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Preface

We welcome you to the 3rd Iberian Conference on Pattern Recognition and Image
Analysis (IbPRIA 2007), jointly promoted by AERFAI (Asociación Española
de Reconocimiento de Formas y Análisis de Imágenes) and APRP (Associção
Portuguesa de Reconhecimento de Padrões). This year, IbPRIA was held in
Girona, Spain, June 6–8, 2007, and was hosted by the Institute of Informatics
and Applications of the University of Girona. It followed the two successful
previous editions hosted by the Universitat de les Illes Balears (2003) and the
Institute for Systems and Robotics and the Geo-systems Center of the Instituto
Superior Técnico (2005).

A record number of 328 full paper submissions from 27 countries were re-
ceived. Each of these submissions was reviewed in a blind process by two re-
viewers. The review assignments were determined by the four General Chairs,
and the final decisions were made after the Chairs meeting in Girona, giving an
overall acceptance rate of 47.5%. Because of the limited size of the conference,
we regret that some worthy papers were probably rejected.

In keeping with the IbPRIA tradition of having a single track of oral presen-
tations, the number of oral papers remained in line with the previous IbPRIA
editions, with a total of 48 papers. The number of poster papers was settled to
108.

We were also very honored to have as invited speakers such internationally
recognized researchers as Chris Willians from the University of Edinburgh, UK,
Michal Irani from The Weizmann Institute of Science, Israel and Andrew Davison
from Imperial College London, UK.

For the first time, some relevant related events were scheduled in parallel to
the IbPRIA main conference according to the Call for Tutorials and Workshops:
Antonio Torralba from MIT, USA and Aleix Mart́ınez from Ohio State Uni-
versity, USA taught relevant tutorials about object recognition and Statistical
Pattern Recognition, respectively, while the “Supervised and Unsupervised En-
semble Methods and Their Applications” workshop and the first edition of the
“Spanish Workshop on Biometrics” were successfully developed.

We would like to thank all the authors for submitting their papers and thus
making these proceedings possible. We address special thanks to the members of
the Program Committee and the additional reviewers for their great work which
contributed to the high quality of these proceedings.

We are also grateful to the Local Organizing Committee for their substantial
contribution of time and effort.



VI Preface

Finally, our thanks go to IAPR for support in sponsoring the Best Paper
Prize at IbPRIA 2007.

The next edition of IbPRIA will be held in Portugal in 2009.

June 2007 Joan Mart́ı
Ana Maria Mendonça

José Miguel Bened́ı
Joan Serrat
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José Miguel Bened́ı Polytechnical University of Valencia, Spain
Ana Maria Mendonça University of Porto, Portugal
Joan Serrat Universitat Autònoma de Barcelona, Spain
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Francisco José Madrid-Cuevas, Rafel Medina-Carnicer,
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Improving Background Subtraction Based on a Casuistry of
Colour-Motion Segmentation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

I. Huerta, D. Rowe, M. Mozerov, and J. Gonzàlez
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J. Fernandes e Fernandes

Measuring the Applicability of Self-organization Maps in a Case-Based
Reasoning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

A. Fornells, E. Golobardes, J.M. Martorell, J.M. Garrell,
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Abstract. This work presents a robust normalization technique by
cascading a speech enhancement method followed by a feature vector
normalization algorithm. To provide speech enhancement the Spectral
Subtraction (SS) algorithm is used; this method reduces the effect of ad-
ditive noise by performing a subtraction of the noise spectrum estimate
over the complete speech spectrum. On the other hand, an empirical fea-
ture vector normalization technique known as PD-MEMLIN (Phoneme-
Dependent Multi-Enviroment Models based LInear Normalization) has
also shown to be effective. PD-MEMLIN models clean and noisy spaces
employing Gaussian Mixture Models (GMMs), and estimates a set of
linear compensation transformations to be used to clean the signal. The
proper integration of both approaches is studied and the final design, PD-
MEEMLIN (Phoneme-Dependent Multi-Enviroment Enhanced Models
based LInear Normalization), confirms and improves the effectiveness of
both approaches. The results obtained show that in very high degraded
speech PD-MEEMLIN outperforms the SS by a range between 11.4% and
34.5%, and for PD-MEMLIN by a range between 11.7% and 24.84%. Fur-
themore, in moderate SNR, i.e. 15 or 20 dB, PD-MEEMLIN is as good
as PD-MEMLIN and SS techniques.

1 Introduction

The robust speech recognition field plays a key rule in real environment appli-
cations. Noise can degrade speech signals causing nocive effects in Automatic
Speech Recognition (ASR) tasks. Even though there have been great advances
in the area, robustness still remains an issue. Noticing this problem, several tech-
niques have been developed over the years, for instance the Spectral Subtraction
algorithm (SS) [1]; and in the last decade, SPLICE (State Based Piecewise Lin-
ear Compensation for Enviroments) [2], PMC (Parallel Model Combination) [3],
RATZ (multivariate Gaussian based cepstral normalization) [4] and RASTA (the
RelAtive SpecTrAl Technique) [5]. The research that followed this evolution was
to make a proper combination of algorithms in order to reduce the noise ef-
fects. For example, a good example is described in [6], where the core scheme is
composed of a Continuous SS (CSS) and PMC.
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Persuing the same idea, a combination of the speech enhanced signal (repre-
sented by the SS method) and a feature vector normalization technique
(PD-MEMLIN [7]) are presented in this work to improve the recognition accu-
racy of the speech recognition system in highly degraded environments [8,9]. The
first technique was selected because of its implementation simplicity and good
performance. The second one is an empirical vector normalization technique that
has been compared against some other algorithms [8] and has obtained impor-
tant improvements.

The organization of the paper is as follows. In Section 2, a brief overview of
the SS and PD-MEMLIN. Section 3 details the new method PD-MEEMLIN. In
Section 4, the experimental results are presented. Finally, the conclusions are
shown in Section 5.

2 Spectral Subtraction and PD-MEMLIN

In order to evaluate the proposed integration, an ASR system is employed. In
general, a pre-processing stage of the speech waveform is always desirable. The
speech signal is divided into overlaped short windows, from which a set of coeffi-
cients, usually Mel Frequency Cepstral Coefficients (MFCCs)[10], are computed.
The MFCCs are feeded to the training algorithm that calculates the acoustic
models. The acoustic models used in this research are the Hidden Markov Mod-
els (HMMs), which are widely used to model statistically the behaviour of the
phonetic events in speech [10]. The HMMs employ a sequence of hidden states
which characterises how a random process (speech in this case) evolves in time.
Although the states are not observable, a sequence of realizations from these
states can always be obtained. Associated to each state there is a probability
density function, normally a mixture of Gaussians. The criteria used to train
the HMMs is the Maximum Likelihood, thus, the training process becomes an
optimization problem that can be solved iteratively with the Baum and Welch
algorithm.

2.1 Spectral Subtraction

The Spectral Subtraction (SS) algorithm is a simple and known speech enhance-
ment technique. This research is based on the SS algorithm expressed in [9]. It
has the property that it does not requiere the use of an explicit voice activity
detector, as general SS algorithms does. The algorithm is based on the existance
of peaks and valleys in a short noisy speech time subband power estimate [9].
The peaks correspond to the speech activity and the valleys are used to obtain
an estimate of the subband noise power. So, a reliable noise estimation is ob-
tained using a large enough window that can pemit the detection of any peak of
speech activity.

As shown in Figure 1, this algorithm performs a modification of the short time
spectral magnitude of the noisy speech signal during the process of enhancement.
Hence, the output signal can be considered close to the speech clean signal when
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Fig. 1. Diagram of the Basic SS Method Used

synthesized. The appropriate computation of the spectral magnitude is obtained
with the noise power estimate and the SS algorithm. Let, y(i) = x(i)+n(i), where
y(i) is the noisy speech signal, x(i) is the clean speech signal, n(i) is the noise
signal and i denotes the time index, x(i) and n(i) are statistically independent.

Figure 1 depicts the spectral analysis in which the frames in the time do-
main data are windowed and converted to frequency domain using the Discrete
Fourier Transform (DFT) filter bank with WDFT subbands and with a decima-
tion/interpolation ratio named R [9]. After the computation of the noise power
estimation and the spectral weightening, the enhanced signal can be transformed
back to the time domain using the Inverse Discrete Fourier Transform (IDFT).

For the subtraction algorithm it is necessary to estimate the subband noise
power Pn(λ, k) and the short time signal power |Y (λ, k)|2, where λ is the deci-
mated time index and k are the frequency bins of the DFT. A first order recursive
network is used to obtain a short time signal power as shown in Equation 1.

|Y (λ, k)|2 = γ ∗ |Y (λ − 1, k)|2 + (1 − γ) ∗ |Y (λ, k)|2. (1)

Afterwards, the subtraction algorithm is accomplished using an oversubtrac-
tion factor osub(λ, k) and a spectral flooring constant (subf) [12]. The osub(λ, k)
factor is needed to eliminate the musical noise, and it is calculated as a function
of the subband Signal to Noise Ratio SNRy(λ, k), λ and k (for a high SNR and
high frequencies less osub factor is required, for low SNR and low frequencies the
osub is less). The subf constant helps the resultant spectral components from
going below a minimum level. It is expressed as a fraction of the original noise
power spectrum. The final relation of the spectral subtraction between subf and
osub is defined by Equation 2.

|X̂(λ, k)| =
{√

subf ∗ Pn(λ, k) if |Y (λ, k)| ∗ Q(λ, k) ≤
√

subf ∗ Pn(λ, k)
|Y (λ, k)| ∗ Q(λ, k) otherwise

(2)

where Q(λ, k) = (1 −
√

osub(λ, k) Pn(λ,k)
|Y (λ,k)|2 ).

The missing element, Pn(λ, k), is computed using the short subband signal
power Py(λ, k) in a representation based on smoothed periodograms, as denoted
by Py(λ, k) = ξ∗Py(λ−1, k)+(1−ξ)∗|Y (λ, k)|2 where ξ represents the smoothing
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constant to obtain the periodograms. Then, Pn(λ, k) is calculated as a weighted
minimum of Px(λ, k) in a window of D subband samples. Hence,

Pn(λ, k) = omin · Pmin(λ, k), (3)

where Pmin(λ, k) denotes the estimated minimum power and omin is a bias
compensation factor. The data window D is divided into W windows of length
M, allowing to update the minimum every M samples without time consuming.
This noise estimator combined with the spectral subtraction has the ability
to preserve weak speech sounds. If a short time subband power is observed,
the valleys correspond to the noisy speech signal and are used to estimate the
subband noise power.

The last element to be calculated is the SNRy(λ, k) in Equation 4 that con-
trols the oversubtraction factor osub(λ, k).

SNRy(λ, k) = 10log

(
Py(λ, k) − min(Pn(λ, k), Py(λ, k))

Pn(λ, k)

)
(4)

Up to this stage osub(λ, k) and subf can be selected and the spectral substraction
algorithm can be computed.

2.2 PD-MEMLIN

PD-MEMLIN is an empirical feature vector normalization technique which uses
stereo data in order to estimate the different compensation linear transforma-
tions in a previous training process. The clean feature space is modelled as a
mixture of Gaussians for each phoneme. The noisy space is split in several ba-
sic acoustic environments and each environment is modelled as a mixture of
Gaussians for each phoneme. The transformations are estimated for all basic
environments between a clean phoneme Gaussian and a noisy Gaussian of the
same phoneme.

PD-MEMLIN approximations. Clean feature vectors, x, are modelled using
a GMM for each phoneme, ph

pph(x) =
∑
sph

x

p(x|sph
x )p(sph

x ), (5)

p(x|sph
x ) = N(x; μsph

x
, Σsph

x ), (6)

where μsph
x

, Σsph
x

, and p(sph
x ) are the mean vector, the diagonal covariance ma-

trix, and the a priori probability associated with the clean model Gaussian sph
x

of the ph phoneme.
Noisy space is split into several basic environments, e, and the noisy feature

vectors, y, are modeled as a GMM for each basic environment and phoneme

pe,ph(y) =
∑
se,ph

y

p(y|se,ph
y )p(se,ph

y ), (7)
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p(y|se,ph
y ) = N(y; μse,ph

y
, Σse,ph

y
), (8)

where se,ph
y denotes the corresponding Gaussian of the noisy model for the e

basic environment and the ph phoneme; μse,ph
y

, Σse,ph
y

, and p(se,ph
y ) are the mean

vector, the diagonal covariance matrix, and the a priori probability associated
with se,ph

y .
Finally, clean feature vectors can be approximated as a linear function, f ,

of the noisy feature vector for each time frame t which depends on the basic
environments, the phonemes and the clean and noisy model Gaussians: x ≈
f(yt, s

ph
x , se,ph

y ) = yt−rsph
x ,se,ph

y
, where rsph

x ,se,ph
y

is the bias vector transformation
between noisy and clean feature vectors for each pair of Gaussians, sph

x and se,ph
y .

PD-MEMLIN enhancement. With those approximations, PD-MEMLIN
transforms the Minimum Mean Square Error (MMSE) estimation expression,
x̂t = E[x|yt], into

x̂t =yt −
∑

e

∑
ph

∑
se,ph

y

∑
sph

x

rsph
x ,se,ph

y
p(e|yt)p(ph|yt, e)p(se

y|yt, e, ph)p(sph
x |yt, e, ph, se

y),

(9)
where p(e|yt) is the a posteriori probability of the basic environment; p(ph|yt, e) is
the a posteriori probability of the phoneme, given the noisy feature vector and the
environment; p(se,ph

y |yt, e, ph) is the a posteriori probability of the noisy model
Gaussian, se,ph

y , given the feature vector, yt, the basic environment, e, and the
phoneme, ph. To estimate those terms: p(e|yt), p(ph|yt, e) and p(se,ph

y |yt, e, ph),
(7) and (8) are applied as described in [8]. Finally, the cross-probability model,
p(sph

x |yt, e, ph, se,ph
y ), which is the probability of the clean model Gaussian, sph

x ,
given the feature vector, yt, the basic environment, e, the phoneme, ph, and the
noisy model Gaussian, se,ph

y , and the bias vector transformation, rsph
x ,se,ph

y
, are

estimated in a training phase using stereo data for each basic environment and
phoneme [8].

3 PD-MEEMLIN

By combinig both techniques, PD-MEEMLIN arises as an empirical feature
vector normalization which estimates different linear transformations as PD-
MEMLIN, with the special property that a new enhanced space is obtained by
applying SS to the noisy speech signal. Furthermore, this first-stage enhance-
ment produces that the noisy space gets closer to the clean one, making the gap
smaller among them. Figure 2 shows PD-MEEMLIN architecture.

Next, the architecture modules are explained:

– The SS-enhancement of the noisy speech signal is performed, |X̂(λ, k)|,
Pn(λ, k) and SNRy(λ, k) are calculated.

– Given the clean speech signal and the enhanced noisy speech signal, the clean
and noisy-enhanced GMMs are obtained.
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Fig. 2. PD-MEEMLIN Architecture

– In the testing stage, the noisy speech signal is also SS-enhanced and then
normalized using PD-MEEMLIN.

– These normalized coefficients are forwarded to the decoder.

4 Experimental Results

All the experiments were performed employing the AURORA2 database [13],
clean and noisy data based on TIDigits. Three types of noises were selected:
Subway, Babble and Car from AURORA2, that go from -5dB to 20dB SNR. For
every SNR the SS parameters osub and subf needs to be configured. The param-
eter osub takes values from 0.4 to 4.6 (0.4 for 20dB, 0.7 for 15dB, 1.3 for 10dB,
2.21 for 5dB, 4.6 for 0dB and 4.6 for -5dB) and subf values 0.03 or 0.04 (all SNR
levels except 5dB optimised for 0.04). The phonetic acoustic models employed
by PD-MEEMLIN are obtained from 22 phonemes and 1 silence. The models
set is represented by a mixture of 32 Gaussians each. Besides, two new sets of
each noise were used, PD-MEEMLIN needs one to estimate the enhanced-noisy
model, and onother to obtain the normalized coefficients. The feature vectors
for the recognition process are built by 12 normalized MFCCs followed by the
energy coefficient, its time-derative Δ and the time-acceleration ΔΔ. For the
training stage of the ASR system, the acoustic models of 22 phonemes and the
silence consist on a three-state HMMs with a mixture of 8 Gaussians per state.
The combined techniques show that for low noise conditions i.e. SNR=10, 15
or 20 dB, the difference between the original noisy space and the one approxi-
mated to the clean is similar. However, when the SNR is lower (-5dB or 0dB)
the SS improves the performance of PD-MEMLIN. Comparing the combination
of SS with PD-MEMLIN against the case where no techniques are applied, a
significant improvement is shown. The results described before are presented in
Tables 1, 2 and 3. The Tables show ”Sent” that means complete utterances
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Table 1. Comparative Table for the ASR working with Subway Noise

Subway ASR ASR+SS ASR+PD-MEMLIN ASR+PD-MEEMLIN
SNR Sent % Word % Sent % Word % Sent % Word % Sent % Word %
-5dB 3.40 21.57 10.09 34.22 11.29 37.09 13.29 47.95
0dB 9.09 29.05 20.18 53.71 27.07 61.88 30.87 69.71
5dB 17.58 40.45 32.17 70.00 48.15 80.38 51.65 83.40
10dB 33.07 65.47 50.95 83.23 65.83 90.58 70.13 91.86
15dB 54.45 84.60 64.84 90.02 78.92 94.98 78.22 94.40
20dB 72.83 93.40 76.52 94.56 85.91 97.14 86.71 97.30

Table 2. Comparative Table for the ASR working with Babble Noise

Babble ASR ASR+SS ASR+PD-MEMLIN ASR+PD-MEEMLIN
SNR Sent % Word % Sent % Word % Sent % Word % Sent % Word %
-5dB 4.60 23.08 7.59 29.78 8.49 29.54 6.69 37.79
0dB 11.29 30.41 15.98 44.49 23.48 55.72 20.08 59.50
5dB 20.58 44.23 30.37 65.11 48.75 80.55 49.25 83.70
10dB 40.86 72.85 50.25 80.93 74.93 94.20 69.33 91.48
15dB 69.03 90.54 69.93 90.56 84.12 96.86 81.32 95.54
20dB 82.42 96.17 83.52 95.84 88.91 98.09 88.01 97.98

Table 3. Comparative Table for the ASR working with Car Noise

Car ASR ASR+SS ASR+PD-MEMLIN ASR+PD-MEEMLIN
SNR Sent % Word % Sent % Word % Sent % Word % Sent % Word %
-5dB 3.10 20.18 10.49 28.87 6.79 25.90 13.89 44.31
0dB 8.09 26.18 18.58 46.70 23.58 52.67 35.16 70.47
5dB 14.99 35.34 31.47 66.50 51.95 82.34 58.64 86.30
10dB 28.77 58.13 54.25 82.72 70.83 92.15 70.93 91.90
15dB 57.84 84.04 68.03 90.51 82.02 96.16 81.42 95.86
20dB 78.32 94.61 81.42 95.30 87.01 97.44 87.81 97.77

percentage correctly recognised, and ”Word” indicates the words percentage cor-
rectly recognised. The gap between the clean and the noisy model, for the very
high degraded speech, had been shortened due to the advantages of both tech-
niques. When PD-MEEMLIN is employed the performance is between 11.7%
and 24.84% better than PD-MEMLIN, and between 11.4% and 34.5% better
than SS.

5 Conclusions

In this work a robust normalization technique, PD-MEEMLIN, has been pre-
sented by cascading a speech enhancement method (SS) followed by a feature
vector normalization algorithm (PD-MEMLIN). The results of PD-MEEMLIN
show a better performance than SS and PD-MEMLIN for a very high degraded
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speech. This improvement is made by the enhancement of the noisy models
employed by PD-MEMLIN, which are close to the original clean model.
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Abstract. An essential functionality for advanced driver assistance sys-
tems (ADAS) is road segmentation, which directly supports ADAS ap-
plications like road departure warning and is an invaluable background
segmentation stage for other functionalities as vehicle detection. Unfor-
tunately, road segmentation is far from being trivial since the road is
in an outdoor scenario imaged from a mobile platform. For instance,
shadows are a relevant problem for segmentation. The usual approaches
are ad hoc mechanisms, applied after an initial segmentation step, that
try to recover road patches not included as segmented road for being in
shadow. In this paper we argue that by using a different feature space to
perform the segmentation we can minimize the problem of shadows from
the very beginning. Rather than the usual segmentation in a color space
we propose segmentation in a shadowless image which is computable in
real–time using a color camera. The paper presents comparative results
for both asphalted and non–asphalted roads, showing the benefits of the
proposal in presence of shadows and vehicles.

1 Introduction

Advanced driver assistance systems (ADAS) arise as a contribution to traffic
safety, a major social issue in modern countries. The functionalities required to
build such systems can be addressed by computer vision techniques, which have
many advantages over using active sensors (e.g. radar, lidar). Some of them are:
higher resolution, richness of features (color, texture), low cost, easy aesthetic
integration, non–intrusive nature, low power consumption, and besides, some
functionalities can only be addressed by interpreting visual information. A rele-
vant functionality is road segmentation which supports ADAS applications like
road departure warning. Moreover, it is an invaluable background segmentation
stage for other functionalities as vehicle and pedestrian detection, since knowing
the road surface considerably reduces the image region to search for such objects,
thus, allowing real–time and reducing false detections.

Our interest is real–time segmentation of road surfaces, both non–asphalted
and asphalted, using a single forward facing color camera placed at the wind-
shield of a vehicle. However, road segmentation is far from being trivial since the
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Fig. 1. Roads with shadows

road is in an outdoor scenario imaged from a mobile platform. Hence, we deal
with a continuously changing background, the presence of different vehicles of un-
known movement, different road shapes with worn–out asphalt (or not asphalted
at all), and different illumination conditions. For instance, a particularly rele-
vant problem is the presence of shadows (Fig. 1). The usual approaches found
in the literature are ad hoc mechanisms applied after an initial segmentation
step (e.g. [1,2,3]). These mechanisms try to recover road patches not included as
segmented road for being in shadow. In this paper we argue that by using a dif-
ferent feature space to perform the segmentation we can minimize the problem of
shadows from the very beginning. Rather than the usual segmentation in a color
space, we propose segmentation in a shadowless image, which is computable in
real–time using a color camera. In particular, we use the grey–scale illuminant
invariant image introduced in [4], I from now on.

In Sect. 2 we summarize the formulation of I. Moreover, we also show that
automatic shutter, needed outdoors to avoid global over/under–exposure, fits
well in such formulation. In order to illustrate the usefulness of I, in Sect. 3 we
propose a segmentation algorithm based on standard region growing applied to
I. We remark that we do not recover a shadow–free color image from the orig-
inal, which would result in too large processing time for the road segmentation
problem. Section 4 presents comparative road segmentation results in presence
of shadows and vehicles, both in asphalted and non–asphalted roads, confirming
the validity of our hypothesis. Finally, conclusions are drawn in Sect. 5.

2 Illuminant Invariant Image

Image formation models are defined in terms of the interaction between the
spectral power distribution of illumination, surface reflectance and spectral sen-
sitivity of the imaging sensors. Finlayson et al. [4] show that under the assump-
tions of Planckian illumination, Lambertian surfaces and having three different
narrow band sensors, it is possible to obtain a shadow–free color image. We are
not interested in such image since it requires very large processing time to be
recovered. We focus on an illuminant invariant image (I) that is obtained at the
first stage of the shadow–free color image recovering process. We briefly expose
here the idea behind I and refer to [4] for details.
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Fig. 2. Ideal log–log chromaticity plot. A Lambertian surface patch of a given chro-
maticity under a Planckian illumination is represented by a point. By changing the
color temperature of the Planckian illuminator we obtain a straight line associated to
the patch. Lambertian surface patches of different chromaticity have different associ-
ated lines. All these lines form a family of parallel lines, namely Ψθ . Let �θ be a line
perpendicular to Ψθ and θ the angle between �θ and the horizontal axis. Then, by pro-
jection, we have a one–to–one correspondence between points in �θ and straight lines of
Ψθ, so that �θ preserves the differences regarding chromaticity but removes differences
due to illumination changes assuming Planckian radiators.

Let us denote by R, G, B the usual color channels and assume a normalizing
channel (or combination of channels), e.g. without losing generality let us choose
G as such normalizing channel. Then, under the assumptions regarding the sen-
sors, the surfaces and the illuminators, if we perform a plot of r = log(R/G)
vs. b = log(B/G) for a set of surfaces of different chromaticity under different
illuminants, we would obtain a result similar to the one in Fig. 2. This means
that we obtain an axis, �θ, where a surface under different illuminations is rep-
resented by the same point, while moving along �θ implies to change the surface
chromaticity. In other words, �θ can be seen as a grey–level axis where each grey
level corresponds to a surface chromaticity, independently of the surface illu-
mination. Therefore, we obtain an illuminant invariant image, I(p), by taking
each pixel p = (x, y) of the original color image, IRGB(p) = (R(p), G(p), B(p)),
computing p′ = (r(p), b(p)) and projecting p′ onto �θ according to θ (a camera
dependent constant angle). The reason for I being shadow–free is, roughly, that
non–shadow surface areas are illuminated by both direct sunlight and skylight
(a sort of scattered ambient light), while areas in the umbra are only illuminated
by skylight. Since both, skylight alone and with sunlight addition, can be consid-
ered Planckian illuminations [5], areas of the same chromaticity ideally project
onto the same point in �θ, no matter if the areas are in shadow or not.

Given this result, the first question is whether the working assumptions are
realistic or not. In fact, Finlayson et al. [4] show examples where, despite the
departures from the assumptions that are found in practice, the obtained re-
sults are quite good. We will see in Sect. 4 that this holds in our case, i.e., the
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combination of our camera, the daylight illuminant and the surface we are
interested in (the road) fits pretty well the I theory.

A detail to point out is that our acquisition system was operating in auto-
matic shutter mode: i.e., inside predefined ranges, the shutter changes to avoid
both global overexposure and underexposure. However, provided we are us-
ing sensors with linear response and the same shutter for the three channels,
we can model the shutter action as a multiplicative constant s, i.e., we have
sIRGB = (sR, sG, sB) and, therefore, the channel normalization removes the
constant (e.g. sR/sG = R/G).

In addition, we expect the illumination invariant image to reduce not only
differences due to shadow but also differences due to asphalt degradation since,
at the resolution we work, they are pretty analogous to just intensity changes.
Note that the whole intensity axis is equivalent to a single chromaticity, i.e., all
the patches of the last row of the Macbeth color checker in Fig. 2 (Ni) project
to the same point of �θ.

3 Road Segmentation

With the aim of evaluating the suitability of the illuminant invariant image we
have devised a relatively simple segmentation method based on region growing
[6], sketched in Fig. 3. This is, we do not claim that the proposed segmentation
is the best, but one of the most simplest that can be expected to work in our
problem. We emphasize that our aim is to show the suitability of I for road
segmentation and we think that providing good results can be a proof of it, even
using such simple segmentation approach.

The region growing uses a very simple aggregation criterium: if p = (x, y)
is a pixel already classified as of the road, any other pixel pn = (xn, yn) of its
8–connected neighborhood is classified as road one if

diss(p,pn) < tagg , (1)

where diss(p,pn) is the dissimilarity metric for the aggregation and tagg a
threshold that fixes the maximum dissimilarity to consider two connected pixels
as of the same region. To prove the usefulness of I we use the simplest dissimi-
larity based on grey levels, i.e.,

dissI(p,pn) = |I(p) − I(pn)| . (2)

Of course, region growing needs initialization, i.e., the so–called seeds. Cur-
rently, such seeds are taken from fixed positions at the bottom region of the
image (Fig. 3), i.e., we assume that such region is part of the road. In fact, the
lowest row of the image corresponds to a distance of about 4 meters away from
the vehicle, thus, it is a reasonable assumption most of the time (other proposals
require to see the full road free at the start up of the system, e.g. [1]).

In order to compute the angle θ corresponding to our camera, we have fol-
lowed two approaches. One is the proposal in [7], based on acquiring images of
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Fig. 3. Proposed algorithm. In all our experiments we have fixed values for the algo-
rithm parameters: σ = 0.5 for Gaussian smoothing (Gaussian kernel, gσ, discretized
in a 3 × 3 window for convolution ’∗’); θ = 38◦; tagg = 0, 007 and seven seeds placed
at the squares pointed out in the region growing result; structuring element (SE) of
n × m = 5 × 3. Notice that we apply some mathematical morphology just to fill in
some small gaps and thin grooves.

the Macbeth color checker under different day time illuminations and using the
(r,b)–plot to obtain θ. The other approach consists in taking a few road images
with shadows and use them as positive examples to find θ providing the best
shadow–free images for all the examples. The values of θ obtained from the two
calibration methods basically give rise to the same segmentation results. We have
taken θ from the example–based calibration because it provides slightly better
segmentations. Besides, although not proposed in the original formulation of I,
before computing it we regularize the input image IRGB by a small amount of
Gaussian smoothing (the same for each color channel).

4 Results

In this section we present comparative results based on the region growing al-
gorithm introduced in Sect. 3 for three different feature spaces: intensity image
(I; also called luminance or brightness); hue–saturation–intensity (HSI) color
space; and the illuminant invariant image (I).
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The intensity image is included in the comparison just to see what can we
expect from a monocular monochrome system. Since it is a grey level image, its
corresponding dissimilarity measure is defined analogously to Eq. (2), i.e.:

dissI(p,pn) = |I(p) − I(pn)| . (3)

The HSI space is chosen because it is one of the most accepted color spaces for
segmentation purposes [8]. The reason is that by having separated chrominance
(H & S) and intensity (I) such space allows reasoning in a closer way to human
perception than others. For instance, it is possible to define a psychologically
meaningful distance between colors as the cylindrical metric proposed in [8] for
multimedia applications, and used in [1] for segmenting non–asphalted roads.
Such metric gives rise to the following dissimilarity measure for HSI space:

– Case achromatic pixels: use only the definition of dissI given in Eq. (3).
– Case chromatic pixels:

dissHSI(p,pn) =
√

diss2
HS(p,pn) + diss2

I(p,pn) , (4)

taking the definition of dissI from Eq. (3), and given

dissHS(p,pn) =
√

S2(p) + S2(pn) + S(p)S(pn) cosϕ ,

being ϕ =
{

dissH(p,pn) if dissH(p,pn) < 180◦ ,
360◦ − dissH(p,pn) otherwise ,

for dissH(p,pn) = |H(p) − H(pn)| ,

where the different criterion regarding chromaticity is used to take into account
the fact that hue value (H) is meaningless when the intensity (I) is very low or
very high, or when the saturation (S) is very low. For such cases only intensity
is taken into account for aggregation. We use the proposal in [8,1] to define the
frontier of meaningful hue, i.e., p is an achromatic pixel if either I(p) > 0.9Imax or
I(p) < 0.1Imax or S(p) < 0.1Smax, where Imax and Smax represent the maximum
intensity and saturation values, respectively.

In summary, to compute Eq. (1) we use Eq. (2) for I with threshold tagg,I , Eq.
(3) for I with threshold tagg,I , and Eq. (4) for HSI with thresholds tagg,ch (chro-
matic case) and tagg,ach (achromatic case). Figure 4 shows the results obtained
for examples of both asphalted and non–asphalted roads. We have manually set
the tagg,I , tagg,I , and tagg,ch, tagg,ach parameters to obtain the best results for
each feature space, but such values are not changed from image to image, i.e.,
all the frames of our sequences have been processed with them fixed.

These results suggest that I is a more suitable feature space for road seg-
mentation than the others. Road surface is well recovered most of the times,
with the segmentation stopping at road limits and vehicles1, even with a simple
1 Other on going experiments, not included here for space restrictions, also show that

segmentation is quite stable regarding the chosen aggregation threshold as well as
the number and position of seeds, much more stable than both I and HSI .
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(a) (b) (c) (d)

Fig. 4. From left to right columns: (a) original 640 × 480 color image with the seven
used seeds marked in white; (b) segmentation using I with tagg,I = 0, 008; (c) segmen-
tation using I with tagg,I = 0, 003; (d) segmentation using HSI with tagg,ch = 0, 08,
and tagg,ach = 0, 008. The white pixels over the original image correspond to the seg-
mentation results. The top four rows correspond to asphalted roads and the rest to
non–asphalted areas of a parking.

segmentation method. Now, such segmentation can be augmented with road
shape models like in [9,10] with the aim of estimating the not seen road in case
of many vehicles in the scene. As a result, road limits and road curvature ob-
tained will be useful for applications as road departure warning. The processing
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time required in non–optimized MatLab code to compute I is about 125ms and
700ms for the whole segmentation process. We expect it to reach real–time when
written in C++ code.

5 Conclusions

We have addressed road segmentation by using a shadow–free image (I). In
order to illustrate the suitability of I for such task we have devised a very
simple segmentation method based on region growing. By using this method we
have provided comparative results for asphalted and non–asphalted roads which
suggest that I makes the segmentation process easier in comparison to other
popular feature space found in road segmentation algorithms, namely the HSI.
In addition, the process can run in real–time. In fact, since the computation of I
only depends on a precalculated parameter, i.e., the camera characteristic angle
θ, it is possible that a camera supplier would provide such angle after calibration
(analogously to calibration parameters provided with stereo rigs).

Acknowledgments. This work was supported by the Spanish Ministry of
Education and Science under project TRA2004-06702/AUT.
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Abstract. Recent stereo cameras provide reliable 3D reconstructions.
These are useful for selecting ground-plane points, register them and
building mosaics of cluttered ground planes. In this paper we propose
a 2D Iterated Closest Point (ICP) registration method, based on the
distance transform, combined with a fine-tuning-registration step using
directly the image data. Experiments with real data show that ICP is
robust to 3D reconstruction differences due to motion and the fine tuning
step minimizes the effect of the uncertainty in the 3D reconstructions.

1 Introduction

In this paper we approach the problem of building mosaics, i.e. image montages,
of cluttered ground planes, using stereo vision on-board of a wheeled mobile
robot. Mosaics are useful for the navigation of robots and for building human-
robot interfaces. One clear advantage of mosaics is the simple representation of
robot localization and motion: they are simply 2D rigid transformations.

Many advances have been made recently in vision based navigation. Flexi-
ble (and precise) tracking and reconstruction of visual features, using particle
filters, allowed real time Simultaneous Localization and Map Building (SLAM)
[1]. The introduction of scale-invariant visual features brought more robustness
and allowed very inexpensive navigation solutions [2,3]. Despite being effective,
these navigation modalities lack building dense scene representations convenient
for intuitive human-robot interfaces. Recent commercial stereo cameras came
to help by giving locally dense 3D scene reconstructions. Iterative methods for
matching points and estimation their rigid motion, allow registering the local
reconstructions and obtaining global scene representations. The Iterated Closest
Point (ICP) [4] is one such method that we explore in this work.

The ICP basic algorithm has been extended in a number of ways. Examples of
improvements are robustifying the algorithm to the influence of features lacking
correspondences or using weighted metrics to trade-off distance and feature simi-
larity [5]. More recent improvements target real time implementations, matching
shapes with defects or mixing probabilistic matching metrics with saturations
to minimize the effect of outliers [6,7,8]. In our case, the wheeled mobile robots

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 17–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



18 J. Gaspar et al.

motion on the ground plane allows searching for 2D, instead of 3D, registra-
tions. Hence we follow a 2D ICP methodology, but we take a computer vision
approach, namely registering clouds of points using the distance transform [9].

Stereo cameras allow selecting ground-plane points, registering them and then
building the ground plane mosaic. Stereo reconstruction is therefore an advan-
tage, however some specific issues arise about its use. For example, the discrete
nature of the imaging process, and the variable imaging of objects and occlusions
due to robot motion, imply uncertainties on the 3D reconstruction. Hence, the
registration of 3D data propagates also some intrinsic uncertainty. The selection
of ground-plane data, is convenient for complexity reduction, however a question
of the sparsity of data arises. In our work we investigate robust methodologies
to deal with these issues, and in particular we investigate whether resorting to
the raw image data can help minimizing error propagation.

The paper is structured as follows: Sec.2 details the mosaicking problem and
introduces our approach to solve it; Sec.3 shows how we build the orthographic
views of the ground plane; Sec.4 details the optimization functionals associated
to mosaic construction; Sec.5 is the results section; Finally in Sec.6 we draw
some conclusions and guidelines for future work.

2 Problem Description

The main objective of our work is mosaicking (mapping) the ground plane con-
sidering that it can be cluttered with objects such as furniture. The sensor is a
static trinocular-stereo camera mounted on a wheeled mobile robot. The stereo
camera gives 3D clouds of points in the camera coordinate system, i.e. a mobile
frame changed by the robot motion. See Fig. 1

The ground plane constraint implies that the relationships between camera
coordinate systems are 2D rigid motions. As in general the camera is not aligned
with the floor, i.e. the camera coordinate system does not have two axis parallel
to the ground plane, the relationships do not clearly show their 2D nature. In
order to make clear the 2D nature of the problem, we define a new coordinate
system aligned with the ground plane (three user-selected well-separated ground
points are sufficient for this purpose).

Fig. 1. Mosaicking ground planes: Stereo camera, Image and BEV coordinate systems
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Commercial stereo cameras give dense reconstructions. For example, for each
image feature, such as a corner or an edge point, there are usually about 20 to 30
reconstructed 3D points (the exact number depend on the size of the correlation
windows). Considering standard registration methods as Iterated Closest Point
(ICP, [4]), the large clouds of 3D points imply large computational costs. Hence,
we choose to work with a subset of the data, namely by selecting just points of
the ground plane. The 2D clouds of points can therefore be registered with a 2D
ICP method.

Noting that each 3D cloud of points results from stereo images registration,
the process of registering consecutive clouds of points has some error propagated
from the cloud reconstruction. In order to minimize the error propagation, we
add a fine tuning image-based registration process after the initial registration
by a 2D ICP method. The image-based registration is a 2D rigid transformation
in Bird’s Eye Views (BEV), i.e. orthographic images of the ground plane. BEV
images can be obtained also knowing some ground points and the projection
geometry. To maintain consistent units system, despite having metric values in
the 3D clouds of points, we choose to process both the 2D ICP and the image
registration in the pixel metric system, i.e. the same as the raw data.

In summary our approach encompasses two main steps: (i) selection of ground
points and 2D ICP, (ii) BEV image registration. Despite the 2D methodology
notice that the 3D data is a principal component. The 3D sensor allows select-
ing the ground plane data, which is useful not only for using a faster 2D ICP
method but mainly for registering the ground plane images without considering
the distracting (biasing) non-ground regions.

3 Obtaining Bird’s Eye Views (BEV)

The motion of the robot implies a motion of the trinocular camera which we
denote as 2T1. The indexes 1 and 2 indicate two consecutive times, and tag also
the coordinate systems at the different times, e.g. the camera frames {cam1} and
{cam2}. The image plane defines new coordinate systems, {img1} and {img2},
and the BEV defines another ones, {bev1} and {bev2}. See Fig. 1.

The projection matrix, P relating {cami} and {imgi} is given by the camera
manufacturer or by a standard calibration procedure [10]. In this section we are
mainly concerned with obtaining the homography, H relating the image plane
with the BEV.

The BEV dewarping, H is defined by back-projecting to the ground plane
four image points (appendix A details the back-projection matrix, P ∗). The
four image points are chosen so to comprehend most of the field of view imaging
the ground plane. The region close to the horizon line is discarded due to poor
resolution. Scaling is chosen such that it preserves the largest resolution available,
i.e. no image-data loss due to sub sampling.

Is interesting to note that the knowledge of the 3D camera-motion, 2T1 directly
gives the BEV 2D rigid transformation, 2H1 (see Fig. 1):

2H1 = H.P.2T1.P
∗.H−1 (1)



20 J. Gaspar et al.

The inverse transformation, i.e. obtaining 2T1 from 2H1, is also possible since
the motion is constrained to the ground plane: a 2D frame is transformed using
2H1, and the missing dimension can be recoved e.g. by the relationship of the
cross products of the vectors of the frame. In other words, estimating the camera
motion in the camera frame is equivalent to estimating motion in the BEV frame.

4 Mosaic Construction

The input data for mosaic creation consists of BEV images, It and It+1, and
clouds of ground-points projected in the BEV coordinate system, {[u v]Tt,i} and
{[u v]Tt+1,i}. In this frame, the camera motion is a 2D rigid translation, 2H1,
which can be represented by three parameters μ = [δu δv δθ]. We want to find
μ such that the clouds of points match as close as possible:

μ∗ = argμ min
∑

i

∥∥[u v]Tt+1,j − Rot(δθ).[u v]Tt,i − [δu δv]T
∥∥2

(2)

The correspondence between points of the clouds, i.e. finding the index j match-
ing i, is based on the nearest neighbor rule, as with ICP. However in our case the
matching is implemented using a distance transform. Using a distance transform
allows matching 2D shapes as a 2D lookup-table reading of nearest neighbors
and distances to them, instead of a combinatorial search between the clouds of
points [9]. In order to smooth the cost functional and deal with the small shape
differences (e.g. locally regular patterns generated by dense stereo reconstruc-
tion) we read interpolated-distance-values from the distance transform, and in
order to deal with large differences (e.g. clouds leaving the field of view) we place
a saturation on the distance transform (constant distances imply no influence in
the optimization process).

Given the first estimation of the 2D motion and the knowledge of ground
points, we can now fine tune the registration using ground plane image data:

μ∗ = argμ min
∑

i

∥∥It+1(Rot(δθ).[u v]Tt,i + [δu δv]T ) − It([u v]Tt,i)
∥∥2

(3)

Despite the fine tuning nature of this process, there is still possible to have
regions of one image that got out of the field of view in the next image. The
non-matched pixels get comparison values given by the closest matchings in
an initial stage. These values are updated in the optimization process only if
true matchings become possible, i.e. a new hypothetical 2D rigid motion be-
tween BEV images can bring to visibility unmatched points. This allows further
smoothing the optimization process for points near the border of the field of
view.

Finally, given the 2D rigid motion, the mosaic composition is just an accu-
mulation of images. A growing 2D image buffer is defined such as to hold image
points of the ground plane along the robot traveled path.
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5 Experimental Results

In our experiments we use the Point Grey’s Digiclops trinocular camera (Fig. 2a).
This stereo camera encompasses three 640 × 480 color cameras arranged in an
L-shape form (top-left, bottom-left and bottom-right), with 10 cm baselines. The
robot carrying the camera follows a circular path with a 9.4 meters perimeter.
215 stereo images are acquired along the path.

Figure 2 illustrates the dewarping to BEV images and the registration of the
dewarped images. The BEV images are 1568 × 855. One meter measured in the
ground plane is equivalent to 318 pixels the BEV (this calibration information
derives directly from the stereo-camera calibration). The registration is illus-
trated by super-imposing consecutive BEV images after applying to the first

(a) Trinocular (b) Reference camera (c) Reference camera
camera. time t. time t + 1.

(d) Dewarping (e) Superposition (f) Distance
BEV of (b). without registration. transform of (c).
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(g) Superposition (h) Cost functionals vs perturbation δθ
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Fig. 2. BEV dewarping and registration. (a) Stereo camera. (b) and (c) show recon-
structed ground-points (blue-points) in the reference camera of the stereo setup. (d)
BEV dewarping of (b). (e) superposition of BEVs without registration (notice the blur).
(f) distance transform of the ground points seen in (c). (g) correct superposition of all
ground points after registration. (h) comparison of the cost functionals by perturbing
δθ about the minimizing point: registration using Eq.2 has a larger convergence region
(dots plot) but the image-based registration, Eq.3 is more precise (circles plot).
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(a) View of the working space and of the robot.

(b) Ground points used (c) Mosaic with all imaging
for registration (landmarks) data superimposed

Fig. 3. View of the working area (a), mosaic of the ground points chosen as landmarks
while registering the sequence of BEV images (b) and a mosaic with all the visual
information superimposed (c).

image the estimated 2D rigid motion. Notice in particular in Fig. 2c the sig-
nificant shape differences of the clouds of points as compared to Fig. 2b, and
in Fig. 2g the graceful degradation of the superposition for points progressively
more distant to the ground plane. Fig. 2f shows the distance transform used
for matching ground-points. The matching is performed repeatedly in Eq.2 in
order to obtain the optimal registration shown in Fig. 2g. The existence of local-
clusters of points, instead of isolated points, motivates a wider-convergence but
less precise registration which can be improved resorting to image data (Eq.3)
as shown in figure Fig. 2h.

The mosaicking of BEVs shows clearly the precision of the registration process.
In particular shows that the image-based registration improves significantly the
2D motion estimation. After one complete circle described by the robot, the 2D
ICP registration gives about 2.7 meters localization error (28% error over path
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length) which is improved to about 0.23 meters (2.3% error over path length)
when using image-based registration. This allows obtaining a mosaic closing
almost perfectly a circular path (see Fig. 3c). Notice that only the ground points
are registered in the mosaic, and thus all other points should exhibit artifacts
due to parallax.

6 Conclusions

In this paper we proposed a method for creating mosaics of cluttered ground
planes. Current stereo cameras provide 3D information and allow selecting
ground points reliably. 3D data has been shown to be convenient as it allows se-
lecting ground points, that can be registered and then used for building mosaics
of cluttered ground planes.

The input of the mosaicking process consists mainly of many points forming
local sparse clouds. This implied using robust registration methods designed for
clouds instead of well separated features. We proposed using computer vision
techniques such as distance transform to compare shapes and image correlation
for fine tuning the registration. Results shown that the distance transform copes
well with the sparse nature of the clouds. The saturation of the distance trans-
form is useful for coping with the outliers. 3D reconstructed clouds were found
to be useful for an initial registration, but fine tuning required resorting to the
original image data.

Future work - The proposed mosaicking method will be used for benchmark-
ing other registration methods based on the same input data (monocular or
stereo vision). Combining reconstructed 3D information, accounting for vari-
able local-densities of features and including color information, guaranteeing at
the same time good convergence properties, is still a research topic within ICP
registration.

As noted in the introduction, we plan to use the mosaics for navigation. The
pairwise registration of the 2D ground features, acquired at consecutive time
stamps, still suffers the error accumulation problem typical of odometry. How-
ever, from the point of view of keeping the robot localised, the image pairwise
registration is enough, as the robot can always navigate on the mosaic and roll-
back to its starting location by local registration over the mosaic.
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A Back-Projection to the Ground Plane

Consider the projection equation in homogeneous coordinates m ≈ PM =
[A b]M , where M = [x y z 1]T is a generic 3D point, m = [u v 1]T is the
image point projection of M and the sign ≈ denotes equality up to a scale factor
[11]. We have that the camera projection center is C = −A−1b and the 3D direc-
tion associated to m (point at infinity) is D = A−1m. Thus the back-projection
comes M = [C; 1]+α[D; 0] = [A−1(αm−b); 1] where α is a scaling factor setting
the distance from the 3D point to the camera center and ”;” denotes vertical
stacking of vectors [12].

Representing the ground plane by a normal vector, n and a distance to the
coordinate system origin, d, the factor α in the back-projection equation can be
computed by enforcing MT

1:3.n = d. The back-projection equation can now be
arranged to a single 4×3 matrix, P ∗ converting an image point m to a 3D point
M on the ground plane:

M ≈ P ∗m =
[

(d + bT A−T n)A−1 −A−1b
nT A−1 0

] [
I3

0 0 1

]
m. (4)

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FISHER/ICP/cvoi cp.htm
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FISHER/ICP/cvoi cp.htm
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Abstract. Lines are particularly important features for different tasks
such as calibration, structure from motion, 3D reconstruction in com-
puter vision. However, line detection in catadioptric images is not trivial
because the projection of a 3D line is a conic eventually degenerated.
If the sensor is calibrated, it has been already demonstrated that each
conic can be described by two parameters. In this way, some methods
based on the adaptation of conventional line detection methods have
been proposed. However, most of these methods suffer from the same
disadvantages than in the perspective case (computing time, accuracy,
robustness, ...). In this paper, we then propose a new method for line
detection in central catadioptric image comparable to the polygonal ap-
proximation approach. With this method, only two points of a chain
allows to extract with a very high accuracy a catadioptric line. More-
over, this algorithm is particularly fast and is applicable in realtime. We
also present experimental results with some quantitative and qualitative
evaluations in order to show the quality of the results and the perspec-
tives of this method.

1 Introduction

Catadioptric vision sensors (associations of a camera with a mirror) are now
broadly used in many applications such as robot navigation, 3D scene recon-
struction or video surveillance [1]. Their large field of view is indubitably the
major reason of this success. Baker and Nayer classified these sensors in two
respective categories [2]. First, sensors with a single viewpoint, named central
catadioptric sensors are made of parabolic mirror associated to orthographic
camera and hyperbolic, elliptic and plane mirrors with perspective camera. The
second category with different viewpoints has geometric properties less signifi-
cant and is made of the other possibilities of association between mirrors and
cameras. In this paper, we are only interested in central sensors which permit
a geometrically correct reconstruction of the perspective image from the orig-
inal catadioptric image. However, their employment presents some drawbacks
because of the deformations induced by the mirror. For example, some very
useful classical treatments in perspective image processing can be no more per-
formed on catadioptric images because they are inadequate. One of these major
treatments deals with line extraction. Thus, while in the perspective case line
detection is perfectly known and efficiently solved, with catadioptric images the
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(a) (b)

Fig. 1. (a) Image formation model. Example of projection via the unitary sphere for
a 3D point. (b) Projection of a 3D line via the unitary sphere into the catadioptric
image plane.

problem is absolutely not trivial. Indeed, the projection of any 3D real line is
a conic eventually degenerate. Thus, in the case of an uncalibrated sensor, it is
necessary to estimate five parameters for each line while only two parameters
are sufficient for a calibrated sensor. If we consider the projection of a 3D point
by the way of the unitary sphere (fig. 1(a)) as proposed in [3] [4] [5] with the
formalism defined in [3] [4], we can define oriented projective ray P1 passing by
3D point xw and the center of the sphere. This ray intersects the surface of the
sphere in xs. We then consider oriented projective ray P2 passing by xs and a
point situated on the z-axis between the center of the sphere and the north pole.
This point is at distance ξ from the center of the sphere and depends only on the
mirror geometric characteristics. P2 intersects plane at infinity in point xi. Fi-
nally, homography H defined between the plane at infinity and the catadioptric
image plane projects point xi into point xc. H includes intrinsic parameters of
the camera, possible rotations between the sphere frame and the camera frame,
and finally the parameters of the mirror. According to this model, we can de-
velop the projection of a 3D line into the catadioptric image plane (fig. 1(b)).
We consider plane ΠR which contains the real 3D line and the center of the
sphere. This plane intersects the sphere and then defines a great circle onto its
surface. The set of oriented projective rays passing by the points of the great
circle and point O2 define then a cone which intersects plane at infinity into
conic Ci. Finally, homography H transforms Ci into conic Cc in the catadioptric
image plane. In plane at infinity, we know that the equation of conic Ci is equal
to:

Ci =

⎡
⎣ n2

x(1 − ξ2) − n2
zξ2 nxny(1 − ξ2) nxnz

nxny(1 − ξ2) n2
y(1 − ξ2) − n2

zξ2 nynz

nxnz nynz n2
z

⎤
⎦ (1)
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with (nx, ny, nz)T the vector which describes the normal to plane Pw which
contains the 3D line. We obtain the equation of conic Cc in image plane thanks
to the following relation:

Cc = H−T CiH
−1 (2)

Finally, a pixel xc = (u v 1)T belongs to the conic Cc if the equality xT
c Ccxc =

0 is verified.
In this paper, we propose a new method for calibrated catadioptric line de-

tection which permits a very fast, robust and accurate detection. The proposed
approach consists in roughly estimating the possible catadioptric lines in the
image and in verifying if each possible line is a real catadioptric line. The rest
of the paper is organized as follows. Section II is devoted to the related works
which deal with catadioptric line detection in calibrated and uncalibrated cases.
In section III, we present a complete description of the algorithm. Section IV is
devoted to experimental results with quantitative and qualitative evaluations.
We finally conclude in section V on different perspectives.

2 Related Works

The methods of catadioptric line detection and estimation can be divided in three
categories. The first class deals with methods applicable as well in the calibrated
case as in the uncalibrated case and includes the algorithms of conic fitting
[6]. The second category concerns calibrated sensors and most of the proposed
techniques in this category are based on adaptation of Hough transform [7] [8]
[9]. Methods for uncalibrated sensors form the third category. These methods
use particular geometric constraints of catadioptric sensors and are generally
dedicated to paracatadioptric sensors [10] [11]. In the rest of this section, we
only develop the two first categories because the third is not enough general and
concerns only paracatadioptric cameras.

Conic fitting algorithms determine the curve that best fits the data points
according to a certain distance metric [6]. In [10], the authors present a com-
parison of the normal least squares (LMS), approximate mean square (AMS),
Fitzgibbon and Fisher (FF) [12], gradient weighted least square fitting (GRAD)
and orthogonal distances (ORTHO) methods for the specific problem of para-
catadioptric line detection. Their conclusions are that GRAD and ORTHO are
the most robust to noise and that all methods perform poorly when the ampli-
tude of the occlusion is above 240◦. Since most of the catadioptric lines have an
amplitude less than 45◦, it appears clearly that these methods are unsuitable
for general central catadioptric line detection and estimation. Moreover, these
methods suppose that the pixels from the edges have been already classified into
chains representing the different possible catadioptric lines.

In the calibrated case, homography H and parameter ξ are known. In this way,
a 3D line is determined thanks to a vector (nx, ny, nz)T . This vector represents
the normal of the great circle on the unitary sphere obtained by the intersec-
tion of the plane which contains the center of the sphere and the 3D real line
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(fig. 1(b)). A 3D real line can be also represented by two angles φ and θ which
respectively are the elevation angle and the azimuth angle of the normal vector.
Each catadioptric line is then represented by only two parameters and a simple
adaptation of the Hough transform can solved the problem. This is this kind of
approach which is proposed in [8] and [7]. The mean difference between these
methods deals with the space in which the treatments are performed. In [7], the
image is projected on the unitary sphere and the 3D coordinates of the pixels are
then used while in [8], they apply the algorithm directly in the image. Although
these two approaches present interesting results, it is worth noting that they
present the classic defects of the Hough transform such as the best sampling
step for φ and θ for example. In order to avoid these drawbacks, we can note
that if two pixels of a catadioptric line are known, it is then possible to compute
the normal of the great circle and then to obtain the corresponding values of φ
and θ. In [9], the authors propose a randomized Hough transform which selects
randomly two points in the image of edges in order to compute the φ and θ
angles. These angles are then used in an accumulator for the detection of the
most confident catadioptric lines.

3 Central Catadioptric Line Detection Algorithm

Our line detection algorithm for central catadioptric sensor consists first in ap-
plying a Canny edge detector (Fig 4(b)). Then, we proceed to an edge chaining
which consists in extracting connected pixels from edges in order to form lists
with a length superior or equal to a threshold (NbPixels) (Fig 4(c)). To detect
the lines in the scene consists then in verifying if these chains are the projections
of 3D lines. In this way, we apply a split and merge algorithm of the chains.
First, an adaptation of the polygonal approximation of the classical perspective
case is proposed in order to find which chains or parts of chains are catadiop-
tric projections of lines. This process is performed thanks to a division criterion
which cuts the chains at a particular position if the chain is not verified as a
catadioptric line. Next, we use a fusion criterion in order to group the different
chains in the image which represents the same central catadioptric lines. These
both criteria are discussed in the following of the paper.

3.1 Division Criterion

Consider the two endpoints of a chain of N pixels with coordinates P1 =
(X1, Y1, Z1) and P2 = (X2, Y2, Z2) on the unitary sphere S2. These points define
a single central catadioptric line in the image and then a great circle C on the
sphere (cf fig(1(a)(b)). This circle results from the intersection of the unitary
sphere and a plane which contains the sphere origin 01 and whose a normal
vector is −→n = −−−→

O1P1 × −−−→
O1P2 = (nx, ny, nz)T . Then, the equation of C is:

{
nxX + nyY + nzZ = 0

(X, Y, Z) ∈ S2
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We consider that a point on the sphere with coordinates (Xi, Yi, Zi) of the chain
belongs to the great circle if the distance between this point and the plane defined
by the great circle is less than a threshold:

|nxXi + nyYi + nzZi| ≤ DivThreshold.

This chain is then considered as a central catadioptric line if at least 95% of its
points belong to the great circle.

In the opposite case, we cut the chain into two sub-chains at the point
(Xj , Yj , Zj) which maximizes the following error ||(Xi, Yi, Zi).−→n ||, i = 1 · · ·n
(the furthest point from the plane).

This division step stops when the chain is considered as a central catadioptric
line or when the length of the sub-chains is less than the threshold (NbPixels).
At the end of this step, we then obtain the whole set of central catadioptric
lines in the image. However this method may generate a multi-detection of the
same lines. In order to compensate this drawback, we then propose to merge the
similar catadioptric lines.

3.2 Fusion Criterion

Let define two catadioptric lines d1 and d2 detected with the previous method.
These lines respectively characterized by −→n1 and −→n2 define two planes in the 3D
space passing through the origin of the unitary sphere, Π1 = {U = (X, Y, Z) ∈
R

3, −→n 1.U = 0} and Π2 = {U = (X, Y, Z) ∈ R
3, −→n 2.U = 0} . We consider that

these detected catadioptric lines are similar if they define the same 3D plane,
that is to say if:

1 − |−→n 1.−→n 2| ≤ FusThreshold.

In this case, the two catadioptric lines are merged into a single line. The cata-
dioptric line equation is then updated from the pixels of the chains which belong
to d1 and d2 as follows. Let note respectively M1 = (X1

i , Y 1
i , Z1

i )i=1···N1 and
M2 = (X2

i , Y 2
i , Z2

i )i=1···N2 , the pixels of catadioptric line d1 (resp. d2). Let M ,
the matrix of dimension (N1 + N2) × 3,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1
1 Y 1

1 Z1
1

...
...

...
X1

N1 Y 1
N1 Z1

N1

X2
1 Y 2

1 Z2
1

...
...

...
X2

N2 Y 2
N2 Z2

N2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

The normal vector −→n = (nx, ny, nz)T of the great circle associated to the cata-
dioptric line is then solution of:

M.−→n = (0, · · · , 0)T . (3)

The solution of (3) is obtained from the SVD of matrix M [13].
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4 Experimentations

We have tested our central catadioptric line detector on different kinds of om-
nidirectional images. We first propose some results with synthesis images for
which we perfectly know the line equations in order to show the accuracy of the
approach. Then, some results on real images are also proposed. In the whole
set of experimentations except in one indicated case, the different thresholds are
fixed as follows : NbPixels =100, DivThreshold = 0.0005, FusThreshold = 1◦.

(a) (b)

Fig. 2. (a) Original image, (b) Detected catadioptric lines

4.1 Synthesis Images

We have generated two synthesis images for which we perfectly know the cali-
bration parameters and line equations. The first image contains five catadioptric
lines (fig 2(a)). The five lines are obviously easily detected (fig 2(b)). However,
results show a very high accuracy of the catadioptric line estimation. Indeed,
contrary to Hough based methods which require a sampling of the search space
and for which the accuracy depends on this sampling, in the proposed method
the catadioptric line estimation is performed analytically. Thus, let note Hi

c the
3 × 3 matrix of the conic associated to a catadioptric line i (i = 1 · · · 5) and Ĥi

c,

(a) (b) (c)

Fig. 3. (a) Original image, (b) Red catadioptric lines correspond to detected catadiop-
tric lines, (c) False catadioptric lines whan the length NbPixel is too low
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the estimation of this matrix from the proposed method. For the five catadioptric
lines of the first image Fig 2(a), the mean error:

1
5

5∑
i=1

||Hi
c/Hi

c(3, 3) − Ĥi
c/Ĥi

c(3, 3)||
||Hi

c||
= 5.10−5.

The second synthesis image is composed of eight catadioptric lines and two
’false’ catadioptric lines (fig 3(a)). Results show that the eight catadioptric lines
are correctly detected Les résultats montrent bien que les 8 droites sont cor-
rectement détectées while the two ellipses which are ‘false’ catadioptric lines are
not detected (fig 3(b)). Nevertheless, if the minimal length NbPixel decreases (in
this example, NbPixel=50), we can note that some parts of these ellipses may
correspond to catadioptric lines (fig 3(c)).

4.2 Real Catadioptric Images

We present here result for a real catadioptric image. In this case, sensor has
been calibrated with the method described in [4]. This image (fig 4(a)) is a
paracatadioptric image issued from the calibration toolbox proposed by Barreto
[4]. In figure 4(b), we present the result of Canny edge detector and consecu-
tively the detected chains of pixels extracted for the catadioptric line verification
(fig 4(c)). Figure 4(d) shows the catadioptric line detection before the fusion step

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Original image, (b) Canny edge detector result, (c) Extracted chains, (d)
Catadioptric line detection results after division step, (e) Catadioptric line detection
results after fusion step, (f) Detailed view of final results
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while figure 4(e) presents the final result after the fusion step. In figure 4(f), we
propose a more detailed view of a part of the image in order to show the accu-
racy of the results. Finally, from a computational time point of view, the method
takes near 3 seconds with Matlab. A real time implementation constitutes the
next perspective of this work.

5 Conclusion

In this paper, we deal with the problem of line detection in central catadioptric
images. Our method is valid for calibrated sensor and is comparable to the polyg-
onal approximation algorithm. Indeed, it consists in looking for pixels in chains
of edges which correspond to catadioptric lines thanks to an analytic approach
contrary to previous methods based on Hough transform which depends on the
sampling of the search space. Moreover, we then obtain a very fast algorithm
which could be implemented for real time applications.
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Abstract. This work presents a content-based image retrieval system
of general purpose that deals with cluttered scenes containing a given
query object. The system is flexible enough to handle with a single im-
age of an object despite its rotation, translation and scale variations. The
image content is divided in parts that are described with a combination
of features based on geometrical and color properties. The idea behind
the feature combination is to benefit from a fuzzy similarity computation
that provides robustness and tolerance to the retrieval process. The fea-
tures can be independently computed and the image parts can be easily
indexed by using a table structure on every feature value. Finally a pro-
cess inspired in the alignment strategies is used to check the coherence
of the object parts found in a scene. Our work presents a system of easy
implementation that uses an open set of features and can suit a wide
variety of applications.

1 Introduction

The goal of Content-Based Image Retrieval (CBIR) is to find all images in a
given database that contain certain visual features specified by the user. When
these features refer not to the whole image but a subpart, we deal with a problem
known as Similarity-Based Object Retrieval (SBOR). Some authors consider two
main approaches on the SBOR problem: data-independent and data-dependent
[3]. In the data-independent approach images are coarsely divided into rectangu-
lar regions where a searched object is mean to be found. Images are indexed from
the feature vectors that had been computed using the whole information of the
image regions. This fact represents the main advantage on the data-independent
systems because classical strategies of CBIR can then be applied to character-
ize the image from its parts [1] [2]. Otherwise, they involve the hard restriction
of dealing with query objects that must fit a rectangular piece of the scene [4]
[5]. To overcome this limitation data-dependent approaches deal directly with
the particular content of each image. The strategy consists in detecting a set
� This work has been partially supported by the grant UABSCH2006-02.

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 33–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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of invariants from which to decompose the image content in a set of regions.
Then, local descriptions of these regions are extracted and represented by fea-
ture vectors. Two of the most popular approaches on detecting image invariants
are the use of the Harris corner detector and the use of the DoG (Difference of
Gaussians) operator. Data-dependent strategies are based on the evidence that
a query object is likely to be found in a scene if the feature vectors that describe
its parts can be matched in the scene. Even though this criterion represents a
useful filter in the retrieval solution, it is not robust enough when the target
object constitutes a small portion of the whole scene. To avoid the incorporation
of false positives in the query result the system has to check the structural coher-
ence of the object parts found in a scene. This testing process can be performed
with techniques as diverse as Hough-like voting strategies [8] or correspondence
algorithms such as RANSAC [7]

We present a SBOR system of general purpose that given the image of an
object is able to retrieve those cluttered database images that likely contain an
instance of this object. The retrieval strategy is based on a data-dependent ap-
proach to be flexible enough to handle with a single instance of an object despite
its rotation, translation and scale variations. Finally a process inspired in the
alignment strategies is used to check the spatial disposition of the object parts.
The main contribution of our work is centered in the selection and treatment of
the image descriptors. The selection of the image descriptors has to be under-
stood as a compromise between the discriminant power for the content indexing
and the tolerance in the similarity matching. Some authors [9] discriminate be-
tween the descriptors based on the signal image information [8] and those based
on the geometrical properties [6]. In one hand, signal-based descriptors stand
out to be very precise and discriminant and, in the other hand, geometrically-
based ones provide a suitable encoding of the object structure. Consequently, we
propose to use a combination of simple features of both groups instead of using
a sophisticated description compacted in a single feature. This way, the feature
combination allows a fuzzy computation of the similarity values and provides
robustness and tolerance to the retrieval process.

In the next section of this paper we describe the region extraction process
and we give a general view of the database features organization. In section 3 we
present the two main stages of the object detection strategy: the local matching
and the global matching. Section 4 contains some results and finally, in the
section 5, we expose the conclusions of this work.

2 Information Modelling

Our retrieval system consists in a data-dependent approach where the image
parts are obtained from the polygonal approximation of the contour information.
Let us name I an image and v a vector belonging to its polygonal approximation.
Every vector has associated an influence area from which the image content is
decomposed in parts. These parts are denoted p and are characterized by a set of
independent features F . Thus, a set of tables, one for each feature type, provides
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an easy system to store and index the image parts. Let us denote T k the table
structure that stores the image information for a certain feature type F k. The
lines of a table are referred to the values comprised in its feature range and the
columns are referred to the image parts. A table describes the image content
using binary information: a cell T k(x, y) is set to 1 if the image part px has the
value y for the feature F k. Figure 2 exemplifies the extraction of the image parts
and feature storage structure.

We distinguish between two kind of features used by our system: the local fea-
tures FL and the global features FG. The local features allow to obtain an inde-
pendent description of the image parts. Otherwise, the global features are used to
establish the relations between these parts and describe their translation, rotation
and scale with respect to the whole image. We use a total amount of 14 features dis-
tributed in 4 global features and 10 local features (6 based on the signal information
and 4 based on the geometric properties). Figure 1 shows them graphically.

In the next section we expose how the features are used in the retrieval process:
the local features identify the presence of the image parts and the global ones
assure their structural coherence.

Fig. 1. Image features F = {F k} a) Local features based on the geometric properties
of the vectors belonging to the influence area b) Local features based on the signal
values sampled on the left and right side along the vector c) Global features

3 Retrieval Process

The retrieval process is divided in two main stages: the retrieval of the query
object parts and the analysis of their structural distribution.

3.1 Object Part Identification

Let us name pM
i a part of the query object and pE

j a part of a scene. To eval-
uate the similarity between these two image parts we formulate a query on the
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database information for each value of the local features FL. Let us name FM,k
i

the value of the feature k belonging to the query object part pM
i . Instead of

retrieving only the scene parts that match exactly the value FM,k
i we use a sim-

ilarity function FS that deals with a wider range of solutions. The similarity
computation consists in a ramp function that evaluates de difference of the fea-
ture values respect to a given tolerance εk. The result varies in the range of 0 to
1 where 1 means maximum similarity.

FS(εk, FM,k
i , FE,k

j ) =
{

0 if d > εk

1 − d
εk otherwise

where d = |FM,k
i − FE,k

j |

The matching between a part of a query object and a part of a scene is
evaluated by the mean of the similarity values for all the local features LFSM,E

i,j .
Then, the matching of pM

i in the whole scene is denoted ILFSM,E
i and it is

obtained by the maximum similarity of all the possible comparisons.

LFSM,E
i,j =

∑
FS(εk, FM,k

i , FE,k
j )

#FL
| k ∈ FL

ILFSM,E
i = max{LFSM,E

i,j } ∀j ∈ pE
j

Fig. 2. The figure shows the vectorization of an object image and an image part exam-
ple (shaded region) belonging to one of its vectors. A binary table contains the feature
information of the scene image. An example shows the similarity results FS for every
scene vector respect to the object value F k

i (where k=9 for the feature |HueR−HueL|).
We represent in black the scene vectors with maximum similarity.
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Figure 2 shows an example of similarity computation FS for a single feature
Fk. Moreover, Figure 3 illustrates the combination values ILFS between the
signal features and the geometric ones.

Some retrieval systems select those database images that present the high-
est accumulation of the local part identification similarities ILFS. This single
criterion does not check the coherence of the spatial arrangement of the object
parts. Thus, a large amount of false positives can be introduced in the retrieval
solution. To solve this problem, our proposal introduces a final phase where the
global structure is tested for the local matching pairs with highest score.

3.2 Checking of the Structural Arrangement of the Object Parts

Given a vector of the model object image vM
q and a vector of the scene image

vE
r we can define an alignment of both image contents by computing the affine

geometric transformations to map vM
q on vE

r in the orientation O (the same or
opposite). These geometric transforms can consist in changes of scale, rotation,
and translation. As we have introduced in the section 2 the features that describe
the image content in relation to the whole image aspect are identified as global
features FG. This way, the alignment transformations only affect to the global
features of the query object.

a) b)

c) d)

Fig. 3. a) Similarity values ILFS of the object parts (black means maximum similarity)
using signal-based features b) using geometrical features c) using both feature groups
d) Vectors representing the best matching solution, maximum IGFS value, for both
feature groups. Notice the collaboration between the signal based-based features that
match the cars by their color and the geometrical-based ones that match them by
shape.
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Let us name F ′ the modified global feature values of the query object ac-
cording to a given vector alignment. The object similitude is computed using
the same strategy as the local one but adding a hard restriction to the global
feature values. To preserve the spatial disposition of the object parts is neces-
sary the similarity of all the features values to be accomplished. The following
function, GFS, describes the calculus of the similarity between an object part
pM

i and a scene part pE
j given a fixed alignment.

GFSM,E
i,j,(q,r,O) = min{LFSM,E

i,j , FS(εk, F ′M,k
i , FE,k

j )}

∀k ∈ FG

Then the similarity between the query object and the scene image correspond
to the best result provided by the function IGFS on the checked alignments.

IGFSM,E
(q,r,O) = max{GFSM,E

i,j,(q,r,O)}

| LFSM,E
i,j > Thr, ∀i ∈ pM

i , ∀j ∈ pE
j

The computed value is used in the retrieval process to rank the solutions of
given query. The example of the Figure 3 d) shows the object detection solution
as the scene vectors with maximum IGFS value.

4 Results

We have tested the system with 72 images belonging to two databases. The first
database consists in a set of 40 images of invoices that can be identified by 4
different logos. The other database is conformed of 32 scenes where 4 objects

Fig. 4. Query examples on the selected objects. Every retrieved image has its position
(P) and retrieval value (V).
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can be found. For every query image we have computed the rate of database
images that contain the searched object and that have been retrieved in the first
n positions (being n the total amount of database images where the query object
can be found). The obtained results for both tests are 92% of success.

We have observed that the variations that mainly affect to the retrieval mea-
sure IGFS are caused by illumination changes and viewpoint distortions. Nev-
ertheless the success on the object location is maintained due to the feature
combination and the effect of the query tolerance ranges. Figure 4 illustrates the
results with two examples.

5 Conclusions

We have developed a SBOR system that deals with a combination of independent
image features that provides a fuzzy value on the similarity comparison of the
image parts. A future research line of our work is centered in the development
of a process that initially analyzes the query image and adapts the similarity
tolerances according to the most characteristic features of the query object. The
system has proved to be robust against effects such as noise, shades, slightly
modifications of the viewpoint and partial occlusions. We have tested the system
with two databases of scanned documents and images of objects taken in real
environments obtaining promising results.
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Abstract. The recognition of emotional information is a key step toward giving 
computers the ability to interact more naturally and intelligently with people. This 
paper presents a completely automated real-time system for facial expression’s 
recognition based on facial features’ tracking and a simple emotional classification 
method. Facial features’ tracking uses a standard webcam and requires no specific 
illumination or background conditions. Emotional classification is based on the 
variation of certain distances and angles from the neutral face and manages the six 
basic universal emotions of Ekman. The system has been integrated in a 3D engine 
for managing virtual characters, allowing the exploration of new forms of natural 
interaction.  

Keywords: real-time features tracking, emotional classification, natural interfaces. 

1   Introduction 

Human computer intelligent interaction is an emerging field aimed at providing 
natural ways for humans to use computers as aids. It is argued that for a computer to 
be able to interact with humans it needs to have the communication skills of humans. 
One of these skills is the ability to understand the emotional state of the person, and 
the most expressive way humans display emotions is through facial expressions. 
Nevertheless, to develop a system that interprets facial expressions is difficult. Two 
kinds of problems have to be solved: facial expression feature extraction and facial 
expression classification. Related to feature extraction, and thinking in interface 
applications, the system must be low-cost with real-time, precise and robust feedback. 
Of course, no special lighting or static background conditions can be required. The 
face can be assumed to be always visible, however, difficulties can arise from in-
plane (tilted head, upside down) and out-of-plane (frontal view, side view) rotations 
of the head, facial hair, glasses, lighting variations and cluttered background [1]. 
Besides, when using standard USB web cams, the provided CMOS image resolution 
has to be taken in account. Different approaches have been used for non invasive 
face/head-based interfaces, mainly for the control of the head’s position analyzing 
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facial cues such as color distributions [2], head motion [3] or, recently, by means of 
facial features’ tracking [4,5]. From the extracted facial features, emotional 
classification has to be performed. Three different classification methods are usually 
used for expression recognition: patterns, neuronal networks or rules [6]. Most of 
them follow the emotional classification of Ekman [7] that describes six universal 
basic emotions: joy, sadness, surprise, fear, disgust and anger. 

The aim of this work is to show how a non-invasive robust face tracking system 
can feed an effective emotional classifier to build a facial expression recognition 
system that can be of great interest in developing new multimodal user interfaces. As 
it will be shown, the system developed has been successfully integrated in a 
character-based interface, allowing the exploration of new forms of affective 
interaction.  

2   Real-Time Facial Feature Tracking 

The computer vision algorithm is divided into two steps: initialization and tracking. 
The initialization step is responsible of learning the user’s facial characteristics such 
as its skin color, its dimensions and the best face features to track. This process is 
totally automatic and it can also be used for system’s recovering when a severe error 
occurs, adding the robustness necessary so that it can be used in a human-computer 
interface. 

First of all, the algorithm automatically detects the user’s face by means of a real-
time face detection algorithm [8]. The face will not be considered as found until the 
user sits steady for a few frames and the face is detected in the image within those 
frames. A good detection of the features is very important for an effective performance 
of the whole system and the user must start the process with the so called neutral face: 
the mouth is closed and the gaze is directed perpendicular to the screen plane, the eyes 
are open and the eyelids are tangent to the iris. Then, it is possible to define the initial 
user’s face region to start the search of the user’s facial features. Based on 
anthropometrical measurements, the face region can be divided into three sections: 
eyes and eyebrows, nose, and mouth region. In the nose region, we look for those 
points that can be easily tracked, that is, those whose derivative energy perpendicular 
to the prominent direction is above a threshold [9]. This algorithm theoretically selects 
the nose corners or the nostrils. However, the ambient lighting can cause the selection 
of points that are not placed over the desired positions; this fact is clearly visible in  
Fig. 1 (a). Ideally, the desired selected features should be at both sides of the nose and 
should observe certain symmetrical conditions. Therefore, an enhancement and a re-
selection of the features found is carried out taking into account symmetrical 
constraints. Fig. 1 (b) shows the selected features when symmetry respect to the 
vertical axis is considered. This reselection process achieves the best features to track 
and contributes to the tracking robustness. Fig. 1 (c) illustrates the final point 
considered, that is, the mean point of all the final selected features; due to the 
reselection of points it will be centered on the face. 

Finally, in order to learn the user’s skin color and complete the initialization step, 
the pixels inside the face region are used as a learning set of color samples to find the 
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parameters of a Gaussian model in 3D RGB density using standard maximum 
likelihood methods. 

The aim of the tracking step is to control the position of the face in order to detect 
and constraint the search region of the 10 face features used in the expression 
recognition stage. The detected and enhanced features of the initialization step are 
tracked by using the spatial intensity gradient information of the images in order to 
find the best image registration [10]. As it was mentioned before, for each frame the 
mean of all nose features is computed and it is defined as the face tracking point for 
that frame. The tracking algorithm is robust for handling rotation, scaling and 
shearing, so that the user can move in a more unrestricted way.  

 

   
  (a)                                             (b)                                            (c) 

Fig. 1. (a) Automatic face detection and initial set of features. (b) Best feature selection using 
symmetrical constraints. (c) Mean of all features: face tracking point. 

The face tracking point is used to constrain the image region to process and the 
color probability distribution, both computed in the initialization step, is used to 
calculate the probability of a face pixel being skin so that “skin mask” of the user’s 
face can be created. Using this mask the system can detect, as a result of their non-
skin-color property, the user’s eyebrows, eyes and mouth bounding boxes and due to 
their position related to the face tracking point, the system can label the zones. One 
problem can appear if the user has got his eyes a little bit sunk, then due to the 
shadow in the eyelid, most probably the eyebrow and eye will be found as a single 
blob. In that case, we divide this bounding box assuming that the eyebrow has been 
detected together with the eye. Finally, from the bounding boxes positions, 10 face 
features are extracted. These 10 feature points of the face will later allow us to 
analyze the evolution of the face parameters (distances and angles) used for 
expression recognition. Fig. 2 shows the correspondence between these points and the 
ones defined by the MPEG-4 standard.  

3   Classification of Emotions 

3.1   General Method Description  

Our classification method works with the emotional classification of Ekman and it is 
based on the work of Hammal et al [11]. They have implemented a facial 
classification method for static images. The originality of their work consisted, on the  
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Fig. 2. Facial feature points extracted and used for expression recognition according to the 
MPEG-4  standard (left). Characteristic distances used in our method (right). 

one hand, in the supposition that all the necessary information for the recognition of 
expressions is contained in the deformation of certain characteristics of the eyes, 
mouth and eyebrows and, on the other hand, in the use of the Belief Theory to make 
the classification. Our method studies the variation of a certain number of face 
parameters (basically distances and angles between some feature points of the face) 
with respect to the neutral expression. The characteristic points, shown in section 2, 
are used to calculate the five distances also shown in Fig. 2. All the distances are 
normalized with respect to the distance between the eyes, which is a distance 
independent of the expression. In addition to the five distances our system works with 
additional information about the mouth shape (from the four feature points two angles 
and the width/height relationship is extracted). 

The objective of our method is to assign a score to each emotion, according to the 
state acquired by each one of the parameters in the image. The emotion (or emotions 
in case of draw) chosen will be the one that obtains a greater score. 

Each parameters can take three different states for each of the emotions: C+, C- and 
S. State C+ means that the value of the parameters has increased with respect to the 
neutral one; state C- that its value has diminished with respect to the neutral one; and 
the state S that its value has not varied with respect to the neutral one. First, we build 
a descriptive table of emotions, according to the state of the parameters, like the one 
of the Table 1 (left). From this table, a set of logical rules tables can be built for each 
parameter (right), in which a score is assigned to each state for each emotion, 
depending on the degree in which this state of the parameter is characteristic of the 
emotion. Once the tables are defined, the implementation of the identification 
algorithm is simple. When a parameter takes a specific state, it is enough to select the 
vector of emotions (formed by the scores assigned to this state for each emotion) 
corresponding to this state. If we repeat the procedure for each parameter, we will 
obtain a matrix of as many rows as parameters we study and 6 columns, 
corresponding to the 6 emotions. The sum of the scores present in each column of the 
matrix gives the total score obtained by each emotion. If the final score does not 
surpass a certain threshold, the emotion is classified as “neutral”. 
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Compared to the method of Hammal, ours is computationally simple. The 
combinatory explosion and the number of calculations to make are considerably 
reduced, allowing us to work with more information (more parameters) of the face and 
to evaluate the six universal emotions, and not only four of them, as Hammal does. 

Table 1. Proposed table of one parameters’ states for each emotion (left) and logical rules table 
for that parameter 

Pi E1    
joy 

E2       
surprise 

E3      
disgust

E4      
anger   

E5      
sadness

E6    
fear 

C+ 0 3 0 2 0 1 
C- 1 0 2 0 2 0 
S 0 0 0 0 0 1 

 

3.2   Tuning the Method: The FG-NET Database 

In order to define the emotions in terms of the parameters states, as well as to find the 
thresholds that determine if a parameter is in a state or another, it is necessary to work 
with a wide database. In this work we have used the facial expressions and emotions 
database FG-NET of the University of Munich [12] that provides images of 19 
different people showing the 6 universal emotions from Ekman plus the neutral one. 
From these data, we have built a descriptive table of the emotions according to the 
value of the states (Table 2).  

Table 2. Proposed table of the states for the parameters used by the classification method. 
Some features do not provide any information of interest for certain emotions (squares in gray) 
and in these cases they are not considered. 

 D1 D2 D3 D4 D5 Ang 1 Ang 2 W/H 

Joy C- S/C- C+ C+ C- C+ S/C+/C- S/C- 

Surprise S/C+ S/C+ S/C- C+ S/C+ C- C+ C- 

Disgust C- C- S/C+/C- S/C+ S/C- S/C+/C- S/C+ S/C- 

Anger C- C- S/C- S/C- S/C+/C- C+ C- C+ 

Sadness C- S S/C- S S/C+ S/C+/C- S/C- S/C+ 

Fear S/C+ S/C+/C- C- C+ S/C+ C- C+ C- 

3.3   Validation 

Once the states that characterize each emotion and the value of the thresholds are 
established, the algorithm has been tested on the 399 images of the database. In the 
evaluation of results, the recognition is marked as “good” if the decision is coherent 
with the one taken by a human being. To do this, we have made surveys to 30 different 

 Pi 
Joy C- 

Surprise C+ 
Disgust C- 
Anger C+ 

Sadness C- 
Fear S/C+
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people to classify the expressions shown in the most ambiguous images. Related to 
classification success, it is interesting to realize that human mechanisms for face 
detection are very robust, but this is not the case of those for face expressions 
interpretation. According to Bassili [13], a trained observer can correctly classify faces 
showing emotions with an average of 87%. The obtained results are shown in Table 3. 
The method has also been tested with other databases different from the one used for 
the threshold establishment, in order to confirm the good performance of the system.  

Table 3. Classification rates of Hammal [11] (second column) and of our method with five 
distances (second column) and plus the information about the mouth shape (third column) 

EMOTION 
% SUCCESS 
HAMMAL 
METHOD 

% SUCCESS  
FIVE 

DISTANCES 

% SUCCES 
MOUTH SHAPE 

Joy 87.26 36.84 100 
Surprise 84.44 57.89 63.16 
Disgust 51.20 84.21 100 
Anger not recognized 73.68 89.47 

Sadness not recognized 68.42 94.74 
Fear not recognized 78.95 89.47 

Neutral 88 100 100 

3.4   Temporal Information: Analysing Video Sequences 

After having tuned and validated the classification system with the static images, the 
use of the automatic feature extraction has enabled us to track video sequences of 
user’s captured by a webcam. Psychological investigations argue that the timing of 
the facial expressions is a critical factor in the interpretation of expressions.  In order 
to give temporary consistency to the system, a temporary window that contains the 
emotion detected by the system in each one of the 9 previous frames is created. A 
variation in the emotional state of the user is detected if in this window the same 
emotion is repeated at least 6 times and is different from the detected in the last 
emotional change. 

The parameters corresponding to the neutral face are obtained calculating the 
average of the first frames of the video sequence, in which the user is supposed to be 
in the neutral state. For the rest of the frames, a classification takes place following 
the method explained in the previous sections. 

4   Application: New Input Data for Natural Interfaces 

To demonstrate the potential of our emotional tracking system, we have added it to 
Maxine [14], a general engine for real-time management of virtual scenarios and 
characters developed by the group. Maxine is a tool that has been created with the aim 
of making it easy the use of character-based interfaces in different application 
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domains. The general vision is that if a user’s emotion could be recognized by 
computer, human interaction would become more natural, enjoyable and productive. 
The system presented here has been configured as a new multimodal input to the 
system. The system recognizes the emotion of the user and responds in an engaging 
way. The features extraction program captures each facial frame and extracts the 10 
feature points which are sent to the emotion classifier. When an emotional change is 
detected, the output of the 7-emotion classifier constitutes an emotion code which is 
sent to Maxine’s character. For the moment, the virtual character’s face just mimics 
the emotional state of the user (Fig. 3), accommodating his/her facial animation and 
speech.  

 

 
 
 

 

Fig. 3. Examples of the integrated real-time application: detection of surprise, joy, sadness, 
anger. For each example, images captured by the webcam, small images showing automatic 
features’ tracking and synthesized facial expressions are shown. The animated character mimics 
the facial expression of the user. 

5   Conclusions and Future Work 

We have presented a simple and effective system for the real-time recognition of 
facial expressions. In opposition to other systems that rely on the use of wearable 
detectors, the system developed in non-invasive and is based on the use of a simple 
low cost webcam. The automatic features extraction program allows the introduction 
of dynamic information in the classification system, making it possible the study of 
the time evolution of the evaluated parameters, and the classification of user’s 
emotions from live video.  

To test its usefulness and real-time operation, the system has been added to the 
Maxine system, an engine developed by the group for managing 3D virtual scenarios 
and characters to enrich user interaction in different application domains. For the 
moment, and as a first step, the emotional information has been used to accommodate 
facial animation and speech of the virtual character to the emotional state of the user. 
More sophisticated adaptive behaviour is now being explored. As it has been pointed 
out, recognition of emotional information is a key step toward giving computers the 
ability to interact more naturally and intelligently with people. 
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Luis Javier Rodŕıguez, Mikel Peñagarikano, and Germán Bordel

Grupo de Trabajo en Tecnoloǵıas del Software
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Abstract. The automatic transcription of broadcast news and meetings
involves the segmentation, identification and tracking of speaker turns
during each session, which is known as speaker diarization. This paper
presents a simple but effective approach to a slightly different task, called
speaker tracking, also involving audio segmentation and speaker identi-
fication, but with a subset of known speakers, which allows to estimate
speaker models and to perform identification on a segment-by-segment
basis. The proposed algorithm segments the audio signal in a fully unsu-
pervised way, by locating the most likely change points from an purely
acoustic point of view. Then the available speaker data are used to esti-
mate single-Gaussian acoustic models. Finally, speaker models are used
to classify the audio segments by choosing the most likely speaker or, al-
ternatively, the Other category, if none of the speakers is likely enough.
Despite its simplicity, the proposed approach yielded the best perfor-
mance in the speaker tracking challenge organized in November 2006 by
the Spanish Network on Speech Technology.

1 Introduction

The automatic transcription of broadcast news and meetings involves the seg-
mentation, identification and tracking of speaker turns during each session, which
is known as speaker diarization [1][2]. This task involves the segmentation of the
input signal into speaker turns, advertising, music, noise and whatever other con-
tent is included in the audio file. Then, speech segments corresponding to the
same speaker are clustered together and tagged with the same label. Non-speech
segments are all tagged with the special label Other.

To measure the speaker diarization error, first the system and reference seg-
mentations are aligned. Then, among those labels assigned by the system to any
given speaker, that appearing most times is taken as the system choice and con-
sidered equivalent to the reference label. Finally, the speaker diarization error
is computed as the fraction of time speakers are correctly identified. Consider
the example shown in Figure 1, where not only segmentation errors but also
clustering errors are illustrated. Note, for instance, that the last segment is er-
roneously assigned to a third speaker. After the alignment is done, the label s01
is considered equivalent to mm and the label s02 equivalent to ft. Finally, it is
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Fig. 1. An example of speaker diarization. The system provides a sequence of segments
with blind speaker labels. After aligning the system and reference segmentations, label
equivalences are set. Finally, the speaker identification error is computed as the fraction
of time speakers are erroneously identified (shaded regions).

found that speakers have been erroneously identified during 10 seconds out of 25
(the shaded regions in Figure 1), which means a 40% speaker diarization error.

A slightly different task, called speaker tracking, is posed when speaker data
are available a priori, because speaker models can be estimated and used to seg-
ment and label the audio file. Like speaker diarization, speaker tracking involves
audio segmentation and speaker identification, but this latter is performed in a
supervised way. In other words, the objective is to detect target speakers in a
continuous audio stream. Clustering is not needed because each segment can be
independently scored against speaker models and classified accordingly. Consider
the example shown in Figure 2. It is close to that of Figure 1, except for the
fact that the system does not provide blind labels, but labels of known speakers.
The alignment does not determine which is the most likely mapping between
reference labels and system labels. The speaker identification error is computed
in a straightforward way, as the fraction of time system labels do not match
reference labels. In the example of Figure 2 speakers are erroneosuly identified
during 15 seconds out of 25, which means a 60% speaker identification error.

In this paper a simple approach is presented for speaker tracking in broadcast
news. The segmentation step is done in a fully unsupervised way, by locating
the most likely change points in the acoustic signal. Segmentation is completely

Fig. 2. An example of speaker tracking. The system provides a sequence of segments
with labels of known speakers. The speaker identification error is computed as the
fraction of time speakers are erroneously identified (shaded regions).
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decoupled from identification and does not use speaker data. It only takes into
account changes in spectral statistics. Speaker identification is done by comput-
ing the score of each segment with regard to speaker models, which are trained
beforehand starting from labelled speaker data. Each segment is assigned the
label of the most likely speaker or, alternatively, the label Other, if none of the
speakers is likely enough. Note that broadcast news include music, noise, adver-
stising, etc. and that only a subset of the speakers is known a priori. So, under
the category Other should fall not only non-speech segments, but also speech
segments corresponding to unknown speakers.

This paper is organized as follows: in the next two sections, the audio segmen-
tation and speaker identification algorithms are explained in detail; in section 4
the experimental setup is described, including the speech database, the au-
dio processing and the tuning experiments; results are shown and discussed in
section 5; finally, section 6 gives conclusions and tracks for future work.

2 Audio Segmentation

Audio segmentation, also known as acoustic change detection, consists of explor-
ing an audio file to find acoustically homogeneous segments, or, in other words,
detecting any change of speaker, background or channel conditions. It is a pat-
tern recognition problem, since it strives to find the most likely categorization of
a sequence of acoustic observations, yielding the boundaries between segments
as a by-product. Audio segmentation becomes useful as a preprocessing step in
order to transcribe the speech content in broadcast news and meetings, because
regions of different nature can be handled in a different way.

There are two basic approaches to this problem: (1) model-based segmentation
[3], which estimates different acoustic models for a closed set of acoustic classes
(e.g. noise, music, speech, etc.) and classifies the audio stream by finding the
most likely sequence of models; and (2) metric-based segmentation [4][5][6], which
defines some metric to compare the spectral stastistics at both sides of successive
points of the audio signal, and hypothesizes those boundaries whose metric values
exceed a given threshold. The first approach requires the availability of enough
training data to estimate the models of acoustic classes and does not generalize
to unseen conditions. The second approach, also known as blind (unsupervised)
segmentation, does not suffer from these limitations, but its performance depends
highly on the metric and the threshold. Various metrics have been proposed in
the literature. The most cited are the Generalized Likelihood Ratio (GLR) [7]
and the Bayesian Information Criterion (BIC) [4].

Recently, the so called crossed-BIC (XBIC) [8] was introduced, improving the
performance of BIC and reducing its computational cost. In this work, a kind
of normalized XBIC is applied, a cross-likelihood metric which resembles the
Rabiner distance [9] for the case of two multivariate Gaussians estimated from
the same number of samples.

Consider two segments of speech, X and Y , of the same length, and the
corresponding sequences of spectral feature vectors, x = x1, . . . , xN and y =
y1, . . . , yN . Assuming that the acoustic vectors are statistically independent and
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that can be modelled by a multivariate Gaussian distribution, we estimate the
models λx = N(O; μx, Σx) and λy = N(O; μy , Σy) and define the dissimilarity
measure between X and Y as follows:

d(X, Y ) = − log
(

P (x|λy)P (y|λx)
P (x|λx)P (y|λy)

)
(1)

where P (z|λ) =
∏N

i=1 N(zi; μ, Σ) is the likelihood of the acoustic sequence z
given the model λ. In other words, if X and Y are acoustically close, their
respective models will be quite close too, which means that d(X, Y ) ≈ 0. On the
other hand, the more X and Y differ, the greater d(X, Y ) will become.

The audio segmentation algorithm considers a sliding window W of N acoustic
vectors and computes the likelihood of change at the center of that window,
then moves the window n vectors ahead and repeats the process until the end
of the vector sequence. To compute the likelihood of change, each window is
divided in two halfs, Wl and Wr, then a Gaussian distribution (with diagonal
covariance matrix) is estimated for each half and finally the cross-likelihood ratio
(Eq. 1) is computed and stored as likelihood of change. This yields a sequence
of cross-likelihood ratios which must be post-processed to get the hypothesized
segment boundaries. This involves applying a threshold τ and forcing a minimum
segment size δ. In practice, a boundary t is validated when its cross-likelihood
ratio exceeds τ and there is no candidate boundary with greater ratio in the
interval [t − δ, t + δ]. An example of audio segmentation is shown in Figure 3.

Fig. 3. An example of audio segmentation. Vertical lines represent actual boundaries,
either between two speaker turns, or between a speaker turn and non-speech con-
tent. The local maxima marked with ‘X’ represent the boundaries hypothesized by the
system.
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3 Speaker Identification

Once the segmentation is done, each segment must be given a speaker label or,
alternatively, the special label Other when no speaker is likely enough. Assum-
ing that a certain amount of training data is available for L target speakers,
speaker models can be estimated beforehand. In this work, speaker models are
multivariate Gaussian distributions: λi = N(O; μi, Σi), for i = 1, . . . , L. This
is just a special case of the GMM classifiers routinely used for speaker identifi-
cation [10]. To classify any given segment X , firstly the segment model is esti-
mated (again as a Gaussian distribution with diagonal covariance matrix) λX =
N(O; μX , σ2

X), starting from the sequence of acoustic vectors x = x1, . . . , xN .
Note that P (x|λX) ≥ P (x|λi) ∀i. The label l(X) is given according to the
following rule:

l(X) =

⎧⎪⎨
⎪⎩

k = arg max
i=1,...,L

P (X |λi) if 1
N log

(
P (x|λk)
P (x|λX )

)
> ε

Other otherwise

(2)

where ε is a heuristically fixed margin which determines a threshold in the aver-
age log-likelihood ratio over which the most likely speaker k is validated as the
best choice. Alternatively, if the likelihood ratio of the most likely speaker does
not exceed ε, the label Other is assigned to X .

4 Experimental Setup

4.1 The Speech Database

There was a short-term motivation for this work in the challenge for speaker
tracking in broadcast news proposed in July 2006 by the Spanish Network on
Speech Technologies (RTH). In fact, the experiments reported here are those
carried out for that challenge, under the conditions set by the RTH [11]. The
database consisted of audio tracks taken from radio broadcasts in Spanish, in-
cluding many speakers, music, movie excerpts, advertising, overlaps, etc. Train-
ing data were available for 5 target speakers, consisting of 5 short utterances per
speaker, 4 of them distorted with echo and reverberation. The training material
for each speaker had an average length of 12.8 seconds (64 seconds all together).
The test corpus consisted of 20 long tracks, with an average length of nearly
4 minutes (around 77 minutes all together). One of the training tracks, includ-
ing material from only two of the target speakers, was also used for developing
purposes (tuning the segmentation and identification algorithms).

4.2 Audio Processing

Radio broadcasts were all sampled at 16 kHz and stored in PCM format using
16 bits per sample. The audio was analysed in frames of 25 milliseconds (400
samples) at intervals of 10 milliseconds. A Hamming window was applied and
a 512-point FFT computed. The FFT amplitudes were then averaged in 24
overlapped triangular filters, with central frequencies and bandwidths defined
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according to the Mel scale. A Discrete Cosine Transform was finally applied
to the logarithm of the filter amplitudes, obtaining 12 Mel-Frequency Cepstral
Coefficients (MFCC). The choice of MFCC is based on the fact that historically
there have been no features specifically designed for audio segmentation, and
the MFCC are the most commonly used parameters for speaker identification.

4.3 Tuning Experiments

The tuning phase consisted on running various experiments to adjust the pa-
rameters of the audio segmentation and speaker identification algorithms. As
noted above, one of the audio files included in the test set, as well as the cor-
responding reference labels (set by human experts), were available to make the
adjustments. Parameters were set to get the best match between system labels
and reference labels (see Table 1). However, some considerations were taken into
account beforehand, which we summarize in the following lines.

The size of the sliding window (N) should balance the performance of the
segmentation algorithm for short and long segments. If N was too short, the
estimation of spectral properties would focus on instantaneous events but would
be less robust. If N was too long, the estimations would be robust but less sen-
sitive to instantaneous events, and therefore very short turns would be missed.
The window step (n) should be as small as possible to allow maximum resolu-
tion. However, this would increase the computational cost of the approach. The
threshold for the likelihood of change (τ) should balance false alarms and miss-
ings. If τ was too low, many false boundaries would be detected; inversely, if τ
was too high, some actual boundaries would be missed. However, since our objec-
tive was not an accurate segmentation but the identification of target speakers,
over-segmentation did not pose a problem as long as the segments were all as-
signed the right speaker label. So, τ could be skewed to low values. The minimum
segment size (δ) allowed to choose the most likely segment boundary in any given
interval of size 2δ. If δ was too high, short segments might be missed, so it should
be as small as possible, as long as it fulfils the task of avoiding noisy boundaries
around an actual boundary. Finally, the threshold for the speaker identification
likelihood (ε) should balance the false alarms (segments erroneously assigned
to a known speaker) and missings (segments produced by known speakers and
erroneously tagged as Other).

Table 1. Tuned settings for the audio segmentation and speaker identification param-
eters: size of the sliding window (N), window step (n), threshold for the likelihood
of change (τ ), minimum segment size (δ) and threshold for the speaker identification
likelihood (ε)

Audio
segmentation

Speaker
identification

Parameter N n τ δ ε

Tuned
setting

400
(4 seconds)

10
(0.1 seconds)

1200
6

(0.6 seconds)
-1.1
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5 Results

To measure the performance of the proposed approach, it was used the NIST
evaluation software for speaker diarization included in the Spring 2006 Rich
Transcription Meeting Recognition Evaluation Plan [12]. This software takes
the system labels as if they were blind, applying the label mapping function
that minimizes the speaker diarization error, as shown in Figure 1. But what
we produce are not blind but informed labels, and the speaker identification
error must be measured by comparing the system and reference labels on a
frame-by-frame basis, as shown in Figure 2. To accomplish that, a little change
was introduced in the NIST software, so that the score is computed as the time
system labels match reference labels divided by the total audio time. Our system
yields a 17.25% speaker identification error, which is slightly better than that
yielded by a more complex and computationally expensive system competing
with ours.

