s PC Mutator system expanded their infrastructure to
allow their interactive genetic approach to interface with other arbitrary PC
software packages ranging from drawing tools to spreadsheets [102, 103].
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Fig. 1.12. Mutation Art. Artist: William Latham. Produced at the IBM UK Sci-
entific Centre. Programmer Stephen Todd. Copyright William Latham, 1987 – 1993

(a) (b)

Fig. 1.13. (a) c©Ted Bedwell, 1998 (b) c©Mark W. Jones

1.4.1 Abstract Form

Numerous geometric modeling techniques have been employed in an attempt
to evolve arbitrary 3D forms using interactive evolution. Early examples were
Watabe’s lattice deformation approach [104] and Frank McGuire’s sequences
of polygonal operators [105].

A number of abstract form generation projects have employed implicit
surfaces. Das, Bedwell, Jones, and Jacob all have presented implicitly defined
volumetric primitives using GP-style crossover and mutation operations on
equations to combine and then render them (Fig. 1.13b) [106, 107, 108, 109].
Nishino has used implicit primitives (superquadrics) combined with deform-
ers in an interactive genetic algorithm (IGA) intended for free-form model-
ing [110].

Additional methods of evolving geometry have included surfaces of revolu-
tion [111], constructive solid geometry [112], surface curvature and form driven
by simulated chemical reactions [113, 114], and VRML scene graphs [115, 116].
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1.4.2 Consumer Design

A number of systems over the years have been developed to evolve consumer
product designs. One of the earliest examples is the general evolution system
described by Pontecorvo [117]. Rowland’s research included an investigation
into shampoo bottle evolution strategies [118, 115]. Bentley described his ge-
netic spatial partitioning software which was shown to be useful in a number
of evolutionary design domains [119].

A few researchers have applied genetic approaches to fashion design, using
body parts with variable widths [120] or combining pre-modeled 3D garment
geometry parts [121, 122]. Lee and Tang demonstrate the use of shape gram-
mars in the generation of camera designs [123]. Hornby compares the strengths
of a number of generative and non-generative representations, demonstrating
the GENRE framework’s performance evolving table designs [124].

A few companies offer evolutionary design systems for commercial de-
sign. Genometri’s Genovate technology integrates with CAD software for form
design [125]. Other emerging evolutionary consumer design systems include
Icosystem’s Hunch Engine [126] and Affinnova’s IDDEA technology [127].

1.4.3 3D Computer Graphics

Modeling for 3D computer animation and virtual environments has provided
a number of opportunities for evolutionary design. Several projects have used
L-systems [128] to evolve plant geometry (as well as more abstract branching
structures). In the early 1990s, Sims and artist Jon McCormack both evolved
animated plant life in surreal landscapes [2, 129, 130]. Other efforts have
included Traxler’s evolution of realistic trees [131] and Jacob’s Mathematica-
based educational examples [132]. Grammidity is available as an open source
package using Java for experimenting with grammar-based evolutionary pro-
gramming [133].

Several genetic systems have been created to evolve human figure charac-
ter geometry primarily for use in games and animation. Rowland’s disserta-
tion and Singular Inversion’s FaceGen Modeller are two examples of systems
for evolving high quality face geometry [118, 134]. DiPaola developed the
FaceLift interface for evolving Sims2 game characters [135]. Lewis evolved
both deformed polygonal and implicit surface-based body geometry within
commercial computer graphics packages [136].

Aoki and Takagi used an IGA to build a lighting support system, com-
paring user performance in a manual lighting task with users employing an
aesthetic selection interface [137, 138]. They have also conducted research
into the evolution of particle system design, in the context of fireworks ani-
mations [139].