Our score is comparable to other results reported in the literature [13], and
is specially relevant due to the following issues:

– All the acoustic models are single Gaussians, which can hardly model the
spectral variability of speakers and segments, but at the same time provide
robust estimates (even when not many training data are available) and allow
real-time operation of the speaker tracking system.

– Audio segmentation and speaker identification are independent modules, but
further improvements might be obtained by using speaker information at the
segmentation phase.

– Speaker models are estimated from a few utterances taken from radio broad-
casts, many of them (80%) intentionally distorted.

– The system parameters are tuned almost blindly, using only one of the 20
audio files in the test set. More robust tuning may be accomplished if more
development data were available. In particular, a 16.26% speaker identifi-
cation error has been obtained by tuning the parameters over the 20 audio
files of the test set.

6 Conclusion

A simple approach to speaker tracking in broadcast news is presented in this
paper. The audio is segmented in a fully unsupervised way, by locating the most
likely change points in the acoustic signal. Speaker identification is done by
computing the score of each segment with regard to speaker models, which are
trained beforehand starting from labelled speaker data. All the acoustic models
are single Gaussians, which provide robust estimations even when few training
data are available, and allow real-time operation. The proposed system yields
a 17.25% speaker identification error, which is comparable to other results re-
ported in the literature. Current work includes applying this system to a bigger
database and extending its capabilities to perform speaker diarization in broad-
cast news and meetings.
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11. Red Temática de Tecnoloǵıas del Habla: Propuesta de Evaluación de Sis-
temas ALBAYZIN-06 (Segmentación e Identificación de hablantes). IV Jor-
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Abstract. This paper introduces a technique for region-based pose tracking with-
out the need to explicitly compute contours. We assume a surface model of a rigid
object and at least one calibrated camera view. The goal is to find the pose pa-
rameters that optimally fit the model surface to the contour of the object seen in
the image. In contrast to conventional contour-based techniques, which acquire
the contour to be extracted explicitly from the image, our approach optimizes an
energy directly defined on the pose parameters. We show experimental results for
rather challenging scenes observed with a monocular and a stereo camera system.

1 Introduction

The task to pursuit the 3-D position and orientation of a known 3-D object model from a
2-D image data stream is called 2-D–3-D pose tracking [8]. The need for pose tracking
occurs in several applications, e.g. self localization and object grasping in robotics,
or camera calibration. Particularly in scenes with cluttered backgrounds, noise, partial
occlusions, or changing illumination, pose tracking is still a challenging problem even
after more than 25 years of research [10].

A lot of different approaches to pose tracking have been considered [7,12]. In [6],
an iterative algorithm for real-time pose tracking of articulated objects, which is based
on edge detection, has been proposed. Often points [1] or lines [2] are used for feature
matching, but other features such as vertices, t-junctions, cusps, three-tangent junctions,
limb and edge injections, and curvature L-junctions have also been considered [9].

Another way to approach pose estimation is to match a surface model of the object
to be tracked to the object region in the images. Thereby, the computation of this region
yields a typical segmentation problem. It has been proposed to optimize a coupled for-
mulation of both problems and to solve simultaneously for the contours and the pose
parameters via graph cuts [3] or via iterative approaches [4]. Although the coupled es-
timation of contours and pose parameters is beneficial compared to the uncoupled case,
segmentation results can be inaccurate, as seen in Figure 1.
� We acknowledge funding by the German Research Foundation under the projects We 2602/5-1

and SO 320/4-2, and the Max-Planck Center for Visual Computing and Communication.
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Fig. 1. Problems often occurring in variational segmentation algorithms: (a) An inaccurate seg-
mentation. Note the split up into multiple connected components. (b) An error due to oversmooth-
ing and another kind of undesired topological change.

In this paper, we build upon the method in [4] including its statistical representation
of regions. However, instead of estimating 2-D segmentation and 3-D pose parameters
separately we directly estimate 3-D pose parameters by minimizing the projection error
in the respective 2-D images. Consequently, we can estimate segmentations which are
by construction consistent with the 3-D pose. Moreover, the estimation of an infinite-
dimensional level set function is replaced by the optimization of a small number of pose
parameters. This results in a drastic speed-up and near real-time performance.

In the next section, we will briefly review pose estimation from 2-D–3-D point corre-
spondences. We will then explain our approach in Section 3, followed by experimental
results in Section 4. Section 5 concludes with a summary.

2 Pose Estimation from 2-D–3-D Point Correspondences

This section introduces basic concepts and notation and briefly describes the point-
based pose estimation algorithm used in our approach [13]. Given some 3-D points xi

on the object, which are visible as 2-D points qi in an image, the algorithm seeks a rigid
body motion ξ such that each point xi is on the line passing through qi and the camera
origin. Section 3 shows how such point correspondences are obtained with our method.

2.1 Rigid Motion and Twists

A rigid body motion in 3-D can be represented as m(x) := Rx + t, where t ∈ R
3 is

a translation vector and R ∈ SO(3) is a rotation matrix with SO(3) := {R ∈ R
3×3 :

det(R) = 1}. By means of homogeneous coordinates, we can write m as a matrix M:

m((x1,x2,x3)T ) = M(x1,x2,x3,1)T =
(

R3×3 t3×1

01×3 1

)
x . (1)

The set of all matrices of this kind is called the Lie group SE(3). To every Lie group
there is an associated Lie algebra. Its underlying vector space is the tangent space of the
Lie group evaluated at the origin. The Lie algebra associated with the Lie group SO(3)
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is so(3) := {A ∈ R
3×3|AT = −A}, whereas the Lie algebra corresponding to SE(3) is

se(3) := {(ν,ω)|ν ∈ R
3,ω ∈ so(3)}. Since elements of se(3) can be converted to SE(3)

and vice versa, we can represent a rigid motion as element of se(3). Such an element is
called twist. This is advantageous since a twist has only six parameters while an element
of SE(3) has twelve. Both have six degrees of freedom, though.

Elements of so(3) and se(3) can be written both as vectors ω = (ω1,ω2,ω3), ξ =
(ω1,ω2,ω3,ν1,ν2,ν3) and as matrices:

ω̂ =

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ ∈ so(3), ξ̂ =

(
ω̂ ν

03×1 0

)
∈ se(3) . (2)

A twist ξ ∈ se(3) can be converted to an element of the Lie group M ∈ SE(3) by the
exponential function exp(ξ̂ ) = M. This exponential can be computed efficiently with
the Rodriguez formula. For further details we refer to [11].

2.2 Pose Estimation with 2-D–3-D Point Correspondences

Let (q,x) be a 2-D–3-D point correspondence, i.e. x ∈ R
4 is a point in homogeneous

coordinates on the 3-D silhouette of the object and q ∈ R
2 is its position in the image.

Furthermore, let L = (n,m) be the Plücker line [14] through q and the respective camera
origin. The distance of any point a to the line L given in Plücker form can be computed
by using the cross product: ‖a × n − m‖, i.e., a ∈ L if and only if ‖a × n − m‖= 0.

Our goal is to find a twist ξ such that the transformed points exp(ξ̂ )xi are close to the

corresponding lines Li. Linearizing the exponential function exp(ξ̂ ) = ∑∞
k=0

ξ̂ k

k! ≈ I + ξ̂
(where I is the identity matrix), we like to minimize with respect to ξ :

∑
i

∥∥∥(
exp

(
ξ̂
)

xi

)
3×1

× ni − mi

∥∥∥2
≈ ∑

i

∥∥∥((
I + ξ̂

)
xi

)
3×1

× ni − mi

∥∥∥2
→ min, (3)

where the function ·3×1 : R
4 �→ R

3 removes the last entry, which is 1. Evaluation yields
three linear equations of rank two for each correspondence (qi,xi). Thus, to solve for the
6 twist parameters, we need at least three correspondences for a unique solution. Usu-
ally, there are far more point correspondences and one obtains a least squares problem,
which can be solved efficiently with the Householder algorithm. Since the twist ξ only
corresponds to the pose change it is rather “small”. Thus, linearizing the exponential
function does not create large errors. Moreover, we iterate this minimization process.

3 Region-Based Model Fitting

Existing contour-based pose estimation algorithms expect an explicit contour to estab-
lish correspondences between contour points and points on the model surface. This
involves a matching of the projected surface and the contour. Our idea is to avoid ex-
plicit computations of contours and the contour matching. Instead, we seek to adapt
the pose parameters in such a way that the projections of the surface optimally split all
images into the object and the background region. For simplicity, we will describe this
setting for a single camera, but the concept is trivially extended to multiple views.
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Fig. 2. From left to right: (a) Input image. The puncher is to be tracked. (b) Projection of the
model in an inaccurate pose onto the image (magnified). The two marked points are the points
referenced to in Section 3.2 (c) The 2-D contour of the projection (magnified). The arrows show
into which directions these points should move in our algorithm.

3.1 Energy Model

Like in a segmentation task, we seek an optimal partitioning of the image domain Ω .
This can be expressed as minimization of the energy function

E(ξ ) = −
∫

Ω
(P(ξ ,q) log p1 +(1 − P(ξ ,q)) log p2)dq , (4)

where the function P(ξ ,q) ∈ (R6 × Ω �→ {0,1}) is 1 if and only if the surface of the
3-D model with pose ξ projects to the point q in the image plane. P splits the image
domain into two parts, in each of which different feature distributions are expected.
These distributions are modeled by probability density functions p1 and p2.

Note the similarity of (4) to variational segmentation methods [4]. The important dif-
ference is that the partitioning is not represented by a contour, i.e. a function, but by only
six parameters. Moreover, there is no constraint on the length of the boundary in (4).

The probability densities are modeled by local Gaussian distributions [4] of the color
in CIELAB color space, and texture in the texture feature space proposed in [5]. Since
there is only a limited amount of data available to estimate the density functions, we
consider the separate feature channels to be independent. Thus, the total probability
density function is the product of the single channel densities.

The densities are adapted when the estimated pose has changed. Given the projection
of the model, and hence a partitioning of the image into object and background region,
p1 and p2 can be computed from the local mean and variance in these regions.

3.2 Minimization

We minimize (4) by computing force vectors along the contour implicitly given by the
projected surface. These force vectors indicate the direction to which the projection of
the model should move to minimize E(ξ ). Using the framework from Section 2, we can
transfer this force to the 3-D points and estimate the corresponding rigid body motion.

To this end, we create 2-D–3-D point correspondences (qi,xi) by projecting silhou-
ette points xi, given the current pose ξ , to the image plane where they yield qi. If the
function value p1(qi) is greater than p2(qi), it is likely that qi belongs to the interior of
the object region. Thus, qi will be shifted in inward normal direction to a new point q′

i.
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i i

For each frame:

ii
− Construct projection rays from (q’ ,x )i i
− Generate and solve system of equations to get a new pose

It
er

at
e

(Section 2.2)

− Adapt 2D−3D point correspondences (q ,x ) to (q’ ,x ) (Section 3.2)

− Project 3D objet model onto image plane
− Generate prob. density functions for inside/outside the proj. model 

Extrapolate new pose from previous poses and compute image features

(Section 3.1)

Fig. 3. Summary of the region-based pose tracking algorithm

Vice versa, points qi where the inequality p1(qi) < p2(qi) holds will be shifted in out-
ward normal direction. The normal direction is given by ∇P approximated with Sobel
operators. The length l := ‖q′ − q‖ of the shift vector is a parameter. More advanced
methods how to choose l - including scaling l by | log p1 − log p2|, i.e. performing a
gradient decent on E - have been tested but results were worse for our sequences.

This concept is illustrated in Figure 2. Figure 2b shows a white puncher, onto which
the surface model has been projected. Figure 2c depicts the boundary between the inte-
rior and exterior of the projected model. Most of the points in the interior are white. So
is the point marked by the right circle. Thus, it better fits to the statistical model of the
object region than to the background and is moved away from the object. Vice-versa, the
marked cyan point on the left side is moved inwards as it better fits to the background.

We iterate this process. At some point, the pose changes induced by the force vec-
tors mutually cancel out. We stop iterating when the average pose change after up to
three iterations is smaller than a given threshold. Before changing frames in an image
sequence, we predict the object’s pose in the new frame by linearly extrapolating the
results from the two previous frames. Figure 3 shows an overview of the algorithm.

4 Experiments

Figure 4 shows two frames of a monocular sequence, in which a wooden toy giraffe has
been tracked with our method. The estimated pose fits well to the object in the image.

Figure 5 depicts tracking results of a stereo sequence. First, a wooden beam moves
between the cameras and the static object. Then the tea box is picked up and rotated
several times. In the most challenging part of this sequence, the tea box is rotated around
two different axis simultaneously while the bottom of the box reflects the background
and moving specular highlights are visible. Nevertheless, our algorithm can track the
tea box accurately over all 395 frames of this sequence.

For this sequence, an average of 12.03 iterations were necessary to reach the re-
quested threshold (0.1mm for translation, 0.001 for rotations), with a maximum of 72
iterations. Approximately 28.75 minutes of processor time were needed on an Intel Pen-
tium 4 with 3.2GHz (≈ 12 frames per minute), about 86% of which was used for prepro-
cessing (loading the images, computing texture features, etc.) while the rest was spent in
the iteration steps. The parameters (i.e. the threshold and l) have been optimized to yield
good poses. Faster but less accurate computations are possible, as explained below.
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Fig. 4. From left to right: Input image, estimated pose and extracted contour for two frames of
a color sequence with a wooden giraffe. Top: Frame 52. Bottom: Frame 68. The surface model
consists of a single closed point grid. Thus, it is possible to look through the projected pose. Note
that this is irrelevant for contour-based pose estimation, where only silhouette points are needed.

Fig. 5. Pose results for a tea box. Each block shows the computed pose (blue) and the contour
(yellow) in the two views. The scene contains partial occlusions (frame 97, top left), the tea box
is turned upside down (frame 230, top right), there are specular reflections (frame 269, bottom
left) and the box is turned around different axes simultaneously (frame 277, bottom right).
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Fig. 6. Left: Time needed for preprocessing (straight green line) and the total time used per
frame (red line) for the stereo image sequence shown in Figure 5. Middle: Changes in the three
translation parameters in millimeters for the first 160 frames of this sequence. Right: Changes of
the three Euler angles for the same frames, in degrees.

Fig. 7. Two views from a stereo image sequence in which a teapot has been tracked. Estimated
contours and poses are shown in yellow.

Figure 6 shows the time used by our program per frame. It can be seen that our
algorithm is faster in “easy” situations, e.g. when nothing has moved. This figure also
shows the changes in the translation and rotation parameters for the first 160 frames.
Since tea box and camera are static in these frames no changes should occur. Our results
have a standard deviation of about 1.79 degrees and 0.83mm.

When tracking objects that are clearly separated from the background (e.g. the
puncher in Figure 2), features from the texture space can be neglected and the local
Gaussian model can be replaced by a global model. These changes noticeably decrease
the runtime of our algorithm. For example, the teapot shown in Figure 7 has been
tracked in a stereo sequence with more than one frame per second. Ignoring texture
information, the tea box sequence shown in Figure 5 can be tracked (with slightly less
accurate results) in less than 4 minutes (≈ 104 frames per minute). This indicates that
real-time processing with a region-based approach is feasible.

5 Summary

We have presented an pose tracking algorithm from 2-D regional information which
does not require a separate segmentation step. The implicit partitioning of the image by
the projected object model is used for computing region statistics, which drive an evolu-
tion directly in the pose parameters. The algorithm can deal with illumination changes,
cluttered background, partial occlusions, specular highlights and arbitrary rigid 3-D
models. Experiments show that the results compare well to methods based on explicit
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contour representations. However, our approach is considerably faster and close to real-
time performance.
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Abstract. Active Contours are a widely used Pattern Recognition technique. 
Classical Active Contours are curves evolutionate by minimizing an energy 
function. However, they can detect only one object within an image with  
several objects, and the solution is highly dependent on parameters in its formu-
lation. A solution can be found in Geodesic Active Contours (GAC). We have 
developed a version of this technique and improved some aspects to apply on 
real and practical cases. The algorithm has been tested with both synthetic and 
real images. 

1   Introduction 

Techniques known as Deformable Models introduce interesting image segmentation 
methods. Active Contours, being one of these models, work with evolutive curves that 
depend on image features. The goal is to detect objects in an image [5, 2, 15].  

The classical modeling of Active Contours achieves object recognition by means 
of the minimization of the energy function value at all curve points, which reach a 
position where the gradient is maximum (where the image energy is minimum) [5]. 
These models provide solutions with some degree of strength; however, they also 
yield noteworthy drawbacks. Some of them are the detection of just one object within 
the image, resistance to topological changes in the curve, or parametric dependence. 

Aiming to cope with previous difficulties, an alternative is provided by our  
research, based on Active Contours. This model has evolved over time according to 
intrinsic geometric characteristics of the image itself. This technique is called Geo-
desic Active Contours (GAC) [4], due to the fact that its mathematical model is  
related to the calculation of geodesic minimal distance curves (very similar to level 
curves in topographic maps) in a Riemann´s space [6].  

GAC can detect several objects separately or join in only one, thereby allowing the 
simultaneous detection of several objects within the same image. In addition, they are 
non-parametric models (their formulation is independent of external parameters to the 
image). Also, stable borders are detected when image gradients vary highly in differ-
ent areas or even when they have discontinuities, cuts or gaps. Their formulation 
allows topological changes in the curve (the Active Contour).  
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2   Data Set 

The current experiment is based on a data set of synthetic images and on a second 
group with real images. More than one hundred synthetic images have been designed 
for testing the validation of the GAC technique. Another image group (third in the 
study) includes several objects as synthetic items and real objects. Figure 1 shows 
some examples of the four types of images on our database.  

    

a)      b)            c)   d) 

Fig. 1. Some examples of our test image database: a) Synthetic image; b) Real color image;  
c) A group of synthetic objects in the image; d) A group of real objects in the image 

3   Methodology 

GAC are geometric models whose curvature is based on Active Contour evolution. 
These algorithms apply Level Set methods both to allow automatic topological 
changes in the curve and to surround several objects simultaneously. 

3.1   What Is a Riemannian Space?  

It is an extension of a curved space with any number of dimensions. This kind of 
space does not comply with the basic theorems of classic geometry (parallel lines do 
not keep the same distance between them, the sum of angles in a triangle does not 
equal 180º, etc.). Riemann proved that the basic properties of a curved space are  
exclusively determined by its formula to measure distances. The choice of the way to 
measure this distance is equivalent to the definition of the Riemannian space [6]. 

3.2   Level Set Methods and PDEs 

Partial Differential Equations (PDEs), on which Level Set methods are based, are 
used in GACs to describe the movement of a boundary. The goal is to track the evolu-
tion of the boundary, and these methods provide powerful techniques to perform this 
tracking. These methods are introduced in 1987 [9, 10]. The Level Set equation given 
by Osher and Sethian [8, 12] is used to describe their evolution over time.   

3.3   From Classical Methodology to Geodesic Active Contours 

Deformable Models (Active Contours, or Snakes), are curves that evolutionate  
according to the influence of internal and external forces [3]. These forces are defined 
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in such a manner that the snake can detect the image objects of interest. Classical 
Active Contours are defined by an energy function. By minimizing this energy  
function, the contour converges, and the solution is reached. 

 

 
 

 

(1) 

Eint is the internal energy of the contour. It consists of continuity energy (Econt) plus 
curvature energy (Ecurv). Eimage represents the proper energy of the image, which 
greatly varies from one image to another. 

α, β and γ are values that can be chosen to control the influence of the three terms 
[7, 10]. For example, a large value of γ means that the energy image is more signifi-
cant than the rest. When a discontinuity occurs at a point, α is zero. β is zero at certain 
corners of the image (null curvature energy). 

Caselles et al. [4] consider a particular case of classical Active Contours, for which 
the rigidity coefficient β is set to zero. This selection allows us to derive the relation-
ship between these energy based Active Contours and geometric curve evolution 
contours. Maupertius’ and Fermat’s principles are applied to show that a geodesic 
curve is equivalent to a local minimal distance path between given points. In order to 
achieve object detection, these authors embed the geodesic curve flow equation into 
the Level Set formulation.      

3.4   Geodesic Flows with Level Sets: Derivation and Boundary Detection 

Caselles et al. [4] rely their formulation on the fact that the curvature equals the di-
vergence of the normal vector on each point of the contour. The authors compute the 
Euler-Lagrange differential equation in the minimization problem via the steepest-
descent method to deform the initial curve towards a local minimum [13]. This for-
mulation can then be interpreted geometrically and applied to the image segmentation 
enabled by GAC, thus achieving the general model (equation 2). 

 

 
 

 

(2) 

where u is the Level Set function; c is a constant; I represents the color intensity level 
of the input image (previously processed with a smoothing filter); and g(I) is the 
boundary detector function that leads the curve to stop where the gradient values are 
maximum.  

4   Adaptation and Improvement of Methodology  

The GAC general formula is always the same [1, 8, 12]. What makes some implemen-
tations to work better than others is the way of calculating each component separately 
(e.g., different smoothing filters, boundary detector functions based on the gradient, 
the speed function, the curvature treatment, etc.). 
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4.1   Drawbacks of the Basic Geodesic Formulation 

Major GAC advantages have been discussed; however this methodology implies 
some noteworthy drawbacks: 

• The initial contour has a natural high tendency to contract. The contour only 
expands when there are points placed in the exterior of the object. For this reason, 
the Active Contour searching area also tends to decrease over time. 

• The so-called “rubber band” effect tends to occur; whenever there may be parts 
of the objects in the image which present noticeable hollows or concavities, the 
contour tends to place straight lines over them and to stop the algorithm. 

• The algorithm evolves too slowly.   

4.2   Improving Geodesic Active Contours  

Some solutions can be proposed, given the previous drawbacks: 
A positive curvature value corresponds to convex areas, and a negative value to 

concave ones. Adding or subtracting small quantities (f) to the curvature value, we 
achieve to avoid the so-called “rubber band” effect. The solution stays stable with 
values of f from -0.5 to +0.5. We call f “expanding force” when positive and “con-
tracting force” when negative. By using f, we achieve that when the algorithm can 
decide towards where to move the Active Contour, f remains ignored. But when the 
algorithm would decide to stop, f will make the Active Contour slightly evolutionate 
towards the direction of its sign. In equation 3, 

 

 
 

 

(3) 

f represents the curvature increase or decrease (expanding or contracting force). Some 
examples of the results obtained using f can be found in Figure 2. 

Regarding the slowness of the algorithm, a solution consists of the increase in the 
size of the step (∂t). This growth represents the maximum color intensity change al-
lowed for each pixel in the current Level Set. We obtain the best results combining 
the size of the step with the use of f. 

Figure 2 shows the most general case in which it is necessary to apply f with a cer-
tain sign and, afterwards (and just in order to increase the stability of the solution) 
apply again f with the opposite sign, given that when the Active Contour has reached 
the objects edges, f is never strong enough to take it out of there.  

In order to get a stable numerical implementation, we compute ∂t as shown in 
equation 4, 
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where velocity can take values from +0.5 to +0.9 and ( ))(max Ig∇  is the maximum 

gradient value obtained from the boundary detector function. 

     
        a)                        c)           e) 

     
        b)                        d)           f) 

Fig. 2. Energy images from the synthetic image database: a) Collapsed contour; b) With an 
expanding force; c) Deteriorating the contour; d) With contracting and expanding forces; e) 
Rubber band; f) With a contracting force 

Another improvement is the reduction of the GAC searching area or portion of 
the original image in which the initial contour is enclosed (figure 3). If the con-
tour decreases, different parts of the image will not need be examined outside the 
initial searching area. If the opposite occurs, the searching area will expand as 
needed.  

                                                
       a)                 b) 

Fig. 3. Energy image: a) Original image; b) The algorithm searching area 

Figure 4 shows an example of the coincidence percentage implementation. It con-
sists of the regular (every ten iterations, for example) comparison between the actual 
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contour and these same pixels in the image that represents the gradient values com-
puted by the boundary detector function g(I). As we are working with pixel values 
inthe range 0…255, a gradient value < 125 corresponds to a probable object contour. 
If the actual Active Contour is placed on pixels whose corresponding gradient image 
value is less than 125, we can compute a percentage of coincidence to take into  
account in order to know how is the algorithm evolutionating.  

       

Fig. 4. An application with a coincidence percentage: a) Initial contour; b) 75% of coincidence; 
c) Gradient image 

Some other minor modifications to take into account are: 

 The limitation of the iteration number by the user. The advantage of his  
improvement is the saving of time. 

 The possibility to stop the algorithm depending on the coincidence percentage. 
For instance, we can control if the coincidence percentage starts to decrease 
and stop the algorithm before it get worse. 

 The application of the algorithm to different color bands of the image sepa-
rately. In general, we obtain more accurate contours when we process the  
image in the band of the color predominant in the image background. 

 The implementation of different gradient functions. Sobel and Álvarez-
Mazorra gradient functions produce good results. 

 The application of different smoothing filters. Gaussian filters provide the best 
results.  

5   Results 

The evaluation of our algorithm has been performed by measuring three parameters: 
Recall, Precision, and Fallout [14]. The major improvements are related to the con-
tour accuracy. Figure 5 shows different individual synthetic images processed with 
the GAC basic formula and the same images processed with the improved one. 
Precision, Recall and Fallout of the resulting contours are also shown in both cases 
(Table 1).   
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a)   b) c) d)  

Fig. 5. Accuracy of the GAC basic formula and the improved one: a) The original contour of 
four example images. b) The final GAC with the basic formula. c) The final contour with the 
improved GAC. d) The final contour, in detail. 

Table 1. Precision, Recall and Fallout percentages for each final GAC 

Images 1b 2b 3b 4b 1c 2c 3c 4c 
Precision 81.23 67.80 22.19 22.00 100.00 96.73 93.49 94.03 

Recall 99.99 100.00 99.90 99.94 99.99 100.00 99.90 0.22 
Fallout 7.74 14.61 10.86 26.99 0.00 1.04 0.22 0.48 

6   Conclusions 

As observed, Precision and Fallout are the two main parameters being improved. 
Accuracy is reached optimally according to our proposal. One other advantage has 
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to do with the accessibility and display of useful information during  
contour evolution. In this line of work, we have been able to apply and adapt the 
GAC technique by customizing it according to our specific needs. It can thus be 
found that results can be reached in a more effective manner when this technique is 
personalized. 
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Abstract. There is strong need for research in transcoding technologies to 
enable smooth displacement from MPEG-2 to H.264/AVC since H.264/AVC 
has been standardized as international standard. In this paper, a novel rate 
control algorithm for MPEG-2 to H.264/AVC transcoding, which adopting a 
new block activity measurement, is proposed. Specifically, the standard 
deviation of the residual error is introduced into the quadratic rate distortion  
(R-D) model adopted in JVT-G012 instead of the mean of absolute difference 
(MAD) to measure macroblock (MB) complexity. Meanwhile, based on the fact 
that the mean square of AC coefficients in an 8×8 DCT block is equal to the 
variance of an 8×8 block before DCT, we derive a close-form formulation to 
calculate the variance of a residual MB using the DCT coefficients rather the 
pixel values. Obviously, this rate control method can be used for MPEG-2 to 
H.264/AVC transcoder in both pixel domain and transform domain. 
Experiments show that our proposed algorithm can meet the target bit-rate 
accurately and achieves a better performance than the JVT-G012. 

1   Introduction 

H.264/AVC is the latest international video coding standard, developed and 
standardized collaboratively by ISO/IEC and ITU-T as International Standard 14496-
10 (MPEG-4 part 10) Advanced Video Coding (AVC) or as Recommendation H.264 
[1]. H.264/AVC achieves high coding efficiency by adopting a variety of state-of-the-
art tools and is expected to replace the existing standards such as H.263 and MPEG-
1/2/4. Given its outstanding coding efficiency, H.264/AVC is expected to have a wide 
range of applications, including mobile broadcasting and storage. However, MPEG-2 
video has been widely used in many existing systems, such as digital TV, DVD, and 
HDTV applications etc. To solve the standard incompatibility problems for Universal 
Multimedia Access (UMA) [2], there is a big demand for converting video in the 
MPEG-2 format to the one in H.264/AVC format.  

Several issues on rate control for H.264/AVC transcoding have been addressed 
recently in [3]-[5]. An algorithm of adopting the rate control model TM5 in MPEG-2 
to compute the values of quantization parameters (QP) for I and B frames based on 
the side information from the pre-coded MPEG-2 video is presented in [3]. In [4], a 
fast macroblock (MB) mode decision approach has been proposed to reduce the 
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complexity of Rate Distortion Optimization (RDO) and an improved rate control 
method depending on statistics of input MPEG-2, which is effective in transcoding 
the input steams into low bit rate streams, has been proposed. In [5], an idea that we 
should reuse information extracted from the input MPEG-2 video stream as efficiently 
as possible is proposed. The experiment results demonstrate that the proposed rate 
control algorithm is very efficient. However, all of the aforementioned works mainly 
focus on the MPEG-2 to H.264/AVC transcoder in pixel domain and can not be used 
in the transform domain simultaneously. Recently, transcoding MPEG-2 into 
H.264/AVC in transform domain has been an actively studied topic in academia and 
industry community. In [6], an efficient method has been proposed to convert DCT 
coefficients to H.264/AVC integer transform coefficients completely in the transform 
domain. A transform domain MPEG-2 to H.264/AVC intra video transcoder is 
proposed in [7] and the proposed transcoder is equivalent to the conventional one in 
pixel domain in terms of functionality and achieves complexity saving more than 
20%. Specially, a comprehensive solution to transcode MPEG-2 into H.264/AVC in 
transform domain is proposed in [8]. To perform the rate control for transform 
domain MPEG-2 to H.264 transcoding, we propose a novel rate control algorithm 
which can be used in both pixel domain and transform domain. To our best 
knowledge, no works in this respect has been reported before in this literature.  

The rest of the paper is organized as follows. In Section 2 we propose a new 
quadratic rate distortion (R-D) model. In Section 3 we present a way to calculate the 
variance of MB using only the DCT coefficients. Section 4 describes our proposed 
rate control method for MPEG-2 to H.264 transcoding in summary. Experimental 
results will be presented in Section 5, and conclusion is shown in Section 6. 

2   New Rate Distortion Model 

According to the rate control algorithm based on the R-D theory, the quantization step 
size of a MB is selected according to its activity, which is usually measured by 
variance, mean of absolute differences (MAD), sum of absolute differences (SAD), 
etc. H.264/AVC rate control proposal JVT-G012 adopts the MAD as the MB activity 
[9]. At the same time, the R-D model adopted in JVT-G012 is the well known 
quadratic R-D model, which is shown in equation (1). 

2

1 22

M A D M A D
T H c c

Q P Q P
− = +  (1) 

Where 1c  and 2c  are the model parameter. 

Replacing MAD with standard deviation to measure the MB activity, we can get a 
new R-D model. The new R-D model is formulated in the equation as follows: 

QP
c

QP
cHT

σσ
22

2

1 +=−  (2) 

Where σ  represents the standard deviation of the residue error. 
In order to improve the accuracy of the new R-D model, we verify this new R-D 

model in the context of encoding system. That is, we first implement the new R-D 
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model in the H.264 encoder of the H.264/AVC reference software JM 8.2 [10]. Then, 
we compare the encoding results with the one using JVT-G012. Sequences with 
different amounts of motion and spatial details are used in our experiments. Due to 
the limit of pages, only the results of six sequences are provided there and the results 
of other sequences are similar. As shown in Fig. 1(a) and Fig. 1(b), we can see that 
that using standard deviation in quadratic R-D model can obtain the same or better 
coding efficiency compared to using MAD, which prove the accuracy of our proposed 
new R-D model. 

 

Fig. 1. (a) The PSNR (dB) of Mother (CIF) obtained by quadratic R-D model using MAD and 
standard deviation. (b) R-D curves of six different sequences with quadratic R-D model using 
MAD and standard deviation. 

3   Variance Calculation in Transform Domain 

Due to the reconstruction of picture in pixel domain is not needed in the context of 
transform domain transcoder, the MAD of residue error can not be achieved in the 
process of transcoding. So, the R-D model in equation (1) can not be used in 
transform domain transcoder. In the following, we derive a close-form formulation to 
calculate the variance of a MB only using the DCT coefficients. So, we can use that 
the R-D model in equation (2) in transform domain and pixel domain transcoder 
simultaneously. 

In what follows, we describe the process of how to calculate the variance of a MB 
in transform domain. The 8×8 two dimension Discrete Cosine Transform (DCT) [6] is 
given by 
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For an 8×8 DCT block, we define 2AC  as the mean square of AC coefficients in 
DCT, which is showed in equation (4). 
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Where ( )0,0F  is the DC coefficient of this 8×8 DCT block. 

According to the Parseval`s theorem [11], we have: 
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Furthermore, let ( ),f x y  be the mean pixel value of an 8×8 block before DCT, 

then ( ) ( )0,0 8 ,F f x y= × . 

As described in [12], we can compute 2AC as follows. 
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(6) 

Where 2σ  is the variance of an 8×8 block before DCT. 
The above equations show that the mean pixel value and the variance of an 8×8 

block can be computed directly using its corresponding DCT coefficients. That is: 

( ) ( )0 , 0
, 8

F
f x y =  

22 AC=σ  
(7) 

It is well known that in typically block-based video coding standard, the block size 
used for transform is corresponded to the dimension of the transform. Such as in 
MPEG-2, 8×8 block is used for transform corresponding to 8×8 DCT and Inverse 
DCT operations. However, the basic unit of rate control in video encoder is 16×16 
MB usually. We need to deduce an approach to compute the variance of a 16×16 MB 
using the DCT coefficients of 8×8 blocks. Because that only the DCT coefficients of 
8×8 DCT transform exist in MPEG-2 video stream.  

Let ( ) 4,3,2,1  ,  , , 2 =iandyxfb iii σ denote the four 8×8 blocks of a 16×16 

MB, the mean values and the variances of the four 8×8 blocks, respectively. From 
aforementioned conclusion, we have: 

( ) ( )0 , 0
, 8

i
i

F
f x y =  

2 2
i iA Cσ =  

(8) 

Fig. 2 shows the demonstration of a MB containing four 8×8 blocks.  
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Fig. 2. Four 8×8 blocks in a MB 

Let ( )yxf MB ,  and 2
MBσ  denote the mean value and the variance of a MB, 

respectively. Firstly, we can compute ( )yxf MB ,  and 2
MBσ  in pixel domain as 

follows. 
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Secondly, we can use ( ) 4,3,2,1  ,  , 2 =iandyxf ii σ to compute 2
MBσ  as follows: 
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Substituting equation (8), equation (10) and equation (11) into (9), we have: 
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Where the ( ) 1,2,3,4i ,0,0  2 =ii FandAC denote mean square of AC coefficients in 

DCT and the DC coefficients of the four 8×8 blocks, respectively.  

4   Rate Control Algorithm 

From equation (12), we can say that the variance of MB can be calculated directly 
using the DCT coefficients of 8×8 blocks in the case of transform domain 
transcoding. Combing the R-D model in equation (2), we propose a novel rate control 
for transform domain MPEG-2 to H.264 transcoder. Because of that most parts of our 
proposed algorithm inherits JVT-G012, we only present the different part there. The 
full procedure can refer to [13] for details. 

Step 1: Using the equation (12) to calculate MPEG-2 MB activity. 
Step 2: To solve the well known chicken-and-egg problem in the context of transcod-
ing, the final standard deviation for current MB is adjusted with that gotten in Step 1 
as follows: 

( ) predmpegfinal σασασ ×−+×= − 12  (13) 

Where 
2−mpegσ  is the standard deviation obtained from the incoming MPEG-2 DCT 

coefficients using the equation (12), and the 
predσ  is the one predicted with the linear 

model using the actual standard deviation of encoded MB in the same spatial position 
of the previous frame. The constant α  serves as weighting factor and its typical value 
is 0.5 in our experiments. 

Step 3: Adopting the new R-D model in equation (2) to calculate the QP. 

5   Experimental Results 

Our proposed rate control method is implemented in our MPEG-2 to H.264 transcoder 
to verify its performance. Our MPEG-2 to H.264 transcoder utilizes a decoder 
provided by the MPEG Software Simulation Group [14] to decode the incoming 
MPEG-2 test video streams into images in pixel domain and cascades an encoder 
based on the reference software H.264/AVC JM 8.2 (hereafter referred to as the JM 
8.2) [10] to compress the images into H.264 format bit stream with the same coding 
structure and resolution. In our experiments, for each test sequence, the first 150 
frames are firstly encoded to MPEG-2 streams at bit-rate of 1 or 2 Mbps and a frame 
rate of 30 fps with the structure of group of picture (GOP) as the first frame is I frame 
and 14 P frames are followed (i.e., IPP……PPP).  

The average peak signal-to-noise ratio (PSNR) and the actual bit-rate obtained 
for transcoding the pre-coded Dancer and Kiel sequences to six different target bit-
rates are show in Table 1. The results show that the proposed method can provide a 
better performance than JVT-G012 in terms of both average PSNR and achieved 
bit-rate. 
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Table 1. PSNR and actual bit-rate botained for the Dancer and Kiel sequences at six different 
target bit-rates 

Dancer Kiel 
My proposed 

method 
JVT-G012 

My proposed 
method 

JVT-G012 Target 
bit-rate 
(kbps) Actual 

bit-rate 
(kbps) 

PSNR 
(dB) 

Actual 
bit-rate 
(kbps) 

PSNR 
(dB) 

Actual 
bit-rate 
(kbps) 

PSNR 
(dB) 

Actual 
bit-rate 
(kbps) 

PSNR 
(dB) 

256 256.67 35.38 256.69 35.36 256.69 24.82 256.57 24.81 
384 385.03 37.08 385.03 37.05 385.85 25.79 384.79 25.79 
512 512.95 38.15 513.08 38.12 513.25 26.48 513.23 26.47 
640 640.86 38.92 641.04 38.90 641.59 26.82 641.75 26.82 
768 769.39 39.42 769.00 39.41 769.78 27.35 770.07 27.34 

1024 1024.87 40.05 1025.22 40.04 1025.60 28.00 1025.89 28.00 

Fig. 3 (a) shows the frame-to-frame PSNR results of the Dancer sequence obtained 
by the proposed and JVT-G012 rate control methods. No surprisingly, the fluctuation 
of PSNR obtained by the proposed method is less than that of the JVT-G012 method.  

 

Fig. 3. (a) The PSNR (dB) of the Dancer sequence obtained by the proposed method and JVT-
G012 methods. (b) The number of actual coding bits obtained by using the QP determined by 
the proposed method and JVT-G012. 

Fig. 3 (b) shows the distribution of the number of bits over the entire sequence 
when the FOREMAN sequence was transcoded at the target bit-rate 768 Kbps by 
using the proposed rate control method and JVT-G012. It can be seen that the 
fluctuation of bits of the transcoded video obtained by the proposed method is a little 
better than that of JVT-G012. 

6   Conclusion 

In this paper, a new rate control algorithm, which adopting standard deviation as MB 
activity measurement is presented. The variance can be directly calculated in 
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transform domain makes it suitable for the transform domain transcoder where the 
MAD of residue error can not obtained. The experimental results show the accuracy 
of the model and the effectiveness of the proposed rate control algorithm. So we can 
say that this algorithm will be popularized in DCT based video transcoding. In the 
further, we will focus on improving the efficiency of our method by reusing the 
motion information in MPEG-2 inputting bit-stream.  
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References 

1. Wiegand, T., Sullivan, G.: Draft lTU-T recommendation and final draft international 
standard of joint video specification (ITUT Rec. H.264 – ISO/IEC 14496-10 AVC)JVT-
G050, Pattaya, Thailand (March 2003) 

2. Mohan, R., Smith, J.R., Li, C.S.: Adapting Multimedia Internet Content for Universal 
Access. IEEE Transactions on Multimedia 1, 104–114 (1999) 

3. Xiao, Y.-N., Lu, H., Xue, X., Nguyen, V.-A., Tan, Y.-P.: Efficient Rate Control For Mpeg-
2 To H.264/AVC Transcoding, IEEE International Symposium on Circuits and Systems 
(ISCAS), pp. 1238–1241 (May 2005) 

4. Zhang, P., Huang, Q.-M., Gao, W.: Key Techniques of Bit Rate Reduction for H.264 
Streams, Advances in Multimedia Information Processing - PCM 2004: 5th Pacific Rim 
Conference on Multimedia, Tokyo, Japan, pp. 985–992 (November 30–December 3 2004) 

5. Yang, J., Dai, Q., Xu, W., Ding, R.: A Rate Control Algorithm for MPEG-2 to H.264 
Real-time Transcoding. In: Proc. Visual Communication and Image Processing VCIP-
2005, pp.1995-2003, Beijing, China (2005) 

6. Xin, J., Vetro, A., Sun, H.F.: Converting DCT Coefficients to H.264/AVC Transform 
coefficients. Pacific-rim Conference on Multimedia (PCM) 2, 939–946 (2004) 

7. Su, Y., Xin, J., Vetro, A., Sun, H.: Efficient MPEG-2 to H.264/AVC intra transcoding in 
transform-domain. In: Proceedings of the IEEE International Symposium on Circuits and 
Systems (ISCAS ’05), vol. 2, pp. 1234–1237, Kobe, Japan (May 2005) 

8. Qian, T., Sun, J., Li, D., Yang, X., Wang, J.: Transform domain transcoding from MPEG-2 
to H.264 with interpolation drift-error compensation. IEEE Transaction on Circuits and 
Systems for Video Technology 16(4), 523–534 (2006) 

9. Chiang, T., Zhang, Y.: A New Rate Control Scheme Using Quadratic Rate Distortion 
Model. IEEE Trans. Circuits Syst. Video Technol. 7, 287–311 (1997) 

10. H.264/AVC reference software JM8.2, available online at http://bs.hhi.de/~suehring/ 
tml/download 

11. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 2nd (edn.). p. 60. 
Prentice Hall, UpperSaddle River, NJ (1999) 

12. Bo, Z., Cheng-Ke, W.: A Novel Rate Control Algorithm in Video Coding for Low-delay 
Communications. Chinese Journal of Computers 28(1), 53–59 (2005) 

13. Zh. Li, F., Pan, K., Lim, G., Feng, X.: Lin, Rahardja, S.: Adaptive Basic Unit Layer Rate 
Control for JVT, JVT-G012, 7th Meeting: Pattaya II, Thailand (March 2003) 

14. MPEG-2 video encodec/decodec v12, available online at http://www.mpeg.org/MPEG/ 
MSSG 



3-D Motion Estimation for Positioning from 2-D
Acoustic Video Imagery

H. Sekkati and S. Negahdaripour

University of Miami, FL, USA

Abstract. We address the problem of estimating 3-D motion from acoustic im-
ages acquired by high-frequency 2-D imaging sonars deployed in underwater.
Utilizing a planar approximation to scene surfaces, two-view homography is the
basis of a nonlinear optimization method for estimating the motion parameters.
There is no scale factor ambiguity, unlike the case of monocular motion vision
for optical images. Experiments with real images demonstrate the potential in a
range of applications, including target-based positioning in search and inspection
operations.

1 Introduction

Autonomous navigation is a critical capability in the deployment of submersible plat-
forms for a range of applications in underwater [1,2]. Utilizing various navigational
sensors, e.g., INS and velocity doppler, current generation of autonomous underwater
vehicles (AUV) can carry out certain tasks, such as sea floor imaging and mapping, in
long-duration operations, say from a few hours to over a day. In particular, the main
bottleneck in length of the operation is power that is provided by onboard batteries.

A certain class of underwater operations, such as search and inspection, rely more
heavily on target-based positioning, that is, the ability to establish position relative to a
target of interest, to station keep, etc. Extensive worldwide research over the last decade
and half have concentrated on the use of optical cameras for target-based positioning
and local navigation, resulting in the realization of machine vision-based technologies
by various research groups [9,12,16,17,19,21,23,25]. Unfortunately, optical cameras are
constrained by limited visibility range, and in particular become totally ineffective in
turbid waters.

In recent years, 2-D high-frequency acoustic cameras – e.g., 1.1/1.8MHz Dual-
Frequancy IDentification SONar (DIDSON)and 450/900KHz BlueView1 – have be-
come commercially available. These cameras provide video imagery with high enough
details that allows visual target recognition by human operators. Unlike traditional
acoustic imaging systems operating in 10’s to low 100’s KHz with ranges as far as
several kilometers, these high-frequency 2-D imaging sonars have a range of no more
than 10’s of meters, which is more than adequate for many search and inspection mis-
sions that they are targeted for [5]. While useful when deployed by human operators or
divers, more extended utility comes from the development of computer vision methods
that provide 3-D interpretation of the sonar imagery.

1 Trademarks of Sound Metrics and BlueView Technologies, respectively [4,3].
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c© Springer-Verlag Berlin Heidelberg 2007



3-D Motion Estimation for Positioning from 2-D Acoustic Video Imagery 81

Recent work has explored the application of homography-based registration methods
for the construction of acoustic photo-mosaics as a target mapping product [11,7]. In [6], a
novel paradigm in 3-D reconstruction based on the deployment of an acoustic and optical
cameras in stereo configuration has been proposed. In [8], we have proposed various
3-D reconstruction algorithms, comparing their performances with traditional binocular
stereo imaging through computer simulations. This paper deals with the realization of
critical target-based 3-D positioning capability based on recovery of 3-D motion from a
monocular sonar video imaging system. Unlike optical cameras that utilize the epipolar
geometry of optical rays from two or more views, 3-D interpretation of 2-D sonar video
involves the exploitation of range and azimuth information of target features in multiple
views. Utilizing the mathematical models of sonar projection, we give the equations of
correspondences for sonar images, and present an algorithm for 3-D motion estimation.
Performance of the algorithm is tested through experiments with 2 real data sets, in order
to demonstrate the potential in automatic 3-D motion interpretation from acoustic video.

2 Preliminaries

2.1 Projection Model

In the sonar-based Cartesian system, a 3-D scene point is represented by P=(X ,Y,Z)T.
Spherical coordinates (ℜ,θ ,φ)T – ℜ is range, and θ and φ denote azimuth and eleva-
tion angles – is a more suitable coordinate system in analyzing sonar video, since a 2-D
sonar image I(ℜ,θ ) represents acoustic reflections from 3-D points at ranges ℜ (within
a down-range window [ℜmin : ℜmax]) and azimuth direction θ (within cross-range filed
of view [−θo : θo]2). While the elevation angle φ is typically unknown, it is constrained
by the vertical width of each transmitted beam; see fig. 1. Relationship between the
Cartesian and spherical coordinates is useful in analyzing the sonar data:

P =

⎛
⎝X

Y
Z

⎞
⎠ = ℜ

⎛
⎝ cosφ sinθ

cosφ cosθ
sinφ

⎞
⎠ ,

⎛
⎝ℜ

θ
φ

⎞
⎠ =

⎛
⎜⎝

√
X2 +Y 2 + Z2

tan−1 (X/Y)
tan−1

(
Z

X2+Y2

)
⎞
⎟⎠ . (1)

2.2 Preprocessing

Sonar data, in contrast to optical images, are corrupted by a much higher noise level. To
improve performance of 3-D interpretation algorithms, some preprocssing is necessary
to remove noise, and account for non-uniform insonification. Also, the noisy nature of
sonar images often prohibits the application of gradient-based optical flow methods for
image registration and motion estimation, favoring the use of feature-based methods.
While it is desired to develop feature detection and matching methods that are specifi-
cally suited to the physical and geometrical characteristics of sonar imaging, this work
employs traditional methods based on Harris corner detector and Lucas-Kanade track-
ing algorithms [13,18,24].

2 θo ≈ 15 [deg] for DIDSON, and θo ≈ 25 [deg] for BlueView sonar.
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Fig. 1. Sonar beams have a relatively narrow width in the elevation direction, 14 [deg] for a
DIDSON. Insonifying at small grazing angles provides a larger scene surface coverage.

Certain sonar systems, e.g., DIDSON, do image forming by scene insonification at
different times to minimize cross talk between neighboring receivers. More precisely,
scan lines in the azimuth direction are filled by returns from several fields (in analogy
to interlaced video). Therefore, some beam realignment becomes necessary in order to
rectify an image. DIDSON software provides the capability to exploit navigation data
for sonar motion estimation and beam realignment. In practice, the motion information
may be derived directly from temporal correlation across successive raw frames.

2.3 Sonar Homography Model

We assume a stationary target viewed by a mobile sensor platform. This assumption is
not a serious limitation in many applications, e.g., search and inspection, since we are
often interested in the relative motion between the target and sensor platform for target-
based positioning. The relative rigid body motion may be represented by a
3-D translation vector t and a 3-parameter rotation vector ω or 3×3 rotation matrix
R. Accordingly, coordinates P and P′ of a 3-D scene point in sensor coordinate systems
at two views are related by:

P′ = RP + t

The general 3-D reconstruction problem involved determining the scene structure – say
the 3-D positions of features on the scene surfaces – and the relative motion {R, t} of
the sonar between the two views based on the projections into the two views. Here,
we are primarily concerned about the recover of the sonar motion. This establishes the
epipolar geometry of the two views, and once can readily reconstruct each 3-D feature
from its two projections (triangulation in the context of sonar projections).

Given the operation range of high-resolution sonars, as far as 10’s of meters, increas-
ing target distance enables imaging a larger potion of the scene in each view. This is
desirable from the point that existing 2-D imaging sonars have a relatively small cross-
range field of view (roughly 30 [deg] for DIDSON and 50 [deg] for BlueView). While
this comes at the expense of lower spatial resolution of the scene targets, coverage-
vs-resolution tradeoff is application dependent issue. Generally speaking, reasonable
resolution can still be achieved at lower ranges of say 2-5 [m]. At such distances, one
can typically identify scene features that approximately lie on a plane. Alternatively, we
may target identifying and utilization those features that roughly lie on a single plane,
given by the equation n · P = 1, where n = [nx,ny,nz]T is the scaled normal vector de-
rived from the plane equation Z = Zo + ζxX + ζyY .
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For features lying on the plane with normal n, the rigid body motion model takes the
form

P′ = (R+ tnT )P = QP (2)

Constructing a rectangular xsys sonar image from (xs,ys) = ℜ(cosθ ,sinθ ), it can be
readily shown that [7]

p′ = Hp; H =

⎡
⎣αq11 αq12 β q13

αq21 αq22 β q23

0 0 1

⎤
⎦ (3)

where qi j denotes i-j element of Q, α = cosφ
cosφ ′ , β = ℜ sinφ

cosφ ′ , and p = [xs,ys,1]T and

p′ = [x′
s,y

′
s,1]T denote correspondences in two views. While this suggests an affine ho-

mography at first glance, the dependency on elevation angles φ and φ ′ of each feature
relative to the two sonar views suggests a more complicated homography. Matrix Q
in (2) is the up-to-scale homography that describes the transformation between the two
optical views of the plane, and can be decomposed in closed-form to compute the under-
lying motion {R, t} and surface normal n up to the well-known scale-factor ambiguity
of motion vision [26,27]. In contrast, the homography H of two acoustic views is a com-
plex trigonometric function of the surface normal, and a closed-form decomposition to
motion and surface normal has not been derived. In section 3.1, we propose a recursive
method based on MLE formulation.

3 3-D Motion Estimation

A general analogy with classical motion vision of two optical views can be established
by noting that the elevation angle φ can be expressed in terms of the surface normal, and
two coordinate measurements {ℜ,θ}. More precisely, we can first express the surface
equation in the form

(nx sinθ + ny cosθ )cosφ + nz sinφ = 1/ℜ (4)

enabling us to solve for the elevation angle φ in terms of the surface normal:

φ = −γ + sin−1

⎛
⎝ −1

ℜ
√

(nx sinθ + ny cosθ )2 + n2
z

⎞
⎠ (5)

where

γ = tan−1
(

nx sinθ + ny cosθ
nz

)
(6)

It trivially follows that the homography in (3), while a complex nonlinear constraint,
can be expressed in terms of the 9 motion and surface parameters.

A distinct difference with traditional two-frame motion problem is the fact that no
scale factor ambiguity exists with two sonar views. In other words, projections into
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two views of a small number of features allows us to determine the unknown motion
and plane parameters. Simple count reveals that a minimum of 5 points is necessary,
providing us with 10 constraints in terms of 9 unknowns. If the motion is modeled by
pure translation, a minimum of 3 points is necessary for a solution.

While such issues as ambiguous configurations, number of possible solutions, etc.,
are intriguing theoretical problems that also provide insight into solution degeneracies,
we are interested with devising a motion estimating method, here.

3.1 Minimization Problem

Various minimization problems can be formulated based on the Mahalanobis distance
between the measurements and reprojected points, say vectors p′ = (x′

s,y
′
s,1) and p̂′ =

Hp. A symmetric formulation incorporates both distance measures ‖p′ −Hp‖ and ‖p−
H−1p′‖ [14]:

E (R,T,n)=∑
k

(pk − p̂k)T Σ−1(pk − p̂k)+∑
k

(p′
k − p̂′

k)
T Σ ′−1(p′

k − p̂′
k) (7)

where Σ = E[(pk − p̂k)(pk − p̂k)T ] and Σ ′ = E[(p′
k − p̂′

k)(p
′
k − p̂′

k)
T ]. Note abuse of no-

tation, here: We are only concerned with the first two components of p and p′. The
rotation matrix R can be parameterized by a sequence of 3 rotations of the form Ru(αu)
about the 3 axes of the coordinate system; Ru(αu) denotes rotation by angle αu about
axis u. This allows to minimize the function in (7) with respect to (α, t,n), where
α = (αx,αy,αz). Without loss of generality, further simplification can be made by as-
suming independency among noises in the components of various image measurements,
allowing us to write Σ (and Σ ′) as a diagonal matrix with elements (σx,σy).

E (R,T,n)=∑
k

(xk − x̂k)2

σ2
x

+
(yk − ŷk)2

σ2
y

+∑
k

(x′
k − x̂′

k)2

σ2
x

+
(y′

k − ŷ′
k)2

σ2
y

(8)

This nonlinear optimization problem has been solved by applying the Levenberg-
Marquardt algorithm.

4 Experiments

Results from two experiments with real image sequences are presented to assess the
application of the proposed 3-D motion estimation method for sonar imagery. We have
applied standard feature detection and matching method commonly applied for optical
images [28,29].

The first experiment deals with 10 frames of a video, where sonar moves approxi-
mately laterally relative to the hull surface of a ship. The first two frames are shown in
fig. 2 (a). In the left, detected features in the first view have been superimposed (yellow
crosses). The right image is the second view with initial matches (yellow crosses) and
the reprojections based on the estimated motion and surface parameters (red crosses);
see Eq. (3). Only the inlier matches with a reprojection error of less than 2 [pix] have
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(a) (b)

Fig. 2. Experiment 1 – (a) First two views from a sequence of 10 images with initial matches
(yellow crosses) and reprojected inliers (red crosses) based on the estimated motion and surface
parameters. (b) Estimated sonar trajectory.

been shown; see below. As the motion is dominantly translational, a translation motion
model has been applied in estimating the 6 motion and surface parameters. The trajec-
tory between frames 1 to 10 is shown in figure 2(b). The first frame is wrapped on the
bottom surface utilizing the estimated normal vector for rendering. In the absence of
ground truth, reprojection errors provide one measure of accuracy, as given in fig. 3(a).
These errors are not unreasonable, considering that compared to typical high-resolution
optical image: 1) Sonar images are much noisier; 2) Sonar features are rather sparse, of-
ten less by 1-2 orders of magnitude; 3) Features are typically localized within a smaller
region from the entire field of view. Furthermore, these results have been derived for a
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Fig. 3. Experiment 1 – (a) Histogram of absolute reprojection errors for 9 consecutive pairs in the
10-frame sequence, and the estimated surface normal vector as a 3-D point for each of these 9
consecutive pairs. see text for details.
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Fig. 4. Experiment 2 – (a) two images of a 3-D target with initial matches (yellow crosses) and
reprojected features (red crosses) based on the estimated motion and surface parameters

rather small baseline, average translation of about 10 [cm], with respect to the average
target distance of 2 [m]. As another measure, we have plotted in (b) the estimated sur-
face normals over the entire sequence as 3-D points. These form a relatively compact
cluster, suggesting that we have computed the ship hull surface orientation in the sonar
coordinate system with reasonable accuracy.

In another experiment, we have tested the sensitivity of the proposed method to the
planarity assumption. The data has been collected in an indoor pool by moving a 3-D
target, an AUV towing cradle, across the sonar field of view; see fig. 4. The motion
estimation has been applied to these two target views. Here, the images have been su-
perimposed with the original matches, and the reprojections in the second view. For
the most part, the results show insensitivity of the motion estimation algorithm to the
simplified planar surface model.

5 Summary and Conclusion

The paradigm of 3-D interpretation from visual cues in distinct 2-D views has been
applied to high-resolution 2-D sonar video for underwater applications. More specifi-
cally, we have addressed the recovery of 3-D motion which is critical for target-based
positioning in underwater search and inspection, among many other applications. In
contrast to traditional optical images where measurements comprise projections from
optical rays, 2-D sonar provides measurements ranges and azimuth angles of target fea-
tures. We have given the homography between pairs of images recorded from different
viewpoints. Unlike monocular optical video, there is no scale-factor ambiguity in the
estimation of 3-D parameters from sonar sequences. The 3-D motion estimation has
been formulated as a nonlinear optimization problem, solved by the application of the
Levenberg-Marquardt algorithm. Results of experiments with 2 real data sets verify the
promise in the application of proposed methodology.
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Abstract. We present a new geometry compression algorithm for manifold 3D 
meshes based on octree coding. For a given mesh, regular volume grids are 
built with an adaptive octree. For each grid point, a binary sign, which indicates 
inside or outside of the mesh, is generated based on the distance to the mesh. In 
each leaf cell having a vertex, a least square fitting plane is created for a 
localized geometry range with signs. Finally, quantized geometry information is 
locally encoded. We demonstrate that the octree with signs can be used to 
predict the vertex positions. As a result, the proposed method generates 
competitive bitrates compared to the current state-of-art progressive geometry 
coder. Our method also shows better rate-distortion performance during 
decompression or transmission with improved smoothness.  

1   Introduction 

3D mesh has been a robust medium for various applications such as animation, virtual 
reality, game, scientific visualization, and medical imaging. Thanks to those various 
applications, mesh compression also has been an active area of research in order to 
reduce storage space and transmission time for last 10 years. Most compression 
techniques published[1-4] focus on connectivity compression with single compression 
rate. Recently, some progressive techniques using space-partitioning schemes(called 
geometry-driven) are presented with improved compression rates[5, 6]. Compared 
with the single-rate methods, the progressive compression techniques have 
advantages during decoding or transmission process because the meshes are decoded 
and appear in a progressive way so that users can interact with those decoded meshes 
even during the process.  

Meshes typically consist of geometry information, connectivity information, and 
extra attributes such as colors or textures. Since the geometry information takes the 
most part of compressed data(up to 90%), it is still required to reduce the bitrates for 
geometry coding.  
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Previous geometry compression techniques usually adopt global coordinate 
system. On the contrary, our scheme introduces local coordinate systems built on the 
least square fitting planes to improve predictability for geometry information.   

Our prediction technique provides with better rate-distortion performance during 
transmission or decompression as shown in Fig. 3. Though we did not implement 
connectivity coding yet, the final geometry results are compared based on the Dual 
Contouring polygonization method[7] to ensure the same connectivity structures. As 
shown in Table 1, our new octree compression method generates better geometry 
compression rates in the final level(generally level 12) than the kd-tree based 
method[6], being competitive to the current state-of-art method[5].  

2   Previous Work 

In early progressive compression researches, progressivity in mesh compression is 
implemented naturally based on the edge decimation or the mesh simplification 
techniques[8]. Because those methods code connectivity changes progressively, they 
are called connectivity-driven. After that, a kd-tree-based method[6] and an octree-
based method[5] are proposed with better compression rates. Because those two 
methods code mesh information by partitioning space (with kd-tree and octree, 
respectively), they are called geometry-driven. Since the compression performances 
reported for the geometry-driven techniques are better than those of connectivity 
driven ones in general, we focus on the geometry-driven approach.   

In [5], octree is coded with number of non-empty child nodes and their 
combinations (tuples). Also sophisticated pseudo probability models are applied to 
enhance compression rates. For each subdivision, subdivision priorities are 
determined according to the probability models. As a result, a sequence of symbols 
with low entropy is created. In a similar way, the connectivity is coded based on other 
pseudo probability models. While the kd-tree-based method[6] does not use 
connectivity information in compressing geometry, the octree-based method[5] 
utilizes the connectivity information to improve compression rates further. However, 
both the two methods produce stair-like appearances in the intermediate meshes 
during decoding process. In our proposed method, those artifacts are eliminated for 
the same compression rates (Fig. 2). In other words, removal of those artifacts means 
better distortion rates. Therefore, our method provides with better rate-distortion 
performance, i.e., lower distortion in the intermediate meshes during decoding as 
shown in Fig. 1 and 2. Our method is inspired by the isosurface compression techni-
que by Lee et al. [9]. Volume data are transformed to binary signs, i.e. inside or 
outside of the isosurface. Octree is also binarized based on the number of child nodes 
that one parent node has. [9] applies a simple context-modeling with signs. In this 
study, some of the techniques used in [9] are applied to compress sign information. 

3   Proposed Progressive Geometry Compression 

Our geometry coding is a two-pass algorithm; during the 1st pass, a localized range for 
quantization is calculated; in the 2nd pass, localized range for each vertex is quantized. 
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The first pass also consists of two parts: compression of octree with binarized volume 
data and localized prediction. The pseudo code for our progressive geometry 
encoding is as follows:  

 
For a given mesh,  
 
1. Build an adaptive octree.  
2. Classify each grid point of the octree as inside or outside of the mesh.  
3. Encode the octree with binarized volume data progressively (2nd pass only).  
4. For each leaf cell having a vertex,  
    4-1. Build a localized coordinates on the least-square fitting plane(Fig 1).  
    4-2. Quantize and generate symbols to encode(2nd pass only). 
 
Geometry decoding begins with restoring the adaptive octree along with volume 

data level by level. In intermediate levels, predicted vertex positions in localized 
coordinate systems are used and no explicit geometry decoding is required. Only at 
the leaf node having a vertex of the mesh, explicit full geometry decoding is 
processed. 

3.1   Adaptive Octree and Binarized Volume Data  

For a given manifold mesh, an adaptive octree is constructed based on the nearest 
bounding box of the mesh in the first step. The nearest bounding box is regularly 
subdivided until every leaf node has only one vertex. One bit information is measured 
at each grid point of the octree to classify whether it is inside or outside of the 
mesh(sign information or binarized volume data). Once the adaptive octree and 
binarized volume data are created, they are encoded from the root node to the leaf 
nodes in the breath-first traversal order. The octree is perfectly encoded with 3 
symbols, namely, STOP, GO, and ONE_VERT. During the encoding process, the 
encoder generates STOP symbols for leaf nodes without vertices, GO symbols for 
internal nodes, and ONE_VERT symbols for leaf nodes with only one vertex.   

Those generated symbols are coded with an arithmetic coder [10]. To find 
appropriate context, several context models have been tested. The best results are 
achieved by applying octree level and number of inside signs at the node. This context 
is determined from the observation that 1) the nodes at lower levels (i.e. closer to the 
leaf nodes) tend to have ONE_VERT and 2) the octree symbol at any node tends to be 
STOP when the eight corner signs of the node are all empty (outside) or all non-
empty (inside). In the example of figure 1(left), the generated code sequence is 
ONE_VERT-STOP-GO-GO according to the fixed space indices (numbers shown in 
the nodes). 

3.2   New Geometry Prediction Method 

When the octree coding process is finished, the vertex positions are not yet fully 
described. However, at this step, each vertex should be confined within a specific leaf 
node where the size and location are already revealed in the previous step. This 
means, in the viewpoint of the decoder, the uncertainty for the vertex position has 
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Fig. 1. Left – When an octree node is to be subdivided, this subdivision produces code 
sequence. In this example, the darker grey child nodes have more than one vertex, the lighter 
grey node has only one vertex, and the white node has no vertices. The numbers shown in the 
nodes are fixed indices. Right - Least square fitting plane in a leaf node for geometry 
prediction. The square shown is the leaf node; the three hollow dots at the corners are empty 
signs and the other black dot is non-empty sign; the hollow dot in the gray circle means mesh 
vertex; the connected thin lines are the mesh edges; the dotted gray line indicates the least 
square plane. The bigger circle zooms out the local coordinates configured.  

decreased to a certain extent. To get more specified information, the vertex positions 
are further refined using a prediction method based on the sign and neighbor 
connectivity information. 

We note that the sign information represents the contour of the mesh model. Based 
on this observation, we can guess an approximate surface normal vector from the 
position where the sign information changes. With this, we setup a local coordinate 
system whose z axis is configured to be approximately close to the surface normal 
vector. Other components of the local coordinates are setup by calculating a least 
square fitting plane for the leaf node (See the right column of figure 1). The origin of 
the local coordinates is set to be the predicted position and the error between the 
prediction and the actual vertex position is transformed into the local coordinates for 
each leaf node. [9] predicts the vertex positions, which are generated by the Dual 
Contouring method[7] in a similar fashion. However, it only calculates the local z 
coordinate component based on the mentioned technique. In [9], the vertex positions 
are generated to visualize the isosurface models so that the positions within the leaf 
nodes are quite regular. As a result, [9] does not need to predict vertex positions in 
local x and y directions and  the origin of the local coordinates(i.e. the predicted 
position) is just set to be the barycenter position of the least square fitting plane.  

Unlike the case in [9], the vertex positions of general meshes are rather randomly 
distributed within each leaf nodes. To improve the prediction in general meshes, we 
utilize the neighbor information; the predicted positions in the x and y directions are 
guessed by averaging the barycenter origins of neighbor connected vertex positions. 
This approach is based on the observation that the neighbor edges of one vertex tend 
to have similar lengths. This method seems similar to the parallelogram prediction 
method [3] but our approach is more comprehensive in that [3] uses only one triangle 
information for prediction, neglecting other neighbor connectivity information. Fig. 4 
illustrates the proposed prediction scheme.   

After all vertex positions have been transformed into the local coordinates, a 
spanning range is defined with the maximum and minimum values of x, y, and z. 
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This spanning range is quantized and arithmetic-coded in x, y, and z coordinates 
respectively. In arithmetic-coding the quantized positions, sign information is also 
used as context to further improve compression rate.   

3.3   Smoothing Intermediate Meshes  

Most previous progressive compression methods based on space partitioning produce 
stairs-like intermediate meshes in decoding process as shown in the left columns of 
Fig. 2. The reason is that no smoothing information is available during the transmis-
sion so that the vertex positions are set to centroids of the leaf nodes. Unlike this, our 
method utilizes the sign information to produce better appearances in the intermediate 
meshes. Though the connectivity coding scheme is still under progress, we find that 
the sign information itself also works fine as an intermediate visualization tool. Since 
the sign information represents the contour of meshes, the intermediate meshes can be 
produced using the Dual Contouring connectivity information which is generated 
purely with the sign information. Also, the intermediate vertex positions can be set to 
be closer to the surface, which means better distortion rates for the intermediate 
meshes. 

4   Result 

Fig. 2 and 3 demonstrate better rate-distortion performance by our method for 
intermediate meshes during mesh transmission. For comparison purpose, both use the 
Dual Contouring [7] connectivity information for the intermediate meshes and the 
final level models use uncompressed connectivity information. As shown, our method 
produces smoother appearance and less distortion for intermediate meshes.  

Fig. 4 illustrates the improvement in quantum number distribution achieved by our 
method in the quantum compression process explained in section 3.2. The X 
coordinates of the graphs represent the symbols required to cover the spanning range, 
and the Y coordinates indicate the number of symbols. The scales of Y coordinates in 
each column are set to be identical for comparison. From these graphs, we conclude 
that the proposed method generates excellent distributions for better compression 
rates (i.e. lower entropy). Table 1 compares the compression rates with recently 
reported results. The results are measured when distortion rates are set to be 
equivalent to those of [3] for 12 bit quantization (for fandisk model, 10 bits). The 
results are quite competitive considering our scheme produces better intermediate 
distortion rates than the listed two methods. We adopt “binarized octree” which 
requires only one bit for each octree node. Contouring information is captured by sign 
data generated by building the BSP tree during the encoding process, which consumes 
the largest part of total encoding time. The process for encoding takes around one 
minute for the test meshes in Intel Duo2Core 1.83 GHz, RAM 1GB machine. Because 
the decoding process does not need the BSP tree, the decoding process is O(n) where 
n is the number of octree nodes.  
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horse fandisk 

feline head 

 

Fig. 2. For each model, left columns - stair-case looking surfaces for intermediate meshes 
decoded in the previous methods [5,6]; right columns - enhanced smooth surfaces in the 
proposed method 
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Fig. 3. Rate-Distortion graph for test models 

 

Fig. 4. Geometry symbol distributions for the horse model. Upper row - Distributions aligned 
with the global coordinates. Middle row - Distributions based on [9] without predictions for x 
and y coordinates. Lower row - Distributions based on the proposed method. The proposed 
method improves the entropy.   

Table 1. 

Kd-tree based[11] Octree based[5] Proposed method 
Model name 

Geo Con Geo Con Geo Sign 
horse 16.4 3.9 13.7 2.9 13.3 2.5 
fandisk 12.1 2.9 10.7 2.6 10.8 1.0 
feline 15.4  - 13.1 3.6 13.3 2.8 
tore high 16.9  - 8.9 2.9 12.0 2.5 
Head  -  -  -  - 14.0 2.3 
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5   Conclusion and Future Work 

In this paper, we show that the sign information can be applied to improve 1) the 
octree compression, 2) the quantum symbol compression, and 3) the intermediate 
distortion rate with smoother appearance.  

Our next goal is to complete the connectivity coding based on the sign information. 
Experiment shows that the difference between actual connectivity information and the 
Dual Contouring connectivity information is not huge so that we expect the sign 
information also can provide an excellent connectivity coding scheme.  
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Abstract. This paper introduces a general methodology for detecting
and reducing the errors in a handwriting recognition task. The method-
ology is based on confidence modeling and its main difference is the use
of two parallel classifiers for error assessment. The experimental bench-
mark associated with this approach is described as well as exhaustive
results are provided for two real world recognizers on a large database.

1 Introduction

Handwriting recognition is still an unsolved problem for totally unconstrained
input, as the state-of-the-art recognition rates (from 50% to 80%) show [1]. For
many applications, more robust recognition is required.

Some methods exist for making recognizers robust. Classifier combination [2]
is an example. The rationale is to increase the recognition rate by using more
than one classifier, in such a configuration that the errors that one single classifier
would made are compensated by the others. This approach has been employed
for many years but usually more than two or three classifiers are required.

A newly formulated approach is confidence modeling. It stands for all the
methodologies that are carried out once the classification is done and a confi-
dence value estimate for correct classification exists. An exhaustive formalization
and survey can be read in [3]. One type of confidence modeling is what is known
under recognition verification. Its aim is to try to predict classification failures to
increase the robustness of classifiers. Contrary to classifier combination, recog-
nition verification does not increase the recognition rate but at least reduces the
number of errors and suggests an alternative treatment of the rejected samples.

We propose a general methodology for detection of classification errors in
handwriting recognition. The main difference with respect to the state-of-the-
art in confidence modeling is that it makes use of two parallel classifiers. In other
words, we import the idea of classifier combination into recognition verification.

In section 2 confidence modeling and its application to rejection are reviewed.
In section 3 the proposed methodology is described with exactitude. In section 4
possible configurations are presented. In section 5 the performed experiments
are described and their results commented. Conclusions and future work are
discussed in section 6.
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2 Confidence Modeling

In a confidence modeling framework, one starts from the following assumptions.
For each sample of handwritten text the output of a classifier is a ranked set
of labels {li}NC

i=1 called candidates, corresponding to the recognition guesses.
Each candidate has an associated confidence score Ci, interpreted as the amount
of trust that the classifier gives to that candidate. In a confidence modeling
framework, the internal architecture of the classifier is not of interest. In other
words, they behave as black boxes.

One recent, popular use of confidence modeling is recognition verification [4],
often referred to as rejection strategies. They are applied when the recognition
rate is insufficient and it is of great value at least to predict an error in the output.

In its most general version, outputs with an associated confidence measure
below a threshold are labeled as rejected. This does not increase the recognition
rate; however, it reduces the number of classification mistakes and therefore
suggests an alternative treatment of these samples. A scheme of such a system
is presented in Fig. 1(a).

CLASSIFIER
decision

final decision
accept

reject

no decision

R

(a)

CLASSIFIER 1 decision

final decision

accept

reject

R

C

CLASSIFIER 2
decision

R accept

reject

no decision

(b)

Fig. 1. Schemes of an ordinary rejection strategy (a) and the proposed combination-
based rejection strategy (b)

One can study the fraction of still non-detected errors and the detected errors
for different threshold values. This fractions are known as error and rejection
rates and their concurrent plot is called error-reject characteristic. From this
measure, one can select the threshold that leads to the desired error rate for a
given affordable rejection rate. The typical form of the error-reject characteristic
is depicted as a solid line in Fig. 2.

How to assign a confidence measure to each output is one of the decisive
steps. Several proposals for rejection measures can be read in [5]. In this kind of
works, most measurements highly depend on the underlying algorithm, usually
involving some posterior probability from the employed model. In [1] a rejection
strategy for discarding suspicious words in sentence candidates is used. Arlandis
et al. [6] assume there are two causes for rejecting samples- doubt and outliers-
and associate a different confidence measurement to each cause. In [7] multiple
classifiers are used to compute a measure for rejecting samples.

On the contrary, the approach proposed in this paper uses measures that
can be computed for any classifier, thus resulting in a general methodology for
recognition verification.
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3 Methodology Using Two Classifiers

We modified the “classical” recognition verification approach explained in section
2 by using two classifiers in parallel. For each classifier, we apply a threshold to
label rejected samples. But the objective is not to minimize the error rate of each
classifier. Instead, we want to minimize the error rate of a subsequent classifier
combination where only the non-rejected samples from each classifier participate.
Our idea is represented in Fig. 1(b).

The first significant difference appears when interpreting the error-reject
curves. With two degrees of freedom, the error-reject points obtained when
varying both thresholds do not lie on a curve. Instead, they are spread over
the error-rejection space. This situation is depicted in Fig. 2.
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Fig. 2. Typical error-reject characteristic obtained by an ordinary rejection strategy
(dotted line) and the proposed rejection strategy (single points). The border where the
best single points lie is plotted (dashed line).

Given such a cloud of points in the error-rejection space, we are only interested
in those for which there is no other point with less rejection and less error
rate. They do stay on a line, which we have called “Best point border” (BPB).
Formally, BPB is defined as

(r, e) ∈ BPB ⇔ ({(ri, ei)|ri ≤ r, ei ≤ e} = ∅), (1)

where (r, e) represents a point of the error-reject characteristic. From now the
realizations of the explained 2-classifier recognition verification scheme will be
characterized by their BPB.
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4 Combination Methods and Rejection Measures

An implementation of the previous idea requires the specification of a particu-
lar combination method and a particular rejection strategy. The ensemble of a
combination method and a rejection measure will be called configuration from
now on. The performance of different configurations can be tested and compared
with respect to each other, and also with respect to the error-reject curves of
single classifiers.

To generalize the methodology, we will employ combination methods that do
not depend on the internal classifier design. Majority voting1 [2] and Borda count
[8] are chosen for this purpose. For review of other combination methods please
refer to [9].

In contrast to the referred works on rejection strategies, where there is knowl-
edge about the underlying classifiers available, when using black-box classifiers
there is a limitation in the information we can obtain from them. Therefore the
measures proposed for rejection are simple:

– Confidence score: The value directly given by the classifier.
– Probability: A rough probability estimate is obtained by normalizing the

confidences of each candidate so that their sum is 1. The probability of
candidate i to be correct can be then expressed as:

pi =
Ci∑N

k=1 Ck

. (2)

– First candidate bias (FCB): The difference between the confidence score of
the first candidate and the mean confidence score of all candidates. Expressed
as

FCB = C1 − 1
N

N∑
k=1

Ck. (3)

Higher values of this measure indicate reliable top candidates while lower
values show up for doubtful ones.

With each of the two combination methods and each of the rejection measures
proposed, we obtain six different configurations that will be tested in experi-
ments.

We additionally introduce another rejection strategy that makes use of two
parallel classifiers which is a variation of the one represented in Fig. 1(b). In
this new approach, samples are first processed with one classifier. The non-
rejected samples go directly to the output and the rejected samples undergo a
Borda count combination involving the first classifier and a second classifier.
This situation is depicted in Fig. 3.
1 In the majority voting scheme, each classifier assigns one vote to the output label. If

the sample is rejected, no vote is given. Hence in practice, for two classifiers majority
voting chooses the output from the non-rejected classifier (or from a default classifier
if there is a tie).



Rejection Strategies Involving Classifier Combination 101

CLASSIFIER 1
decision

final decision
accept

reject

R

C

CLASSIFIER 2
decision

Fig. 3. The cascading Borda rejection approach

This scheme is very suitable for being used with rejection measures such as
the FCB. A high value of FCB stands for confident candidates and these are
directly sent to the output. A low value of FCB can mean that maybe the
first candidate is not the correct one. The subsequent Borda count combination
stands for resolving the doubt by comparing with the candidate list of another
classifier, like “a second opinion”.

5 Experiments

The proposed rejection scheme is applied for improving the results of two com-
mercial handwritten text classifiers on unconstrained handwritten words. The
classifiers will be called M and V from now on.

Experiments are conducted on public and self-acquired datasets. On the one
hand, the methodology is tested for the most populated datasets of the UNIPEN
[10] database (category 6: isolated words). These datasets are cee, cec, hpp2, lex0,
nic and sta0 and contain, respectively, a number of 4880, 3977, 5383, 5660, 6813
and 13907. On the other hand, the own dataset (CVC) consists of 1878 samples
from a 43-word lexicon acquired by more than 40 writers. Samples were obtained
with a digital pen and Anoto paper system. Examples are plotted in Fig. 4.

For each of the rejection measures proposed in section 3 we test ordinary
rejection strategies. Recall the consideration about majority voting of section 4.
We compare the resulting error-reject curves with the best point borders (BPB)
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Fig. 4. Rendered samples from the CVC on-line database corresponding to the words
“lemon” and “pineapple”, respectively
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Fig. 5. Error-reject plot for different rejection strategies on the dataset collected at the
CVC(left) and on the nic dataset of the UNIPEN database (right)

obtained by different configurations of our proposed rejection strategy. Borda
count methods use N = 5 and in cascade Borda the first classifier is V.

Some of these results for the CVC and nic dataset are plotted in Fig. 5,
showing: the curves for the best classical rejection strategy for M and V, the
BPB of the proposed rejection strategy leading to best results and the BPB of
another configuration for comparison.

In all experiments the error rate is taken as the fraction of words incorrectly
recognized from all the words processed, ignoring the letter case, since there are
cases where both cannot be distinguished out of a sentence context (e.g. “Same”
and “same”).

In the CVC dataset the best configuration of our scheme (cascade Borda
with FCB) presents error-reject points far below the error-reject points of the
classical rejection strategies. It proves the effectiveness of using the FCB measure
for discarding doubtful samples and the posterior Borda count combination to
resolve this doubt. In the UNIPEN datasets we are also able to outperform the
classical rejection strategies at least for rejection values under about 40%. This
is sufficient as rejections of 40% are too high for most applications. For the M
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classifier few error-reject points are available because it only gives three different
confidence values indicating strong, intermediate or poor guesses.

For appreciating the results of every configuration in all datasets, we have
built Table 1. It shows, for every configuration, the error rate improvement of
each configuration with respect to using the best classifier alone. This point is
obtained by considering that recognition, error and rejection rate sum 1.

Table 1. Error rates (in %) achievable by the different configurations of our scheme for
the same recognition rate of the best classifier working stand-alone. This recognition
value is indicated in the last column (in %). In bold, the lowest error rate achieved for
each dataset. A dash indicates that the corresponding error rate was not achievable by
the configuration.

Datasets → CVC cec cee hpp2 lex0 nic sta0
Best classifier V M M M M M M
Error rate of best classifier 17.15 9.88 21.40 23.76 9.47 21.25 12.89

Voting (Confidence) 13.63 9.88 21.40 23.76 5.74 - 10.29
Voting (Probability) 17.41 9.88 21.40 23.76 6.80 - 11.32
Voting (FCB) 11.50 - - - 5.62 - 11.27
Borda Count (Confidence) 12.89 8.55 21.05 22.24 5.44 19.86 9.33
Borda Count (Probability) 17.41 8.55 21.25 22.96 6.68 19.90 10.43
Borda Count (FCB) 10.92 8.50 - 21.90 5.49 18.96 10.39
Cascade Borda (Confidence) 4.762 8.16 21.40 23.76 7.69 - 9.71
CascadeBorda (Probability) 17.41 8.22 20.72 23.17 7.67 19.87 -
Cascade Borda (FCB) 2.38 8.22 - - 7.79 - 9.87

Recognition rate 75.40 90.12 78.60 76.24 90.53 78.75 87.11

For the CVC dataset the best configuration (cascade Borda with FCB) is able
to sink the error rate from 17.15% to 2.38%. This good result may be due to the
small size of the CVC dataset and its lexicon. For the UNIPEN database, the
best result is obtained for the lex0 dataset where the error can be lowered from
9.47% to 5.44%. Error rate differences from 0.35% to 3.56% are achieved in the
other datasets.

6 Conclusions and Future Work

A recognition verification methodology to detect errors in a handwriting recog-
nition task using two classifiers has been proposed. The experiments show that
the use of a second classifier allows reducing the error rate with respect to the
first one, and without a loss in recognition rate. The generality of the method
has been assessed by working with commercial classifiers, which from our point
of view are black boxes.

The methodology could be extended to work with more classifiers if results
should be further improved. However, the success using only two classifiers makes
it useful as a fast and resource-cheap solution.
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An interesting further work would be trying to identify the rejected samples
as doubts or outliers, as other authors do. This semantic information would
allow a more precise post-processing of the rejected samples. We are working in
embedding this idea into the proposed cascade Borda rejection approach.
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Abstract. In recent years, 6 Degrees Of Freedom (DOF) Pose Esti-
mation and 3D Mapping is becoming more important not only in the
robotics community for applications such as robot navigation but also in
computer vision for the registration of large surfaces such as buildings
and statues. In both situations, the robot/camera position and orien-
tation must be estimated in order to be used for further alignment of
the 3D map/surface. Although the techniques differ slightly depending
on the application, both communities tend to solve similar problems by
means of different approaches. This article is a guide for any scientist
interested in the field since the surveyed techniques have been compared
pointing out their pros and cons and their potential applications.

1 Introduction

Thus far, robot navigation has been focused on 2D mapping in flat terrains and
usually restricted to indoor structured scenarios [34]. Recently, the need to ex-
plore complex and unstructured environments has increased [27]. The complexity
of this sort of environments requires 6DOF movement due to the unevenness of
natural terrains. Besides, the growing interest in 3D modeling of large objects
such as buildings and statues has forced the scientific community to face new
challenges with the aim of reducing the propagation error present in registra-
tion [33]. In both situations, the robot/camera pose is estimated in order to be
used in a further alignment of the 3D map/surface. Although the techniques dif-
fer slightly depending on the application, both communities tend to solve similar
problems by means of different approaches [11] [31].

In general, a good estimation of the initial position is always required in-
dependently of the approach or technique used. Hence, section 2 provides a
classification of the most important methods used to obtain a coarse pose es-
timation, including inertial navigation, visual odometry and surface-to-surface
matching, among others. Then, pair-wise registration approaches such as the
Iterative Closest Point are used to refine the alignment between two clouds of
points, see section 3. Finally, any error accumulated between correlated views is
minimized by means of cycles and overlapping regions common among the ac-
quired views. Hence, section 4 discusses a new classification of these techniques
including analytic methods such as bundle adjustment and the well known ICP
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Table 1. Coarse one-to-one pose estimation techniques. R: Restricted (some DOF are
constrained in a limited range); TOF: Time-of-flight; LT: Laser Triangulation; DLP:
Digital Light Projector.

Technique author DOF sensor scene

Coarse
one-to-one

pose
estimation

Nüchter, 2004 [27] 6 TOF outdoor
mechanical sensors Folkesson, 2003 [11] 6R TOF outdoor

devices Pulli, 1999 [31] 6 LT object
mechanisms Bernardini, 2002 [2] 6 LT object

Huang, 1989 [18] 6 monocular indoor
Image Feature to point Shang, 1998 [39] 6 binocular indoor

to Davison, 2003 [9] 6 monocular indoor
image Point to feature Lowe, 1999 [23] 6 binocular indoor

Chen, 1998 [6] 6 DLP object
Johnson, 1999 [20] 6 DLP object

Computer Point to Carmichael, 1999 [5] 6 DLP object
vision Surface feature Chua, 1997 [8] 6 database object

to Huber, 2003 [19] 6 LT object
surface Nister, 2004 [28] 6 monocular outdoor

Feature Stamos, 2003 [33] 6 TOF outdoor
to point Wyngaerd, 2003 [38] 6 DLP object

Triebel, 2005 [36] 6R TOF outdoor

multi-view approach, and statistical methods such as Simultaneous Localization
And Mapping (SLAM), among others. These techniques are compared and dis-
cussed analyzing their pros and cons and potential applications. The article ends
with conclusions.

2 Coarse One-to-One Pose Estimation

The initial position is always required independently of the approach or tech-
nique used. The initial pose can be obtained using two well-known approaches:
1) Initial pose estimation by mechanical devices and 2) Initial Pose estimation
by computer vision. The first technique is based on benefiting by using some sort
of device: a) sensors, such as odometers, compasses or inertial systems [11]; or
b) mechanisms, such as rotating tables, robot arms or conveyors [31] [2].When
sensors or mechanical devices can not be used or when their measure is rough
or inaccurate, an estimation of the initial position by means of computer vi-
sion may be a good choice. Therefore, the second technique is based on directly
analyzing the visual images (given by cameras) or the surface views (given by
scanners) looking for correspondences which are used to solve the alignment and
consequently the pose. Although in this paper the final registration concerns 3D
objects, the initial pose estimation can be achieved using both 2D or 3D views.
Therefore, two main groups of pose estimation techniques using computer vi-
sion are proposed: a) Image-to-image correspondences and b) Surface-to-surface
correspondences. Image-to-image techniques are based on 2D image-to-image
matching using both discrete and differential epipolar constraint dealing with
2D images directly acquired by a stereo-head [18] or a moving camera [9]. Note
that in the calibrated case the 3D is computed by triangulation. Besides, in
uncalibrated systems the motion up to a scale factor is estimated by solving
the well-known Kruppa equations computing a perspective reconstruction. The
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Table 2. Fine one-to-one pose estimation techniques. R: Restricted (some DOF are
constrained in a limited range); TOF: Time-of-flight; LT: Laser Triangulation; DLP:
Digital Light Projector.

Technique author DOF sensor scene

Fine
one-to-one

pose
estimation
(Pair-wise)

Besl, 1992 [3] 6 LT outdoor
Greenspan, 2001 [14] 6 DLP object

Point to Jost, 2002 [21] 6 database object
point Guidi, 2004 [15] 6 DLP object

Triebel, 2005 [36] 6R TOF outdoor
Trucco, 1999 [37] 6 synthetic data object
Chen, 1991 [7] 6 DLP object

Point to Gagnon, 1994 [13] 6 monocular object
plane Park, 2003 [29] 6 database object

Euclidean reconstruction is obtained by taking any metric measure from the
scene that allows the determination of the scale factor, usually a distance be-
tween two 3D features [9]. On the other hand surface-to-surface techniques deal
with 3D features or clouds of points acquired by any 3D acquisition technique
such as stereo [28], laser triangulation or time-of-flight lasers [33], among others.
Here, the main difference is in the way of selecting the matching points.

All these methods process the 2D/3D points of the given images/surfaces to
extract significant points which are used in the matching process. Hence, the
techniques are classified according to: a) feature-to-point approach when the
significant points are only those that satisfy a given feature [17] [33]; and b)
point-to-feature approach when an arbitrary group of points are characterized
obtaining a set of features that differ one to another depending on point neigh-
borhood [23] [8] [5].

In summary, although coarse pose estimation methods based on mechanical
devices provide good results in flat terrains, a combination of both mechanical
and computer vision methods is usually required in the presence of rough and
unstructured environments. Techniques based on the discrete epipolar geometry
have been widely studied and nowadays robust solutions are available even in
6DOF. Besides, the differential movement estimators are quite sensitive to noise.
Hence, these methods are, in general, adapted to the application constraining the
number of DOF with the aim of reducing the error in the estimation. Therefore,
surface-to-surface alignment is more adequate for complex 3D scenarios, but
then we have to avoid symmetries in the views to obtain accurate registrations.

3 Fine One-to-One Pose Estimation

Once an initial 3D pose is estimated by any coarse registration technique, an iter-
ative minimization should be applied to obtain a refined pose and hence a better
alignment between both views. Herein, the methods are classified according to
the minimization function, which is usually the distance between corresponding
points (point-to-point) or the distance between points and their correspond-
ing plane (point-to-plane). For instance, Point-to-point alignment, such as the
Iterative Closest Point (ICP) [3], focus on finding the distance between point
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correspondences. ICP is the most common point-to-point fine registration
method and the results provided by authors are good [14] [36]. However, the
method can not cope with non-overlapping regions because outliers are barely
removed. In addition, this method usually presents problems of convergence,
many iterations are required and, in some cases, the algorithm converges to
local minima. The algorithm proposed by Chen [7] (Point-to-plane) is an alter-
native to ICP. Given a point in the first image, the intersection of the normal
vector at this point with the second surface determines a second point in which
the tangent plane is computed. The distance between this plane and the initial
point is the function to minimize. Despite the difficulty of determining the cross
point between a line and a plane in a cloud of points, some techniques such as
the fast variant of ICP proposed by Park [29] and the method of Gagnon [13]
are presented to speed this process up. Compared to ICP, this method is more
robust to local minima and, in general, better results are obtained. Moreover,
the method is less influenced by the presence of non-overlapping regions and
usually requires less iterations compared to ICP.

4 Cycle Minimization

One-to-one alignment of views in a sequence causes a drift that is propagated
throughout the sequence. Hence, some techniques have been proposed to reduce
the propagating error benefiting from the existence of cycles and re-visited re-
gions and considering the uncertainty in the alignment. This sort of techniques
is classified into analytic and statistic, as shown in Table 3 and explained in the
following paragraphs.

Analytic minimization: In order to minimize the propagating error, some au-
thors have improved their algorithms by adding a final step that aligns all the
acquired views at the same time. These approaches spread one-to-one pair-wise
registration errors throughout the sequence of views. Early approaches proposed
the aggregation of subsequent views in a single metaview, which is progressively
enlarged each time another view is registered [7]. Here, the main constraint is
the lack of flexibility to re-register views already merged in the metaview. Some
modifications of metaview approach have been presented to improve the effi-
ciency of the algorithm [31] [27]. A different multi-view approach proposes a
multi-view registration technique based on the graph theory: views are associ-
ated to nodes and transformations to edges. Authors consider all views as a
whole and align all them simultaneously [19] [32]. Analytic methods based on
the metaview approaches present good results when initial guesses are accurate
and the surface to be registered does not have a large scale. Otherwise, the
method suffers a large propagation error producing drift and misalignments and
its greedy approach usually falls in local minima. The use of methods based on
graphs has the advantage of minimizing the error in all the views simultaneously
but they usually require a previous pairwise registration step, which accuracy
can be determinant in the global minimization process. Besides, closing the loop
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Fig. 1. Multi-view registration of multiple 3D views of a ceramic frog out in our lab

strategies provide trustworthy constraints for error minimization but require a
huge amount of memory and usually involve a high computational cost.

Statistic minimization: The same problem of registering 3D views in a sequence
has been also faced by means of a probabilistic approach (statistic techniques), es-
pecially in mobile robot navigation. The technique receives the name of Simulta-
neous Localization and Mapping (SLAM) since both the pose and the structure of
the environment are estimated simultaneously. The main difference compared to
analytic multi-view is that the uncertainty in the measure is not neglected. Hence,
two main groups of techniques have been considered depending on the way of rep-
resenting such uncertainty: a) Gaussian filters and b) non-parametric filters. Both
Kalman Filter (KF) for linear systems and Extended Kalman Filter (EKF) for
non-linear systems are undoubtedly the most well-known Gaussian filters. Both
consist in two main steps: a) Prediction, which estimates the current state by using
the temporal information of previous states; and b) Update, which uses the current
information provided by robot on-board sensors to refine prediction. Whenever
a landmark is observed by the on-board sensors of the robot, the system deter-
mines whether it has been already registered and updates the filter. Hence, when
part of the scene is revisited, all the gathered information from past observations
is used by the system to reduce the uncertainty in the whole mapping, strategy
known as closing the loop. Besides, mobile robot localization and mapping has also
been tackled by using non-parametric filters such as histogram filter or particle fil-
ter. The main advantage compared to Gaussian filters is the possibility of dealing
with multimodal data distribution, so that multiple values (particles) are used to
represent the belief [35] [9]. Nevertheless, note that Gaussian filters have a poly-
nomic computational cost whereas the computational cost of a non-parametric
filter may be exponential. In the presence of large environments in which tons of
data are gathered, Gaussian filters state vectors increase considerably leading to
inefficiency in terms of computational cost. Similar problems appear using non-
parametric filters such as the particle filter. Hence, some authors have proposed
different techniques to cope with computational cost and memory size [16] [22].
This drawback can be solved by using methods based on building submaps [4]
which present more robustness against uncertainty compared to methods based
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Table 3. Cycle minimization techniques. R: Restricted (some DOF are constrained
in a limited range); TOF: Time-of-flight; LT: Laser Triangulation; DLP: Digital Light
Projector.

Technique author DOF sensor scene
Bergevin, 1996 [1] 6 monocular object

Iterative Huber, 2003 [19] 6 LT object
Analytic lineal Pulli, 1999 [31] 6 LT object

(Multiview) Sharp, 2004 [32] 6 DLP indoor
Nüchter, 2004 [27] 6 TOF outdoor

Cycle robust Masuda, 2001 [25] 6 LT object
minimization Pollefeys, 2000 [30] 6 monocular outdoor

Guivant, 2000 [16] 6 TOF outdoor
Martinelli,2005 [24] 6R TOF indoor

Gaussian Liu, 2003 [22] 6R TOF outdoor
Statistic Bosse, 2003 [4] 6 TOF outdoor

Estrada, 2003 [10] 6R TOF outdoor
Davison, 2003 [9] 6 monocular indoor

Non Parametric Montemerlo, 2002 [26] 6R TOF outdoor

on a unique global map. Some methods impose global restrictions for global map
joining, providing accurate solutions in the presence of short loops [12]. However,
loop consistency constraints used in methods such as Hierarchical SLAM [10] can
be essential in order handle larger loops and prevent inconsistency and misalign-
ments in the final map.

In summary analytic methods are the most common in high-resolution ob-
ject reconstruction by means of multi-view registration techniques. Although
multi-view registration methods have demonstrated to provide accurate solu-
tions, misalignments can appear in the presence of featureless environments,
symmetries and smooth objects. Besides, statistical methods are the most used
in 3D mapping in mobile robot navigation. The advantage of statistical methods
is in their performance in the presence of less reliable sensors, complex environ-
ments and unstructured scenes with few features and landmarks. However, they
are not recommended for handling tons of data since the manipulation of large
state vectors derives to an inefficient computation.

5 Conclusion

This paper presents a state of the art of the most representative techniques for
6DOF pose estimation and 3D registration of large objects and maps. The most
referenced articles over the last few decades have been discussed analyzing their
pros and cons and potential applications.

The article is intended to be a guide for any researcher interested in the
field. To the best of our knowledge, this article is the first that compares the
techniques present in both robotics and computer vision communities, providing
new classification criteria, discussing the existing techniques, and pointing out
their pros and cons and potential applications.
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Abstract. The challenge of interest point detectors is to find, in an un-
supervised way, keypoints easy to extract and at the same time robust to
image transformations. In this paper, we present a novel set of saliency
features that takes into account the region inhomogeneity in terms of
intensity and shape. The region complexity is estimated at real-time by
means of the entropy of the grey-level information. On the other hand,
shape information is obtained by measuring the entropy of normalized
orientations. The normalization step is a key point in this process. We
compare the novel complex salient regions with the state-of-the-art key-
point detectors. The new set of interest points shows robustness to a wide
set of transformations and high repeatability. Besides, we show the tem-
poral robustness of the novel salient regions in two real video sequences.

1 Introduction

Visual saliency [1] is a broad term that refers to the idea that certain parts
of a scene are pre-attentively distinctive and create some form of immediate
significant visual arousal within the early stages of the Human Vision System.
The term ‘salient feature’ has previously been used by many other researchers
[12][1]. Although definitions vary, intuitively, saliency corresponds to the ‘rarity’
of a feature [2]. In the framework of keypoint detectors, special attention has
been paid to biologically inspired landmarks. One of the main models for early
vision in humans, attributed to Neisser [6], is that it consists of pre-attentive and
attentive stages. In the pre-attentive stage, ‘pop-out’ features are only detected.
These are the salient local regions of the image which present some form of
spatial discontinuity. In the attentive stages, relationships between these features
are found, and grouping takes place in order to model object classes.

Region detectors have been used in several applications: baseline matching for
stereo pairs, image retrieval from large databases, object retrieval in video, shot
location, and object categorization [9][8], to mention just a few. One of the most
well-known keypoint detector is the Harris detector [3]. The method is based
on searching for edges at different scales to detect interest image points. Several
variants and application based on the Harris point detector have been used in
the literature, such as Harris-Laplacian [5], Affine variants [3], DoG [4], etc. In
[11], the authors proposed a novel region detector based on the stability of the
parts of the image. Nevertheless, the homogeneity of the detected regions makes
the description of the parts ambiguous when considered in object recognition
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frameworks. Schmid and Mohr [3] proposed the use of corners as interest points
in image retrieval. They compared different corner detectors and showed that
the best results were provided by the Harris corner detector [5]. Kadir et al. [1]
estimate the entropy of the grey levels of a region to measure its magnitude
and scale of saliency. The detected regions are shown to be highly discriminable,
avoiding the exponential temporal cost of analyzing dictionaries when used in
object recognition models, as in [12]. Nevertheless, using the grey level informa-
tion, one can obtain regions with different complexity and with the same entropy
values. In [10], a method for introducing the cornerness of the Harris detector
in the method of [1] is proposed. Nevertheless, the robustness of the method is
directly dependent on the cornerness performance.

In this paper, we propose a model that allows to detect the most relevant
image features based on their saliency complexity. We use the entropy measure
based on the color or grey level information and shape complexity (defined by
means of a novel normalized pseudo-histogram of orientations) to categorize the
saliency levels. This new Complex Salient Regions can be related to the pre-
attentive stage of the HVS. In this sense, they are biologically inspired since it
is known that some neural circuits are specialized or sensitive to a restrictive
set of visual shapes, as edge, contour and motion detectors as others related
to color and spatial frequencies [7]. Although orientations have been previously
used in the literature with very few success[1], our approach defines a normalized
procedure that makes this measure very relevant and robust.

The paper is organized as follows: chapter 2 explains our Complex Salient
Regions, section 3 shows experimental results, and section 4 concludes the paper.

2 Complex Salient Regions

In [1], Kadir et al. introduce the grey-level saliency regions. The key principle is
that salient image regions exhibit unpredictability in their local attributes and
over spatial scale. This section is divided in two parts: firstly, we describe the
background formulation, inspired in [1]. And, secondly, we introduce the new
metrics to estimate the saliency complexity.

2.1 Detection of Salient Regions

The framework to detect the position and scale of the saliency regions uses a
saliency estimation (defined by the Shannon entropy) at different scales of a given
point. In this way,we obtain a function of the entropy in the space of scales.We con-
sider significant saliency regions those that correspond to maxima of that function,
where the maxim entropy value is used to estimate the complex salient magnitude.
Now we define the notation and description of the stages of the process.

Let HD be the entropy of a given descriptor D, Sp the space of significant
scales, and WD the relevance factor (weight). In the continuous case, the saliency
measure γD, a function of scale s and position x, are defined as:

γD(Sp, x) = WD(Sp, x)HD(Sp, x) (1)



Robust Complex Salient Regions 115

for each point x and the set of scales Sp at which entropy peaks are obtained.
Then, the saliency is determined by weighting the entropy at those scales by WD.
The entropy HD is defined as HD(s, x) = −

∫
p(I, s, x) log2 p(I, s, x)dI, where

p(I, s, x) is the probability density of the intensity I as a function of scale s and
position x. In the discrete case, for a region Rx of n pixels, the Shannon entropy
is defined as

HD(Rx) = −
n∑

i=1

PD,Rx(i)log2PD,Rx(i) (2)

where PD,Rx(i) is the probability of descriptor D taking the value i in the local
region Rx, for n grey levels. The set of scales Sp is defined by the maxima of the
function HD in the space of scales Sp =

{
s : ∂HD(s,x)

∂s = 0, ∂2HD(s,x)
∂s2 < 0

}
These equations are illustrated by the detected local maxima in fig. 1. In the

figure, a point x is evaluated in the space of scales, obtaining two local maxima.
These peaks of the entropy estimation correspond to the representative scales
for the analyzed image point.

Fig. 1. Local maxima of function HD in the scale space S

The relevance of each position of the saliency at its representative scales is
defined by the inter-scale saliency measure WD(s, x) = s ∂

∂sHD(s, x).
Considering each scale s of Sp and the pixel x, we estimate WD in the discrete

case as,

WD(s, x) = s
|HD(s − 1, x) − HD(s, x)| + |HD(s + 1, x) − HD(s, x)|

2
(3)

where s ∈ [1, ..., S], for S the total number of scales. Using the previous weighting
factor, we assume that the significant salient regions correspond to that locations
with high distortion in terms of the Shannon entropy and its peak magnitude.

2.2 Traditional Grey-Level and Orientation Saliency

Kadir et al. [1] used the grey-level entropy to define the saliency complexity of a
given region. However, this approach falls short in front of clear cases of different
complexities. In fig. 2 one can observe different regions with the same amount of
pixels for each grey level and different visual complexity. Note that the approach
proposed by [1] gives the same entropy value for all of them.

A natural and well founded measure to solve this pathology is the use of comple-
mentary orientation information. In the same work [1], Kadir et al. considered the
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Fig. 2. Regions of different complexity with the same grey level entropy

use of orientations with very limited and inconclusive results. The use of orienta-
tions as a measure of complexity involves several problems. In order to exemplify
those problems, suppose that we have the regions (a) and (b) of fig. 3. Both regions
have the same pdf (fig. 3(c)), although contain different number of significant ori-
entations with the same proportion (histograms of fig. 3(d) and (e)).

(a) (b) (c) (d) (e)

Fig. 3. (a)(b) Two circular regions with the same content at different resolutions. (c)
Coincident pdf for the regions (a) and (b). (d) Orientations histogram for (a), and (e)
orientations histogram for (b).

To solve the commented problems, we propose a design of the normalized
orientation.

2.3 Normalized Orientation Entropy Measure

The normalized orientation entropy measure is based on computing the entropy
using a pseudo-histogram of orientations. The usual way to estimate the his-
togram of orientations of a region is to use a range from 0 to 2π radians. However,
a very important information related to the orientation is omitted, the lack of
orientation, referred from now on as ‘non-orientation’. Our proposed orientation
metric consists of computing the saliency including this non-orientations in the
modified orientation pdf.

Considering the k ≤ K most significant orientations using an experimental
threshold, where K is the total orientation magnitudes from a given region, we
compute the histogram hO. The normalization bin is then added as hO(n+1) =
K −k. In this way, the modified orientation pdf for the histogram hO is obtained
by means of:

PDFO(i) =
hO(i)∑n+1

j=1 hO(j)
, ∀i ∈ [1, .., n + 1] (4)

In order to obtain the orientation entropy value, we consider the first n values
of the normalized histogram. Note that the n + 1 position is not included in the
entropy evaluation since its goal is to normalize the first n positions, as shown
in eq. (4).
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2.4 Combining the Saliency

In our particular case, the grey-level histogram is combined with the pseudo-
histogram of orientations. In this way, once estimated the two corresponding
pdf, we apply equations (1), (2), and (3) to each one, and the final measure
combination is obtained by means of the simple addition1 γ = γG + γO, where
γG and γO are estimated by equation (1) for the grey and orientation saliency,
and γ is the result, where the final significant saliency positions, magnitudes
(level of complexity), and scales are defined. This new saliency measure gives a
high complexity value when the region contains different grey levels information
(non-homogeneous region), and the shape complexity is high (high number of
gradient magnitudes at multiple orientations). The complexity order to detect
the salient regions is O(dl), where d is the number of image pixels, and l is the
number of scales searched for each pixel.

3 Results

We compare the presented CSR with the Harris-Laplacian, Hessian-Laplacian,
and the grey-level saliency in terms of repeatability and false alarm rate. The
parameters used for the region detectors are the default parameters given by
the authors [11][1][3]. The number of regions obtained by each method strongly
depends on the image type since each one responds to different type of features.
Nevertheless, we use the 20% maximum responses of each detector to analyze
the robustness of the most significant salient regions.

Fig. 4. Caltech database samples used to test the keypoint detectors

In order to validate our results, we selected the samples of fig. 4 from the public
Caltech repository database. In this set of samples, we applied a set of transfor-
mations: rotation (10 degrees per step up to 100), white noise addition (0.1 of the
variance per step up to 1.0), scale changes (15% per step up to 150), and affine
distortions (5 pixels x-axis distortion per step up to 50). The mean results for the
repeatability and false alarm ratios are shown in fig. 5. We consider the repeata-
bility defined as the percentage of the initial detected regions that is maintained
1 We have experimentally observed that this simple combination obtains the most

relevant results in comparison with other kinds of combinations.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. (a)(b) Hit rate (H) and false alarm rate (FA) for scale, (c)(d) rotation, (e)(f)
white noise, and (g)(h) affine invariants in the space of transformations
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(a) (b)

Fig. 6. (a) Smoothed oriented CSR matches, (b) Zoomed right region

(a) (b) (c) (d)

Fig. 7. (a)(b) Samples, (c) Smoothed oriented CSR matches, (d) Zoomed right region

in the space of transformations, and the false alarm rate as the percentage of de-
tected regions that do not have a correspondence in the initial image. Observing
the figures, one can see that the CSR regions obtain better performance in terms of
repeatability, obtaining the highest percentage of intersected regions for all types
of image distortions. For the case of false alarm rate, the CSR and the Hessian
Laplace methods are the best, obtaining similar results.

The next experiment is to apply the CSR regions to video sequences to show
its temporal robustness. We have used the video images from the Ladybug2
spherical digital camera from Point Grey Research group [13]. The car system
has six cameras that enable the system to collect video from more than 75%
of the full sphere [13]. Besides, we have tested road video sequences from the
Geovan Mobile Mapping process from the Institut Cartogràfic de Catalunya [14].
For both experiments we have analyzed 100 frames, using the SIFT descriptor
[4] to describe the regions. The matching is done by similar regions descriptors
in a neighborhood of the detected CSRs. The smoothed oriented maps from
CSR matchings are shown in fig. 6 and fig. 7. Fig. 6(a) shows the oriented map
in the first analyzed frame of [13]. Fig. 6(b) focuses on the right region of (a).
One can see that the matched complex regions correspond to singularities in the
video sequence and approximates roughly the video movement. From the road
experiment of fig. 6, where appear cars and traffic signs (fig. 6(a) and (b)), the
oriented map is shown in fig. 6(c), where the amplified right region shown in
fig. 6(d) shows the correct temporal behavior of the road video sequences.



120 S. Escalera, O. Pujol, and P. Radeva

4 Conclusion

We have presented a novel set of salient features, the Complex Salient Regions
(CSR). These features are based on complex image regions estimated at real-time
using an entropy measure. The presented CSR analyzes the complexity of the re-
gions using the grey-level, and orientations information. We introduced a novel
procedure to consider the anisotropic features of image pixels that makes the
image orientations useful and highly discriminable in object recognition frame-
works. One can use the complexity criteria to adjust the detector requirements
in a compromise between robustness and computational time. The novel set of
features is highly invariant to a great variety of image transformations, and leads
to a better repeatability and lower false alarm rate than the state-of-the-art key-
point detectors. These novel salient regions show robust temporal behavior on
real video sequences, and can be potentially applied to real-time matching and
image retrieval problems (less than 1 second in 800×640 medium resolution im-
ages), avoiding the exponential number of features and time complexity of the
exhaustive methods.
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Abstract. Piecewise-linear methods accomplish the registration by di-
viding the images in corresponding triangular patches, which are indi-
vidually mapped through affine transformations. For this process to be
successful, every pair of corresponding patches must lie on projections
of a 3D plane surface; otherwise, the registration may generate undesir-
able artifacts, such as broken lines, which diminish the registration qual-
ity. This paper presents a new technique for improving the registration
consistency by automatically refining the topology of the corresponding
triangular meshes used by this method. Our approach iteratively modi-
fies the connectivity of the meshes by swapping edges. For detecting the
edges to be swapped, we analyze the local registration consistency before
and after applying the action, employing for that the mutual information
(MI ), a metric for registration consistency significantly more robust than
other well-known metrics such as normalized cross correlation (NCC ) or
sum of square differences (SSD). The proposed method has been suc-
cessfully tested with different sets of test images, both synthetic and
real.

1 Introduction

Image registration is the process of overlapping two images of the same scene
acquired on different dates, from differences point of views and/or using differ-
ent sensors. In this process, one image remains fixed (fixed image) whereas the
other (moving image) is spatially transformed until fitting with the first one. Im-
age registration is a crucial step in many image analysis applications like image
fusion, change detection, 3D scene reconstruction, etc. Traditionally, the regis-
tration process is dealt with in two stages. In the first one, the positions of a
set of pairs of corresponding points (so-called correspondences) are identified in
the images, and in the second stage, this set of correspondence pairs is exploited
to robustly estimate a mapping function which is then used to transform all
the pixels of the moving image onto the fixed one (some kind of interpolation is
required in this step).

Different mapping functions have been reported in the literature for image reg-
istration, such as polynomial, radial basis, piecewise (linear or cubic), splines,
etc. [1]. For registering images of polyhedral scenes (typical in indoor and ur-
ban environments), piecewise-linear functions are especially suitable, since they

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 122–129, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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divide the images into triangles which are individually registered through linear
transformations that preserve the topology of the triangular mesh [2]. Of par-
ticular significance is the case where the perspective deformation of the images
can be simplified by an affine transformation, since a triangle in the moving
image must perfectly overlap onto the fixed one provided that it comes from the
projection of a planar patch of the scene [3].

Given a set of corresponding point pairs in the images, isomorphic triangular
meshes are typically generated onto them by using the Delaunay’s triangulation
method [4], which produces triangles of balanced size and shape, but which does
not guarantee that the created topology is the best possible one for registering
the images through a piecewise-linear method. For that purpose, it is clear that
we should minimize the number of triangles covering on projections of different
planar 3D patches, that is, those whose vertices are projections of 3D points of
different planar patches (see fig. 1). This is the aim of this work: to improve the
accuracy of piecewise-linear image registration by only applying edge swapping
modifications to the mesh. This process can be seen as an optimization proce-
dure that modifies the mesh connectivity, that is, without varying the number
of vertices neither their coordinates. It is remarkable also that, the resulting
optimized mesh is in compliance with the 3D scene structure up to the level
that the mesh geometrical realization allows. To our knowledge, this is a novel
approach for the image registration problem, since previous methods reported
in the literature focus on optimization/simplification of 3D triangular meshes,
requiring a complete knowledge of the scene geometry derived, for example, from
a laser range finder [5][6] or calibrated images [7][8].
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Fig. 1. For a piecewise-linear registration process to be successful, the triangles must
be projections of one single polyhedral face of the scene as in (a), otherwise broken
lines are produced and the registration of that triangle shows a clear inconsistency (b)

A key aspect in the proposed optimization method is that of determining
when an edge swapping operation is necessary. Our solution consists of checking
the local registration consistency of the two triangles involved (those that share
the analyzed edge) before and after performing the swap. In this process, no
threshold needs to be considered. Another novelty of this work is the usage
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of the mutual information (MI ) as a measurement of registration consistency
[9] which, unlike other well-known metrics such as normalized cross correlation
(NCC ) or sum of square differences (SSD), is less sensitive to changes in lighting
conditions or noise. The overall registration method has been successfully tested
with a broad variety of test images (both synthetic and real) acquired under
different lighting conditions and viewpoints.

The remainder of this paper is organized as follows. Section 2 contains sev-
eral assumptions and definitions, as well as, the formulation used in subsequent
sections. In section 3, we describe our method, the inconsistency estimation
function and the optimization process. In section 4, we present and discuss some
experimental results. Finally, some conclusions and future work are outlined.

2 Assumptions and Definitions

In this work we assume that the 3D-to-2D camera projection can be modelled
by a paraperspective transformation which basically means that parallel lines
in space keep their parallelism in the image. This simplification is assumable
in most computer vision setups and leads to a great reduction in complexity
in many vision problems [10]. For image registration, this assumption implies
that 3 correspondences (instead of the 4 correspondences required for its gen-
eral form) suffice to estimate the affinity which transfers points from one image
patch to another [3]. In other words, if a pair of corresponding faces are projec-
tions of a plane surface, the geometric transformation which maps the pixels of
one to another is an affinity. Thus, after performing the mapping, both image
patches should perfectly match; otherwise, the faces are not projections of a
planar surface.

Next, we introduce the notation employed in this work as well as some useful
definitions.

b x
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Facet:

Edges:

Vertices:
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{1,2}, {2,3}, {3,1}

{1}, {2}, {3}

K

Fig. 2. Example of mesh representation: a mesh consisting of one face

A mesh is a piecewise-linear surface, consisting of triangular faces put together
along their edges. Formally, a mesh is a pair M = (K, V ), where K is a structure,
called simplicial complex [11], which determines the connectivity of the vertices,
edges and faces (its topological realization), and V = {vi|i = 1, . . . , m}, vi∈�2 is
a set of vertex positions which defines the shape of the mesh in �2 (its geometrical
realization) [6] (see fig. 2). To refer to any point within the mesh, we employ the
notation p ∈ φV (s), where s ⊆ K, thus, we use p ∈ φV (t) to refer to one point
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within a triangular face t = {i, j, k} ∈ K; p ∈ φV (q) to refer to one point within a
quadrilateral of M consisting of two adjacent triangles q = [{i, j, k}, {i, j, l}] ∈ K,
and so on.

In addition to the above general definition, we introduce the following ones,
of interest for describing our method in the next section:

– An edge {i, j}∈K is external or boundary if it is a subset of only one face,
and internal or shared otherwise.

– An edge {i, j}∈K is 3D-compatible if it lies on a projection of a 3D plane
surface, and 3D-incompatible otherwise.

– Given a set of point correspondences {(vi, v
′
i)|i = 1, . . . , n}, vi∈V and v′i∈V ′

identified in two images, two isomorphic triangular meshes M = (K, V ) and
M ′ = (K, V ′), and a simplicial complex s⊆K, we define the piecewise-linear
function f which geometrically maps a point p∈φV (s) to another p′∈φV ′(s)
as follows:

p′ = f φV (s) (p) =

⎧⎪⎨
⎪⎩

f1 (p) if p ∈ φV (t1)
...

fm (p) if p ∈ φV (tm)
(1)

where ti = {j, k, l} ∈ s; fi is an affinity estimated from the geometrical
realization of the vertices of ti in both meshes, namely the point pairs (vj , v

′
j),

(vk, v′k), and (vl, v
′
l); and m is the number of triangular faces.

Notice that once the transformation has been applied φV (s) = φV ′(s),
that is, the corresponding faces of both meshes must perfectly overlap.

3 Description of the Proposed Method

The method presented in this paper is aimed to improve the accuracy of
piecewise-linear registration, especially when applied to images of polyhedral
scenes. For this purpose, we iteratively modify the connectivity of the triangular
meshes by swapping 3D-incompatible edges (see fig. 3(a)). To detect such edges
our algorithm checks, before and after applying the swap, the registration con-
sistency of the two triangles that share the analyzed edge: the edge is swapped
if that operation leads to a registration improvement. Notice that this proce-
dure only modifies the mesh connectivity, since the number of vertices and their
coordinates remain without modification.
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Fig. 3. The topological action of swapping an edge when a) all preconditions are verified
and b) the action produces a patch reversal
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The employed metric for measuring the registration consistency is the mutual
information (MI ) [12]. From a statistical viewpoint, the MI measures the sta-
tistical dependency or information redundancy of two random variables. Unlike
other consistency measures such as the sum of square differences (SSD) or the
normalized cross correlation (NCC ) which assume a priori functional relation-
ship between both image patches, the MI postulates a statistical relationship
which can be estimated from the joint entropy. The advantage of this metric is
that it is more robust to image changes caused by different lighting conditions,
observation angles, noise, etc. [13]. Mathematically, the MI of two image patches
A and B can be written as follows:

MI (A, B) =
∑

i

∑
j

PA,B (i, j) log
(

PA,B (i, j)
PA (i)PB (j)

)
(2)

where PA(i), PB(j) and PA,B(i, j) are the probability functions estimated from
the intensity joint histogram of A and B (hA,B), that is:

PA (i) =
∑
j

hA,B (i, j)/N ,

PB (j) =
∑
i

hA,B (i, j)/N , and

PA,B (i, j) =
∑
i

∑
j

hA,B (i, j)/N

being N is the number of pixels.
We take advantage of the robustness of the MI for effectively detecting 3D-

incompatible edges. Thus, given two images I and I ′ to register and their cor-
responding meshes defined as M = (K, V ) and M ′ = (K, V ′), we determine the
3D-compatibility of an edge {i, j}∈K by measuring the improvement in consis-
tency, before and after being swapped, through the following expression:

ω ({i, j}) = MI
(
I (r) , I ′

(
f φV (q̂) (r)

))
− MI

(
I (r) , I ′

(
f φV (q) (r)

))
(3)

where r = φV (q) ≡ φV (q̂) are the pixels contained in φV (q) or φV (q̂), being
q = [{i, j, k} , {i, j, l}] and q̂ = [{l, k, j} , {l, k, i}] the two adjacent faces, before
and after the swapping, respectively. Thus, I(r) represents the patch of the fixed
image defined by q, and I ′(f φV (q)(r)) and I ′(f φV (q̂)(r)) the transformations of its
moving counter parts according to the two possible topological configurations.

An edge is considered for swapping only if ω > 0, otherwise, the topological
realization of the meshes remains without modification. Also, before evaluating
the 3D-compatibility of any edge {i, j}∈K, the edge should be checked to verify
the following preconditions: 1) the edge {i, j} is internal, 2) the resultant edge
{k, l}/∈K, and 3) the action does not produce a patch reversal in K̂ (see fig. 3(b)).
It is important to notice that, in this process, (3) is used only for comparison,
so no threshold needs to be applied in this procedure.

The overall optimization process is formulated as a greedy search [14], which
starts with the two images I and I ′ to register, and the initial corresponding tri-
angular meshes M and M ′ resulting of triangulating (by means of the Delaunay’s
method) a set of point pairs identified in both images. The process finishes when
the topological realization can not be longer improved by the greedy algorithm.
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4 Experimental Tests

In this section we show some experimental results which illustrate the perfor-
mance of our approach. Most of the images considered in our experiments be-
longs to the ALOI library [15], which includes images of 1000 objects acquired
under different viewpoints and lighting conditions. We have also evaluated our
implementation with scenes more complex, where several different objects are
put together.

Fig. 4 graphically illustrates the process described in section 3 when applied
to two image pairs of polyhedral scenes. This figure shows the isomorphic meshes
automatically generated from sets of corresponding points previously identified
in each of the image pairs (see fig. 4(a)), and the optimized ones once the re-
finements have been accomplished (see fig. 4(b)). With the aim of showing the
benefits of using the MI, we have repeated the experiments twice: firstly, em-
ploying (3), and secondly, replacing the MI by the NCC. The results of these
experiments are summarized in table 1. They reveal the advantage of the MI
against NCC for driving the optimization process, concretely: an improvement
in the accuracy of the piecewise-linear registration process (see also fig. 4(c))
and a reduction in the computational time.
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Fig. 4. (a) Real images of polyhedron scenes and their corresponding Delaunay tri-
angular meshes. (b) Optimized triangular meshes provided by our method. Observe
how the process swaps edges which go from one plane surface of the scene to another.
(c) Overall registration consistency during the optimization process. The flat intervals
mean that the actions performed there do not lead to significant improvements, though
they carry out suitable topological changes that are exploited in subsequent iterations,
as shown in the evolution of the curves.

Finally, with the purpose of showing that the optimization process ends up
with meshes in compliance with the 3D scene structure (obviously, limited by
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Table 1. Experiment results

M I NCC
Scene (# of edges) Correctness1(%) CPU time2(sec.) Correctness CPU time
Cube (275) 100 23.89 98.88 29.39
Stacked boxes (140) 99.28 18.56 93.23 21.34

the initial set of corresponding points), in figure 5, we have re-projected them
into 3D space employing the factorization algorithm for affine reconstruction
proposed in [3] (pag. 437). It can be clearly observed the undesirable artifacts
which appear when the mesh contains 3D-incompatible edges.

a) b)a) b)

Fig. 5. 3D scene reconstructions generated from two meshes: (a) the initial mesh and
(b) the refined one. In plots (a) we can observe some artifacts in those places where
edges not in compliance with the 3D scene exist. These artifacts disappear when all
edges are conveniently swapped, as showed in plots (b).

5 Conclusions and Future Work

In this paper we have proposed a new technique for automatically optimizing
the triangular mesh employed by piecewise-linear registration process in order
to improve the registration consistency. To achieve that, we iteratively modify
the connectivity of both meshes through edge swapping actions. The function
employed for evaluating the edge to be swapped is based on the MI, which
is significantly more robust than other well-known metric such as NCC, since
it is less sensitive to changes in lighting conditions or noise. The optimization
procedure is formulated as a greedy search which finishes when all mesh edges
1 Percentage of 3D-compatible edges, which are not boundary edges.
2 We have employed Matlab on a Pentium 4 HT 2.6GHz for implementing the tests.
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have been swapped. The proposed method has been successfully tested with
different sets of test images acquired under different conditions (from different
angles and lighting conditions) and sensors.

In spite of the achieved results, we have detected mesh configurations where
the registration consistency can not be improved. Such configurations occur when
the vertices of the mesh are not well-localized (i.e. in the central part of the
faces). In these cases, additional actions should be considered, for example, edge
splitting. Unlike edge swapping, it involves changes in both, the topological and
geometrical realizations of the meshes, making the optimization process signifi-
cantly more complex and time demanding, and generating new challenges such
as, where the new vertices should be located or what is the best way of splitting
an edge. This is one of our concerns for future work.
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Abstract. We present two new clustering algorithms for medical image
segmentation based on the multimodal image registration and the infor-
mation bottleneck method. In these algorithms, the histogram bins of two
registered multimodal 3D-images are clustered by minimizing the loss of
mutual information between them. Thus, the clustering of histogram bins
is driven by the preservation of the shared information between the im-
ages, extracting from each image the structures that are more relevant
to the other one. In the first algorithm, we segment only one image at a
time, while in the second both images are simultaneously segmented. Ex-
periments show the good behavior of the presented algorithms, especially
the simultaneous clustering.

1 Introduction

Medical image segmentation plays a crucial role in clinical practice, mainly for
diagnosis and disease treatment. It consists in subdividing an image into its con-
stituent parts, a significant step towards image understanding [1]. Registration is
also a fundamental task in a medical scenario since it allows to combine different
image models in a single one in order to enhance data interpretation. In [2] the
influence of intensity clustering on mutual information based image registration
is studied. On the contrary, the main purpose of this paper is analyze how the
segmentation process can benefit from image registration. With this aim, we
introduce two clustering algorithms for image segmentation based on the regis-
tration of the images to be segmented. These algorithms apply the information
bottleneck method [3,4], which compresses a variable X with minimal loss of
mutual information with respect to another variable Y .

Given two registered 3D-images, our algorithms work by merging neighbor
histogram bins driven by the minimization of the loss of mutual information
between the two images. The first algorithm segments just one image at a time,
while the second segments both simultaneously. These algorithms provide us with
a completely automatic global segmentation method. The intuition behind them
is to segment an image A by extracting the structures that are most relevant for
another image B, i.e., the segmentation of A attempts to preserve the maximum
dependence with B. Thus, image B controls the segmentation of A and viceversa.
Our techniques have been tested on several MR-CT datasets, which have been
previously registered using the normalized mutual information [5]. The obtained
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results show the good behaviour of both segmentation algorithms, especially the
simultaneous clustering. This approach can be considered as a first step towards
multimodal image visualization.

This paper is organized as follows. In Section 2, some information-theoretic
definitions and the information bottleneck method are presented. In Section 3,
two new registration-based segmentation algorithms are introduced. In Section
4, experimental results show the suitability of the presented algorithms. Finally,
our conclusions are given in Section 5.

2 Information Theoretic Tools

We review some basic concepts of information theory [6], the information bot-
tleneck method [3,4], and the application of mutual information to image regis-
tration [7,8].
Entropy. The Shannon entropy H(X) of a discrete random variable X with
values in the set X = {x1, x2, . . . , xn} is defined as H(X) = −

∑n
i=1 pi log pi,

where n = |X |, pi = Pr[X = xi]. The logarithms are taken in base 2 and
therefore entropy is expressed in bits.
Mutual information. Given two discrete random variables, X and Y , with
values in X = {x1, . . . , xn} and Y = {y1, . . . , ym}, respectively, the mutual
information (MI) between X and Y is defined as

I(X, Y ) =
n∑

i=1

m∑
j=1

pij log
pij

piqj
(1)

where n = |X |, m = |Y|, pi = Pr[X = xi] and qj = Pr[Y = yj] are the marginal
probabilities, and pij = Pr[X = xi, Y = yj ] is the joint probability. MI is a
measure of the shared information between X and Y [6]. A fundamental property
of MI is the data processing inequality which can be expressed in the following
way: if X → Y → Z is a Markov chain, i.e., p(x, y, z) = p(x)p(y|x)p(z|y), then

I(X, Y ) ≥ I(X, Z). (2)

This result demonstrates that no processing of Y can increase the information
that Y contains about X [6].
Jensen-Shannon divergence. A convex function on the interval [a, b], fulfils
that

∑n
i=1 λif(xi) − f (

∑n
i=1 λixi) ≥ 0 , where 0 ≤ λ ≤ 1,

∑n
i=1 λi = 1, and

xi ∈ [a, b]. For a concave function, the inequality is reversed. If f is substituted by
the Shannon entropy, which is a concave function, we obtain the Jensen-Shannon
inequality [9]:

JS(Π1, . . . , Πn) = H(
n∑

i=1

πiΠi) −
n∑

i=1

πiH(Πi) ≥ 0, (3)

where JS(Π1, . . . , Πn) is the Jensen-Shanon divergence of probability distribu-
tions Π1, Π2, . . . , Πn with prior probabilities or weights π1, π2, . . . , πn, fulfill-
ing

∑n
i=1 πi = 1. The Jensen-Shannon divergence is identical to I(X, Y ) when
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{πi} is the marginal probability distribution {pi} of X and {Πi} are the rows
{p(Y |i)} of the conditional probability matrix of the information channel, i.e.,
p(Y |i) = {p1|i, p2|i, . . . , pm|i}.

Information bottleneck method. The objective of the information bottleneck
method, introduced by Tishby et al. [3], is to extract a compact representation of
the variable X , denoted by X̂, with minimal loss of MI with respect to another
variable Y , i.e., X̂ preserves as much information as possible about the relevant
variable Y . Soft [3] and hard [4] partitions of X can be adopted. In the first
case, every cluster x ∈ X can be assigned to every cluster x̂ ∈ X̂ with some
conditional probability p(x̂|x) (soft clustering). In the second case, every cluster
x ∈ X is assigned to only one cluster x̂ ∈ X̂ (hard clustering). Our approach is
based on this case, also called agglomerative information bottleneck method [4].

MI-based image registration. Successful image registration methods are
based on the maximization of mutual information between two images [7,8].
The registration of two images can be represented by an information channel
X → Y , where the random variables X and Y represent the images. Their
marginal probability distributions, {pi} and {qj}, and the joint probability dis-
tribution, {pij}, are obtained by simple normalization of the marginal and joint
intensity histograms of the overlapping areas of both images [7]. The registration
method based on the maximization of MI [7,8] is based on the conjecture that the
correct registration corresponds to the maximum MI between the overlapping
areas of the two images. Later, Studholme et al. [5] proposed a normalization of
mutual information defined by

NMI(X, Y ) =
I(X, Y )
H(X, Y )

, (4)

where H(X, Y ) is the joint entropy. NMI is more robust than MI, due to its
greater independence of the overlap area.

3 Clustering Algorithms

In this section, two clustering algorithms based on the registration of images
A and B are introduced. First, we present a greedy hierarchical clustering algo-
rithm [4] that clusters the histogram bins of image A by preserving the maximum
MI between A and B. Second, we present a similar algorithm which simultane-
ously clusters the two images.

3.1 One-Sided Clustering Algorithm

In a preprocessing step, images A and B are registered, establishing a discrete
information channel X → Y , where X and Y denote, respectively, the histograms
of A and B. From the data processing inequality (2), we know that any clustering
over X (for instance, merging neighbour histogram bins xi and xi+1), denoted
by X̂, will reduce I(X, Y ). Thus, I(X̂, Y ) ≤ I(X, Y ).
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At the initial stage of our algorithm, only one intensity value is assigned to
each cluster x̂ (or bin) of X . Then, the algorithm proceeds greedily by merging
two neighbour clusters so that the loss of MI be minimum. This procedure merges
the two clusters which are more similar from the perspective of B. Note the
constraint that only neighbour bins or clusters can be merged. The cardinality
|X̂| of X̂ goes from |X | to 1.

The efficiency of this algorithm can be greatly improved if the reduction of
MI due to the merging of clusters x̂i and x̂i+1 [4] is computed by

δIX̂ = (p(x̂i) + p(x̂i+1)) JS(p(Y |x̂i), p(Y |x̂i+1)), (5)

where JS(p(Y |x̂i), p(Y |x̂i+1)) is the Jensen-Shannon divergence (3) and p(Y |x̂i)
denotes the row i of the conditional probability matrix of the information chan-
nel. The evaluation of δIX̂ for each pair of clusters is done in O(|Y |) operations
and, at each iteration of the algorithm, it is only necessary to compute the
δIX̂ of the new cluster with its two corresponding neighbors [4]. All the other
precomputed δIX̂ remain unchanged.

Similarly to [10], clustering can be stopped using several criteria: a fixed num-
ber of clusters, a given ratio MIR = I(X̂, Y )/I(X, Y ) or a variation δIX̂ greater
than a given ε. The MIR ratio can be considered as a quality measure of the clus-
tering. In the next section, we analyze the behavior of the normalized mutual
information, NMI = I(X̂, Y )/H(X̂, Y ), which provides us with an efficiency
coefficient [11] of the segmentation process, and −δIX̂/I(X, Y ), which indicates
the relative loss of information of a given clustering [3].

3.2 Co-clustering Algorithm

It is of interest now to consider a simultaneous clustering of images A and B.
Unlike the algorithm presented by Dhillon [12] for word-document clustering,
which alternatively clusters the variables X̂ and Ŷ , our algorithm (see Fig. 1)
chooses at each step the best merging of one of the two images, i.e., the one
that entails a minimum reduction of MI. The similarity between the two images
is being symmetrically exploited. Thus, each clustering step benefits from the
progressive simplification of the images. One of the main advantages of this
algorithm is the great reduction of sparseness and noise of the joint probability
matrix. As we will see in the next section, the simultaneous merging over the
images A and B obtain better results than with the one-sided algorithm.

From the data processing inequality (2), I(X̂, Ŷ ) is a decreasing function
with respect to the reduction of the total number of clusters |X̂| + |Ŷ |. Thus,
I(X̂, Ŷ ) ≤ I(X, Y ). Like the one-sided algorithm, the stopping criterion can be
given by a predefined number of bins, a given ratio MIR = I(X̂, Ŷ )/I(X, Y )
or a variation δIX̂ (or δIŶ ) greater than a given ε. Similarly to the above one-
sided algorithm, the reduction of MI can be computed from the Jensen-Shannon
divergence (5). But in the co-clustering algorithm, for each clustering of X̂ (or
Ŷ ), it is necessary to recompute all the δIŶ (or δIX̂). Figure 1 shows the co-
clustering algorithm where the stopping criterion is given by the total number
of clusters.
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Input
Join probability distribution: p(x, y)
Number of clusters: m ∈ {1..|X| + |Y |}

Ouput
A partition of (X, Y ) into m clusters

Computation
Let (X̂, Ŷ ) ← (X, Y )
∀i ∈ {1..|X| − 1}.δI

X̂
(i) ← (p(x̂i) + p(x̂i+1))JS(p(Y |x̂i), p(Y |x̂i+1))

∀j ∈ {1..|Y | − 1}.δI
Ŷ

(j) ← (p(ŷj) + p(ŷj+1))JS(p(X|ŷj), p(X|ŷj+1))

while |X̂ | + |Ŷ | > m do
k ← mini,j(δIX̂

(i), δI
Ŷ

(j))

if k indexes X̂ then associate (Z, Z̄) to (X̂, Ŷ ) else associate (Z, Z̄) to (Ŷ , X̂)
Let z∪ ← merge(zk, zk+1)
Let Z ← (Z − {zk, zk+1})

⋃
{z∪}

Update δIZ corresponding to z∪ and its neighbours
Update all δIZ̄

end while

Fig. 1. Co-clustering algorithm

4 Results and Discussion

To evaluate the performance of the proposed algorithms, the results of two dif-
ferent patients from the Vanderbilt database are shown. Both datasets are com-
posed of MR and CT image modalities. The resolution of the MR and CT is
256 × 256 × 26 and 512 × 512 × 28, respectively. For each patient, MR and CT
images have been registered using the NMI measure [5].

In Fig. 2, we show the results obtained with the one-sided and co-clustering
algorithms applied on the CT (Fig. 2(ii.a)) and MR (Fig. 2(iii.a)) original im-
ages of the first dataset. Columns (b-d) show the segmented images with 2, 4,
and 6 clusters, respectively. The results obtained with the one-sided algorithm
applied on the CT and MR images are shown in Fig. 2(i.b-d) and Fig. 2(iv.b-d),
respectively. The results obtained with the co-clustering algorithm are shown for
the CT image in Fig. 2(ii.b-d) and for the MR in Fig. 2(iii.b-d).

If we compare the original unsegmented images with the resulting segmented
images, the following is observed. First, we can see that the best results are
obtained with the co-clustering algorithm (Fig. 2(ii-iii.b-d)). There is clear ev-
idence that hidden structures of the image are more precisely recovered. Com-
pare, for instance, the images for an equal number of clusters of Fig. 2(i.c) and
Fig. 2(ii.c). This better behaviour can be explained because in the co-clustering
case we make use of all bidirectional information obtained with the progressive
simplification of both images. Second, for both algorithms, results appear much
better segmenting the CT images than the MR ones. This is due to the fact that
the segmentation of the CT images benefits a lot from the precise information
contained in the MR histogram.
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(i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

(iv.b) (iv.c) (iv.d)

Fig. 2. (a) Original dataset images. (b,c,d) Images segmented using 2, 4, and 6 bins, re-
spectively. (i,iv) Images obtained with the one-sided algorithm. (ii,iii) Images obtained
with the co-clustering algorithm.

Results of the application of the co-clustering algorithm on the second dataset
are illustrated in Fig. 3. MR and CT images, corresponding to two different slices,
are shown with 3, 4 and 5 clusters. Observe the quality of the resulting images,
where anatomical structures are progressively segmented. For instance, in the
MR case with 5 clusters, we observe the correct separation of gray matter, white
matter, cerebro spinal fluid, skin and background.

Fig. 4(a) and Fig. 4(c), corresponding to the dataset of Fig. 2, plot the MIR
vs the number of clusters for the one-sided and co-clustering algorithms, respec-
tively. We can clearly observe the high quality of the resulting images with a low
number of clusters. If the number of clusters decreases below a critical value,
MI falls dramatically. On the contrary, to the left of this critical value, MI does
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Fig. 3. MR (first row) and CT (second row) original images and their segmentations
using the co-clustering algorithm with 3, 4 and 5 bins, respectively
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Fig. 4. (a) MIR and (b) NMI vs the number of clusters obtained with the one-sided
algorithm applied on CT (solid line) and MR (dashed line) images of Fig. 2. (c) MIR
and (d) NMI vs the number of clusters obtained with the co-clustering algorithm.

not increase significantly with the number of clusters. This critical point can be
detected by the stopping criterion given by the variation of MI (see Sec. 3).

On Fig. 4(b) and Fig. 4(d), the efficiency coefficient NMI against the number
of clusters for the one-sided and co-clustering algorithms is plotted, respectively.
Notice that the efficiency is maximum when the number of bins is low. Compar-
ing both plots, we can see that, while the one-sided algorithm always increases
monotonically, in the co-clustering there are fluctuations. This is due to the
different decreasing rate of MI and joint-entropy for the co-clustering algorithm.
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5 Conclusion

In this paper, we have presented a new image segmentation approach based on
the registration of the images and the information bottleneck method. Two algo-
rithms have been presented and analyzed. The first one is a one-sided algorithm
which clusters the neighbor bins of only one image based on the minimization
of the loss of mutual information between the two images. The second one is a
co-clustering algorithm which chooses at each step the best clustering of one of
the two images by minimizing the loss of mutual information. Experiments have
shown the good behaviour of the presented algorithms. However, it has been
shown that the co-clustering algorithm performs better than the one-sided one.
In our future work, we will develop a multimodal data visualization framework
based on the proposed algorithms.

Acknowledgments. This project has been funded in part with grant numbers
TIN2004-08065-C02-02, TIN2004-07451-C03-01 and 2001-SGR-00296.

References

1. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Sad-
dle River (NJ), USA (2002)

2. Knops, Z., Maintz, J., Viergever, M., Pluim, J.: Normalized mutual information
based registration using k-means clustering and shading correction. Medical image
analysis 10(3), 432–439 (2006)

3. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In:
Proceedings of the 37th Annual Allerton Conference on Communication, Control
and Computing, pp. 368–377 (1999)

4. Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Proceedings of
NIPS-12 (Neural Information Processing Systems), pp. 617–623. MIT Press, Cam-
bridge, MA (2000)

5. Studholme, C.: Measures of 3D Medical Image Alignment. PhD thesis, University
of London, London, UK (1997)

6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in
Telecommunications (1991)

7. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodal-
ity image registration by maximization of mutual information. IEEE Trans. on
Medical Imaging 16(2), 187–198 (1997)

8. Viola, P.A.: Alignment by Maximization of Mutual Information. PhD thesis, Mas-
sachusetts Institute of Technology, Massachusetts (MA), USA (1995)

9. Burbea, J., Rao, C.: On the convexity of some divergence measures based on en-
tropy functions. IEEE Trans. on Information Theory 28(3), 489–495 (1982)

10. Rigau, J., Feixas, M., Sbert, M., Bardera, A., Boada, I.: Medical image segmen-
tation based on mutual information maximization. In: Barillot, C., Haynor, D.R.,
Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, Springer, Heidelberg (2004)

11. Butz, T., Cuisenaire, O., Thiran, J.P.: Multi-modal medical image registration:
from information theory to optimization objective. In: Proceeding of 14th Interna-
tional Conference on Digital Signal Processing (DSP’02) (2002)

12. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Pro-
ceedings of the 9th ACM SIGKDD 2003, pp. 89–98. ACM Press, NY, USA (2003)



Dominant Points Detection Using Phase

Congruence
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Rabanales, s/n, 14071 Córdoba, Spain
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Abstract. This paper proposes a new method for simplifying a 2d shape
boundary based on its phase congruence and the optimisation of a func-
tion criterion. The phase congruence is a dimensionless feature that
stands out boundary salient structures over different scales allowing a
hierarchical fast optimisation process over the detected structures. The
proposed method has been compared with other two well-known methods
using an objective measure of the quality of the generated approxima-
tion. The experimental results have shown that the the proposed method
is superior in performance to those reviewed in our study.

1 Introduction

A very interesting subject in contour matching is contour simplification that pre-
serves the original characteristics of shape features. This simplification process
can be described as the partition of a contour into meaningful parts [3]. Contour
partition can be divided into two generic phases. The first phase determines
the segmentation points along the contour, while the second phase represents
each segment in terms of instances of a predefined geometric primitive. Since
the simplest and most commonly adopted primitives are straight segment lines,
the output of such a process is a polygonal approximation of the original con-
tour. The segmentation points of the original contour that define the polygonal
approximation are commonly called Dominant Points.

Dominant points detection is an important research area in contour approxi-
mation methods. Many algorithms are used to detect dominant points. These
methods can be classified into three categories [5]:

– Methods which search for dominant points using some significant measure
other than curvature from the original contour scale or from a multi-scale/
multi-resolution contour representation.

– Methods which evaluate the curvature by transforming the contour to the
Gaussian scale space.

– Methods which search for dominant points by directly estimating the curva-
ture in the original picture space.
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In this paper a new boundary simplification method using a polygonal approx-
imation of the contour is proposed. The vertexes of the approximation will be
dominant points of the contour. The dominant points are an optimum sub-set,
regarding a criterion function to be maximised using a scale-hierarchical optimi-
sation process over the all maxima phase congruence points of the contour. The
criterion function provides the best trade-off between minimum distortion and
minimum number of dominant points that define the approximation.

In Section 2 the phase congruence feature is described. The proposedmethod for
dominant points detection and the procedure to obtain the sub-set of them, which
define the best polygonal approximation, are shown in Section 3. In Section 4 the
result of a comparative study with a representative number of proposed methods
are shown. Lastly, the main conclusions are summarised in Section 5.

2 Phase Congruence Feature

The information provided by the local phase of a signal serves as the basis of
our method for two reasons:

– The phase is a dimensionless quantity that allows invariant characteristics
to be developed.

– The phase of a signal has been shown to be crucial in shape perception [11].

The Local Energy Model was initially proposed by Morrone et al. [10,9]. This
model explains the perception of signal features and postulates that these fea-
tures are perceived at points where the Fourier components are maximally in
phase. This model has been developed in subsequent studies [8,12,15,7] to detect
borders in digital images.

Given a point C(t) of a signal, the phase congruence at this point can be
obtained from the Fourier series expansion of the signal as follows [9]:

PC(t) = arg max
φ̄(t)∈[0,2π]

∑
N

An cos(φn(t) − φ̄(t))
∑
N

An
, (1)

where An and φn(t) represent the amplitude and the local phase of the n-th
Fourier term respectively. The value φ̄(t) that maximises PC(t) is the amplitude
weighted mean local phase of all the Fourier terms at the point being considered.

Calculating the phase consistency using (1) is an awkward task. Venkatesh
et al. [15] propose an easier alternative to obtain the phase congruence which
consists of looking for local maxima in the Local Energy function E(t) since

E(t) = PC(t)
∑
N

An , (2)

that is to say, E(t) is directly proportional to the phase congruence. Therefore
the local maxima of local energy are correspondent with the local maxima of
phase congruence.
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The Local Energy of a unidimensional signal can be obtained as

E(t) =
√

F 2(t) + H2(t) , (3)

where F (t) is the zero DC version of the original signal and H(t) is its Hilbert
transform.

An initial approach to calculate the Local Energy could be to use the Fourier
transform of the signal. However, this approach has two main drawbacks:

– The importance of a signal feature is compared to the complete signal (great
scale) without taking into account the signal feature’s importance regarding
its most immediate environment (small scale).

– The number of congruent terms at a point is not taken into account. The
larger the number of congruent terms at a signal point, the more outstanding
the signal feature will be.

One way to address these problems is to use a multi-scale analysis of the local
phase. Kovesi [7] proposes to use banks of even/odd filters to obtain the local
energy of a signal with spatially localised frequency.

2.1 Calculation of the Phase Congruence Using Wavelets

The wavelet analysis of a signal allows spatially localised frequency information
to be obtained in a very precise way. The wavelet analysis uses a filters bank that
is created from re-scalings of a wave shape. Each scaling is designed to analyse a
given range of signal frequencies. In order to preserve phase information, lineal
phase filters should be used, that is to say, quadrature filters.

Let M : {(M e
n, Mo

n)}, n = {0, 1, . . . , N} the bank of quadrature filters where
n represents the scale parameter and N is the number of analysed scales. The
phase congruence of a signal C(t) can be obtained from (2) and (3) where

en(t) = C(t) ∗ M e
n , on(t) = C(t) ∗ Mo

n , (4)
F (t) =

∑
N

en(t) , (5)

H(t) =
∑
N

on(t) and (6)

∑
N

An(t) =
∑
N

√
en(t)2 + on(t)2 . (7)

Here ∗ represents the digital convolution operation.
As stated above, a signal feature will be more important if it is present in

a larger number of analysed scales. To make these points stand out, Kovesi
proposes weighting the term that approximates the local energy by means of the
following sigmoid function:

W (t) =
1

1 + e10(0.4−s(t)) , (8)
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where s(t) is a measure of the the range of congruent frequencies at a point t of
the signal and is defined as:

s(t) =
1
N

⎛
⎝

∑
N

An(t)

Amax(t) + ε

⎞
⎠ , (9)

Where N is the number of analysed scales, Amax is the maximum filter bank
response obtained and ε is a small quantity used to avoid division by zero.

Hence, a first alternative to obtain the phase congruence using wavelet analysis
of the local phase is:

PC1(t) =
W (t)E(t)∑

N

An(t) + ε
, (10)

where E(t) and
∑

N An(t) are obtained from (5, 6 and 7).
One of the drawbacks to compute the phase consistency by means of (10)

is that E(t) is proportional to the cosine of the phase angle deviation φn(t)
from the overall scales mean phase angle φ̄(t). The cosine function is not very
sensitive to small variations, for example cos(25◦) ≈ 0.9. This implies that a
poor localisation of the signal features can be provided by the phase congruence
measure PC1. To improve localisation, Kovesi proposes using a measure of the
deviation from the phase angle which is more sensitive to small variations:

ΔΦ(t) = cos
(
φn(t) − φ̄(t)

)
−

∣∣sin (
φn(t) − φ̄(t)

)∣∣ , (11)

providing a second approach to calculate the phase congruence:

PC2(t) =
W (t)

∑
N

An(t)ΔΦ(t)
∑
N

An(t) + ε
. (12)

Equation (12) can be calculated from the quadrature filter responses. For each
scale n, the filter response can be considered as a vector (en(t), on(t)) whose
magnitude is An(t). The unitary vector that provides the direction of the overall
mean phase angle is given by:

(φ̄e(t), φ̄o(t)) =
1√

F (t)2 + H(t)2
(F (t), H(t)) , (13)

where F (t) and H(t) are calculated as (5) and (6).

2.2 Filters Bank Design

Given that lineal phase filters should be used to preserve the phase information
of the analysed signal, even/odd filters will be used. This restriction avoids to
use orthogonal filters, that is to say, the perfect reconstruction of the signal will
not be possible.
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In this work LogGabor filters have been used because they present some ad-
vantages [4] over traditional Gabor filters. By definition, they do not have a DC
component and a bandwidth of up to three octaves is allowed, thus making a
better spatial localisation possible.

The definition of the LogGabor filter in a lineal frequency scale is:

LogGs(ω) = exp
(

−(log(ω/ωs
0))

2

2 log(σ)2

)
,

where ωs
0 = ωminms−1 represents the central frequency of the filter in the scale

s, m is a scale factor among the successive wavelets and σ defines the filter’s
bandwidth (σ = 0.75 ≈ 1 octave while σ = 0.55 ≈ 2 octaves).

3 Proposed Method

A contour will be a sequence of points in R2 and defined as a finite and non-empty
ordered set of coordinates pairs C(t) = {(Cx(t), Cy(t))}, with t = {1, 2, . . . , N}
and N ≥ 2.

A polygonal approximation V on C is an increasing sequence of indexes spec-
ifying which points of C are the vertexes of V .

The proposed method has two stages:

– The first stage consists of detecting the dominant points of the contour C
which correspond to local extrema of the phase congruence, symmetry and
asymmetry features obtained from Cx(t) and Cy(t).

– The second stage consists of looking for a polygonal approximation V ∗ of
C whose vertexes are a sub-set of the dominant points obtained in the first
stage and which provides the best trade-off between minimum distortion and
smaller number of points.

3.1 Detection of the Dominant Points of the Contour

A multi-scale analysis of the phase congruence, symmetry and asymmetry fea-
tures associated to the signals Cx(t) and Cy(t) is performed as specified in
Section 2. Therefore, for each contour point the features obtained will be
{PC2(Cx(t)), PC2(Cy(t))}.

A contour point will be a dominant point if it is a local maximum in at
least one of the features above described, and for at least one interval of the
contour points centred in it (called support region) with size r = 2i + 1, i =
{1, 2, . . . , �(N − 1)/2�}, where �x� represents the largest integer q, q ≤ x. Let
V i ⊂ C be the set of dominant points defined in this way for a given value of i.
Notice that V i+1 ⊂ V i.
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3.2 Search for the Optimum Sub-set of Dominant Points

A procedure is proposed for finding the polygonal approach V ∗ of C whose
vertexes are a sub-group of the dominant points of the contour (defined above)
that provides the best trade-off between minimum distortion and smaller number
of points.

Carmona et al. [2] have recently shown that this can be obtained by means of
an optimisation procedure (minimisation) using the following expression as the
objective function E2 = e2/CR2, where e2 =

∑
N e2

t , et is the normal distance
of a point t to the approximation and CR = N/|V ∗|. The e2 factor measures the
distortion due to the approximation, while the CR factor measures the obtained
compression rate. Here | | means the number of elements of a set.

A sub-optimum hierarchical search method is designed to optimise the E2
criterion. The aim of this method is to add dominant points to the approximation
by giving higher priority to the dominant points defined in a larger support region
since these points are present in a larger number of analysed scales. A dominant
point will be added to the approximation if it minimises the E2 criterion.

Algorithm

Let s the greatest integer such that 1 ≤ s ≤
⌊

N−1
2

⌋
and |V s| > 1.

V ∗ ← V s.
FOR i ← (s − 1), . . . , 1 , DO

Q ← {V i − V ∗}
exit ← false
REPEAT

v∗ ← argmin
v∈Q

{E2(V ∗ + {v})}.
IF E2(V ∗ + {v∗}) < E2(V ∗) THEN

V ∗ ← V ∗ + {v∗}
Q ← Q − {v∗}

ELSE
exit ← true.

END-IF
UNTIL exit.

END-FOR

4 Performance Evaluation

A experiment has been designed to evaluate the performance of the method
proposed in this work compared with other two methods. The selected methods
are due to Garrido et al. [6] that uses a multi-scale approach for computing the
contour curvature, and Arrebola et al. [1] that uses a multi-resolution pyramid
for representing the contour’s chain-code.
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Several measures to evaluate the quality of a polygonal approximation to a
contour have been proposed. In this work, the Merit measure developed by Rosin
[14] was used because we consider it to be the most impartial measure. The Merit
measure is a geometric mean between two values: Fidelity and Efficiency. Fidelity
measures the distortion caused by the generated approximation relative to the
distortion obtained by the optimum approximation with the same number of
points. Efficiency measures the obtained compression rate relative to the com-
pression rate of the optimum approximation that causes the same distortion.
To obtain the optimum approximations, the dynamic programming method of
optimisation developed by Pérez et al. [13] has been used.

We have used four classic contours shown in Figure 1. This contours are used
a lot in the literature on contour approximation.

Leaf Chromosome Infinity Semicircle

Fig. 1. Contours used in the comparative study

Table 1 shows the results obtained by the compared methods for each contour
and the average Merit value obtained. From the data shown in this table, it can
be concluded that the quality of the approximation provided by our method,
regarding the Merit measure, is significantly better than the provided by the
other two compared methods.

Table 1. Comparison of the results obtained by the proposed method and other meth-
ods using the Merit measure

Method Chrom. Leaf Semic. Inf. Average
Garrido et al. 38.74 66.66 47.57 62.70 53.8
Arrebola et al. 45.44 46.93 19.64 45.59 39.4
Proposed 85.74 70.05 59.38 56.27 67.97

5 Conclusion

This work has shown how phase congruence can be used to detect dominant
points of a contour. The phase congruence extracted from a multi-scale analysis
of the contour is used by the proposed novel method to find the polygonal
approximation that optimises the objective function E2 (Carmona et al. [2]).
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Our method was compared to other two well-known proposals (Garrido et al.
[6] and Arrebola et al. [1]) to generate a contour approximation. The objective
Merit measure proposed by Rosin [14] has been used to measure the performance
provided by each method. The comparative study has shown, regarding the Merit
measure, the performance provided by our method is significantly better than
the provided by the other compared methods.

6 Future Work

We are interested in extending our method to address the noise effect to make
a robust method. Other research line will be to study how an affine transform
affects to the dominant point detection algorithm.
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Abstract. In this paper we propose a Bayesian filter for the Kadir Scale
Saliency Detector. Such filter is addressed to deal with the main bottle-
neck of the Kadir detector, which is the scale space search for all pixels in
the image. Given some statistical knowledge about images considered, we
show that it is possible to discard some points before applying the Kadir
detector by using Information Theory and Bayesian Analysis, increasing
efficiency with low error. Our method is based on the intuitive idea that
homogeneous (not salient) image regions at high scales probably will be
also homogeneous at lower scales of scale space.

1 Introduction

Low-level vision in general, and affine feature extraction in particular, is a ba-
sic step in many computer vision tasks. Reliability and efficiency of these tasks
strongly depend on the quality of extracted features. Thus, interest point de-
tection remains as an important topic in computer vision research, resulting in
a wide variety of different approaches being proposed and improved during last
years. Recent surveys [1] declare that in the domain of state of the art detectors
there does not exist any detector that outperforms the other ones for all scene
types and all type of transformations. In fact, feature extractors are complemen-
tary: they extract regions with different properties.

Kadir-Brady scale saliency filter [2] is widely used [3][4] due to its invariance to
planar rotation, scaling, intensity shift and translation. However, its application
usually introduces a computational bottleneck, due to the fact that computation
must be performed for each image pixel at each scale. Reducing such overload
is an interesting objective, since it can help to improve computational efficiency
of vision tasks relying on this kind of low level vision algorithms.

In this paper we are focused on optimizing Kadir scale saliency detector from
a Bayesian perspective, which has been successfully applied to edge detection
[5]. This approach is quite interesting but assumes a learning step preceding
filter application. Consequently, environmental (categorical) statistics must be
available. Such analysis has been recently applied to compare the effectiveness
of different detectors [6], but here we consider how to get statistics and exploit
Information Theory measures for reducing the search through scale space, which
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is the bottleneck of the Kadir algorithm. We propose a training step where a
log-likelihood threshold from saliency at highest scale for an image category set
is computed. This threshold can then be used to discard pixels from an image
belonging to the same image category, in order to discard not interesting points,
that is, pixels that probably will not be part of the most salient features of that
image. Experimental results show promising results on how efficiency can be
notably improved having low error.

This paper is organized as follows: section 2 summarizes the Kadir scale
saliency detection process. Formal basis of our method is explained in section 3;
Section 4 describes our approach to improve the performance of the Kadir scale
saliency detector. In section 5 several experimental results are shown. Finally, in
section 6, we present our conclusions and future work.

2 Kadir Scale Saliency Detector

Visual saliency may be defined as a measure of local complexity or unpredictabil-
ity [2]. Salient features are distinctive, due to this local unpredictability, and have
proved useful in the context of image registration. Using Shannon entropy, Gilles
formulated local saliency in terms of local intensity histograms [7]. Given a point
x, a local neighbourhood Rx, and a descriptor D that takes values {d1, ..., dr}
(e.g. in an 8 bit grey level image D would range from 0 to 255), local entropy is
defined as:

HD,Rx = −
∑

i

PD,Rx(di) log2 PD,Rx(di) (1)

where PD,Rx(di) is the probability of descriptor D taking the value di in the
local region Rx.

However, this approach may be improved in many ways. The main drawback
is that scale (|Rx| in the latter equation) is a pre-selected parameter, so this
model is only proper for images that contain features existing over a small range
of scales. In order to solve this problem and others, Kadir and Brady proposed
their scale-saliency algorithm [2], extending saliency to work through scale space
as well as through feature space; their approach is based on detecting salient
features that exist over a narrow range of scales. This method can be summarized
as follows: for each pixel x, local entropy HD (Eq. 2) is calculated for each scale
s between smin and smax; the scales Sp (Eq. 3) at which the entropy is a local
maximum (is peaked) are chosen, and then the entropy is weighted (WD, Eq.
4) at such scales by some measure of the self-dissimilarity in scale-space of the
feature. The algorithm yields a sparse three dimensional array of scalar values
YD (Eq. 5), containing weighted local entropies for all pixels at those scales where
entropy is peaked.

HD(s, x) = −
∑
d∈D

Pd,s,x log2 Pd,s,x (2)

Sp = {s : HD(s − 1, x) < HD(s, x) > HD(s + 1, x)} (3)
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WD(s, x) =
s2

2s − 1

∑
d∈D

|Pd,s,x − Pd,s−1,x| (4)

YD(sp, x) = HD(sp, x)WD(sp, x) (5)

The main constraint of this approach is that scale is isotropic. This isotropic
requirement may be relaxed [8], but the dimensionality of the salient space
increases and, as a consequence, the computational cost is higher, and it is
not admissible for real-time applications (e.g. robotics). Anyway, although only
isotropic salient features are detected, the algorithm is still slow: entropy must
be calculated for every pixel at every scale.

3 Chernoff Information and Optimal Filtering

Our method is based on the intuitive idea that image regions that are homoge-
neous (not salient) at higher scales will probably be also homogeneous at lower
scales. As a consequence, an entropy threshold could be learnt from a set of
images belonging to a same environment or category. All these images have sim-
ilar intensity distributions and textures, so entropy values of the most salient
features will be approximately in the same range. Following supervised learn-
ing, the range of entropy values of the most salient features from a training
set of images is obtained, and then a likelihood threshold value T is calculated
through statistical analysis. This learnt threshold can then be used with the rest
of the images from the same environment or category, with low detection and
localization error.

The proper identification of such threshold given a set of images involves the
learning of the distribution probabilities P (θ|on) and P (θ|off) for the entropy
value θ at smax of a point conditioned on wether this point is one of the most
salient features (on) or not (off) [5]. As can be seen in the example of Fig. 1, the
most salient features have the closest entropies to Hmax. Other points that are
not part of the most salient features can also have high entropy values, but as
entropy value decreases, the probability that a point having that entropy value
becomes part of the most salient features also decreases.

A preliminary process to extract a threshold could be to choose the minimum
θ value with P (θ|on) > 0. In this case, all points from an image belonging
to the same image class having h/Hmax < θ could be filtered before applying
the complete Kadir process, as explained above. However, we propose a more
precise method to extract a valid threshold that allows filtering more image
points knowing how the error will increase, by means of Chernoff Information
and Kullback-Leibler divergence. This additional computation takes place offline
during learning and does not affect final performance.

Chernoff Information [9] gives a measure of the easiness to discriminate be-
tween two probability distributions. As can be seen in the experimental results
section, a low Chernoff Information value between P (θ|on) and P (θ|off) means
that these probability distributions are similar and, consequently, it is difficult
to find an adequate threshold [5]. The closer P (θ|on) and P (θ|off) are, the
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Fig. 1. Example of P (θ|on) (solid line) and P (θ|off) (dashed line) distributions for
the same image. The vertical axis labels the probability density and the horizontal
axis labels h

Hmax
, being h the entropy value for a given pixel and Hmax the maximum

entropy value for any pixel, both at smax. Most salient features will have entropy values
closest to Hmax. At the right, the corresponding ROC curve.

higher error rate the extracted threshold produces. Thus, this measure must be
obtained during learning in order to know whether our image classes are homo-
geneous enough for applying our filtering method. If any image class results in
a too low Chernoff Information value, then splitting this image class into more
homogeneous classes will be needed. The Chernoff Information C(p, q) between
two probability distributions p and q is defined as follows:

C(p, q) = − min
0≤λ≤1

log(
J∑

j=1

pλ(yj)q1−λ(yj)) (6)

where {yj : j = 1, ..., J} are the variables for which the distributions are defined
(in this case, the probability values of each relative threshold between 0 and 1).

For a given θ = h/Hmax, the log-likelihood ratio log(P (θ|on)/P (θ|off))
is zero when P (θ|on) = P (θ|off). Positive values correspond to entropy of
the most salient features displayed at the end of Kadir algorithm. Therefore,
log-likelihood ratio is used in our approach to filter points before Kadir al-
gorithm. A threshold T is chosen for each image category, so all points from
images belonging to that category with log(P (θ|on)/P (θ|off)) < T can be
discarded.

Kullback-Leibler divergence D(p||q) =
∑J

j=1 p(yj)log(p(yj)/q(yj)) or relative
entropy, as Chernoff Information, estimates the dissimilarity between two distri-
butions [9]. The range of valid values of threshold T for an image class is given
by [10]:

− D(Poff ||Pon) < T < D(Pon||Poff ) (7)

Selecting the minimum T value from this range results in a conservative filter
that provides a correct trade-off between low error rate and high efficiency. This
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efficiency can increase selecting higher values of T . But, in this latter case, error
rate will also increase depending of the Chernoff Information between P (θ|on)
and P (θ|off) [5]. Furthermore, Chernoff Information and Kullback-Leibler di-
vergence between P (θ|on) and P (θ|off) are related: if Chernoff value is low,
probability distributions are similar and it is difficult to extract a threshold to
split points into interesting and not interesting categories; as a consequence, the
value of T must be selected from a narrower range.

4 Bayesian Filtering for the Kadir Detector

Assuming that the input images are divided into classes or categories, a threshold
for each image category can be learnt from a set of training images belonging to
that image class:

1. Calculate P (θ|on) and P (θ|off) probability distributions from all points in
the set of training images.

2. Evaluate Chernoff Information between these two probability distributions.
If C(P (θ|on), P (θ|off)) is too low1, split the image class into new subclasses
and repeat the learning process for each of them.

3. Calculate Kullback-Leibler divergences D(Poff ||Pon) and D(Pon||Poff ).
4. Select a threshold from the range −D(Poff ||Pon) < T < D(Pon||Poff ).

Then, learned thresholds can be used to discard points, that probably are not
part of final displayed most salient features, of the images belonging to the same
classes before applying Kadir algorithm, decreasing computation time with low
error.

1. Calculate the local relative entropy θx = HDx

Hmax
at scale smax for each pixel

x, where Hmax is the maximum entropy value for any pixel at smax.
2. X = {x | log P (θx|on)

P (θx|off) > T }, where T is the learnt threshold for the class the
input image belongs to.

3. Apply Kadir algorithm only to pixels x ∈ X .

5 Experiments and Discussion

In order to test our algorithm a test set obtained from the Visual Geometry
Group was used: the VGG database2. This test set is composed of several im-
age categories (planes, faces, cars, and so on) with different number of images,
and also different sizes. In this case, we used the original partition of image
classes, although subsequent experiments showed that Chernoff Information was
too low for some of them. This fact means that these classes are not homo-
geneous enough, and learning algorithm would improve its accuracy by sub-
dividing them. In all cases a 10% of the images from each image category was
1 In this paper we don’t address the point of selecting an optimal threshold for image

class partition.
2 http://www.robots.ox.ac.uk/∼vgg/
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randomly selected for learning the corresponding threshold, and the rest for test-
ing. The range of scales was between smin = 5 and smax = 20. Initially, only
the 50 most salient features were displayed. Input images were scaled before the
process. As a result, all images had a maximum width or height of 320 pixels.

Table 1. Results for the Visual Geometry Group database

Test set Chernoff T % Points % Time ε

airplanes side 0.415 -4.98 30.79% 42.12% 0.0943
0 60,11% 72.61% 2.9271

background 0.208 -2.33 15.89% 24.00% 0.6438
0 43.91% 54.39% 5.0290

bottles 0.184 -2.80 9.50% 20.50% 0.4447
0 23.56% 35.47% 1.9482

camel 0.138 -2.06 10.06% 20.94% 0.2556
0 40.10% 52.43% 4.2110

cars brad 0.236 -2.63 24.84% 36.57% 0.4293
0 48.26% 61.14% 3.4547

cars brad bg 0.327 -3.24 22.90% 34.06% 0.2091
0 57.18% 70.02% 4.1999

faces 0.278 -3.37 25.31% 37.21% 0.9057
0 54.76% 67.92% 8.3791

google things 0.160 -2.15 14.58% 25.48% 0.7444
0 40.49% 52.81% 5.7128

guitars 0.252 -3.11 15.34% 26.35% 0.2339
0 37.94% 50.11% 2.3745

houses 0.218 -2.62 16.09% 27.16% 0.2511
0 44.51% 56.88% 3.4209

leaves 0.470 -6.08 29.43% 41.44% 0.8699
0 46.60% 59.28% 3.0674

motorbikes side 0.181 -2.34 15.63% 27.64% 0.2947
0 38.62% 51.64% 3.7305

Table 1 shows results for the latter test set. For each image class, two different
thresholds were used; a very conservative one corresponding to the minimum value
of T in the range −D(Poff ||Pon) < T < D(Pon||Poff ), and an average threshold
T = 0 [10]. The % Points column shows the mean amount of points discarded
for each image before Kadir feature extraction, and % Time column indicates the
mean saved time comparing the filtered Kadir algorithm to the not filtered original
method. Finally, Mean error column shows the mean localization error rate for each
image category. This error is calculated using the following equation:

ε =
1
n

n∑
i=1

d(Ai, Bi) + d(Bi, Ai)
2

, d(X, Y ) =
∑
xεX

min
yεY

||x − y|| (8)

where n is the number of images of the test set, Ai represents the clustered
most salient regions [2] obtained from original Kadir algorithm for image i, Bi
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Fig. 2. Examples of filtering for three images from different image categories (air-
planes side, google things and houses). Red regions represent discarded points. From
left to right: results of the original Kadir algorithm, results using the minimum T value
for each image and results using T = 0.

represents the clustered most salient regions obtained from our filtered scale
saliency algorithm for image i, being d(X, Y ) a Euclidean based measure be-
tween most salient clustered regions belonging to both clustering results. Best
results are obtained when Chernoff Information is high, resulting in more dis-
carded points or a lower mean error value. Although using T = 0 generally yields
noticeable improved results with low error rate, another threshold T in the valid
range may be used depending on the requirements of the problem. Fig. 2 shows
examples of filtering.

6 Conclusions and Future Work

Kadir scale saliency detector may be slow when extracting multiple size land-
marks from an image, due to the calculation of entropy values for each pixel at
each scale. In order to speed up Kadir algorithm, a simple Bayesian learning
algorithm that yields a threshold for a set of images in order to discard points
when applying Kadir algorithm to images belonging to that category is pro-
posed. Experimental results showed that such approach makes Kadir detector
to extract salient features faster with low error.
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Our present work is addressed to design new filters, in order to discard more
points. Our working hypothesis is that these new filters should be organized in
cascade, so that each filter processes the output from the previous one, testing
not discarded points rather than the whole image. For instance, calculating en-
tropy at smax for the whole image takes too much time, so a faster first filter
could be applied before filtering using the approach described in this section.
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Abstract. In this paper we present a novel method for reducing false
positives in breast mass detection. Our approach is based on using the
Two-Dimensional Principal Component Analysis (2DPCA) algorithm,
recently proposed in the field of face recognition, in order to extract
breast mass image features. In mammography, it is well known that the
breast density measure is highly related to the risk of breast cancer de-
velopment. Hence, we also propose to take advantage of a previous breast
density classification in order to increase the overall breast mass detec-
tion performance. We test our approach using a set of 1792 RoIs manually
extracted from the DDSM database. Moreover, we compare our results
with several existing methods. The obtained results demonstrate the va-
lidity of our approach, not only in terms of improving the performance
but being a generalizable, simple, and cost-effective approach.

1 Introduction

Breast cancer is a major health problem in western countries. A study developed
in the United States by the American Cancer Society estimates that between
one in eight and one in twelve women will develop breast cancer during their
lifetime [1]. The most used method to detect breast cancer is mammography,
because it allows the detection of the cancer at early stages, a crucial issue for
a high survival rate [2].

A breast mass is a localized swelling, protuberance, or lump in the breast,
and usually is one of the clearest signs of breast cancer. Recently, several algo-
rithms have been proposed for the automatic detection of masses [3,4]. Most of
these algorithms are based on solving two different steps: firstly, the detection
of regions with high probability of being mass (Regions of Interest, RoIs); and
secondly, a validation step to ensure that the detected RoIs really depict true
masses. Note the second step, which is the main interest of this paper, deals with
the well-known problem called false positive reduction.

Yang et al. [5], in the framework of face detection and face recognition, have re-
cently proposed the Two-Dimensional Principal Component Analysis algorithm
(2DPCA) with the goal of improving the eigenfaces method [6]. Both approaches
are based on finding (by means of the Karhunen-Loeve transform) the sub-space
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which contains the principal variations of the original face image database. After-
wards, the projection of an unknown face sample into the sub-space provides an ef-
ficient image representation which is used for face classification purposes. As Yang
et al. stated, the use of 2DPCA has important advantages over PCA: firstly, it is
simpler and more straightforward to use for image feature extraction since 2DPCA
is directly based on the image matrix; secondly, it is easier to evaluate the covari-
ance matrix accurately; and thirdly, it is computationally more efficient.

In this work we present a novel method for reducing false positives in breast
mass detection. Our approach is inspired by the 2DPCA algorithm initially pro-
posed for face recognition purposes. While the face recognition framework deals
with a large number of different people, including images of different viewpoints
and illuminant conditions, in the image mass detection we are dealing with
a two-class problem. Note that although several mammographic databases are
available with a large number of cases, from the mass detection point of view,
they only contain two different types of RoIs: the ones containing masses and
the ones containing normal tissue. Therefore, the intra class variability is mainly
due to grey-level and texture differences of the breast, and also to the shape and
size of the mass or other structures present in the RoIs.

Recent studies have also shown [7] that the sensitivity of most of the mass
detection algorithms is decreasing as the density of the breast increases. There-
fore, it is difficult to achieve the desired constant sensitivity which is required
at a given specificity of these systems. Moreover, the breast density measure is
highly related to the risk of breast cancer development [8]. Hence, taking those
issues into account, one could argue that the knowledge of the breast tissue prior
to the detection could improve the breast mass detection performance. Although
in this paper this classification is manually done by an expert, recent works have
shown the feasibility of using automatic systems for this purpose [9].

The rest of the paper is structured as follows: Section 2 introduces the 2DPCA
algorithm. In Section 3 we describe our proposal of false positive reduction in
breast mass detection, while Section 4 describes how to introduce the breast
density information into the system. Section 5 shows the obtained results, com-
paring them with the classical PCA approach and also with different existing
methods. Finally, conclusions and further work are discussed in Section 6.

2 The 2DPCA Approach

Both eigenfaces and 2DPCA algorithms were initially designed for face recog-
nition purposes, where an unknown face image is assigned to a known person.
These algorithms start with a database of M face images corresponding to I
known individuals, where usually I << M because the database contains a set
of images for each person, including variations on pose and light.

In the original eigenfaces approach each image – of width w and height h –
is represented by a 1D vector xk of length N = w × h which contains all the
grey-level values. Given the database of 1D face images, the Karhunen-Loeve
transform is used in order to find the vectors that best account for the distribu-
tion of face images within the entire image space (the eigenvectors). However,
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the transformation of 2D images to 1D image vectors seems an unnatural trick,
as actually the algorithm is dealing with images. This fact was discussed by
Yang et al. [5] and originated the main motivation for their 2DPCA proposal.
Opposed to conventional PCA, 2DPCA is based on 2D matrices rather than 1D
vectors. Therefore, using 2DPCA the image covariance matrix Gt is defined as:

Gt =
1
M

M∑
j=1

(Aj − Aμ)t(Aj − Aμ) (1)

where Aμ is the mean image of all training samples. Then, using the Karhunen-
Loeve transform it is possible to obtain the corresponding face space, which is
the subspace defined as:{

{X1, ...Xd} = arg max |XtGtX |
Xt

iXj = 0, i �= j, i, j = 1, ...d
(2)

where X is a unitary column vector. The first equation looks for the set of d uni-
tary vectors where the total scatter of the projecting samples is maximized (the
orthonormal eigenvectors of Gt corresponding to the first d largest eigenvalues).
On the other hand, the second equation is needed to ensure orthonormality.

With the selected set of eigenvectors is possible to construct a family of feature
vectors for each image. Thus, for an image sample A, the projected feature
vectors (the principal components) Y1, ..., Yd are found by:

Yk = AXk, k = 1...d (3)

It is important to note that while for PCA each principal component is a
scalar, for 2DPCA each principal component is a vector. It is this set of vectors
for image that is used to construct the feature image (a matrix of size m × d) as
B = [Y1, ...Yd].

In a similar way to the eigenfaces approach, comparing images means to com-
pare the constructed features. As the dimension of the feature space has increased
in one dimension, now the comparison of images is done by comparing matrices:

d(A1, A2) =
d∑

k=1

||Y i
k − Y j

k || (4)

where ||Y i
k − Y j

k || denotes the Euclidean distance between the two principal
components (vectors) Y i

k and Y j
k .

3 Mass Detection Using 2DPCA

The transition from face recognition to mass detection is not an easy task, basi-
cally due to the variance of the grey-level range of the images and the multiple
sizes of the RoIs. Note that this size is depending on the detected mass, and
there is a huge range of mass sizes [2].
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(1) (2) (3)

(4) (5) (6)

Fig. 1. One RoI with clear mass (the brightest region) belonging to each size group.
Note that the relation between the mass lesion and the RoI is maintained.

Grey-level and texture variation of RoIs are mainly related to the variation
of the acquisition parameters (exposure time, x-ray energy) of mammograms
obtained at different time intervals and also to the nature of the breast (breast
density, thickness). Assuming a commonly used simplification, these parameters
are considered to affect only the range of the grey-level values of each RoI. Thus,
a solution which takes those variations into account is computed by equalizing
the images. In this sense, a uniform distribution model is used for equalization.

On the other hand, and in contrast with the face recognition framework where
a database of faces of the same size is available, the size of the RoIs is not always
the same. In order to deal with this problem of the size, different proposals were
analyzed in [10]. The authors concluded that better performances were obtained
when the database was clustered in different groups according to their size. Note
that in this situation, the mass sizes variability is reduced for each cluster. Thus,
when a new RoI has to be analyzed, the corresponding cluster in terms of its
size is used. In our work, we also adopt this strategy to solve the problem of
the mass size. Figure 1 shows one image sample belonging to each size group (6
different sizes are considered). Each of those groups is then used to apply the
2DPCA algorithm described in Section 2. Thus, the 2DPCA is used to extract
breast mass image features according to its size.

4 Including Breast Density Information

As described in Section 1, the sensitivity of most of the mass detection algorithms
decreases as the density of the breast increases. In order to take advantage of
such information, we introduce a previous step of breast density classification
with the goal of increasing the overall breast mass detection. This step consists
on a first classification of the database of RoIs according to the breast density
parameter. Therefore, we can divide our database of images based on their breast
density. Although recent works [9] have demonstrated that this breast density
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classification task can be done by automatic procedures, we perform this step
manually by means of an expert and following the 4 classes specified in the
BIRADS standard [11] widely used in radiology.

In order to evaluate the improvement of this step, we will repeat our experi-
ments of mass detection for both situations: the first one in which the original
database of RoIs is directly used; and the second one in which the database of
RoIs is previously classified according to the breast density.

5 Experimental Results

The evaluation of our experiments is done using a leave-one-out scheme and Re-
ceiver Operating Characteristics (ROC) analysis. In the leave-one-out methodol-
ogy, we are using for each RoI the set of features extracted by 2DPCA approach.
Subsequently, these features are compared with the features obtained with the
model, classifying the RoIs according to our two-class problem: RoIs depicting
a mass or RoIs depicting normal tissue. This procedure is repeated until all the
RoIs have been used as a query image. The classifier used, is a combination of
the C4.5 decision tree [12] and the k-Nearest Neighbour algorithm. This classi-
fier provides a numerical value related to the membership of each class. Thus,
varying the threshold of this membership it is possible to generate the ROC
analysis [13], widely used in the medical field. In such analysis, the graphical
curve represents the true positive rate as a function of the false positives rate.
Moreover, the percentage value under the curve (known as Az) is an indication
for the overall performance of the observer, and is typically used to analyze the
performance of the algorithms.

However, in order to perform a more global evaluation of our results we pro-
pose to compute the Az value for different ratios of number of RoIs depicting
masses and number of RoIs depicting normal tissue (from ratio 1/1 to ratio
1/6). The idea of analyzing these different ratios is twofold: firstly, to evaluate
the performance of our method on different levels of difficulty; and secondly, to
compare our proposal with existing methods (Section 5.3). It is important to no-
tice that previous works only provide results for specific ratios. Hence, analyzing
all these ratios will enable the comparison with them. On the other hand, and
for showing the improvement of the 2DPCA, we include a previous developed
algorithm directly based on the classical eigenfaces approach (from now on, we
will refer to it as PCA approach).

The algorithm was evaluated using a database of 1792 RoIs extracted from
the DDSM mammographic database [14]. From this set, 256 depicted a true
mass, while the rest 1536 were normal, but suspicious tissue. According to the
size of the lesion, we used six different groups of RoIs. In order to evaluate in
more detail our proposal in terms of using 2DPCA and considering breast den-
sity information, we will focus on the experiments with the ratio 1/3 although
we include a plot showing the results of all the ratios. Each group of RoIs cor-
responded to the following mass sizes intervals: < 10 mm2, (10 − 60) mm2,
(60 − 120) mm2, (120 − 190) mm2, (190 − 270) mm2, > 270 mm2, and the num-
ber of masses en each interval were respectively, 28, 32, 37, 57, 69, and 33 masses.
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Fig. 2. Performance of our approach using the DDSM database. (a) without including
breast density information and (b) considering this information.

5.1 Results Without Considering Breast Density Information

For obtaining the results of this experiment all the RoIs of the database were
used, classifying them only according to their size. Figure 2(a) shows the mean
Az value obtained using the leave-one-out strategy and varying the ratio between
both kind of RoIs. Note the performance of both PCA and 2DPCA approaches
decreases as the ratio of RoIs depicting masses decrease. For the PCA approach
we obtained Az = 0.73 for the ratio 1/1 and Az = 0.60 for the ratio 1/6, while
using the 2DPCA approach we obtained Az = 0.92 and Az = 0.81 respectively.
Thus, the 2DPCA approach obtained better performances than the PCA.

The Az values for the ratio 1/3 are detailed in the first row of Table 1. The
overall performance of the system at this relation is 0.70 for PCA and 0.86 for the
2DPCA. Note that both approaches are more suitable for false positive reduction
of larger masses than smaller ones. This is due to the fact that larger masses
have a larger variation in grey-level contrast with respect to their surrounding
tissue than smaller masses, which are usually more subtle, even for an expert.

5.2 Results Considering Breast Density Information

Figure 2(b) shows the obtained mean Az values considering the breast density
information. We classified the RoIs database not only according to the RoIs
size, but also to the density of the breast. Using this added knowledge, the
performance of both PCA and 2DPCA approaches increased compared with the
previous experiment. In particular, for the PCA approach we obtained Az = 0.81
for the ratio 1/1 and Az = 0.71 for the ratio 1/6, while for the 2DPCA we
obtained Az = 0.96 and Az = 0.85 respectively.

The last two rows of Table 1 show the Az values for the ratio 1/3 according to
the size of the mass. Clearly, the overall performance of the approaches increased.
For instance, the mean performance of PCA improved up to 0.75 while the
2DPCA performance was 0.91, obtaining an improvement of 5%.
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Table 1. Az results (ratio 1/3) for the classification of masses according to the RoI
size. Final column shows the mean Az value. S1 to S6 refers to the six RoIs sizes, from
small to bigger one.

Az
S1 S2 S3 S4 S5 S6 Mean

Without breast
information

PCA 0.53 0.70 0.70 0.68 0.72 0.83 0.70
2DPCA 0.81 0.83 0.87 0.84 0.89 0.93 0.86

With breast
information

PCA 0.70 0.71 0.71 0.72 0.77 0.89 0.75
2DPCA 0.88 0.93 0.91 0.92 0.89 0.92 0.91

Table 2. Works dealing with mammographic mass false positive reduction, detailing
the number of RoIs and the ratio (number of RoIs with masses / number of normal
tissue RoIs) used. Further, we include the results obtained with the proposed approach
at the same ratio (where BDI means including breast density information).

Az of Other Works Az of Presented approaches
RoIs Ratio Az PCA 2DPCA PCA+BDI 2DPCA+BDI

Sahiner [15] 672 1/3 0.90 0.70 0.86 0.75 0.91

Qian [3] 800 1/3 0.86 0.70 0.86 0.75 0.91

Chang [16] 600 1/1 0.83 0.73 0.92 0.81 0.96

Tourassi [4] 1465 ∼= 1/1 0.87 0.73 0.92 0.81 0.96

5.3 Discussion

We include in Table 2 a comparison of our method with the performance of various
existing methods. Note that our efforts have concentrated on obtaining the same
ratio of masses used in their experiments. However, we want to clarify that not all
methods used the same databases and therefore our aim is only to provide a general
view of the performance of our approach with respect to different strategies. For
instance, the works of Sahiner et al. [15] and Qian et al. [3], which used a ratio
1/3, obtained Az values of 0.90 and 0.83 respectively. Note that using the 2DPCA
approach with specific density learning, we obtain better performances. Similar
behaviour is observed with the proposals which used a ratio of 1/1.

6 Conclusions and Further Work

In this paper, we have presented a new strategy which is a generic, simple and
cost-effective method for mass segmentation. The strategy consists on training
a classifier with RoIs representing masses and normal tissue, but using different
training sets according to the internal breast density category. The classification
algorithm is based on the use of 2DPCA for extracting RoIs features.

The performance of the system was evaluated using a leave-one-out method-
ology and ROC analysis, and calculated at different ratios of RoIs with masses
and RoIs depicting normal tissue. The obtained results demonstrate the validity
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of our proposal. Further work will be focused in expanding the training database
with the aim to detect other kind of mammographic lesions, such as microcalci-
fications or architectural distortions.
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Abstract. Image preprocessing stage (also known as iris segmentation) is the 
first step of the iris recognition process and determines its accuracy. In this 
paper, we propose a method for iris segmentation. In order to get a robust 
method we combine several well-know techniques to achieve final result. As 
some of these techniques are based on intensive searching, therefore slow, we 
apply our knowledge of the problem (iris image features and iris morphology) 
to speed up the algorithms by reducing search spaces and discarding 
information. We present a fast and robust iris segmentation method that 
successfully works on CASIA 1.0 dataset. 

1   Introduction 

Iris recognition technology has proved to be a highly reliable choice for biometric 
identification. It is fast, non intrusive, cheap and very reliable. Some of these features 
would not be possible without a proper preprocessing stage, since this stage can be 
quite slow in searching the iris in the image or, if fast, not accurate enough. This is 
especially remarkable when working on non ideal images, where irises are sometimes 
highly occluded by eyelids and eyelashes and are therefore hard to find. 

Several stages can be included in image preprocessing, such as iris location, eyelid 
and eyelash detection and some quality test aimed to check if image features 
(brightness, focus, iris occlusion, etc) are appropriate for the rest of the process. In 
this paper, we propose a method for iris region location. 

The proposed method employs several well known techniques. It is based on the 
classical schema of Canny edge detector followed by Hough transform [6]. Such 
method has proved to be accurate but slow. For that reason, we introduce other 
techniques to reduce computational demands. Pyramidal image scaling is used to 
perform a coarse to fine search. In each processing stage, we also discard as much 
information as possible from the search space, without losing accuracy. We employ 
some image and iris morphology features for that purpose. We also use that 
information to guide the method to a correct solution and, in the case of failure, to 
minimize failure seriousness. We consider a failure everything but a perfect location, 
so segmentation failures not necessarily lead to recognition failures (they do not 
invalidate the whole process) but may decrease accuracy. 

Our system works on the CASIA 1.0 database. This is a well known iris database 
and makes our results comparable to those of other systems. Images in CASIA 
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database are suitable for iris recognition but, in a number of them the iris is occluded 
by eyelids and, more frequently, eyelashes. This makes the segmentation process 
harder because these elements introduce edges in the computed edge map, similar to 
those produced by the iris-sclera edge and the subsequent shape detection process can 
get confused by these edges. Moreover, it also reduces system accuracy since the iris 
region is partially covered by eyelids and eyelashes, inserting noise in the final 
description if they are not properly isolated. 

Finally, we have developed a method that suits a specific dataset. Our algorithms 
may not work properly on images different than CASIA 1.0 ones, but we have shown 
how classical techniques can be modified and successfully employed to solve a 
particular problem. Although they may not be suitable for a different input, we 
believe a modification of our method can successfully work on different datasets. 

The contents of this paper are as follows: In section 2 we briefly introduce our 
previous work, it being the motivation for our actual researching. In section 3 we 
present our segmentation method in fine detail. Section 4 is about the experimental 
results. Conclusions and future work are provided in section 5. 

2   Our Previous Work 

In our previous work [7], we developed a complete iris recognition system as our first 
approach to iris recognition, based on [6]. The system was accurate enough to keep 
working on it. But it also was significantly slow. We applied several processing stages 
to an image to segment it. The most intensive searching was in the circular Hough 
transform stage, as shown in Figure 1. 

 

 

Fig. 1. Time distribution in our previous system. The whole recognition process is considered. 
Segmentation covers the first six stages (first six bars in the graph) and more than 99% of the 
overall time. 

Therefore, more work should be done on improving segmentation algorithms. In 
particular, the Hough transform stage must be significantly improved. Our main effort 
is therefore aimed at this algorithm (Hough transform). In this paper we describe in 
depth how we modified our algorithms to get the iris image segmented in a few 
second tenths, without losing of precision. 
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3   Proposed Segmentation Method 

In the proposed method, iris segmentation is achieved in three stages. First, we calculate 
several scaled representations of the image in order to perform subsequent coarse to fine 
iris searching. Then, for each scaled image as well as for the original image itself, we 
compute a modified Canny edge map. Finally, we choose the appropriate scale to start 
searching roughly and we gradually increase searching space, up to per pixel precision 
that provides a fine location of the iris region. Between one stage and another we also 
perform some image processing. 

3.1   Pupil Location 

Pupil location is easy and fast on CASIA images because every CASIA image shows 
a uniform colour circle that covers the pupil. Since the pupil area is big enough, its 
colour is clearly emphasized in the image histogram. Due to this distinctive feature, 
first step to iris location is to isolate this group of pixels by means of histogram-based 
thresholding. Nearly every pixel the thresholding outputs belongs to the pupil circle. 

There may be pixels in the image that, having the same value as pupil pixels, do 
not belong to it. They appear as noisy pixels after thresholding. These pixels are 
easily detected and removed by a subsequent process. These pixels are identified 
because they have few neighbour pixels (usually zero). As they do not belong to the 
pupil circle, they are not grouped. On the other hand, pupil pixels, as being grouped 
into a circle, always present three or more neighbour pixels. A 3 x 3 median filter is 
very appropriate for this task. Eliminating noisy pixels with this procedure is valid for 
every CASIA image. 

Last step in pupil location, once isolated, is to calculate the parameters of the pupil 
circle, its centre and radius. The gravity centre of every circle fits its geometrical 
centre and diameter is any of its diameters. 

Let C = (xc,yc) be the pupil centre, where xc is the mean of the x coordinates of 
every point in the isolated region and yc the average of the y coordinates. Considering 
a region formed by n pixels, we can calculate the region centre as done in (1). 
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Being (xi,yi) the coordinates of the i-th pixel in the region. The diameter d of the 
region can be calculated as the maximum distances between each two pixels 
belonging to it (eq. 2). 
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In practice, the diameter calculation can be optimized by considering only region 
edge pixels. If the region is a circle, further optimization can be done by calculating 
the diameter as the difference between the maximum and minimum values of the x (or 
y) coordinate (eq. 3). 
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)min(y)max(y)min(x)max(xd iiii −=−=  (3) 

This is the algorithm we use to locate the pupil since it is fast, simple and has 
proved to be successful for every CASIA image. 

3.2   Histogram Equalization 

One of the problems we identified in CASIA images is that some irises are clearly 
darker than sclera (background) and present a sharp edge while some others are nearly 
as light as the background and present a very smooth edge. 

Such variation on iris tone between images makes the edge map computation 
harder. It is known that classical Canny edge detector is controlled by two threshold 
values which are used to find initial segments of strong edges and to perform edge 
linking. Thus, we can configure Canny edge detector to find only strong edges in 
those images where irises are clearly isolated from sclera. But we need to detect more 
edges in images with light iris tones because iris-sclera edges are diffuse and may be 
overlooked. By doing that, other edges than the iris ones are detected. These edges 
increase Hough transform computation time and can even make it fail.  

To solve this problem, we perform histogram equalization on the original image 
before edge detection. This normalizes brightness and increases contrast of the image, 
in particular, the iris-sclera contrast. Let I be an iris image. Let S be the resulting 
image after equalization. This is how histogram equalization is performed: 

 
o Calculate histogram H for I. 
o Normalize H, so that the sum of histogram bins is 255. 

o Compute the integral of the histogram: ∑
=
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o Transform the image using H’ as a look-up table: )),(('),( yxIHyxS =  
 

After that histogram equalization, images are much more suitable for optimal edge 
extraction by using Canny edge detector. 

3.3   Scaled Representations of the Iris Image 

Image scaling has been widely used in computer vision as a way to reduce search 
space or minimize the amount of information to deal with [3]. Some authors works 
over downscaled images [6]. Though they do not get per pixel precision in their 
location algorithms, they achieve good balance between speed and accuracy. 

Some others, as we do, successively downscale iris image in order to take the 
smallest image as starting point for coarse to fine iris searching [2]. 

CASIA 1.0 images are 320 × 240 pixels each. We perform scaling to obtain a 160 
pixel × 140 pixel and 80 pixel × 70 pixel representations. Initially we also obtained a 
40 pixel × 35 pixel representation, but it proved to be useless for our purposes. Each 
representation is half as height, half as wide as the preceding, that is, four times 
smaller. We interpose Gaussian smoothing before each scaling so the smaller the 
image, the more smoothed it becomes. We obtain a three smoothed images pyramid. 
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3.4   Edge Detection and Reduction 

The next step is to perform Canny edge detection in every image of the pyramid. We 
employ different parameters for different images and therefore we obtain different 
edge maps for each resolution. For the smallest, only strong edges are detected so we 
detect iris inner and outer border, eyelids and some eyelash borders and few more. 
For bigger ones, we allow the edge detector to detect much more borders. There are 
two main reasons for that differentiation: 

 

• We establish coarse iris localization in the smallest image, but we need it to be 
right, or the rest of the process will fail. 

• As we have previous knowledge about iris position when processing bigger 
images, we can perform an aggressive edge cleaning on the image so remaining 
edges are true iris boundary edges [5]. Moreover, we look for accurate iris location 
in bigger images so, after edge reduction, the most edge points we have, the more 
precise the location is. 
 

Once Canny edge maps are computed, we try to reduce edge points as much as 
possible. To do so, we employ several techniques, depending on the pyramid image 
we are dealing with and the item we are looking for in this image.  

For the first image (the smallest one) we eliminate every edge pixel in a column 
that covers the pupil. If the pupil is centred at (px, py) and has a radius of pr, let point 
A be A(px-pr,0) and point B be B(px+pr,h) -being h the height of the image- then we 
force every pixel in the a rectangle with the upper left corner in A and the bottom right 
corner in B to be same colour as the background. This is how we discard pupil-iris 
edges. Meanwhile, some useless eyelid edges over and under the pupil are erased. 

Next, we also paint a background colour circle over the pupil. This circle is centred 
on the pupil but its radius is bigger in order to erase edges inside iris region. The 
radius of this circle is also slightly inferior to the minimum iris radius (which is 
known by analysing each image in the dataset) to prevent the iris border to be erased. 

Finally, every odd line in the image is turned to be background colour. As only 
vertical edges are taken into consideration at this point, erasing horizontal lines does 
not damage useful edges. Furthermore, this process can unintentionally erase useless 
near-horizontal edges. This whole process, illustrated in Figure 2, eliminates about 
60% edge pixels in each image. By doing that, the subsequently Hough transform 
performance is greatly increased. 

 

    
a)  b)  c)  d) 

Fig. 2. How edge map is calculated and simplified. a) is the original image (not to scale). b is 
the image in a) after scaling, smoothing and histogram equalization. c) is the output of the 
Canny edge detector when fed with image b). d) is the edge map after reduction. The image in c 
has 386 edge pixels while d has only 124. 68% of the edge pixels have been removed. 
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From the obtained image, we can roughly compute the iris location and size. This 
is very useful to perform further edge reduction on subsequent images. How iris is 
located from edge map is explained in the next section of this paper. For now, let us 
consider that we have a rough iris location and size estimation. Consider also the 
centre of the iris to be C(ix, iy) and its radius to be ir for this first approximation. 

With these data, we can compute and simplify the other two edge maps. For bigger 
images, more edges are obtained from edge detector, but more edges are also deleted 
after edge cleaning. As we roughly know the iris position, every edge pixel but iris-
sclera ones are removed. To do so, the following procedure is employed: 

 

• Draw a white (all ones colour) circle on a black (all zeroes colour) background 
with same radius as iris and some thickness. The image is as big as the image 
currently being processing. 

• Use the obtained image as a mask to perform bitwise and operation with the edge 
map and store this result. 
 
After that every pixel that is not in the iris edge is removed. The final effect can be 

seen in Figure 3. 
As shown in Figure 3, the horizontal line erase process is also performed on these 

images. In the last one (the biggest), four of each five lines are erased, drastically 
reducing the number of edge points to compute in Hough transform. 

 

    
                 a)          b)               c)    d) 

Fig. 3. Edge maps from bigger images and the result of simplifying them. a) is the edge map 
from the 160 x 140 image and b) its simplified version. c) is the edge map from the 320 x 280 
image (full size) and d) its simplified version. The images have 827, 89, 4975 and 101 edge 
pixels respectively. From a) to b) 89% of the edges are removed. From c) to d) 98% of them. 

Now, let D be the rough iris descriptor calculated from previous image and 
employed in mask calculation for the current one. The circle mask thickness must be 
enough to compensate the iris and pupil eccentricity and the supposed errors in 
calculation of C from smaller images. In practice we use 10 pixels for the 160 x 140 
image and 5 pixels for the 320 x 240 image. A bigger value is employed in smaller 
image because many errors in D calculation can be recovered at that point with less 
effort. When processing the final image we do not intend to recover from any error, 
only to precisely calculate the final version of D. That is why a thinner circle is 
employed and why edges are reduced more than 95% at this last stage.  
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3.5   Iris Location 

The iris circle is computed from the obtained edge maps using Hough transform. The 
key to make Hough transform faster is the low number of edge pixels in images, the 
use of integer arithmetic and optimized circle drawing primitives. To obtain the final 
(fine) location of the iris, the followed process is: 

 

• Perform Hough transform in the smallest image and get the iris circle descriptor we 
called D in 3.4. 

• Properly scale D (multiply its coordinates and radius by two) so it fits the next 
image, four times bigger. Use D to perform edge reduction on next image. 

• Perform Hough transform in next image and actualize D with a more accurate 
value. 
 
This process is carried for the three images in the pyramid. As the image to process 

grows in size, the approximation of the iris circle by D becomes more accurate. 
To further improve Hough transform speed, the search space is restricted. As 

know, the iris and pupil are not concentric, but in the smallest image, the distance 
between centres is never bigger than a few pixels -in practice we use 5 pixels-. So, in 
the Hough accumulator, we look for the centre only in the 5 x 5 window surrounding 
the pupil centre, which is a known point. For bigger images we use 5 x 5 and 7 x 7 
windows. If D were accurate enough from the beginning, a 3 x 3 window should be 
enough, but making the search window a bit bigger can make out for some slight 
errors in D calculation and does not significantly increased computation time as the 
number of edge points to compute is the same in every case (it does not depend on 
how big the search window is). 

4   Experimental Results 

The proposed algorithm for iris detection has experimentally proved to be far more 
accurate and fast than the one we used before. It works over CASIA images detecting 
irises in 0.15 seconds (average time), these times being fairly competent among 
modern systems (see table 1). Furthermore, the location is perfect in 95% cases 
(manually checked) and, when an error is made, it does not compromise the whole 
process as it is a small error, usually missing only one side edge but not both. Our 
algorithm works even on highly occluded images, due to the special searching process 
described in 3.5. 

Table 1. Comparisons of some recent segmentation algorithms over CASIA 1.0 (Results 
supplied by respective authors) 

Reference Avg time Accuracy Year / Machine 
[8] 0.227 s. 99.45 % 2005 / ??? 
[1] 0.2426 s. 99.34 % 2004 /  P4@2.4GHz, 256 Mb RAM 

Proposed 0.15 s. 95 % 2006 / P4@3GHz, 1024 Mb RAM 
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5   Conclusions and Future Work 

We recently started to work on iris recognition and we are developing a fully featured 
system. Even in early stages the system has proved to be valid for research purposes. 
Now that the segmentation method is accurate and fast enough, our future work is to 
further test and improve our algorithms and start researching on and improving other 
stages than image preprocessing, specially feature extraction to get a real iris 
recognition system working. 
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project TIN2005-08818-C04-03. 
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Abstract. This paper presents an automated method for the selection
of a set of lung nodule candidates, which is the first stage of a computer-
aided diagnosis system for the detection of pulmonary nodules. An inno-
vative operator, called sliding band filter (SBF ), is used for enhancing
the lung field areas. In order to reduce the influence of the blood vessels
near the mediastinum, this filtered image is multiplied by a mask that
assigns to each lung field point an a priori probability of belonging to
a nodule. The result is further processed with a watershed segmentation
method that divides each lung field into a set of non-overlapping areas.
Suspicious nodule locations are associated with the regions containing
the highest regional maximum values. The proposed method, whose re-
sult is an ordered set of lung nodule candidate regions, was evaluated on
the 247 images of the JSRT database with very promising results.