A common significant goal of creative evolutionary design approaches to
artistic creation is to ease the difficulty inherent in using complicated visual
design software. Lewis and his students have been working on approaches
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Fig. 1.14. Image from “Turbulence: an interactive museum of unnatural history,”
Copyright 1994 Jon McCormack

to allowing non-programmer visual artists and designers who are capable of
creating parametric solution spaces in popular CG design software such as
Maya, Houdini, and Jitter to explore interactive evolution design approaches
without requiring custom programming. The domains of 3D modeling, light-
ing, surface materials, particle systems, and animation are all within this
potential problem space [83, 140, 141, 142]. Marks et al. have provided an
alternative approach in the same problem area in which populations of so-
lutions are precomputed, with consideration given to encouraging maximum
differences between the properties of individuals, to achieve sufficient coverage
of a given CG domain [143].

1.4.4 Architecture

There is a very rich and complicated history of the use of evolutionary con-
cepts and terminology in architectural design. It is very difficult to bound
architectural usage of evolution because much of the work might more ap-
propriately be broadly categorized as “generative design.” Zarzar provides a
critical analysis of the role of evolution in the work of several architects who
make use of genetic design terminology, including Tsui, Soddu, Frazer, and
Gero [144].

Frazer’s long history of evolutionary architecture research has focused
on procedures for controlling growth and development from seed forms into
emerging structures rooted in biological analogies, drawing from a long list of
generative and a-life techniques [145, 146].

Gero’s research group’s work has uniquely focused on very difficult prob-
lems such as representing stylistic knowledge, recognizing novelty, and extend-
ing state spaces in order to better model creative processes [147, 148, 149, 55].
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Several interesting surface-generating systems using techniques such as
L-systems and agents for surface generation have resulted from the Emergent
Design Group at MIT, including Genr8 and Agency-GP [150, 151, 152] (see
Chap. 18). Hemberg has also provided a simple GA implemented as a MEL
script for generic evolution in Maya [153].

Paul Coates has made substantial use of L-systems and shape grammars
to breed structures with fitness driven by performance, for example, in re-
sponse to environmental conditions such as light and wind, and emphasizing
structural properties like enclosure and permeability [154, 155].

1.5 Evolving 4D Artifacts

As is common in many of the above 3D domains, problem spaces in which
evolved individuals vary over time can be challenging to evaluate. Animated
characters, interactive systems, and dynamics simulations each require novel
representations and interfaces.

Several researchers have used genetic approaches to generate character mo-
tion via interactive or automated fitness selection. Miller evolved human-like
reaching movements through obstacle-filled 3D environments [156]. Shibuya
also evolved natural arm motion but using an IGA in an effort to explore meth-
ods of automatically reducing the number of animations a user would need to
evaluate [157]. Antonini further explored the use of IGAs for producing figure
gestures for use by characters within avatar-based virtual environments [158].

Lim and Thalmann published a number of papers investigating IGAs for
gait creation, including evolution from existing animation, methods for con-
straining the walk solution space, and, more generally, the use of tournament
selection when evolving time-based solutions [159, 160, 161]. Lapointe demon-
strates an approach to evolving dances using different choreographic muta-
tions on sequences of movements. Both automated and interactive selection
approaches are considered [162, 163].

Artificial life artwork and research has produced a vast amount of animated
creatures employing varying degrees of evolutionary techniques. While the
scope is too large to begin to provide adequate coverage here, a few jumping
off points for further investigation include the physically simulated creatures
of Sims, Ventrella, and Gritz [164, 165, 166] as well as several papers on the
subject by Alan Dorin [167] (see Chap. 14). (The ant, swarm, and robot work
referenced above also falls within this category.)

While this survey is not addressing genetic sound or music (which will
be discussed in several later chapters), a number of systems have emerged
for evolving results based on video material. Nemirovsky’s work focuses on
collaborative improvisational control of multiple media sources. The system
allows users to specify fitness dynamically using magnets, which causes a GA
to evolve the system’s state in desired directions [168]. Henriques et al. have
embedded video production knowledge (editing, montage, etc.) into fitness



20 Matthew Lewis

evaluation to generate video sequences. The system relies on both manually
specified semantic information about the clips, as well as procedurally gen-
erated low-level information (e.g., histograms) [169]. Lewis demonstrated
the evolution of arbitrary live-video processing filters in real time within a
Max/MSP/Jitter-based framework [141]. Unemi extended SBART to allow
movies to be both generated and used as input, using boxels to extract color
volumes from the 3D movie space using expression-based GP with time vary-
ing cyclically as an additional variable [170].