1 Introduction

The detection of pulmonary nodules in chest radiography is one of most studied
problems in X-ray image analysis, and many computerized schemes have been
developed aiming at obtaining a solution for this important problem. Most of the
proposed computer-aided diagnosis (CAD) systems adopt a two-stage approach,
with an initial selection of nodule candidates, followed by the reduction of false
positives, frequently based on the extraction of features and classification of the
pre-selected areas.

In the system proposed by Wei et al. [1], the location of tumor candidates is
performed by an adaptive ring filter, and afterwards 210 features are evaluated
to look for the optimum feature set for discriminating between normal and ab-
normal regions. Keserci et al. [2] describes an approach for the detection of lung
nodules based on a combination of morphological features with an edge-guided
wavelet snake model. With this combination, the authors are able to largely re-
duce the number of false positives. Yoshida [3] complemented this system with a
method for the reduction of false positives exploring the symmetry between the
two lungs and assuming that a nodule candidate region in one lung would corre-
spond to a normal region in the other. In [4], Suzuki et al. reported a reduction of
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false-positives, by using the so-called multiple massive-training neural network;
in this system, the scheme for obtaining the initial set of candidates is based on
a difference-image technique and linear-discriminant analysis. The computer al-
gorithm presented by Schilham et al. in [5] uses multi-scale approaches for both
nodule candidate selection and classification; candidates are found by looking
for intensity maxima in Gaussian scale space and some features for classifica-
tion are taken from a multi-scale Gaussian filterbank. In a recent work [6], the
same authors proposed two optional extensions to this scheme, namely candidate
selection and candidate segmentation.

This paper presents an automated method for the selection of a set of lung
nodule candidates, which can constitute the first stage of a CAD system for the
detection of pulmonary nodules. The two lung field areas are initially enhanced
with an innovative operator, the sliding band filter (SBF ), which belongs to the
class of convergence index (CI) filters [7]. The result is further processed with
a watershed segmentation method that divides each lung field into a set of non-
overlapping areas. Suspicious nodules locations are associated with the regions
containing the highest regional maximum values. In order to reduce the influence
of the blood vessels near the mediastinum, the filtered image is multiplied by a
mask that assigns to each lung field point an a priori probability of belonging to
a nodule. The proposed method, whose result is an ordered set of lung nodule
candidate regions, is just the initial phase of a complete computer-aided diagnosis
system for the detection of lung nodules in chest radiographs.

The structure of the paper is as follows. The next section gives a brief descrip-
tion of the new convergence index filter. Section 3 describes the candidate region
selection procedure, including the implementation of the probability mask and
the morphological segmentation process. The results obtained with our method
for the JSRT database [8] are shown in section 4, and section 5 contains some
conclusions and guidelines for future work.

2 Sliding Band Filter

The contrast in chest radiograph images is usually low and the noisy environ-
ment is frequently high, primarily due to the limitations placed on X-ray dose.
These characteristics are naturally intrinsic to all the structures that can be
found in these images, and in particular to lung nodules, which normally appear
as local low-density rounded areas exhibiting very weak contrast against their
background. As the lack of contrast was found to be a serious drawback for
the effective use of image detection methods based on the magnitude of spatial
differences, Kobatake and Murakami [9] proposed an adaptive filter to detect
rounded convex regions, the iris filter, which evaluates the degree of convergence
of gradient vectors in the neighbourhood of the pixel of interest. This concept
was further extended to generate a class of new filters, the convergence index
filters [7,10,11], mainly differing on the region of support used for calculating
the convergence degree of the gradient vectors.
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2.1 Convergence Index Filters

The convergence index filter is based on the concept of convergence degree of a
gradient vector, which is calculated from the angle θi(k, l) of the orientation of
the gradient vector at point (k, l) with respect to a reference line with direction i.
If we consider a pixel of interest P with spatial coordinates (x, y), the convergence
index calculated in the neighbourhood of P that is the region of support of the
filter, denoted by R, is defined as the average of the convergence indices at all
M points in R, as in equation (1)

C(x, y) =
1
M

∑
(k,l)∈R

cos θi(k, l) . (1)

In [10], a set of filters belonging to the convergence index class was proposed
for detecting lung nodules candidates on chest X-ray images. In this work, the
region used for evaluating the convergence degree consists of N half-lines radi-
ating from the pixel of interest, which are defined over a circular convex region
that was established based on the expected rounded shape of the lung nodules.
When different criteria are established for selecting the points on the ith half-
line that are used for calculating the convergence index for direction i, distinct
types of filters can be obtained. The coin filter (CF ) has a fixed region of support
formed by all the points in the complete set of half-lines, while the iris filter (IF )
is an adaptive coin filter whose region of support can change in each direction.
The adaptive ring filter (ARF ) uses a ring-shaped region whose radius changes
adaptively.

The iris filter automatically adjusts the length of each radial line used for
measuring the averaged convergence index for direction i along the n pixels
(Rmin ≤ n ≤ Rmax) away from P (x, y), as defined by equation (2), aiming at
the maximization of this value. The output of the iris filter, IF (x, y), is the
average of the maximal convergence indices for the N half radial directions. A
slightly different implementation of the iris filter is presented in [2], where the
parameter Rmin also establishes the inner limit of the filter support region.

IF (x, y) =
1
N

N−1∑
i=0

(
max

Rmin≤n≤Rmax

(
1
n

n∑
m=1

cos θi,m

))
(2)

2.2 Sliding Band Filter

The new enhancement filter proposed in this paper, called sliding band filter
(SBF ), is also a member of the CI filter class as its output is also a measure of
the degree of convergence of gradient vectors. The main difference between this
new filter and the iris filter is that the SBF searches in each radial direction the
band of fixed width that corresponds to the maximum degree of convergence,
while in the IF the radial line always begins in the point of interest P and the
number of pixels can vary from a minimum to a maximal value. As in the ARF ,
the width of the band used for calculating the convergence index is equal in
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Fig. 1. Region of support of the sliding band filter

each half-line, but its position is variable in the SBF . An example of a region
of support for the proposed filter is represented in Fig. 1.

The output of the SBF at a pixel of interest P is defined by equation (3),

SBF (x, y) =
1
N

N−1∑
i=0

(
max

Rmin≤n≤Rmax

(
1
d

n+d∑
m=n

cos θi,m

))
(3)

where N is the number of radial directions leading out from P , d represents the
fixed width of the band, θi,m is the angle of the gradient vector at the point m
pixels away from P with direction i, and Rmin and Rmax represent, respectively,
the inner and outer sliding limits of the band, as illustrated in Fig. 1.

When compared with the IF , this new approach has a more selective response
for those nodules whose central region has a more random degree of convergence,
because only the band of the nodule with the highest convergence indices is
considered. Our proposal also has the advantage of being more flexible than
the ARF when the shape of nodule differs from the expected rounded area. An
original image of one lung field and enhanced images obtained with the IF , ARF
and SBF are shown in Fig. 2.

a) b) c) d)

Fig. 2. a) Original lung field image; Enhanced images using: b) IF ; c) ARF ; d) SBF

3 Detection of Lung Nodule Candidate Regions

Our approach for detecting suspicious nodular regions consists of two main
phases. The first phase aims at delineating and enhancing the lung field regions
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using the SBF described in the previous section. In the second stage, a proba-
bility value is assigned to each lung field pixel, and afterwards these two areas
are subdivided into smaller non-overlapping regions, with the goal of identifying
probable locations of nodules.

3.1 Estimation of the Lung Field Probability Mask

The enhanced image resulting from the sliding band filter is strongly influenced
by the blood vessels and bronchi that are located near the mediastinum. The
analysis of the distribution of the nodules in the images of the JSRT database,
represented in the histogram of Fig. 3a, also supports the idea that some lung
field locations can have a higher probability of allocating nodules. Based on this
assumption, a probability value is assigned to each lung field pixel according to
equation (4),

P (x) = 1 − e−axn

(1 − p0). (4)

where x is the normalized distance of the pixel to the line parallel to the orien-
tation axis of the lung field mask that limits the lung on the mediastinum side.
In this equation a, n and p0 are parameters, whose values of a = 10, n = 4 and
p0 = 0.68 were estimated from a set of randomly selected images of the JSRT
database, and validated on the remaining images. These parameter values were
chosen with the goal of minimizing the number of non detected nodules. The
pixel distances are normalized by the width of the lung field, which is calculated
as the distance between the two lines parallel to the lung field mask orientation
axis, as depicted in Fig. 3b. The probability mask calculated for this particular
lung field is shown in Fig. 3c.

Normalized lung width
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a) b) c)

Fig. 3. a) Histogram of the nodules localization normalized by the lungs width (null
distances correspond to nodules that are outside the lung field masks); b) Lung field
mask with limiting lines parallel to the orientation axis; c) Probability mask

3.2 Detection of Suspicious Nodular Regions

The original radiographic image is automatically delineated aiming at obtaining
two binary masks for limiting the lung field regions. Afterwards, the sliding band
filter is applied thus producing enhanced images similar to the one presented
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a) b) c)

Fig. 4. a) Output of the SBF; b) Watershed segmentation result; c) Output of the
algorithm showing the set of selected candidate nodules

in Fig. 2d. Each of these images is further multiplied by the corresponding prob-
ability mask described in the previous subsection.

In this new image, suspicious nodular regions are associated with local in-
tensity maxima. However, because the number of detected points is excessive,
the image is processed with a morphological watershed segmentation operator
aiming at dividing each lung field into a set of non-overlapping regions, each one
considered as a potential lung nodule candidate. For each of these areas, all the
local maximum values are discarded except the highest one, which is regarded
as a tentative center of one potential nodule. The output of the SBF for this
particular point is used for candidate nodule characterization as it can be under-
stood as the probability of being a lung nodule, while the actual filter support
region gives some indication concerning probable nodule size. The output of the
filter and the result of the watershed segmentation are presented in Fig. 4a and
Fig. 4b, respectively.

The output of our algorithm is an ordered set of candidate image areas, cor-
responding to the highest filter responses. The location of each lung nodule
candidate is coded using a color circumference, where the color identifies the
rank of the candidate in the ordered set, and the radius of the circumference is
related with the estimated size of the candidate nodule, as shown in Fig. 4c.

4 Results

The algorithm proposed in this paper was evaluated on a publicly available
database, the JSRT database [8], which is a well-known dataset that has already
been used by several other researchers. This database contains a total number of
247 radiographs, 154 with nodules and 93 without nodules. In our experiences,
from the total set of 154 nodules, 14 are excluded as they lie outside the lung
fields. From the remaining 140 radiographs with nodules, we were not able to
detect other 7 nodules, thus achieving a maximum detection rate of 86.4%. These
results were obtained with the SBF parameter values N = 256, d = 5, Rmin = 2
and Rmax = 21, which were established empirically to maximize the nodule
detection rate. The IF and ARF outputs, as well as combinations of the SBF
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Fig. 5. FROC curves for the complete JSRT database, showing the sensitivity of our
method for all nodules, for the practicable nodules (subtlety levels 3, 4 and 5 as defined
in [8]) and for the hard nodules (subtlety levels 1 and 2 as defined in [8])

and ARF outputs using the arithmetic and geometric means, were also evaluated
but the obtained detection rates were always lower than those achieved with the
SBF alone.

In order to facilitate the comparison of our results with those recently re-
ported by Schilham et al. [6], the performance of our method is presented using
Free Response Receiver Operating Characteristics (FROC) curves, measuring
sensitivity as a function of the average number of false positives per image, as
shown in Fig. 5.

The results obtained with our algorithm are quite similar to those reported
by Schilham in [6] for their basic and segmentation schemes. Despite this fact, it
is worth mentioning that the values represented in Fig. 5 are essentially a con-
sequence of the enhancement ability of the new filter in combination with the a
priori probability assignment, which greatly facilitates the subsequent segmen-
tation task used for detecting potential nodular areas. Actually, the output of the
proposed algorithm is a just set of nodule candidate regions that are intended to
be the input for a false positive reduction stage that will validate or reject each
element of this set, thus reducing the number of final probable nodular regions
to be presented to the specialist.

5 Conclusion

We have presented a method for the detection of suspicious regions that is just
the initial phase of a more complete computer-aided diagnosis system for the
detection of pulmonary nodules. The new member of the convergence index
filter class proposed in this paper, the sliding band filter, has proved to be more
selective than reported alternatives for the enhancement of nodular structures
in pulmonary images, as the filtered image can be easily segmented to produce
a reduced set of non-overlapping regions which can be associated with probable
nodule candidates. The previous assignment of a probability value to each lung
field pixel was also an important achievement to reduce the number of false
positives associated with blood vessels and other round-shaped structures.
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The algorithm was evaluated on a publicly available database, the JSRT
database, which has already been used by other researchers for the assessment
of lung nodules detection schemes. With an average of two false positives per
image, our method achieved a sensitivity of 0.45, while this value is increased to
0.55 when four false positives are accepted. These results can be considered very
promising, because we intend to use this initial set of candidates as input for a
final stage of classification that will further validate or reject each one of these
candidates as a probable lung nodule.
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Abstract. This paper presents an innovative methodology to detect the vessel
tree in retinal angiographies. The automatic analysis of retinal vessel tree facili-
tates the computation of the arteriovenous index, which is essential for the diag-
nosis of a wide range of eye diseases. We have developed a system inspired in
the classical snake but incorporating domain specific knowledge, such as blood
vessels topological properties. It profites mainly from the automatic localization
of the optic disc and from the extraction and enhancement of the vascular tree
centerlines. Encouraging results in the detection of arteriovenous structures are
efficiently achieved, as shown by the systems performance evaluation on the pub-
licy available DRIVE database.

1 Introduction

The automatic analysis of blood vessels is becoming more and more important in many
clinical investigations and scientific researches related to vascular features. The early di-
agnosis of several pathologies, such as arterial hypertension, arteriosclerosis or diabetic
retinophaty could be achieved analysing the vascular structures. The Digital Colour
Fundus Photographs here used are a non invasive and innocuous technique to obtain the
retinal vascular tree. Moreover, a specific CAD system is also necessary in large-scale
ocular screening programs to make the ophthalmologist diagnosis process more effi-
cient and accurate [1]. The retina arteriovenous index (AV index) indicates the relation
between afferent and efferent blood vessels, that is arteries and veins of the retina. This
index takes a vital priority in order to diagnose these illnesses and evaluate their conse-
quences. This paper deals with the research of a vascular tree detection system, which
would constitute the first step to allow the precise and robust AV index measuring [2].

The retinal angiographies are 2-D medical images quite problematic. The main dif-
ficulties in them are the inadequate contrast, lighting variations and remarkable noise
influence mainly due to its complex acquisition. Another drawback is the anatomic vari-
ability depending on the particular patient, affecting both the retinal background texture
and the blood vessels structure. Blood vessels particular features make them complex
structures to detect as the color of vascular structures is not constant even along the same
vessel. Their tree-like geometry is often strange and complicated, including bifurcations
and overlaps that may mix up the detection system. Nevertheless, other characteristics,
like the linearity or the tubular shape, could make the contour detection easier.

J. Martı́ et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 178–185, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Snake for Retinal Vessel Segmentation 179

As blood vessels segmentation becomes essential for several medical diagnostic sys-
tems, numerous research efforts have been done in this field. The vascular detection has
been tackled from different approaches and techniques including pattern recognition,
pixel-based approaches [3] or classification methods [4]. The contour deformable mod-
els are widely followed in vessel tracking, even combined with other techniques [6].
Even though many promising techniques and algorithms have been developed, vessel
segmentation is still an open area for more research. For further reading on retinal fun-
dus image segmentation, we refer to comparative studies as [5].

This work presents an innovative methodology, which incorporates domain specific
knowledge into the generic contour deformable model. The snake model is specialised
with the blood vessels topological properties, which determine the detection system
behaviour. We have taken a great advantage of the vascular tree graph, composed by
the vessels centerlines obtained from a creases extraction system developed previously
by a research group [7]. The system initialisation includes grayscale conversion of the
original image and re-sampling with bi-cubic interpolation to work at subpixel level in
a three dimensional space. This is very important for the arteriovenous index calculus,
where accurate and fast measures of vessel diameters are needed, as it will be shown in
the results section.

Next we will explain our vessel tree detection system, beginning with crease extrac-
tion in order to perform the deformable contour evolution.

2 Vessel Tree Detection System

Our model for the detection of the vessel tree is based on a deformable contour guided
by a vessel crease. This section will begin explaining the creases extraction process,then
the classical deformable contour model will be described. Once the theorical funda-
mentals have been presented, our particular snake model will be analysed in depth,
presenting the innovative specific features and their resulting behaviour.

2.1 Creases Extraction

A crease is a continuous area of points on the image, shaping a highest or a lowest
level in its environment. In this way, blood vessels can be considered as regions which
form an extreme and tubular level on their neighbourhood. This fact allows to locate the
vessels by using the creases position (see Fig. 1(a)). The creases extraction is essential
for the detection process, since it will determine the initial snake and act as external
energy guiding the contour expansion.

The creases image is obtained using the MLSEC-ST operator(Multilevel Set Extrin-
sic Curvature based on the Structure Tensor) as explained in [7]. The parameters wich
control the crease expansion are: confidence degree (Confidence), minimum grey level
(MinGrey), deviation of a Gaussian smoothing, and the minimum length (MinLenght).
These parameters must be fine-tuned to obtain high-quality results.

The creases extraction is a crucial and irreversible step in the snake evolution. If a
crease is not detected, the corresponding vessel will remain unsegmented. Thus, we
have enhanced the creases image by exploiting an existent tool, part of a biometric au-
thentication system from our research group [8]. The feature points (ridge endings and
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(a) (b)

Fig. 1. Creases image: (a) A retinal image with its creases overlapped in white, corresponding to
the vessel centerlines. (b) Creases image enhanced in terms of continuity.

bifurcations) obtained with this system are adequately connected to get rid of disconi-
nuites along the centerline that guides the snake advance properly(see Fig. 1(b)).

Once the creases were introduced, we will see how they will be used in our snake
model.

2.2 Deformable Contour Model

Our approach is based on the deformable contour model, also called snake model, pro-
posed by Kass et al. [9] to segment objects in 2-D images. A snake is a parametric curve
which can evolve to fit the shape of the desired structure and it may be represented by
v(s) = (x(s),y(s)), where s is the arc length. Once placed on the image, this curve per-
forms an iterative contour adaptation in order to minimise its global energy defined as
the sum of the internal and the external energy. The internal energy controls to the snake
flexibility and elasticity and the external energy corresponds to the forces that drive the
snake towards the edges of the shape to locate. The contour deforms under the influ-
ence of internal and external forces until it reaches the minimum of its global energy
function.

This deformable contour can be seen as a polynomial closed contour composed by
linked nodes. This particular snake model will not consider the internal energy as the
vessel shape may be very tortuous. Based on the external energy, three possible node
states are defined : normal, crease and edge. The nodes in the crease state are located in
the vessel crease and they make the snake to advance along the vessel center line. The
positions close to vessel boundaries are occupied by nodes in the edge state that tend
to become stable when reaching the vessel edge. The rest of nodes are in the normal
state and they contribute to the snake expansion in an intermediate direction. Thus, the
external energy affecting the snake will be defined as a set of energies and weighting
factors:

εext = γεedge + δεcres + νεdir + σεmark + ωεdi f (1)

The first term εedge corresponds to the edge distance energy calculated by assigning to
each point its euclidean distance to the nearest edge obtained with the Canny Filter [10].
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This energy helps the snake advance of nodes close to vessel boundaries but it also
stops them when they reach an edge point . The second term εcres corresponds to the
creases distance energy obtained from the crease image just in the same way as for
the edges. This energy drives the snake along the arteriovenous structure and blocks it
if a maximum distance threshold is reached. The inflate pressure εdir is the strongest
expansion force of the snake. Each node has one assigned direction that determines the
three adjacent possible positions to choose the one with the lowest energy. The fourth
term εmark is the marker energy to ensure that self overlapping or turning back never
happens. The difference energy εdi f reinforces the precision of the snake expansion as
it hints the nodes to occupy positions different from its neighbours situations.

2.3 Contour Evolution

Once introduced the energy functions influencing the snake, we have to deal with the
snake initialisation.

Firstly, the creases and edge images and energy maps are calculated on the origi-
nal re-sampled image. Next, a circumference surrounding optical nerve is traced either
automatically by an integrated tool developed by a research team [11] or manually,
and then the intersections of creases and this circumference are directly obtained (see
Fig. 2). A unique snake is created, which corresponds exactly with the previously traced
circumference and it is composed by inactive nodes, except those placed close enough
to the intersection with creases, called seed nodes.

After its initialisation, the snake evolves following a deterministic and iterative al-
gorithm to minimise these energy functions locally (see Fig. 2). Each active node tries
to move towards a lower energy position until it becomes irreversibly inactive when
arriving to an edge or due to the control operations that will be described below. The
system execution automatically ends when all nodes are inactive, that is, when the snake
reaches the stability. To completely segment the vascular structure, the snake grows by
new active nodes insertion considering an euclidean distance threshold.

At a given moment, the snake nodes have a position in the image space and an as-
signed node state: edge, normal or crease. The nodes in the edge state are near vessel
boundaries, so they are supposed to be soon stabilised when arriving to an edge point.
Naturally, the most significant energy term for edge nodes is the edge distance εedge.
These weights are similar for normal state nodes, as they are expected to become edge
nodes, except in situations such as bifurcations. The crease state is assigned to cen-
tral nodes, that are in charge of the snake advance along the vessel centerline. There-
fore, they are strongly influenced by the inflate pressure and the crease distance energy
terms. These behaviour is modeled by sets of energy term weights associated to each
node state. The energy for each possible node movement is calculated considering the
energy terms values associated to the position and the weights associated to the node.
Iteratively, each vertex is moved according to forces that work on it, that is towards
the local minimum energy situation. Consequently, the whole contour expands and the
snake flows inside the vessel covering the vascular branch.

In addition, we perform control operations derived from vessel structural features(see
Fig. 3). These control operations work considering the snake as composed by sequences
of consecutive active nodes, called forward fronts. Each front is forced to have exactly
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Fig. 2. Snake Evolution: Selection of centre and radius to trace a circumference around the optical
nerve (left). Calculation of intersection points of the vessel creases and the selected circumference
(center). A circular snake is created whose seed nodes begin to adapt the contour to the vessels
(right).

one crease node and the total number of nodes is also periodically checked. When a
front becomes too large, all its nodes are inactivated and the snake contour slightly
shrinks, since it is considered as a flood (see Fig. 3(a)). The nodes of very small fronts
are also inactivated, as this situation corresponds to an small edge discontinuity (see
Fig. 3(c)). At this point, we have to estimate two critical parameters as references to
evaluate the front size : the maximum and the minimum vessel width(see Fig. 3). A
too high maximum vessel width may increase the floods (see Fig. 3(a)), but a too little
one could block the snake in a bifurcation (see Fig. 3(b)). The minimum width is also
critical: if it is too big, thin vessels are not detected (see Fig. 3(c)), but if it is extremely
small, it lets the nodes to get through to every edge discontinuity (see Fig. 3(d)).

(a) (b) (c) (d)

Fig. 3. Influence of Vessel Width Parameters: The snake contour (in black) presents active nodes
(as circles) and inactive nodes (as black squares). A large maximum vessel width may cause huge
floods (a), but a small one, could stop the snake at vessel bifurcations (b). If the minimum vessel
width is too high, the snake will not go into thin vessels (c). Nevertheless if it is too small, the
snake will go through every edge discontinuity (d).
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3 Results

This paper ends reporting results of vessel segmentation obtained by our snake model
on medical images from the publicy available DRIVE database [12]. The test set here
used contains 20 JPEG compressed images acquired using a Canon CR5 non-mydriatic
3CCD camera with a 45 degree field of view (FOV). Originally, the images were of size
768x584 and 8 bits per color plane but we converted them into bigger grayscale images
(256 gray levels) of 1064x1100 pixels. The manual segmentation results and the FOV
mask images for computating the performance measures (see Table 1) were provided
toghether with the DRIVE database.

(a) (b)

Fig. 4. Vessel detection results

In the initialisation, the centre and the radius to get the intersection points have been
defined on each image. The creases extractor parameters have been selected consid-
ering the characteristics of these images and the indications found in [7]. The snake
parameters have been empirically adjusted to be quite suitable for all images.

Regarding to the efficiency, we just intend to show rough time need estimations of
the detection system as no exhaustive optimization effort has been done. The model has
been implemented in C++ and executed on a PC with two Pentium4 processors (1GHz)
and 1Gb memory. The optic disc automatic detection has been excluded from time costs
because it is still being improved and optimized.

After perform time measurements in three executions for each image, the average
value obtained for the whole vessel detection process (Ttotal) is 32.2 seconds (see
Table 1). Almost half of this time (41.5%) is spent in resampling the image to double
size using bicubic interpolation (Tres). The creases extraction and enhancement(Tcr) is
the second step in duration, as it roughly represents the 28.4% of the whole process. An-
other critical step is obtaining the edges (Ted) since it needs approximately the 14.9%.
Calculating the energy images takes a time directly proportional to the distance limit
selected, a value of 5 pixels was used. The snake evolution itself (Tsnk) is here com-
pleted in just 4.9 seconds (15.2%), after an average of 2040 iterations. Although this



184 L. Espona et al.

Table 1. Left: Average execution times in seconds for the proposed vessel detecion model. Tres

corresponds to double size resampling. The extraction is Tcr for creases and Ted for edges. The
snake evolution is represented by Tsnk. Ttotal is the whole segmentation process time. Right:
Average performance of our snake model (Snake) and an independent observer (2ndOb.), with
the same human segmentation as ground truth.

Time Costs
Tres Tcr Ted Tsnk Ttot

13.3 9.1 4.8 4.9 32.1

Accuracy Sensitivity Specifity
Snake 0.9316 0.6634 0.9682
2ndOb. 0.9486 0.7732 0.9726

step now presents an even shorter duration, the snake parameters still have a significant
incidence on it as they affect the number of nodes, hence the calculations per iteration.

The system performance mesures (see Table 1) consider only the FOV region without
the optic disc. They are defined as follows:

Accuracy =
T P+ TN
#pixels

; Sensitivity =
TP

T P+ FN
; Speci f ity =

T N
T N + FP

; (2)

where T P represents the true positives, T N the true negatives, #pixels the number of
pixels in the image, FP the false positives and FN the false negatives. The system
performance results are very satisfying in terms of accuracy and specificity, using the
manual segmentation of the first observer as ground truth. Compared with the second
observer results needing 2 hours for each image, this system achieves an accurate seg-
mentation in a very short time (about 32 seconds). The sensitivity values are not so
high because of very thin vessels, in fact a sensitivity increment has been obtained in
some draft tests omitting them. As explained in next section, these thin vessels are not
particularly relevant for the AV index estimation.

4 Conclusions and Discussion

In conclusion, we have developed an innovative methodology to segment the vessel
tree on retinal angiographies. The classical snake model is here redefined with the in-
corporation of domain specific knowledge and information from the vascular tree graph
obtained from a creases extraction system.

The reported performance results are very encouraging (see Table 1), as the remark-
able accuracy and specifity shows. Just the sensitivity of the system is not so high due to
unsegmented very thin vessels. This drawback could be partially solved by a dynamical
tuning of the vessel width parameter. Actually, thin vessels are not very important in
the detection process since the accuracy required for ophthalmologists is quite low. In
fact, they are only interested on main vessels detection to calculate the AV index.

A extreme efficiency in terms of execution time cost has been already achieved even
resampling the images (see Table 1), compared with the tedious and long manual detec-
tion (about two hours each image). Other state-of-the-art segmentation methods obtain
better accuracy values but the time costs are much higher. Even the performance is not
exactly equally calculated Soares et al. [4] achieved an accuracy of 0.9466 but spending
more than 3 minutes for each image, appart from the training time. Mendoça et al. [3]
results need about 2.5 minutes considering just the algorithm for an accuracy of 0.9463
and Staal et al. [12] get an accuracy of 0.9441 in 15 minutes for image. Our system
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reaches an average accuracy of 0.9316 in just 30 seconds, because it does not need to
perform any complicated image preprocessing and it only handles one snake instance
for the whole vascular tree. This short execution time for image, makes it suitable for
real-time applications.

Our researching efforts are now mainly focused on automatically tuning the parame-
ters depending on the image and on enhancing and optimising the energy minimisation.
This system can be used in other applications related to retinal or vascular pathologies.
To set an example, removing the vessel tree detected could make easier the location of
retinal background lessions.
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based on Feature Extraction and Optic Nerve Location in Digital Retinal Images Wseas
Transactions on Computers, vol. 5(6), pp. 1169–1176 (2006)

9. Kass, M., Witkin, A., Terzopoulos, D.: Active Contour Models. International Journal of
Computer Vision 1(2), 321–331 (1998)

10. Canny, J.A: Computational Approach to Edge-Detection. IEEE Transactions on Pattern
Analysis and Machine Inteligence 8(6), 679–689 (1986)

11. Blanco, M., Penedo, M.G., Barreira, N., Penas, M., Carreira, M.J.: Localization and Ex-
traction of the Optic Disc using th Fuzzy Circular Hough Transform Artificial Intelligence
and Soft Computing. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 713–721. Springer, Heidelberg (2006)

12. Staal, J.J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based
vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23,
501–509 (2004)



Risk Classification of Mammograms Using

Anatomical Linear Structure and Density
Information

Edward M. Hadley1, Erika R.E. Denton2, Josep Pont3, Elsa Pérez3,
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Abstract. Mammographic risk assessment is concerned with the proba-
bility of a woman developing breast cancer. Recently, it has been suggested
that the density of linear structures is related to risk. For 321 images from
the MIAS database, the images were segmented in to dense and non-dense
tissue using a method described by Sivaramakrishna, et al. In addition, a
measure of line strength was obtained for each pixel using the Line Oper-
ator method. The above-threshold linearity was calculated in dense and
non-dense tissue for each image and the images were then classified by
BIRADS class using linear discriminant analysis. The results show a
marked improvement when both density and linear structure information
is used in classification over density information alone.

1 Background

Mammographic risk assessment is concerned with estimating the probability of
women developing breast cancer. Risk assessment is a rapidly developing area
of research and can provide an indication of when to recommend more frequent
screening, which has been shown to improve the likelihood of the early detection
of breast cancer [1]. Breast density is an important indicator of mammographic
risk [2] and the best predictor of mammographic sensitivity [3]. However, more
recently, it has been suggested that the distribution of linear structures is also
correlated with mammographic risk [4,5,6]. So far it is not entirely clear if it is
just the density of linear structures (either by percentage area or volume) or if
the distribution of the linear structures plays a role as well.

Tabár et al. have proposed a mammographic risk assessment model based on
four structural components, where the relative proportions of each component is
linked to the risk of developing breast cancer [4,5,6]. One of the four structural
components is linear density. The main purpose of this work is to investigate if
automatic methods can be used to correlate the density of linear structures to
mammographic risk classification metrics.
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2 Method

Three hundred and twenty-one mammographic images from the Mammographic
Image Analysis Society (MIAS) database [7] were classified according to BIRADS
classes [8] by three expert radiologists. Example images of low, moderate and
high risk mammograms are shown in Fig. 1 (a).

(a)

(b)

(c)

Fig. 1. Some typical mammograms of various BIRADS classes. The left column shows
a mammogram of BIRADS class 1 (low risk), the second column shows a mammogram
of BIRADS class 2 (low–moderate risk) and the third column shows a mammogram of
BIRADS class 3 (moderate–high risk), and the final column shows a mammogram of
BIRADS class 4 (high risk). The images in row (a) show the original mammograms,
row (b) shows the results of density segmentation (non-dense tissue is shown in white),
and row (c) shows the results after processing with the line operator. The images have
had a mask applied to remove everything outside the breast area. The lines in (c) have
been enhanced for viewing.

All 321 images were initially segmented using a method described by Sivara-
makrishna, et al. [9], which is based on Kittler and Illingworth’s Minimum Error
Thresholding [10] (see Sec. 2.1). This produced masks identifying the dense tis-
sue in the image and allowed for the consideration of linear structures in each
tissue type independently. Examples of density masks produced are shown in
Fig. 1 (b).

In addition, the images were processed using Dixon and Taylor’s line operator
method [11,12] (see Sec. 2.2), producing a measurement of line strength at each
pixel. Fig. 1 (c) shows examples of low, moderate and high risk mammograms
following processing with the line operator.
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Finally, the images were classified in BIRADS classes using linear discriminant
analysis (see Sec. 2.3) based on the features extracted from the processed images
and the results analysed.

2.1 Density Segmentation

The dense tissue was segmented from the non–dense (fatty) tissue using a method
described by Sivaramakrishna, et al. [9], which is based on Kittler and Illing-
worth’s Minimum Error Thresholding [10].

The method involves creating a variation image from the source image, which
is then used as input to the Minimum Error Thresholding algorithm to produce
an approximation of the dense tissue area. If the Minimum Error Thresholding
algorithm were to be performed over the original image, the algorithm would
place all bright areas of the image above the threshold. This would include dense
tissue, but also smaller bright structures such as ducts and vessels. The purpose
of the conversion to a variation image is to suppress small bright structures
whilst enhancing large bright areas.

The variation image is used as the source image for Kittler and Illingworth’s
Minimum Error Threshold algorithm [10]. This algorithm involves calculating a
criterion function for each grey level value and finding its minimum. This is a
relatively straightforward computation. The criterion function minimum J was
found for each image and its corresponding value was used as the threshold for
segmenting the variation image. A tissue mask was produced in order to easily
identify the dense tissue areas in subsequent calculations. Some examples of the
images and their resultant dense tissue masks are shown in Fig. 1(b).

The results of this segmentation produced two values used in later calcula-
tions:

– the total number of pixels in dense tissue: Ad,
– the total number of pixels in fatty tissue: Af .

2.2 Line Detection

The method of line detection is based on that used in previous work [13]. A study
of various methods for detecting linear structures in mammograms showed that
Dixon and Taylor’s line operator [11] is more accurate than other methods [12].
As such, the line operator was used in our experiments. The method produces
a measure of line strength and orientation for each pixel in an image.

A multi-scale approach was used in order to detect lines of a range of thick-
nesses and the resultant images were combined to produce line strength values for
pixels at the original scale. Scaling of the images was achieved firstly by blurring
the image using a 3x3 Gaussian kernel and subsequently by subsampling to pro-
vide a resultant image of half the width and height of the original. Our approach
comprised processing with the line operator at three scales, since this appeared
to produce the most reasonable output for the images under examination.

Finally, the pixel line strengths were thresholded to remove background tex-
ture. Using a line length of 5, the measures of line strength fall in the theoretical
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range of 0−204, however the results showed that most (if not all) pixels had line
strength values in the range 0 − 30. A range of threshold values were chosen ex-
perimentally, and 4/204 was finally selected for our analysis as it removed most
background noise whilst maintaining most of the linear structure information.

When considered alongside the density mask produced by the density seg-
mentation method described in Sec. 2.1 two further values were produced for
use in further calculations:

– the number of pixels with above-threshold linearity in dense tissue: Ld,
– the number of pixels with above-threshold linearity in fatty tissue: Lf .

2.3 Classification

The BIRADS [8] metric uses a scale of four classes, where class 1 represents a
low risk and class 4 represents a high risk.

Classification was conducted using linear discriminant analysis, which takes
several factors as predictors and attempts to classify each mammogram in to
BIRADS classes. Classification was conducted three times – firstly using density
information only, secondly using linear structure information only, and a third
time using both density and linear structure information.

Linear discriminant analysis uses one or more predictors, which are used to
attempt to distinguish between objects of the various classes. In the classification
based on density information, the following values were used as predictors:

Ad

Ad + Af
, log

Ad

Ad + Af
. (1)

During experimentation it was found that adding the log of the value as
an additional predictor increased the performance of the classifier. It can be
assumed that the log function accentuates the lower parts of the scale where
most of the mammograms lie, producing greater separation between classes. The
classification based on linear structure information used the following values as
predictors:

Ld

Ad
,
Lf

Af
, log

Ld

Ad
, log

Lf

Af
. (2)

The classification based on both linear structure and density information uses
a single classifier which incorporates all of the above six values as predictors
(i.e. the predictors from both the density classification and linear structure clas-
sification are used in the third classification).

Results of each classification are shown in table form, including the proportion
of correct classifications and the kappa (κ) coefficient [14,15]. The κ coefficient
is a means of estimating agreement in categorical data, and is given by

κ =
P (D) − P (E)

1 − P (E)
(3)

where P (D) is the proportion of correct classifications and P (E) is the pro-
portion expected by chance. Since the κ coefficient is a means of estimating
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agreement in categorical data, and can be used to assess the performance of
the classification. A list of common interpretations of κ values is shown in
Table 1 [15].

Table 1. Common interpretations of κ values [15]

κ Agreement
< 0 Poor

0 − 0.20 Slight
0.21 − 0.40 Fair
0.41 − 0.60 Moderate
0.61 − 0.80 Substantial
0.81 − 1.00 Almost Perfect

3 Data

The method was applied to 321 mammograms from the Mammographic Image
Analysis Society (MIAS) database [7]. This database is composed of left and
right mammograms from 161 women digitised into 50μm × 50μm pixels.

The 321 mammograms were annotated by three expert radiologists according
to the BIRADS risk classification metric. Consensus between the annotations of
the three individual radiologists was used, as is common in screening mammog-
raphy, in order to improve the reliability of the annotations.

Where disagreement occurred between the experts, the consensus was deter-
mined using the following strategy: where two out of three radiologists agree,
the majority value was used, and where all three experts disagreed, the median
value was used. Of the 321 mammograms, all three experts agreed in 138 cases,
two experts agreed whilst a third disagreed in 171 cases, and in 12 cases all three
experts disagreed.

4 Results

4.1 Classification Based on Density

Results of linear discriminant analysis by BIRADS class based on density infor-
mation are shown in Table 2. The results indicate a 66% accuracy in classifying
the mammograms. The κ coefficient indicates moderate agreement between the
classified results and the true classes.

4.2 Classification Based on Linear Structures

Results of linear discriminant analysis by BIRADS class based on linear struc-
ture information are shown in Table 3. The results indicate a 67% accuracy in
classifying the mammograms. The κ coefficient indicates moderate agreement
between the classified results and the true classes.
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Table 2. Classification results by BIRADS class based on density information

True Class
1 2 3 4

Placed Class

1 62 14 2 0
2 18 57 19 4
3 4 28 68 9
4 3 4 5 24

Proportion correct 0.713 0.553 0.728 0.649
Total prop. correct 0.657

κ coefficient 0.54

Table 3. Classification results by BIRADS class based on linear structure information

True Class
1 2 3 4

Placed Class

1 68 10 7 1
2 9 71 27 0
3 9 19 50 9
4 1 3 10 27

Proportion correct 0.782 0.689 0.532 0.730
Total prop. correct 0.673

κ coefficient 0.56

4.3 Classification Based on Linear Structures and Density

Results of linear discriminant analysis by BIRADS class based on a combination
of density and linear structure information are shown in Table 4. The results indi-
cate a 72% accuracy in classifying the mammograms. The κ coefficient indicates
a substantial agreement between the true classes and the placed classes. These
results show that a combined approach is superior to using a single component.

Table 4. Classification results by BIRADS class based on density and linear structure
information

True Class
1 2 3 4

Placed Class

1 70 12 2 1
2 12 73 25 0
3 2 15 60 9
4 3 3 7 27

Proportion correct 0.805 0.709 0.638 0.730
Total prop. correct 0.717

κ coefficient 0.62

5 Discussion and Conclusions

The results are promising and show a substantial improvement between classifi-
cation using density information and classification using combined information,
leading to the conclusion that linear structure information is valuable in the
automatic risk classification of mammograms.

An alternative approach to the analysis might be to look at whether the
mammograms are correctly classified in to high/low risk groups. Results of this
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analysis for combined density and linear structure information are shown in
Table 5. We can see that the classifier provides 84% correct high/low classifica-
tion (κ = 0.79) based on both density and linear structure information.

Table 5. Classification results by BIRADS class based on density and linear stucture
information summarised as low (classes 1-2)/high (classes 3-4) groups

True Class
Low High

Placed Class Low 167 28
High 23 103

Proportion correct 0.879 0.786
Total prop. correct 0.841

κ coefficient 0.79

A comparison with with other methods described in literature shows that
the proposed method performs well, achieving 72% correct classification.
Oliver, et al. [16] performed texture–based classification by BIRADS class on
the MIAS images used in this analysis. This classification achieved 66% accuracy
when classifying the images without prior segmentation. Results were improved
significantly to between 79% and 82% correct classification when the images
were segmented in to regions prior to the texture analysis as first suggested by
Karssemeijer [17].

The alternative classifications described in literature suggest that texture–
based classification with prior segmentation performs better that density–based
segmentation. As such, it is intended for future work to investigate classifica-
tion based on this approach combined with linear structure information. The
combination technique used was a straightforward one, however optimisation
techniques exist which may provide improved results for the combined classifi-
cation.

A number of problems were found with the density segmentation method.
Some images produced criterion function graphs that were not bimodal, having
either zero or multiple minima. In addition, spurious values at the edges of the
criterion function curves (caused by, for example, an image having no pixels with
a greyscale value of 255) leading to false minima were initially a problem. This
was overcome by selecting the lowest minimum where multiple minima occurred,
and as a result of observations, by classifying the whole area as non-dense tissue
where no minima occurred.

The segmentation was also found to be heavily dependent on the area used
for segmentation, since if too much background area was included, in many non-
dense breasts the threshold was placed between the background tissue and the
breast tissue, resulting in the whole of the breast area being classified as dense
tissue. To overcome this, a threshold was set and all pixels with greyscale values
below this threshold were ignored. This effectively removed any surrounding
background tissue from the analysis.

For the purposes of a comparison between density, linear structure and com-
bined information the methods used were adequate, however more accurate
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methods for the segmentation of dense tissue and classification have been demon-
strated [16]. The results shown demonstrate that the inclusion of linear structure
information improves automatic risk classification.
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Abstract. In this paper we propose a new matching method for occu-
pancy grid-maps under the perspective of image registration. Our ap-
proach is based on extracting feature descriptors by means of a polar
coordinate transformation around highly distinctive points. The pro-
posed method presents a modest computation complexity, although it
can find matchings between features reliably and regardless their orien-
tation. Experimental results show the robustness of the estimates even
for dynamic environments. Our proposal has important applications into
the field of mobile robotics.

1 Introduction

Occupancy grid-maps, introduced into the robotics community two decades ago
[1], are a very valuable representation for map building applications of planar
environments [2]. In this representation, the space is arranged in a metric grid of
cells that store the probability of that area being occupied by some obstacle. A
recent trend in map-building research is to consider hierarchical models, where
each node within a topological graph represents a local metric map [3]. A critical
issue for this paradigm is to detect when two local maps correspond to the same
physical place, and, in that case, to compute the relative transformation between
those maps. Solving this problem is crucial for the consistency of the mapping
process. The aim of the present work is to provide a solution to this problem
from an image registration viewpoint when local maps are occupancy grid-maps.

Occupancy grids can be naturally interpreted as grayscale images (called here
map images), where cells in the grid correspond to pixels in the image, thus by
registering the images we obtain the spatial transformation between the maps.
Image registration techniques can be straightforwardly grouped into intensity-
based ones, and those based on feature extraction (see [4] for a review). Al-
though the former approach has been already applied to grid-map matching [2],
an approach based on feature extraction, as the one presented here, is less com-
putationally expensive, becoming more appropriate for being integrated into a
real-time mapping framework.

Our overall approach consists of the following three steps: (i) feature-point
detection in the map images and extraction of their descriptors, (ii) estimation
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of the likely correspondences between features, and (iii) robust estimation of the
rigid transformation between the maps. Since the cell size of all the maps can be
set to any fixed value, there are not differences in scale in this problem. Taking
this into account, in this paper we propose a new descriptor and an associated
method for finding correspondences that are able to efficiently and robustly solve
correspondences between feature points in map images of arbitrary orientation.
Other previously proposed descriptors in the literature, in spite of being very
useful for dealing with real images taken from cameras, become unpractical here
due to different reasons:

– The Scale Invariant Feature Transform (SIFT) descriptor, introduced in [5],
implies much more computation effort than required for the problem ad-
dressed here, since it achieves scale invariance by constructing a pyramid of
auxiliary sub-sampled images.

– In [6] it is presented a descriptor that, although based on polar coordinate
transformation like ours, proposes an additional step for extracting moments
from the Fourier transform. However, we have experimentally verified that
this method is not as well suited as ours to effectively discriminate between
features typically found in map images.

– In [7] it is proposed to take Gaussian derivatives as descriptors, in the con-
text of developing an affine invariant descriptor. We believe that the low
dimensionality of the descriptor proposed there is not appropriate for the
highly ambiguous features in map images.

In the next section we describe our proposal for a feature point descriptor
in map images. Next, section 3 describes the associated methods for measuring
the degree of matching between a pair of features and how to robustly estimate
the map displacement from those matchings. Finally, in section 4 we provide
experimental results for different map matching situations, all of them employing
real data.

2 The Cylindrical Descriptor

We assume that a set of N feature points ϕ = {p1, ...,pN} has been extracted
from a map image using any appropriate method with a good repeatability. In
this work we employ the method proposed by Shi and Tomasi [8], although using
other methods, like the Harris corner detector [9], leads to similar results.

Once a feature point pa = [xa ya]T has been localized, we define its associated
descriptor fa as a mapping of the annular area around the feature point into the
two-dimensional space of polar coordinates r and θ (refer to Fig. 1). Notice that the
cylindrical topology of this transformed space can be interpreted as a “panoramic
image” of the neighborhood of the feature point, as shown with an example in
Fig. 1(c)–(d). Hence it is clear that a rotation in the grid-map becomes a rotation
of the cylindrical image around the θ axis. Here we consider radial distances only
within the range [Rmin, Rmax], e.g. from 0.10 to 1.50 meters, and implement the
descriptor as a Nr × Nθ matrix with dimensions Nr = (Rmax − Rmin)/Δr and
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Nθ = 2π/Δθ, provided the desired spatial and angular resolutions Δr and Δθ,
respectively. The value of the descriptor for each pair (i, j) in the range [0, Nr −
1]×[0, Nθ−1] is given by integration over the corresponding annular sector (please,
refer to Fig. 1(a)–(b)):

fa[i, j] =

φj+1∫
φj

ri+1∫
ri

m

([
xa + r cos θ
ya + r sin θ

])
drdθ (1)

ri = Rmin + iΔr

φj = jΔφ

where m(x) represents the contents of the map at the 2D point x. Notice that,
in practice, the above integration can be computed through a Monte-Carlo ap-
proximation, where a number of points within the integration area are evaluated
with sub-pixel precision by straightforward cubic interpolation.
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θ
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Fig. 1. (a)-(b) The geometry of the descriptor proposed in the text, which maps the
circle around the feature into a cylindric space. An example is shown in (c)-(d).

3 Map Matching

3.1 Measuring the Degree of Matching Between a Pair of
Descriptors

As a motivating example, please consider the pair of features detected in the
maps of Fig. 2(a)–(b), which correspond to the same physical point. The as-
sociated descriptors are shown in Fig. 2(c). It is clear that their cylindrical
descriptors will be very similar for some shift in θ if the features represent a valid
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correspondence. In this particular example that shift is 214o, and the similarity
between the conveniently rotated descriptors is patent in Fig. 2(d). Hence we
propose to measure the degree of matching d(fa, fb) for a pair of descriptors fa

and fb through the minimum Euclidean distance between the descriptors, taken
over all possible rotations:

d(fa, fb) = min
j0∈[0,Nθ−1]

Nr−1∑
i=0

Nθ−1∑
j=0

(fa[i, j] − fb[i, (j − j0) mod Nθ])
2 (2)

Once a matching measure is defined for pairs of features, it must be addressed
how to obtain the whole set of correspondences C = {C1, ..., Ck}, where each
correspondence Ci = 〈ai, bi〉 consists of a pair of feature indexes ai and bi, one
from each map. When (2) is evaluated for a fixed feature in the first map and all
the features in the other, we expect to obtain a low distance (a good matching)
only for a few (ideally only one) of the possible correspondences. An example is
shown in Fig. 2(f), where the correct correspondence is clearly differentiated from
the rest of associations. Provided that a robust association step will be applied
next, it is not a problem to establish at this point more than one correspondence
for each feature, thus the following compatibility test will be sufficient for finding
the set C.

Firstly, the matching of fa with the candidate fb must be sufficiently differen-
tiated from the rest. This condition can be formulated as the distance d(fa, fb)
to be below a dynamic threshold τd = μ − κσ, where μ and σ are the mean and
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Fig. 2. Two maps of the same environment are shown in (a)–(b), while the descriptors
corresponding to the highlighted features are shown in (c) and (d), for a shift in θ of
0o and 214o, respectively. The matching distance between those features is plotted in
(e) for all the possible rotation angles, and in (f) it is shown the minimum distance
between the feature f1 and all the features in the second map, from where the right
correspondence is clearly revealed.
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standard deviation, respectively, of the evaluation of d(fa, fj) for all the possible
values of j. The selectivity of this threshold is controlled by the parameter κ.
Any value in the range 1.5-3.0 is appropriate for most situations, although the
higher its value, the more demanding we are in accepting a correspondence, at
the cost of finding less of them. Secondly, to cope with features without a valid
correspondence, we must set a fixed threshold τf for the maximum distance
between descriptors to be accepted as a correspondence. This parameter, deter-
mined heuristically, has been set to 0.07 for all the experiments in this paper.
This algorithm is summarized in Table 1.

Table 1. The algorithm for finding compatible correspondences between maps

algorithm findCorrespondences(m1 , m2) �→ C
C = ∅
for each fi ∈ m1

μ = Ej{d(fi, fj)} ; Mean and standard deviation, where

σ =
√

Ej{(d(fi, fj) − μ)2} ; j spans over all features in m2

τd = μ − κσ ; Compute the dynamic threshold
for each fj ∈ m2

if d(fi, fj) < min(τd, τf ) ; Compatibility test
C = C ∪ 〈i, j〉 ; Accept the correspondence

end

3.2 Robust Estimation of the Rigid Transformation Between Maps

Given any set of correspondences, it is well known that a closed-form solution
exists for finding the rigid transformation between the maps that is optimal, in
the least-minimum-square-error (LMSE) sense [10]. Let this method be denoted
by T (Ci) �→ xi, where xi = [xi yi φi]T is the optimal transformation according
to correspondences Ci. However, applying this estimation directly to the whole
set of detected correspondences is not convenient, since a wrong correspondence
may lead to a large error in the estimated transformation. That is the reason why
we propose here an additional RANSAC-based [11] step for robustly estimating
the map transformation, what is described in Table 2. In short, we randomly
choose a pair of correspondences (the minimum number required), and then all
the correspondences that are consistent with the initial estimation are included,
providing a robust estimate xi. Since the choice for the pair of initial corre-
spondences is determinant for the rest of accepted ones, we repeat this process
a number of times M , each time with a randomly chosen initial pair of corre-
spondences. Additionally, only those sets of correspondences of a minimum size
Cmin (e.g. 8 correspondences) are considered, achieving improved consistency in
the results. In this way, we obtain a set of robust estimates X = {xi}L

i=1. If we
assume the correspondence between features to be an unknown random variable,
this set X can be interpreted as a sample-based (Monte-Carlo) approximation
to the probability density of the map transformation, which can be used, for
example, for fitting a Gaussian distribution for the maps transformation.
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Table 2. The method for robustly estimating the transformation

algorithm robustEstimation(C) �→ X
X = ∅
for i = 1..M do ; Repeat the simulation M times.

randomly choose Ci = {c1, c2} ⊂ C, such as c1 
= c2

xi = T (Ci)
for each cj ∈ C − Ci

if ‖T (Ci ∪ cj) − xi‖ < τ ; If the new estimation is consistent
Ci = Ci ∪ cj ; according to a given threshold τ ,
xi = T (Ci) ; accept the correspondence cj .

if |Ci| ≥ Cmin

X = X ∪ xi

end

4 Experimental Results and Conclusions

We have applied our method to two pairs of maps obtained from real data gath-
ered by a mobile robot in the same physical places, but at different times. As
shown in Fig. 3, the pairs of image maps contain some differences, especially the
pair in Fig. 3(a) where several pieces of furniture were moved within the room.
The computed map transformations are shown in Fig. 3(c)–(f). It is noticeable
the high robustness when establishing correspondences, what is reflected in the
low uncertainty of the estimations: below 15 cm. for the translation, and less than
2 degrees for the orientation. The estimation process takes 600ms and 807ms for
the two pair of maps, respectively, for a number of simulations M = 5000. We
have also intensively tested the performance of our approach against two kinds
of realistic errors that can appear in occupancy grids built from range scans [2]:
errors in the ranges themselves, and in the localization of the sensor within the
map. Both errors have been simulated by additive Gaussian noise, characterized
by σrange and σpose, respectively. In this experiment we have arbitrarily cho-
sen a map as reference and synthetically generated a test map with a known
transformation of (Δx, Δy, Δφ) = (1m, 2m, 45o) to compute the mean errors
achieved by our method, both in translation εXY and in orientation εφ. Errors
have been computed for a set of different error levels σrange and σpose. We have
also contrasted our estimation with that from the LMSE method applied on the
whole set of correspondences. All these results are summarized in Fig. 4, where
it should be highlighted the small absolute errors achieved over the wide range
of noise levels and for both kind of errors, in the range values, Fig. 4(d)-(f), and
in the poses, Fig. 4(g)-(i). In all the cases the mean errors are below 10 cm. and
0.5 degrees. In comparison with the LMSE estimate, our method achieves an
improvement of above one order of magnitude, clearly justifying the integration
of the robust step in the process.

We have also computed the estimation based on the normalized cross cor-
relation (NCC) for comparison purposes (see Fig. 4(j)), where it is clear that
the maximum value of the NCC reveals the transformation between the maps,



200 J.-L. Blanco, J. Gonzalez, and J.-A. Fernandez-Madrigal

(a)

-2.8 -2.75 -2.7 -2.65 -2.6 -2.55

-0.6

-0.55

-0.5

-0.45

-0.4

x (m)

y (m)

93 93.5 94 94.5 950

0.1

0.2

0.3

0.4

0.5

0.6

0.7

φ (deg)
(c) (d)

(b)

-1.64 -1.62 -1.6 -1.58 -1.56 -1.54
1.37

1.39

1.41

1.43

1.45

1.47

x (m)

y (m)

-28.7 -28.5 -28.3 -28.10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

φ (deg)
(e) (f)

Fig. 3. Matching results from our method for two pairs of real maps, shown in (a)–
(b). The samples obtained from the estimation process are shown in (c)–(f), where the
estimated translations and orientations have been separated for ease of visualization.
Gaussian fit is shown for the translation estimations and a 95% confidence interval.
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Fig. 4. (a) The reference map, which is displaced and corrupted with noise in sensor
measurements (b), and in the sensor localization (c). (d)-(i) Show the performance
of our method for different levels of noise. The result from NCC (for a fixed value of
Δφ = 45o) is shown in (j), whereas (k)-(l) show the samples obtained from our method,
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but it also assigns high values to many wrong transformations, which contrasts
with the results from our approach in Fig. 4(k). Regarding computation time, it
takes approximately 420 sec. to evaluate the NCC in a 3.2GHz Pentium 4 using
a straightforward implementation, whereas out method takes less than 1 sec.

To summarize, in this paper we have presented a new method for robust
matching of occupancy grid-maps, a technique with many potential applica-
tions in robotics. Our approach has been devised from a image-registration view-
point, hence we introduce a new feature-point descriptor for easing the matching.
Adding a robust step to the estimation process is shown to provide a significant
improvement in the overall precision. Future work should be aimed to provide
a more detailed comparison between the performance attainable from different
feature-point detectors, and to integrate this work into robotic mapping frame-
works.
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Abstract. We propose a genetic algorithm for constructing a classifier ensemble 
using a vote-based classifier selection approach for biomedical named entity 
recognition task. Assuming that the reliability of the predictions of each classifier 
differs among classes, the proposed approach is based on dynamic selection of 
the classifiers by taking into account their individual votes. During testing, the 
classifiers whose votes are considered as being reliable are combined using 
weighted majority voting. The classifier ensemble formed by the proposed 
scheme surpasses the full object F-score of the best individual classifier and the 
ensemble of all classifiers by 2.5% and 1.3% respectively.  

1   Introduction 

Named entity recognition (NER) in the biomedical domain is a significantly challenging 
task due to several factors such as the use of descriptive naming conventions, 
conjunctions and disjunctions in biomedical entity names, non-standardized naming 
conventions, use of synonyms, extensive use of abbreviations, and the fact that some 
biomedical entity names may be cascaded [1],[2]. Moreover, new names are constantly 
being introduced in the domain vocabulary and yet some of these are used only for 
relatively short time periods. In addition, there exists ambiguity in the tokenization and 
tagging of biomedical text. 

Recent studies in NER in the biomedical domain mainly focus on feature 
extraction. The wide variety of features considered for this purpose include 
orthographic features, morphological patterns, lexical features, semantic triggers, 
name alias features, gene sequences, and external resources such as gazetteers. 
Extensive research has been carried out for computing better feature sets so as to 
improve NER in this domain [3], [4]. This is generally done by trial-and-error 
approach where the main goal is to include discriminative features and avoid using 
correlated ones. 

Instead of finding the best-fitting feature set, ensembling several NER systems 
where each member is based on a different feature representation has recently been 
considered as an alternative research direction. For instance, Zhou et al. combined 
three NER systems, each using a different modeling technique and feature set [3]. In 
classifier ensembles, the generalization accuracy of an ensemble depends on the 
diversity of the classifiers as well as their individual performances. This means that 
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the classifiers should be different from each other using different model parameters 
and feature sets and hence make errors for different inputs [5]. Although it is evident 
that combining the same classifiers does not make any contribution, selecting a 
diverse subset is still a challenging problem due to the lack of a well-established 
diversity measure. In the case of NER, it is generally argued that diversity can be 
achieved with the use of classifiers providing better precision together with others 
providing better recall [3]. 

Analogous to best-fitting feature set selection in designing individual systems 
instead of using all available features, classifier selection aims at finding a diverse 
subset of available classifiers by removing similar ones to ensure an optimal 
combined performance for an a priori specified combination rule. In its static 
implementation, the classifiers that are considered to be redundant are discarded from 
the ensemble. In order to achieve this, although several diversity measures are 
proposed as candidate selection criteria, the combined performance on the training 
data is generally considered as the most natural choice and genetic algorithms (GA) 
have been successfully used for this purpose [6].  

In this study, the idea of GA based static classifier selection is improved to vote-
based form and a GA is developed accordingly for NER on the GENIA Corpus v.3.02 
[7]. Assuming that the reliability of the predictions differs among classes, the 
proposed approach is based on dynamic selection of the classifiers by taking into 
account their individual votes. In particular, a subset of the predictions of each 
classifier is taken into account during weighted majority voting. Others are considered 
as unreliable and are not used during combination. In this approach, it is not the 
classifiers but each one of their predictions that is evaluated as being redundant or not. 
Although a different classifier set may be used for each test sample, since the 
proposed scheme does not take into account the behavior of the classifiers in the 
neighborhood of the corresponding sample, we preferred to name it vote-based rather 
than dynamic. The proposed approach is also compared to combination of all 
available classifiers and, GA based static classifier selection where only selected 
classifiers are allowed to vote, but for all its predictions. Experimental results have 
shown that the proposed approach improved the full object F-score achieved by the 
best individual classifier, the ensemble of all classifiers and GA based static classifier 
selection by 2.5% and 1.3% and 0.6% respectively. 

2   Proposed Approach 

Assume that there are totally N tags (classes) corresponding to the entities considered 
in the NER problem under concern including the out class. Let the total number of 
available classifiers be denoted by M. The solution of  the selection  problem encoded 
in the form of a chromosome has N×M entries.  First N entries belong to the first 
classifier. The encoding of a chromosome is illustrated in Fig. 1 where details of only 
the first classifier are provided for N=11. The entries of each chromosome are 
randomly initialized to either 0, corresponding to blocking voting or 1, representing 
allowing voting. In the exemplar chromosome shown in Fig. 1, the first classifier is 
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Fig. 1. Encoding of a chromosome 
 

allowed to vote for only second, third and fifth classes. During the reproduction 
phase, tournament selection is used. The crossover operator is an important tool in 
GA that allows different chromosomes to share information. In the proposed 
approach, either uniform or two point crossover method is randomly selected with 
equal probability. The selected operator is applied with a probability pcross= 0.7 to 
generate two offspring. The mutation operator is applied to each entry of the offspring 
chromosomes with a probability pmut = 0.02, where the entry is randomly replaced by 
either 0 or 1. In addition, elitism is applied at the end of each iteration where the best 
20% of the original population are used to replace those in the offspring producing the 
lowest fitness. The tournament size is fixed to 40. In the simulation experiments, the 
population size is selected as 100. This means that 100 different ensemble candidates 
evolved simultaneously. The algorithm is executed for 1000 iterations.  

The fitness of each chromosome is defined as the full object F-score provided by 
the weighted majority voting type decision combination rule. In this method, the class 
receiving the maximum combined score is selected as the joint decision. The 
combined score of a particular class is defined as,  
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where M denotes the total number of classifiers and Fm denotes the full object F-score 
of mth classifier. I(m,i) is the entry of the chromosome under concern corresponding 
to mth classifier and ith class. If it is equal to 1, the classifier contributes to the 
combined F-score of ci.  The overall algorithm is presented in the next page.  

In order to compare the proposed vote-based classifier selection approach with 
static classifier selection where classifiers that are considered redundant are fully 
discarded, each chromosome is encoded as a string having M entries, one for each 
classifier. If the value of a gene is 1, this means that the classifier is selected for being 
used in the corresponding ensemble. All the design parameters of the algorithm 
described above including population size, number of iterations, crossover and 
mutation rate etc. are kept the same. The selected subset of classifiers are combined 
using weighted voting as before where each selected classifier is allowed to vote for 
all classes. 

The best-fitting solution is obtained using the classifier outputs generated through 
three-fold cross-validation on the training data. In this method, the training data is 
initially partitioned into three parts.  Each classifier is trained using two parts and then 
tested with the remaining part. This procedure is repeated three times and the whole 
set of training data are used for computing the best-fitting solution. During the testing 
phase, the classifiers are trained using all three parts. 

first classifier 
second classifier Mth classifier 
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The Genetic Algorithm used for evolving the classifier ensembles. 

1. Generate randomly an initial chromosome population of size 
MAX_POPULATION 

2. For each chromosome in the population  
2.1. Apply weighted majority to the selected voters 
2.2. Compute full object F-score as fitness of the chromosome 

3. For generation_index in 1 .. MAX_GENERATION 
3.1. For chromosome_index in 1 .. MAX_POPULATION 

3.1.1. Select two parents from the old population 
3.1.2. Crossover the two parents to produce two offspring  

with probability Pcross 
3.1.3. Mutate each bit of each offspring with probability 

Pmut 
3.1.4. Apply weighted majority to each of the offspring 
3.1.5. Compute full object F-score as fitness of each 

offspring 
3.2. Replace the worst ELIT_SIZE% of the offspring with the best 

chromosomes from the original population to form the new 
population 

4. Select the best chromosome as the resultant ensemble 

3   Data Set Used and Individual Classifiers 

The experiments are conducted on the training and test data set provided for 
Biomedical Entity Recognition in JNLPBA 20041 shared task. The training data used 
came from GENIA corpus v.3.02 [7]  which is a hand annotated corpus of 2000 paper 
abstracts extracted using MeSH query human, blood, and transcription factor and is 
formed by reducing the number of entities from 36 to 5, namely Protein, DNA, RNA, 
Cell Line, and Cell Type.  

Both training and test data sets use IOB2 representation for chunking where every 
word is tagged with a entity label extended with 'I', representing that the token is 
inside a named entity chunk, ‘O’ representing that the token is outside a named entity 
chunk and ‘B’, representing that the token is at the beginning of a named entity 
chunk.  Thus for each entity, two different tags are used resulting in 10 tags for the 
entities and one additional tag for all non-entities.  From classification perspective, 
this translates to a total of 11 classes. 

The general purpose text chunker named YamCha2 (Yet Another Multipurpose 
Chunk Annotator) that uses TinySVM3 is used for training the classifier [8]. SVM is a 
powerful machine learning method that has been used successfully in NER tasks in 
the biomedical as well as other domains [1], [2].  As it is mentioned in Sect. 1, 
diversity can be achieved by using different model parameters and features in each 
ensemble member.  Because of this, each classifier is trained using different settings 
of YamCha parameters such as dimensionality of the polynomial kernel, range of the  
 

                                                           
1 http://research.nii.ac.jp/~collier/workshops/JNLPBA04st.htm 
2 http://chasen.org/~taku/software/yamcha 
3 http://chasen.org/~taku/software/TinySVM 
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Table 1. Feature Types and parameters used for training the individual classifiers. The following 
abbreviations are used; L: Lexical Feature O: Orthographic Feature M: Morphological Feature S: 
Surface Word Feature W: Context Window, D: Degree of Polynomial Kernel, P: Parse 
Direction. 

Classifier 
No 

L O M S W D P Precision Recall F-score 

e1   X  -2..2 2 B 67.96 68.78 68.37 
e2   X  -2..2 2 F 64.53 66.49 65.50 
e3  X   -2..2 2 B 66.44 67.83 67.12 
e4  X X  -3..3 2 B 68.51 69.75 69.13 
e5  X X  -3..3 2 F 67.21 68.59 67.89 
e6 X    -3..3 2 F 66.75 65.90 66.32 
e7 X    -4..4 2 B 68.62 66.06 67.31 
e8 X X X X -2..2 2 B 68.77 70.38 69.57 
e9 X  X  -2..2 1 F 65.01 68.69 66.80 
e10 X  X  -2..2 3 B 69.61 67.99 68.79 
e11 X  X  -3..3 2 B 69.13 69.06 69.10 
e12 X    -3..3 2 B 68.54 66.21 67.36 
e13 X    -3..3 2 F 66.88 65.54 66.20 
e14 X    -4..4 2 B 68.63 65.64 67.10 
e15 X    -4..4 2 F 67.10 64.35 65.70 
e16 X    -2..2 2 B 66.80 66.00 66.40 
e17  X   -2..2 2 B 67.03 68.93 67.97 
e18  X   -2..2 2 B 67.16 69.59 68.36 
e19   X  -2..2 2 B 68.73 65.89 67.28 
e20   X  -2..2 2 B 67.14 67.72 67.43 
e21  X   -2..2 2 B 66.70 67.16 66.93 
e22 X X X X -2..2 2 B 67.88 70.32 69.08 
e23 X X X X -2..2 2 B 68.24 70.70 69.45 
e24    X -2..2 2 B 68.29 64.11 66.13 
e25  X X X -2..2 2 B 68.15 70.25 69.18 
e26   X X -2..2 2 B 68.70 68.82 68.76 
e27    X -2..2 2 B 68.51 63.92 66.14 
e28 X  X X -2..2 2 B 68.65 70.02 69.33 
e29 X  X X -2..2 2 B 68.52 69.80 69.15 
e30    X -2..2 2 B 68.02 63.30 65.57 
e31 X  X X -2..2 2 F 64.96 66.95 65.94 
e32 X X X X -2..2 2 B 69.22 70.63 69.92 
e33 X X X X -2..2 2 F 65.52 68.22 66.84 
e34 X X X X -2..2 2 B 69.40 70.60 69.99 
e35 X X X X -2..2 2 B 68.70 69.95 69.32 
e36  X   -3..3 2 B 68.63 64.11 66.29 
e37 X    -3..3 2 B 68.46 66.41 67.42 
e38 X    -4..4 2 F 67.23 65.27 66.24 
e39 X  X  -2..2 3 F 67.10 65.42 66.25 
e40 X  X  -3..3 2 F 67.96 67.70 67.83 
e41 X    -3..3 2 B 68.49 64.08 66.21 
e42 X    -4..4 2 B 68.74 63.02 65.76 
e43 X    -4..4 2 F 67.44 62.35 64.80 
e44 X    -4..4 2 B 68.61 63.30 65.85 
e45 X    -4..4 2 F 67.61 63.18 65.32 
e46 X X X X -2..2 2 B 68.17 70.55 69.34 
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context window and direction of parsing as used in [4]. Four different feature types 
which are frequently used for NER are considered in this study. Lexical features 
include part of speech tags (POS), base phrase classes, and base noun phrase chunks. 
Morphological feature used in this study corresponds to the first or last n-grams of an 
input token. Orthographic feature includes token properties such as the existence of an 
upper case character or Greek letter in the token or a combination of such properties. 
Surface words are constructed from training data as described in [4]. The feature 
types mentioned include many different variations and are used in different 
combinations as well as in isolation to train the classifiers as illustrated in Table 1. 
For example classifiers e28 and e29 use the same feature types but e28 uses POS tags 
whereas e29 uses base noun phrase as lexical features, all three other features 
remaining the same. 

Context window of YamCha includes both static and dynamic content. The static 
content of the context window includes preceding and following tokens and the 
respective features to be used for classification. The dynamic component of the 
context window may only include the estimated tags of the preceding tokens. In all 
classifiers both dynamic and static components are used. 

4   Experimental Results and Discussions 

The full object F-score of the best individual classifier, ensemble of all classifiers and 
best-fitting classifier ensembles based on classifier selection are presented in Table 2.  

Table 2. Full object F-score of the best individual classifier and classifier ensembles 

Classification Scheme Full Object F-score (in %) 
Best Classifier 69.99 
Full Ensemble 71.25 

Static Classifier Selection 71.71 
Vote-based Classifier Selection 72.51 

 
It can be seen in Table 2 that best-fitting ensembles formed using static and vote-

based selection schemes surpass both the best individual classifier and the ensemble 
of all classifiers.    

The static classifier selection scheme selected the classifiers e4, e5, e6, e7, e9, e32, 
e33, e34, e35 presented using bold characters in Table 1.  As seen in Table 1, e32 and e34 
achieves the highest full object F-scores. This shows that the GA based algorithm is 
successful in selecting the two individually best performing classifiers. Four forward-
parsed classifiers (e5, e6, e9, and e33) and five backward-parsed classifiers (e4, e7, e32, 
e34, and e35) are selected. This behavior agrees with the discussion in [4] that training 
SVMs with different parse directions produce systems that make errors at different 
boundaries. The forward-parsed classifiers are selected even though their full object 
F-scores are lower than many backward-parsed classifiers that are not included in the 
ensemble. However, the selected forward-parsed classifiers are ranked among the top 
five forward-parsed classifiers in terms of full object F-scores. Thus, when choosing 
the classifiers that make mistakes at different boundaries, the genetic algorithm favors 
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classifiers with highest full object F-score for each parse direction. It should also be 
noticed that the algorithm selects 3 forward parsed classifiers together with their 
backward parsed counterparts for each feature set. The selected classifiers provide the 
highest score for Precision, Recall, or F-scores for one or more classes.  This is inline 
with the argument presented in [3] that differences in precision and recall contribute 
to diversity leading to better ensembles. 

Four of the selected classifiers utilize all four feature types even though the exact 
form of the feature for each feature type may differ as explained in Sect. 3. This is 
reasonable since better ensembles generally include classifiers exploiting a rich set of 
features [3], [9]. Others that use fewer number of feature types employ a different 
window size or different degree of polynomial kernel from the four mentioned above. 
For instance, e6 and e7 use only the lexical feature which is successful in providing 
evidence about the boundaries of biomedical names [3]. However, the window size of 
e6  is -3..3 whereas -4..4 is used in e7. 

Table 3. Distribution of vote counts among classifiers 

Number of 
Votes 

no vote 1 2 3 4 5 6 7 8 9 10 11 

Number of 
Classifiers 

0 3 5 3 7 8 8 6 0 2 4 0 

 
The proposed vote-based selection scheme is shown to improve the full object  

F-score to 72.51%. The distribution of vote counts among the classifiers is presented 
in Table 3. As seen in the table, every classifier contributed to the decision of at least 
one of the classes whereas some classifiers contributed for almost all classes. There is 
no classifier which votes for all 11 classes. These observations justify the argument 
that vote-based selection is important for taking into account the individual strengths 
of the classifiers. Out of 46 classifiers, only e6, e7, e10, e34, e35, and e36, vote for 9 or 10 
classes. There are 20 classifiers that vote for more than 5 classes. This set of 
classifiers includes 7 of the individual classifiers selected by the static classifier 
selection approach. The classifiers e4 and e5 that are selected by the static approach 
contribute to the decision of 4 and 5 classes respectively. Moreover, 3 classifiers have 
only one vote. These classifiers would normally be excluded when static classifier 
selection approach is considered.  

5   Concluding Remarks and Future Work 

In this study, a vote-based classifier selection scheme is proposed and tested on 
JNLPBA data.  In this approach, instead of eliminating some classifiers permanently, 
each is allowed to vote for a subset of its predictions. Indeed, simulation experiments 
have shown that the classifiers which are removed from the ensemble by the static 
classifier selection approach contribute to decision making process for a subset of 
their predictions.  As seen in Table 3, majority of the classifiers vote for 
approximately half of their predictions. That is, 29 classifiers vote for 4 to 7 different 
predictions. On the two extremes, either voting for almost all or voting for only few 
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predictions, there are much fewer classifiers. In other words, there are much fewer 
classifiers that can either be considered as redundant or reliable for all of its 
predictions which is the fundamental assumption in static classifier selection. As a 
matter of fact, the improvement provided by the vote-based classifier selection 
approach can be attributed to its ability in using strengths and avoiding weaknesses of 
all ensemble members. The proposed approach can be further improved. Our future 
work will include modifying the vote-independent weights of each classifier. Instead 
of using full object F-scores, vote-specific F-scores obtained using the validation data 
can be utilized for weighting the contribution of each classifier.  
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Abstract. In this paper we present a method to recognize shapes by
analyzing a polygonal approximation of their boundaries. The method
is independent of the used approximation method since its recognition
strategy does not rely on the number of segments composing the shape.
Length and turning angle information are extracted from the chain of seg-
ments. The comparison method is invariant to scale, translation and some
occlusions of the extracted contour. A simple pre-processing method, also
based on arc-length features, is presented to be used as a coarse fitting
method to determine angle rotation and as a first filter to eliminate non
pertinent candidates.

1 Introduction

Content based image retrieval is one of the topics of interest in the computer vi-
sion field which nowadays is at its very peak, due to the growth in the last years
of the amount of stored graphical information. For this kind of data, underlying
analysis processes mainly lie on graphics recognition, allowing then classification
of the images, typically in terms of available symbols. From a general viewpoint,
several kind of recognition approaches can be involved, according to data repre-
sentation. Bitmap images are usually analyzed with statistical methods, which
are time-consuming and quite accurate, but can also be analyzed with structural
methods, faster but requiring a pre-vectorization step. In the context of content
based image retrieval, the last approach is usually preferred, as the amount of
considered data implies the use of efficient processes.

One of the most important visual features when classifying images is shape
of the represented objects and subsequently a lot of literature deal with object
recognition by shape. Zhang and Lu review in [9] shape representation and de-
scription techniques. A great part of the existing methods focus on the contour
to represent the shape. Those contour-based descriptors are usually classified as
statistical or structural approaches. Focusing in structural descriptors, for rea-
sons explained above, a prior polygonal approximation of the contour is required,
yielding a description of the shape in terms of segments and structural relation-
ship between them. From these data, Stein and Medioni in [5] extract a feature
vector achieving a more global viewpoint than a pairwise segment comparison.

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 210–217, 2007.
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But, since in the literature we can find many strategies to perform a raster-to-
vector conversion, and by now it does not exist any “perfect” algorithm, as argue
Tombre et al. in [6], it is interesting to define a method to discriminate shapes
between them, independently of the used approximation method, robust with
respect to the numbers of resulting segments and with respect to the generated
artifacts.

To give an example, Rosin and West method [3], has the advantage that it
does not use any parameter to compute the approximation. This generality has
its negative part, since in the high curvature points, the method tend to over-
segment the shape. On the other hand, Wall and Danielsson method [7], use
a threshold to determine at which points the curvature of the shape is high
enough to cut the pixel list into several segments. But this method has to be
well tuned to provide accurate results. Even if both strategies perform good ap-
proximations, they can result in very different segment chains, in particular for
the number of segments of these chains. A method which aim to be independent
of the approximation strategy has to be independent of the number of segments
composing the shape. Most of methods try to counteract the effect of the car-
dinality of the segment chain by re-sampling the polygonal approximation at
extremal points, as in [2,8]. Our presented method aims to be invariant to the
number of segments and consequently of the approximation method.

The key idea of the proposed method is that two shapes are similar if, starting
from a reference segment, and covering a certain length, we have turned the same
angle in both shapes. Thus, accumulated lengths and accumulated turning angles
are used as feature vectors to describe a shape, which aims to achieve cardinality
independence of the analyzed segment chains.

The remainder of this paper is organized as follows: we will introduce in
the next section how we compute a coarse matching between two shapes. This
first step will be used as a pre-processing method to determine angle rotations
between shapes and as a first filter if the two shapes are found too different.
In section 3, the matching method is presented, using accumulated length and
turning angle as features to describe a given shape. We provide the experimental
results in section 4. Finally a summary and discussion of extensions and future
work is presented in section 5.

2 Coarse Shape Fitting: Undoing Rotation

Given a closed contour of a shape S = {s1, ..., sn} polygonally approximated
with n segments and total perimeter length |S|, we encode all the segments by
a tuple of numbers (li, φi), where li denotes the length of the segment si and φi

denotes the angle between si and si−1 in the counterclockwise direction.
We compute a vector of accumulated lengths, normalized with the total

perimeter of the shape.

�(i) =
1

|S| ×
i∑

k=1

lk where 1 ≤ i ≤ n (1)
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We then define a mapping function f which assign the corresponding turned
angle φi at each value of �(i).

f(�(i)) = φi (2)

Sudden direction changes in the analyzed shape result in pulses in f arc-length
function which act as discriminative key points to fit two shapes. As the number
of segments of two shapes to compare can be completely different, we need to
define a method which is independent of the number of segments. An equally
sampling of �(i) ∈ [0, 1] is done to compare a couple of vectors of the same size.

However, since we compute a vector of accumulated length, f values has
to be shifted in the x axis depending on the reference segment choice. Given
two shapes to compare, a normalized cross correlation can be used as a fast
method for template matching of the two vectors, and then find the correct
shift between two segment lists where the maximum correlation value has been
reached. Experimentally we find that using only a 75% of the number of segments
composing a shape as sample rate is enough to find correct shift between two
shapes. We can find an example of shape fitting to determine angle rotation in
Fig. 1.

Fig. 1. Shapes and arc-length plots before and after the fitting process. A normalized
cross correlation is computed between the two functions to determine the shift between
them, thus normalizing the shapes to a certain rotation.

But polygonal approximation methods usually introduce some small noisy
segments, which may not seem very important since they have small lengths,
but may have important turned angle values. The presence of these small seg-
ments results in pulses of elevated values in the f function. Even though this
possible presence of noise, the method could be used as a pre-processing step to
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identify a rotation parameter to correctly choice a reference starting segment,
thus determining the rotation between two shapes. The method is also used as a
first filter when compared shapes have completely different representations. Let
us further detail in the next section how can we improve the presented method
to be used for boundary shape recognition.

3 Shape Matching

Following the same idea than the presented coarse fitting method, we describe
shapes in terms of accumulated length and turning angles. To avoid the influence
of the noise introduced by the presence of small segments, we use accumulated
turning angles instead of the mapping function to guarantee more stability.

Θ(i) =
i∑

k=1

φk (3)

Now, the idea of this shape comparison is to use the � values to know how
many segments are necessary in both shapes to achieve a certain covered length
and then look if the turned angles Θ are close or not. Let us further detail how
these shape matching is performed.

Given two shapes to compare S1 = {s11, ..., s1n} and S2 = {s21, ..., s2m},
having n <= m, we compute their � and Θ feature vectors. For all the segments
of S1 we check how many segments of S2 are necessary to achieve a similar
length.

L(i) = arg min
1≤j≤m

(abs(�1(i) − �2(j))) (4)

Given a certain number i of segments of the shape S1, �1(i) is the total covered
length from the starting segment up to the ith segment, L(i) is then defined as
the number of segments of S2 required to achieve the closest covered length. To
be more tolerant to the presence of small segments which can distort the distance
between accumulated angles in a given accumulated length, we denote as L̃(i)
the segment set containing L(i) and its two adjacent segments, accumulating
only the minimum distance between Θ1(k) and Θ2(L(k − 1)), Θ2(L(k)) and
Θ2(L(k + 1)). To give a distance between the two shapes, we look if at similar
lengths, we have a similar turned angle. The distance d(S1, S2) between the two
shapes S1 and S2 is computed as follows

d(S1, S2) =
n∑

k=1

min
(
δ(Θ1(k), Θ2(L̃(k)))

)
(5)

Being δ(φ, θ) the difference between two turned angles considering that angles
close to 0 and 2π must have very low difference, and thus computed as a distance
in the trigonometric circle

δ(φ, θ) =
√

(cos φ − cos θ)2 + (sin φ − sin θ)2 (6)
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We can appreciate in Fig. 2 how the turned angles plots are matched between
the two shapes of different scale and number of segments. Even if the distance
between the two resulting angle vectors Θ1(k) and Θ2(L̃(k)) is elevated, we can
see that the trend of both of them is almost the same.

Better recognition results are reached when the distance is formulated more
accurately. DTW (Dynamic Time Warping) is a well-known method used in
speech recognition field that measures similarity between two sequences which
may be shifted in time, involving the alignment between two sequences with
minimum edit cost. The use of this kind of edit distances [4], can fix the re-
maining shifts between angles giving better results than a bin to bin comparison
of sequences. But a simple analysis of the slope and variations of the resulting
functions yields acceptable results.

a) b)

Fig. 2. Angle fitting. (a) S1 and S2. (b) Turning angle plots. The influence of the
number of segments composing the shape has been avoided, and the resulting turning
angle plots are comparable.

We can see that the presented method can find a matching between close
shapes undergoing some noise, scaling and different number of segments, since
the used features are based on the accumulation of lengths and angles. The
invariance to rotation is not guaranteed by the matching method itself because
as all the used features are accumulated metrics, the method is very dependent
on the first segment choice. But the previous coarse fitting method which use
almost the same computed features makes possible the use of the presented
method with no significant complexity addition.

4 Experimental Results

To test the method, we use the MPEG silhouette database consisting of 1400
images grouped in 70 different shape classes. In Table 1, we show the resulting
ten most similar images when querying a given shape against the whole database.
As we can appreciate, the retrieved images are usually components of the queried
class, or at least, for the false positives, are quite visually similar. The number
of segments composing the queries and the results are also shown, and we can
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Table 1. Sorted ten similar symbols. (Number of segments composing the shape ap-
proximation).

Fig. 3. Shape matching depending on the number of segments. The matched angles
have the same trend independently of the number of segments composing the shape
(8, 14, 20 and 28).

appreciate that similar shapes with a significant difference of segments can be
matched. In [1] different shape descriptors as CSS, wavelet representations of
contours, Zernike moments, etc. are tested against this database, performing
good recognition tasks. All these descriptors are pixel-based, and thus can not
be compared with the presented method which aims to discriminate polygonal
approximations of graphical symbols by a fast and simple representation.

To see if the method is really tolerant to changes in the number of segments
composing a shape, we compute polygonal approximations of a heart shape at
different scales, resulting thus in a different number of segments, going from 8
to 28 segments. In Fig. 3 we can appreciate that the resulting turning angle
functions are matched in an acceptable way. Notice that the shape with less
segments is always the one taken as model, thus introducing some noisy results
if the approximation is too rough.
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Fig. 4. Couples of shapes belonging to the same class but unable to match. (a) Beetle
class. (b) Deer class. (c) Squared-device class. (d) Circular-device class. Even if these
shapes belong to the same class, their boundaries are too different to allow a match.

a) b)

Fig. 5. Matching partially occluded shapes. (a) Model and occluded shapes. (b) Turn-
ing angle plots. Even if there is an interval where the turning angle does not fit,the
method is able to recover the tend between the two turning angles giving acceptable
distances between model and occluded shape.

However, the presented method has its limitations. With some classes which
can seem similar, but which are composed of shapes having important local
distortions of length and angles of their contour segments, the method is unable
to find the similarity between objects of these classes as most of contour-based
approaches. Some examples are shown in Fig. 4. But the method is still tolerant
to slight changes in the contour due to occlusions, as shown in Fig. 5 were we
can appreciate that the resulting turned angles are totally matched in the part
of contour not affected by the occlusion.

5 Conclusion

In this paper we presented a method for shape recognition based on accumu-
lated length and angular information. Having a polygonal approximation of the
contours, two shapes are considered similar if starting from a reference segment
and covering a certain length, the accumulated turned angle is also similar. A
method based on a similar idea is also presented as a pre-processing step to act
as a first filter when shapes are found completely different, and to determine the
correct reference segment guaranteeing invariance to rotation.

Even if a lot of shape descriptors based on an approximation of the contour
exist in the literature achieving great recognition rates, we consider that is very
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important to define description techniques able to maintain its performance in
despite of the approximation method used. Most existing methods seem to be
designed ad hoc for an approximation method in particular, or at least need a
tuning of parameters depending on the number of segments which composes a
shape. The use of accumulated metrics allow to be invariant of the cardinality
of the segment chains encoding a shape. However, the use of accumulated length
and angle has its drawback, since the method is dependent on a good reference
segment choice. It would be interesting to further investigate how to provide
rotation invariance without the need of a pre-processing step.
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Extracting Average Shapes from Occluded Non-rigid
Motion

Alessio Del Bue

Institute for Systems and Robotics, Instituto Superior Tecnico, Lisbon, Portugal

Abstract. This paper presents a method to efficiently estimate average 3-D shapes
from non-rigid motion in the case of missing data. Such a shape can be further used
to accomplish full reconstruction of deformable objects and registration of non-
rigid shapes. The approach is based firstly on a power method which linearly pro-
vides an initial estimate of the 3-D structure and motion components of the object
shape. Secondly, non-linear optimisation is used to refine the initial linear estima-
tion. Tests on both real and synthetic sequences show the procedure effectiveness
in dealing with different degrees of occlusions in the measurements.

1 Introduction

Recently the inference of the 3-D structure of a deforming body viewed by an un-
calibrated camera has attracted increasing interest. In a Structure from Motion (SfM)
domain, non-rigid shapes have posed new problems since they violate the rigidity
constraints on which previous SfM methods strongly rely. Most of the model-free ap-
proaches to non-rigid SfM available nowadays are based either on closed-form so-
lutions [12], assuming pre-specified shape priors, or iterative non-linear optimisation
techniques [5,1,11], requiring an appropriate initialisation in order to converge. In the
latter case, average shape and motion [9] have experimentally proven to be a successful
initialisation to such tasks and they can be easily computed when the full trajectory of
a point lying on the deforming body is available.

However, in the case of missing data affecting the trajectories (i.e. a point being
occluded for some frames) a solution for the average shape is not currently available.
Estimation of structure and motion from occluded data (see [3] for a review) is an
essential task for most practical applications given the difficulty to obtain complete
trajectories. At this end, the solution proposed here is an iterative power method which
can estimate average shapes in the case of missing data and its reliability is assessed in a
full 3-D reconstruction task for deforming objects. The approach is based on the notion
of average shape introduced in [9] which penalizes in a certainty-reweighted scheme
the non-rigidity of trajectories. This method can be extended by reformulating power
methods for SfM [7] to include the notion of non-rigidity of a trajectory and extend it
to the case of missing data.

In detail, the paper firstly introduces the non-rigid factorization framework and the
definition of average shape (Section 2). Then, power methods for SfM are presented
in Section 3 for the case of rigidly moving objects. The new approach with missing
entry is explained in Section 4 and experiments (Section 5) show its effectiveness on
synthetic test and on a face modelling task.

J. Martı́ et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 218–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Non-rigid Structure from Motion

2.1 A Factorization Approach to Deformable Modelling

Tomasi and Kanade’s factorization algorithm [10] has been reformulated to the case of
non-rigid 3-D structure [2]. A linear approximation of a set of K basis shapes Sk is
used to describe a 3-D time varying shape X such that:

X =
K∑

k=1

lkSk X, Sk ∈ �3×P lk ∈ � (1)

Each basis shapes Sk represent the mode of deformations of the deforming body and
they are parameterised as a 3 × P matrix which contains the 3-D locations of P ob-
ject points for that particular mode of deformation. Assuming an orthographic camera
model the shape is then projected onto an image frame i giving P image points:

Wi =
[
wi1 ... wiP

]
= Ri

(
K∑

k=1

likSk

)
(2)

where each wij = [uijvij ]T with j = 1 . . . P contains the horizontal and vertical image
coordinates of the point – referred to the centroid of the object – and Ri encodes the first
two rows of the rotation matrix for a specific frame i. If all P points are tracked in F
image frames we may construct the measurement matrix W which can be expressed as:

W =

⎡
⎢⎣

w11 . . . w1P

...
...

wF1 . . . wFP

⎤
⎥⎦ =

⎡
⎢⎣

l11R1 . . . l1KR1
...

...
lF1RF . . . lFKRF

⎤
⎥⎦

⎡
⎢⎣
S1
...

SK

⎤
⎥⎦ = MS. (3)

Clearly, the rank of the measurement matrix is constrained to be at most 3K , where
K is the number of deformations. This rank constraint can be exploited to factorize the
measurement matrix into a motion matrix ~M and a shape matrix ~S by truncating the SVD
of W to rank 3K . However, this factorization is not unique since any invertible 3K ×3K
matrix Q can be inserted in the decomposition leading to the alternative factorization:
W = (~MQ)(Q−1~S). The focal problem to solve in non-rigid factorization schemes is to
find the Q that renders the appropriate replicated block structure of the motion matrix
and that removes the affine ambiguity, upgrading the reconstruction to a metric one.

2.2 Extracting Average Shapes from Deformations

Based on the framework described in the previous section, Kim & Hong [9] recently
introduced a measure called the Degree of Non-rigidity (DoN) to estimate the deviation
of a deformable point from its average position. This measure can in turn be used to
extract an average shape using an iterative certainty reweighted scheme. If the average
3-D shape of a time varying shape Xi = [Xi1 . . .XiP ] is given by X̂ = [X̂1 . . . X̂P ] the
DoN for point j is defined as:

DoNj =
F∑

i=1

(Xij − X̂j)(Xij − X̂j)T . (4)
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The 2-D projection Cj of the DoN will be thus given by:

Cj =
F∑

i=1

Ri(Xij − X̂j)(Xij − X̂j)T RT
i =

F∑
i=1

(wij − ŵij)(wij − ŵij)T (5)

where wij are the image coordinates of point j at frame i and ŵij are the coordinates
of its projected mean shape. While the DoN cannot be computed without an estimation
of the mean 3-D shape, the value of its projection can be estimated directly from image
measurements.

An initial estimate of the projected 2-D mean shapes ŵij could be given simply
by the first basis shape S1 (as in equation (3)) which could be computed with a rank-
3 approximation SV D3(W) = M̂Ŝ. The projected deviation from the mean for all the
points would then be defined by {wij −ŵij} = W− M̂Ŝ. However, a straight application
of a rank-3 factorization over the first basis component does not produce an accurate
measure of Cj as showed in [9]. To adjust the covariances, the average shape and Cj are
iteratively estimated until convergence. However, the procedure is unable to deal with
the case of missing data affecting the measurements. We will show in the next section
how power methods can efficiently solve this issue.

3 Power Methods for Structure from Motion

SfM algorithms based on factorization require an initial decomposition of the motion M
and structure matrix S given the data W. In this context, power methods were introduced
with the name powerfactorization by Schaffalitzky and Hartley [7] to efficiently fac-
torise rank-constrained image measurements. This approach is an alternation method
which iteratively estimates M and S by simply executing multiplications and matrices
inverse. The update rules at iteration q are given by [7]:

Mq = WSq−1(ST
q−1Sq−1)−1

Sq = (MT
q Mq)−1MT

q W
(6)

They are a straightforward derivation from the orthogonal power method [6] which
convergence rate depends on the ratio of the dominant singular values of W. In the case
of an affine camera viewing a moving rigid body, the update rules (6) can be modified to
account for the geometrical properties of the measurements. For each frame i = 1 · · ·F ,
the projection of a point j = 1 · · ·P can be expressed as:

wij = AiXj + ai (7)

where Ai is a 2 × 3 camera projection matrix, Xj a 3-vector of the 3-D coordinates and
ai a 2-vector of the affine camera translation. In a more compact form, equation (7) can
be rewritten for every point at each frame as:

Wi =
[
Ai ai

] [
X1 · · · XP

1 · · · 1

]
= Mi

[
X
1T

]
(8)
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where 1 is a P -vector of ones. Finally, the global expression for each frame can be
written as:

W =

⎡
⎢⎣
W1
...
WF

⎤
⎥⎦ =

⎡
⎢⎣

[
A1 a1

]
...[

AF aF

]

⎤
⎥⎦

[
X
1T

]
=

[
A a

] [
X
1T

]
= MS (9)

The algorithm for extracting the affine motion and structure of a rigid object can be
summarized as follows:

– Initialize X0 with random entries.
– Compute the 2F × 4 update of Mq given equation (6).
– Extract the 2F × 1 measurements centroid aq such that Mq =

[
Aq aq

]
.

– Compute the 3 × P update of Xq such that: Xq = (AT
q Aq)−1AT

q (W − Tq) where
(W − Tq) are the centered coordinates and Tq = aq11×P

4 Average Shape Estimation with Missing Data

4.1 Power Iterations and Degree of Non-rigidity

In the case of affine estimation of average shape Ŝ and motion M̂, strongly non-rigid
trajectories (which in turn provide high covariances Cj) are penalized in the estimation
of the average components. The estimation task can be recast in the minimisation of a
cost function χ such that:

χ =
∑
i,j

(wij − M̂iX̄j)T C−1
j (wij − M̂iX̄j) (10)

where X̄j contains the the homogeneous coordinate for the average point such that
X̄j = [X̂T

j 1]T . Minimizing χ can be carried out with a minor reformulation of the
power method [7]. In brief, each matrix C−1

j can be factored as C−1
j = BT

j Bj giving:

χ =
∑
i,j

(wij − M̂iX̄j)T BT
j Bj(wij − M̂iX̄j) =

∑
i,j

‖Bjwij − Bj M̂iX̄j‖2 (11)

Notice the similarity with equation (6) which hints to a solution of the minimization
of (10) with a power approach. In order to obtain the two updates rules for motion and
structure we can rewrite (11) such that:

χ =
∑
i,j

‖Bjwij − Bj~Xjm̃i‖2 (12)

with:

~Xj =
[
X̄T

j 0
0 X̄T

j

]
and m̃i =

[
mT

1i mT
2i

]T
(13)
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where mT
1i and mT

2i are respectively the first and second 4 × 1 rows of M̂i. Given the
quadratic costs (11) and (12) we can express the power updates for the motion as:

m̃i = (
∑

j

~XT
j B

T
j Bj~Xj)−1

∑
j

~XT
j B

T
j Bjwij = (

∑
j

~XT
j C

−1
j

~Xj)−1
∑

j

~XT
j C

−1
j wij (14)

After rearranging m̃i �→ M̂i =
[
Ai ai

]
we obtain:

X̂j = (
∑

i

AT
i C

−1
j Ai)−1

∑
i

AT
i C

−1
j (wij − ai) (15)

where ai is the overall translation component as defined in (9). Once the estimates for
the average M̂ and Ŝ are available, Cj is update by equation (5).

4.2 The Missing Data Case

We can now assume that some points are not visible in some frames due to occlusion.
In order to include missing data, we can modify the power update equations in (14) and
(15) to simply not include the equations regarding the missing entries giving:

m̃i = (
∑

j

~XT
j C

−1
j

~Xj)−1
∑

j

~XT
j C

−1
j Zijwij (16)

X̂j = (
∑

i

AT
i C

−1
j Ai)−1

∑
i

AT
i C

−1
j Zij(wij − ai) (17)

where Zij is a scalar which is zero whenever a point is missing and one otherwise. The
updates have the property of efficiently estimating the centroid at each frame ai since
the measurement matrix of missing data may be not mean-centered. Schematically, the
algorithm can be outlined as follows1:

– Initialize X with random entries.
– Compute the 2F × 4 update of M̂i for i = 1 · · ·F given equation (16).
– Given M̂i =

[
Ai ai

]
, extract the measurements centroid ai.

– Compute the update of the average 3-D structure with (17).
– Recompute Cj =

∑F
i=1 Zij(wij − ai − AiX̂j)(wij − ai − AiX̂j)T .

– Iterate until convergence.

A metric update of the average shape can be then obtained in the case of orthographic
[10] and weak or para-perspective cameras [8] by computing the correct 3 × 3 transfor-
mation Q for the average shape.

4.3 Non-linear Optimisation and Non-rigid SfM

A full deformable 3-D reconstruction as presented in Section 2.1 can be successfully
computed linearly only when particular assumptions over the data are given and when

1 For clarity we drop the iteration subscript q.
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the full trajectories are available. For instance, in [12] the authors proved the existence
of a unique solution and a closed form algorithm when K independent 3-D shapes can
be identified in the measured data. On the other hand, a more general solution consists
in performing non-linear optimisation [5,1,11] by minimizing a cost function which
reflects the full deformable model as presented in equation (3) giving:

min
RiSkj lik

∑
i,j

Zij ‖ wij − x̂ij ‖2= min
RiSkj lik

∑
i,j

Zij ‖ wij − (Ri

∑
k

likSkj) ‖2 (18)

where Skj is the 3 × 1 basis for the point j such that Sk = [Sk1 · · ·SkP ]. Again,
the least-squares entries for the missing data are omitted. Initialisation of the model
parameters are provided by the average shape computed with our power approach.

5 Experiments

5.1 Synthetic Data

The proposed power approach was first validated using randomly generated synthetic
data of a deforming shape. The 3-D bodies were generated by firstly sampling the first
basis shape S1 over the surface of a sphere. The following basis S2 . . .SK , which repre-
sent the modes of deformation of the body, were generated randomly. In order to obtain
a given deformation at frame i, the configuration weights li1 . . . liK were computed
by fitting 4-order polynomials to random samples, this gave more regular deformation
rather then erratic motion. The computed 3-D shapes are then normalized to obtain a

specific ratio of deformation defined as
∑ F

i=1‖
∑ K

k=2 likSk‖2∑ F
i=1‖li1S1‖2 which is fixed to 0.25. The

final measurement matrix W is obtained by projecting each 3-D non-rigid shape onto the
image plane by means of random orthographic cameras Finally, points are eliminated
given different ratios of missing data.

The algorithm’s performances were tested in providing a meaningful initialisation to
the optimisation problem as defined in Section 4.3. Firstly, the method was less likely
to converge when the iterative re-weighting Cj was not included in the power steps
showing that the DON was effectively helping the convergence. The overall results are
shown in table 1 with different levels of image noise affecting the data. A decrease in the

Table 1. Left: Mean of the the absolute rotation error expressed in degrees. Right: 3-D recon-
struction error expressed in percentage relative to the scene size. The variance of the added noise
is expressed in terms of image pixel. The value are computed on 10 trials for each configuration
of noise and missing data ratios.

NoiseMissing %
0 0.5 1 1.5 2

10% 1, 32 1, 47 1, 89 2, 11 2, 13

20% 2, 85 3, 69 3, 45 3, 69 4, 05

30% 3, 75 4, 74 4, 76 5, 03 5, 78

40% 3, 99 4, 64 5, 18 5, 47 6, 87

Rotation Error

NoiseMissing %
0 0.5 1 1.5 2

10% 0.84 1.10 1.02 1.38 1.94

20% 1.26 1.38 2.05 1.26 2.55

30% 1.41 1.62 2.19 2.21 2.18

40% 1.78 1.86 1.96 2.39 2.40

3-D Structure error
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Average Frame 100 Frame 178 Frame 388 Frame 487

Fig. 1. The first column shows the complete set of 56 points used for reconstruction (first row)
and the recovered 3-D average shape (front and side views). The remaining columns present 4
key frames of the sequence with the available points at each frame. The second and third rows
present respectively the front and side views of the reconstructed 3-D structure after non-linear
optimisation. The number of basis shapes was fixed to K = 6.

algorithm’s performances is given for ratios of 30% and more missing data. Regarding
the mean shape computation, convergence was generally achieved after 15 iterations
with 10% of missing data, higher ratios increase this number however, in the worst
case, the algorithm was not performing more than 50 steps.

5.2 Real Data

The real experiments were focused on extracting a mean shape from a deforming face2

exhibiting a light rotation and non-rigid motion especially in the mouth region We se-
lected a 700 frames long sequence from the overall 5000 frames and 56 points were
collected to form the measurement matrix W. Occluded points appeared with an overall
20% ratio of missing entries. The recovered mean shape (see figure 1) was then used
to initialize a full deformable reconstruction and some frames presenting the recovered
3-D depth and deformations are presented (front and side view). The approach is able
to successfully recover a reasonable estimates of the depth and deformations even if the
subject was not performing strong rigid motion. The final number of iterations for the
power method was of 50 followed by 40 iterations of non-linear optimisation.

2 Sequence available at: www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking face.html
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6 Conclusion

This paper presented a power approach to estimate average shapes from non-rigid mo-
tion in the case of missing data. Experimentally we have shown the effectiveness of
the method in a deformable 3-D reconstruction task with affine cameras. The extracted
average shape and motion have been shown to provide a reliable initialisation for SfM
optimisation tasks in the tested cases. As a further study, the power method may be
extended to more general camera models (i.e. full perspective), however initial results
have shown increased instability in the convergence given by the difficulty in decou-
pling deformations from perspective distortions. In such cases, an approach using shape
priors as shown in [4] may help to successfully compute a reliable average shape.
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Abstract. In this paper we propose an automatic division procedure for
the Topological Active Net model in a hybrid combination of a genetic
and a greedy algorithm. This procedure allows the division of the active
net in subnets with the aim of segmenting several objects in the same
image. The combination of the greedy algorithm and the global search
improves the results in both synthetic and real images.

Keywords: Topological Active Nets, Genetic Algorithms, Hybrid Opti-
mization Algorithms, Lamarckian Strategy.

1 Introduction

Deformable models, proposed by Kass et al. [8] in 1988, are well-known tools for
image segmentation. The active nets model was proposed by Tsumiyama and
Yamamoto [10] as a variant of the deformable models that integrates features
of region–based and boundary–based segmentation techniques. The Topological
Active Net (TAN) model [1] was developed as an extension of the original active
net model that solves some intrinsic problems to the deformable models such as
the initialization problem.

In the field of deformable models, the Genetic Algorithms (GA) [6] have
mainly been used for edge or surface extraction [2,5,9]. Also, Tohka [9] have
developed a hybrid approach since he has used a greedy algorithm to strengthen
the minimum obtained by a global GA minimization process.

GAs have some advantages in the active model adjustment. They are less
sensitive to noise than other minimization approaches and do not depend on
the parameter set or the mesh size [7]. However, the biggest limitation of the
GA relates to perform changes in the mesh structure in order to achieve a fine
adjustment, detect concavities, or divide the net to segment several objects in
the same image. Last issue is the aim of this paper.

Regarding to the net division, Yoshino et al. [11] and Bro-Nielsen [3] have de-
veloped several works about automatic net division. The first one has modelled
the links as springs, whose strengths correspond to their lengths. This way, the
net arcs are dynamically unlinked when their strength value exceeds a thresh-
old. However, this method fails when two neighboring nodes are well placed but
too far and, moreover, it does not take into account any dependence between
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consecutive link cuts. In this sense, Bro-Nielsen [3] has developed a link cutting
process that allows the division of the net following a specific route based on cut-
ting priorities. Nevertheless, the main problem of this approach is the selection
of an appropriate threshold for the badly placed nodes.

This paper proposes an automatic net division procedure in a hybrid approach
that overcomes the difficulties of previous division methods and takes advantage
of both local and global search techniques provided by the greedy and the genetic
algorithms, respectively.

It is organized as follows. Section 2 introduces the basis of the TAN model.
Section 3 explains the combination between the GA and the greedy algorithm,
with emphasis in the net division procedure and its combination with a GA.
Section 4 shows some results of the new method and, finally, section 5 expounds
the conclusions of this work.

2 Topological Active Nets in Brief

A Topological Active Net (TAN) is a discrete implementation of an elastic 2D
mesh with interrelated nodes [1]. The model has two kinds of nodes: internal,
related to the inside of the objects, and external, related to contours.

A Topological Active Net is defined parametrically as v(r, s) = (x(r, s), y(r, s))
where (r, s) ∈ ([0, 1]× [0, 1]). The mesh deformations are controlled by an energy
function defined as follows:

E(v(r, s)) =

∫ 1

0

∫ 1

0
(Eint(v(r, s)) + Eext(v(r, s)))drds (1)

where Eint and Eext are the internal and the external energy of the TAN, re-
spectively. The internal energy controls the shape and the structure of the mesh
whereas the external energy represents the external forces which govern the ad-
justment process.

The internal energy depends on first and second order derivatives which con-
trol contraction and bending, respectively. It is defined as follows:

Eint(v(r, s)) = α(|vr(r, s)|2 + |vs(r, s)|2) +
β(|vrr(r, s)|2 + |vrs(r, s)|2 + |vss(r, s)|2)

(2)

where subscripts represents partial derivatives. α and β are coefficients that
control the first and second order smoothness of the net. In order to calculate
the energy, the parameter domain [0, 1] × [0, 1] is discretized as a regular grid
defined by the internode spacing (k, l) and the first and second derivatives are
estimated using the finite differences technique.

The external energy represents the features of the scene that guide the ad-
justment process. It is defined by the following equation:

Eext(v(r, s)) = ωf [I(v(r, s))] +
ρ

|ℵ(r, s)|
∑

p∈ℵ(r,s)

1

||v(r, s) − v(p)||f [I(v(p))] (3)
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where ω and ρ are weights, I(v(r, s)) is the intensity value of the original image
in the position v(r, s), ℵ(r, s) is the neighborhood of the node (r, s) and f is a
function, which is different for both types of nodes since the external nodes fit
the edges whereas the internal nodes model the inner features of the objects.

If the target objects are dark and the background is bright, the energy of an
internal node energy will be minimum on a point with a low grey level. On the
other hand, the energy of an external node will be minimum on a contour and
on a light point outside the object. In this case, function f is defined as:

f [I(v(r, s))] =

⎧⎪⎪⎨
⎪⎪⎩

h[I(v(r, s))n] for internal nodes

h[Imax − I(v(r, s))n + ξ(Gmax − G(v(r, s)))] for external
+ δGD(v(r, s)) nodes

(4)

where ξ and δ are weighting terms, Imax and Gmax are the maximum intensity
values of image I and the gradient image G, respectively, I(v(r, s)) and G(v(r, s))
are the intensity values of the original image and the gradient image in node
position v(r, s), I(v(r, s))n is the mean intensity in a n × n square and h is an
scaling function. The external energy also includes the gradient distance term,
GD(v(r, s)), this is, the distance from the position v(r, s) to the nearest edge.
This term introduces a continuous range in the external energy since its value
diminishes as the node gets closer to an edge. This way, the gradient distance
facilitates the adjustment of the external nodes to the object contours.

The minimization of these energy functions adjusts the net to the objects. In
the case of the greedy algorithm, the mesh is placed over the whole image and,
in each step, the energy of each node is computed in its current position and in
its nearest neighborhood. The position with the lowest energy value is selected
as the new position of the node. The algorithm stops if no node can move to a
position with lower energy.

3 Hybridization of the Evolutionary and Greedy
Algorithms

The greedy algorithm gets good results in most cases since it takes the best local
adjustment. However, this local adjustment may not be the best global one. This
way, if the model reaches a wrong segmentation, it gets stuck in it. The global
search provided by the GA reduces the probability of falling in local energy
minima [7]. In this approach, the genotypes coded the Cartesian coordinates of
the TAN nodes, the classic GA operators were adapted to the TAN features,
and new ad hoc operators were developed to improve the results.

The main drawback of the GA approach is related to changes in the mesh
structure since there is no way to conclude if a topological change is the best
minimization step in an individual (except for the best one). This way, the
topological changes could only be performed when the GA reaches a minimum.



Automatic TAN Division in a Genetic-Greedy Hybrid Approach 229

As a consequence, next generations of individuals would have the same topology
and the population heterogeneity would be reduced.

To avoid these limitations, a local greedy search stage is included in the evo-
lutionary process. The main idea is to perform a given number of steps of the
greedy algorithm in each individual of the genetic population in some genera-
tions of the evolutionary process. This way, the variability of TAN structures
is maintained since each individual performs different topological changes in
the minimization process. The search begins with high exploration (a greedy
stage every 15 GA generations) and turns progressively to higher exploitation
(a greedy stage every 1-5 generations). Additionally, a Lamarckian strategy is
followed so all the changes made by the greedy procedure are reverted in the
original genotypes.

Regarding to local search depth, the number of greedy algorithm steps is be-
tween 0 and 6 (depending on the kind of image) to minimize the probability to
deeply fall in local minima and, at the same time, maintain an adequate hetero-
geneity in the population, that can be reduced using the Lamarckian strategy.

3.1 Link Cutting Procedure

The greedy algorithm can perform topological changes, this is, cuts of links be-
tween adjacent external nodes after the minimization process. First, external
nodes that are more distant to the object edges are identified using the Tcheby-
cheff’s theorem. This way, an external node n is badly placed if its gradient
distance, GDvext(n), fulfills that:

GDvext(n) > μGDvext + 3σGDvext (5)

where μGDvext and σGDvext represent the average and the standard deviation
of the gradient distance of the external nodes.

Once the outlier set is identified, the link to remove is selected. It is the node
with the highest gradient distance and its worst neighbor in the outlier set.

After the cutting, some internal nodes become external since they are on the
boundaries of the net as figure 1 shows. The increase of external nodes allows a
better adjustment to object boundaries.

Internal nodes

External nodes

Fig. 1. Link cutting procedure. The figures show the TAN before and after the link
cutting. After the cut, the neighboring internal nodes become external nodes.

In the hybrid approach proposed, the greedy method uses the link cutting to
improve the results of the pure GA approach. Figure 2 shows several steps (best
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Fig. 2. Four steps in the link cutting process

individual in several generations) in the link cutting process in areas where the
GA alone cannot obtain an optimal segmentation.

As we follow a Lamarckian strategy, the modified topologies have to be trans-
ferred to the genotypes, so the genotype features need to be redefined. This way,
for each node, the genotype must include not only the x and y coordinates,
but also the directions where the node has neighbors, the kind of node (inter-
nal or external), and, as next section explains, the priority for a link cut in the
node.

Additionally, to maintain fitness coherence in the population individuals, a
node that turns from internal to external after a link cut is only considered as
external for fitness computation when it is over the object edges. Also, a balloon
pressure is used in order to move these nodes towards the contours [4].

The topological changes force the crossover between nets with the same topol-
ogy in order to avoid crossings in the connections of the resulting nets. This fact
implies a population categorization. Each population group with identical topol-
ogy can be associated with the “niche” concept, this is, a group based on common
features [6]. Only crossover between individuals of the same niche is allowed.

3.2 Automatic Net Division

Since the link cutting process breaks the net topology to improve the adjustment,
when the image has several objects, the net should be divided to segment them.
To this end, a net reconfiguration mechanism must be developed in order to
perform multiple object detection and segmentation.

The net division is performed by the link cutting algorithm. However, this
algorithm cannot be applied directly to the automatic division. The problems
arise in cases where a node has only two neighbors. In such a case, no other link
can be removed in order to preserve the TAN topology. Thus, a “thread” will
appear between two subnets as figure 3(a) shows. Figure 3(b) depicts a case that
leads to threads. If the labelled link is removed, there will be two threads since
no other link can be cut.

However, this problem can be overcome if a direction in the cutting process is
considered [3]. This way, a cutting priority is associated to each node whose con-
nections are removed. A higher priority is assigned to the nodes in cut direction
whereas a lower priority is assigned to the nodes involved in the cut. Figure 3(c)
shows the recomputation of the node priorities after several cuts.
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Fig. 3. Threads and cutting priorities. (a) Image segmentation with threads. (b) If link
“a” is removed, no other link can be removed in order to preserve the TAN topology.
(c) Recomputation of cutting priorities. When a link is broken in a direction, the
neighborhood in this direction increases its priorities.

The cutting priority weights the gradient distance of each node. Thus, once
the set of badly placed external nodes is obtained using equation 5, the link to
remove consist of two neighboring nodes within this set, n1 and n2, that fulfill:

GDvext(n1) × Pcut(n1) > GD(n) × Pcut(n), ∀n �= n1
GDvext(n2) × Pcut(n2) > GDvext(m) × Pcut(m), ∀m �= n2, m ∈ ℵ(n1),

(6)

where Pcut(x) is the cutting priority of node x, GDvext(x) is the distance from
the position of the external node x to the nearest edge, and ℵ(n1) is the set of
neighboring nodes of n1.

4 Results

We have tested the methodology with synthetic and CT images and we have
compared the results with the greedy alternative. Both synthetic and CT im-
ages are 256 grey level images. The real ones are slices of the knee bones. They
have been chosen from a set of CT images of body bones and represent the advan-
tages of the hybrid approach. In all the examples, the same image was used as the

Table 1. TAN parameters used in the segmentation examples of figures 4 and 5 for
both approaches. The gradient distance parameter is only used in the hybrid approach.

Image Size α β ω ρ ξ δ

Fig. 4 22 × 22 2 0.0001 2 4 2 4

Fig. 5 (first row) 14 × 18 1.8 0.01 2 2 4 6

Fig. 5 (second row) 13 × 16 2 0.01 4 2 4 6
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Fig. 4. Results on synthetic images. Left: greedy algorithm. Right: hybrid approach.

Fig. 5. Results on CT images. Left: greedy algorithm. Right: hybrid approach.

external energy for the internal and external nodes. The GA parameters used in
the hybrid approach are the same as in [7]. Table 1 shows the TAN parameter
sets used.

Figure 4 shows a synthetic example of a successful automatic division. The
initial net is divided in three subnets. The segmentation results are similar in
both methods, but the hybrid approach gets a better adjustment to the contours.

Figure 5 shows images of the knee. In the hybrid approach, the genetic popula-
tion was 600 in the case of figure 5 (first row, right) and 700 in the case of figure 5
(second row, right). In these examples, the greedy method does not achieve a
good adjustment due to the similar gray levels of the bones and the background.
On the contrary, the hybrid approach overcomes the gray level similarity and
gets good results. The gradual transition between the two bigger bones difficults
the segmentation of both examples, even the hybrid one.

Regarding the computing times, the greedy method is faster (5 seconds for
a simple image and 30-60 seconds for a complex one in an AMD Athlon at 1.2
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GHz). The computing times of the hybrid approach depend on the number of
generations and the number of iterations of the greedy search. Usually, it requires
10-20 minutes of computation. The advantages of the hybrid approach justify
the higher computation times.

5 Conclusion

In this paper we have presented an automatic methodology for the Topological
Active Net division in a hybrid genetic-greedy energy minimization approach.
The hybrid method achieves a better adjustment to the objects due to the global
search method and it also allows topological changes (link cuts) in the net struc-
ture as the greedy approach. The link cutting procedure is improved using cut-
ting priorities that allow an automatic net division in order to segment several
objects in the scene.

The greedy and hybrid approaches have been tested with synthetic and real
images. The results have shown that the hybrid method achieved better results in
the detection of several objects in the scene and the adjustment to the contours.
Future work in this field includes the extension of this methodology to 3D.
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Abstract. A broad family of problems in computer vision and image
analysis require edge and circle detection. This paper explores the proper-
ties of the Hough transform for such tasks, improving them under a novel
implementation on commodity graphics hardware. We demonstrate both
a faster execution and a more reliable detection under different scenarios
and a range of parameters selection. Overall, a consistent 3-6 accelera-
tion factor and beyond is achieved for a 500 MHz GeForce 7950 GX2
graphics card versus a typical 3 GHz Pentium 4 dual-core CPU.

1 Introduction

Edge and circle detection is a popular task in computer vision and image analysis.
What it is a naive achievement for the human eye, has been proven tough and
costly for computers, essentially because without prior knowledge, an extensive
search has to be perfomed on the entire image to identify the desired feature.

The Hough transform [4] performs this search by discretizing all possible trans-
formations between object and image space, where matches between object and
image features count as votes which are interpreted as the likelihood for the ob-
ject to be present in the image. Computational complexity comes from the fact
that a huge number of potential candidates have to be considered for voting,
leading to a vast memory use.

The homogeneity of the operations involved in the Hough transform and its
computational cost have revealed it like an ideal target for parallelization. In this
respect, a number of efforts were carried out within the last decade, including
distributed memory multiprocessors [7], pyramid computers [2], SIMD machines
[8], special purpose hardware and reconfigurable architectures [11].

After setting its basic principles in the 80’s and improving its performance in
multiprocessors during the 90’s, this decade it is the time for graphics platforms
to accelerate the execution of the Hough transform. The increasing flexibility
and programmability of graphics processing units (GPUs) have allowed them to
be used as target platforms in a wide spectrum of applications beyond graphics
[1], mostly with an outstanding performance [10]. Throughout this paper, we
show that the Hough transform is not an exception to this trend.

This paper is organized as follows. We start summarizing related work in
section 2. Section 3 describes the Hough transform along with some preprocess-
ing steps. Section 4 deals with the implementation within the GPU, section 5
describes the input data set and hardware platforms and section 6 analyzes the
experimental results both from performance and quality prospectives.
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2 Related Work

The use of GPUs for general-purpose computing is steadily gaining popularity.
Shader programming has transformed its vertex and pixel processors into con-
figurable units willing to compute problems as diverse as sparse linear algebra,
differential equations, database operations, physically-based simulations, signal
and image processing, among many others [10]. Following this trend, the Hough
transform has recently been ported to graphics platforms, both in its basic form
for detecting lines [6] and its generalized version for arbitrary shapes [15].

The generalized version (Strzodka et al, 2003) relies on textures as the main
resource for the input data set, enabling blending functions for accumulating
votes on the image space. This represents an improvement in old platforms where
fill-rate was higher on textures than on pixels, but not in current GPUs where
pixel units are around 50. Our implementation relies on vertex processor for
registering the votes and pixel processors for accumulating and counting them.

The basic version is more recent (Fung et al, 2005) and also takes advantage
of the rasterizer, which is used for creating a contiguous mapping between the
object and the image space after discretization of the angle variable within the
(0,2π) range. Unfortunately, such strategy doubles the number of input vertices,
overloading the vertex processor, which becomes the major bottleneck. Instead,
we try to balance the workload among all the functional units in the GPU.

3 The Algorithm

The very first step in pattern recognition is to isolate the points of interest on an
image. To perform this, a filtering operation is implemented followed by another
filter for removing noise and improve the input, after which the Hough transform
is computed.

3.1 Edge Detection: The Canny Filter

Edge detection filters try to identify edges based on gradient magnitudes. Among
all existing filters [12], we choose Canny [5] as one of the most successfully applied
to a grayscale or single-color component image; for the cases where the input
image covers the whole RGB color space, the luminance operator is computed
beforehand to convert to grayscale (see equation 2).

The Canny operator works in a multi-stage process.

1. First convolution: The image is smoothed by a Gaussian operator acting as
a noise removal stage while controlling the amount of detail which appears
in the edge image.

2. Second convolution: A simple 2-D first derivative Sobel operator is applied to
the smoothed image to highlight regions of the image with high first spatial
derivatives. Edges give rise to ridges in the gradient magnitude image.

3. Non-maximal suppression: Ridges are tracked at the top to reset all pixels
that are not actually on the ridge top so as to give a thin line in the output.
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4. Double threshold hysteresis: T1 and T2 are two thresholds with T1 > T2.
Tracking can only begin at a point on a ridge higher than T1, and continues
from that point until the height of the ridge falls below T2. Hysteresis helps
to ensure that noisy edges are not broken up into multiple edge fragments.

3.2 Pattern Recognition: The Hough Transform

In its more basic form, the Hough transform can be used for detecting lines on
an image, where each image edge point generates a curve in a 2D parameter
space. Curves from all edge points are accumulated in the parameter space, in
such a way that the problem of object detection becomes the calculation of the
maximum in that parameter space.

The Hough transform can also be used to more complex contours [13]. Such
is the case of the Circle Hough Transform (CHT) [3], where each edge point
generates a surface in a 3D parameter space with an equation as follows:

(x − a)2 + (y − b)2 = r2 (1)

where (x, y) represents the coordinates for each edge point, and (a, b) and r
stand for the circle center and radius, respectively. Simple extensions can also
be applied to detect more complex shapes like ellipses.

4 Implementation on the GPU

In order to detect circular patterns on an image, the Hough transform takes as
input a set of points which have been considered as the borders of the objects
within an image after luminance and Canny filter are applied.

4.1 Preliminary Renderings

Luminance, or pixel intensity, converts a RGB-color image into a grayscale by
applying the following expression:

L = 0.299 · R + 0.587 · G + 0.114 · B (2)

This expression is computed directly on a pixel shader, taking the original
image as an input texture with three color channels per pixel and returning as
output another texture reduced to a single channel per pixel.

4.2 Vertex Processor

After luminance, convolutions and hysteresis are computed in the pixel processor,
the final result is written into a texture, which has to be transformed into a list
of vertices representing the set of points detected as borders.

Border points are finally accepted by the vertex processor, with its location
mapped into the (x, y) position attribute. Now image space has to be converted
into a parameter space, which considers all the circles that can be drawn passing
through each point. Every circle is characterized by its center (a, b) and radius
r, resulting into a 3D parameters space fulfilling the following pair of equations:
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a = x − r · cos(t)t ∈ [0, 2π] b = y − r · sin(t)t ∈ [0, 2π] (3)

The goal now is to compute a vote for all (x,y) points on the image, the values
of discretized values for t, and the list of candidates radius. As the discretization
for t decreases, the workload for the vertex processor and the accuracy for the
votes both increase, having a simultaneous impact on the execution time and
quality for the final cicle detection (see section 6).

4.3 Pixel Processor

The total number of votes are stored on 3D textures whose dimensions depend
on the discretization of the parameter space, where circle center as the first
two dimensions and t steps being the third. The accumulation for the votes is
performed on the pixel shader by projecting the 3D texture into a 2D texture.

The final circle detection corresponds to the maximum values taken within
the parameters space, given a chosen threshold as sensitivity. The process is then
repeated for each radius within a range selected according to image features.

5 Experimental Setup

To demonstrate the effectiveness of our techniques, we have conducted a number
of experiments on regular PCs.

On the GPU side, we use OpenGL and the Cg language for programming the
shaders. GL POINTS was selected as drawing primitive to keep computations
strictly over the input list of vertices. The GPU is a 500 MHz GeForce 7950 GX2
with 8 vertex processors and 24 pixel processors and endowed with 512 MB of
GDDR3 video memory at 2x600 MHz. This results in a peak processing power
exceeding 190 GFLOPS and a memory bandwidth of 38.4 GB/s.

For programming the CPU, we use Visual C++ 7.0 running under Windows
XP. Multimedia extensions (SSE3 on Pentium 4) were enabled relying directly
on HAL layer without any specific library in between. The CPU is a Pentium D
930 model, a dual-core architecture running at 3 GHz and endowed with 1 GB
of DDR memory at 2x266 MHz, which delivers peak 12 GFLOPS and 8.5 GB/s.

The input data set consisted of four different images as far as circle properties
are concerned: radius size, number of objects and irregularities, overall noise and
resolution - see Table 1 for image features and Figure 1.(a-d) for pictures.

Table 1. Our input data set for circle detection (radius and resolution given in pixels)

Number of circles Radius used Image Challenging
Image name to be detected for searching resolution issues

Golf ball 1 37 300x300 Background noise

Pebbles 117 9 256x300 Irregular shapes

Grapefruits 12 50 500x400 Thick contour (r varies)

Water drops 42 big, 140 med, 4,12,20,28, 400x400 Diversity, population,
140 small, approx. 36,44,52 plenty of tiny radius
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Fig. 1. (a-d) The input data set used for our experiments. (e) The output of our
algorithm for the golf ball after Luminance and Canny stages. (f-g) The output of
Hough (votes accumulated into the parameter space) as written by the GPU on the
frame-buffer under two different angle steps for the golf ball case (brighter colors means
higher voting). (h) Same as in g, but applied to the image in b (pebbles).

6 Empirical Results

This section compares CPU and GPU when performing the Hough transform
both from a quantitative and qualitative assessment. We start with the latter.

6.1 Accuracy

After applying the luminance operator and the Canny filter, a canonical repre-
sentation was used in both processors to compute the Hough transform using the
same input (see Figure 1.e for the golf ball case). This guarantees that differences
in the final results are no longer due to deficiencies in any of the preprocessing
stages, which were somehow manually tuned.

Table 2 shows the overall number of circles detected by each implementation.
The number of votes to compute depends widely on the image resolution and the
discretization step used for traversing the t variable within the [0, 2π] interval. We
run two versions with t increments of 0.01 and 0.1, which respectively produces
more than 56 and 5.6 million votes for a 300x300 image like golf ball.

As the number of votes increases, so does it workload and accuracy, but also
the negative influence of noise like the background grass behind the golf ball. This
effect is noticeable in Figure 1.(f-g), where we depict the output from the GPU
code for the two golf ball executions, that is, the frame buffer contents displayed
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Table 2. (left) Number of circles detected on each Hough implementation for each
sample image and contrast against its correct value, revealed in the last column. (right)
Accumulative process for the votes performed on graphics textures.

t+ = 0.01 t+ = 0.1 Correct
Image name CPU GPU CPU GPU number

Golf ball 1 1 1 1 1

Pebbles 117 116 115 117 117

Grapefruit 14 12 17 20 12

Water drops 300 356 339 324 ≈322
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on screen using the RGB color channels for accumulating votes (brighter color
means higher voting).

Pebbles is a different experiment with a better foreground segmentation and
more than 100 circles to work on. The skills of each processor are quite similar
here, despite the circle irregularities and the overwhelming number of votes due
to circle density (see Figure 1.h for the output from the GPU, much brighter as
compared to the golf ball case under the same angle step in Figure 1.g).

Grapefruits pose two challenges to the GPU. First, thicker circle contour in
the image space may lead to consider several circles where a single one exists;
this is something that also affects to the CPU, as we see it counting 14 and 17
units instead of 12. Second, higher radius size makes votes to draw circles of
higher radius in the parameter space as well (compare golf ball with pebbles in
the image space and Figure 1.g with 1.h in the parameter space). Those votes
are likely to produce side-effects in neighbour circles, an effect which amplifies
with the angle step where the weight of each real vote diminishes. In fact, the 20
circles detected by the GPU under t = 0.1 were very close to each other, also as
a consequence of the thicker circle contour in the image space. All those effects
were corrected when increasing the workload on the GPU up to t = 0.01.

Finally, water drops is the most demanding picture, containing plenty of tiny
circles and some oddities. However, the GPU here performs really well, as we
see the two undesirable effects described above to fade away.

Overall, slight differences between the results obtained by the CPU and the
GPU lie in the way that votes following equation 3 are rounded due to discretiza-
tion in parameter space. When the (a,b) candidates for circle center coordinates
are very close to each other for consecutive angle steps, they accumulate votes
on the CPU; those are not repeatedly counted by the GPU because all vertices
matching on the same screen location on a single rendering pass overwrite the
same pixel and count as a single vote when mapped onto the texture for storing
the final results. Though we expected duplicated votes to penalize results on the
CPU, we have seen scenarios here where they are beneficial as well.
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Table 3. Computational weight in milliseconds for each task involved in our pattern
recognition algorithm and overall improvement factor achieved by the GPU implemen-
tation against its CPU counterpart. Times for the Hough transform are shown for two
angle steps, t = 0.01 and t = 0.1, and the times in the last row are given for each radius
value, being nearly the same in all the seven cases executed.

CPU GPU (and GPU vs CPU factor improvement)
Lumi- Canny Hough Hough Lumi- Canny Hough Hough

Image name nance filter (t+=.01) (t+=.1) nance filter (t+=0.01) (t+=0.1)

Golf ball 7.18 168.54 798.58 84.25 2.31 (3.1x) 4.49 (37.5x) 324.03 (2.4x) 37.50 (2.2x)
Pebbles 5.46 120.85 1817.01 188.18 2.04 (2.6x) 5.42 (22.2x) 482.71 (3.7x) 51.32 (3.6x)
Grapefruits 15.90 365.10 1907.32 187.17 2.52 (6.3x) 10.32 (35.3x) 508.36 (3.7x) 57.54 (3.2x)
Water drops 13.74 292.16 3955.76 395.63 2.80 (4.9x) 7.60 (38.4x) 856.98 (4.6x) 93.30 (4.2x)

6.2 Performance

The speed of algorithms running on GPUs highly depends on how well they can
be arranged to fit and exploit its inherent parallelism and high memory band-
width. Persistent use of textures becomes paramount for a code to benefit from
video memory, so as arithmetic intensity does it from parallelism. The imple-
mentation of the Hough transform that we have presented here combines well
both features to reach significant improvement factors (see Table 3): We exten-
sively use shaders with homogeneous operations which can be evenly distributed
among all existing processors; in addition, main data structures involved in the
computation are all defined in terms of 2D and 3D arrays, finding a natural
mapping onto graphics textures.

Finally, the Canny filter is our most remarkable achievement, with a 40x
reduction factor versus the CPU code. This stage is defined as a set of convolution
operators where arithmetic and memory participate at high rates. Moreover,
pixel processors traverse images organized in 2x2 groups, which is ideal for access
patterns used by convolution masks where neighbour data are always coupled.

7 Conclusion

We have mapped well-known methods for border extraction and subsequent
circle detection onto graphics processors. The algorithms were tested against an
assorted set of images to demonstrate better skills and much faster processing
on the GPU side as compared to a CPU of similar cost in the PC marketplace.

As time goes on, we are seeing the graphics pipeline evolving towards a
general-purpose architecture and assisted by compilers to benefit the scientific
community from its extraordinary scalability, with a performance growing rate
doubling the Moore’s Law in present CPUs and for years to come. As a low-cost
platform for accelerating a wide variety of problems within this transition pro-
cess, we envision image processing as one of the most natural fields to benefit
from dozens of GB/s in memory bandwidth and hundreds of GFLOPS in peak
processing power.
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8 A Look to the Future

The new generation of GPU architects face the challenge of balancing flexibility
and performance concerning general-purpose applications (GPGPU) [1]. Per-
formance has played a primary role in GPGPU, but researchers are required
to understand about vertices, pixels and textures, as well as DirectX/OpenGL
prior to any general-purpose implementation on the GPU. At the time of writ-
ing this article, Nvidia has released the CUDA architecture [9] in conjunction
with a C compiler that allows to write regular C code for its graphics platforms
G80 and beyond; a similar corporate initiative, RapidMind [14], emerges as a
tool for automatically adapting C code into multicore CPUs, GPUs and the Cell
processor. It remains to be seen the performance hit that these tools will have
when running on a GPU an automatically transformed code as compared to the
somehow manual and scientific implementation described throughout this paper.
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Abstract. Detection of speckle in ultrasound (US) images has been
regarded as an important research topic in US imaging, mainly focusing
on two specific applications: improving signal to noise ratio by removing
speckle noise and, secondly, for detecting speckle patches in order to
perform a 3D reconstruction based on speckle decorrelation measures.

A novel speckle detection proposal is presented here showing that
detection can be improved based on finding optimally discriminant low
order speckle statistics. We describe a fully automatic method for speckle
detection and propose and validate a framework to be efficiently applied
to real B-scan data, not being published to date. Quantitative and qual-
itative results are provided, both for real and simulated data.

1 Background

US imaging captures the difference of sound scattering and reflection in tissues.
Taking into account spatially randomly distributed sub-resolution scatterers,
one can talk about incoherent scattering which gives rise to speckle noise or
fully developed speckle. However, if this distribution follows a given pattern, a
coherent component is introduced. The main aim of this work is to provide
an automatic method for the detection of fully developed speckle patterns in
B-scans. A common approach is to describe speckle using a known statistical
model. Various models have been proposed for speckle characterisation, Rayleigh
and Rician models were originally used but more general models such as the
Nakagami [1], K [2], Generalised K and Homodyned K distributions [3,4] have
shown to account for better speckle description at the expense of a more complex
formulation. An alternative approach, adopted here, is to describe speckle based
on statistical features extracted from the amplitude moments of the B-scan. The
work presented here is based on an earlier work [5] but incorporates relevant novel
aspects such as the optimally discriminant computation of speckle statistics and
the methodology for its fully automatic application to real B-scan data. The
paper is structured as follows: Sect. 2 presents the formulation for obtaining
optimally discriminant speckle statistics; Section 3 proposes a method for speckle
detection in B-scans, while Sect. 4 shows evaluation results using simulated and
real data. The paper finishes with conclusions and future work.

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 242–249, 2007.
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2 Speckle Characterisation

Speckle in ultrasound images is commonly characterised by three parameters:
the coherent signal energy s2, the diffuse signal energy 2 ∗ σ2 and the number of
scatters per resolution cell μ. The coherent and diffuse signals are also commonly
expressed as the ratio k = s/σ, the proportion of coherent to diffuse signal. As
demonstrated by different authors [5,6], speckle can be characterised by two low
order moments: the ratio between the mean and the standard deviation (R) and
the skewness (S), defined as follows,

R =
E{Av}√

E{A2v} − E2{Av}
S =

E{(Av − E{Av})3}
(E{A2v} − E2{Av})3/2 (1)

where A is the signal amplitude, and v the power of the statistical moment.
Effectively, R and S can be computed using v values different from one. This
issue is important as the use of an specific value of v could lead to a better
discrimination between speckle and non-speckle signals. For instance, in all ex-
periments described by Prager et al. [5] a fixed v value was used (v = 1.8 for
simulated and v = 1 for real US images). As noted in [7], this assertion may
not be always valid. Authors show that an analysis of the discriminant power of
the R-S features should be carried out in order to determine the optimal order
of the statistics. Nevertheless, their experiments are based on simulated data
and do not discuss how this optimal v value affects the final speckle detection
algorithm, nor how this criteria can be applied to real B-scan data.

2.1 Discriminant Power Analysis

The R-S statistics can be regarded as features for a classic pattern recognition
problem [8]: given a set of feature values classify them as being speckle or non-
speckle. As a set of R-S is obtained for each sampled v value, one could think that
the most appropriate R-S features are those which maximise a certain measure
of discriminating power. One of the most commonly used methods is the analysis
of the within class (Sw) and the between class (Sb) scatter matrices [8]. Defining
the matrix Sm as the sum of the Sw and Sb, different measures of discrimination
power can be computed. In order to follow a consistent notation with [7], those
measures are referred to as J1, J2 and J3 and are defined as follows.

J1 = trace(Sm)/trace(Sw) J2 = det(Sm)/det(Sw) J3 = trace(S−1
w ∗ Sb) (2)

For all cases a higher value denotes higher class separability, although this
criteria does not always coincide for all measures, which, excerpted from the
experiments, is specially true for J1 measures. Back to the problem of speckle
detection, having those measures of class separability one can conduct different
experiments in order to obtain the value of v which maximises class separability,
we will refer to this value as vopt. Nevertheless, the problem of developing a
method for detecting speckle in real B-scan images using those discriminant
features has not been addressed yet. This is presented in the next section.
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3 Speckle Detection in Real B-Scans

This section adapts the speckle detection methodology in order to be applied
to real B-scan ultrasound images. An added difficulty is that intensity data in
B-scan images is log compressed by the ultrasound machine in order to account
for the full dynamic range. If the original non-compressed signal is unavailable,
intensity information needs to be decompressed in order to correctly characterise
speckle. Several authors suggest a compression of the form p = Dln(I)+G, where
p is the final B-scan intensity, D the compression factor, G an offset value and
I the original intensity signal. The offset value is often disregarded as it does
not affect the statistics of the speckle. It is then D the important factor to be
determined in order to obtain a good speckle detection.

3.1 Speckle Detection

As previously stated, our work builds up on the speckle detection methodology
proposed by Prager et al. [5], but incorporates novel aspects such as the opti-
mal selection of the statistics applied to real B-scans and removing the need of
manual intervention, aspects which we believe make the method more robust.
Prager et al. proposal is based on a simultaneous method for estimating B-scan
decompression parameters and subsequently detect speckle regions based on the
ellipsoid discriminant function obtained from simulated speckle data. The ellip-
soid function is used to classify a patch as being speckle if its R − S features
lie within the ellipse. The original approach presents some drawbacks. A first
issue is the need of manually detecting initial speckle regions in order to extract
sample statistics, prone to errors due to human variability and to the fact that
in some images it is difficult to obtain those regions. Manual intervention is also
needed in order to obtain the ellipse parameters for the speckle discriminant
function. This is solved in this work by using eigenanalysis of the covariance
matrix obtained from the R-S simulated data. Another important drawback is
the fact that R −S features are computed using an arbitrarily value. The power
of the statistics can play an important role in discriminating speckle regions
as it is shown in the results section. The steps of our proposal are described
below,

1. Obtain an ellipse discriminant function from speckle simulated data for
different v values ranging from 0 to 3 (i.e. with increments of 0.1).

2. Automatically detect core speckle and core non-speckle regions and es-
timate decompression factor Dv from the real B-scan data (see Sect. 3.2).

3. Using speckle and non-speckle, compute R − S statistics and find vopt, the
v value where those statistics are optimally discriminant.

4. Adapt the ellipse centre parameters using the mean R −S features from the
speckle patches, similarly to the original method.

5. For all patches in the image, decompress it using the Dvopt value, obtain
R − S features and use the ellipse discriminant function to assert if it is a
speckle patch (is inside the ellipse), also similarly to the original method.
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The following section describes the core speckle and decompression estimation
method (step 2 of the proposal).

3.2 Core Speckle and Decompression Estimation

In order to estimate the decompression factor, a number of speckle patches needs
to be detected. However, speckle patches can not be detected if no decompres-
sion estimation is obtained. This is clearly an optimisation problem where de-
compression and speckle patches need to be simultaneously estimated. In the
original work [5] this was approached by manually detecting fully developed
speckle patches. Here, this is solved using a RANSAC based approach, which
automatically detects representative speckle and non-speckle patches from ran-
domly sampled patches in the B-scan data.

The detection of speckle and non-speckle patches is based on the assumption
that the estimated decompression values D found after an optimisation process
(see [5]) are stable as a function of v for speckle patches. In the case of non-
speckle patches those values will present high variability for different v values,
explained by the fact that optimisation will be unable to find a meaningful D
value. This assumption is corroborated by different experiments on both sim-
ulated and real data, some of them shown in Sect. 4.2. The method for core
speckle and simultaneous decompression estimation is described using the fol-
lowing steps:

1. Choose an initial compression value D.
2. Extract a N random patches from the B-scan data.
3. For each patch p

(a) Decompress the patch intensity using Ip = exp(p/D)
(b) Compute R − S from Ip, for a range of v values from 0 to 3, (Fpv).
(c) For each Fpv use an optimisation algorithm to estimate the decompres-

sion value, Dpv.
4. Extract the most stable (smallest standard deviation) Dpv values as a func-

tion of v, D′
pv.

5. Compute the median of the D′
pv obtaining a final estimation of the compres-

sion factor as a function of v, Dv (see Sect. 4.2).
6. Core speckle patches are defined as the Nsp patches with Dpv values closest

to Dv, while core non-speckle patches will be randomly sampled (Nnsp)
from the patches with the largest difference to Dv.

In addition to the log compressed image, some modern ultrasound machines al-
ready provide the uncompressed echo amplitude signal. In that case, the method
would not need to estimate the decrompression parameter, making the core
speckle and non-speckle step less computationally costly, avoiding the use of the
optimisation algorithm in order to obtain the estimation of the decompression
factor D. However, if this information is unavailable, for instance due to the
limitations of the ultrasound scanner or to the fact that images are from retro-
spective studies (where non-compressed images are not available), the presented
method provides an estimation of this compression.
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4 Evaluation and Results

4.1 Discriminant Analysis

Other works have already justified the need of finding discriminant statistics
for speckle detection [7]. Nevertheless this needs to be investigated as a differ-
ent detection approach is adopted here and moreover, the discriminant analysis
applied to real B-scan data conforms one of the novel aspects of our approach.

As an initial evaluation, different experiments are presented using simulated
data. A total of four different speckle and non-speckle patterns have been simu-
lated using different k and μ parameters, namely Ia = (0, 50) as fully developed
speckle and Ib = (1, 50), Ic = (0, 2), Id = (1, 2) as non-speckle patterns. For
each pattern a total of 1000 different sets of 1000 samples have been simulated,
subsequently R − S features have been computed as a function of v. Fig. 1(a)
shows class separability for the 2-class problem as a function of v. The maxi-
mum value for J1 is around 1.3, whereas J2 and J3 seem slightly consistent in
finding the vopt = 0.9. As pointed out previously J2 and J3 values correspond
to similar discrimination criteria. Therefore, and similarly to [7], J3 will be used
as discriminant criteria (J2 could also be used). Those results, and other simu-
lated experiments not shown here, suggest that class separability is not close to
a fixed value as suggested in [5]. For the vopt value, Fig. 1(b) shows the scatter
plot of the R-S features where a clear discrimination can be seen between the
data except for Ia and Ib. This overlap is explained by the similar parameters
used, related to fully developed speckle and speckle with an small amount of
coherent scattering.
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Fig. 1. 2-class problem: (a) Class separability as a function of v and (b) the scatter
plot of the R-S features for the case where J3 is maximal (vopt = 0.9)

Another experiment is presented in order to asses if the use of the discrimi-
nant criteria for v value corresponds to a better speckle detection rate. Speckle
and non-speckle data characterised by different parameters has been simulated.
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An ellipsoid discriminant function has been fitted using the R − S features from
speckle data for different v values. The experiment is based on selecting a num-
ber of random samples from the simulated data and test if they belong to speckle
using the ellipsoid function. The aim is to evaluate if the optimally discriminant
v value (vopt) improves speckle detection results. Table 1 summarises the re-
sults in two different simulations (600 and 4000 sample sizes) in terms of correct
classification rate (CCR), sensitivity (Sens) and specificity (Spec). For the ex-
periment with 4000 samples, sensitivity and CCR using vopt are increased, while
specificity does not significatively change compared to other v values. When a
smaller number of data is used, this difference is not that significative, although
the vopt does not degrade the results and is in line with the best detection rates.
Results with different simulated data (not included here) also corroborates those
findings. In conclusion, the use of vopt obtains the optimal v statistic for speckle
detection in our approach.

Table 1. Speckle detection for simulated data using different sample sizes: 600 (left)
and 4000 (right) samples. For both tables the last row corresponds to the vopt value.

v CCR Sens Spec
3 0.844 0.975 0.676
2 0.853 0.969 0.704

1.8 0.846 0.979 0.678
1.1 0.852 0.980 0.685

v CCR Sens Spec
3 0.893 0.983 0.779
2 0.895 0.981 0.785

1.8 0.891 0.980 0.778
1.2 0.900 0.991 0.783

4.2 Decompression Estimation

The assumption that the decompression values found after optimisation are sta-
ble as a function of v for speckle patches, compared to non-speckle patches is
evaluated. A set of speckle and non-speckle patches have been manually labeled,
subsequently, step 3 described in Sect. 3.2 is applied in order to obtain the be-
haviour of a D estimation for both speckle and non-speckle patches as a function
of v. Figure 2(a) shows these estimations for speckle and non-speckle, it is clear
that non-speckle regions obtain a highly variable D estimation, whereas speckle
patches are fairly stable. In our method, a decompression estimation as a func-
tion of the v values is obtained by computing the median of these stable values.
This estimation, Dv, is shown in Fig. 2(b).

4.3 Detection of Core Speckle and Non-speckle

Figure 3 shows the core speckle and non-speckle detection results using the
described approach in real B-scan data from a prostatic phantom. The Nsp and
Nnsp values are set to 20, a non particularly critical value. Core speckle clearly
shows typical low intensity fully developed speckle patches, whereas core non-
speckle are characterised by the high contrast regions with important coherent
signal components.
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Fig. 2. Decompression estimation: (a) D estimation as a function of v using manually
labeled speckle (dotted) and non-speckle (solid) patches; (b) final Dv estimation from
the median of the most stable estimations

(a) (b) (c)

Fig. 3. Results for the proposed core speckle detection in prostatic phantom images.
(a) original B-scan, (b) core speckle, (c) core non-speckle patches.

(a) (b)

Fig. 4. Results in prostatic phantom images. (a) original and (b) speckle detection.
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4.4 Speckle Detection

Speckle detection results are shown in this section. The algorithm was tested
using US images from a prostatic phantom. Although a single image was used
for the core speckle detection (more images could be used), detection results are
qualitatively satisfactory as shown in Fig. 4. Interestingly, the method detects
regions not only with dark speckle patches (similar to the core speckle) but also
lighter speckle areas inside the prostate area.

5 Conclusion

A novel approach for the detection of speckle in real B-scan images has been
presented. We have shown that optimally discriminant speckle statistics can be
used for obtaining a better speckle characterisation. In addition, an automatic
method for detecting core speckle and non-speckle areas has been presented,
which eliminates the need of manual intervention. Quantitative and qualitative
results have been given which prove the validity of our approach. Future work will
be focused on applying the speckle detection algorithm to particular applications
such as 3D reconstruction from sensorless freehand images or increasing signal
to noise ratio in US images.
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Abstract. Diversity in the decisions of a classifier ensemble appears as one of the
main issues to take into account for its construction and operation. However, the
potential relationship between diversity and accuracy, with respect to the resam-
pling method and/or the classifier fusion technique has not been clearly proved.
The present paper analyzes the influence of different resampling methods and
dynamic weighting schemes on diversity and how this can affect to the accuracy
of the classifier ensemble. This is specifically studied in the framework of the
Nearest Neighbor classification algorithm.

1 Introduction

Many researchers have investigated the technique of combining the predictions of mul-
tiple classifiers to produce a single decision. The basic idea considers a number of ad-
vantages when compared to the use of an individual classifier [10], the most important
argues that the resulting classifier (typically called ensemble) is generally more accurate
than any of the single classifiers making up the ensemble.

It is widely accepted that the major factor for a better accuracy is the diversity among
the classifiers to be combined, that is, they must differ in their decisions to complement
each other [2, 13, 15]. To obtain diversity, there exist many distinct techniques for con-
structing classifier ensembles. One consists of using different classifiers over a unique
training set; in this case, the classifiers themselves must be different enough to pro-
duce diverse decisions. Another consists of manipulating (or resampling) the data set
on which the classifiers are trained. Under this scenario, classifiers may be all based
upon the same technique, e.g., a k-Nearest Neighbor (k-NN) classifier.

Another issue of interest in the framework of combining classifiers refers to the dif-
ferent methods to obtain the output of an ensemble. Two main strategies are discussed
in the literature: classifier selection and classifier fusion. The idea in classifier selection
is that each individual classifier has expertise in some local area of the feature space
and therefore, only one expert is responsible to label a new input pattern. Conversely,
classifier fusion assumes that all classifiers have equal knowledge of the whole feature
space and the decisions of all of them are taken into account for any input pattern.

Within the fusion context, the most popular method for combining the decisions cor-
responds to the majority voting [12]; however when the performance of the ensemble
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components is not uniform, the efficiency of this type of voting results affected nega-
tively. More elaborated schemes employ weighted voting rules, in which each individ-
ual classifier is associated with a different weight [14, 18]. Importance of this comes
from the fact that a choice of an appropriate fusion strategy can improve further on the
performance of the ensemble.

This study mainly concentrates on establishing the relationship, if any, between di-
versity and the techniques used for constructing the classifier ensemble, that is, how is
diversity affected by the resampling method and/or the fusion strategy? Also, we are
interested in knowing the empirical effects of diversity on accuracy, that is, does lower
(higher) diversity really imply lower (higher) overall accuracy performance?

In order to address these questions, we here use different resampling methods ex-
isting in the literature: selection without replacement [3], Bagging [4], Boosting [8],
and Arc-x4 [5]. With respect to the fusion strategies, we introduce a number of tech-
niques to weight the individual decisions dynamically. Finally, we use four measures
of diversity: Q-statistics, correlation coefficient, disagreement measure, and variability
measure. While the first three correspond to well-known measures properly adopted
from the Statistics literature, the latter is a new measure proposed in this paper.

2 Measures of Diversity

Let D = {D1, . . . , DL} be a set of L classifiers, and Ω = {ω1, . . . , ωc} be a set of c
classes. Each classifier Di (i = 1, . . . , L) gets as input a feature vector x ∈ �d, and
assigns it to one of the c problem classes. The output of an ensemble of classifiers is
an L-dimensional vector r = [D1(x), . . . , DL(x)]T containing the decisions of each
classifier.

In the last years, numerous measures of diversity have been proposed in the litera-
ture, most of them being adapted from existing statistical measures. In practice, these
measures can be categorized into two groups [13]: pairwise measures and non-pairwise
measures. The pairwise measures are computed for each pair of classifiers in D and
then averaged. The non-pairwise measures ether use the concept of entropy or correla-
tion of individual outputs with the averaged output of D or are based on the distribution
of ”difficulty” of the data points. In this work, we concentrate on three pairwise mea-
sures taken from the literature, Q-statistics, correlation coefficient and disagreement
measure. Moreover, a new non-pairwise measure, here called variability measure, will
be proposed in the present section.

2.1 The Q-Statistics

Let Y = {y1, y2, . . . , yN} be a set of labelled data. For two classifiers Di and Dj , the
Q-statistics is defined as

Qi,j =
ad − bc

ad + bc
(1)

where a is the number of elements in Y correctly classified by Di and Dj , b is the
number of elements correctly classified by Di but not by Dj , c is the number of
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elements wrongly classified by Di and correctly classified by Dj , and d is the number
of elements wrongly classified by Di and Dj . Then, N = a + b + c + d.

For a set of L classifiers, the averaged Q-statistics over all pairs of classifiers can be
expressed as [13]

Qave =
2

L(L − 1)

L−1∑
i=1

L∑
j=i+1

Qi,j (2)

For statistically independent classifiers (and N → ∞), Qi,j = 0. Q varies between
−1 and +1. Classifiers that tend to classify the same objects correctly will have positive
values of Q, while those which err on different objects will obtain negative values.

2.2 The Correlation Coefficient

This measure allows to quantify the relation between a pair of classifiers Di and Dj .

ρi,j =
ad − bc√

(a + b)(c + d)(a + c)(b + d)
(3)

For any two classifiers, ρ is between −1 and +1. Both −1 and +1 represent a total
correlation between Di and Dj , while ρi,j = 0 means that the pair of classifiers are not
correlated at all. On the other hand, Q and ρ have the same sign, and it can be proved
that |ρ| ≤ |Q|.

2.3 The Disagreement Measure

This measure is the ratio between the number of elements correctly classified by one
classifier and wrongly by the other to the total number of elements [17, 13]. For two
classifiers Di and Dj , the disagreement measure varies between 0 and +1.

Disi,j =
b + c

a + b + c + d
(4)

2.4 The Variability Measure

This corresponds to a new diversity measure proposed in this paper. Unlike the previous
measures, this makes use of a decision matrix to store the class labels given by the L
classifiers to each object. The measure can be defined as the proportion of the cases that
have received different decisions, that is, at least one classifier disagrees with the rest
of classifiers.

υ =
∑N

i=1 λ

N
(5)

where λ = 0 if D1(y) = D2(y) = · · · = DL(y), and λ = 1 otherwise.
The variability measure varies between 0 and +1. For L = 2 and c = 2, the variabil-

ity measure matches the disagreement measure, that is, υ = Disi,j .
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3 Some Classifier Fusion Techniques

The simplest way to combine multiple classifiers is by voting, which corresponds to
take a linear combination of the classifiers. Let wj be the weight of the j classifier Dj ,
then the final output of the ensemble is computed as

r =
L∑

j=1

wjDj(x) (6)

where ∀j, wj ≥ 0 and
∑L

j=1 wj = 1.
If each classifier just provides the class of the input pattern x, then one can only have

the simple majority voting where all classifiers have equal weight wj = 1/L. If the
classifiers can also supply additional information, then their votes can be weighted [14,
18], for example by a function of their distance to the input pattern. In this section, we
introduce several weighting functions for classifier ensembles; some of them are taken
from the Pattern Recognition literature and conveniently adapted to combine multiple
classifiers, while others are now proposed for the first time.

A voting rule for the k-NN classifier, in which the votes of different neighbors are
weighted by a function of their distance to the input pattern x, was first proposed by
Dudani [7]. A neighbor with smaller distance is weighted more heavily than one with a
greater distance: the nearest neighbor gets a weight of 1, the furthest neighbor a weight
of 0, and the other weights are scaled linearly to the interval in between.

wj =

{
dk−dj

dk−d1
if dk 	= d1

1 if dk = d1
(7)

where dj denotes the distance of the j’th nearest neighbor, d1 is the distance of the
nearest neighbor, and dk indicates the distance of the furthest (k’th) neighbor.

In order to employ this weighting function in the context of classifier fusion, the
value of k (i.e., the number of neighbors in Dudani’s rule) can be here replaced by the
number of classifiers L that constitute the ensemble. Moreover, the L distances of x to
its nearest neighbor in each individual classifier have to be sorted in increasing order
(d1, d2, . . . , dL). Thus, the original Dudani’s weight (Eq. 7) can be now rewritten as:

w(Dj) =

{
dL−dj

dL−d1
if dL 	= d1

1 if dL = d1
(8)

where d1 denotes the shortest of the L distances of x to the nearest neighbor, and cor-
respondingly dL is the longest of those distances.

Dudani further proposed the inverse distance weight [7], which can be expressed as
follows:

w(Dj) =
1
dj

if dj 	= 0 (9)

Another weighting function proposed here is based on the work of Shepard [16],
who argues for a universal perceptual law which states that the relevance of a previous
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stimulus for the generalization to a new stimulus is an exponentially decreasing function
of its distance in psychological space. This gives the weighted voting function of Eq. 10,
where α and β are constants and determine the slope and the power of the exponential
decay function.

w(Dj) = exp−αdβ
j (10)

A modification to Shepard’s weight function consists of using a different value of
α for each input pattern. Firstly, the L distances of x to its nearest neighbor in each
individual classifier have to be sorted in decreasing order. Then, the value of α for each
input pattern is computed according to α = L − j + 1. By this, the higher the distance
given by a classifier, the higher the value of α and thereby, the lower the weight assigned
to such a classifier.

Finally, we propose another weighting function, which corresponds to the average
distance weight. In summary, the aim is to reward (by assigning the highest weight)
the individual classifier with the nearest neighbor to the input pattern. The rationale
behind this function is that the classifier with the nearest neighbor to x will probably
correspond to that with the highest accuracy in its classification.

w(Dj) =
∑L

i=1 di

dj
(11)

4 Experimental Results

In this section, we present the results corresponding to the experiments carried out over
seven data sets taken from the UCI Machine Learning Database Repository (http://
www.ics.uci.edu/˜mlearn). We adopted a 5-fold cross-validation process: each
data set was divided into five equal parts, using four folds as the training set and the
remaining block as an independent test set.

All classifier ensembles consist of nine individual classifiers (L = 9). The ensem-
bles have been constructed through a class-dependent (stratified) resampling method by
using four different techniques: selection without replacement (SWR), Bagging, Boost-
ing, and Arc-x4. The unique classifier used for training all subsets corresponds to a
1-NN decision rule. Table 1 reports the averaged diversity computed over the different
ensembles of classifiers, thus making possible to determine which resampling method
produces the highest diversity, according to the measures introduced in Sect. 2.

It has to be noted that small values of the Q-statistics and the correlation coefficient
indicate high diversity. Conversely, high values of the disagreement and the variability
measures point to high diversity. This has been represented in Table 1 by including
in brackets the relative position of each resampling method in a ranking of diversity
(1 – highest; 4 – lowest). From this, one can see that while Arc-x4 clearly produces
the highest diversity (except in the case of using the variability measure), the other
resampling strategies give very similar levels of diversity (despite Boosting could be
viewed as the method with the second highest diversity).

Theoretically, from these results, it is expected that the highest overall accuracies
will be achieved when using Arc-x4, followed by Boosting. This will be checked in the
next section, where we analyze the possible relation between diversity and accuracy,
with respect to the resampling technique and/or the fusion scheme applied.

http://www.ics.uci.edu/~mlearn
http://www.ics.uci.edu/~mlearn
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Table 1. Diversity by using different resampling techniques

Heart Pima Vehicle German Phoneme Waveform Liver
Q-statistics
SWR 0,27 (2) 0,45 (4) 0,48 (3) 0,40 (3) 0,68 (3) 0,49 (1) 0,17 (4)
Bagging 0,32 (3) 0,41 (3) 0,47 (2) 0,46 (4) 0,70 (4) 0,50 (2) 0,16 (3)
Boosting 0,39 (4) 0,39 (2) 0,48 (3) 0,38 (2) 0,67 (2) 0,57 (4) 0,12(2)
Arc-x4 0,13 (1) 0,22 (1) 0,41 (1) 0,34 (1) 0,61 (1) 0,54 (3) 0,04 (1)
Correlation coefficient
SWR 0,16 (2) 0,26 (4) 0,30 (3) 0,23 (3) 0,44 (4) 0,29 (3) 0,13 (3)
Bagging 0,20 (3) 0,23 (3) 0,30 (3) 0,23 (3) 0,43 (3) 0,29 (3) 0,12 (2)
Boosting 0,22 (4) 0,22 (2) 0,26 (2) 0,19 (2) 0,36 (2) 0,28 (2) 0,55 (4)
Arc-x4 0,07 (1) 0,10 (1) 0,22 (1) 0,17 (1) 0,32 (1) 0,26 (1) 0,02(1)
Disagreement measure (%)
SWR 0,41 (2) 0,33 (4) 0,34 (4) 0,36 (4) 0,22 (3) 0,26 (2) 0,42 (4)
Bagging 0,39 (3) 0,34 (3) 0,35 (3) 0,36 (3) 0,22 (3) 0,25 (3) 0,43 (3)
Boosting 0,38 (4) 0,36 (2) 0,37 (2) 0,38 (2) 0,26 (2) 0,28 (1) 0,47 (2)
Arc-x4 0,46 (1) 0,42 (1) 0,39 (1) 0,39 (1) 0,28 (1) 0,28 (1) 0,48 (1)
Variability measure
SWR 0,92 (1) 0,80 (3) 0,84 (2) 0,88 (2) 0,55 (3) 0,62 (2) 0,95 (3)
Bagging 0,87 (2) 0,81 (2) 0,85 (1) 0,86 (3) 0,55 (3) 0,62 (2) 0,97 (1)
Boosting 0,82 (3) 0,84 (1) 0,83 (3) 0,89 (1) 0,61 (1) 0,67 (1) 0,96 (2)
Arc-x4 0,80 (4) 0,71 (4) 0,58 (4) 0,62 (4) 0,59 (2) 0,55 (4) 0,97 (1)

4.1 On the Relation Between Accuracy and Diversity

Importance of considering the possible relationship between accuracy and diversity of
different resampling and/or fusion strategies comes from the fact that by this, it would
be feasible to establish an appropriate policy to select the most suitable method for
constructing classifier ensembles. The experimental results in Table 2 correspond to the
average accuracy (and standard deviations) over the five folds when using the differ-
ent resampling strategies (SWR, Bagging, Boosting, Arc-x4) together with the simple
majority voting and the dynamic weighting methods described in Sect. 3.

From results in Table 2, we can sketch some comments. First, all ensembles provide
similar performances, showing a slight improvement over the average accuracy of the
single classifier. Second, application of some weighting function outperforms the sim-
ple majority voting on 6 out of 7 databases. Comparing the different weighting strate-
gies, the best results correspond to the average distance and the inverse distance. Third,
when focusing on the resampling strategies, although Boosting seems to be the method
with the highest performance, in general differences are not statistical significant. Tak-
ing into account these preliminary results, it is possible to conclude that the fusion
technique has a more important influence on accuracy than the resampling scheme.

When relating the diversity levels given in Table 1 with the accuracy rates reported
in Table 2, one can observe that in most cases the highest diversity does not produce the
highest performance, thus not fulfilling the theoretical expectations. It is worth pointing
out that the variability measure is the one reflecting better the behavior of the ensem-
bles, in the sense that those methods with the smallest values correspond to the lowest
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Table 2. Average accuracies (and standard deviations) with different resampling and fusion meth-
ods. Values in bold type denote the highest accuracy for each database.

Heart Pima Vehicle German Phoneme Waveform Liver

Single 58,2(6.2) 65,9(5.2) 64,2(1.8) 65,2(2.6) 76,1(8.4) 78,0(2.9) 65.2(4.8)
Simple voting
SWR 62.2(2.1) 72.8(5.0) 61.4(1.9) 68.8(3.4) 75.0(10.0) 82.7(1.8) 63.8(7.2)
Bagging 62.6(5.0) 72.7(1.2) 60.6(2.3) 70.2(3.0) 75.0(9.4) 83.2(1.4) 63.2(5.2)
Boosting 63.0(5.5) 71.0(2.6) 62.3(4.7) 68.5(2.1) 71.9(13.7) 80.0(1.9) 65.2(4.7)
Arc-x4 59.3(3.9) 69.7(2.9) 54.8(4.3) 68.7(2.5) 74.4(11.1) 78.8(2.3) 63.8(6.9)
Average distance weight
SWR 62.2(4.8) 72.0(4.5) 63.1(3.0) 69.3(3.3) 75.4(9.6) 82.7(1.7) 65.2(7.7)
Bagging 62.6(5.1) 72.7(1.7) 60.7(2.4) 70.8(3.1) 75.2(9.2) 83.2(1.4) 64.9(7.2)
Boosting 63.4(3.5) 69.7(3.2) 63.9(3.9) 68.8(2.2) 72.9(11.8) 80.0(1.9) 62.9(5.1)
Arc-x4 60.0(5.9) 69.5(3.1) 58.4(2.7) 67.6(2.8) 74.5(11.4) 79.5(1.9) 66.1(4.8)
Inverse distance weight
SWR 62.2(4.8) 72.0(4.5) 63.1(3.0) 69.3(3.3) 75.4(9.6) 83.5(0.8) 64.6(7.9)
Bagging 62.6(5.1) 72.7(1.7) 60.7(2.4) 70.8(3.1) 75.2(9.2) 83.2(1.4) 64.4(6.7)
Boosting 63.4(3.5) 69.7(3.2) 63.9(3.9) 68.8(2.2) 72.9(11.8) 80.0(1.9) 62.6(5.0)
Arc-x4 60.0(5.9) 69.5(3.1) 58.4(2.7) 67.6(2.8) 74.5(11.4) 79.5(1.9) 64.9(5.0)
Shepard’s weight
SWR 58.2(3.4) 66.9(5.6) 63.7(2.2) 67.3(2.1) 75.0(9.9) 82.1(1.9) 65.8(4.1)
Bagging 59.6(10.2) 66.1(4.7) 61.5(2.9) 67.1(2.7) 74.8(9.4) 83.1(1.7) 62.6(5.6)
Boosting 61.1(4.0) 65.0(4.7) 65.6(1.5) 68.1(2.8) 72.9(12.2) 79.5(2.3) 57.4(8.6)
Arc-x4 58.5(8.1) 65.6(5.5) 59.2(3.4) 65.7(1.3) 74.4(11.0) 79.3(1.7) 63.8(3.4)
Modified Shepard’s weight
SWR 58.9(3.8) 66.8(5.4) 63.2(2.5) 64.3(1.9) 75.7(10.0) 77.7(2.5) 64.4(4.2)
Bagging 59.6(9.3) 66.0(4.8) 61.1(2.8) 64.4(2.7) 75.5(8.7) 78.1(2.1) 61.5(5.0)
Boosting 60.7(3.2) 65.8(5.0) 65.7(0.8) 66.1(1.7) 73.2(10.9) 76.3(3.1) 56.8(5.6)
Arc-x4 58.9(7.9) 65.1(5.4) 59.2(3.4) 65.8(1.1) 73.9(11.2) 76.2(1.6) 62.0(4.3)

accuracies. For example, Arc-x4 appears as the scheme with the lowest variability and
also with the lowest accuracy.

5 Concluding Remarks

The present paper has analyzed the relationship between four diversity measures and the
overall accuracy obtained with an ensemble of nine individual classifiers constructed by
means of different resampling methods and various weighting functions for classifier
fusion.

From the experiments, it seems that in general, diversity has low influence on the
overall accuracy. In this sense, we found that not always the best results correspond to
those situations with a higher diversity; analogously, small values of diversity do not
directly imply low accuracy. With regards to resampling, we found that Arc-x4 appears
as the scheme that produces ensembles with the highest diversity levels, although other
methods, such as randomization [6], should be tested in a further research.
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Abstract. In the statistical pattern recognition field the number of sam-
ples to train a classifier is usually insufficient. Nevertheless, it has been
shown that some learning domains can be divided in a set of related
tasks, that can be simultaneously trained sharing information among
the different tasks. This methodology is known as the multi-task learning
paradigm. In this paper we propose a multi-task probabilistic logistic re-
gression model and develop a learning algorithm based in this framework,
which can deal with the small sample size problem. Our experiments per-
formed in two independent databases from the UCI and a multi-task face
classification experiment show the improved accuracies of the multi-task
learning approach with respect to the single task approach when using
the same probabilistic model.

1 Introduction

Automatic pattern classification is one of the most active research topics in
the machine learning field. This problem consists in assigning a given instance
to a predefined group or class after observing different samples of this group.
Examples of these frameworks in scientific areas are medical diagnosis, speech
recognition or image categorization.

Statistical procedures have been shown to be a powerful tool to treat these
classification problems, where an underlying probability model is assumed in
order to calculate the posterior probability upon which the classification decision
is made. Nevertheless, in these classical approaches a considerable number of
training examples is needed to correctly learn the parameters of the model.
For this reason, their application can be not appropriate when the obtention of
training samples is difficult.

There are some situations where the estimation of a predictive model can
take benefit from the estimation of other related ones. For instance, in a multiple
speech recognition problem, we can share information from modelling the speech
of different subjects, in handwritten text classification from different writers we
could also take benefit from the several related classification tasks. Other ex-
amples in the computer vision field are identity verification problems, or related
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tasks in automatic drive guiding problems such as road lane tracking, broken or
solid line classification, or direction marks identification. In these examples, each
of the considered tasks belong to different problems. Nevertheless it seems clear
that they belong to a related domain, where they share common information
that can be used to improve the classification accuracies obtained in the single
task learning framework.

One of the most important open problems in the statistical classification ap-
proach, is the lack of learning samples necessary to properly estimate the pa-
rameters of the classifier. Usually, in classification problems the data lays on
high dimensional subspaces, being the theoretical number of samples needed
exponential in terms of the data dimensionality (known as the curse of dimen-
sionality problem [1]). Recently, it has been proposed a new learning paradigm,
the multi-task learning (MTL) [2], that has been shown to mitigate this small
sample size problem [3,4]. The MTL approach is based on simultaneously learn-
ing a set of related tasks, sharing the hypothesis space of classifiers or assuming
some common generative process in the data from each tasks [5,6]. The advan-
tages of MTL have been proved in the recent theory, and can be summarized in:
(i) the bias learned in a multiple related task environment is less specific than
in a single task problem, resulting in classifiers with less generalization error;
(ii) the number of samples needed to simultaneously learn several related tasks
sub-linearly decreases as a function of the number of tasks [4]. More recently
the idea of multi-task learning has been extended to some of the state of the
art classifiers: Evgeniou et al. applied MTL to the SVM [7] and Torralba et al.
extended the Adaboost algorithm to the MTL case by sharing the feature space
where each weak learned is trained [8].

In this work we propose a hierarchical Multi-task learning approach for the
logistic regression model and also extend this idea to the multinomial logistic
regression case. Once the model is presented we develop a learning algorithm ac-
cording to this framework. The paper is organized as follows: in the next section
the hierarchical multi-task logistic regression approach is explained in detail as
well as the corresponding algorithm and its extension to the multinomial logis-
tic regression case, section 3 describes the performed experiments and section 4
includes the discussion of the results. Finally, section 5 concludes this work.

2 A Hierarchical Learning Approach for Multi-task
Logistic Regression

Let be T1, ..., TM a set of related binary tasks and D = {S1, ..., SM} the set
of corresponding training data, Si = {(xi

n, yi
n)}n=1,..,N(i) such that xi

n ∈ R
d,

yi
n ∈ {−1, 1}. Consider for each task a logistic regression model, that is, for each

Ti we learn a classifier fi, that will give the probability of the output y = 1
according to the i-th task for the input x,

fi(x) = P (y = 1|x, Ti) =
1

1 + exp(−w(i)xT )
(1)
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where w(i) = (wi
1, ..., w

i
d) is the parameters vector of the i-th task. Let be W the

parameters matrix, considering all the tasks,

W =

⎛
⎜⎜⎝

w
(1)
1 . . . w

(M)
1

...
...

...
w

(1)
d . . . w

(M)
d

⎞
⎟⎟⎠

To learn the parameters of the model we can apply a negated log-likelihood
estimator L(D, W ) and impose a prior distribution on the elements of W as a
regularization therm, R(W ). In that case, the negated log-likelihood estimator
for all the tasks Ti is

L(D, W ) = −log[
M∏
i=1

[
N(i)∏
n=1

P (yn
i |xn

i , W )]] = −[
M∑
i=1

[
N(i)∑
n=1

log(P (yn
i |xn

i , W ))] (2)

and regarding to the regularization therm, most of the current methods use
centered Gaussian priors. Then, the elements of the matrix W are obtained by
the minimization of the following loss function

H(W ) = L(D, W ) +
1
σ2 ‖W‖2 (3)

where σ ∈ R
+ is the variance of the imposed regularization distribution. This

optimization problem can be solved applying any appropriated method, for ex-
ample a gradient descent algorithm [9].

This method has shown to be efficient in many situations. However, observe
that in this presented framework there is no transit of information between the
models of the different tasks. Suppose that we want to learn the parameters
of the logistic regression for this classification scenario enforcing the different
classes to share information, following the principles of MTL. For this purpose,
we can impose prior distributions on each row of W in a hierarchical way as
follows. Consider the mean vector w̄ = (w̄1, ..., w̄d) where

w̄j =

∑M
i=1 w

(i)
j

M
(4)

First, we can impose a Gaussian centered prior to the mean vector w̄ and
after that we can enforce that each row of W follows a Gaussian distribution
with w̄d mean. In short, this can be obtained by the minimization of the loss
function

G(W ) = L(D, W ) +
1
σ2

1
‖w̄‖2 +

1
σ2

2

M∑
i=1

‖w(i) − w̄‖2 = L(D, W ) + R(W ) (5)

where L(D, W ) is again the negated log-likelihood estimator and σ2
r are the

corresponding variances of the imposed priors, r = 1, 2.
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2.1 Training Algorithm

Any optimization method that allows to minimize G will yield a training algo-
rithm for our purpose. In this case we can apply a gradient descent algorithm to
optimize it given that the loss function in equation 5 is differentiable. More con-
cretely, we have used the BFGS gradient descent method. The principal idea of
the method is to construct an approximate Hessian matrix of second derivatives
of the function to be minimized, by analyzing successive gradient vectors. This
approximation of the function’s derivatives allows the application of a quasi-
Newton fitting method in order to move towards the minimum in the parameter
space.

Thus, we need to compute the partial derivatives

∂G(W )

∂w
(s)
k

=
∂L(W, D)

∂w
(s)
k

+
∂R(W )

∂w
(s)
k

(6)

Observe that R(W ) can rewritten as follows

R(W ) =
d∑

j=1

[
w̄2

j

σ2
1

+
1
σ2

2

M∑
i=1

(wi
j − w̄j)2] (7)

and this is the only part of G(W ) that depends on w̄. Thus, given that we want
to minimize this function, we can get an expression for w̄j depending on W by

w̄j = arg min
w

(
w2

σ2
1

+
1
σ2

2

M∑
i=1

(wi
j − w)2) (8)

that yields

w̄j(W ) =
σ2

1
∑M

i=1 wi
j

σ2
2 + Mσ2

1
(9)

and consequently
∂w̄j(W )

∂w
(s)
k

=

{
σ2
1

σ2
2+Mσ2

1
if j = k

0 if j �= k

Moreover,
∂R(W )

∂w
(s)
k

=
2w̄k

σ2
1

∂w̄k

∂w
(s)
k

+
2
σ2

2

M∑
i=1

[(w(i)
k − w̄k)

∂w̄k

∂w
(s)
k

) (10)

and substituting by the functions in equations 9 and the corresponding deriva-
tives we obtain the final expression for the partial derivatives of R(W ).

2.2 Extension to the Multinomial Logistic Regression Model

Multinomial Logistic Regression model is a statistical model suitable for proba-
bilistic multi-class classification problems. Formally, given M classes C1, ..., CM ,
any element x in the input space R

d is categorized according to the criterion

class(x) = arg max
Ci,i=1..M

P (x ∈ Ci)∑M
k=1 P (x ∈ Ck)

(11)
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where
P (x ∈ Ci) =

1
1 + exp(−w(i)xT )

(12)

and each w(i) is the parameters vector corresponding to the ith-class, that is the
ith-column of the parameters matrix

W =

⎛
⎜⎜⎝

w
(1)
1 . . . w

(M)
1

...
...

...
w

(1)
d . . . w

(M)
d

⎞
⎟⎟⎠

Assuming that we have a training set of samples D = {(xn, yn)}n=1,..,N , where
each xn ∈ R

d and yn ∈ {C1, ..., CM}, we can consider the loss function described
above (see 5) to fix the parameters supposing that L(W, D) is now the negated
log-likelihood estimator for this new situation, according to equation 11 and 12.

3 Experiments

To test the presented model for both multi-task and multi-class problems we
have performed different experiments. For the multi-task case we have learned
different face verification tasks and have used images from the public ARFace
Database [10]. For the multi-class case, we have performed classification experi-
ments in two databases from the UCI Machine Learning Repository [11].

3.1 Multi-task Experiments

To test the algorithm in the case of multiple binary related tasks we have per-
formed a set of face verification experiments using the public database AR Face
(http://rvl.www.ecn.purdue.edu/RVL/ ). Here we consider that a verification task
is a binary problem consisting on decide whether a new unseen face image be-
longs to the learned subject or not.

The AR Face database contains 26 frontal face images from 126 different
subjects. The data set has from each person 1 sample of neutral frontal images,
3 samples with strong changes in the illumination, 2 samples with occlusions
(scarf and glasses), 4 images combining occlusions and illumination changes, and
3 samples with gesture effects. Images where taken in two separately periods of
time (two samples from each type). Some examples of images in the AR Face
database are shown in figure 1.

We have performed the experiments considering from 2 to 10 verification
problems. In this experiments we have used 2 positive samples and 4 negative
samples to train the system, and the test set includes 20 positive images and 40
negatives. We have performed 10 experiments for each case, and both train and
test samples have been randomly selected. The parameters of the method that
we have used in multi-task case are σ1 = 2 and σ2 = 6. In single task case we
used σ = 2.

Table 1 includes the mean error obtained in each case and the corresponding
confidence intervals.
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Fig. 1. Some samples of images in the AR Face database

Table 1. Obtained error and 95% confidence intervals for the logistic regression method
trained separately (first row) and for our shared logistic approach (second row). When
more than 4 verification tasks are simultaneously trained, the error rates of the shared
approach become lower. No mean error is shown in the case of multi-task logistic
regression when only one task is considered.

1 2 3 4 5

Logistic 32.9 ± 8.2 34.5 ± 6.4 30.5 ± 5.3 31.8 ± 4.2 30.2 ± 3.9

Multi-task Logistic - 41.6 ± 4.2 35.8 ± 5.4 32.1 ± 5.2 28.7 ± 5.2

6 7 8 9 10

Logistic 31.8 ± 3.6 31.4 ± 3.3 29.6 ± 3.3 30.2 ± 3.0 29.6 ± 2.9

Multi-task Logistic 27.2 ± 4.2 23.6 ± 3.1 21.8 ± 2.8 17.5 ± 2.4 15.4 ± 2.3

3.2 Multi-class Classification Experiments

We have used Balance and Iris databases from the UCI Machine Learning Repos-
itory to perform multi-class classification experiments. In table 2 are detailed the
characteristics of these databases.

The parameters of the method have been adjusted by cross validation. The
values were σ1 = 2 and σ2 = 6 for the multi-task case, and σ = 2 for the single
task training.

Table 2. Balance and Iris databases details

Database Number of elements Number of features Number of classes
Balance 625 4 3

Iris 150 4 3

Given that multi-task learning frameworks are specially appropriated when
there are few elements in the training set, we have used 10% of the data in

Table 3. Error and confidence interval in the classification experiments using Balance
and Iris databases using single-task and multi-task training processes

Database Single-Task Multi-Task
Balance 36.76% ± 1.48% 31.48% ± 1.29%

Iris 14.45% ± 1.85% 7.04% ± 0.65%
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the training step and 90% in the test step. We have performed 10 10-fold cross
validation experiments and the results are detailed in table 3.

3.3 Discussion

In the multi-task learning experiments we observe a considerable improvement
of the accuracy when using the proposed multi-task logistic regression approach.
On the one hand, when the single task model is used, the accuracy does not
variate when we consider more tasks. However, when we use the proposed MTL
approach we can observe that the accuracy increases when we consider more
tasks, and this improvement is specially significant when more than 7 tasks are
considered, where we do not have overlapping between the obtained results with
the corresponding confidence intervals in both cases. To justify this evolution
of the results, it should be taken into account that with the presented model
the method can detect in a more general way features that are relevant for any
subject verification task. In these experiments, the task relatedness is clear: the
features that can be relevant to determine whether a face belongs to a given
subject or not can be as well interesting to verify another subject.

In the multi-class learning experiments performed with Balance and Iris
databases from the UCI data sets, there is also a significant improvement of
the results when we use the MTL approach, although the statistical relationship
of the features among the different classes is not as clear as in the face verification
case.

4 Conclusion

In this paper we propose a multi-task learning approach based on sharing knowl-
edge from the parameter space of the probabilistic model. The contribution of the
information sharing among the related classification tasks is specially noticeable
when only a few samples per class are available.

The experiments performed using two data sets from the UCI database, and a
face classification problem using the AR Face data base suggest that the multi-
task approach fares better than a single task learning of the same tasks using the
same probabilistic logistic regression model. Notice that the MTL restrictions
that the model assumes are strong, for this reason it can not be appropriated in
general data sets. However, there are cases where these restrictions do hold and
in these cases the improvement of our MTL approach is notably. Therefore we
plan as a future work to develop a less restrictive version of this MTL modelling.

The probabilistic model presented in this paper suggests new lines of future
research. In this formulation, we impose the knowledge sharing property by con-
straining the parameter space of the classifiers along the multiple tasks. However,
more complex approaches based on hidden distributions on the parameters space
can be considered.

Moreover, in MTL topic there are still open lines of research, for example to
define formally the task relatedness concept. In our model, we impose statistical
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priors on the task distribution, assuming certain feature information share among
the tasks. Given that this assumption is quite restrictive, the method will be
appropriated only when the data distribution is agree with this considerations.

Acknowledgments. This work is supported by MEC grant TIN2006-15308-
C02-01, Ministerio de Ciencia y Tecnologia, Spain.
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Abstract. Magnetic Resonance Spectroscopy (MRS) provides the bio-
chemical composition of a tissue under study. This information is useful
for the in-vivo diagnosis of brain tumours. Prior knowledge of the relative
position of the organic compound contributions in the MRS suggests the
development of a probabilistic mixture model and its EM-based Maxi-
mum Likelihood Estimation for binned and truncated data. Experiments
for characterizing and classifying Short Time Echo (STE) spectra from
brain tumours are reported.

Keywords: Expectation-Maximization, Binned data, 1H magnetic res-
onance spectroscopy (MRS), automatic classification, brain tumour.

1 Introduction

Magnetic Resonance Spectroscopy (MRS) exploits the magnetic properties of
1H nuclei to provide information about the concentration of the compounds of
materials. This makes MRS useful as non-invasive technique for brain tumour
diagnosis. The MRS signals are typically interpreted in the frequency domain by
visual or automatic procedures to characterize the contribution of the biological
compound in the tissue. The amplitude of a compound is proportional to its
concentration. This motivates the fitting of MRS spectra by mixture density
models.

MRS spectra are typically analyzed by two different approaches. The first
approach estimates the underlying model composed by mixtures of components
to quantify the concentration of the metabolites. Frequency-domain [1] or time-
domain [2] fitting methods based on signal processing are applied to the sig-
nals. The second approach extracts features from the spectra using univariate-,
multivariate-statistics or pattern recognition methods [3] based on their useful-
ness on discrimination or regression.

This work proposes the definition and estimation of a probabilistic model based
on binned and truncated data to fit 1H magnetic resonance spectra using prior
knowledge about the relative position of the components of the organic compounds
observed in the tumoral masses of the brain. The estimated parameters for each
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spectrum summarize the information from the biological compounds and they are
used as features in classification problems of brain tumour diagnosis.

Mixture modelling has been applied in some applications where data are avail-
able only in bins and may not be provided along the whole the range [4,5,6]. In [4],
red blood cells were collected as volume distributions from a Coulter counter to
study the disease status of animals exposed to Anaplasma marginale. The prob-
lem in MRS is similar to the previous problems in the sense that contributions
of a mixture of biological compounds are assumed to be observed as counts of
bins in a range of the ppm-axis. We present an adaptation of the EM for fitting
MR spectra, qualitative results in the characterization of spectra and quanti-
tative results in the classification of brain tumours by the use of the estimated
parameters.

The rest of the paper is organized as follows. In sections 2 and 3, the proba-
bilistic model and its EM-based Maximum Likelihood Estimation are presented.
Then, results using MRS spectra of brain tumours are reported in section 4.

2 Probabilistic Model

Let X be a sample space partitioned into B bins, X1, . . . , XB, of which only
the counts on the first B′ bins can be recorded, while the counts on the last
B − B′ can not. For instance, in the univariate case, the first B′ bins may be
delimited by B′ + 1 points, p0, p1, . . . , pB′ , such that p0 < p1 < · · · < pB′ and
Xb = (pb−1, pb], b = 1, . . . , B′. N independent samples (draws) from X are made,
but our measuring instrument reports only the number of samples falling in each
of these first, observable B′ bins, but fails to report similar counts for samples
out of them, in the B − B′ truncated regions (e.g. (−∞, p0] and (pB′ , ∞)).

Let N ′ = (N1, . . . , NB′) be the vector of observed counts and let N ′ =∑B′

b=1 Nb. Clearly, the probability of N ′ can be computed by marginalisation
of the joint probability of both, observed and truncated counts,

p(N ′) =
∑

NB′+1,...,NB

p(N) (1)

where N = (N1, . . . , NB′ , NB′+1, . . . , NB) is the complete vector of counts. We
do not know the truncated counts, nor even the total number of samples N , but
we know that N has a multinomial distribution defined by N samples from B
categories,

p(N) =
N !∏B

b=1 Nb!

B∏
b=1

p(b)Nb (2)

where p(b) is the probability for a sample to fall in bin Xb, b = 1, . . . , B.
We assume that (2) can also be computed by marginalisation of the joint

density for counts and (missing) samples,

p(N ) =
∫

dX p(N , X) (3)



268 J.M. Garcia-Gomez et al.

where X = (X1, . . . , XB) is the whole collection of N independent samples,
Xb = (xb1, . . . , xbNb

) is the collection of those Nb from bin Xb (b = 1, . . . , B),
and

p(N , X) =
N !∏B

b=1 Nb!

B∏
b=1

Nb∏
n=1

p(xbn) (4)

where p(xbn) is the (unknown) probability density for a sample from bin Xb.
At this point, we assume that samples come from a common probability den-

sity function, irrespective of their originating bins. This density function is a
parametric, C-component mixture,

pΘ(x) =
C∑

c=1

πc pΘ′(x | c) (5)

where Θ = (π, Θ′) is the parameter vector of the mixture; π = (π1, . . . , πC)
is the vector of mixture coefficients, subject to

∑
c πc = 1, and Θ′ includes the

parameters required to define each mixture component pΘ′(x | c), c = 1, . . . , C.
As usual with finite mixtures, we may think of x as an incomplete component-
labelled sample which may be completed by addition of an indicator variable
(component label) z ∈ {0, 1}C with 1 in the position of the indicated component
and zeros elsewhere. Therefore, we can rewrite (5) as

pΘ(x) =
∑

z

pΘ(x, z) (6)

with

pΘ(x, z) =
C∏

c=1

(πc pΘ′(x | c))zc (7)

By substitution of (7) in (6), (6) in (4) and some straightforward manipula-
tions, we can rewrite (4) as

pΘ(N , X) =
∑
Z

pΘ(N , X, Z) (8)

where Z is the collection of component labels for X , that is, Z = (Z1, . . . , ZB),
with Zb = (zb1, . . . , zbNb

) and zbn ∈ {0, 1}C (b = 1, . . . , B; n = 1, . . . , Nb); and

pΘ(N , X, Z) =
N !∏B

b=1 Nb!

B∏
b=1

Nb∏
n=1

C∏
c=1

(πc pΘ′(xbn | c))zbnc (9)

Note that we have added the parameter vector Θ as a subscript to the joint
densities pΘ(N , X) and pΘ(N , X, Z) to emphasize their dependence on the
parameters governing the hidden mixture (5).

Now, by substitution of (8) in (3), and (3) in (1), we can write our probabilistic
model as

pΘ(N ′) =
∑

NB′+1,...,NB

∫
dX

∑
Z

pΘ(N , X, Z) (10)
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Note that pΘ(N ′) can be seen as an incomplete model which results from
marginalisation (many-to-one mapping) of the complete model pΘ(N , X, Z).

Obviously, model (10) still needs adoption of a particular parametric form for
the mixture components. Taking into account the specific application considered
in this work, we will assume that samples are drawn from a C-component mixture
of univariate normal densities, of means known up to a global shift μ0, and
independent variances σ2

1 , . . . , σ2
C ; that is, for all c = 1, . . . , C,

pΘ′(x | c) ∼ N(μ0 + δc, σ
2
c ) (11)

where δc is the known displacement from μ0 of the cth component mean. Thus,
the vectorof parameters governing the mixture components isΘ′=(μ0, σ

2
1 , . . .,σ2

C).

3 EM-Based Maximum Likelihood Estimation

Maximum likelihood estimation of Θ using the EM algorithm has been pre-
viously considered in [4] and [5] for the univariate and multivariate normal
cases, respectively. Our case is similar to, but slightly different from the general,
parameter-independent univariate case. More precisely, the general univariate
model assumes that component means are independent, while in our model all
of them are known up to a global shift. This makes our estimation problem
simpler, but the EM algorithm is almost identical. In what follows, we briefly
review the EM algorithm for the general model and then we provide the neces-
sary modifications for our modelling variation. The reader is referred to [4] for
more details.

The log-likelihood function of Θ w.r.t. a given N ′ is

L(Θ; N ′) = log
∑

NB′+1,...,NB

∫
dX

∑
Z

pΘ(N , X, Z) (12)

which is exactly the logarithm of pΘ(N ′) as defined in (10), but interpreted as a
function of Θ only, and assuming that mixture components are univariate nor-
mals. The EM algorithm maximises (12) iteratively, through the application of
two basic steps in each iteration: the E(xpectation) step and the M(aximisation)
step. On the one hand, the E step computes a lower bound of (12) for all Θ; the
so-called Q function,

Q(Θ | Θ(k)) = E[log pΘ(N , X, Z) | N ′, Θ(k)] (13)

that is, the expectation of the logarithm of the complete model, conditional to
the incomplete data, N ′, and a current estimation of the model parameters,
Θ(k). On the other hand, the M step obtains a new estimate for Θ, Θ(k+1), by
maximisation of the Q function,

Θ(k+1) = arg max
Θ

Q(Θ | Θ(k)) s.t.
∑

c

πc = 1 (14)
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Given an initial value of the parameters, Θ(0), these two steps are repeated until
convergence to a local maximum of the likelihood function.

Ignoring an additive term not involving Θ, the Q function can be written as

Q(Θ | Θ(k)) =
C∑

c=1

B∑
b=1

N
(k)
b Eb[z(k)

c (xb)(log πc+log pΘ′(xb | c)) | N ′, Θ(k)] (15)

where N
(k)
b is the expected number of samples drawn from bin Xb,

N
(k)
b =

⎧⎪⎨
⎪⎩

Nb if b ≤ B′

N ′ p(b)(k)∑B′

b′=1 p(b′)(k)
otherwise

(16)

with p(b)(k) being the probability for a sample to fall in bin Xb,

p(b)(k) =
∫
Xb

dx pΘ(k)(x) (17)

The expectation in (15) is with respect to a sample xb from bin Xb; i.e., with
respect to the truncated density of the bin Xb

ptrunc
Θ(k) (xb) =

pΘ(k)(xb)
p(b)(k) (18)

and involves the posterior probability for xb to belong to component c of the
mixture, given a current parameter estimate Θ(k),

z(k)
c (xb) =

π
(k)
c pΘ′(k)(xb | c)

pΘ(k)(xb)
(19)

Maximisation of (15), as indicated in (14), leads to the following re-estimates
for each component c (c = 1, . . . , C)

π(k+1)
c =

∑B
b=1 N

(k)
b Eb[z

(k)
c (xb) | N ′, Θ(k)]∑B

b=1 N
(k)
b

(20)

μ(k+1)
c =

∑B
b=1 N

(k)
b Eb[xb z

(k)
c (xb) | N ′, Θ(k)]∑B

b=1 N
(k)
b E[z(k)

c (xb) | N ′, Θ(k)]
(21)

σ2(k+1)
c =

∑B
b=1 N

(k)
b Eb[(xb − μ

(k+1)
c )2 z

(k)
c (xb) | N ′, Θ(k)]∑B

b=1 N
(k)
b E[z(k)

c (xb) | N ′, Θ(k)]
(22)

where, as in (15), all expectations are with respect to the truncated density (18).
Their derivations were shown by McLachlan and Jones in [4,7].

Equations (20), (21) and (22) are the basic equations of an EM iteration
in the general, parameter-independent univariate case (EMBTD). In our case
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(EM4BTDr), with means known up to shift μ0, the basic equations are (20),
(22) and μ

(k+1)
c = μ

(k+1)
0 + δc, c = 1, . . . , C, where

μ
(k+1)
0 =

∑C
c=1

∑B
b=1 N

(k)
b Eb[(xb − δc) z

(k)
c (xb) | N ′, Θ(k)]∑C

c=1
∑B

b=1 N
(k)
b Eb[z

(k)
c (xb) | N ′, Θ(k)]

, (23)

4 Experimental Results

The mixture models presented in the previous sections were applied to 147 mul-
ticenter signals acquired during the Interpret project [8]. The brain tumour di-
agnosis and quality of signals were validated by two committees of experts [3].
The number of cases per diagnosis are 77 Glioblastoma Multiforme (GM), 50
Meningioma (MM) and 20 Astrocytoma grade II (A2). STE, (TE ∈ [20,30]ms)
Single Voxel (SV) spectra were used in the study [3]. The reference point for
each spectra was set and validated visually by a spectroscopist, then little or
null shifting is expected in the components.

The a priori information from biochemical knowledge used in the experiments
was the chemical shift (in ppm units) of metabolites L2 (0.92), Glx (2.04), L1
(1.25), Glx2 (2.46), LAC (1.31), Glx3 (3.76), ALA (1.48, 1.46), mI (3.26), NAc
(2.02, 2.00), mI2 (3.53), Cr (3.03), mI3 (3.61), Cr2 (3.92), Tau (3.25), Cho (3.19),
Tau2 (3.42), Gly (3.55), ALA2 (3.78). The initial models for both algorithms was
exactly the same, equal prior probability and variance for each component were
established.

Figure 1 summarizes the main behaviour of the EMBTD (EM for Binned
and Truncated data in general form) and EMBTDr (EM for Binned and Trun-
cated data with means known up to shift μ0) estimates. In the first example
(top-left), the parameters estimated by both EMBTD and EMBTDr are quite
similar, hence the spectrum is fitted in a similar way. In the second example
(top-right), the related means restriction incorporated in the EMBTDr model
keeps the position of the compounds better than the EMBTD model according to
the underlying biological mixture. In the third example (bottom), the EMBTD
model fits a lipid contribution at 2.75ppm not specified in the prior knowledge,
but the meaning of the initial components based on biological knowledge is lost.

Two studies were carried out to characterize the behaviour of the models on
average. In the first study, we measure the mean of the differences between the
estimated shifting (μ̂c) of the components with respect to the typical chemical
shift (μc). None or small shifting is assumed in the spectra of the database.
Therefore, the smaller difference, the closer the estimated component is to the
organic compound. Table 1 shows the results obtained by EMBTD and EMBTDr
on the MRS database. The differences obtained by both models are small, consid-
ering that the range is 3.6ppm and the frequency resolution 0.02ppm. However,
the difference obtained on average by EMBTD is 3.6 times the difference ob-
tained by EMBTDr. Hence, EMBTDr keeps better the position of the biological
compound in the estimated model.
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Fig. 1. Three spectra showing the behaviour of the EMBTD and EMBTDr models.
Real spectra are drawn in solid lines, EMBTD models in dashed lines and EMBTDr
in double-dashed lines. μc are marked with vertical lines, μ̂c of each model are marked
with a small vertical line for EMBTD and two dots for EMBTDr.

Table 1. Mean of the difference between the estimated shifting of the components by
the EM algorithms with respect to the typical chemical shift

EMBTD EMBTDr

μc − μ̂c 0.0079 0.0022

Table 2. Results in classification. Cells are composed by ε [95%-CI], where ε is the
error estimation and [95%-CI] the 95% credibility intervals [9].

classes PCA+LDA EMBTD+LDA EMBTDr+LDA

MM GM 17.32 [11.50,24.54] 10.24 [5.86 16.31] 14.17 [8.93,20.94]

MM A2 7.14 [2.84 14.70] 14.29 [7.59,23.70] 7.14 [2.84,14.70]
GM A2 8.25 [4.00,14.81] 9.28 [4.71,16.11] 5.15 [2.05,10.74]
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In the second study, the (π̂) parameters estimated by the EMBTD and EM-
BTDr were the input variables of binary classifiers based on Linear Discriminant
Analysis (LDA). The performace of these classifiers where compared with similar
LDA classifiers based on PCA (Principal Component Analysis). Table 2 shows
the estimation of the error, carried out by Cross Validation with 10 stratified
partitions. EMBTDr achieves the best performance when classifing A2 from GM
and A2 from MM (equal to PCA). In the discrimination of MM from GM, both
EMBTDr and EMBTD estimates are considerable better than the PCA model.

5 Conclusions and Further Work

A probabilistic mixture model for binned and truncated data with univariate
mixture densities of means known up to a global shift has been proposed for
Magnetic Resonance Spectroscopy data characterization. The model can be effi-
ciently estimated by means of the E(xpectation)-M(aximisation) algorithm. The
new version of the algorithm keeps the biological information in the model and
fits properly STE MR Spectra. The incorporation of the classifier in a Decision
Support System (DSS) could be of interest for clinicians to decide the diagnosis
of routine or special patients. In further work, more applications of the proposed
mixture model will be considered in MRS analysis.
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Atmospheric Turbulence Effects Removal on
Infrared Sequences Degraded by Local

Isoplanatism
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Abstract. When observing an object horizontally at a long distance,
degradations due to atmospheric turbulence often occur. Different meth-
ods have already been tested to get rid of this kind of degradation, es-
pecially on infrared sequences. It has been shown that the Wiener filter
applied locally on each frame of a sequence allows to obtain good results
in terms of edges, while the regularization by the Laplacian operator ap-
plied in the same way provides good results in terms of noise removal
in uniform areas. In this article, we present hybrid methods which take
advantages of both Wiener filter and Laplacian regularization.

1 Introduction

The main perturbation occuring in long distance ground-to-ground video ac-
quisition is due to atmospheric turbulence. The turbulence nature essentially
depends on climatic conditions and on the distance between the scene and the
camera. The sequence we tested our algorithms on has been provided by DRDC
Valcartier, Canada, and it was acquired during the NATO RTG40 campaign in
New Mexico in 2005. In our sequence acquisition conditions (horizontal observa-
tion in the troposphere, at a distance of 1 km), atmospheric perturbation can be
efficiently simulated by local blurring and warping and possibly additive noise.
Each frame can then be split into mostly regular areas degraded by the same
perturbation (local isoplanatism).

In our previous work [1], classical restoration methods were adapted for local
processing of sequences perturbed by local isoplanatism. We analyzed and com-
pared our results with different criteria, and showed that the Wiener filter allows
to obtain good results in terms of visualization (clear edges), while the regular-
ization by the Laplacian operator provides good results for a post-processing
(noise removal in uniform areas). In this article, we try to combine the results
of these two methods in order to obtain a still better restoration image.