A number of the previously mentioned image evolution artists/researchers
have used their systems to produce animations within their respective ge-
netic image spaces. These are often produced as either interpolative tran-
sitions between a sequence of one or more selected pairs of individuals, or
sometimes with the insertion of time as a variable within an image or form-
generating expression. Examples include animations by Latham, Sims, Unemi,
and Hart [3, 2, 9, 171].

1.6 Overviews and Surveys

There are several excellent sources for further reading on different aspects
of evolutionary art and design. In particular, Kelly’s late 1990s book Out of
Control: The New Biology of Machines, Social Systems, and the Economic
World provides a very readable introduction to issues, techniques, and goals
surrounding this discipline [54]. The survey texts edited by Peter Bentley,
Evolutionary Design by Computers and Creative Evolutionary Systems (with
co-editor Corne), provide a broad overview of most of the primary concerns
in the wider field [172, 173].

Hideyuki Takagi has written a survey on interactive evolutionary com-
putation which contains many references focusing on experiments in interface
design and user fatigue [174]. Mitchell Whitelaw’s book Metacreation: Art and
Artificial Life contains in-depth analysis of several of the artists mentioned
above, within an a-life context [6]. Finally, the Web site “Visual Aesthetic Evo-
lutionary Design Links” provides a comprehensive list of online resources [4].

1.7 Concepts and Topics

Having reviewed the breadth of specific applications and techniques for apply-
ing evolution in the visual arts and design, this section will briefly introduce
some challenges and research directions involved with developing such sys-
tems. Note that while the author has sometimes worn the hat of a computer
scientist or an evolutionary artist, this section is written largely from the per-
spective of a meta-designer, his having been focused of late on the task of
developing systems to enable others to make use of genetic approaches to art
and design.
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1.7.1 Solution Spaces

Meta-designers must carefully craft their solution spaces before they can be
explored. Evolutionary algorithms are one way of traversing these abstract
environments. Explicit parametric design can be very challenging since in a
sense the range of desired possibilities must be considered in advance, which
is difficult when the intent is the discovery of surprising solutions. In both
interactive and automated fitness approaches, the design of the solution space
is critical if there is to be any hope of satisfactory convergence.

Different fitness landscapes (as with landscape in the real world) vary
considerably in form in large flat regions of similarity, continuous rolling hills,
sharp peaks, abrupt cliffs, etc. More efforts like the examples by Hayashida
et al. for visualizing multidimensional solution spaces would be worthwhile
for studying the formal qualities of design spaces [138]. Although these spaces
of possibilities are most commonly viewed only in terms of expressions, sets
of functions, and ranges of values, by directly evaluating their shape these
abstract environments could perhaps be sculpted and compared. Evaluating
the fitness of solution spaces might allow them in turn to be evolved via
mutation and recombination.

A number of writers have contrasted the control challenges of GP-based
representations with the limitations inherent in GA representations [175, 22,
176, 177]. Control is a very significant challenge for expression-based genetic
programming approaches. In many implementations, mating operations often
result in offspring which resemble just one (or often neither) of the parents.
Mutation operations can also be very difficult to control, in the sense of giving
the user a slider which will accurately allow him to specify whether he wants
primarily small visual changes. While automated fitness systems can tolerate
large numbers of poor fitness offspring, the low population sizes of interactive
system require design spaces with higher average fitness.

1.7.2 Shaping Fitness Landscapes

Iterative improvement of solution spaces (i.e., function sets, value ranges) is
in many ways as equally challenging as developing techniques for searching
for potential solutions. While much work focuses on innovative ways to assist
in finding regions of high fitness, making the high-fitness regions large enough
that they are easily discovered is also a frequent topic. This can be considered
an “architectural” meta-design problem: how to modify solution spaces with
the intent of them being traversed by artists and designers.