First we briefly recall what local isoplanatism is. Then we explain the general
algorithm used to process sequences locally, we show some restoration results and
we analyse them. Therefore two new Wiener and Laplacian mixing algorithms
are explained and mixing restoration results are shown and analyzed. Finally, a
conclusion and perspectives are given.

J. Martí et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 274–281, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Local Isoplanatism Theory

Atmospheric turbulence induce varying perturbations on optical beams, accord-
ing to beams propagation directions. On Fig. 1 is given an example where two
beams coming from the same object cross a thin turbulent layer.

pupil
plane plane

image
turbulent layer

light beams displacement

θ

L

θ L
D

Fig. 1. Origin of different atmospheric perturbations (θ is the angle between the two
beams, L is the distance between the turbulent layer and the pupil, and D is the pupil
diameter)

Three degradation types can occur:

– Anisoplanatism: If |θL| > D, the turbulent layer areas met by the two beams
have no common part. The beams are perturbed by two completely different
degradations.

– Local isoplanatism: If the observed object has sufficiently small angular di-
mensions θ, beams originating from any point on the object and arriving
on the pupil can be considered to have encountered almost identical regions
of the perturbing layer [2]. That will be translated on the related image by
areas with the same degradation.

– Total isoplanatism: When θ ≈ 0, the two beams suffer from exactly the same
perturbation.

According to [1] and [3], our sequence is degraded by local isoplanatism.

3 Sequence Processing Algorithm and First Restoration
Results

3.1 General Sequence Processing Algorithm

To process a sequence a generalization to different restoration methods of Fraser’s
and Lambert’s algorithm [4] was used. This algorithm was previously tested
on simulated images [5]. Its principle is to detect a local space-varying PSF
describing the atmospheric turbulence. The PSF is found by using a Wiener
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filter acting on regions-of-interest of a reference image and each frame of the
sequence. The reference image is initially the sequence average and is updated
after each deconvolution pass of the complete sequence. The process is repeated
until the absolute difference between the two last average images is minimized. In
practice, one or two deconvolutions of the complete sequence are sufficient. This
algorithm was easily adapted to the case of regularization by the Laplacian [6].

3.2 Local Wiener Filter and Local Laplacien Regularization Results

On Fig. 2 are shown our first restoration results. The processed sequence is
compound of 100 frames of 256 x 256 pixels size from an original degraded
sequence. It was acquired during night and the object was lighted by a laser.
We consider that possible speckle noise is eliminated with spatial integration
due to the large target-sensor distance. Looking at Fig. 2, we can observe that
averaging allows to strongly decrease noise in the first reference image but the
local Laplacian regularization allows to improve noise removal. Also the most
suited parameter of the local Wiener filter can be chosen in order to remove the
maximum of the remaining blur so as to obtain clearer edges.

We made our processing on MATLAB. Local restoration computing time is
from few minutes to about one hour depending essentially on the frame number
in the processed sequence, on their size and on regions-of-interest size used to
process each frame. 32 x 32 pixels windows were used for local restorations, but
the best size to choose is under investigation.

(a) (b) (c) (d)

Fig. 2. First local restoration results on the processed sequence: (a) Degraded frame,
(b) First reference image, (c) Local Wiener result and (d) Local Laplacian result

3.3 Results Analysis

Like in [1], several criteria have been used to appreciate our restoration results.
First mean variances in the three white squares and in the three black squares
on the checkerwork were calculated. The best result was obtained with the lo-
cal Laplacian regularization. Mean slopes of horizontal and vertical transitions
between black and white squares were compared: the steepest mean slope was
obtained with the local Wiener filter. The modulation transfert function (MTF)
of each mean transition between black and white squares was also computed,
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which provides a quantified and graphic representation of simultaneous quali-
ties of contrast and clearness. The mean transition MTF is the modulus of the
Fourier transform of its derivative, and is then normalized to range between 0
and 1. According to Fig. 3(a), the local Wiener filter gives the best MTF. Fur-
thermore for each result, correlations of each mean transition with the ideal one
were compared. According to Fig. 3(b), the local Laplacian regularization gives
a slightly better result than the local Wiener filter, but this is due to the fact
that oscillations are present around each edge on the Wiener result.

To summarize, the local Laplacian regularization allows to improve noise re-
moval on uniform areas whereas the local Wiener filter allows to get rid of a
large part of the remaining blur on edges. An hybrid method which will take
advantages of these two methods is thereafter presented.
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Fig. 3. First restoration results analysis. (a) Mean transitions MTFs for the reference
image, the local Wiener result and the local Laplacian result. (b) Correlation peaks of
the same images mean transitions with the ideal one.

4 Wiener and Laplacian Mixing Algorithms and Results

4.1 Segmentation Image

We first need a segmentation image to determine areas where the Wiener result
will be kept. It will be obtained with the Canny-Deriche filter. To limit false
edge detection, we use the three images we have in input: the reference image,
the local Wiener result and the local Laplacian result. On the final segmentation
image, an edge point is kept only if it’s present on at least two of the three used
segmentation images.

Two segmentation thresholds (thr) have been chosen: the first one allows to
detect small white circles above and on the right of vertical bars (Fig. 4(b)),
while the second one allows to obtain a “clean” segmentation (Fig. 4(c)).

4.2 Wiener and Laplacian Mixing (WLM) Algorithms

In the first version of Wiener and Laplacian Mixing (called WLM1 ), the area
where we apply the result of the local Wiener filter is compound of edge points
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(a) (b) (c)

Fig. 4. Observed objet (a) and the 2 used segmentation images: (b) thr=0.04 and (c)
thr=0.35

and a thickness of several pixels around them, estimated according to the pixel
number needed for the local Wiener mean transition. Everywhere else is applied
the result of the local Laplacian regularization (Fig. 5). WLM1 results are shown
on Figs. 6(a) and 6(b).

In the second version of WLM (named WLM2 ), we use a gradation to pass
from the Wiener result to the Laplacian result in order to attenuate the small
gray level difference between Wiener and Laplacian results. We add weighting
coefficients in front of each result according to the closeness/distance of the
current pixel from the nearest edge point. For each pixel, we use the following
formula:

∀i, j, WLM2(i, j) = α1(c)LWR(i, j) + α2(c)LLR(i, j) , (1)

where WLM2 is the WLM2 result, LWR is the local Wiener result, LLR is the
local Laplacian result, c is the distance card obtained from the segmentation
image and representing the distance between each pixel and the nearest edge
point, and α1 and α2 are defined using the three following conditions:

α1(c) + α2(c) = 1 , 0 ≤ α1(c) ≤ 1 , 0 ≤ α2(c) ≤ 1 . (2)

The closer to an edge point, the higher α1 and the lower α2, and conversely.
Once again, the gradation is made on several pixels from the center of the local
Wiener mean transition, according to the pixel number needed for this mean
transition (Fig. 5). WLM2 results are shown on Figs. 6(c) and 6(d).

4.3 Results Analysis

Analysis of our results have been realized with the same criteria than those pre-
viously used, and similar results to previous ones have been found (Fig. 7): WLM
results mean transitions provide MTFs almost as good as those obtained with
the local Wiener result, and correlation peak with the ideal transition has been
improved compared with the local Wiener result. Moreover the Canny-Deriche
filter has been tried on our restoration results, which allows us to conclude that
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Fig. 5. Processing areas determination. Top: division (without gradation). Bottom:
overlaying (with gradation).
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(c) (d)

Fig. 6. WLM1 results with thr=0.04 (a) and thr=0.35 (b). WLM2 results with
thr=0.04 (c) and thr=0.35 (d).
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gradation use allows to slightly decrease false edges detection, and that white
circles are better detected on the WLM2 result with low threshold. Horizontal
cuts have also been realized along small white circles above the vertical bars
(Fig. 8). Results strongly depend on the chosen segmentation threshold since
if circles are not detected on the segmentation image used for the WLM algo-
rithms, the Laplacian result is applied and edges are smoothed. We can note
that the WLM2 algorithm with low threshold gives best results in average: the
gray level difference between circles and the object background is larger.
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Fig. 7. WLM restoration results analysis. (a) Mean transitions MTFs. (b) Correlation
peaks with the ideal transition.
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Fig. 8. Horizontal cuts along white circles

5 Conclusion and Perspectives

According to our previous restoration work, the local Laplacian regularization
allows to improve noise removal on uniform areas, and a judicious choice of the
local Wiener filter parameter allows to get rid of a large part of the remaining blur
on edges. These two methods results have then been mixed in order to obtain
a still better restoration result. The new algorithms results strongly depend
on the segmentation image. The smaller the segmentation threshold, the more
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detected false edges and the more noisy uniform areas. Nevertheless with a small
segmentation threshold and in spite of a certain noise, we managed to better
detect white circles than previously. Furthermore gradation between Laplacian
and Wiener areas allows to decrease gray level difference, and then to improve
the result for both vizualisation and post-processing.

We are currently studying regions-of-interest size influence on restoration re-
sults quality. Automatic selection of segmentation threshold is also under in-
vestigation, with a method based on detected edge points number study, which
could improve our restoration methods especially on textured areas.
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Abstract. Statistical pattern recognition has proved to be an interest-
ing framework for machine translation, and stochastic finite-state trans-
ducers are adequate models in many language processing areas such as
speech translation, computer-assisted translations, etc. The well-known
n-gram language models are widely used in this framework for machine
translation. One of the application of these n-gram models is to infer
stochastic finite-state transducers. However, only simple dependencies
can be modelled, but many translations require to take into account
strong context and style dependencies. Mixtures of parametric models
allow to increase the description power of the statistical models by mod-
elling subclasses of objects. In this work, we propose the use of n-gram
mixtures in GIATI, a procedure to infer stochastic finite-state transduc-
ers. N-gram mixtures are expected to model topics or writing styles. We
present experimental results showing that translation performance can
be improved if enough training data is available.

1 Introduction

In recent years, new pattern recognition approaches have been proposed to solve
the machine translation (MT) problem with increasing performance ([1,2,3]).
However, the problem is far from being solved and there are still numerous
drawbacks in these models.

For instance, the GIATI (Grammatical inference and alignments for transducer
inference) [1] technique exploits several well-known n-gram inference and smooth-
ing techniques in order to build n-grams of bilingual phrases. N-grams have the
advantage that the inference process is fairly easy and the smoothing techniques
have shown to be very appropriate in other areas such as speech recognition.

However, n-grams are unable to model dependencies at distances longer than
n in a sentence, but real data often involve long term constrains that would be in-
teresting to capture. Commonly, these constrains are associated with topics. For
example, the topic determines the vocabulary, expressions and even collocations
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that might be used in a sentence. Furthermore, it also implies certain gram-
mar structure and use of language. Therefore, GIATI could benefit from taking
into account topic information and achieve translations with a higher degree of
quality. Previous work [4] has already shown that n-gram mixture modelling for
speech recognition outperforms the traditional n-gram modelling.

The rest of the paper is structured as follows. Section 2 describes the GIATI
method for n-gram transducer inference. Section 3 explains the approximation
followed to create the mixtures. Next, a series of experiments that show the
potential of GIATI mixtures will be presented in Section 4. Finally, Section 5
will conclude and outline future research.

2 Inference of Stochastic Finite-State Transducers

MT essentially consists in building a device that, given a sentence in a source
language, obtain a sentence in a target language, both sentences holding the
same meaning. The traditional statistical machine translation (SMT) approach
is described as follows.

Let x be a sentence of the source language Σ∗, and y a sentence of the target
language Δ∗ and p(y|x) the probability of y being a translation of x. The best
translation of x is a sentence ŷ that maximises the posterior probability:

ŷ = argmax
y

p(y|x) = argmax
y

p(x, y) . (1)

The joint probability can be modelled as a statistical finite-state transducer
(SFST). SFSTs have been thoroughly studied [5,6] and several attempts of mod-
elling SMTs with SFSTs have already been proposed [1,7,8].

GIATI is a technique that provides a framework for SFST inference based on
the stochastic morphism theorem [6] and a set of alignments [9]. A possible way
of inferring SFSTs by means of GIATI is described next.

Given a finite set A of sentence pairs (s, t) ∈ Σ∗ × Δ∗ (parallel corpus), it
works in three steps:

– Step 1. Building training strings: Each pair of training sentences (s, t) of A
is transformed into a single string z from an extended alphabet Γ giving a
new set of strings S, S ∈ Γ ∗. The extended alphabet consists of symbols that
are constructed by putting together words or phrases from the source and
target language that are aligned according to an alignment matrix provided
by GIZA++ [10].

– Step 2. Inferring a (stochastic) regular grammar: A SFST A is inferred from
S. Typically, a back-off smoothed n-gram is inferred.

– Step 3. Transforming the inferred grammar into a SFST: The symbols z in
A are inversely transformed into pairs of source and target symbols (s, t) ∈
Σ∗×Δ∗ that correspond to the transducer’s inputs and outputs, respectively.

It should be noticed that a n-gram language model is inferred in the step 2.
As it has been told, some shortcomings of n-gram models could be overcome by
means of mixture modelling. The next section is devoted to explain the mixture
modelling approach that has been considered in this work.
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3 Mixtures of Models

A finite mixture model consists of a number C of mixture components. In order
to generate a sample x = (x1, . . . , x|x|)t, it first selects a cth component with
prior probability p(c), and then generates x according to the cth component-
conditional probability (density) function p(x | c). The (unconditional) mixture
probability (density) function is of the form:

p(x) =
C∑

c=1

p(c) p(x | c) . (2)

A model of n-gram mixtures is a particular case of (2) in which

p(x | c) =
|x|∏
i

p(xi|xi−1
i−n+1, c) , (3)

where x = x1x2 . . . x|x| is a string of symbols of an alphabet Γ such that x ∈ Γ ∗.
Maximum Likelihood estimation of the mixture parameters is carried out by

the EM algorithm [11].

3.1 Maximum Likelihood Estimation

Let X = {x1, . . . , xM} be a set of samples available for learning the n-gram mix-
ture model. This is a statistical parameter estimation problem since the mixture
is a probability function of known functional form, and all that is unknown is a
parameter vector including the priors and component parameters.

The vector of unknown parameters for the model is:

Θ = (p(1), . . . , p(C), p1, . . . , pC)t
, (4)

with
pc =

{
p(wj |hl, c) | ∀wj ∈ Γ, ∀hl ∈ Γ (n−1)

}
∀c, (5)

where wj is a symbol of Γ , and hl = (h1h2 . . . hn−1) is a history of n−1 symbols
of Γ that precede wj .

The number of components is excluded from the estimation problem, as it is a
crucial parameter to control the model complexity and receives special attention
in Section 4.

Following the maximum likelihood principle, the best parameter values max-
imise the log-likelihood function

L(Θ | X) =
M∑

m=1

log

(
C∑

c=1

p(c) p(xm | c)
)

. (6)

In order to find these optimal values, it is useful to think of each sample
xm as an incomplete component-labelled sample, which can be completed by an
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indicator vector zm = (zm1, . . . , zmC)t with 1 in the position corresponding to
the component generating xm and 0 elsewhere. In doing so, a complete version
of the log-likelihood function (6) can be stated as

LC(Θ|X, Z) =
M∑

m=1

C∑
c=1

zmc (log p(c) + log p(xm|c)) , (7)

where Z = {z1, . . . , zM} is the so-called missing data.
The form of the log-likelihood function given in (7) is generally preferred be-

cause it makes available the well-known EM optimisation algorithm (for
finite mixtures)[11]. This algorithm proceeds iteratively in two steps. The E
(xpectation) step computes the expected value of the missing data given the
incomplete data and the current parameters. The M(aximisation) step finds the
parameter values which maximise (7), on the basis of the missing data esti-
mated in the E step. In our case, the E step replaces each zmc by the posterior
probability of xm being actually generated by the cth component,

zmc =
p(c) p(xm | c)∑C

c′=1 p(c′) p(xm | c′)
∀c ∀m . (8)

On the other hand, the M step finds the maximum likelihood estimates for
the priors,

p(c)(k+1) =
1
M

M∑
m=1

zmc ∀c , (9)

and the component parameters,

p(wj |hl, c)(k+1) =

∑
m

zmc
(k)

|xm|∑
i

δ(xi
m,i−n+1, wjhl)

∑
wj′∈Γ

∑
m

zmc
(k)

|xm|∑
i

δ(xi
m,i−n+1, wj′hl)

∀c, ∀wj ∈ Γ,
∀hl ∈ Γ (n−1) ,

(10)
where δ is the Kronecker’s delta.

3.2 GIATI Mixtures

As it was mentioned in Section 2, the second step of the training process GIATI
needs some finite-state automaton inference algorithms to model the joint proba-
bility. Commonly, n-grams have been used in this step for its simplicity, extreme
efficiency, and well-known smoothing techniques.

In this work, the use of n-gram mixtures in the second step of the GIATI
technique is proposed. The EM algorithm is expected to identify different topics
or writing styles and distribute them among the mixture components, which are
GIATI transducers by themselves. Consequently, each of the GIATI transducers
share the same structure. Therefore, a GIATI mixture may be represented as
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a single SFST in which the transition probabilities are constituted by an array
of probabilities of size C. With this representation in mind, the search problem
simply lies in a Viterbi search through the SFST with a slight modification.
Taking advantage of the structure’s parallelism, the cost of being at a given state
may be calculated as the sum of all the components of the mixture. Therefore,
the best path at the end of the search is obtained taking into account all the
components at the same time.

One difficulty when dealing with theoretical models is that they often behave
unexpectedly when they are put into practice. Specially, n-gram inference have
to tackle with the sparseness of the training data. To make things worse, n-
gram mixtures split the data among its components. The more components the
mixture has, the more sparse the data is, so that the sparseness proportionally
boosts with the complexity of the model and thereby with the n-gram order.

If we look carefully at the zmc variable, it characterizes the posterior probability
of the sentence xm belonging to the class c. Informally speaking, the E step in the
EM algorithm may be seen as a fuzzy clustering algorithm that assigns sentences
xm to groups and zmc indicates the degree to which the sentence xm belongs to
the cluster c. Under this point of view, any fuzzy approach might be used to esti-
mate the z parameters. Component parameters in step M would be consequently
estimated using these z values. For instance, lower orders of n-grams may be used
to smooth the mixtures. The following steps illustrate this process:

– 1-gram, 2-gram and 3-gram mixtures are trained until convergence.
– For each of these mixtures, the z variables corresponding to the last iteration

of the EM algorithm are stored. We will refer to them as 1-gram, 2-gram
and 3-gram z-values.

– Next, three 3-gram mixtures are created. The component parameters for
each mixture were estimated using 1-gram, 2-gram and 3-gram z-values,
respectively.

– Every component of these mixtures is smoothed. Firstly, 3-gram counts un-
der 3 are cut off. Secondly, back-off and Witten-Bell smoothing are applied.

4 Experimental Results

In order to assess the GIATI mixture model, a series of experiments were con-
ducted using different corpora of increasing complexity. For each corpus three
3-gram mixtures were created and smoothed as it is explained in the previous sec-
tion. The component parameters for each mixture were estimated using 1-gram,
2-gram and 3-gram z-values, respectively. As stated in Section 3, the number of
components C is a crucial parameter. Therefore, the experiments were run for
a set of preselected values of C between 1 and 500. Finally, all the experiments
were run several times in order to calculate the confidence intervals.

4.1 Corpora Description

The GIATI mixture models were evaluated using three corpora of increasing
complexity. The simplest task is the MLA which define a simple language whose
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sentences describe a series of images. The sentences were randomly generated by
means of an automaton, and hence, they are very simple.

The Eutrans-I [12] corpus is composed of pairs of sentences that describe
sixteen different communication scenarios in the hall of a hotel. The sentences
were semi-automatically generated from a series of travel booklets.

Finally, the simplified Xerox corpus [13] is a collection of technical manuals in
English, Spanish, French, and German. The English version is the original one,
while the others are translations made by a professional translator. Although it
is still a restricted domain corpus, it is written in natural language. Therefore
the language is more complex, which is reflected by the perplexity. Statistics of
these corpora may be seen in the Figure 1.
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Fig. 1. MLA, Eutrans and Xerox statistics and result
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4.2 Experimental Results

Performance was evaluated using the word error rate (WER) measure (number
of deletions, insertions and substitutions needed to transform a translation hy-
pothesis into a single target reference). Figure 1 shows the experimental results
for the three tasks. Three different curves are shown in the plots corresponding
to the different z-values used for parameter estimation. The bars show the 95%
confidence intervals.

The MLA task exemplifies clearly what is expected from a mixture model.
First, as the number of components increases, the WER rapidly decreases with
a minimum WER at 41 components. However, after that point the system over-
trains the parameters and loses generality. Then, the system performance begins
to fall steadily. Furthermore, 1-gram z-values obtain the worst results, while
2-gram and 3-gram z-values perform almost equally, which reflects the extra
modelling capability of higher n-gram orders.

For the Eutrans task, on the other hand, it is interesting to note that the
best result is obtained for a number of components near to the number of sce-
narios of this task for 1-gram z-values. However, 2-gram and 3-gram z-values
show a strange behaviour. It might be due to the sparseness problem discussed
in Section 3. Hence, sparse data in 2-grams and 3-grams provokes worse param-
eters estimates. Nonetheless, 2-gram and 3-gram z-values performed better than
1-gram z-values for the Xerox corpus which is indeed more complex. Although
the results vary considerably, the confidence intervals do not overlap so that the
improvement is statistically significative.

5 Conclusions and Future Work

N-gram mixtures have shown to be useful to perform translation tasks. For
the corpora with lowest perplexity and simplest grammars, the GIATI mixtures
have shown an excellent performance. It is obvious that the sentences of these
corpora have a narrow range of structures. This allows the estimation algorithm
to identify clearly different kind of sentences in the text and narrowly specialise
each mixture component in them.

However, as the grammars become more complex, the improvement observed
in mixture modelling rapidly decreases. It must be noticed that for more complex
tasks there are usually fewer resources. Therefore, if it is taken into account that
mixtures split data between components, it could be easily argued that many
parameters may be badly estimated. Consequently, it may happen that each
individual component could model poorly even the structure of the language
common to all topics, leading to a worse system performance.

The effect of sparse data can also be noticed in the training process. 1-gram
z-values perform well where the others fail. Otherwise 2-gram z-values achieve
the best results closely followed by 3-gram z-values.

There are many issues still to investigate in order to obtain the best from
GIATI mixtures. First, smarter smoothing techniques should be developed. For
instance, a general GIATI model could be interpolated with the GIATI mixture,
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or the smoothing might be embedded into the training process. Second, to avoid
the sparseness problem in training, z-values might be estimated using any fuzzy
clustering algorithm that gives good results in text classification. It should be
also possible to use word categorization to estimate the z-value, and doing so
reduce the number of parameters in the training process.

However, it should be priority to test the model against larger corpora, spe-
cially those that are naturally categorized in topics or contain texts from different
sources, such as EUROPARL, Acquis communautaire or the OPUS corpus.
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Abstract. The analysis of historical document images is not only in-
teresting for the preservation of historical heritage but also for the ex-
traction of semantic knowledge. In this paper we present a word spotting
approach to find keyword images in digital archives. Detected words allow
to construct metadata on document contents for indexing and retrieval
purposes. Instead of using OCR based approches that would require ac-
curate segmentation and high image quality, we propose a shape recog-
nition method based on the well-known shape context descriptor. Our
method is proven to be robust under hightly distorted and noisy doc-
ument images, a usual drawback in old document analysis. It has been
used in a real application scenario, the Collection of Border Records of
the Girona Archive. In particular, spotted keywords are used to extract
knowledge on personal data of people referred in the documents.

1 Introduction

In the last years there is an increasing interest among the Document Image Anal-
ysis (DIA) community to focus the research on old document images. The main
goal is to digitally preserve and provide access to historical document collections
residing in libraries, museums and archives. Ancient documents have a historical
value not only for their physical appearance but also for their contents. Thus,
the convesion to digital libraries allow this heritage not only to be preserved but
make it available wordlwide. But Digital Libraries do not only contain digitized
documents but semantically enriched ones. Enriched documents mean to add se-
mantical annotations to digital images of the scanned documents. Such metadata
is intended to describe, classify and indexing documents by their content.

Currently, despite the presence of historical libraries, most of them available
on the web, the presence of advanced features is still scarce [1]. We rarely find
the possibility to do semantic search other than some of the basic typical meta-
data (author, date, institution). The research on digital libraries for historical
documents has experienced a growing interest among the DIA community. In
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a recent survey, Baird et al. [2] stated the DIA challenges in historical digital
libraries collections. First, image capture from historical artefacts needs special
handling to counter the defects of document aging and the physical constraints
of digitization. Second, layout analysis and metadata extraction was presented
as a crucial step in creation an information base for historical digital libraries.
Some outstanding contributions on the analysis of historical document images
and conversion to digital libraries are the work from some UK labs [3,4], or the
work within the French project ACI MADONNE [5,6,7,8].

The process of extracting keywords to generate indices for archiving and re-
trieval purposes depends on the document image quality and the type of col-
lection. In document images with enough quality and structured layout, it can
be easily done by first using an OCR process and afterwards a standard string
search procedure. However, in images with different levels of degradation (noise,
geometric deformations, complex layouts, low resolution, unnacurate binariza-
tion, etc.) this strategy might not succeed. Handwritten document images or old
documents are examples of that. Since OCR methods require an accurate word
segmentation and recognition, their performance can drastically decrease in this
type of documents. Several authors have developed approaches based on mod-
eling signatures of query keywords from image features. Thus, the detection of
the word in the image database is done by a crosscorrelation approach between
a prototype signature and the target image. This process is called word spotting.
A number of contributions exist in the literature on word spotting methods for
old documents, in particular for handwritten old documents [9,10].

The main contribution of this work is the proposal of a shape recognition ap-
proach applied to word spotting. Thus, if a word image represents a shape class
described by a shape signature, its recognition in a document image involves a
shape classification approach formulated in terms of the shape signature model.
Shape representation and recognition is a broad domain. Good surveys may be
found in the literature [11,12]. Generally speaking, shape descriptors can be clas-
sified in three categories. First, a shape can be represented as a set of points in a
2D image (silhouettes, contours, skeletons). Histograms of geometric invariants
among points or shape contexts are examples of descriptors of this class. Second,
a shape can be represented by a spatial configuration of a small number of key
points. Examples of that are curvature points (Curvature Scale Space descrip-
tor), or singularities in the boundary curve evolution (Shocks). Finally, a third
class of shape descriptors consist in appearance-based representations, i.e. the
correspondence using geometry and photometry.

In this paper we propose a word spotting strategy to retrieve keywords from
a particular historical document archive. Our method is based on the shape con-
text descriptor proposed by Belongie in [13]. A shape context of a feature point
captures the spatial distribution of other points relative to it in polar coordi-
nates. Thus, it can be seen as combined statistical-structural descriptor. In our
case, skeletons of keyword images are taken as feature points. Thus, the set of
shape context of a given keyword image is taken as a prototype descriptor. Given
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a document image, it is roughly segmented into words by a process that com-
bines horizontal run length smearing and connected component labeling. Shape
contexts are also extracted from candidate subimages. Finally, the segmented
candidate word images of the input document are ranked in terms of a shape
context distance. The first n candidate word images in the ranking are labeled
as document zones likely to contain the query keyword.

The target collection of study is the archive of border records from the Civil
Government of Girona. In consists of 93 linear meters of printed and handwrit-
ten documents from 1940 till 1976. This set of documents is related to people
going through the Spanish-French border. Documents are organized in personal
bundles. For each one, there is an index page with the names of people whose
information is contained in this record. The bundles are arranged by year and
record number. In each bundle there is very diverse documentation, so we can
find safe-conduct to cross the border, arrest reports, information of professional
activities, documents of prisoners transfer to labor camps, medical reports, cor-
respondence with consulates, telegrams, etc. This documentation has a great
importance in the studies about historical issues related with the Spanish Civil
War and the Second World War. Figure 1 shows some sample images. The col-
lection is being scanned and stored in binary raw image files. From the digital
archive it is interesting to extract information regarding people (names, nation-
ality, age, civil status, dates, etc.) that can be used for indexing purposes. Our
word spotting method have been applied for a number of keywords. Keyword im-
ages are people names automatically segmented from the cover page, and some
other keyword images segmented by a human operator like “year”, “married”,
“years old”, etc. After the spotting process, and applying some semantical rules
to near words, the metadata can be extracted.

(a) (b) (c)

Fig. 1. Sample images of the target collection: (a) Cover page of one record (b)(c)
Some contained documents
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The structure of this paper is as follows. In Section 2 we describe the seg-
mentation process to get name-keywords from the cover pages. In Section 3 the
word spoting method based on shape contexts is presented. Section 4 presents
the experimental evaluation. Finally, Section 5 is devoted to conclusions.

2 Key Word Segmentation

This process is applied to each cover page of the collection. Figure 1(a) shows
an example. This kind of pages present a regular layout. A list of names and
nationalities, appears in a form-like region in the bottom part of the document.
The aim of this process is to segment these names automatically to spot them in
the rest of the pages of the record, or even in the rest of the collection. Documents
present some problems. First, the collection was scanned in binary raw images
using a global binarization process. Second some words are partially deleted or
present stains. Finally, words are printed on dotted underlines.

The first step is to detect where the names appear. As they are underlined, a
preprocess to detect horizontal lines is done using the classical Hough Transform
(HT). Once the long lines are found, the zones near them are cropped from the
original image and a median filter is applied to remove the noise. Finally the
connected component segmentation is performed. This would provide us the
words segmented but with possible underline effect. As the words in the rest of
the document will appear without underlines, first of all we need to filter the
characters to extract this underline pixels. This process is done in two steps.
First, the upper and lower profiles are compared and if the lower one is longer
then the extra pixels are removed. Then the width of the areas in the remaining
lower profiles are analyzed and thinner ones are also deleted, as they are just
lines under characters with a kind of umbrella as F, T or P. Then words are
segmented and ready to be used as keywords to spot the rest of the document.

3 Word Similarity in Terms of Shape Contexts

Shape Contexts were defined by Belongie in [13]. Summarizing the formulation
given in the original reference, this shape descriptor can be defined as follows.
Let P = {p1, . . . , pn} be a set of n feature points extrated from a shape. The
shape context of a point pi is defined as a histogram hi of the relative coordinates
of other points around pi,

hi(k) = #{q �= pi : (q − pi) ∈ bin(k)}. (1)

The space around pi is therefore partitioned into regular zones (bin(k)) in
terms of polar coordinates. Thus, hi(k) represents the density of points in the
kth bin. A graphical illustration of the idea of shape contexts is given in Fig. 2.
Since shape contexts represent distribution histograms, usually the distance be-
tween two shape contexts d(h, h′) is defined in terms of the χ2 test statistic.
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original image

p
i

feature points (skeleton)

shape context of point p
i

Fig. 2. Formulation of Shape Contexts

Given a shape S, it is described in terms of the set of shape contexts of its
feature points S = {h1, . . . hn}. Let us denote δ(S, S′) the distance function be-
tween two shapes S and S′. δ(S, S′) is defined in terms of the mapping distances
d(hi, h

′
j). In our case, since keywords are processed as shapes, word spotting is

performed by looking image words that minimize the distance δ to a given pro-
totype keyword. Belongie et al. formulated the distance between two shapes as
a labeling problem, i.e. finding the best mapping between feature points of S to
the feature points of S′ such that the distance between the corresponding shape
contexts is minimized.

In our approach, prototpype word images {P1, . . . , Pr} are spotted in doc-
ument images of an archive record. Prototype images may be name-keywords
segmented from the front page, as explained in section 2, or keyword images man-
ually segmented from sample images. Document images are roughtly segmented
into candidate words, i.e. subimages {W1, . . . , Ws} by a run-lenth smearing pro-
cess combined with a connected component segmentation. Thus, prototype word
images and segmented subimages of target documents are encoded with the set
of shape contexts of their skeleton points. Both prototype words and candidate
words are seen as shapes and then compared in terms of their shape context
encoding. A candidate word Wi is labeled as a valid instance of the prototype
word Pj if δ(Wi, Pj) ≤ T where T is a predefined threshold experimentally set.
To avoid the computational complexity of computing a mapping between shape
features in each word comparison, we define a simplified distance.

Given two shapes S = {h1, . . . , hn} and S′ = {h′
1, . . . , h

′
m}, the distance

between them is defined as follows:

δ(S, S′) =
K∑

i=1

Δσ(i)(S, S′)

where Δi is the minimum distance between the ith shape context of S and the
shape contexts of S′, defined as follows:

Δi(S, S′) = min
j=1,....m

d(hi, h
′
j),

and σ(i) is a ranking function that returns the ith element of an ordered list of
values. Therefore, the intuitive idea of the distance between two shapes repre-
sented by the shape contexts of their feature points is the sum of the distances
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(a) (b) (c) (d)

Fig. 3. Spotting results with inexact matching: (a)(b) The word is found although
hightly distorted skeletons and unnacurate word segmentation (c) Inexact word (d)
Due to a fragmented segmentation, a subword is found

between the K most similar pairs of shape contexts. The advantage of this for-
mulation is twofold. First, it can be computed with quadratic complexity in
terms of the number of feature points. Second, it is very robust to noise and
distortion. It is illustrated in Fig. 3 with four cases. In each one the skeletons of
the indexing word image and the best detected subimage under distance δ are
shown. In Figs. 3(a)(b) the prototype word is found although hightly distorted
skeletons and unnacurate word segmentation (different words in the same subim-
age). In Fig. 3(c) a similar word is found but not the exact one. Finally, Fig. 3(d)
illustrates a case where the segmentation of the document image has broken a
word in two subimages. However, the best matching is one of such subimages.

4 Experimental Results

Our work is still in a preliminary stage, but the results are promising. To bench-
mark it, we have used one of the records (number 2 of 1940). It consists of
32 pages of different types (some of them handwritten). Names have been seg-
mented in the first page (it results in a total of 21 names). In addition, seven
keyword images have been added to the set of indexing prototype shapes. The
strategy was to spot all the prototype words in the documents and consider as
zones likely to contain them the first 5 images in the distance ranking. In addi-
tion, keywords found nearby names can be taken as information related to the
corresponding person. An example is given in Fig. 4. Look at the detection of
the name “MAURICE” “MENRIE”, and the keywords “años”, “soltero”, “hijo”,
and “domicilio”. With a posteriori relational rules, and an OCR process of some
nearby words, it would allow to associate to this document the name of the
person, the age, the civil status, the name of the parents and the address.

Quantitatively, the rate of correct detection of words (in the top five of the
ranking) is 81%. If we consider the top ten of the ranking, this detection rate
increases up to 92%. Undetected words are due to a very high noisy original
image. We should notice that the interest in creating metadata associated to
digitized documents is not only in individual words but in the combination of
different keywords associated to the same knowledge item. Thus, the use of
semantical rules associated to the relational associations among detected words
can improve the above results.
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Fig. 4. Results of spotting some keywords

5 Conclusion

In this paper we have presented a shape recognition approach based on the
well-known shape context descriptor applied to a problem of word spotting in
documents of historical archives. The method is part of a larger project for the
extraction of metadata from a real collection. Image archives present several dis-
tortions due to physical factors (aging, paper degradation overtime, speckles ...)
or technical one in the scanning process (unnacurate binarisation). Because of
that, the use of OCR techniques has resulted in insufficient performance rates.
The use of our approach consists in the detection of shape context signatures
from a set of image keywords that were compared with signatures extracted from
the document images. The advantage of using such shape recognition approach
for textual processing is twofold. First, it is stable under different degradation
conditions, as it has been shown in the experiments where keywords are generally
detected in the first positions in the ranking. Second, the use of a simple distance
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formulated in terms of the K nearest shape contexts between two shapes allows
to detect words in a reasonable quadratic time. The work is still in a preliminary
stage. The next steps in the future are a more exhaustive evaluation of the per-
formance and the formulation of a rule-based system to find semantical relation
among detected keywords to construct metadata associated to documents.
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Abstract. This paper proposes a spatial domain deinterlacing method which is 
based on fuzzy rule and edge-sensitive line average algorithm. The proposed 
algorithm consists two parts: edge direction detection part and fuzzy rule based 
edge-sensitive interpolation part. Once the edge direction is determined, in 
order to accurately reconstruct boundary of edges and peaks, edge-sensitive 
interpolation is utilized. Detection and interpolation results are presented. 
Experimental results show that the proposed algorithm provides a significant 
improvement over other existing deinterlacing methods.  

Keywords: Deinterlacing, edge-sensitive interpolation, HDTV, fuzzy technique. 

1   Introduction 

The interlaced scan format, such as NTSC, PAL, and SECAM, has been widely used 
in various TV broadcasting standards, since it provides an efficient usage of limited 
bandwidth. With an interlaced scan, the frame rate is doubled while using the same 
bandwidth occupation [1]. Furthermore, recent HDTV systems support progressive 
scan in order to provide an improved picture quality. In order to provide compatibility 
with existing TV and camera systems, deinterlacing is used to convert interlaced 
video sequences to the progressive scan format.   

Numerous deinterlacing techniques have been proposed for the interlaced to 
progressive scan conversion. Conventional works on deinterlacing can be roughly 
classified into three groups: methods using purely spatial interpolation techniques  
[2-6], temporal interpolation technique [7], and methods utilizing spatio-temporal 
interpolation techniques [8-10]. In general, temporal domain methods are more 
efficient than spatial domain methods. However, they are more complex than that of 
spatial domain methods. If sequences have lots of motion or scene changes, the spatial 
domain methods become superior to temporal domain methods. In this paper, the 
interest is primarily spatial domain methods. The methods in the spatial domain are 
the simplest among the various deinterlacing algorithms since they use only pixel 
values that are available from the current field. The methods in this category include 
line averaging and directional spatial interpolation. Intra-field linear interpolation 
algorithm is called as Bob [2]. Directional interpolation techniques such as the edge-
based line average (ELA) [3], perform interpolation in the direction of the highest 
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sample correction. In [4], the algorithm introduces an upper spatial direction vector 
and a lower spatial direction vector, in order to obtain a more accurate direction. In 
[5], an edge dependent interpolation algorithm that is based on a horizontal edge 
pattern is proposed. Recently, many different approaches that adopt fuzzy reasoning 
have been proposed in the engineering domain. Fuzzy reasoning methods have proved 
effective in image processing (e.g., filtering, interpolation, edge detection, and 
morphology), and have numerous practical applications. In [6], a line interpolation 
method using an intra-field edge-direction detector was proposed to obtain the correct 
edge information. In [8], a deinterlacing method based on Takagi-Sugeno fuzzy 
model was proposed. The conventional fuzzy rule based deinterlacing algorithms 
designed to find the exact edge direction.  

In this paper, we propose a new deinterlacing method using edge-sensitive 
interpolation algorithm. In the literature, edge-sensitive interpolation method has been 
studied [11]. These methods were proposed for resampling algorithm. However, the 
studies involving video deinterlacing systems that are based on fuzzy edge-sensitive 
algorithm have not been proposed yet. The proposed algorithm is specific for 
deinterlacing domain, especially for the sequence with high motion region. The rest of 
the paper is structured as follows. In Section 2, the detail of the edge direction 
detector, fuzzy rule based edge-sensitive line average algorithm, and the interpolation 
strategy will be described. Experimental results and conclusions are finally presented 
in Section 3 and Section 4. 

2   Fuzzy Rule Based Edge-Sensitive Line Average Algorithm 

2.1   Edge Direction (ED) Detector  

As we described, the proposed algorithm is intra field interpolation method that uses 
the current field to interpolate the missing field and to reconstruct one progressive 
frame at a time. Let x(i,j-1) and x(i,j+1) denote the upper reference line and the lower 
reference line, respectively. The variable i refers to the column number, and j to the 
line number. Consider the pixel x(i,j), which will be interpolated in this work.  

The edge direction (ED) detector utilizes directional correlations among pixels, in 
order to linearly interpolate a missing line. A 5-by-2 localized window is used to 
calculate directional correlations and to interpolate the current pixel, as shown in  
Fig. 1. C(k) denotes a directional correlation measurement, i.e.,  

( ) | ( , 1) ( , 1) |, 2 2C k x i k j x i k j k= + − − − + − ≤ ≤  (1) 

The measurement C(k) is the intensity change in the direction, represented by k. C(k) 
is used to determine the direction of the highest spatial correlation. The edge direction 
θ is determined as (2).  

2 2
arg min ( ( ))

k
ED C k

− ≤ ≤
=  (2) 

2.2   Edge-Sensitive Interpolation and Interpolation Strategy  

The fuzzy rule based edge-sensitive linear average (FESA) algorithm uses fuzzy 
gradient values to determine if a certain missing pixel is located with a strong edge or 
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not. It is assumed that the pixel with (j-3)th row is assigned to t, the pixel with (j-1)th 
row is assigned to u, the pixel with (j+1)th row is assigned to v, and the pixel with 
(j+3)th row is assigned to w. For each pixel (i,j) of the image (that is not a border 
pixel), a neighborhood window is used, as illustrated in Fig. 2. Each neighbor with 
respect to (i,j) corresponds to one direction {UL=up left, U=up, UR=up right, 
DL=down left, D=down, and DR=down right}.  

The gradients Γ(ED)x(i,j), Γ'(ED)x(i,j) and Γ''(ED)x(i,j) are defined as the difference, as 
shown in Table 1. Table 1 provides an overview of the involved gradient values: each 
direction ED (column one) corresponds to a position (Fig. 2) with respect to a center 
position. Column two gives the basic gradient for each direction, while column three 
and four give the both of upper and lower gradients. It is assumed that four-tap filters 
are not suitable for 63o and -63o, since the window becomes too large, and it provides 
incorrect results. Finally, three fuzzy gradient values are defined for each of the three 
directions.  

The five parameters (Γ63x(i,j), Γ45x(i,j), Γ0x(i,j), Γ-45x(i,j), and Γ-63x(i,j)) are called 
the basic gradient values, the following three parameters (Γ'45x(i,j), Γ'0x(i,j), and Γ'-
45x(i,j)) are called the upper gradient values, and the following three parameters 
(Γ''45x(i,j), Γ''0x(i,j), and Γ''-45x(i,j)) are called the lower gradient values. The both of 
the upper and the lower gradient values in the same direction are determined by the 
centers making a right angle with the direction of the basic gradient (ED). In general, 
Bob (intra-field linear interpolation) method exhibits no motion artifacts and has 
minimal computational requirements. However, the input vertical resolution is halved 
before the image is interpolated, thus reducing the detail in the progressive image. To 
handle the above problems, we use not only three basic gradient values, but also each 
 

 

Fig. 1. 5-by-2 window for ED detector 

 

Fig. 2. Neighborhood of a central pixel 
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Table 1. Involved Gradient Values to Calculate the Fuzzy Gradient 

ED Basic gradient Upper gradient Lower gradient 
63o Γ63x(i,j)=UL2-DR2 - - 
45o Γ45x(i,j)=UL-DR Γ'45x(i,j)=UL'-UL Γ''45x(i,j)=DR-DR' 
0o Γ0x(i,j)=U-D Γ'0x(i,j)=U'-U Γ''0x(i,j)=D-D' 

-45o Γ-45x(i,j)=UR-DL Γ'-45x(i,j)=UR'-UR Γ''-45x(i,j)=DL-DL' 
-63o Γ-63x(i,j)=UR2-DL2 - - 

 

Fig. 3. Membership functions BN, SN, SP, and BP, respectively 

three upper and three lower gradient values to make a conclusion. And we use not 
only one basic gradient for each direction, but upper and lower gradient values for 
each direction. The pixel xFESA(i,j) which should be interpolated using FESA method 
is expressed by the pixel values t, u, v, and w (t={UL', U', UR'}, u={UL, U, UR}, 
v={DL, D, DR}, w={DL', D', DR'}).  

Table 2. Rule table of the proposed method 

  Γ 
Γ' Γ'' BN SN SP BP 

BN avuv 
SN v 
SP v 

BN 

BP avuv+adtu/4 avuv+adtu/2 avuv+advw/2 avuv+advw/4 
BN u 
SN auv 
SP avuv+adtu/2 avuv+adtu avuv+advw avuv+advw/2 

SN 

BP u 
BN u 
SN avuv-advw/2 avuv-advw avuv-adtu avuv-adtu/2 
SP auv 

SP 

BP u 
BN avuv-advw/4 avuv-advw/2 avuv-adtu/2 avuv-adtu/4 
SN v 
SP v 

BP 

BP avuv 

Employed fuzzy sets are shown in Fig. 3. Because “big,” “small,” “negative,” and 
“positive” are nondeterministic features, these terms can be represented as fuzzy sets. 
Fuzzy sets can be represented by a membership function. Examples of the membership 
function BN (for the fuzzy set big negative), SN (for the fuzzy set small negative), SP 
(for the fuzzy set small positive), and BP (for the fuzzy set big positive) are shown in 
Fig. 3. The horizontal axis of these functions represents all the possible gradient values 
(the universe [-255,255]) and the vertical axis represents a membership degree  
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(∈[0,1]). A membership degree indicates the degree in which a certain gradient value 
matches the predicate (e.g., BP). If a gradient value has membership degree of one, for 
the fuzzy set BP, it means that it is definitely a big positive. The parameter set is chosen 
as follows, α=β=10, α'=-40, β'=40, where α is the negative lower bound, β is the positive 
lower bound, α' is the negative upper bound, and β' is the positive upper bound. The 
parameters α, α', β, and β' are determined empirically. The final utilized rule of the 
FESA is shown in (3) and Table 2.  

{ 63 ,63 } ( , )

( , ) 2
FESA uv

FESA

if ED x i j av

else x i j result of Table

∈ − =
=

o o
 (3) 

where avuv is the average value of u and v (avuv=(u+v)/2). Both of adtu and advw are the 
absolute difference between t and u, and v and w, i.e., adtu=|t-u|, advw=|v-w|. The 
denominator is changed from 2 to 4 in the case of both of Ã' and Ã'' are included in BN 
or BP. This is because it was found that some pixels can be overflowed or underflowed, 
while the difference between t and u, or the difference between v and w are quite big. 

3   Simulation Results and Limitation 

In this section, a comparison is made between the objective and subjective quality, 
and computational CPU time for the different proposed interpolation methods. 
Experiments were conducted to evaluate the performance of the proposed FESA 
method. Along with the proposed algorithm, some of the existing deinterlacing 
algorithms were also tested for comparison, which included spatial domain methods 
(Bob, ELA, DOI, NEDI), temporal domain methods (Weave), and spatio-temporal 
domain methods (VTMF, STELA, EDT). The experiments were run on four “real-
world” HDTV sequences with a field size of 1920*1080i: Mobcal, Parkrun, Shields, 
and Stockholm, as shown in Fig. 4. Followings are the test image characteristics. 

 

1) Mobcal: High spatial detail and medium amount of motion. The camera pans 
vertically (top to bottom). The word ‘Februari’ is moving from bottom to top. 

2) Parkrun: High spatial detail and medium amount of motion. The camera pans 
horizontally (left to right). A man is running from the left to right. 

3) Shields: Medium spatial detail and medium amount of motion. Firstly, the camera 
pans horizontally (right to left), and then it zooms in. The standard of the shields 
become larger, while the sequences continue. 

4) Stockholm: High spatial detail and medium amount of motion. The camera pans 
horizontally (left to right). The sign ‘DAGENS WHATER’ of the building moves 
from right to left. 
 

    
(a) (b) (c) (d) 

Fig. 4. Four 1920*1080i test sequence that are used: (a) Mobcal, (b) Parkrun, (c) Shields, and 
(d) Stockholm 
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Table 3 shows the PSNR and computational CPU time results of different 
deinterlacing methods for various sequences. The results show that the proposed 
FESA demonstrates the best objective performance compared to the other 
conventional methods in terms of PSNR except that Mobcal sequence. Moreover, the 
proposed FESA only requires 1.603 times of computational CPU time than that of 
Bob, and 1.127 times of computational CPU time than that of STELA. In particular, it 
shows slightly better (for Parkrun, Shields, and Stockholm) objective performance 
compared to the DOI method in terms of PSNR, even though it requires only about 
7.071% of computation CPU time. Although FESA does not employ temporal 
information, it shows better performance than the methods with temporal domain 
information in these experiments.  

For a subjective performance evaluation, the 100th frame of the Mobcal sequence 
was adopted. Fig. 5 compares the visual performance of the FESA with several major 
conventional methods. It is assumed that ELA, NEDI, DOI, STELA, EDT algorithms 
are enough to be compared, since these methods is considered to be good methods 
among conventional methods for comparison. It can be observed that these methods 
have the following main shortcomings in contrast to the proposed FESA method. 

 

(a, b) Both of ELA and NEDI do not use temporal information, and they show no 
motion artifacts in motion region. However, they do not work properly with 
complex structures, and the edges are degraded severely. Because the edge 
detector may find the incorrect edge direction out, it causes artifacts and 
deteriorates visual quality. The artifacts are shown in the edges of the word 
‘Февраль’ in Figs. 5(a) and 5(b).  

(c) Since DOI uses spatial information only, it shows no motion artifacts as well. DOI 
provides the best results among all of the other conventional methods, as shown in 
Fig. 5(c). However, DOI requires tremendous computational CPU time. In 
particular, it requires about fourteen times computational CPU time than that of 
FESA. It makes the system less feasible.  

(d) STELA can estimate the motion vector to be zero in the static region, so that it can 
reconstruct the missing pixel perfectly, and results in no degradation. However, it 
gradually reduces the vertical detail as the temporal frequencies increase. The 
vertical detail from the previous field is combined with the temporally shifted 
current field, indicating that some motion blur occurred. From Fig. 5(d), we found 
that flickering occurs only where there is edge motion.  

(e) EDT evaluates the validity of the zero motion vectors, so that it can provide perfo-
rmance similar to the STELA, and results in no degradation of the static region. 
However, it shows edge flicker artifacts in motion region. Moreover, this method 
is quite sensitive to the threshold T (20 is given in [10]). See Figs. 5(e), as the 
word moves, the degradation is perceived as a flicker. After the EDT method, 
there are still many feathering defects in the word. The feathering effect appears 
on the boundaries of the words “Февраль,” and “如月”.  

 

Fig. 5(f) shows the FESA method utilized image. FESA gives the best quality out 
of all methods. This FESA emphasizes edge preservation and edge sharpness after 
deinterlacing. From the experiment results, it is observed that the proposed FESA 
method has good objective and subjective qualities for different sequences, especially 
requires low computational CPU time to achieve the real-time processing. 
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Table 3. Average PSNR and CPU time (seconds/frame) results of different interpolation 
methods for four HDTV sequences (for the 1st to 126th sequences) 

Method Mobcal Parkrun Shields Stockholm 
Spatial domain methods  
Bob 28.463 0.3414 21.131 0.4162 24.369 0.3762 26.586 0.3653 
ELA 27.977 0.5070 21.296 0.5104 24.436 0.5052 26.762 0.5092 
DOI 28.402 7.6688 21.120 12.7407 24.365 6.4883 26.578 7.0935 
NEDI 28.088 0.7120 21.059 0.7003 24.269 0.7101 26.548 0.7266 
Temporal domain methods 
Weave 25.624 0.2744 19.031 0.3644 21.743 0.3196 24.223 0.3248 
VTMF 27.013 0.3117 20.783 0.3114 24.051 0.3105 26.180 0.3211 
STELA 28.472 0.5234 21.268 0.5230 24.499 0.5228 26.774 0.5621 
EDT 27.249 0.5672 20.154 0.8117 23.020 0.6741 25.438 0.5525 
Proposed methods 
FESA 28.241 0.6181 21.324 0.5496 24.513 0.6738 26.778 0.5623 

(unit: dB, ms) 

(a) ELA 

(b) NEDI 

(c) DOI 

(d) STELA 

(e) EDT 

(f) FESA  

Fig. 5. 100th 1920*1080i grayscale Mobcal image 

However, it was found that some problems exist in the results from the FESA 
method. As can be seen in Table 3, the FESA method does not outperform the ELA 
method for Mobcal sequence. Nevertheless, the idea behind this method can be used 
to develop a subjective quality very well (as shown in Fig. 5). FESA method is 
specific for the sequence with high motion region. Thus, this method should be used 
with a motion adaptive or a motion compensated method that utilizes temporal 
domain information. Future research will be concentrated on this issue and on the 
construction of a fuzzy rule based interpolation algorithm for a motion adaptive and a 
motion compensated deinterlacing system. 
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4   Conclusion  

In this paper, a new fuzzy rule based edge preserving deinterlacing algorithm was 
proposed. The proposed FESA method consists of edge detection part and fuzzy rule 
based edge-sensitive interpolation part. Once the edge direction is determined, in 
order to accurately reconstruct boundary of edges and peaks, edge-sensitive 
interpolation is utilized. Detection and interpolation results were presented. 
Experimental results of computer simulations show that the proposed method was 
able to outperform a number of methods in the literature in objective and subjective 
qualities in a feasible amount of CPU time. 
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Abstract. Some fast nearest neighbor search (NNS) algorithms using
metric properties have appeared in the last years for reducing computa-
tional cost. Depending on the structure used to store the training set,
different strategies to speed up the search have been defined. For in-
stance, pruning rules avoid the search of some branches of a tree in a
tree-based search algorithm. In this paper, we propose a new and simple
pruning rule that can be used in most of the tree-based search algorithms.
All the information needed by the rule can be stored in a table (at pre-
processing time). Moreover, the rule can be computed in constant time.
This approach is evaluated through real and artificial data experiments.
In order to test its performance, the rule is compared to and combined
with other previously defined rules.

1 Introduction

Nearest Neighbor Search (NNS) techniques aim at finding the nearest point of
a set to a given test point using a distance function [4]. The naïve approach is
some times a bottleneck due to the large number of distances to be computed.
Many methods have been developped in order to avoid the exhaustive search
(see [3] and [2] for a survey). Tree-based structures are very popular in most
of the proposed algorithms [6,5,10,1,9], as this structure provides a simple way
to avoid the exploration of some subsets of points. Among these methods, only
some of them are suitable for general metric spaces, i.e., spaces where the objects
(prototypes) need not to be represented as a point, and only require a properly
defined distance function. The most popular and refereed algorithm of such a
type was proposed by Fukunaga and Narendra (FNA) [6]. This algorithm is very
suitable for studying new tree building strategies and new pruning rules [7,8] as
a previous step for extending the new ideas to other tree-based algorithms.

In this paper a new pruning rule is presented. The two keypoints in favor of
this rule are its simplicity (only a table of "distances" is stored) and its efficiency
(it allows a constant time pruning). The new rule may be used with the FNA
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algorithm in any metric space (even in a vector space with an appropiate distance
metric). In a classical way, the FNA algorithm will serve as a baseline for the
comparison with other techniques.

The paper is organized as follow: we will first introduce the basic algorithm
(section 2). We introduce the different pruning rules that were used in the ex-
periment in section 3 and 4. We will provide a comparative experiment on either
artificial and real world data (section 5). We then conclude suggesting some
future works (section 6).

2 The Basic Algorithm

The FNA is a fast search method that uses a binary tree structure. Each leaf
stores a point of the search space. At each node t is associated St, the set of the
points stored in the leaves of t sub-tree. Each node stores Mt (the representative
of St) and the radius of St, Rt = maxx∈Std(Mt, x).

The tree is generally built using recursive calls to a clustering algorithm. In
the original FNA the c-means algorithm was used. In [7] some other strategies
were explored: in the best method, namely the Most Distant from the Father tree
(MDF), the representative of the left node was the same than the representative
of its father. Thus, each time an expansion of the node is necessary, only one new
distance must be computed (instead of two), reducing the number of distances
computed. As the pruning rules apply on any tree, in the following, the tree will
be built using the MDF method.

In algorithm 1, a simplified version of FNA is presented; only the Prune_FNR
function call must be changed when considering another pruning rule. In order
to make the pseudo-code simpler, the dmin and nn are considered global variable.
Also, only binary trees with one point on the leaves are considered.

The use of the Fukunaga and Narendra Rule (FNR) for pruning internal nodes
is detailed in [6].

When a new sample point x is given, its nearest neighbor nn is searched in
the tree using a depth-first strategy. At a given level, the node t with a smaller
distance d(x, Mt) is explored first. In order to avoid the exploration of some
branches of the tree the FNA uses the FNR rule.

3 A Review of Pruning Rules

Fukunaga and Narendra Rule (FNR)
The pruning rule defined by Fukunaga and Narendra for internal nodes only
makes use of the information in the node t to be pruned (with representant Mt

and radius Rt) and the hyperspherical volume centered in the sample point x
with radius d(x, nn), where nn is the nearest prototype considered up to the
moment.

Rule: No y ∈ St can be the nearest neighbor to x if d(x, nn) + Rt < d(x, Mt).
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Algorithm 1: search(t,x)
Data: t: a node tree ; x: a sample point;
Result: nn: the nearest neighbor prototype; dmin: the distance to nn;
if t is not a leaf then

r = right_child(t); � = left_child(t);
dr = d(x,Mr) ; d� = d(x, M�);
update dmin and nn;
if d� < dr then

if not Prune_FNR(�) then
search(�, x);

if not Prune_FNR(r) then
search(r, x);

else
if not Prune_FNR(r) then

search(r, x);
if not Prune_FNR(�) then

search(�, x);

The Sibling Based Rule (SBR)
Given two sibling nodes r and �, this rule requires that each node r stores the
distance between the representative of the node, Mr, and the nearest point, e�,
in the sibling node � (S�).

Rule: No y ∈ S� can be the nearest neighbor to x if d(Mr, e�) > d(Mr, x) +
d(x, nn)

Unlike the FNR, SBR can be applied to eliminate node � without computing
d(M�, x), avoiding some extra distance computations at search time.

Generalized Rule (GR)
This rule is an iterated combination of the FNR and the SBR (see [8] for more
details). Given a node �, a set of prototypes {ei} is defined in the following way:

G1 = S�

ei = argmaxp∈Gi
d(p, M�)

Gi+1 = {p ∈ Gi : d(p, Mr) < d(ei, Mr)}

where Mr is the representative of the sibling node r, and Gi are auxiliary sets
of prototypes.

At preprocessing time, the distances d(Mr, ei) are stored in each node �. This
process is repeated similarly for the sibling node.

Rule: No y ∈ S� can be the nearest neighbor if there is an integer i such that:

d(Mr, ei) ≥ d(Mr, x) + d(x, nn) (1)
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d(M�, ei+1) ≤ d(M�, x) − d(x, nn) (2)

Cases i = 0 and i = s are also included not considering equations (1) or (2)
respectively. Note that condition (1) is equivalent to SBR rule when i = s and
condition (2) is equivalent to FNR rule when i = 0.

4 The Table Rule (TR)

This rule prunes by taking the current nearest neighbor as a reference. In order
to do so the distance from a prototype p to a set of prototypes S is defined as
d(p, S) = miny∈S d(p, y). At preprocess time, the distances from each prototype
to each node set St in the tree are computed and stored in a table, allowing a
constant time pruning. Note that the size of this table grows with the square of
the number of prototypes since, as the tree is binary, the number of nodes is two
times the number of prototypes.

t

nnxd(nn,S )

t: node
x: sample point
nn: current nearest neighbor

t

Fig. 1. Application of the table rule

Rule: Figure 1, Present a graphical view of the table rule.

Proposition 1 (Table Rule). Given the table rule (2d(x, nn) < d(t, nn)), no
prototype ei in node t can be nearest to the test sample x than nn, i. e.

∀ei ∈ t, d(x, ei) ≥ d(x, nn)

Proof:
Let ei ∈ St. By the definition of the distance between a point and a node

d(nn, St) = minei∈Std(ei, nn)

and thus
d(nn, St) ≤ d(ei, nn)

Moreover, by the triangle inequality, we have:

d(ei, nn) ≤ d(ei, x) + d(x, nn)
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Combining these inequalities, we have:

d(nn, St) ≤ d(ei, nn) ≤ d(ei, x) + d(x, nn)
⇒ d(ei, x) ≥ d(nn, St) − d(x, nn)

using the table rule, we finally have:

d(ei, x) ≥ 2d(x, nn) − d(x, nn) = d(x, nn)

which completes the proof.

5 Experiments

As seen in the proof of the correctness of the table rule, it is only required that
d is a true distance. In particular, on the contrary to other techniques such as
the well known kd-tree algorithm, a vector space is not needed in order to apply
the table rule.

In order to evaluate the power of the table rule, the performance of the algo-
rithm has been measured in real and artificial data experiments using the most
significative combinations of the pruning rules.

In the artificial data set up, the prototypes where obtained from a 5 and
10-dimensional uniform distribution in the unit hypercube.

A first experiment was performed using increasing size prototypes sets from
1, 000 prototypes to 8, 000 in steps of 1, 000 for 5 and 10 dimensional data.
Each experiment measures the average distance computations of 16, 000 searches
(1, 000 searches over 16 different prototypes sets). The samples were obtained
from the same distribution.

Figures 2 and 3 show the results for some combinations of the pruning rules
where “f”, “s”, “g” and “t” stand for the “Fukunaga”, “sibling”, “generalized” and
“table” pruning rules respectively. Standard deviation of measures is also included
(though with value almost negligible).

As it can be observed, the table pruning rule, when applied alone, can achieve
∼ 50% distance computations reduction, although additional reduction (up to
∼ 70%) can be achieved when combined with “f”, “fs” or “g” pruning rules.
In these three cases the differences are not noticeable. Obviously, as the time
complexity of the generalized pruning rule is not constant, the combinations
with “f” or “fs” are more appealing.

To show the performance of the algorithm with real data, some tests were
carried out on a spelling task. A database of 38, 000 words of a Spanish dictionary
was used.

The input test of the speller was simulated distorting the words by means
of random insertion, deletion and substitution operations over the words in the
original dictionary. The edit distance was used to compare the words. In these
experiments, the values of the weighting operations costs of the edit distance (in-
sertion, deletion and substitution) were fixed to 1. This makes the edit distance
a mathematical distance which makes the table rule applicable. Please note that
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 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1000  2000  3000  4000  5000  6000  7000  8000

nu
m

. d
is

ta
nc

es

prototypes

Uniform distribution, dimension 10

f
fs
g
t
ft

fst
gt

Fig. 3. Pruning rules combinations in a uniform distribution 10-dimensional space

some fast NN search techniques (i.e. kd-tree) could not be applied here as the
data could hardly be represented in a vector space.

Dictionaries of increasing size (from 1, 000 to 8, 000) were obtained extracting
randomly words of the whole dictionary. The test points were 1, 000 distorted
words obtained from randomly selected dictionary words. To obtain reliable
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Fig. 4. Pruning rules combined in a spelling task

results the experiments were repeated 16 times. The averages and the standard
deviation are showed on the plots.

The experiment performed in Figures 2 and 3 for artificial data (average num-
ber of distance computations using increasing size prototype sets) were repeated
in the spelling task. Results are shown in Figure 4.

The experiments show a reduction in the number of distance computations
(around 40%) for the table rule when combined with "f", "fs" or "g" pruning
rules.

On the contrary to the artificial data case, the table rule alone does not per-
form better than the generalized rule. Nevertheless, this is not problematic as
combining the table rule with the two constant time pruning rules – namely
the Fukunaga and/or the Sibling rule – outperforms the generalized rule perfor-
mances.

6 Conclusions and Further Works

To summarize, a new pruning rule has been defined that can been applied in tree-
based search algorithms. To apply the rule, a distance table should be computed
and stored in preprocess time. This table rule stores the distances between each
prototype in the training set and every node of the tree; its space complexity is
therefore quadratic in the size of the training set.

As the experiments suggest, this rule save the computation of 70% of distances
in the case of 10-dimensional data and 40% in the case of strings with training
set around 8, 000 points when compared with the generalized rule.
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In future works, a more exhaustive study of the rule will be performed. In
particular, the idea is to study on the one hand which is the better combination
of rules (with the minor cost), and on the other hand, what is the condition and
order where each rule can be applied.

Other problem that should be explored is how to reduce the space complexity
of the table rule.
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Abstract. In this paper, we address the topic of how to estimate phrase-
based models from very large corpora and apply them in statistical ma-
chine translation. The great number of sentence pairs contained in recent
corpora like the well-known Europarl corpus have enormously increased
the memory requirements to train phrase-based models and to apply
them within a decoding process. We propose a general framework that
deals with this problem without introducing significant time overhead
by means of the combination of different scaling techniques. This new
framework is based on the use of counts instead of probabilities, and on
the concept of cache memory.

1 Introduction

The daily increase in the availability of multilingual parallel corpora during
the last two decades has turned the statistical approach to machine translation
(SMT) into one of the disciplines of major study within the area of natural lan-
guage processing. The translation process, from a statistical point of view, can be
formulated as follows: A source language string fJ

1 = f1 . . . fJ is to be translated
into a target language string eI

1 = e1 . . . eI . Every target string is regarded as a
possible translation for the source language string with maximum a-posteriori
probability Pr(eI

1|fJ
1 ). According to Bayes’ theorem, the target string êI

1 that
maximizes the product of both the target language model Pr(eI

1) and the string
translation model Pr(fJ

1 |eI
1) must be chosen. The equation that models this

process is:
êI
1 = arg max

eI
1

{Pr(eI
1) · Pr(fJ

1 |eI
1)} (1)

In the origins of SMT, the translation models were based on structural rela-
tions at word level [1]. It is only in the last few years that statistical translation
models have been extended to models that try to capture relations between
groups of consecutive words (or phrases), as for example in [2,3,4].

Phrase-based models emerge as an alternative to single word-based models to
overcome the limitations that they present. The main difference between single
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word-based and phrase-based models is that phrase-based models work with
statistical dictionaries of phrases (Pr(f̃k|ẽk)) instead of words (Pr(fj |ei)).

The translation probabilities of the phrase models are typically estimated via
maximum-likelihood from a bilingual training corpus as p(f̃ |ẽ) = N(f̃ ,ẽ)

N(ẽ) , where

N(f̃ |ẽ) is the number of times that f̃ has been seen as a translation of ẽ in the
whole training corpus.

The availability of large corpora of (multilingual) information makes phrase-
based translation models much more competitive than their predecessors. In
contrast, an appropriate use of such models involves great computational and
memory requirements.

Most of the authors of works on phrase-based translation have shown the
importance of dealing with larger corpora and longer sentences in order to build
statistical machine translation systems.

However, to our knowledge, there are only two works that deal with the scaling
problem in phrase-based SMT. Good solutions to the scaling problem in phrase-
based SMT are presented in [5]. The authors proposed a suffix array-based data
structure to store and retrieve phrases of an arbitrary length. This data struc-
ture has far less memory requirements than a standard lookup table, but has
high time requirements when retrieving frequent translation pairs. To overcome
this drawback, the authors proposed a faster technique to recover approximate
(not exact) probabilities. Additionally, another tecnique based on suffix-arrays
is proposed in in [6]. It produces exact probabilities and is even faster than the
one proposed in [5]. However, even the above mentioned suffix-arrays have huge
memory requirements when the models are estimated from very large corpora
(up to 2 GBytes, as reported in [5]).

In this paper, we present a general framework to deal with the scaling prob-
lem in phrase-based SMT. First, we propose a fragment-based training scheme
to reduce the memory requirements. This scheme consists in the use of counts
instead of probabilities. Second, we propose an architecture to retrieve probabili-
ties during the search translation process. This architecture reduces the memory
requirements to a fixed quantity of memory. This architecture is inspired in the
concept of cache memory and is flexible enough to be combined with existing
scaling techiques like those proposed in [5] or [6]) as is shown in the following
sections.

2 Model Training

Even if very efficient data structures in terms of space complexity are used,
important problems arise when the phrase model is to be estimated from very
large corpora. In order to overcome this limitation, we propose an algorithm
which trains phrase models from corpora of an arbitrary size.

The algorithm that we propose works as follows: first, it splits the corpus into
fragments of a fixed number of sentence pairs (fragment size) and estimates a
phrase model for each fragment. Once the submodels have been generated, they
are merged into a single file. This file is lexicographically ordered and the phrase
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counts that compose the model are then merged. This process yields a phrase
model that is identical to the one obtained from the whole corpus. The algorithm
proposed here is similar to the algorithm that is provided with the Pharaoh

decoder [7].
The proposed algorithm introduces time overhead because of the necessity

of sorting and merging the phrase counts. This overhead will be empirically
measured in section 5.1. However, it is important to remark that the training
and sorting steps executed by the algorithm can be parallelized, resulting in a
very efficient method to train phrase models.

3 Decoding with Very Long Phrase Models

The great size of phrase models is a source of problems not only during the
training process as explained in the previous section, but also during the decoding
process, since the whole model is to be stored in memory.

A simple solution to this problem is to extract the subset of the phrase model
that is needed to translate a test set and to store it in memory. This solution is
incorporated in translation systems like the Pharaoh decoder [7], but it is not
a general solution since the test set must be previously known.

An approach that has been more successful consists in the use of data struc-
tures with very low memory requirements [5]. However, these tecniques may not
be suitable for very large corpora unless there are machines with great memory
sizes (2 GBytes or more).

We propose an alternative way to solve this problem which is strongly inspired
by a classic concept of computer architecture: cache memory. Cache memory
is based on the principle of locality of references: if one location is read by a
program, then nearby locations are likely to be read soon afterward. In the case
of machine translation, this principle manifests itself in two different ways:

1. The majority of the phrase pairs contained in a phrase model have a very low
frequency. Therefore, we can predict that these phrase pairs will probably
not be required during the decoding process.

2. When translating a sentence with a stack decoding algorithm or with a
dynamic programming algorithm, only a small number of the entries that
compose the phrase model are accessed, since these algorithms work with
N -best inverse translation tables. Additionally, each entry will be accessed
many times because of the iterative nature of the decoding process. There-
fore, we can identify both temporal and spatial locality principles.

The locality principle explained above leads us to propose a memory hierarchy
composed of two levels. The first level stores the bilingual pairs that are accessed
during the translation of each sentence. This level is local to the sentence to be
translated, and will be erased whenever a new translation process is started.

The second level contains a certain percentage of the most frequent phrase
pairs stored within the phrase model. This level is kept in memory during the
whole translation process.
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Finally, the whole phrase model is stored on a hard drive and is structured
to allows the retrieval of the probability of the bilingual pairs. This is done with
logarithmic complexity by means of binary search.

It is important to point out that the basic information element that is handled
within the memory hierarchy consists of a single target phrase f with all its
source translations. This is done to favor spatial locality.

Thus, when the decoder needs to retrieve the probability of a phrase pair
(ẽ#f̃), it searches for the pair in the first level cache. If it is present, its proba-
bility is returned. Otherwise, the translations of f̃ are searched for in the second
level cache. If these translations exist, they are copied in the first level cache and
the probability of the phrase pair is returned if ẽ has been stored as a possible
translation of f̃ . If there is no translation for f̃ in the second level cache, then
the hard drive is accessed.

When the translations of f̃ are searched for in the hard drive, they may or
may not exist. In either case, the result of the search is copied in the first level
cache, and the probability of the phrase pair is returned.

When the translation process has finished, the first level cache is erased, and
the decoder only keeps in memory the selected percentage of the model. The
percentage of phrase pairs that are stored in the second level cache will be
referred to as the α parameter. According to the first locality principle explained
above, the phrase pairs stored in the second level will be those that have a greater
frequency.

The parameter α takes values between 0 and 100. Both these values are par-
ticular cases with interesting features:

α=0: second-level cache will be empty. Therefore, there is no phrase pair perma-
nently stored in memory. This will increase the amount of cache misses. How-
ever, it allows us to translate without having to store the model in memory.

α=100: the whole model will be stored in the second-level cache. This allows
us to translate without any cache misses and can be viewed as the baseline
that is implemented by common decoders such as the Pharaoh decoder.
(i.e. the whole model is allocated in memory and the retrievals are cached.)

4 Selecting a Suitable Data Structure for the Phrase
Model

Because of the huge size of the phrase-models, it is crucial to find a suitable data
structure to represent the bilingual phrase pairs.

For the training process described in section 2, the choice of the represen-
tation for the phrase models is not an important problem, since it is possible
to reduce the memory requirements by simply reducing the fragment size. The
most important point here is that the data structure has to be able to work with
counts instead of probabilities.

However, the data structures must be carefully chosen for the case of the
decoding process. Specifically, it is important to use a fast data structure to
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represent the first-level cache table, and to use a low complex data structure in
terms of space to represent the second-level cache table.

In our work, we have used the same representation for the first- and the
second-level cache memory. Such a representation makes a tradeoff between time
and space complexity and consists in an assymetrical double trie like the one
shown in Figure 1, where there is a trie associated to the source language and
another associated to the target language. In the upper part of the figure, a
small set of English-Spanish phrases is shown. In the lower part of the figure
a depiction is given of how these phrase pairs are stored by the proposed data
structure.

In order to retrieve the probability of a phrase pair (ẽ#f̃), first, the source
phrase ẽ is to be searched in the source trie. As a result of the search, a pointer
that represents the source phrase and the count of the source phrase c(ẽ) are
obtained. Second, the target phrase f̃ is to be searched in the target trie. Once
the search is done, we have to find the pointer to ẽ that was obtained in the
previous step. This final step allows us to retrieve c(ẽ, f̃). Once the two counts
are retrieved, the probability of the phrase pair is given by c(ẽ, f̃)/c(ẽ).

The number of comparisons that are to be done in order to retrieve the prob-
ability of the phrase pair (ẽ#f̃) is given by the following expression:

log(s) + log(t) + n , (2)

where s and t are the number of source words and target words respectively,
that are stored by the data structure, and n is the number of source phrases
that translates the target phrase f̃ . Given that s ≈ t and n � s , we can
conclude that the retrieval has a logarithmic complexity.

With regard to the space complexity, the proposed data structure requires
only one word from the processor to express the relation between the source
and target phrases. In addition, the data structure compresses source and target
phrases that share the same prefix. However, more efficient implementations have
been proposed, such as the suffix-arrays described in [5,6]. For this reason, we
think that it might be interesting to test the performance of this data structure
within the proposed cache hierarchy as a future work.

Fig. 1. Data structure for the storage of bilingual pairs
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5 Experiments

In this section, we have carried out experimentation with the Europarl corpus
(the English-Spanish version of the proceedings of the European Parliament),
which includes both training and decoding experiments. All the experiments
have been executed on a PC with a 2.60 Ghz Intel Pentium 4 processor with
2GB of memory. All the times are given in seconds.

As can be observed in Table 1, the Europarl corpus contains a great number
of sentences and large vocabulary sizes. These features are common to other
well-known corpora described in the literature. It is usual to impose a constraint
over the length of the phrases in order to reduce the size of the model. Such
a constraint does not negatively affect the translation quality if the maximum
phrase length allowed is sufficiently high.

Table 1. Statistics of the Europarl corpus

Spanish English

Training
Sentences 730 740
Words 15 725 136 15 222 505
Vocabulary 102 885 64 122

Test
Sentences 3 064
Words 91 730 85 232

5.1 Training

Table 2 shows spatial and temporal costs (in seconds) that have both the estima-
tion from the whole corpus and the fragment-by-fragment estimation proposed in
section 2. The experimentation has been carried out for the Europarl corpus,
ranging from a maximum phrase size of 2 to 8.

The memory requirements for the conventional estimation are higher than
2GBytes when the maximum phrase size is equal to 8. Because of this, such an
estimation may not be feasible in 32-bits machines depending on which operating
system is used. In contrast, fragment-by-fragment estimation has a fixed cost
that is equal to 0.12 GBytes. This value is the maximum amount of memory

Table 2. Statistics of both conventional estimation and fragment-by-fragment esti-
mation for different values of the maximum phrase size

conventional estimation fragment-by-fragment estimation

m time size(GB) time size(GB)
2 2266 0.11 2336 0.12

4 6034 0.66 5848 0.12

6 10757 1.47 10234 0.12

8 - >2 17089 0.12
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that is assigned to the sorting algorithm and can be decreased at the expense of
an increase in the time needed to perform the sort.

With regard to the time cost of the algorithms, it is important to stress that
fragment-by-fragment estimation can be even faster than conventional estima-
tion for great values of the maximum phrase length. As explained in section 2,
fragment-by-fragment estimation introduces time overhead because of the neces-
sity of sorting the phrase counts. However, the time needed to store and update
the counts of each phrase pair depends on the size of the model. This size is
smaller if the estimation is carried out for small fragments of the corpus.

5.2 Decoding

To evaluate the performance of the technique proposed in section 3, we have
carried out a series of experiments using the Europarl corpus. For this purpose,
we have estimated a phrase model imposing a maximum phrase size of 7 words.

Table 3 shows the time in seconds required to retrieve the translations for all
the phrases of the test sentences for different values of α. The table also shows
the number of phrase pairs stored in memory, the number of disk accesses and
the time overhead caused by these accesses. As can be observed, the retrieval of
the translations from disk introduces time overhead; however, this overhead can
be reduced by increasing the value of the α parameter. It is worthy of note that
a great decrease in the rate of cache misses can be achieved for small values of α.

Table 3. Time in seconds required to retrieve the translations for the phrases of the
test sentences ranging over the value of α

phrases diskAccesses time diskOvh
Baseline (α = 100) 31227305 0 / 0.0% 8.6 0

α = 0 0 559336 / 100% 651.2 649.7

α = 1 312244 462277 / 82.6% 633.7 625.1

α = 10 3122708 370419 / 66.2% 545.6 535.4

α = 20 6245443 349727 / 62.5% 525.7 515.4

α = 40 12490908 288282 / 51.5% 368.8 358.2

α = 60 18736374 219763 / 39.2% 272.4 262.3

α = 80 24981839 146141 / 26.1% 175.2 170.2

α = 99 30915031 71885 / 12.8% 96.4 86.8

The access to the model during the decoding process can be viewed as a
two-stage process that is repeated for each sentence to be translated. First, the
translations for each phrase of the sentence are retrieved. Second, the translation
probabilities for the bilingual pairs are accessed. In order to quantify the total
locating time, we have translated the 3064 sentences of the Europarl test set
by means of a monotone stack-decoding algorithm, using cache models with α
equal to 100 (our baseline) and with α equal to 10. Table 4 shows the number
of phrases stored in memory, the number of queries to the model (in millions),
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Table 4. Time in seconds required by all model queries when translating the Europarl

test corpus

phrases queries (M) %cMisses time time/sent BLEU
Baseline (α = 100) 31227305 227 0 94.6 0.03 26.8

α = 10 3122708 227 0.16 636.4 0.2 26.8

the percentage of cache misses, the total locating time, the locating time per
sentence, and the translation quality measured in terms of BLEU. As can be
observed, the low rate of cache misses allows all the queries to be fetched in
only 0.2 seconds per sentence. This time cost per sentence is close to the one
obtained for the baseline but only one tenth of the phrase model has to be stored
in memory.

6 Concluding Remarks

In this paper, we have proposed a general framework for dealing with the scaling
problem in phrase-based SMT. This framework totally or partially transforms
the RAM requirements of given scaling techniques into hard disk requirements.
With respect to the training process, the proposed techniques train phrase mod-
els for corpora of an arbitrary size without introducing a significant time over-
head. With respect to the decoding process, the experiments have shown that it
is possible to appreciably reduce the memory requirements without causing an
important increase in the locating time per sentence.

The cache-inspired proposed architecture has been demonstrated to be useful
when a stack-based decoding algorithm is used. We deem that this paradigm
can also be applied to dynamic programming-based decoders. Moreover, we
also find it useful for other phrase-based related problems such as obtaining
the best segmentation at the phrase level for a given pair of sentences (i.e. the
Viterbi phrase-alignment), where the locality principles stated above are also ap-
plicable. The application of these techniques to language modelling can also be
studied.

To the future, we plan to extend the work presented here to both in train-
ing and decoding. With regard to training, we plan to parallelize the training
algorithm, which will provide a highly efficient training process. With regard to
decoding, our aim is to find ways to reduce the number of disk accesses and to
implement a more efficient representation of the cache hierarchy. In particular,
it would be interesting to employ suffix-arrays to implement the second-level
cache.

Acknowledgments. This work has been partially supported by the Span-
ish projects TIC2003-08681-C02-02 and TIN2006-15694-CO2-01, the Agencia
Valenciana de Ciencia y Tecnoloǵıa under contract GRUPOS03/031, the Gen-
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Abstract. In the article three methods of extracting individual typing
patterns are proposed and tested. Moreover, we present satisfactory ex-
perimental results confirming that these typing patterns may be used as
biometrics for human identification, especially in web-based applications
(e.g. password hardening).

1 Introduction

Individual typing patterns recognition systems analyze the way a user types at a
terminal by monitoring the keyboard events. In such recognition systems, several
things can be analyzed: time between key-pressed and key-released events, break
between two different keystrokes, duration for digraphs and trigraphs and many
more. In other words not what is typed, but how it is typed is important.

These characteristics of typing patterns are considered to be a good sign of
identity and therefore may be used as biometrics for human identification and
for enhancing web security in client-server applications [1][2][3].

Keystroke verification techniques can be divided into two categories: static
and continuous. Static verification approaches analyze keyboard dynamics only
at specific times, for example during the logon process. Static techniques are
considered as providing a higher level of security than a simple password-based
verification system [1]. The main drawback of such an approach is the lack of
continuous monitoring, which could detect a substitution of the user after the
initial verification. Nevertheless, the combination of the static approach with
password authentication was proposed in several papers [4] and it is considered as
being able to provide a sufficient level of security for the majority of applications.
Our web identification system is based on such a combination.

Continuous verification, on the contrary, monitors the user’s typing behavior
through the whole period of interaction [1]. It means that even after a successful
login, the typing patterns of a person are constantly analyzed and when they do
not mach user’s profile access is blocked. This method is obviously more reliable
but, on the other hand, the verification algorithms as well as the implementation
process itself, are much more complex.

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 323–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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One of the first studies on keyboard biometrics was carried out by Gaines et
al.[5]. Seven secretaries took part in the experiment in which they were asked
to retype the same three paragraphs on two different occasions in a period of
four months. Keystroke latency timings were collected and analyzed for a limited
number of digraphs and observations were based on those digraph values that
occurred more than 10 times [6].

Similar experiments were performed by Leggett with 17 programmers [4].
In the 15 last years, much research on keystroke analysis has been done (e.g.,
Joyce and Gupta [7], Bleha et al. [8], Leggett et al. [4], Brown and Rogers [9],
Bergadano et al. [10], and Monrose and Rubin [1][6]).

Several proposed solutions got U.S. patents (for instance Brown and Rogers
[11]). Some neural network approaches (e.g., Yu and Cho [12]) have also been
undertaken in the last few years. More recently, several papers where keystroke
biometrics, in conjunction with the login-id password pair access control tech-
nique, were proposed (e.g., Tapiador and Sigenza [13]). Some commercial im-
plementations are also available (’Biopassword’, a software tool for Windows
platform commercialized by Net Nanny Inc. [14]).

2 Typing Patterns Characteristics

In the proposed and implemented individual typing pattern recognition system
three independent methods of the identity verification are performed every time
a user attempts to log in.

First and second method is based on the calculation of the degree of disorder of
digraphs and trigraphs respectively. The last one compares typing paths stored in
the database against a typing path created at the time of logon process. Hereby
we present background of our methods.

2.1 Digraphs and Trigraphs

Digraph is defined as two keys typed one after the other. In our case the duration
of a digraph is measured between the press event of the first key and release event
of the second key.

Trigraph is defined as three keys typed one after the other. The duration of
trigraph is measured between pressing event of the first key and release of the
third key.

2.2 Degree of Disorder

Having two sets of key latencies of the same Login−Password pair, it is possible
to measure their “similarity”. One way to calculate that is the degree of disorder
(do) technique [10].

Let us define vector V of N elements and vector V ′, which includes the same
N elements, but ordered in a different way. The degree of disorder in vector V
can be defined as the sum of the distances between the position of each element
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in V with respect to its counterpart vector V ′. If all the elements in both vectors
are in the same position, the disorder equals 0.

Maximum disorder occurs when elements in vector V are in the reverse order
to the model vector V ′. Maximum disorder (domax) is given by:

domax =
|V |2

2
(1)

where |V | is the length of V and it is even or by:

domax =
(|V |2 − 1)

2
(2)

where |V | is length of V and it is odd.
In order to get the normalized degree of disorder (donor) of a vector of N ele-

ments, we divide do by the value of the maximum disorder. After normalization,
the degree of disorder falls between 0 (V and V ′ have the same order) and 1
(V is in reverse order to V ′).

Fig. 1. The distances between the position of each element in V with respect to V ′

For the vector V in Figure 1 the disorder can be calculated as:

do = (2 + 0 + 1 + 3 + 1 + 1 + 2) = 10 (3)

where domax equals:

domax =
(|V |2 − 1)

2
=

72 − 1
2

=
48
2

= 24 (4)

In order to normalize the disorder, we perform:

donor =
do

domax
=

10
24

= 0, 4167 (5)

For a more exhaustive introduction to degree of disorder see [10].
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2.3 Typing Paths

Typing paths can be described as a set of key code/key event pairs stored in
order of occurrence. If some short sequence of chars is being retyped by a user
several times (which is the case with the “Login - Password” mode), the analysis
of such paths is likely to show some typical characteristics of a user’s behavior:

– moments where keys overlap (second key is pressed before the release of the
first one)

– the position of the key pressed in the case of duplicate keys (digits, SHIFT’s,
etc.)

3 Experimental Setup and Results

In our experiments 18 volunteers participated in testing the proposed keystroke
pattern recognition methods. Typing skills varied slightly among them - the
majority of the group type on PC keyboard every day. Every volunteer had
assigned unique login-id and password. The full name of particular individual
was used as her/his login-id, since it is one of the most frequently typed phrase for
most of people. In our experiments we calculated standard biometrics recognition
parameters, namely False Rejection Rate (FRR) and False Acceptance Rate
(FAR) for each of the users. We set the systems for different thresholds: 0.25,
0.3, 0.35 and 0.4.

Table 1. FRR results for the combined feature vector (for all the methods)

user Combined FRR

user1 7.6923

user2 2.5000

user3 0.0000

user4 41.3043

user5 55.5556

user6 6.2500

user7 41.6667

user8 32.0000

user9 0.0000

user10 15.0000

user11 22.7273

user12 33.3333

user13 36.8421

user14 43.7500

user15 36.3636

user16 9.5238

user17 7.6923

user18 15.7895
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Table 2. FAR results for digraphs and trigraphs for the 0.25 threshold

user Digraph FAR Trigraph FAR

user1 0.0000 15.3846

user2 0.0000 0.0000

user6 0.0000 17.5439

user8 0.0000 0.0000

user9 0.0000 12.5000

user10 0.0000 1.9231

user14 1.2346 28.3951

user15 0.0000 9.0909

user17 0.0000 0.0000

user18 0.0000 0.0000

Table 3. FAR results for digraphs and trigraphs for the 0.3 threshold

user Digraph FAR Trigraph FAR

user1 1.9231 34.6154

user2 0.0000 15.3846

user6 0.0000 47.3684

user8 0.0000 1.6949

user9 0.0000 50.0000

user10 0.0000 7.6923

user14 9.8765 38.2716

user15 0.0000 45.4545

user17 0.0000 0.0000

user18 9.0909 18.1818

In the first stage every participant performed 15 attempts of log in-password
authentication that were evaluated by the system in order to calculate the model
vector of digraphs and trigraphs as well as to collect the typing paths.

After that users performed several another logon attempts as valid users (FRR
tests) and few attempts as impostors (trying to log on somebody’s else
account knowing login and password - FAR tests).

Each user performed 20 logon attempts as valid user. The combined FRR
results are presented in Table 1. Unfortunately, usually after several successful
attempts most of the users wanted to find out how the system behaves in case
of sudden change of typing patterns and they ’test’ the system trying to type in
extremely different way then they used to. This behavior of users is inevitable
in real-life applications and it definitely affected the FRR performance of the
system.

In the second part of experiments a participant was asked to act as impostor.
She/he was trying to logon on somebody else account. In order to increase the
number of logon attacks per single account, we randomly selected 10 out of
18 existing accounts to be attacked. This decision was motivated by the fact
that the number of participants (and thus samples) was limited (users were not
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Table 4. FAR results for digraphs and trigraphs for the 0.35 threshold

user Digraph FAR Trigraph FAR

user1 5.7962 48.0769

user2 7.6923 61.5385

user6 7.0175 66.6667

user8 5.0847 3.3898

user9 12.5000 68.7500

user10 9.6154 19.2308

user14 24.6914 59.2593

user15 0.0000 54.5455

user17 0.0000 0.0000

user18 27.2727 45.4545

Table 5. FAR results for digraphs and trigraphs for the 0.4 threshold

user Digraph FAR Trigraph FAR

user1 19.2308 50.0000

user2 46.1538 69.2308

user6 12.2807 71.9298

user8 15.2542 11.8644

user9 18.7500 81.2500

user10 26.9231 36.5385

user14 33.3333 67.9012

user15 0.0000 63.6364

user17 0.0000 10.0000

user18 54.5455 63.6364

willing to spend hours trying to hack somebody’s else account). Bigger number of
attacks per single account will picture more clearly the FAR, so smaller number
of accounts to hack was the only reasonable solution.

The results showing FAR for each of the threshold for digraph and trigraph
method are shown in the Tables 2-5. The results for typing path method and for
all the methods combined together are shown in the Table 6.

In any web implementation of typing patterns recognition (e.g. password hard-
ening), FAR is more important than FRR and therefore we think our results
are satisfactory. Nevertheless some minor changes to our client-server implemen-
tation could decrease FRR, which would make the system more user-friendly. It
is hard to determine which of the developed and implemented method gives the
best performance for all users. The best solution is to make the logon algorithm
adaptive. The algorithm should check which method gives the best performance
for given user in order to give it the biggest weight while taking the access/no
access decision.

In case of non-adaptive implementation the best results were observed for
thresholds: 0,25 for trigraphs and 0,3 for digraphs. The threshold for digraphs
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Table 6. FAR results for the typing paths method and the final FAR results for all
the combined methods

user Typing Path FAR Combined FAR

user1 0.0000 1.9230
user2 7.6923 0.0000
user6 0.0000 0.0000
user8 3.3898 0.0000
user9 0.0000 0.0000
user10 1.9231 0.0000
user14 0.0000 8.1649
user15 9.0909 0.0000
user17 0.0000 0.0000
user18 0.0000 0.0000

and trigraphs should not be equal. It should be higher for digraphs and lower
for trigraphs.

It is also noticeable that longer char sets (trigraphs) have more stable statistics
for a legitimate user (the standard deviation of particular trigraph’s durations is
small, and thus the distance calculated from the degree of disorder is smaller),
but on the other hand they are easier to forge.

Typing patterns characteristics are sensitive to the emotional and physical
state of the person who is verified. Very poor typing skills are another factor
which can affect the process of authentication. The good thing is that our meth-
ods of individual typing patterns extraction are very likely to achieve a high level
of acceptance among ordinary users.

Moreover, unlike other biometric or security systems, which usually require
additional hardware and thus are expensive to implement, typing patterns recog-
nition system is almost for free - the only hardware required is the keyboard [1].

4 Conclusion

In the article we presented and tested methods of recognizing individual typ-
ing patterns. We also proved that biometrics system based on such extracted
typing patterns is capable of identifying humans and increasing security in web
applications where logging-in is the necessity for the clients (e-banking).

The combined values of FRR varied from 0% to 55% (Table 1) and the values
of FAR were equal to %0 for all but 2 users (Table 6). For the 2 users
is was possible for the impostor to logon with their password and biometrics
characteristics with the probability 1.9% and 8.2%, respectively.

This means that the presented methods are effective and could be imple-
mented to increase web security in applications where logging-in is the necessity
for the clients.
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Abstract. This paper addresses a low complexity residual filter to im-
prove the coding performance of noisy video sequences. The additive
noise decreases the coding efficiency and results in unpleasant coding ar-
tifacts due to higher frequency components. By incorporating local statis-
tics and quantization parameter into filtering process, the spurious noise
is significantly attenuated and coding efficiency is improved for given
quantization step size. In addition, in order to reduce the complexity of
the residual filter, the simplified local statistics and quantization param-
eter induced by analyzing H.264/AVC transformation and quantization
processes are introduced. The simulation results show the capability of
the proposed algorithm.

1 Introduction

In general, video sequence captured by imaging acquisition system represents
the degraded version of an original video sequence by additive noise coming
from image formation system. In such case, the reconstructed video sequence
using video coding standards usually results in the loss of coding efficiency and
unpleasant coding artifacts. Therefore, a filtering process is required to remove
the spurious noise with preserving significant features such as edges or objects.

A number of approaches have been reported to improve the visual quality
of compressed video in the literature [1,2,3,4]. Most approaches attempt to re-
move blocking and ringing artifacts that come from quantization process, but
the removal of the additive noise for given bit rate or quantization step size is
rarely investigated within video processing area. When quantization parameter
is provided by a rate control algorithm, it is promising that the pre-processing is
to modify the degraded video sequence so that image quality is maximized. As
a general approach, a typical noise filtering approach has been employed to im-
prove coding efficiency [5]. In Ref. [6], more sophisticated technique is introduced
as a pre-processing algorithm which is operated with rate-distortion problem.
The filter attempts to maximize the resulting image quality by controlling the
error residual between an original image and the motion compensated frame for
the given bit-rate.

H.264/AVC video coding standard has been jointly developed to obtain
higher compression gain than existing video coding standard by ITU-T and

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 331–338, 2007.
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ISO/IEC [7]. H.264/AVC is characterized by block-based integer transform,
variable block- size motion estimation/compensation, context adaptive variable
length coding (CAVLC), and so on. Due to the different coding strategies, the
local statistics of the coded information is different to previous standards. There-
fore, any algorithms for obtaining better coding efficiency or for improving visual
quality should be different to other standards.

The statistics of variable length codes of almost video coding standards in-
cluding H.264/AVC coder has Gaussian distribution. Therefore, it is expected
that the quality can be maximized when the filtering results have the similar
probability to the variable length codes. In this paper, we propose a Gaussian
model based residual filter to maximize the quality by effectively removing the
noise for given quantization parameter. Local statistics of the degraded image
and quantization parameter are used to design the filter. Also, a simplified 3-
tab filter without floating-point operations is addressed in order to reduce the
complexity.

This paper is organized as follows. Section 2 describes the modified Gaussian
filter model. Also, the parameters of the filter are denoted on the basis of rigorous
analysis of H.264/AVC transformation and quantization. In addition, the local
statistics for the simplified residual filter is presented. Finally, the experimental
results and conclusions are described in Sections 3 and 4.

2 Proposed Residual Filter

When a typical image is captured by image formation system, the observed
image represents the degraded version of an original image. In such case, noise
reduction filtering is required to obtain the visually satisfactory results and to
reduce the bit-rate for given quantization step size in video compression. HVS
(Human Visual System) has been used to evaluate visual quality. According to
Ref. [11], HVS can be approximated to Gaussian model and the filtering process
can be written as

y = hv ∗ hh ∗ x, (1)

where y and x represent the filtered image and the capture degraded image,
respectively. In Eq. (1), hv and hh are one dimensional Gaussian impulse re-
sponse to vertical and horizontal directions, and ∗ represents one-dimensional
convolution by the separable property of two-dimensional convolution. In the
rest of paper, we use H instead of hv and hh since both impulse responses
take the same form. It is promising to take into account of local statistics and
quantization noise as the parameters of Gaussian impulse response under the
assumption that the statistics of the degraded image is locally different. In this
paper, under the assumption that the local probability of an original image is
Gaussian-distributed, the following Gaussian impulse response is defined.

Hi =
1
Z

exp(− i2

σ2
N

σ2
B

k2
), (2)
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where Z is the normalizing constant, and σ2
N and σ2

B represent the local vari-
ance and quantization noise of i-th filter coefficient. In addition, k denotes the
parameter to reflect the visible property. In the following, we describe various pa-
rameters of Eq. (2) in more detail. First, σ2

N , noise variance can be induced from
quantization and transformation process. The previous video coding standards
such as MPEG2, MPEG4, and H.263 use floating-point operational DCT (Dis-
crete Cosine Transform), which leads to IDCT (Inverse Discrete Cosine Trans-
form) mismatch problem. In order to resolve the problem, H.264 video coding
standard uses the modified DCT and quantization mechanism. Typically, 4 × 4
block DCT transformation is defined as

Y = AXAT =

⎡
⎢⎢⎣

a a a a
b c −c −b
a −a −a a
c −b b −c

⎤
⎥⎥⎦X

⎡
⎢⎢⎣

a b a c
a c −a −b
a −c −a b
a −b a −c

⎤
⎥⎥⎦ (3)

where X is 4 × 4 block of the input image, and a = 1/2, b = 1/
√

2 cos(π/8),
and c = 1/

√
2 cos(3π/8). Eq. (3) requires the floating-point operation, resulting

in IDCT (Inverse Discrete Cosine Transform) mismatch. In order to avoid the
problem, H.264 video coding standard defines the integer transform as

Y =

⎡
⎢⎢⎣

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎤
⎥⎥⎦X

⎡
⎢⎢⎣

1 2 1 1
1 1 −1 −2
1 −1 −1 2
1 −2 1 −1

⎤
⎥⎥⎦ ⊗

⎡
⎢⎢⎣

a2 ab/2 a2 ab/2
ab/2 b2/2 ab/2 b2

a2 ab/2 a2 ab/2
ab/2 b2/2 ab/2 b2

⎤
⎥⎥⎦

= (CXCT ) ⊗ S = W ⊗ S (4)

where ⊗ and AT represent the element multiplier and the transpose of matrix
A, and S is utilized as a weighting matrix of quantization process, and then
quantization coefficients can be written as

Z = [Y ⊗ E]/(215+QP/6) = [(W ⊗ S) ⊗ E]/(215+QP/6), (5)

where Z, E and QP denote the quantized transform coefficient, the quantization
table and the quantization index which are defined in H.264 standard, respec-
tively. Then, the quantization noise be determined as

Quantization Error = (215+QP/6)/E. (6)

In this work, Eq. (6) is used as σ2
N to incorporate the quantization errors into

filtering process for given QP . In H.264 video coding standard, the quantization
index takes a value between 0 and 51. Then, the maximum quantization error
can be obtained by substituting the quantization index into Eq. (6) as shown in
Table (1), where % and / represent the modulus and the divided operations.