The signature or “style” of a given evolutionary design system very fre-
quently seems stronger than the differences that might result from different
users [98]. Most commonly this signature4 is a result of biases toward certain
4 McCormack refers to this as being “...of a certain class...” [178], while Musgrave

refers to it as the “looks” and “characteristic patterns” of different genetic pro-
grams [176].
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prevalent mathematical functions and techniques used to construct the images
and solution spaces. Most systems make minimal attempts to allow this sig-
nature to be adjusted. Actually, in systems designed to be used to generate
artwork by a single artist, such a signature is likely to be embraced and cul-
tivated.

System balancing is a great challenge: highly constrained design spaces
containing primarily similar designs naturally converge quickly. While they
can have high initial average fitness “built in,” they also have a very strong
signature and few surprises. Design spaces in which the meta-designer has
provided less constraints on what can exist also can have (in practice) a very
strong signature because of their much lower average fitness (i.e., they can
contain a great deal of junk). Their greater generality can yield more surprises,
but only if those regions of creativity and novelty can be located.

In addition to navigating design spaces seeking high-fitness regions, there
is also the option of reshaping the space itself. The majority of possible ranges
for parameters are carefully tuned to be biased strongly toward acceptable re-
sults. The more these ranges are controlled, the less surprise becomes likely.
The less these ranges are constrained, the more we are likely to be disap-
pointed by purely random results. There is typically very little discussion in
systems papers describing the manual tuning conducted, possibly because of
the subjective aesthetic nature of the results which can detract from objective
analysis of new techniques.

For example, in many of the expression-based image generation systems,
color palette representation is frequently implicitly biased by mapping ex-
pression results into specific color (sub)spaces. One distinctive type of palette
results from RGB mappings while another occurs from HSV or HSL mappings.
System authors sometimes bias mappings within functions toward higher value
or saturation, or index into tables of selected colors, but these choices are com-
monly hard-coded. While a given user can indeed attempt to breed individuals
to reach specific color combinations, this may prove very difficult in spaces
heavily biased toward specific classes of palettes [176].

1.7.3 Controlling Diversity

In the spirit of Simon’s “every icon” artwork (which slowly displays every
bitmap possible on a finite grid [179]), when generative design systems are
under discussion there is frequent mention of the nearly infinite number of
possibilities which can result from the algorithms in question. Galanter sug-
gests a few ways to think about the significance of visible differences exist-
ing between possible design solutions [180] (see Chap. 15). Whether a given
solution space actually contains a representation of every possible image is
a commonly discussed topic (often using the Mona Lisa as a specific exam-
ple [54, 181, 182, 178]). Many of the image spaces discussed indeed contain any
given image if practical concerns are set aside, for example, with an expression
which explicitly contains an appropriate value for each pixel. Whether or not
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one could practically find that image in a reasonable amount of time seems
the more important question.

Eckert et al. suggest allowing the user to design and control biases in large
solution spaces [183]. An example of this is Perlin’s bias and gain functions,
intended to give intuitive normalized tuning capabilities for parameter remap-
ping. While bias pushes values controllably toward either extreme, gain can be
used to pull values toward (or away from) the center of a range [184]. Allowing
a user to sculpt solution spaces can be viewed as manipulating the abstract
landscape such that there are always higher fitness peaks to climb [185].

Another such technique is the use of functions for mapping multiple ar-
bitrary subranges of varying size yielding similar visual results into equally
sized normalized regions. For example, a given parameter might yield one
qualitatively similar set of visual results for values in (0, 15), another set for
(15, 16), and a third set of visual results for values in (16, 100). A simple map-
ping of a gene value into the (0, 100) parameter range might never present
individuals from the second qualitative class. But an interface which allows
these classes to be identified and interactively remapped (for example, each
occurring roughly one third of the time) can facilitate more rapid discovery
of regions of higher aesthetic fitness [142].

Sources of signature often involve identifiable operations like recurrence
of distinctive functions, deformations, unique values, etc. One strategy for
reducing such signature is to actively control the frequency of the appearance
of these visually dominant elements. Efforts can be made to make the chance
of a trait being activated inversely proportional to its visual effect. Palettes
of formal visual design traits can thus be selected and blended like the tables
of colors mentioned above.

Symmetry is an example of a basic design trait one might wish to control. A
common approach is to hope for properties like symmetry to gradually emerge
by selecting for them. Another strategy is to build in symmetry functions
which sometimes activate, appearing suddenly. However this leads to a lack
of control, as offspring resulting from slight mutations (i.e., small steps in the
solution space) bear little resemblance to their ancestors. One strategy is to
explicitly attempt to make design traits parametric and visually continuous
to make small steps correlate with small visual changes, for example, by using
a variable symmetry operator, with parameters that determine the degree of
symmetry, which (de)activate gradually [90].

1.7.4 Navigation

Interactive evolutionary design interfaces serve as navigation tools for parallel
traversal of abstract spaces of design solutions. Interface controls adjust ac-
celeration and velocity through exploration and refinement processes. Evolu-
tionary approaches allow solution spaces to be navigated from many different
regions simultaneously, with each step through the solution space representing
a considered design.
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Mating and mutation push and pull the diversity of a population, with
users shifting between exploring and refining their areas of search. Precise
manual refinement of genetic position through genetic engineering interfaces
is sometimes an option, depending on the level of epistasis as well as the
intuitiveness of correlations between individual genes and visual attributes.

Navigation is greatly aided if the rate of change visually in different di-
mensions can be coordinated in order to make small steps in the design space
more visually continuous. Many interactive systems give the user one or more
mutation controls which modulate the velocity through the solution space.
Smoothing solution space continuity can help create a correspondence between
distance traveled in the space and the amount of perceived visual change in
the resulting phenotypes. This can be very difficult to do for multiple parame-
ters simultaneously and little work has been done on providing solution space
designers or artists with tools to facilitate this meta-design task. Continuity
has the additional benefit of allowing the creation of animations when shifting
between locations in the solution space [2, 3, 33, 11].

It remains an open question how necessary it is that a user of an interactive
evolutionary design system be familiar with internal representations, evolu-
tionary procedures, and design strategies in order to navigate solution spaces.
Interface discussions are frequently centered around the ease-of-use of interac-
tive evolutionary approaches: “simply select the ones you prefer and improved
results will gradually evolve.” The reality is often that certain attributes may
eventually yield higher fitness results than others, and recognizing and select-
ing for these traits instead of other short-term gains can often improve the
chances of satisfactory convergence. In short, one might prefer a given indi-
vidual because of experience Knowing how the mutation or mating algorithms
are implemented can also sometimes help the user improve fitness [22].

1.7.5 Fitness Evaluation

As mentioned above, some interactive evolutionary domains more easily lend
themselves to rapid evaluation of individuals in a population, while others can
prove more difficult. Grids of low-detail images can be quickly surveyed in large
grids, while multidimensional individuals such as time-based pieces like music
or animation, or 3-D objects, virtual environments, interactive entities, and
simulations, all can require significant attention. Significant computation costs
can cause long waits between generations or even individuals. Properties which
vary at different scales can also be problematic: lower, more readily browsed
resolution images might look great, but when selected, one discovers low-
fitness details which require methodical higher-resolution viewing to discover.
Or the opposite case occurs: individuals are dismissed for looking poorly at
low resolutions, but examining higher resolution versions would have revealed
desirable high-fitness traits.

Hierarchical evaluation interfaces are one approach. In one of the au-
thor’s systems, a population of virtual environments could first be previewed
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and evaluated as a grid of maps. When chosen, an individual map could be
examined as an interactively rotating 3D object, so that height relationships,
for example, could be more easily observed. If further detail were desired, the
map could be exported as a 3D environment and navigated through in a game
engine, in order to further evaluate its fitness [140].

Takagi’s research group has published a large number of papers investigat-
ing strategies for reducing user fatigue in interactive evolutionary computation
applications [69, 174]. Examples of other recent papers discussing fatigue in-
clude those of Hsu and Huang, which try to quantify fatigue and satisfaction
using a bottle design task [186], and the work of Saez et al., who use a low
population size but with a large population of simulated human users [187].