In our algorithm, 3-tab filter is used for low complexity. For example, as
shown in Fig. 1, two neighboring pixels (p1 and q2) are used to represent the
local statistics of q1. In Eq. (2), σ2

B and k are introduced to describe local prop-
erties. σ2

B representing the local activity should take higher value in significant
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Table 1. Maximum quantization error as a function of quantization index

QP % 6 0 1 2 3 4 5
QP/6

0 0.64 0.70 0.81 0.90 1.00 1.14
1 1.28 1.41 1.63 1.80 2.00 2.28
2 2.56 2.82 3.26 3.60 4.00 4.56
3 5.12 5.64 6.52 7.02 8.00 9.12
4 10.24 11.28 13.04 14.40 16.00 18.24
5 20.48 22.56 26.08 28.80 32.00 36.48
6 40.96 45.12 52.16 57.60 64.00 72.96
7 81.92 90.24 104.32 115.20 128.00 145.92
8 163.84 180.48 208.64 230.40

p3 p2 p1 q1 q2 q3

Previous Block Current Block

s B
2

Fig. 1. Proposed filter structure

features including edges and objects, so that they can be preserved without
over-smoothness. However, calculation of variance requires compute-intensive
operations. For the reduction of the complexity, the following local properties
are defined. They are

μq1 =
p1 + 2 × q1 + q2

4
(7)

and

σB
∼= σ

′

B =
|p1 − μq1 | + 2 × |q1 − μq1 | + |q2 − μq1 |

4
. (8)

The local mean in Eq. (7) has its advantage on that it is obtained without
divider. Also, the local variance can be obtained without multiplier and divider.
In fact, the above is one of the most important issues in practical implementation
of digital filter. The visible degree of additive noise to human viewer depends on
the background as well as the local variance. In this experiments, the following
equation for the parameter, k, is used to control the visibility

k = (|μq1 | + 1)
1
4 . (9)

Using Eqs. (6)-(9), the filtering result of q1 can be written as

Q1 = H0q1 + H1(p1 + p2) (10)

Even though it is not expressed in detail here, the complexity of the proposed
algorithm can be further reduced by making the filter coefficients integer and by
pre-storing the integer coefficients into Look-Up table.
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3 Experimental Results

A number of experiments have been contacted with various sequences, resolu-
tions, and quantization index. Among of them, QCIF “Foreman” and “Con-
tainer” sequences, and “Test” sequence captured by a USB camera were used.
The proposed algorithm was tested with JM9.0 (Joint Mode 9.0) reference code
of H.264 video coding standard. For evaluating the performance of the algorithm,
PSNR (Peak Signal to Noise Ratio) was utilized. For M × N dimensional 8 bits
image, it is defined as

PSNR = 10 log
MN × 2552

||f − f̂ ||2
, (11)

where || · || is the Euclidean norm, and f and f̂ represent the original image and
the reconstructed image, respectively.

Fig. 2. (a) Reconstructed 51-st frame of Foreman sequence without filter, (b) Recon-
structed 51-st frame of Foreman sequence with proposed filter (QP=20, 25 dB additive
Gaussian noise)

Fig. 3. (a) Reconstructed 77-th frame of Container sequence without filter, (b) Re-
constructed 77-th frame of Container sequence with proposed filter (QP=20, 25 dB
additive Gaussian noise)
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Fig. 4. (a) Reconstructed 10-th frame of Test sequence without filter, (b) Recon-
structed 10-th frame of Test sequence with proposed filter (QP=20, captured frame by
USB camera)

Table 2. PSNR and Bit-rate comparisons as a function of quantization index (QCIF
Foreman and Container sequence, 10 frames/sec)

25 dB Noise 30 dB Noise
QP Without filter With proposed filter Without filter With proposed filter

PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate
(dB) (Kbps) (dB) (Kbps) (dB) (Kbps) (dB) (Kbps)

16 39.44 838.91 39.54 754.73 42.82 541.51 42.72 440.69
20 39.11 471.30 39.24 372.69 41.24 257.72 40.80 229.56

Foreman seq. 24 38.29 180.49 38.09 161.26 38.62 137.90 38.27 130.66
(10 fps) 28 35.92 86.38 35.61 81.02 35.89 79.28 35.56 75.70

32 33.11 48.68 32.79 45.76 33.09 46.73 32.79 44.57

16 40.54 704.61 40.63 596.65 43.68 392.29 43.37 279.99
20 40.14 340.08 40.27 211.47 41.61 143.54 40.71 107.31

Container seq. 24 38.86 87.41 38.40 63.95 38.84 61.28 38.25 50.93
(10 fps) 28 36.25 32.80 35.86 28.32 36.13 29.10 35.76 25.95

32 33.36 15.45 33.08 14.51 33.29 14.86 33.02 14.03

Figures 2-3 show the 51 th reconstructed frame of “Foreman” sequence and the
77 th frame of “Container” without filter and with the proposed filter. There still

Table 3. Bit-rate comparison as a function of quantization index (Test sequence, 10
frames/sec)

Without filter With proposed filter
QP Bitrate (Kbps) Bit rates (Kbps)

16 798.38 724.75
20 485.02 429.88

Test seq. 24 286.67 272.11
(10 fps) 28 179.10 174.55

32 109.14 107.52
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exists the additive noise in the reconstructed frames only by H.264/AVC video
coder, which is more visible and annoying in video sequence, since the noise is
randomly scattered. On the other hands, with the proposed algorithm the noise
is effectively removed. However, the edge information is a little blurred, since the
Gaussian impulse response represents a kind of low-pass filter. In addition, the
reconstructed frames of the Test sequence are shown in Figure 4, which is more
realistic case. The results verify that the proposed algorithm has the capability
to remove the background noise without blurring.

PSNR and bit-rate comparisons as a function of quantization index of “Fore-
man”, “Container” and “Test” sequences are shown in Tables 2-3. From the
tables, it is observed that the proposed algorithm leads to the bit-rate saving up
to 30%, and that the image quality is the similar or better than without filter,
for given quantization index. The novelty of the proposed algorithm is that no
prior knowledge about the noise and image is required to remove the additive
noise, and to reduce the bit-rate.

4 Conclusion

In this paper, we have proposed the low complexity residual filter for improving
the performance of H.264 video coding standard. The modified Gaussian impulse
response is introduced, and the local activity, quantization information, and
simple visibility function are incorporated into the filtering process. From the
experimental results, it is observed that PSNR gain and bit-rate saving are
obtained with the proposed algorithm when the noise signals are added to the
original video sequence.
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Abstract. Hidden Markov Models (HMM) have been successfully ap-
plied to describe sequences of observable events. In some problems, ob-
jects are more appropriately described as cyclic sequences, i.e., sequences
with no begin/end point. Conventional HMMs with Viterbi score cannot
deal adequately with cyclic sequences. We propose a cyclic Viterbi score
that can be efficiently computed for Linear HMMs. Linear HMMs model
sequences that can be partitioned into contiguous segments where each
state is responsible for emitting all symbols in one of the segments. Ex-
periments show that our proposal outperforms other approaches in an
isolated characters handwritten-text recognition task.

1 Introduction

A Hidden Markov Model (HMM) is a statistical description for sequences. It con-
tains hidden parameters that can be learnt from sequences of observable events.
HMMs have been successfully applied to speech recognition, on-line handwritten-
text recognition, etc. In these problems, objects can be properly described as
sequences of symbols, since there is a time ordering between observable events
with well-defined beginning and ending instants. For instance, speech can be
described as a time-ordered sequence of acoustic frames and handwritten-text
can be seen as a time-ordered series of stylus location points. Other Pattern
Recognition problems, such as shape retrieval or handwritten-text recognition,
deal with contours of objects that can be described with cyclic sequences, i.e,
sequences with no begin/end symbol. Contours of objects, for instance, can be de-
scribed with cyclic sequences of primitives (points, curvature values, discretized
directions, etc). Fig. 1 (a) shows some typical samples of isolated characters,
handwritten-text task, and Fig. 1 (b) depicts the coding of a character contour
as a cyclic string with an 8-directions code. Symbols in a cyclic string do have a
relative order, but there is no beginning or ending positions in the string. Cyclic
strings can be transformed into conventional strings by choosing an appropri-
ate starting symbol. This symbol is usually chosen by means of some heuristic,
error-prone procedure (taking into account extreme curvature values, extreme
eccentricity values, etc.). Therefore, HMMs can result poorly trained and per-
form badly in recognition tasks.
� Work partially supported by the Ministerio de Educación y Ciencia (TIN2006-

12767), the Generalitat Valenciana (GV06/302) and Bancaixa (P1 1B2006-31).
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Symbols

a

cd

e

hf

b

g

A = aaaahggeffhaheeeeedbbbabceeefecb

Fig. 1. (a) Samples from a handwritten-text recognition task. (b) A character is coded
as a cyclic sequence of directions along the contour.

Arica et al. [2] defined an HMM topology for modeling cyclic sequences. In
this paper we propose a different approach: we define a cyclic Viterbi score and a
Linear HMM topology to deal with cyclic sequences. The new cyclic score can be
efficiently computed for the proposed topology with an algorithm inspired in the
Cyclic Edit Distance method proposed by Maes [6]. Experiments performed on a
handwritten digits database show that our system outperforms the conventional
HMMs and the Arica et al. proposal.

2 Hidden Markov Models

A Hidden Markov Model (HMM) [7] is a set of states, each one with an associated
emission probability distribution. At any instant t, an observable event is pro-
duced from a particular state and only depending on that state. The transition
from one state to another is a random event only depending on the departing
state. Without loss of generality, in the following we will only consider discrete
HMMs, i.e., the set of observable events is finite.

Given an alphabet Σ = {v1, v2, . . . , vs}, an HMM with n states is a triplet
(A, B, π) where (1) A = {aij}, for 1 ≤ i, j ≤ n, is the state transition probability
matrix (aij is the probability of being in state i at time t and being at state j
at time t + 1); (2) B = {bik}, for 1 ≤ i ≤ n and 1 ≤ i ≤ s, is the observation
probability matrix (bik is the probability of observing vk while being at state
i); and (3) π = {πi}, for 1 ≤ i ≤ n is an initial state probability distribution
(πi is the probability of being at state i when t = 1). These conditions must
be satisfied: for all i,

∑
1≤j≤n aij = 1 and

∑
1≤s≤k bis = 1; and

∑
1≤i≤n πi = 1.

Fig. 2 (a) depicts a state and Fig. 2 (b) shows a complete HMM (transitions with
null probability are not shown). There is an alternative definition of HMMs that
has been popularized by tools such as HTK [8]. It has a single, non-emitting,
initial state that we will identify with the number 0. On the other hand, there
is an additional non-emitting state without output arcs that we will identify
with n + 1. These special non-emitting states eliminate the need for an explicit
initial state distribution π (since a0i can be interpreted as πi), simplifies some
computations and eases HMM composition. In the following, we will use this
alternative definition.
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Fig. 2. (a) An HMM state that can emit any of four symbols according to the proba-
bility distribution depicted as a pie chart. (b) A complete HMM. (C) A Linear HMM.

There are efficient iterative algorithms for training the HMM parameters [3,5].
Unfortunately, there are no effective methods for estimating the number of states
and the topology of the model. These are usually chosen heuristically depend-
ing on the application features. A so-called left-to-right topology imposes the
restriction that aij = 0 for all j < i. Usually, a01 = 1, i.e., the first observed
symbol must be emitted by the first emitting state. When the sequence of sym-
bols can be segmented, all the symbols in a segment are emitted by the same
state, and consecutive segments are associated to consecutive states, a so-called
Linear HMM, i.e., a left-to-right topology like the one shown in Fig. 2 (c), can
be used.

Given an HMM (A, B) and a sequence of observable symbols, x = x1x2 . . . xm,
there are three basic problems: (1) the evaluation problem, i.e., computing the
probability that x has been generated by the HMM; (2) the decoding problem,
i.e., obtaining the sequence of states that most likely produced x (the likelihood
that this sequence of states produces x is the so-called Viterbi score); and (3)
the learning problem, i.e., estimating (A, B) to maximize the probability of gen-
erating x. There are well-known, efficient algorithms for the two first problems.
The Viterbi score can be computed by evaluating φn+1(m + 1), where

φj(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if t = 0 and j = 0;
0, if t = 0 and j �= 0;
max1≤i≤N (φi(t − 1) · aij) · bj(xt), if 1 ≤ t ≤ m and 1 ≤ j ≤ n;
max1≤i≤N (φi(m) · ai,n+1), if t = m + 1 and j = n + 1.

(1)

The Forward algorithm solves the evaluation problem by solving a similar re-
cursive expression with summations instead of maximizations. Both recursive
equations can be solved iteratively by Dynamic Programming in O(n2m) time.
The iterative algorithm for the Viterbi score computes an intermediate value
at each node of the so-called trellis graph (see Figure 3 (a)). Each node (j, t)
corresponds to a state (j) and a time instante (t) and stores φj(t). The value at
(n+1, m+1) is the final result. The Viterbi algorithm solves the decoding prob-
lem by recovering the optimal sequence of states in the trellis (see Figure 3 (a)).
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Fig. 3. (a) Trellis for a Linear HMM and a sequence of length 4. The optimal sequence
of states is shown with thicker arrows. (b) Extended trellis.

There is no algorithm that optimally solves the training problem. The Baum-
Welch procedure is used to iteratively improve the parameters estimation until
a local maximum is found.

In classification tasks, an HMM can be trained for each class from a set of
sequences labeled with their categories. The probability or the Viterbi score of
unlabeled sequences can be combined with a priori class probabilities (Bayes
rule) to classify them.

3 Hidden Markov Models for Cyclic Sequences

A cyclic sequence can be seen as the set of sequences obtained by cyclically
shifting a conventional sequence. Let x = x1 . . . xm be a string from an alphabet
Σ. The cyclic shift σ(x) of a string x is defined as σ(x1 . . . xm) = x2 . . . xmx1.
Let σs denote the composition of s cyclic shifts and let σ0 denote the identity.
Two strings x and x′ are cyclically equivalent if x = σs(x′), for some s. The
equivalence class of x is [x] = {σs(x) : 0 ≤ s < m} and it is called a cyclic string.

3.1 A Cyclic HMM Proposal

Since cyclic strings have no beginning/end point, Linear HMMs seem inappro-
priate to model them. In [2], Arica et al. proposed a circular HMM topology to
model cyclic strings. Fig. 4 (a) shows this topology (the initial and final non-
emitting states are not shown for the sake of clarity). This topology can be
seen as a modification of the left-to-right one where the “last” emitting state is
connected to the “first” emitting state. The proposed structure eliminates the
need to define a starting point: the cyclic sequence can be segmented to asso-
ciate consecutive states to consecutive segments in the cyclic sequences, but no
assumption is made on which is the first state/first segment (see Fig. 4 (b));
therefore, there is an analogy with Linear HMMs. However, there is a problem
that breaks this analogy: the model is ergodic (all states can be reached from
any state) and the cyclic string symbols can “wrap” the model, i.e., the optimal
sequence of states can contain non-consecutive, repeated states and, therefore,
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Fig. 4. (a) Cyclic HMM as proposed by Arica et al. (b) The contour is segmented and
each segment is associated to a state of the HMM. Ideally, each state is responsible of
a single segment.

a single state can be responsible for the emission of several non-consecutive seg-
ments in the cyclic string.

3.2 Cyclic Viterbi Score for Linear HMMs

To properly model cyclic sequences on Linear HMMs, the Viterbi score should
take into account that any symbol of the sequence can be emitted by the first
emitting state and that, once a symbol has been chosen as emitted by this
state, its previous symbol must be emitted by the last state. The cyclic Viterbi
score for a cyclic sequence [x1x2 . . . xm] is defined as max0≤s<m P (σs(x)|λ). It
can be computed by means of the conventional Viterbi score computed on m
conventional strings in O(m2n) time. We propose a more efficient algorithm to
evaluate the Viterbi score. The method computes the optimal sequence of states
that begins in any state, visits all the states and does not visite any state once
it has been left. The algorithm is inspired in Maes’ algorithm for the Cyclic Edit
Distance (CED) [6] and computes the Viterbi score in O(mn log m) time for
Linear HMM. The score is computed on an extended trellis where the original
sequence appears concatenated with itself in the horizontal axis and sequences
of states must begin and end in nodes with the same color (see Fig. 3 (b)). The
efficiency of the algorithm is based on the “non-crossing paths” property [6]: Let
P (i) be the optimal path beginning at node (i, 0) and ending at node ((m + i +
1, n + 1) in the extended trellis and let j, k, and l be three integers such that
0 ≤ j < k < l ≤ m; there is an optimal path starting at node (k, 0) and arriving
to (k + m + 1, n + 1) that lies between P (j) and P (l).

This property leads to a Divide and Conquer, recursive procedure: when P (j)
and P (l) are known, P ((j + l)/2) is computed by only taking into account those
nodes of the extended trellis lying between P (j) and P (l); then, optimal paths
bounded by P (j) and P ((j + l)/2) and optimal paths bounded by P ((j + l)/2)
and P (l) can be recursively computed. The recursive procedure starts after com-
puting P (0) (by means of a standard Viterbi computation) and P (m), which is
P (0) shifted m positions to the right. Each recursive call generates up to two
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more recursive calls and all the calls at the same recursion depth amount to
O(mn) time; therefore, the algorithm runs in O(mn log m) time.

This adaptation of Maes’ algorithm comes naturally after defining the cyclic
Viterbi score as max0≤s<m P (σs(x)|λ). In principle, we could have adopted a
symmetric approach defining a cyclic shift on the states of the Linear HMMs
to obtain the same cyclic Viterbi score. This is appealing because n < m and,
therefore, “doubling” the HMM in the extended trellis instead of the string would
lead to an O(mn log n) algorithm. This would be much better than O(mn log m)
since n < m (and, usually, n � m). But unfortunately, it cannot be done,
as the next counter-example shows. Let [x] = v1v2v1 be a cyclic string on the
alphabet Σ = {v1, v2}. Let λ be a Linear HMM with 2 emitting states and
a01 = 1, a11 = 0.5, a12 = 0.5, a22 = 0.5, a23 = 0.5, b01 = 1, and b12 = 1.
Our definition of the cyclic Viterbi score leads to a value of 0.125 (for the string
σ2(v1v2v1) = v1v1v2). If we try to perform a cyclic shift of states in the Linear
HMM, we have two possible cyclic shifts of the states and both possibilities give
us 0 as the cyclic Viterbi score.

3.3 Cyclic HMMs Training

The proposed algorithm cannot be extended to Forward-value computation be-
cause there is no optimal path on the trellis on which the Maes’ property holds.
Since the Baum-Welch training procedure is based on the Forward (and Back-
ward) values, we cannot use it for cyclic strings without requiring n times more
time, which is too expensive. We propose to train these HMMs with non-cyclic
strings obtained from the cyclic ones by splitting them at similar points. These
starting points can be heuristically selected by locating points of maximum cur-
vature, maximum eccentricity, etc., but that procedure is very sensitive to noise
and error-prone. Our approach is based on a different, automatic procedure:
finding an optimal starting point for all cyclic strings through comparison with
a reference cyclic string via the Cyclic Edit Distance (CED) algorithm proposed
by Maes [6] and improved by Marzal et al. in [1,4]. The starting point for every
sequence is chosen as a subproduct of the optimal path in the extended Cyclic
Edit Distance graph with respect to a reference cyclic sequence. The final results
depend on the sequence chosen, but it has produced satisfactory results in the
experiments. On the other hand, some strings can be improperly aligned, but
they seem to be a negligible part of the whole set of strings and do not affect
negatively the training procedure.

4 Experiments

In order to assess the behaviour of the algorithm in practice, we performed
experiments on a handwritten digits recognition task. A test set containing 1000
digit images randomly selected from the NIST Special Database 3 were used.
All the images were clipped, scaled and binarized, and their outer contours were
represented by 8-directional chain-codes (the average length is 150). All the
classification experiments (10 equiprobable classes, one per digit) were cross-
validated (10 partitions, 100 samples for testing and 900 samples for training).
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Fig. 5. (a) Classification rate for random strating point sequences as a function of the
number of states. (b) Idem for the CED starting point selection heuristic.

The experiments try to show that the Cyclic Viterbi score on Linear HMMs
produces better classification rates on cyclic sequences than those obtained with
the conventional Viterbi score (on the same models) or with the Arica’s topol-
ogy [2]. Since we are interested in cyclic sequences, the contours were coded as
conventional sequences with a random starting point. All HMMs were trained
(1) with randomly chosen starting points for all the sequences in the training set,
and (2) with starting points obtained by aligning each sequence with a reference
sequence by means of the CED. Since the results can be dependent on the num-
ber of states, we have performed experiments varying this parameter. Fig. 5 (a)
shows the classification rate for the three methods with random starting points
as a function of the number of states. Fig. 5 (b) shows equivalent results for the
CED starting point heuristic for training sequences. Table 1 shows the results
obtained for 70 states (best case for our proposal) and 80 states (best case for
Arica’s topology). Arica’s best classification rate is 95.6%, which is much lower

Table 1. Classification rate (in %) for the handwritten-text recognition task. Two
different training procedure were tried and three different settings: Arica’s topology
with conventional Viterbi score and Linear HMM with conventional Viterbi and Cyclic
Viterbi score. (a) HMMs with 70 states (best case for Linear HMM with Cyclic Viterbi
score). (b) HMMs with 80 states (best case for Arica’s topology).

70 states Linear HMM
Arica’s topology Viterbi score Cyclic Viterbi score

Random start-point training 83.0% 67.1% 78.0%
CED start-point training 37.6% 32.6% 99.8%

(a)

80 states Linear HMM
Arica’s topology Viterbi score Cyclic Viterbi score

Random start-point training 95.6% 68.1% 79.8%
CED start-point training 37.9% 32.0% 99.5%

(b)
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than the 99.8% obtained with the Cyclic Viterbi score for Linear HMM and the
CED heuristic for training.

All models were trained with the HTK toolkit. The results are shown in
Table 1. The highest classification rate is always obtained with the proposed
method and the starting-point heuristic for training. It can be seen that the
CED heuristic does not help Arica’s topology, since the heuristic is applied to
the training sequences to estimate the HMM parameters, but not to the test
sequences.

The highest classification rate with HMM is better than the classification rate
obtained with the nearest-neighbour classification method based on the Cyclic
Edit Distance (99.1%), and the HMM approach runs 7.5 times faster.

5 Conclusion

We have presented a Cyclic Viterbi score that can be efficiently computed on
Linear HMMs modelling cyclic strings. The algorithm runs in O(mn lg m) time,
where n is the number of states and m is the length of the cyclic sequence.
Experiments performed on a digits classification task show that our approach
outperforms Linear HMM with the conventional Viterbi score and the Cyclic
HMM proposal of Arica et al.
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Non Parametric Classification of Human

Interaction

Scott Blunsden, Ernesto Andrade, and Robert Fisher

Institute of Perception Action and Behaviour, School of Informatics,
University of Edinburgh, UK

Abstract. This paper presents a non parametric method for classifying
interactions between two people as taken from a video camera. A near-
est neighbour classifier that uses trajectory matching in feature space is
introduced and shown to be superior to regular nearest neighbour clas-
sification for this problem.

1 Introduction

Many previous attempts have been made at identifying individual human ac-
tivity, however only recently has the question of identification of interactions
been addressed [9,3,8,5,6]. The classification of multi party interactions is neces-
sary as there are many situations which can only be understood by considering
the relationships between persons. For example the idea of ’meeting’ cannot be
sufficiently expressed or recognised when one only considers a single person in
isolation. By considering interactions it is possible to build upon previous work
on human motion understanding [4,1] to build a richer picture of what is going
on in a scene.

Within this paper a non parametric approach is taken which can work with
few examples of a particular interaction. The classification method is described
and then results as applied to interacting pedestrians are presented. It was found
that if temporal dependencies are taken into account a relatively simple classi-
fication method can improve the classification performance. First a brief review
of previous work in the area is undertaken.

2 Previous Work

Previous work upon the identification of interaction has been undertaken, most
notably by Oliver et al. [5] who trained coupled hidden Markov models to recog-
nise six different types of interaction between people. The models were also
capable of being ‘primed’ with synthetic interactions to give improved perfor-
mance upon real interactions. Xiang and Gong [9] also used coupled hidden
Markov models to automatically build relationship models between vehicles on
an airport runway. The graphical model approach was also taken by Intille [3]
who used a hand crafted Bayesian network to identify pre-defined plays within
the game of American football.
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More recently Sato and Aggarwal [8] have also tackled this problem from the
two person case. In order to classify interaction types only cases where people
were within close proximity were considered for classification. The nearest mean
method was then used for classification of the interaction with good results. Re-
cent work by Park and Aggarwal [6] has also focused on two person interactions
where the people can be segmented into parts. A hierarchical Bayesian network
is then used for classification of interactions.

For multi person interactions a hidden Markov model with multiple inputs was
discussed in [2]. A role variable was introduced to take account of permutations
of the roles people may play in an interaction. This method was shown to work
successfully with three person interactions.

3 Classification

Within this paper we take a non-parametric view of modelling and classification.
Such an approach has the benefits of not requiring large amounts of data in order
to obtain the parameters of a model. The sparsity of certain types of interaction
along with the difficulty in obtaining and processing such video was a reason for
choosing such an approach.

3.1 Feature Extraction

Throughout each video sequence every moving person was tracked and their
bounding box was established. This gave the 2D position of the person in the
image plane. This position was projected into ground plane co-ordinates using
a homography. Ground plane coordinates were used as they help to normalise
distances and speed with respect to the distance from the camera, thus enabling
a fairer comparison throughout all image positions. Here xt

i is the 2D vector
which contains the ground plane coordinates for person i at time t.

From this point-set several features are calculated. The speed st
θ of each person

is calculated as shown in equation 1. The reason for the w term is due to high
frame rates many surveillance cameras are capable of, typically around 25 fps.
This high frame rate means that there is often very little movement between
subsequent frames with a high proportion of this movement being a result of
noise from the tracking process. Throughout all experiments w was set to 25
(about 1 second).

The normalised direction is calculated as shown in equation 2. This measure
is not used directly in the output feature vector but is used to calculate the
alignment (al t

i,j) between person i and j, as given in equation 3. Alignment is
calculated as the dot product between the two normalised directions v̂t

i and v̂t
j .

st
θ =

∥∥xt
θ − xt−w

θ

∥∥ , θ ∈ i, j (1)

v̂t
θ =

xt
θ − xt−w

θ∥∥xt
θ − xt−w

θ

∥∥ , θ ∈ i, j (2)

al t
i,j = v̂t

i .v̂
t
j (3)
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d t
i,j = xt

i − xt
j (4)

d dif t
i,j = dt−w

i,j − dt
i,j (5)

d spt
i,j =

∥∥st
i − st

j

∥∥ (6)

of t
θ =

∥∥xt
θ − xstart

θ

∥∥ , θ ∈ {i, j} (7)

Difference in position (dt
i,j , equation 4) is also used as a feature along with

the change in distance at two separate time steps as given in equation 6. The
offset (of t

θ) from a starting position, given in equation 7 was calculated for both
persons i and j. The difference in speed d spt

i,j between the two persons is given
by equation 6.

This gives an eight dimensional final feature vector at time t between people
i and j, shown in equation 8. The features have a degree of invariance in that
they do not depend upon the absolute direction or position of a person within
the scene. Each feature was also scaled to have zero mean and unit variance.
The mean and variance were obtained from the training set only.

f t
i,j =

[
st

i, s
t
j , alti,j, d

t
i,j , d dif t

i,j, d spt
i,j , of

t
i , of

t
j

]
(8)

3.2 Classifier

Once the trajectories had been obtained sequences were manually labelled as
containing an interaction or non interaction. The type of interaction was also
manually assigned from a restricted vocabulary (see section 4). Sequences ranged
in length from a few seconds to several minutes. For every frame of these labelled
interactions the features (described in section 3.1) were calculated. Using the
feature vector described in the previous section a nearest neighbour classifier
is used with a neighbourhood whose size was empirically set to 5. Data was
partitioned into a training and testing set with a 50/50 split. The test data was
not used in any way until evaluating the performance of the classifier.

It is important that these training and test sequences are complete sequences
and as such are completely separate from one another. If only points are taken at
random (rather than the complete sequence) then there is a high similarity be-
tween the two sets and they are in fact temporally dependent upon one another.
The problem may then simply reduce to a simple interpolation procedure.

A simple strategy to classifying a point in such a sequence would be to clas-
sify a novel test point based upon its proximity to a training point as measured
through some distance metric. However, as illustrated in figure 2 there is a tem-
poral dependency between points. It is visible that the classes create a trajectory
in feature space. Point by point matching such as nearest neighbour or clustering
will miss this dependency. In order to take account of the trajectory ’shape’ of
the data the Hausdorff distance (as given in equation 10), was used to compare
training and testing samples over a temporal window.

The feature vector for each person at time t is made up of the extracted
features given in (8). In order to classify the activities of the tracked person at a
given time a temporal window of size win around the current frame is taken. In
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Fig. 1. Extraction of frames to be used within the classification process

these experiments the size of win is set to 25, meaning that the total size of each
sample used for matching is 51 time steps in length. This process is illustrated
in figure 1. With a video rate of 25 frames per second achievable on many
surveillance cameras this is equivalent to watching one second worth of video
either side of the frame. This step is taken as when comparing interactions such
as two people meeting compared to simply walking past another it is necessary to
watch a few seconds to determine what is happening. This is evident in figure (2)
where many points are overlapping in feature space. By watching a few seconds
of video it is possible to distinguish between interaction types. Results for a
measure which only takes into account distance from a single point in time (and
not a temporal window) are given as a comparison in the results section.

Fig. 2. Plot of first two principle components of the data. The colours refer to the
class of data with walking together - red, approach - green, ignoring - blue, meeting -
cyan, split - magenta and fight being yellow. The zoomed area on the right shows the
ignoring and approach interactions.

For classification a k=5 nearest neighbour classifier is used. Three distance
measures are compared, the standard squared distance over a window (given in
equation 9), the Hausdorff distance (equation 10) and a single point distance
cost function.
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d (A, B, win) =
2win+1∑

i=1

‖Ai − Bi‖2 (9)

h(A, B) = max
i

{
min

j

{
‖Ai − Bj‖2}}

(10)

The matrix A is from the training database where each column contains a
feature vector as given in 8, centred around the training frame. Matrix B is
the novel test point and again its feature points are stored column-wise centred
around the current frame. In both cases i and j refer to the whole column vector
containing the calculated features as given in 8. The size of this matrix is deter-
mined by the choice of win. For instances where no window is considered then
win can be set to 0.

Equation 9 is the sum of the squared distance between all points in the two
matrices. The Hausdorff distance is given in equation 10.

4 Results

The results of the nearest neighbour classification scheme are now presented.
The data was generated from the publicly available CAVIAR project [7]. The
interaction classes along with the number of samples are given in the table below.
It can be seen that the distribution of interactions is not uniform. As well as
having an uneven prior distribution in a real world case such as in surveillance
it is also likely that the number of ignore classes would be much higher.

We include the ignore class here as for any practical application of the method
would have to distinguish when people are not interacting. For every frame in
each sequence the features given in section 3 were calculated, thus giving a 9
dimensional feature vector at each time step. Sequence length ranged from a few
seconds to several minutes.

For the first experiment classification of individual points was undertaken.
We are in effect asking the computer to “tell me what you think is happening in
every frame”. In total there where 2230 test points (with a temporal window size
of 51 frames). Results of classification by this method are given below. It can
be seen that Hausdorff distance, which takes into account the shape of the data
within the temporal window in feature space performs better than those that
don’t. It note that both distance measures that use a temporal window perform
better than when a single point is used.

Class Num. Samples Dist Measure
d(A, B, win) d(A, B, 0) h(A, B)

Walk together 700 100 99.9 100
Approach 145 36.6 26.9 46.9
Ignore 835 80.7 73.9 85.1
Meet 382 100 61.5 100
Split 147 100 87.1 100
Fight 21 61.9 61.9 57.1
Total 2230 88.2 77.62 90.8
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4.1 Complete Sequences

A second experiment was also conducted to test performance of the classifier
when a contiguous video stream of pre-segmented data was given to it. The
question we are asking here is “If I show you a video clip of arbitrary length tell
me what the clip was about”. Sequences were manually pre-segmented, contin-
uous and contained only one type of interaction throughout their duration. The
number of samples are given in the table below. In order to classify a complete
sequence each point in the sequence was classified as described in the previous
section. The most frequent class label was then assigned to be the class of the
complete sequence. The idea of this test was to see how well the algorithm would
perform in situations where longer sequences needed to be classified such as in
annotating surveillance data. It is also a good test of how predictable single
frame classifications are over longer sequences.

Class Num. Samples Dist Measure
d(A, B, win) d(A, B, 0) h(A, B)

Walk together 7 100 100 100
Approach 4 25 0 50
Ignore 6 83.3 100 100
Meet 1 100 100 100
Split 2 100 100 100
Fight 1 100 100 100
Total 21 80.9 80.9 90.4

4.2 Classification Summary

For classifying both complete sequences and individual points the Hausdorff
method proves the best distance measure. However certain classes, such as ap-
proach which had an accuracy rate of 46.9%, prove difficult to classify and are
frequently confused with ignore. This is understandable as many times when
two people ignore one another they may get closer as they move through the
scene but do not actually interact in any way. Situations like this could be dif-
ferentiated by using longer term observations and delaying the decision until the
classifier is more certian of an interaction. Situations such as these are illustrated
in figure 3.

There is also the problem of obstacles within real scenes. Such obstacles can
lead to misclassification as the trajectory and the resulting features can seem
to veer ’off course’ from what one would expect. For example in figure 3(b) the
person modifies the approach of another due to an obstacle being in the way.

There are still some problems where two classes physically look like one an-
other (such as approach and ignore) and would even fool a human observer given
this limited information. Another problem is when there are very few examples,
such as in the case of fighting. Even though fighting looks different to other
activities there are too few examples to make accurate classifications.
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(a) (b)

Fig. 3. Plots of trajectory information for (a) Confusing ignoring with approaching.
(b) Difficulties when obstacles are in the scene causing mis-classification. Here person
3 has to go round the obstacle to approach person 2. This also illustrates how you may
have to watch a sequence for longer to figure out the actual intention of a person. Lines
show tracked points from previous timesteps.

5 Conclusion and Future Work

The method presented here is shown to work for real interactions as captured
on video cameras. The approach of interpreting a trajectory in feature space as
a complete shape rather than a collection of points leads to an improvement in
classification. Such an approach exploits the temporal dependencies and shape
of the longer term temporal dependencies in feature space in an efficient way.
By using non-parametric models of the actual data we can somewhat avoid the
problem of having to generate apriori knowledge (in the form of scripts or rules)
about what interactions look like. This enables new interaction classes to be
incorporated within the same framework with relative ease.

For problems where it is hard to generate good parametric models to represent
trajectories with a collection of cluster centres (such as a Gaussian Mixture
model) matching the data shape in feature space proves a simple and effective
alternative. This problem is compounded when a mixture of Gaussians is used
as an observation model for something like a hidden Markov model, as much of
the novel inputs generate very low input probabilities even if modelled well.

Here we do not assume that such a larger corpus of data is available to enable
learning of complex parametric models such as those used by [5,9]. Neither do we
assume that it it necessary to pre-define the actions which are of interest by using
templates as in [3]. Template approaches may indeed be useful in real surveillance
applications where explanations may be required by system operators. Future
work will compare our method with theirs.

This simplicity of modelling is also an advantage when there is limited data
as approaches such as hidden Markov models do not learn well when given few
examples in a high dimensional space. However some of the benefits of using a
probabilistic model are lost. At present there is no way to tell how certain the
model is about the prediction it is giving. There is also the question of how long
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one should observe something before feeling confident about making a prediction
which is currently left un-addressed. Both of these problems will be addressed
in future work as will the identification of larger group activity.
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Abstract. In this paper we present a non parametric density-based data
reduction technique designed to be used in robust parameter estimation
problems. Existing approaches are focused on reducing the amount of
data preserving the density function. In our case the reduction is oriented
to automatically remove the samples that are considered non interesting
while taking into account those that are meaningful, those that have a
high density associated. We use this filtering process to simplify the data
sets in order to improve the performance of robust parameter estimators.
We show its results when used along an existing estimator on synthetic
and real LADAR data.

1 Introduction

Parametric model fitting from data samples is a topic that has had continuous
contributions in the Computer Vision community along the last 25 years. This
is due to the need of a simple way to represent the data to be processed in many
tasks (fundamental matrix, motion estimation, LADAR and 3D data modeling,
etc ...), a need that is fulfilled in a much cases by parametric models. However,
describing a set of data samples with a handful of parameters turns out to be a
very challenging task beacause of the error that may be present in the data that
is to be analyzed.

The parameter estimation literature classifies the data samples in two groups:
inliers and outliers. The first one is the subset of data samples that follows
the desired model, while the second one is composed by the samples that are
considered error or do not belong to the sought model.

The estimation techniques have experienced a continuous evolution. The first,
basic, Least Squares (LS) approach considered all the data samples as inliers hav-
ing as main issue that the existence of one single outlier could mislead the whole
estimation. From that point on, many contributions focused on the retrieval of
models from data overcoming the existence of outliers, differing on the quantity
of outliers they could afford. While the first approaches could only handle up
to 50% of data to be outliers, i.e. Least Median of Squares or Least Trimmed
Squares[1], latter contributions such as Wang’s MDPE[2] and ASSC[3], or our
prior estimator, the HTE[4] can face much more complex scenarios, handling
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over 90% of outliers and several meaningful sample populations in datasets sim-
ilar to the one depicted in figure 1a, where we can see that in the data set does
not exist a single model to be retrieved but three, a fact that is often found in
real cases.

Having this fact in mind, we can establish a further classification of samples:
on one hand we have the gross outliers, samples that can be considered outliers
to any existing population because they do not present any structure or pattern,
and on the other hand we have the significant samples, elements that belong to
a meaningful population but that can also be considered outliers with respect
to other structured populations.
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Fig. 1. Data set with 90% of outliers and three meaningful populations. (b) Complex
dataset with one meaningful population and 95% of outliers.

The improvement of the parameter estimators is directly linked to the in-
crease of their complexity and cost. Moreover, there are still cases where the
existing techniques do not achieve satisfying results, mostly in scenarios where
the meaningful populations hardly represent 5% or less of the total number of
samples (figure 1b). However, gross outliers are discardable because they do not
supply any interesting information and can be ruled out before the estimation
process in order to attain more reliable results and to improve the efficiency of
our methods.

In order to do so, we introduce a technique to remove non interesting samples
from our dataset. The existing contributions [5,6,7,8,9,10] are too generic or
focused on data mining applications. In this paper we present a density-based
data reduction algorithm specially conceived to simplify automatically sample
sets that are to be analyzed by parameter estimators. Our proposal does not
perform only a data reduction, it preserves the dense or structured populations in
front of non interesting samples by means of variable kernels. Our main objective,
in other words, is to get rid of the gross outliers that may be present.

This paper is divided as follows : in section 2 we introduce our data reduction
technique, the main contribution of this paper. Section 3 presents experimental
results of our novel algorithm applied along our existing parameter estimator,
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the HTE, to synthetic and real LADAR data. Finally, section 4 closes the paper
by giving a brief summary of conclusions and lines of future work.

2 Data Reduction Using Variable Kernels

Following the idea stated in the previous section, our aim is to process our source
samples in order to eliminate the gross outliers that may be present. We propose
a density based method to identify the gross outliers. We have the intuition that
meaningful samples belong to dense clusters of information, in terms of distance
with respect to other samples, while gross outliers tend to be more isolated.

Our technique can be divided in two parts. The first one retrieves a density de-
scriptor for each point using variable bandwidth kernels and taking into account
only the k nearest neighbours to the processed point. Using gaussian kernels,
this yields a new probability density function that is truncated, but it has a 95%
of confidence (depending on the σ parameter) with the original probability den-
sity function of our data set obtained as [11], and it also preserves the structure
of the original function. Once this task has been done, the second step of our
algorithm evaluates the entropy of our data and yields a threshold that is used
to filter the samples.

2.1 Truncated Density Estimation

As mentioned, in order to estimate the truncated density of each point we analize
its k nearest surrounding elements in terms of distance using variable kernels.
The truncated density associated to a point is related to its kernel bandwidth.
High densities yield small bandwidths while lower densities result in looser ker-
nels. An example can be seen in figure 2.
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Fig. 2. Example showing the bandwidths of 4 samples assigned by means of variable
kernels having k = 10 samples

Let S = {x1...xn} our data set. We apply a Gaussian kernel centered over
each element xi with a standard deviation σi that depends on the k nearest
samples to xi.
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σi = α‖xi − xik
‖ (1)

α is a smothing factor between (0,1) (we use 0.5), and xik
is the kth nearest

point to xi.
The truncated density value wi for each point xi is defined as,

wi =
1
k

k∑
m=1

1
σm

√
2π

exp
−d2

im
2σ2

m (2)

where dim is the distance from xi to the mth nearest sample.
This values wi must be normalized to be a probability distribution. In order

to improve the efficiency of this task we use a kdtree based optimization [12] in
order to speed up this step.

2.2 Entropy Thresholding

Once estimated wi to each element we need a threshold to identify the most
interesting samples. Following with our initial idea, the relevant samples are
those that belong to dense clusters because they provide more information.
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Fig. 3. Example, the application of the entropy threshold on a dataset. (a) depicts
in black the subset of interesting samples. (b) we see the sorted information measure
associated to each sample (blue plot) and the entropy threshold (red line) applied to
obtain (a).

Let qi = max(wj) − wi the complementary value of wi with respect to the
maximum concentration value. So, the probability pi is assigned by means of the
normalization of qi:

pi =
qi∑n

j=1 qj
(3)

Using this probability we evaluate the information provided by each sample
Ii by means of the measurement of the quantity of information introduced by
Shannon in [13].

Ii = −log2 (pi) (4)
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Once we have Ii, we calculate the entropy E:

E = −
n∑

i=1

pilog2(pi) =
n∑

i=1

piIi (5)

Samples with a lower quantity of information I than entropy E are rejected.
Thus, our new dataset is defined as:

NewDataSet = {xi|Ii > E} (6)

An example where entropy is applied to distinguish between gross outliers
and significant samples is shown in figure 3a where red samples are classified as
gross outliers and green samples as significant samples. In figure 3b we can see
the entropy separating the samples in two datasets.

3 Experimental Results

Two types of experiments have been done. We have firstly compared the re-
sults of our data reduction technique with the ones yielded by the generic data
condensation method in [9]. Secondly, we have evaluated the response of our
proposal with respect to the percentage of gross outliers present in the dataset,
and its application with existing parameter estimators.

As depicted in figure 4, our contribution reduces the number of samples while
preserving the interesting ones (the densities). When compared with a generic
approach, we can see that the dense populations are severelly diminished, pro-
voking a possible misestimation when a fitting algorithm is applied.
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Fig. 4. Generic density-based data reduction technique [9] vs our proposal. a) Example
dataset. b) Generic data reduction of a). c) Data reduction of a) using our proposal.
The estimation of the line has been made using the LMedS algorithm.

Figure 4c also shows how a simple estimator as LMedS[1] is capable to find
the desired model (a line) in conjunction with our approach in front of its
performance with the generic algorithm, where it fails to retrieve the model
(figure 4b).
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In the following examples we evaluate the performance of our approach along
with our parameter estimator, the HTE[4], in complex datasets. We stress that
HTE fails in this examples to retrieve the model when applied alone, despite
being capable of fitting models in scenarios with up to 90% of outliers. We have
tested both algorithms running together in both synthetic and real LADAR
imaging.
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Fig. 5. a) Data set with 95% of outliers. b) Data set with 97.5% of outliers. c-d)
Results of the application of our method along with the HTE parameter estimator.
The principal population of the scenarios was efectively the underline below the letters.

Figures 5a and 5c depict two synthetic datasets with a high percentage of
outliers, 95% and 97.5% respectivelly. When our method is applied, it can be
seen that the data reduction is more notable in the first case. This is because
5b presents a higher average density in the dataset, more similar to the density
of the meaningful populations than 5a. After the application of our algorithm,
the percentage of significant samples in 5c is 25% while before the application
was only 5%. In 5d the percentage of significant samples is 18% while before the
application was only 2.5%.

Experimentally, if a priori knowledge is available, we have seen that our thresh-
old can be modified easily to achieve a better performance using a new threshold
defined as αE. We can tune our method with a value of α slightly higher that
1 (1.02) when there is a big amount of gross outliers and a value slightly lower
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than 1 (0.98) with a low amount of gross outliers. However, if we don’t have a
priori knowledge our method presents good results fixing the α value at 1.

We have also applied our data reduction technique to real LADAR images. A
LADAR image contains the 3D coordinates of each pixel. We firstly preprocess
the 3D LADAR image finding the ground model and then we project the data
onto that plane. Once projected, it is much easier to find the sides of the objects
because they have been transformed into sample densities forming lines. Using
this workflow, we can see the line fitting results of our algorithm on a real dataset
that contains a tank in figure 6.

 

 

line
1

line
2

(a) (b) (c)

Fig. 6. a) 3D LADAR image, depicting a tank, with 21513 samples. b) 2D projection of
a) onto the ground plane. c) Results of the application of our proposed algorithm and
a line fitting algorithm in the dataset depicted in b), 5916 samples have been selected
and 2245 are inliers of the 2 lines depicted.

4 Conclusion

We have presented a novel data reduction method to remove gross outliers from
datasets designed specifically for parametric regression problems. In contrast
with other existing data reduction tecniques, our approach does not perform only
a condensation of data, it takes into consideration the density information asso-
ciated to each sample, this value provides a significance descriptor that is used
to discard the gross outliers. The threshold used to perform this classification
is obtained automatically by relating the density descriptor to an information
and entropy values, as detailed in section 2. Our approach preserves the dense
populations of our datasets, therefore, in a parameter estimation framework, it
performs an oriented data reduction task.

The main advantage of our approach is that it allows the correct estimation
of parametric models in complex data set where the existing estimators failed.
Moreover, in some cases we can find parametric descriptions using classical es-
timators in reduced datasets instead of the latter ones, much more costly. We
are well aware that the complexity of the density estimation step grows expo-
nentially with the number of samples, this is the reason why we have improved
its efficiency by using kdtrees to obtain the distances between points, although
it also opens lines of future work with the objective of reducing the complex-
ity of the outlier processing step. However, in complex scenarios where multiple
models are to be retrieved, the data reduction is performed only once.
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Abstract. This paper presents a new approach to image-based reflect-
ance function estimation. The method first uses Fresnel theory for re-
flection and polarization analysis to estimate the surface orientation for
each image pixel from a single view. The method is confined to the case
where the light source and camera lie in the same direction from the tar-
get. A 2D histogram of surface zenith angles and pixel intensities is then
calculated. This histogram is processed using a robust and computation-
ally efficient statistical analysis. Histogram data are fitted to probability
density functions to deduce the reflectance function. Objects of varying
complexity and material are analysed and compared to ground truth.

1 Introduction

Many techniques in computer vision and graphics require a quantitative de-
scription of a material’s reflectance properties. These properties are commonly
described by the reflectance function of the material, or bidirectional reflect-
ance distribution function (BRDF), which gives the ratio of reflected radiance
to incident irradiance in all possible directions. The BRDF is used in graphics
to render a variety of materials under different lighting conditions and in vision
for surface analysis techniques. In shape-from-shading for example, Ragheb and
Hancock [5] make use of the reflectance functions derived by Wolff, Nayar and
Oren [10]. Approaching the problem of shape recovery from an opposite direc-
tion, Treuille et al. [8] make empirical observations of the BRDF using objects
of known geometry to aid reconstruction from two views.

In this paper, we aim to estimate a “slice” of the BRDF for several different
objects using polarization analysis. In the past, polarization has been used in
computer vision for several tasks. Perhaps most notably, several papers have
been published on shape reconstruction [9,4]. These methods are based on the
premise that light undergoes a partial polarization when it is reflected from
a surface. Fresnel theory [2] predicts this effect and can be used to estimate
the surface orientation from measurable quantities [9]. This idea is used in this
paper to obtain the relationship between surface angle and image intensity, thus
acquiring a slice of the BRDF.

We focus on the retro-reflective case where the positions of the camera and
a single source of illumination are almost identical. Raw data are obtained us-
ing a standard technique involving a digital camera and a linear polarizer. Our

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 363–371, 2007.
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approach is global and uses a robust statistical analysis to account for com-
plications caused by inter-reflections and image noise. The method uses a 2D
histogram constructed from the set of pixel intensities and a set of initial zenith
angle estimates. A first reflectance function estimate is then made, based on the
peak frequency curve in the histogram. The result is then adjusted by fitting the
data to a probability density function. The method requires just a few seconds
of processing time on a typical modern computer.

Shibata et al. [7] also use polarization for BRDF estimation. They recover a
more complete and accurate BRDF, but require highly specialised equipment and
their method is more time consuming. Robles-Kelly and Hancock [6] devised an
algorithm to estimate the retro-reflective slice of the BRDF using the cumulative
distribution of intensity gradients. Their method is more reliable than our’s when
applied to rough surfaces, but less so for smooth, shiny objects.

2 Fresnel Theory and Polarization

Consider the reflection of a ray of light from a smooth surface. Fresnel theory
provides a means to calculate the ratio of the incident light intensity to the
reflected light intensity for a given angle of incidence. Further to this, if the inci-
dent light is unpolarized, the theory predicts that the reflected ray will become
partially polarized, again depending on the angle of incidence.

In this paper, we study diffuse reflection, where light penetrates the surface
and is scattered internally before being re-emitted (in contrast to specular reflec-
tion, where the light is reflected from the surface directly). For diffuse reflection,
Fresnel theory can be applied to light as it is re-emitted from the medium into
air [9]. This provides a relation between the polarization state of the reflected
light and the angle of the reflection.

The standard approach to measure the polarization state of reflected light is
to take a succession of images of the reflecting surface with a polarizer placed
in front of a camera rotated to different angles. The measured intensity at each
pixel varies sinusoidally with the polarizer angle. By performing (for example) a
least squares fit on the measured pixel brightnesses as a function of the polarizer
angle, the minimum and maximum intensities on the sinusoid, Imin and Imax,
can easily be determined.

The polarization state can then be expressed using the degree of polarization:
ρ = (Imax − Imin) / (Imax + Imin) (1)

Fresnel theory predicts that the degree of polarization is related to the reflectance
angle, θ, and the refractive index, n, by [1]

ρ =
(n − 1/n)2 sin2 θ

2 + 2n2 − (n + 1/n)2 sin2 θ + 4 cos θ
√

n2 − sin2 θ
(2)

We assume that the refractive index is 1.4 throughout this work, which is a
typical value. Expressed slightly differently, if a surface point is observed such
that the angle between its normal and the viewing direction (the zenith angle)
is θ, then the observed degree of polarization is given by (2).
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Fig. 2. (a) Greyscale image of a porce-
lain bear. (b) Degree of polarization
(dark areas have higher values).

Figure 1 shows the relationship between the degree of polarization and the
zenith angle. Figure 2 shows a greyscale image of a porcelain bear and an image
where the intensity encodes the degree of polarization. This image can be con-
verted into an estimate of the zenith angle for each pixel by numerically solving
(2). However, past research [1] has shown that these estimates are highly suscep-
tible to noise and are degraded by the presence of inter-reflections. The remainder
of this paper describes a method to overcome these problems by using the pixel in-
tensities to refine the zenith angle estimates. Results for this paper were obtained
in a dark room with an small light source placed beside the camera.

The BRDF, f (θi, αi, θr, αr), for a particular material is the ratio of reflected
radiance to incident irradiance for any illumination and viewing directions. It is
measured per unit solid angle per unit foreshortened area and is given by

f (θi, αi, θr, αr) =
Lr (θr, αr)

Li (θi, αi) cos θidω
(3)

where θ and α denote the zenith and azimuth angles, the subscripts i and r
denote incidence and reflectance, and dω is the differential solid angle subtended
by the light source.

In this paper we concentrate on the case where the illumination and viewing
directions are identical. The intensity is then independent of the surface azimuth
angle and we are estimating the BRDF where θi = θr, i.e. f (θi, αi, θr, αr) reduces
to f (θ). Technically, the BRDF is a physical quantity that needs calibration if
it is to be recovered in the correct units. However, this is beyond the scope of
our experimental set-up. We therefore work with normalized quantities and our
recovered reflectance functions are proportional to that given in (3). For many
graphics and vision applications the physical quantities are not required.

3 Statistical Analysis

Figure 3a shows a histogram of the intensities and zenith angles (as estimated
by (2)) of the porcelain bear in Fig. 2. The footprint of the histogram is shown
in Fig. 4a. Since the light source and camera directions are approximately iden-
tical, one would expect the intensity to decrease monotonically with the zenith
angle. The general structure of the histogram confirms this. Note however, that
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Fig. 3. (a) Histogram of intensities and zenith angle estimates for the porcelain bear
shown in Fig. 2. (b) Scaled histogram.
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Fig. 4. (a) Footprint of the histogram in Fig. 3a. Bins of higher frequency are shown
as dark patches (logarithmic scale). The exact reflectance curve is also shown. (b-d)
Greyscale images where highlighted pixels fall into (b) box 1, (c) box 2 and (d) box 3.

the main curve in the histogram is broad and that a significant number of
pixels fall into bins far away from this curve. Figure 4 highlights image regions
corresponding to three different parts of the histogram. Unlike the pixels falling
into box 1, the pixels in boxes 2 and 3 do not follow the general trend.

The main reason for the wide spread of the data in Fig. 4 (in addition to noise)
is that inter-reflections are taking place. An inter-reflection occurs where light
from a source is specularly reflected from one point on the object to another, and
then toward the camera. This process therefore obeys the theory for specular
reflection, although a diffuse component will be present. It can occur at the small
scale between the corrugations that constitute roughness, or macroscopically
between different regions of the surface or the environment.

The exact effect of an inter-reflection depends upon its strength. If it is weak,
then the diffuse component still dominates. The degree of polarization, and hence
the zenith angle estimate, will be reduced since the angle of polarization of
specularly reflected light is perpendicular to that of diffuse reflection [9]. This
process can be seen in box 2 of Fig. 4. Here, a small specular component is present
due to reflections from the table on which the object rests. For strong inter-
reflections, the specular component dominates, as in box 3. Since the polarizing
properties of specular reflection are greater than that for diffuse reflection, we
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have a situation where the degree of polarization exceeds that which would be
expected for purely diffuse reflection.

Notice that, apart from the cases were the strong inter-reflection limit is met
(as in box 3), the degree of polarization is equal to, or less than, the expected
value for a given zenith angle. This is substantiated by the fact that the ex-
act curve (measured using an object of the same material but known shape)
approximately follows the outer envelope of the histogram.

4 Proposed Method

Initial Estimate. Figure 4 suggests that we need to calculate a curve that
follows the outer envelope of the histogram. However, an initial estimate of the
reflectance function can be derived from the crest of the histogram. One difficulty
is that there are too few data points at some parts of the histogram to obtain a
reliable estimate.
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Fig. 5. Broken curve: initial BRDF estimate. Solid straight line: IB(θ). Broken straight
lines: IL(θ) and IU (θ).
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We overcome this problem by dividing the data into histogram bins of equal
frequency, instead of using uniformly spaced bins. Our algorithm accomplishes
this task by sorting the pixels by intensity and selecting the intensity of every
(M/N)th pixel as a bin edge, where M is the total number of pixels and N is
the desired number of intensity bins. For all pixels falling into a given intensity
bin, we apply a similar process to obtain zenith angle bin edges.

The frequency for each bin is then divided by its area to give a scaled frequency
at the centre points of each bin. Two-dimensional linear interpolation is then used
between the bin centres to calculate a value at each point on an evenly spaced
N ×N grid. This interpolation results in a scaled “histogram” with identical bin
positions and sizes as the original version, as shown in Fig. 3b.

Although, the resultant “histogram” has no direct physical interpretation, it
makes it easier to robustly trace the peak frequency curve. The curve is first
calculated in polar co-ordinates with the origin at (θ = 0, I = 0). Here, we use
normalised units of bin lengths (i.e. I ← IN/255 and θ ← θN/90◦). Indeed, we
use normalised co-ordinates for the rest of the paper.

For an arbitrary number of equally spaced polar co-ordinate angles between 0
and 90◦, the scaled frequency is plotted against the distance from the origin. The
distance where the scaled frequency reaches its maximum is then taken as a data
point on the initial BRDF estimate. These distances are then smoothed before
reverting back to Cartesian space. An example of an initial BRDF estimate is
shown in Fig. 5. Note that the initial estimate is often quite reasonable by itself,
without further processing.

Final Estimate. For each pair of consecutive points on the initial estimate,
(θp, Ip) and (θp+1, Ip+1), we calculate a point on the refined BRDF estimate
that falls on the straight line IB(θ, p), as shown in Fig. 6. This is the line that
perpendicularly bisects the second straight line I⊥(θ, p), which connects the pair
of points on the initial estimate.

The two straight lines parallel to IB(θ, p) that pass through (θp, Ip) and
(θp+1, Ip+1) are also calculated. Let these be IU (θ, p) and IL(θ, p) respectively.
These lines define the region of the histogram that we use to estimate the point
on the final BRDF curve related to point p on the initial estimate. For each p,
we therefore extract data points (θk, Ik) that satisfy

IL (θk, p) < Ik < IU (θk, p)
θL (Ik, p) < θk < θU (Ik, p) (4)

where θL and θU are the inverse functions of IL and IU respectively.
We are interested in the distribution of distances Dk(p) between the location

of the data points k and the line I⊥(θ, p). The distance Dk(p) is given by:

Dk(p) =
(Ik − Ip)m(p) + θk − θp√

m(p)2 + 1
(5)

where m(p) = (θp − θp+1)/(Ip+1 − Ip). Negative values of Dk(p) indicate that
the point lies beneath the line IB(θ, p).

The broken straight lines in Fig. 5 indicate the region of the histogram where
(4) is obeyed for a particular point on the initial BRDF estimate. In the next
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Fig. 7. (a) Histogram of the length Dk for all pixels bounded by IL(θ) and IU(θ) in
Fig. 5. (b) Histogram after removal of pixels that do not obey (9).
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Fig. 8. Estimated reflectance functions for the four porcelain objects shown and the
bear model, compared to the exact (broken) curve

stage of the algorithm, the data in this region is fitted to the Weibull probability
distribution function (PDF) [3] given by

g (t|a, b, c) =

{
b
a

(
t−c
a

)b−1 exp
(
−

(
t−c
a

)b
)

t ≥ c

0 t < c
(6)

where a is a scale parameter, b is a shape parameter and c is a location parameter.
The distribution has a shape similar to a skewed Gaussian. We use it here because
we expect the majority of pixels to fall within the envelope of the peak frequency
curve in the 2D histogram (i.e. to have negative Dk(p)) due to roughness and
inter-reflections.

In Fig. 7a, the distances Dk(p) bounded by (4) have been fitted to a Weibull
PDF using a standard maximum likelihood approach. Clearly this is inadequate
since there is an inter-reflection taking place that is resulting in a different dis-
tribution for some of the points. However, since there are generally much fewer
points in the inter-reflection we can discard data that falls under the tails of the
PDF and calculate a new set of parameters. We iterate this until convergence
(typically only three or four iterations are necessary). The histogram in Fig. 7b
shows the result. Note that we have used the same number of bins as for the
first histogram, but over a smaller range.

In order to determine which points to discard, the algorithm first calculates
the mean, μ, and standard deviation, σ, of the PDF, which are given by

μ = aΓ (1 + 1/b) (7)
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Fig. 9. Histograms and estimated reflectance functions of an apple and an orange

σ = a

√
Γ (1 + 2/b) − Γ (1 + 1/b)2 where Γ (x) =

∫ ∞

0
e−ttx−1dt (8)

We then discard points that do not fall within two standard deviations of the
mean. That is, the PDF parameters are recalculated only using points satisfying

μ − 2σ < Dk(p) < μ + 2σ (9)
After the Weibull parameters have converged we set Dfin(p) = μ + 2σ, which

is defined in Fig. 6, to represent the outer envelope of the histogram. To ensure
a smooth reflectance function we apply Gaussian smoothing to the values Dfin
before reverting to the Cartesian pairs (θfin, Ifin). We finally add an additional
point to the BRDF at (θ = 90◦, I = 0).

Recovered Reflectance Functions. The estimated reflectance functions for
several porcelain objects are shown in Fig. 8. Clearly, the curves follow the
general trend of the exact curve and are approximately equal. This shows that the
inter-reflections have been desirably discounted from the BRDF. The algorithm
appears to be most reliable at intermediate zenith angles. For retro-reflection,
specularities are present for small zenith angles, often resulting in overestimates
for that part of the BRDF.

In Fig. 9, we have applied the algorithm to an apple and an orange. Again,
the results seem reasonable except for small zenith angles. Note that the direct
specular reflections, which cover a significant part of the orange’s pitted surface,
have been discarded by the algorithm. This gives us an approximation of the
diffuse component of the BRDF as desired.

5 Conclusion

A new method for reflectance function estimation was presented that draws data
from polarization. Our method is computationally very efficient, although the
additional time needed to obtain the initial polarization images is a weakness
of this, and most other techniques in polarization vision. We have shown how
a good initial estimate can be obtained from polarization data in just a few
seconds (using Matlab and a 2.4GHz CPU). A final estimate takes about five
seconds to calculate in total. Finally, we have shown how the method can be
applied to several materials and object shapes.
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Estimation of Multiple Objects at Unknown

Locations with Active Contours
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de Sistemas e Robótica, Portugal

Abstract. This paper presents an algorithm for the estimation of multi-
ple regions with unknown shapes and positions using multiple active con-
tour models (ACM’s). The algorithm organizes edge points into strokes
and computes the association between those strokes and the ACM’s us-
ing the component wise EM algorithm (CEM) for MAP estimation. The
algorithm is randomly initialized with a high number of ACM’s and per-
forms online model selection using importance sampling. Experimental
results show the effectiveness of the proposed technique.

1 Introduction

Active contour models (ACM’s) or snakes [1] have been extensively used to esti-
mate object boundaries in images. However, their difficulties with initialization
and outlier rejection are still unsolved problems. In addition, most of the re-
search done on ACM’s tries to estimate a single region using one elastic model
(for e.g. see [2] [3]) and little research has addressed estimation of multiple elastic
models. Some examples include [4] where multiple regions are estimated but the
approach is restricted to regions that have some common characteristic or prop-
erty and weighting parameters are defined heuristically. In [5] several ACM’s are
initialized in the centers of divergence of the gradient vector flow field. Some of
the centers are discarded using heuristic rules and the method is unable to deal
with regions inside other regions. In [6] a single contour can break automatically
to represent the contours of multiple objects. In [7] multiple level set contours
are also used but they evolve independently. The initial segmentation and num-
ber of ACM’s is determined by fuzzy c-means clustering. In [8] gradient vector
diffusion is used for the evolution and also the initialization of multiple contours.
After the contours evolution region merging reduces the number of contours.

In this paper we present a method for the automatic segmentation of multiple
regions which, in simultaneous with shape estimation, deals with the problem of
sensitivity to the initialization and robustness to outliers. The algorithm builds
on the work proposed in [9] in which multiple ACM’s compete for the boundaries
of multiple regions, using the EM algorithm for MAP estimation. The algorithm
proposed in this paper includes three major contributions 1) it automatically
selects the number of ACM’s 2) it uses a different observation model which makes
it less sensitive to initialization and more robust to outliers and 3) initialization
of the ACM’s is fully automatic.
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This paper is organized as follows: section 2 formulates the problem, section 3
describes the proposed algorithm for multiple active contours, section 4 presents
experimental results and section 5 concludes the paper.

2 Problem Formulation

Given an image with an unknown number of objects and assuming that is is pos-
sible to detect connected sets of edge points belonging to the objects boundaries,
our aim is to connect segments belonging to individual object and to discard out-
lier segments associated with spurious edges. Let y be the set of all edge points
detected in an image and let us assume that y is organized in connected com-
ponents, called strokes, yj, j = 1, ..., N where yj = {yj

1, ..., y
j
n} is the set of edge

points belonging to the j-th stroke. We will assume for now that the number of
ACM’s, L is known and we add an extra model to account for outliers. We de-
note it the outlier model, xoutlier . Let xk be the the k-th active contour model,
k = 1, ..., L defined by a sequence of 2D points xk

i , i = 1, ..., Mk; the number of
points for each snake is adjusted by insertion and deletion in order to keep the
distance between two consecutive points constant and therefore different ACM’s
may have different number of points. xk can either be an open or closed contour.
We will assume that the strokes detected in the image are independent:

p(y|x) =
∏
j

p(yj|x) (1)

and that the distribution of each stroke is a mixture of L+1 densities:

p(yj |x) =
∑

k

αkp(yj |xk) + αoutlierp(yj |xoutlier) (2)

where the αk’s are the mixing proportions verifying αk ≥ 0 , αoutlier ≥ 0 and∑
k

αk + αoutlier = 1.

Our aim is to estimate the ACM’s and also their number L. We will iteratively
estimate the ACM’s using the MAP criterion and assuming L is fixed:

x∗ = argmax
x

p(x|y) = argmax
x

[log p(y|x) + log p(x)] (3)

Then a new value for L will be estimated by importance sampling. In the
following we will specify each of the distributions involved in this problem.

2.1 Observation and Prior Models

We assume each stroke has i.i.d. edge points, each modelled by a mixture of Mk

Gaussian densities centered in the snake elements:

p(yj|xk) =
∏
n

p(yj
n|xk) =

∏
n

1
Mk

∑
i

N(yj
n, xk

i ,σ2I) (4)
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where N(y, μ, R) denotes the normal density function with mean μ and covari-
ance R. This model is closely related to the elastic net model [10] and associates
every edge point with a given snake element. For the case of the outlier model,
the contribution of each feature to the potential is a constant, but a different
constant is used for each stroke, V j .

p(yj |xoutlier) =
∏
n

p(yj
n|xoutlier) =

∏
n

N jV j =
(
V j

)Nj

(5)

If V j is set inversely proportional to the size of the corresponding stroke,
N j , then the smaller strokes will also tend to be classified as outliers, and the
ACM’s will be able to bridge the small outlier strokes. Therefore we used V j =
exp(−KN j) where K is a positive constant.

We adopt the prior model proposed in [9] which is the following:

log p(x) =
∑

k

⎛
⎝Eint(xk) +

∑
l �=k

Einter(xk, xl)

⎞
⎠ (6)

where Ei(xk) is a regularization energy that expresses the assumption that each
contour is smooth and Einter(xk, xl) is another regularization energy that ex-
presses the interaction between different active contours.

3 Unsupervised Multiple Active Contours Estimation

The algorithm proposed in [9] described the estimation of multiple models in
which multiple ACM’s compete for the boundaries of the multiple regions. The
algorithm solves the association between strokes and multiple models problem
and also the outlier rejection. However it does not solve the initialization problem
and the estimation of the number of models. To deal with these difficulties
we initiate the algorithm with an arbitrary large number of snakes, L. The
initialization of these L ACM’s is fully automatic; circular ACM’s are randomly
distributed throughout the image, inside the strokes bounding boxes. The size
of the circles is defined by the average size of the bounding boxes or may be user
defined. Then the algorithm iteratively performs the following two steps.

1. Update
The ACM’s are sequentially updated with the Component wise EM algo-
rithm which is summarized in the sub-section 3.1. Convergence is achieved
when all the points move less than a threshold.

2. Sampling
The algorithm relocates the ACM’s by performing Importance Sampling us-
ing the mixing proportions αk as the importance function. The set of ACM’s
xk, k = 1, ...L is sampled in order to obtain a new set of L ACM’s with
the highest values of αk. Obviously some ACM’s will be sampled several
times and other will not be sampled at all. The ACM’s that are not sampled
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are eliminated and the ones that were sampled several times will give rise
to new ACM’s that are equal. However the CEM algorithm will insure they
will converge to different locations since they are updated one at a time.

The sampling step does not change the number of ACM’s. Therefore, in or-
der to reduce the number of ACM’s, we add a model elimination step every P
iterations. In this step we eliminate multiple copies of the models which were
sampled several times and keep only one realization of such ACM. The number
of different ACM’s is the estimated number of models.

3.1 Component Wise EM Algorithm

In the EM algorithm it is assumed that y is incomplete data and that the com-
plete data includes binary labels zj , j = 1, ..., N with zj = {z1

j , ..., zL+1
j }, that

indicate which model generated the stroke; zk
j = 1 means that stroke yj was

generated by model xk. The complete log likelihood is given by:

log p(y, z|x) =
∑

j

∑
k

zk
j log p(yj |xk) (7)

Instead of maximizing (3), the EM algorithm alternates between two steps.
In the E-step it finds the conditional expectation of the complete log likeli-
hood with respect to the unknown x given the observed data y and the current
estimate, x̂ .

Q(x,
�
x) = E

[
log p(y, z|x)|y,

�
x
]

(8)

= E

[∑
j

∑
k

zk
j log

[
αkp(yj|xk)

]]
=

∑
j

∑
k

wj
k log

[
αkp(yj |xk)

]
(9)

where wj
k is a set of weights summing to one assigned to each stroke. Each

weight wj
k represents the soft assignment of stroke yj to the active contour xk.

The weights are given by:

wj
k = p(zk

j = 1|yj ,
�
x) =

αkp(yj |xk)∑
m

αmp(yj|xm)
(10)

In the M-step the estimation of the active contour is obtained by the maximiza-
tion of:

U(x,
�
x) = Q(x,

�
x) + log p(x) (11)

The CEM algorithm sequentially performs one E step and one M step for
each of the ACM’s and iterates until convergence [11]. In our implementation
the order of this estimation is predefined.

The E and M steps will be detailed in the following subsections.
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The E-Step. In the E-step the weights are calculated. Substituting (4) into
(10) we obtain the following expression:

wj
k =

αk

∏
n

1
Mk

∑
i

N(xk
i ,σ2I)

∑
m

αm

∏
n

1
Mm

∑
i

N(xm
i ,σ2I) + αoutlier(V j)Nj

(12)

The mixing proportions are updated by:

αk =
1

N j

∑
j

wj
k (13)

The M-Step. In the M-step the estimation of the active contour is obtained
by the minimization of (11) performed by the gradient algorithm:

xk
t+1 = xk

t − γ∇x(Q(x,
�
x)) (14)

where ∇x represents the gradient. This equation can be rewritten as follows:

xk
t+1 = xk

t − γintfint − γextfext − γinterfinter (15)

where fext(xk
i ), fint(xk

i ) and finter(xk
i ) are external, internal and interaction

forces. External and internal forces are given by expressions (16) and (17):

fext(x
k
i ) = − 1

σ2

∑
j

wk
j

∑
n

(yj
n − xk

i )φσ(|yj
n − xk

i |2) (16)

fint(xk
i ) = −2

(
li−1 − l0

li−1
(xk

i − xk
i−1) +

li+1 − l0
li+1

(xk
i − xk

i+1)
)

(17)

where li−1 =
∥∥xk

i − xk
i−1

∥∥ and li+1 =
∥∥xk

i − xk
i+1

∥∥. The expression of the inter-
action force depends on the application. For instance, if we expect each model
to attract the other models, we can use ϕ(d) = − exp(−d/2σ2

inter) leading to:

finter(x
k
i ) =

1
σ2

inter

∑
l �=k

∑
m

(xk
i − xl

m)ϕ(|xl
m − xk

i |2) (18)

4 Experimental Results

This section presents examples to illustrate the performance of the proposed
method. The examples were performed in the following conditions. Edges were
obtained with the Canny edge detector and strokes were obtained with a con-
nected components labelling algorithm. The external forces acting on each model
unit were multiplied by independent gains to limit the maximum displacement
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Fig. 1. Bacteria Example; 100 initial contours (left) and 21 final estimated contours
(right)

of the model units in each iteration. All the experiments used Δmax = 2 and the
gain factors γint and γinter were chosen manually.

The first example illustrates the performance of the algorithm in the presence
of multiple objects (bacteria). Fig. 1 shows the initial contours on the left and the
final contours on the right. The algorithm was initialized with 100 ACM’s that
were overlapping and the final result was able to separate 21 different objects.
All the objects were correctly associated with a different ACM.

The second example shows the performance of the proposed algorithm ap-
plied to the segmentation of pedestrians in a video sequence. In this example 10
ACM’s were used to segment the image obtained from Fig. 2 a) after background
subtraction. The background estimation was based on modelling the intensity
of each pixel with a single gaussian. Fig. 2 shows the initial contours on the left
and the final contours on the right. The algorithm successfully estimated the
correct number of pedestrians, producing 4 ACM’s.

The third example shows the performance of the proposed algorithm with
nested regions. In this example 50 ACM’s were used to segment inhibition halos

Fig. 2. Pedestrians; 10 initial contours (left) and 4 final estimated contours (right)
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Fig. 3. Microbiologic plate assay; 50 initial contours (left) and 12 final estimated con-
tours (right)

of antibacterial activity in microbiologic plate assays. Fig. 3 shows the initial
contours on the left and the final contours on the right. The algorithm success-
fully estimated the correct number of objects, producing 12 ACM’s and detecting
no outliers.

The final example illustrates the application of the algorithm to a blood cell
image using the outlier model to discard the smaller objects. The algorithm was
initialized with 120 ACM’s and in the final segmentation 27 contours remain.
Fig. 4 shows the initial contours on the left, the final contours in the middle
and the strokes classified as outliers on the right. In this example a couple of
the final ACM’s represent more than one object because they were overlapping
in the image and originated only one stroke. The outliers that were detected
correspond to the smaller strokes present in the image.

Fig. 4. Cell example; 120 initial contours (left), 27 contour estimates (middle) and
outlier strokes (right)

5 Conclusion

This paper presents an algorithm for the extraction of multiple regions using mul-
tiple active contour models (ACM’s). Initialization is automatic, the algorithm
estimates the number of models and also accounts for outlier features detected in
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the image. It is shown that the proposed algorithm is able to robustly estimate
all the deformable contours and to compute the association probability between
strokes and multiple models.
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Abstract. This paper addresses the problem of reconstructing non-
overlapping transparent and opaque surfaces from multiple view images.
The reconstruction is attained through progressive refinement of an initial
3D shape by minimizing the error between the images of the object and the
initial 3D shape. The challenge is to simultaneously reconstruct both the
transparent and opaque surfaces given only a limited number of images.
Any refinement methods can theoretically be applied if analytic relation
between pixel value in the training images and vertices position of the ini-
tial 3D shape is known. This paper investigates such analytic relations
for reconstructing opaque and transparent surfaces. The analytic relation
for opaque surface follows diffuse reflection model, whereas for transpar-
ent surface follows ray tracing model. However, both relations can be con-
verged for reconstruction both surfaces into texture mapping model. To
improve the reconstruction results several strategies including regulariza-
tion, hierarchical learning, and simulated annealing are investigated.

1 Introduction

Many methods acquire high quality 3D shape of opaque object with a diffuse
surface [3], but still not many methods acquire 3D shape of transparent ob-
ject. Usually the reconstruction of transparent object is dealt exclusively from
the reconstruction of opaque object, and vice versa. This is because the percep-
tion of transparent surface is a hard vision problem. Transparent surface lacks
of body and surface reflections, is suffered much from inter-reflection [4], and
lacks of naturally-occurring shape. The only potential sources of surface informa-
tion are specular highlights, environmental reflections, and refractive distortion,
whereas depth information is almost completely unavailable [5]. Only recently,
some prospective techniques for modeling transparent surface have emerged. We
categorize these methods into two groups as follows.

The first group elaborates as much the surface related features as possible to
explicitly define the surface’s shape. It includes a method to recover the shape
of water surface [6], and a transparent surface, projected by a light stripe, using
genetic algorithm [7]. The second group elaborates as much ways as possible to
synthesize a realistic image of transparent object without using any 3D shape
information. It includes a method called environment matting for capturing the
optical behavior of transparent surface from known and controlled background
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for rendering and compositing purposes [2,8]. This method is extended to obtain
the environment matting from uncontrolled backgrounds [9]. The Environment
matte can also be obtained from multiple viewpoints to create novel views by
interpolation [1]. Other method separates overlapped image of glass plates into
reflected and transmitted images [10].

The first group relies heavily on real images and aimed for accurate 3D shape
reconstruction. Whereas the second group relies heavily on synthesized graphical
images and aimed for realistic 2D visualization. The ability to represent realistic
synthetic images is beneficial, not only visually, but also for understanding the 3D
shape. So for example, in medical radiation therapy for control or cure of cancer,
the physician can easily locate cancerous tissue from normal tissue by modeling
transparent 3D distribution of radiation dose to avoid complications [5].

In this paper, we pursue an integrated framework that enables the use of both
synthesized graphical images and real images to infer the 3D shape of transparent
object containing non-overlapping opaque surfaces. It is a neural network (NN)
that minimizes the error between the synthesized projection and the teacher im-
ages in multiple views to approximate the true object’s shape. It analytically re-
fines the vertices position of the initial 3D model using error back-propagation
learning. The main contribution of this paper is the analytic relations between
the vertices position and the pixel value inside projection images of this 3D model
for rendering and learning both transparent and opaque surfaces. Without such
relations we have to heuristically establish a number of trial (candidate) ver-
tex positions and choosing the positions that will maximize some objective func-
tions [11,12]. The problem with such techniques is the appropriate trial number
and positions are hard to determine, hence some additional restrictions such as
texture correlation, smoothness, and silhouette restrictions are needed [13].

2 Problem Formulation

In this section, we set a relation between 3D vertices of a triangle Vk(k =
0, 1, 2) and the pixel value f(x, y) inside projection image of this triangle. In
computer graphics, this relation is called as rendering problem. But here, our
genuine interest is not only to render the triangle but to actually ’learn’ (modify)
the triangle’s vertices based on the pixel value error of its projection image
compared to a given teacher image. For that purpose, we devise an analytic
relation between these two variables. In our framework, the rendering problem is
actually a forward mapping process that should be followed by back-propagation
learning.

2.1 Learning Opaque Surface

If the triangle is opaque, the changes in vertices position give rise to different
surface’s normal N, which in turn give rise to different pixel value F (x, y) for a
given light source pointing to L direction and ambient/diffuse light A spreading
inside the scene. We may write this relation as:

{V0,V1,V2} =⇒ N =⇒ ρλ(N · L) + A =⇒ F (x, y). (1)
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where ρ is surface reflectance and λ is intensity of the illuminant. The A =⇒ B
is read as changes in A give change to B. In the forward mapping process, first
we give the triangle vertices position Vk into our NN. Then this NN uses three
sigmoid gates which mimic AND gate functions to specify whether the pixel
under observation is inside the triangle. If it is inside then the NN assigns a
value of another sigmoid unit placed at its output, i.e., f(x, y), as the value
of that pixel. If the sigmoid gain is set sufficiently high, it produces near flat
intensity surface, except at area closed to triangle edges. The f(x, y) is then
superimposed by ρλ(N · L) + A to give F (x, y). A smooth shaded representa-
tion (Gouraud shading) of F (x, y), i.e., S(x, y), is added to give more flexibil-
ity and stability during learning. Instead of explicitly compute ρλ(N · L) + A,
we use implicit lighting, i.e., we take the average pixel values of the teacher
images at corresponding projection area of the triangle. It is aimed to implic-
itly capture the lighting effects instead of explicitly searching the true lighting
which is complicated. In the backward learning process, we measure the error
E = ‖F (x, y)−G(x, y)‖2 +‖(S(x, y)−G(x, y)‖2, where G(x, y) is the pixel value
of teacher image, to be back propagated for updating Vk as

Vm
k = Vm−1

k − ς
∂E

∂Vk
+ μ�Vm−1

k (k = 0, 1, 3), (2)

where ς is learning rate and μ is momentum constant.Where ∂E / ∂Vk is derived
using a chain rule:

∂E

∂Vk
=

∂E

∂F

∂F

∂N
∂N
∂vk

∂vk

∂Vk
. (3)

2.2 Learning Transparent Surface

If the triangle is transparent, the changes in vertices position also give rise to
different surface normal N, which in turn gives rise to different pixel value I(x, y)
due to reflection R and transmission T of the light ray in that pixel. We may
write this relation as:

{V0,V1,V2} =⇒ Nb =⇒ R + T =⇒ I(x, y). (4)

R = u − (2u · Nb)Nb (5)

T =
ηi

ηr
u − (cos θr − ηi

ηr
cos θi)Nb (6)

cos θr =
√

1 − ηi

ηr

2
(1 − cos2θi) (7)

where u is incoming ray direction as viewed from the center of camera, θi =
−û · N̂b and θr = −T̂ · N̂b, and ηi and ηr are respectively the refraction in-
dex of incident and refracting materials [16]. Here we use Nb, i.e., interpolated
barycentric normal, instead of N. Hence the relation in Equation 4 can also be
written as:

{V0,V1,V2} =⇒ {w0, w1, w2} =⇒ N =⇒ R + T =⇒ I(x, y). (8)
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The Equations (5) are analytic continuous functions. As in opaque surface recon-
struction, we measure the error E = ‖I(R(x, y),T(x, y)) − G(x, y)‖2 to be back
propagated for updating Vk using Equation 2. Whereas ∂E / ∂Vk is computed
by simple chain rule as:

∂E

∂Vk
=

∂E

∂I

∂I

∂(R + T)
(R + T)

∂N b

∂N b

∂w
∂w
∂vk

∂vk

∂Vk
. (9)

2.3 Learning Opaque and Transparent Surfaces

In this study, we implement the ray tracing formulation by blending the flat
shaded, the smooth shaded, and the texture mapped images. We view the flat
shaded (Figure 2 (c)), the smooth shaded (Figure 2 (d)), and the texture mapped
(Figure 2 (f)) outputs respectively preserves the silhouette, the contour, and the
transparency information. Since the texture actually applicable to both opaque
and transparent surfaces, still we can simultaneously reconstruct these surfaces
in a single learning shown in Figure 1 (c). The texture mapped, flat, and smooth
shaded model images implicitly store the lighting information, hence, they can
be safely added up to represent the object.

Fig. 1. Two-ways learning (a). Simultaneous learning using ray tracing (b) and texture
mapping (c).

Fig. 2. The objects to reconstructed (a, b). The projection images of the initial 3D
polyhedron model rendered as flat shaded (c), smooth shaded d), ray traced (e), and
texture mapped (f) images.
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In the forward mapping process, the process until f(x, y) is produced is the
same as in the opaque surface mapping. However, currently we also map the
texture in addition to (N · L) + A to give F (x, y). In the backward learning
process, again we measure the error E = ‖T (x, y) − G(x, y)‖2, where G(x, y) is
the pixel value of teacher image,and T (x, y) = ((G(x, y)+F (x, y)+S(x, y))/3 is
the pixel value of the blended texture image to be back propagated for updating
Vk using Equation 2.

3 Images Acquisition

In this study, we want to reconstruct two transparent objects as shown in
Figure 2 (a) and (b): one is purely transparent (woman torso model) and the
other contains opaque surface (coca-cola bottle with its opaque cap). We analyze
the construction of a regular pattern such as checkerboard pattern put behind
that object. The refractive index of woman torso is 1.5 (acrylic) and bottle is 1.3
(plastic filled with water). For each view point, we take an image of the object
with the background and also an image of the background only. We acquired
eight images for woman torso and six images for bottle. The objects are put
on a turn table and captured using a high resolution (HDTV) camera. We used
two point light sources at the left and the right of the camera and heuristically
tried to reduce shadows and specular reflections. The focus of camera was set
to obtain a just focus for both to view the background through the bottle as
clearly as possible. For our NN learning, we have to pull the object image from its
background by subtracting the image from blue screen matte background [14].

4 Learning Strategy

Our problem to reconstruct the object from its images is surely ill-posed [15]
because we rely on limited number of view images. To deal with such problem,
we refer to regularization techniques that minimizes the criterion functional ε(f):

ε(f) = c(f) + βs(f). (10)

ε(f) consists of the cost functional c(f) which corresponds to the mean squared
error (MSE) at each data point and the stabilizing functional s(f) which spec-
ifies the smoothness constraint of the surface. β is a non-negative parameter to
adjust the weighting between the two functionals. We can directly apply this reg-
ularization technique to our NN learning by defining c(f) = ‖T (x, y)−G(x, y)‖2,
i.e., the MSE between the blended texture and the teacher images and s(f) =
‖F (x, y) − S(x, y)‖2, i.e., the MSE between the flat and the smooth shaded im-
ages. It is desirable for the flat shaded image to be as closed as possible to the
smooth shaded image. Currently, we choose β parameter empirically.

The image’s size and the number of vertices should be balanced. In order to
achieve a well balance between them in each reconstruction stage, we perform
a hierarchical reconstruction. In addition, our system is a complex system with
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many degrees of freedom. Its complexity sharply increases as we add the number
of vertices to be trained. It is possible to get stuck in local minima or meta-
stable results and to also destruct an near optimal state that has been learned
in previous steps. To deal with these problems, we refer to the SA optimization
method [17].

5 Experiments

In this paper, we performed three experiments that are respectively aimed to
observe the 3D reconstruction results during learning, the influence of regular-
ization, and the influence of simulated annealing optimization. These was run
on a client Pentium(R) D CPU 3.00GHz PC, with 2.00 GB RAM.

The first experiment was performed at first at level-0 (200x533 pixels teacher
images and 162 vertices and 320 faces initial icosahedron model) and then per-
formed at level-1 (300x800 pixels teacher images, and 642 vertices, 1280 faces
refined icosahedron model) of hierarchical learning. We set the regularization
parameter β = 1.0 but no SA-optimization. At level-0, we set the learning rate
η = 3.0E − 9, whereas at level-1 we set the learning rate η = 5.0E − 11. At
the two levels we performed 1000 iterations. The frontal and bottom views of
results at level-0 was shown in Figure 3, while the results at level-1 was shown
in Figure 4.

The second experiment was performed at level-0. We compared the error pro-
files of the experiments without and with regularization. In the two experiments
we set the learning rate η = 3.0E − 9. When using regularization, we set the
regularization parameter β = 1.0. We normalized the error profile with regu-
larization by dividing it by (1 + β). The results of this experiment was shown
in Figure 5(a). The regularization was faster and gave lower error, but slightly
more unstable.

The third experiment was also performed at level-0. We compared the error
profiles of experiment with and without SA-optimization. In the two experiments
we use regularization (β = 1.0). We set the initial temperature T = 3.0E11, the

Fig. 3. The first experiment results for the woman torso (left) and cola bottle (right)
at level-0 after 0 (a), 10 (b), 50 (c), 100 (d), and 1000 (e) iterations
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Fig. 4. The first experiment results for the woman torso (left) and cola bottle (right)
at level-1 after 0 (a) and 1000 (b) iterations
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Fig. 5. The second (a) and the third (b) experiments result

Table 1. Results summary

NoReg-Plain Reg-Plain Reg-Plain+SA

Lowest relative error 0.01164 0.00319 0.00315
Comp. time (1000 iterations) 34.47 mins 36.96 mins 37.13 mins.

cooling rate ζ = 0.99, and the learning rate η = 3.0E − 9. The results of this
experiment was shown in Figure 5(b). The SA-optimization make the learning
faster to converge. We summarized the results obtained from each experiment
in Table 1.

6 Conclusion

In this paper, we presented an integrated framework to simultaneously recon-
struct opaque and transparent surfaces from a limited number of views. We
formulated a shape learning method based on analytic functions that relates the
pixel value inside training images and the vertices of an initial 3D shape. Such
functions provide a way to directly refine the vertices based on images difference,
instead of heuristically establish some trial vertices positions. We incorporated



Analytic Reconstruction of Transparent and Opaque Surfaces 387

ray tracing formulation to ensure its generality and future use, and implemented
this formulation as texture mapping to ensure its efficiency and practicality. To
improve the reconstruction results we implemented some strategies including reg-
ularization, hierarchical learning and SA-optimization. We believe our method
will further open ways for practical integration of computer vision and computer
graphics through neural network learning.
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Sedimentological Analysis of Sands

Cristina Lira and Pedro Pina
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Abstract. This paper presents a practical sequence to study sand grains
at the macroscopical scale. The approach consists of two mains phases,
the recognition of the grains and the assessment of some of its characteris-
tics. The method is validated on the dimensional features by comparison
with a sieving procedure through the analysis of eight large sand samples
of different locations.

1 Introduction, Motivation and Data Sets

The understanding of sedimentary grains properties allows the acquisition of
extremely useful information on their genesis and on the processes of trans-
portation and deposition involved but also on the establishement of correlations
between different types of grains and on the discovery of mineral resources [1].

The dimension or size of sand grains is one of the most important properties,
since its simple measurement very often allows characterizing and distinguishing,
in a roughly matter, different types of deposits. Anyhow, a more exhaustive
study is naturally desirable, since the evaluation of properties related to the
shape or to the mineral composition permits to better evaluate these deposits.
The morphometric study of particles, i.e., the study of its shape, elongation
and roundness, among others, allows the additional acquisition of important
information about the agents of transportation and the conditions of deposition.

Measuring size features has been performed by several approaches at labo-
ratorial and industrial levels, being the mechanical sieving technique the most
currently used. This established technique, allows the study of samples of large
dimensions but requires long operational time intervals until a final result is
obtained requiring, in addition, the permanent presence of human operators.

Assessing morphometric properties of sand particles is mainly performed at
laboratorial level using manual techniques but with quite insignificant statistics
essentially due to fastidious and time consuming measurements.

The possibility of applying digital imaging to obtain multiple features of
a grain, namely granulometry, morphometry and mineralogical composition,
on samples of larger dimension, is a hypothesis that naturally emerges (good
overview in [2]). Quite surprisingly, the published studies related to the automa-
tion of such approaches in sedimentology at the macroscopical scale are quite
restrict. The few relevant exceptions applied image analysis to consolidated sed-
iments at the microscopical scale [3,4,5,6], to unconsolidated aggregates of dif-
ferent sizes [7,8,9], but none on sands.

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 388–395, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Thus, the main objective of this paper is to show that an image analysis based
mathematical morphology methodology is able to advantageously substitute the
classical granulometric and morphometric methods not only in scientific terms
(additional measures, more robust and reproducible results with higher statis-
tical significance) but also in operational terms (faster evaluation and higher
operator autonomy). Currently, we are only dealing with the situation where
a low overlapping between grains is permitted to occur. Several types of sands
from different deposits were collected and used in this investigation. Their ori-
gin in the field is quite distinct since they come from a river, a dune, a beach
and a continental platform. This spatial diversity permits to better evaluate the
sensibility of our approach to a larger range of characteristics presented by dif-
ferent types of sands. In particular, one river sample (denoted as A5), one dune
sample (SCP7 Sancha), five beach samples (PFaro, F260, F263, F271 and F275)
and one platform sample (9460) were used (eight in a total). These samples
contained different textural and compositional characteristics (finer to coarser
grains, mainly of quartz, feldspars, heavy minerals and bioclasts). The samples
collected in beach environment are, in general, better calibrated (narrower gran-
ulometrical distributions) and exhibit a more uniform mineralogical composition
than the samples from other locations (see examples in Fig. 1).

2 Methodology

This section describes the proposed sequence, which is constituted by image
acquisition, grain recognition and measurement assessment phases.

2.1 Image Acquisition

The acquisition of images was performed using a flatbed colour scanner. Using a
scanner allowed us to obtain in a simple and reliable way, large digital images of
the samples of sands. The particles are facing the scanner glass with acceptable
narrow size ranges, so it can be considered that all of them are correctly fo-
cused. Moreover, in order to avoid the existence of shadows a black background
was used. The grains of the sands of the different samples were quartered and
winnowed over the scanner glass, which was previously protected with a trans-
parency, and placed in such a way that the contact is permitted but not the

(a) river (b) dune (c) beach (d) platform

Fig. 1. Close views of the sands under study (the height of each image is about 1 cm)
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overlapping between them. The situation where the overlapping is permitted,
like it happens in the field, is not yet addressed in this paper but is already
under development and will be published in a near future.

In the particular case of the sands under study, the spatial resolution fixed to
acquire the images is 1200 dpi, since the limit of the minor granulometrical sand
class available and measured by other methods is 0.063 mm. This way, the chosen
spatial resolution allows identifying the smallest structure in these types of sands
with at least a region of 3 x 3 pixels. Digital images were acquired in true colour
mode (RGB), with a spatial resolution of 1200 dpi, with sizes approximately
equal to 4500 x 4500 pixels. An example of the dimension of images acquired is
presented in Fig. 2.

Fig. 2. Complete sand sample under stdy

2.2 Grain Recognition

At this stage of the methodology, colour information is not necessary, thus the
RGB bands were converted into one single band given by their mean image
or intensity channel. The thresholding of the sand images is very simple and
direct, and one single threshold value is enough to correctly separate the black
background from the lighter grains.

The main problem on the binary images resides in the grains that are touch-
ing each other and that need to be separated or segmented for the posterior
individual analysis. This situation poses no problem for the computation of the
granulometry by openings of increasing size but can produce an important bias
on the morphometric analysis. Thus, an algorithm based on the notion of dis-
tance function and the watershed transform [10] is used to separate theses grains.
It consists of the following main steps:
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1. Distance function: The computation of a distance function of the grains
indicates the distance that each of its pixels is from its borders (for higher
distances, higher grey levels);

2. Negative: Computation of the negative image of the distance function;
3. Closing: Filtering to eliminate local extrema with low significance in order

to minimize the overssegmentation effect;
4. Watershed : Computed on the filtered image, whose resulting catchments

basins constitute the division lines between adjacent sand particles. The
complementary image of those basins is subtracted to the binary image and
a segmented binary image of sand particles is obtained.

The segmentation results obtained for all the studied images are highly satis-
factory. This approach works correctly for grains touching each other and also in
grains where the overlapping degree does not exceed about 20% of the respective
surface. An example of this procedure is presented in Fig. 3.

(a) grey image (b) binary image (c) segmented grains

Fig. 3. Segmentation of grains touching each other

2.3 Measurements Assessment

Grain size. The sand particles tend to locate themselves with their major and
intermediate axis perpendicular to the plane of the scanner glass. In the sieving
method, the axis that controls the passages of the particles through the sieve
apertures is the intermediate axis. Thus, the particle orientation against the
scanner glass permits image analysis to analyse the same fundamental axis.

In what concerns some operator to deal with this dimesnional feature, the
morphological opening, γ(X), is capable of modeling the traditional sieving pro-
cesses [11], by simulating the same processes of the sieves. Particles are progres-
sively eliminated by increasing the size of the structuring element used and their
surface is reduced as in the sieving procedure whereas the size of the sieve is
reduced. In this case, the initial image X is “sieved” by a squared structuring
element B of size λ that eliminates the regions of the grains that do not contain
it completely. By measuring the area of the remaining grains, one obtains the
size distribution function, S(X, λ), cumulative function in measure which is de-
fined by the proportion of points x, that were eliminated by applying openings
of size λ:

S(X, λ) =
Area(X) − Area(ϕλB(X))

Area(X)
. (1)
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In order to compare both granulometries, the one obtained from the image
analysis data and the one obtianed from sieve data, some additional calculations
are necessary. In fact, the sieving technique measures the weight of the grains
passing through sieves while image analysis measures the area of the grains.
Thus, in order to compare both methods, the measured areas need to be trans-
formed into weight. This transformation is made presently in a simple form by
assuming that all particles are spheres and have the same density. This way, the
volume V is computed with grain radius r:

r =
√

area

π
V =

4
3
πr3 . (2)

Grain shape. The shape of a particle is defined as the spatial geometric form
of a grain [12]. The parameters more commonly used in sedimentology to de-
scribe shape are: sphericity, shape, elongation and circularity indexes. Sphericity
measures the degree to which a particle shape is similar to the shape of a perfect
sphere, i.e., how similar are the three dimensions of a particle.

The elongation index (EI) is defined by the ratio between the minor projected
axis of a particular Wp and its major projected axis Lp [13], the shape index
(SI) [14] uses the same particle measures in an inverse way, and the circularity
indexes (CI) [14], is given by:

EI =
Wp

Lp
SI =

Lp

Wp
CI =

√
Lp.Wp

L2
p

. (3)

3 Results

Grain Size. The dimensions of the grains of sand of the eight samples under
study were measured by the classical sieving procedure and by the application
of openings of increasing size.

The sieving technique consists of using a column of sieves, which are meshes or
metallic grids with different square apertures, placed from the smallest (bottom)
to the largest one (top), over which is placed the sand material. The vibration
of the column of sieves, permits to the grains smaller than the mesh of a certain
grid to pass over the aperture and to fall into the adjacent smaller grid, whereas
the grains bigger than those aperture are retained in that sieve. The size of the
sieve is given as the size of the aperture measured perpendicularly to the wires
through the centre of the hollow space. The results are normally presented in
the form of cumulative granulometrical curves of the weight of grains between
two consecutive sieve sizes. This sieving operation was performed in laboratory
for each one of the eight samples. The same samples were analysed through their
images and the respective granulometries were also computed. The granulome-
tries computed by both techniques are presented for each sample in the eight
graphics of Fig. 4. It can be noticed, that all size distributions obtained through
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the two techniques present a very similar behaviour, except in one situation:
the matching is quite perfect in 5 samples (A5, PFaro,F260, F263 and F275),
very good in 2 samples (SCP7 Sancha and F271) and more or less acceptable in
1 sample (9460). The discrepancy in this last case is possibly due to the char-
acteristics of the constitutants of the sample (located in the platform), which
presents a higher frequency of grains in the smaller dimension class maybe not
correctly represented within the spatial resolution of the images, leading to an
underestimation of the grains under 0.063 mm by the image analysis approach.
We think that the acquisition of images with a sensor with a higher spatial reso-
lution could overcome this problem in samples presenting finer grains. Anyhow,
it can be concluded, from the examples studied, that both curves have the same
behaviour and that image analysis distributions are extremely near the reference
one given by the sieving technique.

Fig. 4. Granulometrical curves by image analysis and sieving
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Grain Shape. In what concerns morphometric features, we have computed for
each one of the approximately 10 000 grains contained into each one of the eight
samples, the parameters previosuly defined. By projecting the elongation, shape
and circularity indexes into a triangular diagram we are able to identify three
clusters (Fig. 5): one constituted by the river and platform samples(cluster indi-
cated as 1), another by the dune sample and a beach sample collected closer to
the dune (cluster 2) and the last one constituted by the 4 beach samples (clus-
ter 3). This result confirms what was somehow expected, that the sand samples
located in different locations should present different morphometries, but which
was not possible to clearly demonstrate before due to very poor statistics given
by very few grains manually analysed.