There is much optimism that the computer could assist with image anal-
ysis. Automated fitness evaluation has emerged as one of the more active
and challenging research areas in this field. Baluja’s neural net approach to
calculating fitness preceded most work in this area [21]. Since then, signifi-
cant efforts have been made by Machado and Romero an others to develop
autonomous art critics using a static fitness function based on complexity
estimates for the purposes of filtering, fitness assignment, and seeding (non-
random initialization) [188, 189, 190, 191]. Greenfield has published many
experiments using different fitness functions for image generation. Some of his
techniques have made use of digital and color filters with coevolution, and in
the analysis of simulated robots and ant behaviors [24, 192, 58, 73, 72] (see
Chap. 17). Greenfield additionally has proposed examining gaze data as an
indicator of fitness [193]. Basa et al. also monitor users’ physiological data, at-
tempting to detect emotional responses [194]. McCabe uses multi-scale diver-
sity metrics (Fig. 1.11b) [92, 93]. Saunder’s work uses novelty-seeking agents
with image complexity metrics [55].

There are numerous significant challenges to automating fitness in artistic
domains. Researchers often write of a desire to collect information based on
the user’s selection, and to mine this data for objective evidence of aesthetic
preferences. Aside from very substantial problems of shifting selection context
and attributing user intent, and the challenges of computational aesthetics
(see, e.g., Chap. 18 on this volume), practically speaking it has been very
rare that sufficient usage data has been collected from these high-dimensional
spaces to derive statistically significant aesthetic results. Online systems offer
one potential solution but lack of experimental control seems problematic.

AI’s “common sense” (or “general”) knowledge problem seems to loom
most heavily as an issue for fitness automation. We may prefer images or
forms simply because they remind us of something else. It is difficult if not
impossible for a system to be able to represent all of the knowledge we might
have. This problem has at least two aspects. The first is theoretically possible
to deal with: we may make selections based on recognized objective visual
resemblances (such as when we see shapes of animals in clouds.) While this
would be very challenging to implement in practice, it would not be impossible
to make use of image similarity metrics, perhaps even aided by user-provided
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metadata about why the selection was made. The significantly more difficult
problem would be automatically determining that an individual that was cho-
sen had high fitness, because of completely subjective personal associations:
a shape may be appreciated because it reminds someone of the toy he lost in
the park as a child.

Ultimately, how should the results of automated fitness algorithms for
evolutionary art be evaluated in a mixed culture of artists and computer sci-
entists? Given two bodies of artistic images created using evolution, if knowl-
edgeable computer scientists and computer artists disagree about which ones
are a success and which ones are a failure, what are the mechanisms by which
research proceeds? What are the criteria by which progress can be evaluated?

1.8 Conclusion

The overview of the field provided by this chapter has revealed the breadth
of evolutionary visual art and design research. A primary attraction of many
generative art and design approaches is the hope that algorithmic techniques
can be used to produce many creative solutions on demand. While artists and
researchers have focused their attention on ways to improve results, obviously
numerous problems remain. Methods for identifying and measuring progress
in aesthetic research, as always, remain uncertain.

The distinction between systems intended to produce art by their soft-
ware’s creator, as opposed to software intended to be used expressively by
others, seems important to the interpretation of results and evaluation of suc-
cess. The questions of stylistic signature and controllably increasing visual
diversity strongly related to this goal remain present. How then to consider
issues surrounding definitions of art, presentation contexts, intent, and au-
thorship within this area seem additionally in need of investigation [195].

Indeed, this book concludes with an extended discussion of McCormack’s
list of open problems for this field [196] (Chap. 19). In his work (and also in
Dorin’s critique of aesthetic selection in artificial evolution [182]) the need is
discussed for more art theory in evolutionary art. Doing so likely will require
connecting knowledge from the disciplines of critical art theory, computer
science, and philosophy. It is hoped that roadblocks to broader investigation of
techniques and their implications will continue to be evaluated and discussed.
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