Fig. 5. Projection of morphometric features in a triangular diagram

4 Conclusions and Future Developments

We can conclude that the results obtained by the image analysis approach pre-
sented in this paper and applied to the situation were the touching and small
overlapping of grains is permitted are highly satisfactory. Not only the com-
parison of the granulometrical curves obtained by image analysis and sieving
present a high matching degree, but also, the morphometric features extracted
permitted to verify on a larger population of sand grains the differences between
samples collected in different locations. It can be concluded that in the present
situation, the image analysis approach can substitute advantageously the clas-
sical techniques. Dealing with the real situation in the field, where overlapping
between grains is the normal situation, is our next step. The possibility of be-
ing able to compute the granulometry through the images captured “in situ”,
avoiding the necessity of collecting the samples to posterior laboratorial analysis,
is our current research objective. One possible way is to estimate the complete
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granulometry from the partial views of the grains using the random closed sets
approach, in particular the dead leaves model, proposed by Matheron in the
1960’s.
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10. Beucher, S.: Lantuéjoul, Ch.: Use of watershed in contour detection. In:
Proc. Int. Workshop on Image Processing: Real-Time Edge and Motion Detec-
tion/Estimation. Rennes, pp. 2.1–2.12 (1979)

11. Matheron, G.: Random sets and integral geometry. Wiley, New York (1975)
12. Carver, E.R.: Procedures in sedimentary petrology. Wiley, New York (1971)
13. Folk, R.L.: Petrology of sedimentary rocks. Hemphill Pub. Co., Austin (1965)
14. Davis, J.C.: Statistical and data analysis in geology. Wiley, New York (2002)



Catadioptric Camera Calibration by Polarization
Imaging

O. Morel, R. Seulin, and D. Fofi

Laboratoire Le2i UMR-CNRS 5158, IUT Le Creusot, 12 rue de la Fonderie,
71200 Le Creusot, France

Abstract. A new efficient method of calibration for catadioptric sensors
is presented in this paper. It is based on an accurate measurement of
the three-dimensional parameters of the mirror by means of polarization
imaging. While inserting a rotating polarizer between the camera and
the mirror, the system is automatically calibrated without any calibra-
tion patterns. Moreover it permits to relax most of the constraints related
to the calibration of the catadioptric systems. From the measurement of
three-dimensional parameters, we apply the generic calibration concept
to calibrate the catadioptric sensor. The influence of the disturbed mea-
surement of the parameters on the reconstruction of a synthetic scene
is presented. Finally, experiments prove the validity of the method with
some preliminary results on three-dimensional reconstruction.

1 Introduction

Conventional perspective cameras have limited fields of view that make them
restrictive in some applications such as robotics, videosurveillance and so on. A
way to enhance the field of view is to place a mirror with surface of revolution
in front of the camera so that the scene reflects on the mirror omnidirectionaly.
Such a system, composed of both lenses (dioptric) and mirrors (catoptric) for
image formation, is called catadioptric. Several configurations exist, and those
statisfaying the Single View Point constraint are described in [1].

We developed a new approach of calibrating catadioptric sensor by polar-
ization imaging. This method enables to calibrate all mirror shapes since it is
based on the measurement of the three-dimensional parameters such as: height
and normals orientations of the surface. The only constraint is that an ortho-
graphic camera has to be used. To calibrate the system we apply the generic
calibration concept developed by Sturm and Ramalingam [2,3].

The article is structured as follows. Next section reminds previous work on
paracatadioptric calibration since the measurement of the surface normals by po-
larization imaging induces orthographic projection. Then, after presenting some
basic knowledge about polarization imaging, we detail how to calibrate the sen-
sor with the generic calibration concept. In section 4, simulations are presented
to illustrate the influence of the parameters measurement on the quality of the
reconstruction. Preliminary results on a calibrated spherical mirror are also de-
scribed. Finally, the paper ends with a conclusion and a few words about future
work to be undertaken.
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2 Catadioptric Cameras Calibration

2.1 Previous Work

The most obvious used calibration method is an approach based on the image
of the mirror’s bounding circle [4,5]. It has the main advantage of being easily
automated, but the mirror has to be constructed properly so that the mirror
boundary accurately encodes the intrinsic parameters. In the field of paracata-
dioptric camera calibration, more robust methods are based on the fitting of
lines projected onto the mirror [6,7,8]. This approach has also some shortcom-
ings: lines have to be precisely detected and the optical axis of the camera is
assumed aligned with the symmetry axis of the paraboloid.

2.2 The Generic Calibration Concept

The previous calibration methods for omnidirectional catadioptric sensors as-
sume that: (i) the mirror shape is perfectly known; (ii) the alignment of the
sensor is perfect so that the single viewpoint constraint is satisfied; (iii) the
projection model can be easily parametrized. Some methods relax the second
constraint and a few relax the first, but before some recent works [9,10,2] cali-
brating methods always underlie an explicit parametric model of projection. This
new model has the advantage of working for any type of camera (catadioptric
systems, central cameras with or without distortion, axial cameras, etc.) and to
handle heterogeneous systems [3] (for instance, a sensor composed of an omnidi-
rectional camera and a perspective camera). By applying polarization imaging
to this method, our system enables catadioptric sensor calibration by relaxing
the three constraints listed above: (i), (ii) and (iii).

3 Polarization Imaging

Polarization imaging enables to provide three-dimensional information of the
specular objects thanks to the “Shape from polarization” method [11,12]. The
physical principle is the following: after being reflected, an unpolarized light
wave becomes partially linearly polarized, depending on the surface normal and
on the refractive index of the media it impinges on. A partially linearly polarized
light has three parameters: the light magnitude I, the degree of polarization ρ
and the angle of polarization ϕ.

To calibrate the mirror used in our catadioptric sensor, the polarization state
of the reflected light is measured thanks to a rotating polarizer placed between
the camera and the mirror. The complete sensor (mirror and camera) and the
polarizer are placed into a cylinder made of paper sheet (Fig. 1). Each light
intensity of pixels is linked to the angle of the polarizer and to the polarization
parameters by the following equation:

Ip(α) =
I

2
(ρ cos (2α − 2ϕ) + 1) , (1)
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where α is the polarizer angle. The purpose of polarization imaging is to compute
the three parameters, I, ϕ, and ρ, by interpolating this formula. Fig. 2 shows
the image of the degree and the angle of polarization of a spherical mirror.

Fig. 1. Polarization imaging: after being reflected by the mirror, the light becomes
partially linearly polarized

(a) (b) (c) (d)

Fig. 2. Images of the polarization parameters that are needed to reconstruct the mirror
shape: (a) degree of polarization (ρ ∈ [0, 1]), (b) angle of polarization (ϕ ∈ [0, π]); and
disambiguation of the azimuth angle: (c) segmented image (Iquad ∈ {0, 1, 2, 3}), (d)
image of the resulting azimuth angle φ (φ ∈ [−π/2, 3π/2]).

3.1 Relationship Between the Polarization Parameters and the
Normals

Wolff and Boult have demonstrated how to determine constraints on surface
normals by using the Fresnel reflectance model [13]. The surface of the mirror
is assumed to be continuous and described by a Cartesian expression: z = f(x, y).
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Therefore, each surface normal is given by the following non-normalized
expression:

n =

⎡
⎢⎣

−∂f(x,y)
∂x

−∂f(x,y)
∂y

1

⎤
⎥⎦ =

⎡
⎣p = tan θ cosφ

q = tan θ sinφ
1

⎤
⎦ . (2)

The aim of “Shape from polarization” is to compute the normals from the angles
θ and φ. By combining Fresnel formulas and the Snell-Descartes law one can find
a relationship between the degree of polarization ρ and the zenith angle θ [12].
For specular metallic surfaces, the following formula can be applied [14]:

ρ(θ) =
2n tan θ sin θ

tan2 θ sin2 θ + |n̂|2
, (3)

where n̂ = n(1 + iκ) is the complex refractive index of the mirror.
The reflected light becomes partially linearly polarized according to the nor-

mal of the plane of incidence. Because our imaging system uses a telecentric lens,
orthographic projection is assumed and the azimuth angle φ can be inferred from
the angle of polarization ϕ:

φ = ϕ ± π/2. (4)

3.2 Disambiguation of the Normals

From the equations (3) and (4) the surface normals are determined with an
ambiguity. Since mirrors used in catadioptric vision are of convex and revolution
shape, a segmented image Iquad can be directly computed from the near center
of the mirror (Fig. 2(c)). This image has four gray levels that represent the four
quadrants oriented with an angle in ]0, π/2[. The algorithm of the disambiguation
process described in [15] is applied with the segmented image Iquad and the angle
of polarization image ϕ:

1. φ = ϕ − π
2 ,

2. φ = φ + π if [(Iquad = 0) ∧ (φ ≤ 0)] ∨ [Iquad = 1] ∨ [(Iquad = 3) ∧ (φ ≥ 0)] ,

where ∧ and ∨ represent, respectively, the logical operators AND and OR. The
result of the disambiguation is presented Fig. 2(d).

3.3 Calibration

To calibrate our imaging system, we use the generic calibration concept [16]. The
concept considers an image as a collection of pixels, and each pixel measures the
light along a particular 3D ray. Thus, calibration is the determination of all
projection rays and their correspondence with pixels. A 3d-ray is represented
here by a couple of points which belongs to the ray:

A = [xa, ya, za]T , B = [xb, yb, zb]
T

. (5)
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To get these points, the 3D surface of the mirror has to be computed. Once the
normals are given by polarization imaging, the surface shape of the mirror (z) can
be computed thanks to the Frankot-Chellappa algorithm [17]. This integration
process gives us the surface height of the mirror with a constant of integration.
Nevertheless, this constant is not required since the orthographic projection is
assumed. To calibrate the sensor, let us take the point A = [x, y, z]T , that both
belongs to the mirror surface and the 3D-ray, be the first point of the ray (Fig. 1).
The second point B of the ray can be written as:

B = A + k [tan 2θ cosφ, tan 2θ sinφ, 1]T , (6)

where k is a non-null constant.

4 Experiments

4.1 Simulations

We have previously shown that the three-dimensional parameters of the mir-
ror (z, θ, φ) are required to calibrate the catadioptric system according to the
generic calibration concept. To illustrate the influence of the parameters on the
reconstruction quality, the normals angles θ and φ were computed from a theo-
retical paraboloidal mirror with a 7◦ misalignment from the camera optical axis.
The parameters are then disturbed by gaussian noise and a synthetic scene is
reconstructed thanks to the generic calibration concept. Fig. 3(a) and Fig. 3(b)
show respectively reconstruction error of a synthetic scene induced by noisy
measurement of θ and φ.
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Fig. 3. Reconstruction error induced by noisy measurement of the normals parameters:
(a) θ angle, (b) φ angle

The scene is reconstructed with or without the mirror reconstruction meaning
that the integration process is carried out or not. Fig. 3 shows, on the one
hand, that the scene reconstruction is quite sensitive to the measurement of the
parameters θ and φ. On the other hand, the integration process is not required,
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Fig. 4. Reconstruction error induced by noisy calculation of the mirror height z

and we can assume that the z parameter is negligible. In addition, Fig. 4 shows
reconstruction error of the scene by only adding gaussian noise to the z mirror
height. The reconstruction quality remains good even if the mirror height is very
noisy (the mirror height is 1cm and the radius is 2cm).

4.2 Preliminary Results

Preliminary results were carried out with a catadioptric sensor made of a camera
with a telecentric lens and a calibrated spherical mirror (radius = 1cm). Let us
notice that our system did not satisfy the single view point constraint. Neverthe-
less this property is not required here for the three-dimensional reconstruction
of a scene. As described in section 3, our catadioptric sensor is calibrated by
measuring the three-dimensional parameters of the mirror with a liquid crystal
polarization rotator placed between the camera and the mirror. To evaluate the
accuracy of our system, we compare the parameters (θ, φ and z) obtained with
our system to the theoretical parameters of the mirror (Fig. 5).

The mean quadratic errors of the angles θ and φ are respectively 0.49◦ and
1.02◦. Fig. 6 shows the reconstruction of the synthetic scene by taking the cal-
ibration made by polarization imaging. This scene represents a room of size
500 × 500 × 250cm with elements such as windows, doors and table. 3 images

Fig. 5. Measurement errors of the three-dimensional parameters: (a) angle θ, (b) an-
gle φ and (c) deviation map of the mirror z
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Fig. 6. Simulation of the reconstruction: theoretical scene in blue and reconstruted
scene in red. Black dots depict the three locations of the sensor.

of the catadioptric sensor are used to triangulate the points of the scene. Since
the mirror is spherical, slants of the surface are high and three-dimensional re-
construction errors may increase highly. Nevertheless, the synthetic scene is well
reconstructed with an average error of 9.68cm.

5 Conclusion

In this paper, a new efficient calibration method for catadioptric sensors has been
presented. This method is based on the three-dimensional parameters measure-
ment of the mirror thanks to polarization imaging. The calibration can be per-
formed “in one click” even by a non-specialist as it only requires an optical
apparatus, no image processing and no calibration pattern. Contrary to tradi-
tional methods, it deals with misalignment of the sensor and work for any shape
of mirror (regular or not). Experimental results prove that the sensor is properly
calibrated and a satisfactory three-dimensional reconstruction of the scene can be
obtained. We have also shown that the 3D-shape of the mirror can be neglected in
comparison with the normals orientations. A parabolic mirror is to be manufac-
turated and future work will consist in creating a paracatadioptric sensor in order
to compare our method to other methods known in the litterature on real scenes.
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Abstract. This paper deals with a compact catadioptric omnidirec-
tional stereovision system based on a single camera and multi-mirrors
(at least two mirrors). Many configurations were empirically designed in
previous works with the aim to obtain a good 3D reconstruction accuracy.
In this paper, we propose to use optimization techniques for omnidirec-
tional catadioptric stereovision design, by using a stochastic local search
method in order to find a good sensor (number, relative positions and
sizes of mirrors). We explain principles of our approach and provide au-
tomatically designed sensors with a number of mirrors from two to nine.
We finally simulate the 3D-reconstruction of a real environment modeled
under a ray-tracing software with some of these sensors.

1 Introduction

It is very well stated that omnidirectional catadioptric vision has several advan-
tages thanks to its wide view field. It is achieved by using convex mirrors and a
conventional camera, offering a wide view field. The conventional omnidirectional
stereovision systems employ either a pair of rotating cameras simultaneously [1]
or two omnidirectional catadioptric cameras [7]. The first solution is better to
obtain very good resolution, but it requires the rotation of the cameras and
this prevents treating scenes with moving objects. The second approach avoids
this problem; but it needs two cameras and two mirrors, thus increasing the
weight and size of the sensor. It also has all the conventional stereovision disad-
vantages: synchronization problems between the cameras and their calibrations,
optical response differences between cameras, and so on. Another way to recover
stereovision is to exploit only one camera that observes several mirrors. This
makes it possible to design sensors which have many advantages compared to
the systems which use several cameras. These advantages are: single calibration,
no synchronization problem, similar optical response, wide view field, rigid link
between mirrors, and finally a reduced cost. Several works have dealt with a
single camera and planar mirrors [2,3]. We restrict our overview to the stereo
system based on a single camera (single lens) and convex mirrors. A stereo vi-
sion system based on a single conventional camera (one lens) and two specular
spheres “SPHEREO” (convex mirrors) was probably used first by [9].
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In [9], the authors studied four stereo systems with a single camera looking
at mirrors. They discussed the case of all single view point systems (planar,
ellipsoidal, hyperboloidal and paraboloidal). A stereovision system that used
two vertically aligned mirrors with different curvatures (“two-biconvex lobes”)
has been proposed by [12]. This approach is not suitable for small sensors; so,
more recently, [11], proposed a single camera with nine spherical (they are easier
to make) mirrors: a principal one with eight others around it.

Our paper aims to optimize (in the sense of the increasing of accuracy and
isotropy) the design of the stereovision system using a single camera and multi-
mirrors [8]. This problem can be seen as an analysis of stereovision quality
([10,13], for example can be referred to). Usually, only two mirrors are con-
sidered to design these sensors without any optimization process. In this work,
we study the behavior of these sensors if we modify the number (at least two),
the positions and the sizes of mirrors.

As the search-space has an exponential size depending on the number of mir-
rors and their coordinates, an enumerative method is prohibitive. One possible
approach to avoid an exhaustive process of all possible mirrors configurations
(with discrete domains values), is to use meta-heuristic techniques which will
be able to provide a solution near enough the optimal configuration. Such a
method has a computational cost usually lower than enumerative approaches.
Some examples of these techniques: simulated annealing, genetic algorithms, ant
colony, local search algorithms, etc. Such methods are incomplete, as only a
small part of the search-space is visited. Thus, there is no guarantee that the
optimum will be found. Within the framework of this paper, we have studied
the genetic and stochastic local search approaches. The genetic algorithm needs
to use a large set of individuals (candidate solutions) to evolve correctly towards
good solutions. Therefore, the associated computational time was prohibitive
and solutions found were very similar from stochastic local search ones. Thus,
the complete study was done with a stochastic local search algorithm. The paper
is organized as follows: first, the formal framework is motivated and the stochas-
tic local search principles are briefly described. We then present the method
to solve the problem of finding a sensor which has low 3D reconstruction er-
ror. Experimental results are provided to illustrate its efficiency and to compare
with previous works. Finally, promising further possible paths of research are
discussed.

2 Single Camera and Multiple Mirrors Systems

We can build such kind of sensor with any shape of mirror: spherical ([11]),
conical, hyperboloidal, paraboloidal, . . . We choose paraboloidal mirrors for this
study; indeed, paraboloidal mirrors are better for a stereo single camera and
for multi-mirrors, thanks to the orthographic projection (telecentric lens and a
camera) and the invariance to the horizontal translations of the camera relatively
to the positions of the different mirrors. We keep the single view point even if
we translate mirrors.
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2.1 Camera and Mirrors Model

Let P = (X, Y, Z) be a three dimensional point and p = (x, y, z)i be its image on
mirror i. The projection center of mirror i, is at dX, dY, dZ as shown in Fig. 1.

The general model for the not-centered mirrors, is given by (1):
⎛
⎝x

y
z

⎞
⎠

i

=
hi√

X2+Y2+Z2+Z

⎛
⎝X

Y
Z

⎞
⎠ (1)

where X = X −dX,Y = Y −dY,Z = Z −dZ and 4hi is the latus rectum (where
h is the focal length).

The orthographic projection of those points on the camera is given by (2):

(
u
v

)
i

=
(

αu 0 u0
0 αv v0

)⎛
⎝x + dX

y + dY
1

⎞
⎠

i

(2)

where (u, v) are the image coordinates of this point and (αu, u0, αv, v0) are in-
trinsic camera parameters.

To show the principle of the 3D reconstruction, we consider only two mirrors
(see Fig. 1).

Equations (1) and (2) are available even if we simultaneously combine hori-
zontal and vertical shifts. dXi, dYi and dZi represent translations between the
general frame and mirror i’s frame (respectively dXj , dYj and dZj for frame j).

2.2 3D Reconstruction and Error

In this section we explain how to reconstruct a real point from a sensor built
with one camera and two mirrors (one image with two omnidirectional pictures).

Fig. 1. Stereovision system with two mirrors and reconstruction error
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Considering two images (obtained thanks to two mirrors), the main problem is
to find the real point corresponding to its position in the two images. When there
is no noise the problem is trivial. In the case of noise, the rays can not meet and
the problem is how to find the real point that we call “back-projected point”.
This problem is known as “triangulation” problem which corresponds to finding
the intersection of two rays in space. Let (u′, v′)1 and (u′, v′)2 be respectively
the coordinates of the reflected points of P on the image plane thanks to the
two mirrors. These points can be obtained thanks to the Harris detector [4], for
example. As there is some noise, (u′, v′)1 and (u′, v′)2 are not the correct values.
Let (u, v)1 and (u, v)2 be correct values that are close to (u′, v′)1 and (u′, v′)2
whose rays meet in P (Fig 1). As described in [5], there are many methods to find
the back-projected point knowing (u′, v′)1 and (u′, v′)2. We used a minimization
distance method between the rays from (u′, v′)1 and (u′, v′)2. This method can
be easily adapted to any number of mirrors and is simple to implement.

The reconstruction error associated to P is the distance between P and its
back-projected point P ′. The shorter this distance, the better the configuration
is. For any environment E (i.e. a set of points), the reconstruction error is the
mean of all the reconstruction error associated to each point belonging to E. We
choose this criterion among many others and we have to compute it regardless
of the number of mirrors.

3 Method to Optimize Stereovision Sensor Design

Stochastic local search algorithms have been commonly used for many years to
solve optimization problems. We briefly define main principles in the following
(for more information you can refer to [6]).

3.1 Stochastic Local Search Algorithm

We have developed a dedicated Stochastic Local Search algorithm to solve this
problem. The parameters are the number of mirrors, the size of the sensor and
the surface where mirrors are places. The algorithm starts with a random feasi-
ble solution (coordinates and radius of all mirrors) and its reconstruction error
is estimated. The reconstruction error of a given solution consists in the mean
distance between a finite set of randomly chosen real points from a cubic envi-
ronment and their associated back-projected points. The aim of this algorithm
is to “walk” across (in the sense of a step-by-step movement) the search-space
storing the best possible solution (the one which obtains the minimal reconstruc-
tion error). This walk is stopped when an empirical time out is reached. From a
given feasible solution, the next step is computed as follows: the set of the neigh-
borhood of this solution is computed. The neighborhood of a solution is the set
of solutions from which we increment or decrement the corresponding domain
value of only one mirror parameter (coordinates or radius). The solution with
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the lowest reconstruction error of the neighborhood is chosen for the step. To
escape local extrema (i.e. solutions in the search space from which no single
search step can achieve an improvement of reconstruction error), random choices
are introduced in the choice of the best neighboring. At each step, a random
choice occurs with a probability, ’p’(empirically set at 0.5 in this study).
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Fig. 2. Mean error, success rate and geometry of final solution for a number of mirrors
from 2 to 9

3.2 Results

Let E be the environment to be reconstructed. E is a cubic volume around
the sensor. A preset number of points (set at 500 in the following experiments)
uniformly distributed in E are chosen to be representative of this environment.
If a point is not seen by at least two mirrors, it is not considered during the
reconstruction process. The mirrors are put on an n×n square below the sensor.
Within the framework of this study, we define some constraints: the mirrors can’t
overlap each other, they can’t overflow out of the sensor image and the mirrors
are on the same plane (z = 0).

The dedicated local search algorithm has been implemented in C language and
run on Power Mac G5 under 10.4 Mac OS X system. Within the experimental
framework of this study, the sensor is characterized by an image plane with
1000 × 1000 pixels and a surface for mirrors equal to 5.6cm × 5.6cm1. Before
back-projecting one given point from the image plane, we choose a random
point from a distance of 1

2 pixel from the initial one. The environment is a
cube with edges of size 500 cm in order to simulate a realistic environment.

1 Corresponding to the maximal size of telecentric lens.
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The final solutions found by the our algorithm for a number of mirrors from
2 to 9 are presented in Fig. 2. Let’s consider the top left solution describing
a two mirror solution provided by the algorithm. The mean distance between
3D-points and their associated back-projecting points is equal to 40.3 cm and
the percentage of points that could be reconstructed is 98.667%. Finally, the
described solutions in Fig. 2 show that the four mirror configuration obtains
the best accuracy among all the experimentations done within the framework of
this study. These results confirm that the empirical sensor designed in [8] and
named “TwoTwo” is within this framework also the best as possible. Moreover,
we have obtained the same results with cylindrical environments (with different
radius values and height). Another advantage of the four mirror solution is that
the distribution error becomes more isotropic and the environment is fully 3D
reconstructible.

4 Validation and Discussions

The configurations we found have been simulated under POVRAY2 in order to
validate reconstruction from realistic images. To do it, a 3D realistic environment
has been modeled and targets that will be used as ground truth have been
set on it. The image acquired by the configuration with four mirrors is shown
on the left of Fig. 3(b). From this image, points (target corners Fig. 3(a)) are
extracted by a semi automatic method: hand selection and subpixel detection
of the position. Curves on Fig. 4(b) present distance (error) between detected
points in images obtained by two mirror and four mirror configurations (from
Fig. 2) and theoretical points. Characteristics of these detections are very closed
(see table 1) because the image size obtained by two and four mirrors are quite
the same (see Fig. 2).

(a) The ten targets (T1 ..
T10) used for simulation

(b) with 4 mirrors (c) with 9 mirrors

Fig. 3. Images acquired by one, four mirror and nine mirror configurations from Fig 2

2 Persistence Of Vision RAY tracing software.
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Fig. 4. 3D errors reconstruction and pixels error for Two and Four mirrors
configurations

Table 1. Image Points errors and 3D points errors

pixels 3D points (in cm.)
Configuration Mean Std Mean Std Max

Two 0.74 0.16 92.95 190.80 959.32
Four 0.71 0.15 47.05 92.10 392.21

In order to compare the quality of 3D reconstruction (or triangulation), we
used the mean error of the reconstructed points and the behavior of the recon-
struction around the sensor. Indeed, it is easy to see that in the case of two
mirror configuration, it is not possible to reconstruct points near to the axes
passing through mirror centers. This is what we call the singularities.

A linear method has been used for the 3D point triangulation [5]. Curves on
Fig. 4(a) present reconstruction errors between the real point and the recon-
structed one for the configurations with two and four mirrors. Table 1 gives for
each configuration the 3D mean error, the standard deviation and the maximum
error. These curves and this table show that the four mirror configuration is
better than that obtained by two. Fig. 4(a) and 4(b) show that reconstruction
error is very high whereas the pixelic error is not necessarily high. The error is
high for the targets situated on (or near) singularities axes (see points 37 to 40)
for the two mirrors configuration. In the case of four mirror configuration, it is
always possible to find a couple of mirrors to avoid singularities.

The configuration with five mirrors has been tested, because it is very close
to the configuration with four mirrors. Its error reconstruction is quite higher
and the mirror situated in the center did not improve the sensor because it is in
the blind area of the image (camera self occlusion). For configuration with more
mirrors, the point detection is very difficult due to the small size of the mirrors,
for example, in Fig. 3(c) for the nine mirror configuration.
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5 Conclusion and Future Works

In this paper, we have defined an automatic approach based on stochastic local
search algorithms, usually used to optimize criteria of combinatorial problem
solutions, to design sensors for omnidirectional catadioptric stereovision. Within
the framework defined for this paper, our Stochastic Local-Search-like method,
gives solutions for the design of sensors from two to nine mirrors. Thus, original
configurations that have not yet been considered are provided in particular for
sensors with five and nine mirrors. These configurations have been simulated
thanks to the POVRAY software and the images have been treated to extract
corner positions to be reconstructed. We choose this experimental conditions
because the ground truth is easy to obtain in order to evaluate founded config-
urations. The next step of the study is to extend and improve this method to
design solutions relaxing constraints of our framework such as overflow and over-
lap of mirrors. Another work consists in considering solutions where the mirrors
aren’t on the same plane (i.e. vertical shift) and can have different shapes.
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Abstract. It has recently been demonstrated that the fundamental
computer vision problem of structure from motion with a single cam-
era can be tackled using the sequential, probabilistic methodology of
monocular SLAM (Simultaneous Localisation and Mapping). A key part
of this approach is to use the priors available on camera motion and scene
structure to aid robust real-time tracking and ultimately enable metric
motion and scene reconstruction. In particular, a scene object of known
size is normally used to initialise tracking.

In this paper we show that real-time monocular SLAM can be ini-
tialised with no prior knowledge of scene objects within the context of a
powerful new dimensionless understanding and parameterisation of the
problem. When a single camera moves through a scene with no extra
sensing, the scale of the whole motion and map is not observable, but
we show that up-to-scale quantities can be robustly estimated.

Further we describe how the monocular SLAM state vector can be
partitioned into two parts: a dimensionless part, representing up-to-scale
scene and camera motion geometry, and an extra metric parameter rep-
resenting scale. The dimensionless parameterisation permits tuning of
the probabilistic SLAM filter in terms of image values, without any as-
sumptions about scene scale, but scale information can be put back into
the estimation if it becomes available.

Experimental results with real image sequences showing SLAM with-
out an initialisation object, different image tuning examples and scenes
with the same underlying dimensionless geometry are presented.

1 Introduction

Structure From Motion (SFM) [5], classically solved as batch process, has
recently been reformulated as a sequential probabilistic estimation problem,
propagating and benefitting from available priors along an image sequence. The
probabilistic approach is based on SLAM techniques from the mobile robotics
field, using either the Extended Kalman Filter (EKF) [3,6] or particle filtering
methods such as FastSLAM [4]. This rigorous Bayesian approach is producing
a significant improvement both in matching robustness and computation speed.
Systems built using commodity cameras and computers have shown real-time 30
fps. robust performance in indoor or outdoors scenes with a hand-held camera.

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 412–419, 2007.
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It is a well known fact in SFM that a moving calibrated camera observing a
scene can recover scene geometry and camera motion only up to a scale factor
— scene scale is an non-observable magnitude if only bearing measurements are
made. Unlike SFM, probabilistic SLAM methods use prior information: a camera
motion model, scene depth priors and some known structure. These priors both
aid sequential tracking (by defining search regions) and enable the computation
of a metric scene scale. In particular, current monocular SLAM methods [3,6]
have used extra information in the form of a known initialisation object to fix
scene scale.

In this paper we show that this non-visual information is in fact not essential
for solving the tracking problem and that no known target object needs to be
added to the scene. While this means that overall scene scale cannot intrinsically
be recovered, real-time tracking can still proceed — and if extra information does
become available later, scale can be put back into the scene map.

This is enabled by a novel understanding of the monocular SLAM problem,
based on the Extended Kalman Filter (EKF), in terms of dimensionless param-
eters. The new parameterisation is derived using Buckingham’s Π theorem [1]
which relies on the necessity for dimensional correctness in any formula and
hence any estimation process. Our monocular SLAM algorithm therefore recov-
ers dimensionless, up-to-scale geometry, and also provides benefits by allowing
previous tuning parameters to be rolled up into a canonical set which give an
important new understanding of the uncertainties in the system now in pixel
units. These parameters in the image provide a natural way of understanding
image sequences, irrespectively of the frame rate and actual scene size.

Further, we show that alongside the main dimensionless part of the SLAM
state vector we can add an extra parameter representing metric scale. During
tracking, vision-only measurements do not reduce the uncertainty in the scale
parameter but only in the dimensionless scene geometry. However, any mea-
surement containing metric information such as odometry, a feature at a known
depth or the distance between two features can be added when available and
will correctly affect both the scale and the dimensionless scene geometry.

2 Monocular SLAM Estimation Process

The state of the system in EKF SLAM is traditionally represented by a state
vector x, composed of a group of parameters referring to the camera motion, xv,
and n others representing every feature in the map, yi [7,2].

x = (xv,y1,y2, . . . ,yn)� (1)

In hand-held camera monocular SLAM, a smooth camera motion is usually
supposed. The motion model in this paper is the same as in [3]: a constant ve-
locity model with unknown acceleration inputs, aW

k and αC
k . These linear and

angular accelerations are represented by zero mean known standard deviations
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(σa and σα) Gaussian noise . The camera state vector includes camera location,
rotation quaternion, and linear and angular velocities:

xv =
(
rWC ,qWC ,vW , ωW

)
(2)

The equation that updates the state camera vector at every step is:

fv =

⎛
⎜⎜⎝

rWC
k+1

qWC
k+1

vW
k+1

ωC
k+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

rWC
k + vW

k Δt + aW
k Δt2

qWC
k × q(ωC

k Δt + αC
k Δt2)

vW
k + aW

k Δt
ωC

k + αC
k Δt

⎞
⎟⎟⎠ (3)

Inverse depth parametrization for point features [6] is also used in this pa-
per. This parametrization codes features by the ray extracted at first feature
observation (defined by the 3D location of the optical centre of the camera and
azimuth-elevation angles) and the inverse depth along this ray:

yi = (ri, θi, φi, ρi) = (xi, yi, zi, θi, φi, ρi) (4)

When a feature is newly initialized from a monocular camera, only information
about the ray can be retrieved. As no information is available about depth, an
initial inverse depth Gaussian prior on ρi ∼ N (ρ0, σρ0 ) is applied in order to cover
with 95% probability the range of depths from the closest possible to infinity.

We propose to split the state vector into a metric parameter d — unobserv-
able with only-vision measurements — and a dimensionless scene and camera
part. Doing this, the state vector is partitioned according to observability with
a monocular camera. Camera measurements will reduce scene geometry uncer-
tainty, but not the uncertainty in the metric parameter d.

x =
(
d,ΠWC

r ,qWC,ΠW
v ,ΠC

ω ,Πy1 , . . .
)�

(5)

The mapping from the state vector to metric scene geometry is a non-linear
computation involving the dimensionless geometry and the parameter d:

rWC = dΠWC
r , vW = dΠW

v Δt, ωW = dΠW
ω Δt (6)

yi = (dΠxi, dΠyi, dΠzi, θi, φi, Πρi/d) (7)

3 Buckingham’s Π Theorem Applied to Monocular
SLAM

Buckingham’s Π Theorem [1] is a key theorem in Dimensional Analysis. It
states that physical laws are independent of units. Given a dimensionally
correct equation involving n quantities of different kinds: f(X1, X2, X3, ...,
Xn) = 0 the existing relationship between the variables can be expressed also
as: F (Π1, Π2, Π3, ..., Πn−k) = 0 where Πi is a reduced set of n − k independent
dimensionless groups of variables, and k the number of independent dimensions
that appear in the problem.
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The monocular estimation process can be expressed as a function:
(
rWC ,qWC ,vW , ωW ,y1, . . . ,yn

)�
= f(σa, σα, σz , z, Δt, ρ0, σρ0 , σv0, σω0) , (8)

where vector z stacks all the image measurements along the image sequence.
Table 1 summarizes all the variables involved in monocular SLAM estimation
and and their units.

Table 1. Dimensionless parameters and the corresponding variables involved

r q v, σv0 ω, σω0 z,σz aW , σa αC ,σα xi, yi, zi θi, φi ρi, σρ0

l 1 lt−1 t−1 l−1 lt−1 t−1 l−1 1 1 lt−2 t−2

Based on the equation above, dimensionless groups must be chosen. The pa-
rameters ρ0 and Δt are the parameters of the two dimensions involved (length
and time) chosen to form the dimensionless groups. (Table 2).

Table 2. Dimensionless numbers and the corresponding involved variables

Πr Πq Πv Πω Πρi Πσv0 Πσω0 Πσρ0 Πz Πσz Πσa Πσα

rρ0 q vρ0Δt ωΔt ρi
ρ0

σv0ρ0Δt σω0Δt
σρ0
ρ0

z σz σaρ0Δt2 σαρ0Δt2

4 Dimensionless Monocular SLAM Model

The state vector is composed of dimensionless parameters defining camera loca-
tion, rotation and velocities, and the map features:

xv = (Πr,q,Πv,Πω)� Πyi = (Πri , θi, φi, Πρi)
� (9)

The dimensionless state update equation is:

fv =

⎛
⎜⎜⎝

Πr
WC
k+1

qWC
k+1

Πv
WC
k+1

Πω
WC
k+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Πr
WC
k + Πv

WC
k + Πa

WC
k

qWC
k × q(Πω

WC
k + Πα

WC
k )

Πv
WC
k + Πa

WC
k

Πω
WC
k + Πα

WC
k

⎞
⎟⎟⎠ (10)

Next the monocular camera measurement equation is detailed. First, features
coded in inverse depth must be converted to 3D points in the world reference:

ΠW
h = Πri + Πρim(θi, φi) , (11)

where m(θi, φi) is the unit vector defined by the pair of azimuth-elevation angles.
These world-referenced 3D points are converted to the camera frame:

ΠC
h = RCW (ΠW

h − Πr) , (12)

and then are projected into the camera using the pinhole model:



416 J. Civera, A.J. Davison, and J.M.M. Montiel

υ =
ΠC

h |x
ΠC

h |z
ν =

ΠC
h |y

ΠC
h |z

(13)

Finally, camera calibration including radial distortion is applied to obtain
pixel coordinates from angular coordinates.

There camera measurements clearly do not involve the size of the scene. If
the metric parameter d has to be estimated, other types of measurements must
be made. For instance, the equation that gives the distance between two points:

D(P1,P2) = d
√

(Πy2 |x − Πy1 |x)2 + (Πy2 |y − Πy1 |y)2 + (Πy2 |z − Πy1 |z)2(14)

5 Image Interpretation of Dimensionless Parameters and
Image Filter Tuning

The most representative of the dimensionless parameters can be seen in Figure 1.
Their geometrical interpretation as camera angles is detailed here.

1/ ρ0 1/ ρ0

Δ tσa
2

Π a Π r
zΠα σ z

r

(b)(a) (c) (d)

Fig. 1. Dimensionless monocular SLAM parameters

Figure 1(a) shows the dimensionless parameter Πσa. The product σaΔt2 rep-
resents the effect of the acceleration noise on the camera location. This value
divided by 1/ρ0 gives the angle represented in the figure. This angle can be seen
as the parallax allowed to a feature at depth 1/ρ0 due to camera acceleration.

The camera angular acceleration covariance in Figure 1(b) can clearly be
interpreted as an angle between frames, and can be mapped to image pixels.
Image measurements and image noise, in Figure 1(c) are directly measured in
the image, so they are already dimensionless angles.

The translation estimate, Πr (in fig 1(d)), can also be seen as the angle defined
by the translation between frames and the initial inverse depth.

As a consequence of this interpretation, EKF tuning is greatly simplified.
Image values, observable in an image sequence, replace non-observable 3D real
world values. Tuning parameters are related to image motion and no assumptions
on the 3D scene are done.
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6 Real Image Results

Real image experiments without adding any target to the scene has been per-
formed. The first one shows how the scale of the scene in usual monocular SLAM
depends on the prior knowledge of the scene. The second one illustrates the use
of image tuning and the reduction in the number of tuning parameters. In the
third experiment, the same image tuning is used in two different sequences which
have different metric qualities but lead to the same image motion. All of the se-
quences have been recorded with a IEEE 1394 320×240 monochrome camera at
30 fps. A wide angle lens is used.

6.1 Dependence of Scene Scale on a Priori Parameters

The same sequence was processed with the dimensional EKF SLAM algorithm
varying the ρ0 parameter. Figure 2 shows the estimation for ρ0 = 0.5m−1 and
ρ0 = 0.1m−1. Notice that the estimated depth of the scene (the distance between
the camera and the points in the bookcase) tends to be at the depth prior
(2m and 10m). The two estimated scenes have the same form, the difference
is just the scale of the axis. If ΠWC

r = ρ0rWC and Πyi were estimated using
the dimensionless monocular SLAM proposed, these two experiments would be
normalized into one, in which normalized depth tends to be at dimensionless ‘1’.

Fig. 2. Left: sample. Centre: EKF SLAM estimation result ρ0 = 0.5m−1. Right: EKF
SLAM estimation result ρ0 = 0.1m−1. Feature uncertainty in red and blue, the camera
uncertainty in cyan and the camera trajectory in yellow.

6.2 Image Tuning in a Pure Rotation Sequence

This sequence is a pure camera rotation in a hallway. Dimensional monocular
SLAM should have been tuned with real camera accelerations and depth priors.
As these values are not observable, they need to be assumed. Dimensionless
monocular SLAM is tuned directly with image values.

Two experiments with the same Πσa = 0, Πσz = 1pxls values but different
tuning in Πσα: a)Πσα = 2pxls, and b)Πσα = 4pxls has been performed (Fig. 3.)
Because of the image tuning, their effect can be directly seen in the 95% image
search regions size for the map features.
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Fig. 3. Pure rotation image search regions. Left: sample image. Centre: Πα = 2pxls.
Right:Πα = 4pxls.

It is important to notice that, in the previous paragraph, neither 3D scene
assumptions nor time between frames Δt are needed in the filter. The tuned
values are the allowed image motion between frames due to camera linear and
angular acceleration and image noise.

6.3 The Same Image Tuning for Different Sequences

Two translational sequences have been recorded walking along a corridor and
looking at the wall. In the first one, the distance from the wall was 2.5 metres. In
the second, the distance from the wall was twice (5 metres), the distance walked
along the corridor the same, and the walking velocity was double (therefore, the
number of frames of the second sequence is half the first one). Although they
are two different experiments, the image motion in both sequences is the same,
and dimensionless monocular SLAM has to be tuned with same values. In this
experiment, these values were: σz = 1pxl, σa = 2pxl and σα = 2pxl. Notice
again the simplicity of image tuning compared with 3D tuning, in which you

Fig. 4. Two equivalent sequences. First and last images and 3D estimated geometry.
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have to imagine the depth prior and the 3D accelerations, unobservable with a
single camera. Figure 4 shows the results of both estimations.

The dimensionless estimated translation can be interpreted as the translation
in units of the initial depth prior. As the wall is twice as far in the second
sequence, the second sequence’s estimated translation is half. It can also be
noticed that, as the normalized translation is smaller in the second experiment,
the normalized 3D point positions are estimated with less accuracy and have
larger uncertainty regions.

7 Conclusions

Up-to-scale results from real-time, EKF based monocular SLAM without an
initialisation target are presented. As no known points are included in the es-
timation, the real size of the scene cannot be recovered. Nevertheless, a scaled
estimation is obtained, its size depending on priors introduced to the filter.

In order to represent the non-observability of the real size of the scene, a
new monocular SLAM parameterisation is presented. This approach separates
the geometric problem of estimating a point map and camera motion up to
scale from the unobservable real size of the map and motion. A parameter that
codes the real size of the scene is added to the state vector, but single-camera
measurements do not involve this value. As a consequence, its value cannot be
estimated with single camera measurements.

Buckingham’s theorem was used to build the dimensionless state vector in
this new EKF approach. A geometrical interpretation of the dimensionless pa-
rameters as angles allows a simplified tunning of the filter: the number of tuning
parameters is reduced and no 3D assumptions of the scene are made.
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Abstract. Camera calibration is necessary to obtain 3D information from 2D 
images of a scene. Different techniques exist which are based on photo-
grammetry or self-calibration. As a result of the calibration the intrinsic and 
extrinsic camera parameters are computed. A lot of work has been done in 
camera calibration and also in data pre- and post-processing techniques. From a 
practical point of view, it is quite difficult to decide which calibration method 
produces the best results and even whether any data processing at all is 
necessary. 

This paper defines the best performance camera calibration algorithm. Based 
on the state of the art of all camera calibration processes, including pre- and 
post-processing data, a camera calibration method is chosen on the grounds of 
robustness and ease of handing. After, the calibration method is improved 
adding pre- and post-processing statements. Data treatment reduces the noise of 
the measurements and optimum performance is thus achieved. Its performance 
is tested with both simulated and real data and best results are always 
computed. The aim is to define a complete method which will allow all camera 
calibration situations to be easily resolved. 

Keywords: Camera calibration, 2D template, distortion rectification, data 
normalization, non-linear calibration.  

1   Introduction 

Camera calibration is necessary in order to resolve applications in which it is 
necessary to obtain quantitative data from images with certain accuracy. Precise 
calibration provides distance measurements of the scene from images or allows 
locating an object in absolute to the coordinate axes of the scene or relative to any 
other object. Consequently, it is possible to resolve industrial applications of part 
assembly or obstacle avoidance in robot navigation. This information is very useful in 
path planning or robot control. On the other hand, if 3D reconstruction is carried out, 
using several images of the same scene without movement, it is possible to relate both 
optical rays to compute the position of the point 3D in the scene.  

Camera calibration computes the intrinsic and extrinsic camera parameters. 
Intrinsic parameters model the geometry of the camera and the optical features of the 
sensor and also define image distortion due to imperfections intrinsic to the camera. 
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Extrinsic parameters provide the position and orientation of the camera with respect 
to the coordinate axes of the scene. 

Several methods are now being used for camera calibration. These methods can be 
classified following different criteria. If the template features are taken into account, 
there are methods which use three, two and one-dimensional templates and others that 
do not use any template. If a three-dimensional template is used, only one image of 
the template; however it requires complex planning to reduce the errors in the 
template [6]. When two-dimensional templates are used, several images should be 
taken of it from different positions and orientation. The camera can change its 
position or the two-dimensional template can be moved. It is not necessary to know 
the positions from where the images are taken [7]. This method is more versatile, 
since the creation of the template is easy. Calibration methods based on one-
dimensional templates are useful if systems with several cameras are to be calibrated. 
Since it is necessary to take images of the template with all the cameras, if three or 
two-dimensional templates are used, it is very difficult to locate the template where it 
can be seen with all the cameras at the same time. The template should be transparent. 
This is because using a one-dimensional template is very useful if a system with 
several cameras has to be calibrated [8]. Take into account the set of algorithms which 
compute the distortion of the camera, there are methods which use epipolar and 
trilineal restrictions between pairs and triplets of images respectively, to define the 
radial distortion and other which are based on the perspective ideal projection 
criterion [1]. 

The paper is structured as follows. Section 2 gives decides which camera 
calibration methods obtain best performance according with existing comparisons. 
Section 3 describes the base of the calibration method. Section 4 describes how it can 
be improved using data pre- and post-processing techniques like data correction and 
normalization and how radial distortion can be avoided. Section 5 shows experimental 
results and the paper ends with some conclusions. 

2   Calibration Methods 

The state of the art of the calibration process does not provide much help in choosing 
an efficient method of camera calibration in all situations. Salvi [4] compares the 
calibration methods developed between 1982 and 1998 and the Tsai method shows 
better performance, in spite of the fact that it requires high precision in the input data. 
On the other hand Zhang’s method [7], which is not included in Salvi’s comparison 
[4], represents a new era in the camera calibration process. This method uses images 
of a 2D template taken from different camera positions and orientations. In this way, 
the advantages of camera self calibration are combined with the points coordinate-
based calibration. This calibration method is very flexible; since the camera and the 
template can be moved freely and also as many images as are wanted can be taken 
without measuring any point in the template. Sun [5] compares the Tsai method with 
Zhang’s method. On one hand, Tsai produces a precise estimation of camera 
parameters if the input data are not very corrupt. Since 100 point in the template is 
necessary and its coordinates should be referred to a fixed origin, careful design of the 



422 C. Ricolfe-Viala and A.-J. Sanchez-Salmeron 

calibration template and a very accurate coordinate measurement are necessary. 
Nevertheless, errors are committed and in practice results are not as accurate as 
expected. This is shown by Sun [5]. On the other hand, Zhang’s method based on a 
2D template does not require either a special design or precise measurement of the 
points. Sun obtains camera calibration with a hand-made template and better results 
are computed with Zhang’s method. Also, the sensibility of the calibration algorithm 
to errors in the measures can be improved by increasing the spotted number in the 
template, simply by printing a chessboard with more corners. The results of the 
comparison show the flexibility and adaptability of Zhang’s method since it can be 
performed on any scene.  

From the point of view of the computed model, experiments with medium quality 
cameras realized by Salvi [4] and Sun [5] suggest that it is reasonable to consider 
tangential distortion, zero misalignment and second-rate radial distortion. Considering 
a fourth-rate radial distortion can be useful if the input data is not very corrupt. If 
radial distortion is not considered, results can be improved by including tangential 
distortion and image decentring components.  

Taking into account the results of all of these authors, Zhang’s method is used as a 
reference for camera calibration. A version of this method uses circles to avoid 
coordinate measurement in the template. On the other hand, Zhang’s method can 
include data normalization as defined by Hartley [2], or points corrections in the 
template established by Lavest [3]. It can also be improved by correcting distortion in 
the image before using data from it as is suggested by Ahmed [1]. In order to improve 
Zhang’s camera calibration method, data normalization and distortion correction will 
be used to achieve best performance of camera calibration with the aim of defining a 
calibration method based on Zhang’s that includes all improvements in order to 
establish the best performance calibration method to date.  

3   Camera Calibration with Planar Pattern  

Camera calibration estimates the camera model. In this case, only the lineal model 
without distortions will be computed: 

[ ] [ ] ii ptrrrKptRKq ······ 321λλ ==  (1) 

Matrix K contains internal camera parameters. Vector t and matrix R are the 
external camera parameters. Zhang in [7] presented a novel camera calibration 
method based on the homographies between a planar calibration pattern and its 
images from several camera locations. The method assumes the planar pattern 
situated at zw=0 of the scene coordinate system. Denoting ri as the ith column of the 
rotation matrix of the camera R and t its the translation vector in the scene coordinates 
system, the initial model is transformed in the homography H. This homography H 
defines the coordinates qi=(ui,vi,1)T in the image of a point pi=(xi,yi,1)T of the planar 
pattern. This is qi=H·pi. Several images are taken of the planar template and a 
homography H is computed for each one. Given m homographies, its elements can be 
arranged in a expression V·b=0 where V is a 2mx6 matrix and vector b contains 
intrinsic camera parameters. At least three images are necessary m≥3, in order to 



 Improved Camera Calibration Method Based on a Two-Dimensional Template 423 

obtain a unique solution. Once b is estimated the camera internal parameters can be 
computed. When K is known, the external parameters for each image can be 
computed knowing the corresponding homography. See [7] for details. 

3.1   Non Linear Camera Calibration Step 

The algorithm described in the previous subsection gives values for camera para-
meters solving a linear equation. If non linear parameter estimation is carried out, the 
residual error is minimized. In the case of camera calibration, error e represents the 
geometrical error between measured points coordinates in the image qi

# (# represents 
noisy data) and projecting points coordinates of the template with the estimation of 
camera parameters at this moment qi*=M#·pi

#. In this case, camera parameters are 
computed directly, a=(αu, αv, u0, v0, tx1, ty1, tz1, θ1, φ1, ψ1, … txm, tym, tzm, θm, φm, ψ m tx, 
ty, tz). The index to minimize is: 
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This index depends on 4+6 parameters, where 4 correspond to intrinsic and 6 to 
extrinsic camera parameters.  

4   Improving the Camera Calibration Method 

In the previous section linear and non linear camera calibration using a two-
dimensional template is described. In order to compute the optimal parameters p* 
which satisfy function f for a set of measurement x’, initial values p0 close to the best 
values are computed in the linear step and are used as the starting point in the non 
linear searching. To obtain a set of parameters very close to the real ones in the linear 
step, two data pre-processing techniques will be used. These data pre-processing 
techniques developed by Hartley [2] and by Ahmed [1] reduce the noise level in the 
measurements and therefore parameters computed with this data are closer to the real 
parameters by using only linear techniques.  

Hartley normalizes point’s coordinates to obtain a well conditioned matrix A [2] 
and to increase the robustness of the computing process. Ahmed [1] makes an 
estimation of the image distortions produced by the camera. The distortion is first 
computed and then is used to correct the image. This process decreases the noise of 
the data from images. The aim is to pre-process the data before it is used to calibrate 
the camera. 

4.1   Camera Distortion Calibration 

Section 3 gives a brief description on how to estimate the camera linear model using 
only a few images of the planar template. Now a method to estimate the camera 
distortions is used. Mainly, radial distortion is considered although tangential or 
decentring distortion can be considered. If distortion is corrected previously, noise is 
reduced and calibration process improves its results. If camera distortion parameters 
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are known beforehand, image distortion can be rectified, but unfortunately, this 
information is not available. This is because lens imperfections are different in each 
one and it also depends on how they are mounted and focused. Therefore 
manufacturers cannot give standard values for distortion parameters that model a set 
of lenses. Consequently, it is necessary to define a method to estimate camera 
distortion parameters based on invariant geometric features of the image. In this case, 
the method of Ahmed [1] is used. It is based on the principle that an image of straight 
lines is always straight. Since the planar pattern is a chessboard which has a lot of 
straight lines, image distortion can be computed using non linear techniques. In this 
case, it is expressed as a function of the deformation of the straight lines.  

4.2   Data Normalization 

Regarding the robustness of camera calibration, the results must not depend on a 
point’s situation either in the scene or in the image. Formally it could be said that 
given a set of points pi in the scene, and its images qi, its positions can change using 
two transformation matrices Tp and Tq obtaining piº=Tp·pi and qiº=Tq·qi. If both set of 
points are related with the homography such as qi=H·pi, this expression is transformed 
with the new set of points in qiº=Tq·H·Tp

-1·piº. This equation gives a new homography 
Hº which relates both sets of transformed points piº and qiº and which is Hº=Tq·H·Tp

-

1. If a point’s position does not affect the calibration process, the camera model H can 
be computed using an alternative method. It consists of transforming the initial set of 
points pi and qi into piº=Tp·pi and qiº=Tq·qi using two transformation matrices Tp and 
Tq. Hº is computed with Tp and Tq and the camera model H is obtained using H=Tq

-

1·Hº·Tp, which can be directly computed with the initial sets of points pi and qi. This 
procedure may appear feasible, however it is not accurate. Hartley [2] shows that 
algorithms based on algebraic error minimization are affected by the points position. 
This is because restrictions are not the same for |h|=1 and |hº|=1. Since, algebraic 
error minimization is used to compute homographies data normalization is necessary. 
The Hartley data normalization consists of translating them so that centroide is the 
origin of the reference system. Translation is different for points in the template than 
for those in the image. Moreover, coordinates are scaled so that the average length is 
one. Scaling is the same in both axes but differs in the image and template. 

4.3   Camera Parameters and Points in the 2D Template from Different Positions 

In the non linear step of camera calibration, only camera parameters were searched in 
subsection 3.1. Since the points coordinates in the template pi

# are corrupted with 
noise, camera parameters can be searched together with them. In each iteration, a new 
set of estimated points pi*, will decrease their noise level from pi

# since they generate 
a smaller geometrical error. In this case points coordinates in the template pi

#, are 
included with the camera parameters in the vector to be estimated. Since the 
calibration method defined by Zhang [7] is used, the template is two dimensional and 
the parameter vector is changed to a=(αu, αv, u0, v0, tx1, ty1, tz1, θ1, φ1, ψ1, … txm, tym, tzm, 
θm, φm, ψ m, x1, y1, x2, y2, … xn, yn). m is the number of template images and n 
corresponds to the number of points. In this case, the searching dimension is 
4+6m+3n. 
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5   Experimental Results 

Camera calibration based on a two-dimensional template is improved as follows. 
First, image distortion is estimated in order to correct the point coordinates and to 
reduce the noise level. Second, once image distortion is corrected, data is normalized 
to obtain a robust estimation in the linear camera calibration step. With this data pre-
processing, the performance of linear camera calibration improves considerably. 
Referring to the non linear camera calibration step, point coordinates in the template 
are included in the index. As will be seen in the experimental results section and 
Lavest [3], if point coordinates in the template are corrected, errors in camera 
calibration depend only on noise of point coordinates in the images. Since noise in the 
image has been greatly reduced with data pre-processing, the estimated parameters 
are very close to the real ones. Following figure 3 of [7], calibrating results are 
improved if angles between the pattern and image planes are between 50º and 70º. 
Concerning the number of images, figure 2 of [7] shows that starting from 7 or 8 
images, the improvement of results is not significant.       

The effect of distorted points is tested first. What is done is to test how results are 
improved when image distortion is corrected before calibrating the camera with a 
planar pattern. Since simulated data is used, method efficiency is tested by changing 
the conditions of the calibration process. The next step is to simulate how distortion 
correction and data normalization improves the calibration result. Using real values of 
the previously computed k1, k2, p1 y p2, the intrinsic camera parameters αu, αv, u0, v0, 
are calibrated with pre-processed data and then compared with calibration without 
pre-processing. Point coordinates in the image and the template are corrupted with 
noise separately in order to test the effects in both cases.  

Figure 1 shows the results of the linear camera calibration of αu, u0 using corrected 
and non-corrected images. Obviously, the results with corrected images are better. In 
the case of performing a linear camera calibration only, this is a necessary step in 
order to compute the best results. If non-linear camera calibration is performed, image 
correction should also be performed, since non-linear searching improves the results 
if the starting searching point is close to the best parameters. In addition, better results 
will be obtained if the image is not distorted. 

The last step in the camera calibration process is the non-linear parameter 
searching. Initial values for the camera parameters are used to start a non linear 
searching which minimizes a given index. Initial searching values are computed 
previously in the linear step. It does not matter if data normalization has been carried 
out, since point coordinates are the same and therefore no linear searching converges 
to the same value. However, if starting values are computed using data normalization, 
non-linear searching ends earlier, since the initial values are closer to the best ones. If 
image distortion is corrected, non-linear calibration reaches results similar to the real 
ones. This is because the data used is closer to the real data. From the point of view of 
the index to be minimized, figure 2 shows the results of non-linear searching when the 
noise level in the point coordinates in the template is changed. Image coordinates are 
corrupted with Gaussian noise of σ=0.5. Here, two results are compared. In one case, 
the index is minimized looking for camera parameters only and in the other, the 
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camera parameters are computed together with the point coordinates in the template. 
When template point coordinates are included in the index, the algorithm rectifies its 
coordinates, noise is minimized and errors depend only on the noise of point 
coordinates in the image. This fact indicates that the point coordinates in the template 
should be included in the non-linear searching index. 

Table 1 shows the results of calibration a camera model VCM50. It has been 
calibrated using all possibilities presented in the paper. It is assumed than better 
results are computed with the non linear searching of camera parameters together with 
points coordinates in the template since simulated results gives betters results. 

Table 1. Camera parameters for a real camera VCM50  

 Without data normalization Data Normalization No linear 
  Dist. correction  Dist. correction  Parameters +coordinates 
αu 931.2 932.2 933.5 929.3 932.1 930.4 
αv 947.2 942.2 945.4 941.5 942.5 940.1 
u0 312.5 318.5 326.8 322.4 323.5 317.5 
v0 238.7 237.9 242.5 242.9 242.8 241.9 
φ 1.12 1.45 1.12 1.45 1.11 0.98 

 

Fig. 1. Effect of image distortion correction and data normalization with linear estimation of 
camera parameters 

 

Fig. 2. Effect of noise in the template with non-linear camera calibration. Points in the image 
have a noise level of σ=0.5 pixels. 
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6   Conclusions 

The robustness of the calibration process depends on the quality of measurements, the 
model to be computed and the calibration method. Based on an exhaustive review of 
the state of the art in camera calibration and techniques which can improve calibration 
methods, the most effective estimation method to resolve all the problems involved in 
camera calibration has been defined. The method is based on Zhang  [7]. It can be 
improved adding data pre-processing and improvement of the non-linear searching of 
camera parameters. Data pre-processing consisted of correcting errors in point 
coordinates corrupted by image distortion and data normalization in order to increase 
the robustness of the computing process. With regard to the non-linear camera 
calibration step, it is very important to include point coordinates of the template in the 
non-linear searching process, since they are corrected and noise decreases.  
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Abstract. Minimally Invasive Surgery (MIS) is one of these applications where 
usually only 2D information is available to perform a 3D task. It requires a high 
degree of sensory-motor skills to overcome the disengagement between action 
and perception caused by the physical separation of the surgeon with the 
operative site. The integration of body movements with visual information 
serves to assist the surgeon providing a sense of position. Our purpose in this 
paper is to present a solution to the exterior orientation problem based on 
computer vision, as a tool in assisted interventions, locating the instruments 
with respect to the surgeon. Having knowledge of the 3D transformations 
applied to the instrument and its projections in the image plane, we show it is 
possible to estimate its orientation with only two different rotations and also its 
relative position if scale information is supplied. Experimental results show 
some advantages of this new algorithm such as simplicity and real-time 
performance. 

1   Introduction 

The visual sense in the Minimally Invasive Surgery (MIS) environment is very 
limited. It imposes a 2D window of the operative site. Thus, approaches focused to 
assist the surgeon are fundamentally based on image content recognition and 
presentation. Dutkiewicz et al. [1] reported an experimental verification of surgical 
tool tracking to be presented in the center of the image. Sun et al. [2] studied the 
distribution of markers to accurately track the instruments, and Payandeh et al. in [3] 
established models for the lens distortion. These are examples of emergent techniques 
to assist the surgeon.  

Healey in [4] describes the mediation between action and perception in the MIS 
environment. There he states that it is necessary to effectively link action to 
perception in egocentric coordinates to overcome the indirect cognitive mediation. It 
can be seen in Fig. 1 an application where exterior orientation is used and presented 
through enhanced visual information to assist the surgeon. This presentation is 
commonly performed by augmented reality. From early approaches as the one by 
Milgram et al. [5] in different kinds of applications, to more specialized in surgery as 
the works of Devernay [6], recognizing objects seen by the endoscope in cardiac MIS, 
or Pandya and Auner [7], designing a system for surgical guidance, this visual 
enhancement has served as a human-machine interface. 
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Fig. 1. Application of the exterior orientation as a tool to assist the surgeon in MIS through 
perception enhancement to control the action 

We suggest that the estimation of the position and orientation of the surgery 
instruments with respect to the camera is capable to provide this egocentric 
information. Computer vision issues as the 2D-3D pose estimation and exterior 
orientation deal with this problem and can be applied to aid the surgeon in this kind of 
procedures. 

Several methods have been proposed to estimate the orientation of a rigid object. 
The first step of these algorithms consists in the identification and location of some 
kind of features that represent an object in the image plane. Most of them rely on 
feature points and apply either closed-form or numerical solutions, depending on the 
number of objects and image feature correspondences. Some works dealing with a 
small number of correspondences apply iterative numerical techniques as [8] and [9]. 
Other methods apply a direct linear transform (DLT) for a larger number of points  
as [10] or reduce the problem to close-form solutions, as [11] applying orthogonal 
decomposition. 

In this work the features of interest will be lines associated to object direction. 
There are several approaches that use this kind of features to estimate motion 
parameters. Some early works solve a set of nonlinear equations, as the one in [12], or 
use iterated extended Kalman filters, as show in [13], through three perspective views. 
Works by [14] combine sets of lines and points for a linear estimation, and [15] 
discuss the estimation of motion and structure parameters studying the inherent 
stability of lines and explain why two views are not enough. 

An important property of using lines, as reported in [16], is the angular invariance 
between them. Then, our goal is to study this property to provide a robust method that 
solves orientation estimation problems. It is possible to compute the orientation of an 
object through the analysis of angular variations in the image plane induced by its 3D 
rotations with respect to the camera. It can be seen as an exterior orientation problem 
where objects in the scene are moved to calculate their pose. 
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Some action-perception applications can be seen as a fixed camera visualizing the 
objects to be manipulated. In our case, these objects are represented by lines. Three 
views taken after applying two different rotations generate three lines in the image 
plane. Each of them defines a 3D plane called the projection plane of the line. These 
planes pass through the projection center and their respective lines. Their intersection 
is a 3D line that passes through the origin of the camera frame and the centroid of the 
rotated object, as seen in Fig. 2. 

The motion analysis of angular variations between lines permitted us to estimate 
the orientation of a given object. Therefore, we propose a robust method to compute 
the orientation through rotations. These rotations must be known. They could be just 
sensed or fully controlled, as is the case of robotic applications. Experimental results 
showed some advantages of this new algorithm such as simplicity and real-time 
performance. 
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Fig. 2. A 3D line through the origins is the intersection of the projection planes after two 
rotations of the object 

2   Orientation Estimation Algorithm 

Motion analysis of feature lines is the base of our orientation estimation algorithm. In 
this case known 3D rotations of a line and its subsequent projections in the image 
plane are related to compute its relative orientation with respect to a perspective 
camera. Vision problems as feature extraction and line correspondences are not 
discussed and we assume that the focal distance f as known. Our goal is, having this 
image and its associated motion information, to estimate the orientation of an object 
represented by feature lines, with the minimum number of movements and to identify 
the patterns that permit to compute a unique solution without defined initial 
conditions.  

2.1   Mathematical Analysis  

The result of the projection of a line in the image plane is called the projection plane. 
It passes through the projection center of the camera and the 3D line. This 3D line is 
the representation of an object. From three views taken after applying two different 
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rotations of the object, three lines are projected in the image plane. Thus three 
projection planes can be calculated. These planes are Pa, Pb and Pc, and their 
intersection is a 3D line that passes through the projection center and the centroid of 
the rotated object, being the centroid the point of the object where it is rotated. Across 
this line a unit director vector vd can be determined easily by knowing f and the 
intersection point of the projected lines in the image plane. Our intention is to use this 
2D information to formulate angle relations with the 3D motion data. 

Pa

Pb

Pc

va

vb

vc

vd

Pa

Pb

Pc

va

vb

vc

vd

 

Fig. 3. Unit vectors Va, Vb and Vc are constrained to lie on planes Pa, Pb and Pc respectively. 
Their estimation can be seen as a semi sphere where their combination must satisfy the angle 
variations condition.  

Working in the 3D space permits to take advantage of the motion data. In this case 
where the object is represented by a 3D line, the problem could be seen as a unit 
vector along the line direction that is rotated twice. In each position of the three views 
this unit vector lies in one of the projection planes as seen in Fig. 3. It is first located 
in Pa, then it rotates an angle α1 to lie on Pb and ends in Pc after the second rotation by 
an angle α2. To estimate the relative orientation of the object we first obtain the 
location of three unit vectors, va, vb and vc, that coincide with the 3D motion data and 
lie on their respective planes. To do this we know that the scalar product of: 

1. cosa bv v α=                                                           (1) 

  2. cosb cv v α=                                                          (2) 

Calculating the angle γ between the planes formed by vavb and vbvc from the motion 
information, we have 

( )( ) cosa b b cv v v v γ× × =                                                 (3) 

And applying vector identities 

1 2. cos cos cosa cv v α α γ= −                                               (4) 

With the set of equations conformed by (1), (2) and (4) we have to calculate the 
three unit vectors. However, since there is not a unique solution, some constraints 
must be applied. 
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2.2   Projection Planes Constraint  

There are many possible locations where the three unit vectors can satisfy the 
equations in the 3D space. To obtain a unique solution unit vectors va, vb and vc must 
be constrained to lie in their respective planes. Unit vector va could be seen as any 
unit vector in the plane Pa rotated through an axis and an angle. Using unit 
quaternions to express va we have 

*
a a av q vq=                                                             (5) 

where qa is the unit quaternion applied to va, qa
* is its conjugate and v is any vector in 

the plane. For every rotation about an axis n, of unit length, and angle Ω, a 
corresponding unit quaternion q = (cos Ω/2, sin Ω/2 n) exists. Thus va is expressed as 
a rotation of v, about an axis and an angle by unit quaternions multiplications. In this 
case n must be normal to the plane Pa if both unit vectors va and v are restricted to be 
in the plane. 

Applying the plane constraints and expressing va, vb and vc as mapped vectors 
through unit quaternions, equations (1), (2) and (4) can be expressed as a set of three 
nonlinear equations with three unknowns 

* *
1cosa d a b d bq v q q v q α=                                                        (6) 

* *
2cosb d b c d cq v q q v q α=                                                        (7) 

* *
1 2cos cos cosa d a c d cq v q q v q α α γ= −                                          (8) 

The vector to be rotated is vd, which is common to the three planes, and their 
respective normal vectors are the axes of rotation. Extending the equations (6), (7) 
and (8), multiplying vectors and quaternions, permits to see that there are only three 
unknowns which are the angles of rotation Ωa, Ωb and Ωc. 

Applying iterative numerical methods to solve the set of nonlinear equations, the 
location of va, vb and vc with respect to the camera frame in the 3D space are 
calculated. Now we have a simple 3D orientation problem that can be solved easily by 
a variety of methods as least square based techniques. However, in the case where 
motions could be controlled and selected movements applied, this last step to estimate 
the relative orientation would be eliminated. Rotation information could be obtained 
directly from the numerical solution. If we assume that one of the coordinate axes of 
the object frame coincide with the moving unit vector and apply selected motions, as 
one component rotations, a unique solution is provided faster and easier. 

3   Experimental Results 

Real world data was used to validate the algorithm. Experiments were carried out 
through a robotic test bed that was developed in order to get high repeatability. It 
consists on an articulated robotic arm with a calibrated tool frame equipped with a 
surgery instrument, which is presented in different precisely known orientations to a 
camera. The camera field of view remains fixed during the image acquisition 
sequence.  
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An endoscopic camera with known focal length optics has been used. This 
generates a wide field of view that is sampled at 768x576 pixels resolution. After 
image edge detection, Hough Transform is used in order to obtain the tool contour 
and the straight line in the image plane associated to it. Tool contour is supposed to 
have the longest number of aligned pixel edges in the image. Fig. 4 shows this 
process. 

  

Fig. 4. Image processing to obtain straight boundaries from the surgery instrument 

Feature lines were identified and located in a sequence of images. Once the 
equations of the lines projected in the image plane were acquired, unit vectors normal 
to the constraint planes and vd could be calculated. This unit vectors and the motion 
angles α1 and α2 served as the input to the proposed algorithm. The intersection of the 
lines was needed to calculate vd. This calculation is prone to errors due to be located 
out of the field of view. It means the intersection of a different number of lines is not 
usually the same point. Table 1 shows the standard deviation in pixels of the 
intersection points calculated through different motion angles. The intersections 
converge to a single point when the angles between lines are higher. 

Table 1. Standard deviation of intersecting lines through different motion angles; with the 
intersection point defined by Xint and Yint  

Degrees (α1, α2) Xint Yint σ 

5 895,81 264,11 62,31 
10 928,28 278,91 35,65 

The 3D transformation resultant from the algorithm was tested projecting 3D lines, 
derived from new tool rotations, in the image plane and comparing them with the line 
detected by the vision system. Tests for motion angles between 5 and 20 degrees were 
carried out. Fig. 5 shows the error between lines through different angles. There can 
be seen how the error is minimum at the position where the transformation was 
calculated, it means at its second motion or third image. This error varies depending 
on the position of the tool; it increases with higher angles, when the position of the 
tool separates from the minimum error position. Fig. 6 compares the algorithm 
performance for 5 and 20 degrees motion angles. There the error varies differently. In 
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the case of 5 degrees the error increases greatly with each motion that separates the 
tool from the minimum error position. While for 20 degrees this error also increments, 
but remains stable.  

0

1

2

3

4

5

6

5 10 15 20 25

5º

10º

15º

20º

Orientation error

Angles α1, α2 (degrees)

R
el

at
iv

e 
er

ro
r 

(%
)

0

1

2

3

4

5

6

5 10 15 20 25

5º

10º

15º

20º

Orientation error

Angles α1, α2 (degrees)

R
el

at
iv

e 
er

ro
r 

(%
)

 

Fig. 5. Relative error using the rotational motion analysis algorithm 
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Fig. 6.  Algorithm performance comparison between 5 and 20 degrees, with a first rotation α1 
followed by a second α2 of the same magnitude 

These results validate the line-based algorithm and its simplicity demonstrates its 
real-time performance. The error increment with large position separations is mainly 
product of the deviation at the intersection point. It can be seen that the calculation of 
vd has a great impact in the result and future work should be focused in this issue.   

4   Conclusions 

A robust method to estimate the relative orientation of a surgical instrument with 
respect to a camera has been proposed. The instrument has been reduced to a single 
line indicating its orientation. We showed that with only two known rotations the 
angular variation between lines provides sufficient information to estimate the relative 
orientation. This motion analysis led to address questions as the uniqueness of 
solution for the minimum number of movements and possible motion patterns to 
solve it directly. In the case of controlled motions, one component rotations through 
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normal axes simplify calculations to provide a robust technique to estimate the 
relative orientation with no initial conditions defined.   
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Abstract. Three methods for the efficient downdating, composition and
splitting of low rank singular value decompositions are proposed. They
are formulated in a closed form, considering the mean information and
providing exact results. Although these methods are presented in the
context of computer vision, they can be used in any field forgetting in-
formation, combining different eigenspaces in one or ignoring particular
dimensions of the column space of the data. Application examples on
face subspace learning and latent semantic analysis are given and per-
formance results are provided.

1 Introduction

Process analysis can be carried out by means of the observation of its related
data. In general, the more data obtained, the more detailed the analysis can
be; however, redundancy is also increased. The latter effect is specially impor-
tant when managing high dimensional data, e.g., video sequences, images, audio
waveforms and document sets, which makes the analysis harder; nevertheless,
this kind of data can usually be approximated by a subspace of low dimension.
Working with these subspaces in the analysis process has two main advantages:
i) the laws or rules of the system are described in a more intuitive way; ii) pro-
cessing algorithms tend to be faster and require less memory space. Therefore,
dimensionality reduction techniques [1] are welcome to remove all possible re-
dundant information of high dimensional data. The reader is referred to [2], [3]
and [4] for some examples involving data analysis in low dimensional spaces.

Given a data set, the well-known Karhunen-Loève expansion [5] can find its
optimal orthogonal basis, which is the expression of its underlying subspace.
This expansion has received different names in the literature, e.g., principal
component analysis (PCA) [6], and can be computed with the singular value
decomposition (SVD) [7], which is a powerful mathematical tool of linear algebra.
Therefore, the SVD can be used to find the subspace of any data set, e.g., the
low dimensional subspace for video and image sequences of natural scenes.
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However, SVD computation is rather expensive, specially when using a batch
algorithm [7], requiring the whole data matrix at once. For high dimensional data
such as video sequences, this last fact is a key point, as they can easily exhaust
memory resources. Incremental schemes have recovered importance in the last
decade, with the increasing interest in video and image sequence processing.
Most efforts have been directed to incremental computation of SVD, but little
attention has been given to other cases, as SVD downdating (or decremental
SVD), composing little subspaces into a higher dimensional one or splitting an
existing subspace into little ones.

1.1 Related Work

The first work introducing an incremental computation of SVD in the field of
computer vision was [8]; although it is an efficient algorithm based on eigenvalue
decomposition (EVD), it can only update one vectorized image per iteration (or
column update), it does not account for the mean information and has some po-
tential numerical instability; moreover, only the left singular vectors and singular
values are obtained. Chandrasekaran et al. [9] proposed a more stable update
algorithm based on the work of Gu et al. [10], where a direct SVD readjustment
was given, also updating the right singular values; however it still cannot update
more than one column per iteration and does not take into account the mean
information. Fortunately, Hall et al. [11] included it in the incremental computa-
tion of SVD, also allowing for multiple columns update (or block update). This
work is based on EVD, achieving a method to merge and split subspaces, which
can be seen as updating and downdating the SVD; however, they only offer the
left singular vectors and singular values. Later, these authors presented another
approximation [12] based on direct SVD updating, obtaining the right singular
vectors and achieving better numerical stability; nevertheless, they claimed that
SVD downdate was impossible to achieve in closed form with their formulation.
Brand [13] proposed a highly efficient and stable incremental SVD algorithm
with block update and also pointed out a way of adapting the eigenspace de-
fined by the SVD to nonstationary systems by means of decaying singular val-
ues; however, he did not take into account the mean information. The work of
Skocaj et al. [14] is very similar to that of [11]; eigendecomposition is used, mean
information update is taken into account and robust features are presented, how-
ever block update is not considered. Melenchon et al. [15] extended the work
of [13] proposing a novel incremental algorithm through a reorthonormalization
process, allowing block update with the stability and efficiency of [13] and mean
update like in [12]; however, SVD downdating is not addressed in their work.
Finally, Lim et al. [16] presented a new alternative based on R-bidiagonalization
SVD (RSVD) [7]; mean update is taken into account, block update is offered and
a forgetting factor is introduced, based on [17] and similarly to [13]. However, old
information is progressively forgotten but never removed in [13] and [16]. The
reader is referred to table 1 for a summary about the described works. Additional
SVD early history can be read in [18].
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Table 1. Evolution about incremental computation of SVD in computer vision fields.
Main features of past and proposed methods. Note the decaying singular values of [13],
the robust features of [14], and the forgetfulness of [16].

Work Year Method Update Mean Down- Miscellanea
columns update date

[8] Murakami et al. 1982 EVD single no no
[9] Chandrasekaran et al. 1997 SVD single no no
[11] Hall et al. 2000 EVD multiple yes yes
[12] Hall et al. 2002 SVD multiple yes limited
[13] Brand 2002 SVD multiple no no decaying
[14] Skocaj et al. 2003 EVD single yes no robust
[15] Melenchón et al. 2004 SVD multiple yes no
[16] Lim et al. 2005 RSVD multiple yes no forgetful

This paper 2006 SVD multiple yes yes

{
splitted
composed

1.2 Contributions

Three novel methods for efficiently downdating the SVD (section 2.1), composing
different SVD’s (section 2.2) and splitting existing ones (section 2.3) are proposed
in this work. They are presented in closed form, preserve the mean information
and are based on the reorthonormalization process and mean extraction of [15].
Moreover, they become extremely efficient for low rank SVD’s. Their applica-
tion to video sequence data is shown in section 3. Additional experiments have
been conducted with textual information in the Latent Semantic analysis (LSA)
framework [3] to test the methods with sparse matrices. Concluding remarks and
future work are provided in section 4.

2 SVD Computation

Let Dm×n be a real matrix of full rank r = min (m, n), then its singular value
decomposition can be expressed as a sum of r rank one matrices (matrix size
will only be shown when necessary for clarity purposes):

Dm×n = U′
m×mΣ′

m×n

(
V′

n×n

)T =
r∑

i=1

σ′
iu

′
i (v′

i)
T

. (1)

where U′=[u′
1 · · · u′

m] and V′=[v′
1 · · · v′

n] are orthonormal matrices containing
the eigenvectors of DDT and DT D, respectively (a.k.a. right and left singular
vectors of D), and Σ = diag (σ1, . . . , σr) is a diagonal matrix with the eigenvalues
of both DDT and DT D (a.k.a. singular values of D) in descending order. The
SVD finds the best rank k approximation matrix of D. Any other rank k matrix
B that is not the rank k SVD approximation will have greater error:

argmin
rank(B)=k

‖Dm×n − Bm×n‖2 = Am×n = U′
m×kΣ

′
k×k

(
V′

n×k

)T
. (2)
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where ‖D − A‖2 = σ′
k+1. The reader is referred to [7] for a proof of (2). The

SVD of A (2) is known as the truncated SVD of D and also as its compact
version when D is a rank k matrix.

The SVD is often used when computing the PCA of a dataset D approximated
by A, which needs the extraction of the mean information; moreover, it is needed
in statistical methods used in classification problems, like mahalanobis distance.
Let the mean be am×1 = m−1Am×n ·1n×1, it is often required to obtain a mean
centered dataset A = A − a · 1 with the following truncated SVD:

Am×n = Am×n + am×1 · 11×n = Um×kΣk×k (Vn×k)T + am×1 · 11×n . (3)

2.1 Decremental SVD

In this section, the problem of downdating the SVD preserving the mean infor-
mation is addressed. Dropping columns of any data matrix can be considered as
a radical forgetting action. Given (3), if p columns are removed from A, a new
matrix Ad

m×l is obtained, where l = n − p. The SVD of Ad
m×l can be updated

efficiently with (4), without recomputing it from scratch.

A = UΣVT+ a·1 ⇒ Ad = UΣṼT + a·1 = UΣV̂T + UΣvT ·1+ a·1 =
= UΣRT QT+

(
Δad+ a

)
·1 = UdΣdVT

t QT+ ad ·1 =

= Ud
m×kΣ

d
k×k

(
Vd

l×k

)T
+ ad

m×1 ·11×l = Ad
m×l . (4)

here, matrix ṼT is not orthonormal and contains the columns of VT corre-
sponding to the non-dropped columns of A. It is centered around its mean row
v = l−1(11×l · Ṽl×k), obtaining matrix V̂. The mean update Δad is computed
as UΣvT . The updated mean ad is obtained as a + Δad. Finally, the expres-
sion UΣV̂T is reorthonormalized as UdΣd(Vd)T with the QR decomposition of
V̂ = QR, the SVD of UΣRT = UdΣdVT

t (with lower cost than that of UΣV̂T ,
since k < n) and the identity Vd = QVt.

2.2 Composed SVD

Given matrices A, B and their compact SVD’s (5), (6), that of C = [AT BT ]T

(7) can be obtained efficiently from them (8), if m = q + p and k = r + s.

Aq×n = UA
q×rΣ

A
r×r

(
VA

n×r

)T
+ aA

q×1 · 11×n . (5)

Bp×n = UB
p×sΣ

B
s×s

(
VB

n×s

)T
+ aB

p×1 · 11×n . (6)

Cm×n = UC
m×kΣ

C
k×k

(
VC

n×k

)T
+ aC

m×1 · 11×n . (7)

C =
[
A
B

]
=

[
UAΣA

(
VA

)T

UBΣB
(
VB

)T

]
+

[
aA

aB

]
=

[
UAΣART

A

UBΣBRT
B

]
QT

t +
[
aA

aB

]
=

= UCΣCVT
t QT

t + aC = UCΣC
(
VC

)T
+ aC . (8)
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where the QR decomposition of
[
VA VB

]
is Qt [RA RB] and the SVD is done

to matrix [(UAΣART
A)T (UBΣBRT

B)T ]T , obtaining UCΣCVT
t (with lower cost

than computing the SVD of [AT BT ]T ), as k < n); finally, matrix VC is computed
as QVt and aC is obtained as the vertical concatenation of aA and aB. Any
SVD’s of matrices with the same number of columns can be composed.

2.3 Splitted SVD

This case is the opposite of that in section 2.2: given a SVD (7), the desire is
to obtain two (or more) SVD’s, (5) and (6), splitting the subspace definition of
the starting one (in this case k = r = s). It can be achieved as follows, using the
reorthonormalization process proposed in section 2.1:

C =
[
UA

s

UB
s

]
ΣC

(
VC

)T
+

[
aA

aB

]
=

[
QARAΣC

(
VC

)T

QBRBΣC
(
VC

)T

]
+

[
aA

aB

]
=

=

[
QAUA

t ΣA
(
VA

)T

QBUB
t ΣB

(
VB

)T

]
+

[
aA

aB

]
=

[
UAΣA

(
VA

)T + aA

UBΣB
(
VB

)T + aB

]
=

[
A
B

]
. (9)

where (UC)T = [(UA
s )T (UB

s )T ]T and (aC)T = [(aA)T (aB)T ]T ; QR decom-
position is done to UA

s = QARA and UB
s = QBRB; the SVD is computed

to RAΣC(VC)T = UA
t ΣA(VA)T and RBΣC(VC)T = UB

t ΣB(VB)T with
lower cost than those of UA

s ΣA(VA)T and UB
s ΣB(VB)T , since k < m; finally,

UA = QAUA
t and UB = QBUB

t . Rows of matrix C can be reordered with
some permutation matrix P, obtaining Cr; therefore, UC and aC can also be
reordered by the same P, further obtaining UC

r and aC
r in (10). Consequently,

rows of matrix C can be splitted into any desired groups: first, row grouping can
be achieved with (10); second, (9) can be applied to the reordered SVD.

Cr = PC = PUCΣC
(
VC

)T
+ PaC = UC

r ΣC
(
VC

)T
+ aC

r . (10)

3 Results

The proposed algorithms of decremental, composed and splitted SVD have been
applied to computer vision and LSA fields. Datasets and tests are presented in
sections 3.1 and 3.2. A 3GHz processor with 2GB of RAM has been used.

3.1 Test Data Used

A video data sequence with a size of 320 × 240 and 482 frames (at 25 fps) has
been recorded for the testing of the performance of given algorithms, similarly
to [14,15,16]. This sequence shows a human face while it is speaking and making
different gestures. Using a tracking algorithm like in [15] and [16], the face in each
frame can be aligned w.r.t. the first one, so pixel value variations are due only
to appearance changes. Collecting all face pixels into columns (one per frame), a
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matrix F can be obtained; if the face pixels are classified into R regions, then R
matrices Fr can be built, one per facial region. Here, the forehead, both eyes and
mouth have been considered. Moreover, a big textual sparse matrix T [19] related
to LSA has been also considered. The columns represent its 600 documents and
the rows offer its 12018 possible words. Efficient SVD algorithms can be applied
to this kind of matrices [20]; however, they are outperformed by the proposed
algorithms (see 3.2).

3.2 Experiments

The computational cost of the three proposed methods is O
(
k2 (k + m + n)

)
,

while the memory requirements are O (km + kn). Direct batch computation al-
gorithms for the decremental, composed and splitted schemes have been con-
sidered for comparison purposes and involve recomputing original matrices and
obtaining the desired SVD’s directly. They have the same computational and
memory costs, O(m2n + n2m) and O(mn), which are higher than the proposed
ones when n � k and m � k. In all the experiments, the results offered by both
approaches were practically the same (spectral norms of difference matrices are
less than 10−13). Figure 1 shows the executed experiments.

Fig. 1. Description of the experiments on facial appearance (up) and textual data
(bottom), both represented by a matrix; the former has faces in its columns and pixels
in its rows and the latter has documents in its columns and words in its rows. From
left to right: the original data without some faces or documents left; the whole grouped
data; the splitted data into 4 facial regions or 3 word sets. Every case has a SVD
or set of SVD’s; the left decompositions can be provided by downdating the central
ones with the decremental SVD; the right ones can be achieved dividing the central
decompositions with the splitted SVD, which can also be obtained with the composed
SVD from the right ones.

Starting from the truncated SVD of the four matrices Fr of ranks 17, 10, 9 and
14, corresponding to forehead, both eyes and mouth, respectively, the intention
is to compose them in order to obtain the truncated SVD of rank 50 = 17+10+
9 + 14 of the whole matrix F. Using the composed SVD algorithm (sect. 2.2)
both time and memory requirements are reduced w.r.t. the batch approaches.
If this matrix was to be divided into the original four facial regions Fr, the
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splitted SVD of section 2.3 obtains the original truncated SVD’s faster and with
less memory requirements than the batch process; note that each truncated SVD
keeps its original rank. Next, considering the SVD of F, the information of the
first 52 frames and the ones from 266 to 325 are removed; the decremental SVD
stated in section 2.1 can be executed, obtaining the result far sooner than with
the batch scheme and with less memory resources (see table 2).

Regarding the textual data matrix T, a truncated SVD of rank 40 is initially
computed. First, the intention is to forget the last 200 documents (as if they
had never been observed); with the explained decremental SVD, the time and
memory resources spent are of smaller orders of magnitude than those of the
batch method. Second, the original truncated SVD of T is divided into three
textual LSA, grouping the first 6437 words, the next 1814 ones and the rest;
with the proposed splitted SVD, the result is obtained in less time and with less
memory requirements than with the batch process. Joining the resulting SVD’s
can be done with the composed SVD, which, like before, takes less time and
memory than the batch method (table 2).

Table 2. Computational, memory resources and relative errors of the proposed algo-
rithms and their batch counterpart. The latter are obtained with the norm ‖·‖2.

Operation Source Time Memory Error
data Proposed Batch Proposed Batch Proposed Batch

Decremental Images 1’53 30’14 24’43 201’94 < 10−14 < 10−13

Decremental Text 0’41 13’08 8’00 79’84 < 10−14 < 10−13

Composed Images 1’48 46’09 39’86 245’27 < 10−14 < 10−13

Composed Text 2’95 27’19 38’98 131’62 < 10−14 < 10−14

Splitted Images 1’42 79’00 28’55 141’27 < 10−14 < 10−14

Splitted Text 0’44 38’33 9’67 64’66 < 10−13 < 10−14

4 Concluding Remarks and Future Work

In this work, three novel methods for SVD computation have been presented.
One for downdating the SVD, another one for joining or composing SVD’s,
increasing the dimension of the final column space, and a last one for dividing or
splitting a SVD, obtaining smaller SVD’s. They are very efficient for truncated
SVD’s and for compact ones of low rank matrices, with sublinear computational
and memory costs w.r.t. the amount of data (and cubic and linear w.r.t. the
rank, which is of smaller orders of magnitude than the size). Moreover, they are
solved in closed form and do not provide additional error terms. Some application
examples of face subspace learning and LSA have been provided. Future work
involving the application of these methods to face segmentation, tracking and
synthesis will be carried out.

Acknowledgments. Thanks to G. Cobo and X. Sevillano for the LSA data.
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Abstract. In this paper we address the problem of on-line recognition
of human activities taking place in a public area such as a shopping
center. We consider standard activities; namely, entering, exiting, passing
or browsing. The problem is motivated by surveillance applications, for
which large numbers of cameras have been deployed in recent years. Such
systems should be able to detect and recognize human activities, with as
little human intervention as possible.

In this work, we model the displacement of a person in consecutive
frames using a bank of switched dynamical systems, each of which tai-
lored to the specific motion regimes that each trajectory may contain.

Our experimental results are based on nearly 20,000 images concern-
ing four atomic activities and several complex ones, and demonstrate the
effectiveness of the proposed approach.

1 Introduction and Problem Formulation

In this paper, we address the problem of (on-line) recognition of human activities
in video sequences. Recently, this has become an active research area in computer
vision, mainly driven by a large number of potential applications, such as video
surveillance, computer-human interfaces, and contend-based video retrieval.

In a surveillance context, the analysis of the human behavior is often split
into two parts: tracking and activity recognition [8]. Considering that tracking
has seen tremendous recent progress [2,3,5,6,11,14,16], activity recognition has
naturally become the next step to be addressed.

Different methods have been used to recognize human activities from the
information extracted from video. The most popular techniques rely on hidden
Markov models (HMM) and coupled HMM [12]. Both approaches are used to
characterize the evolution of the person’s mass center along the video sequence.
A model termed abstract HMM was used to recognize human indoor motion
patterns [10]. Other types of techniques have also been successfully used for
gesture and activity recognition; e.g., Bayesian networks [7], neural networks
[15], finite state machines (FSM) [1,4] and syntactic recognition [9].
� This work was supported by Fundação para a Ciência e a Tecnologia (ISR/IST pluri-

anual funding) through the POS Conhecimento Program which includes FEDER
funds.
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In this work, we consider that a tracking system computes the active region
(bounding box) of the person along the video sequence. We also assume that the
measurements provided by the tracker are corrected using the image to ground
plane projective transformation, thus achieving viewpoint invariance and remov-
ing perspective distortion. Fig. 1 shows an example of an observed trajectory,
before and after the projective transformation.

(a) (b)

Fig. 1. Original (left) and resulting transformed (right) images of the shopping center
scenario

Our fundamental assumption is that the human (motion) activity can be in-
ferred from the sequence of positions of the centroid of the person throughout
the video sequence, which is provided by the tracker. After the projective trans-
formation is applied, this sequence is denoted x = (x1, . . . ,xn), where xt ∈ R

2,
for t = 1, . . . , n, is the position at time instant t.

Our approach categorizes human activities using a two-level hierarchical sys-
tem. At the lower-level, we have dynamic models, which are short term coherent
units of movement; at the higher level, we consider activities, which are linearly
ordered sequences of lower level dynamic models. In this paper, we consider five
low level dynamic models: “moving left”, “moving right”, “moving up”, “moving
down”, “stopped”. Four activities are considered: “passing”, “entering” “leav-
ing” and “browsing”. Of course, this hierarchy could be extended to more com-
plex arrangements of activities, but this will not be pursued in this paper.

Finally, our problem can be formulated as follows: given a trajectory x =
(x1, . . . ,xn), observed in a length-n time window, segment it into a sequence of
low level dynamic models and classify it into one of the high level activities.

The paper is organized as follows. Section 2 describes the adopted low level
model and the parameter estimation method. Section 3 addresses the segmen-
tation criterion. Section 4 describes the high level classification of sequences.
Section 5 describes experimental results and Section 6 concludes the paper.
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2 Statistical Model and Parameter Estimation

A trajectory is a sequence of positions, x = (x1, ...,xn) with xi ∈ R
2. This

sequence is modeled by a switched dynamical system, which is allowed to switch
among the 5 low level models above defined. Formally, the state equation is

xt = xt−1 + μkt
+ Q1/2

kt
wt, (1)

where {k1, . . . , kn}, with kt ∈ {1, . . . , 5}, is a sequence of labels indicating the
active low level dynamic model at each time t, and {w1, . . . ,wn} are independent
samples of a zero-mean Gaussian random vector with identity covariance; the
parameters of this system are {μ1, . . . , μ5}, the mean displacements of each
model, and {Q1, . . . ,Q5}, the corresponding covariances.

The joint probability density of a sequence x = (x1, ...,xn), generated accord-
ing to (1), given a sequence of model labels {k1, . . . , kn} is thus

p(x1, ...,xn|k1, . . . , kn) =
n∏

t=2

N (xt − xt−1|μkt
,Qkt), (2)

where N (v|u,P) denotes a multivariate Gaussian density of mean u and covari-
ance P, computed at v.

Estimation of the parameters of each of the low level models is performed in a
supervised fashion using training trajectories which were previously segmented
and classified by a human observer. These parameters are set to the standard
maximum likelihood estimates, given the training data.

3 Segmentation and Classification

3.1 Segmentation with a Known Number of Segments

For segmentation purposes, we assume that the sequence of labels {k1, . . . , kn}
is piece-wise constant, with T segments, that is,

{k1, . . . , kn} = {m1, . . . , m1, m2, . . . , m2, . . . , mT , . . . , mT }. (3)

Let us denote as {s1, ..., sT−1} the switching times between segments, where sj

is the time instant where switching from model mj and mj+1 occurs. Obviously,
the sequence of models {m1, . . . , mT } and switching times {s1, ..., sT−1} contains
exactly the same information as the sequence of labels {k1, . . . , kn}. This allows
writing the segmentation log-likelihood, which is simply the logarithm of (2), as

L(m1, . . . , mT , s1, . . . , sT−1) = log p(x1, ...,xn|m1, . . . , mT , s1, . . . , sT−1)

=
T∑

j=1

sj∑
t=sj−1

log N (xt − xt−1|μmj
,Qmj ) (4)

where we take s0 = 1.
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Assuming that T is known, we can “segment” the sequence (i.e., estimate
{m1, . . . , mT } and {s1, . . . , sT−1}) by the maximum-likelihood criterion:

{m̂1, . . . , m̂T , ŝ1, . . . , ŝT−1} = argmax L(m1, . . . , mT , s1, . . . , sT−1) (5)

The maximization with respect to the switching times can be expressed as

ŝ1, . . . , ŝT−1 = arg max
s1,...,sT−1

{
max

m1,...,mT

L(m1, . . . , mT , s1, . . . , sT−1)
}

. (6)

The inner maximization in (6), that is, with respect to {m1, . . . , mT }, for some
fixed {s1, . . . , sT−1}, can be decoupled into

max
m1,...,mT

L(m1, . . . , mT , s1, . . . , sT−1)=
T∑

j=1

max
mj

sj∑
t=sj−1

log N (xt−xt−1|μmj
,Qmj ).

(7)
Notice that the maximization with respect to each of mj is a simple maximum
likelihood classifier of the sub-sequence (xsj−1−1, . . . ,xsj ) into one of the 5 low
level models. Finally, the maximization with respect to s1, . . . , sT−1 is done by
exhaustive search, which is never too expensive, since we are considering short
segments of the trajectory, with up to a maximum of T = 3 segments.

3.2 Estimating the Number of Segments: MDL Criterion

In the previous section, we derived the segmentation criterion assuming that the
number of segments T is known. It is well known that the same criterion can
not be used to select T , as this would always return the largest possible number
of segments. We are thus in the presence of a model selection problem, which
we address by using the minimum description length (MDL) criterion [13]. The
MDL criterion for selecting T is

T̂ = arg min
T

{
− log p(x1, . . . ,xn|m̂1, . . . , m̂T , ŝ1, . . . , ŝT−1)

+ M(m̂1, . . . , m̂T , ŝ1, . . . , ŝT−1)
} (8)

where M(m̂1, . . . , m̂T , ŝ1, . . . , ŝT−1) is the number of bits required to encode the
selected model labels and switching times. Notice that we do not have the usual
T
2 log n term because the real-valued model parameters (means and covariances)
are assumed fixed (previously estimated). Finally, it is easy to conclude that

M(m̂1, . . . , m̂T , ŝ1, . . . , ŝT−1) ≈ T log2 5 + (T − 1) log2 n (9)

where T log2 5 is the code length for the T model labels m1, . . . , mT , since each
belongs to {1, . . . , 5}, and (T − 1) log2 n is the code length for the T − 1 switch-
ing times, ŝ1, . . . , ŝT−1, because each belongs to {1, . . . , n}; we ignore the fact
that two switchings can not occur at the same time, a reasonable approximation



448 J.C. Nascimento, M.A.T. Figueiredo, and J.S. Marques

because T << n. The maximization in (8) is solved simply by trying all allowed
numbers of segments (1, 2, or 3, in all the experiments below).

In a classical MDL-based segmentation method, we would simply estimate the
segment parameters along with the segmentation, and use the MDL criterion
in the standard way to select the number of segments. However, without the
supervised training scheme, we wouldn’t be able to assign a semantic to each
model, e.g., “moving right”, “moving left”. In short, supervised training is needed
when, in addition to segmenting, one wishes to classify and interpret activities.
This leads to the use of the MDL with fixed parameters, as propose in this work.

4 On-Line Identification of the Sequence

To identify the (high level) activity present in a given sequence of positions, each
possible sequence of 1, 2, or 3, low-level models (produced by the segmentation
algorithm) is mapped to an activity according to a simple look-up table (which
we omit due to lack of space). For example, a sequence segmented into only one
segment (T̂ = 1) with model “walking right” or “walking left” is classified as
“passing”; a sequence segmented into two segments (T̂ = 2), as “walking right”
- “walking up”, or “walking left” - “walking up”, is classified as “entering”; a
sequence segmented into three segments (T̂ = 3), as “walking right” - “stopped”
- “walking left” is classified as “browsing”. For the 5 considered models, there are
5 possible 1-segment segmentations, 5×4 = 20 possible 2-segment segmentations,
and 5× 4× 4 = 80 possible 3-segment segmentations, thus our look-up table has
a total of 105 entries.

To perform on-line classification, the segmentation/classification algorithm
is not applied to the whole observed trajectory of a given person, but to the
positions inside a fixed length sliding window. For each window position, the
segmentation and classification algorithm is applied and the system outputs a
high-level activity class.

5 Experimental Results

The proposed algorithm was tested with real data collected in the context of a
EU-funded project1. This section shows the performance of the proposed algo-
rithm applied to about 20 movies. The duration of the movies ranges from 30
seconds up to two minutes, with a frame rate of 25 frames/second. The data was
collected and the ground truth was hand-labeled for 50 video sequences. These
sequences include indoor plaza and shopping center observations of individuals
and small groups of people. The sequences are hand labeled with the activity
of each track person, frame by frame. The total data consists of nearly 20,000
images.

1 More information about the CAVIAR project can be found at http://homepages.
inf.ed.ac.uk/rbf/CAVIAR/

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/


On-Line Classification of Human Activities 449

Table 1. Confusion matrix for the classification of high level activities in the shopping

Output

Entering Exiting Passing Browsing

Entering 81 0 0 0

True Exiting 0 72 5 0

Classes Passing 1 0 462 3

Browsing 1 0 1 180

Passing Browsing

(a) (b)

Browsing Passing

(c) (d)

Fig. 2. A person “passing” in a front of a shop (a) (frame 21), starts to “browse” while
the second one “enters” to the shop (b) (frame 62). He waits (“browsing”) until his
colleague leaves the shop (c) (frame 786). Finally they go together leaving the scenario
(“passing”) (frame 817).

Table 1 shows the confusion matrix for the tested activities. The evaluation
is made at every window position. The samples of the trajectories varies from
300 (shorter sequences) to 1200 (longer sequences).

Figures 2 and 3 show some results obtained using the proposed approach.
Each image shows the successive positions of the person up to the time instant
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Browsing Entering

(a) (b)

Browsing Leaving

(c) (d)

Fig. 3. The first row shows a person who starts to “browse” (a) while the second one
“enters” to the shop (b) (frame 157). In the bottom row, the first person waits for
his colleague (performing a “browsing”) until the second one “leaves” the shop (frame
969).

in which the classification is being output, the current bounding box. For the
sake of clarity, these figures only show the activity class for a single person.

6 Conclusion

In this paper we have proposed and tested an algorithm for online segmentation
and classification human motion activities. These activities are classified using a
two-level hierarchical system. At a lower-level, we have dynamic models, which
are short units of movement (such as “moving right”) and at the higher level,
we have the target activities, which are sequences of lower level models. We
introduce probabilistic generative low-level models and a minimum description
length criterion to segment each observed trajectory into a sequence of low-level
models. Each possible sequence of low-level models is then translated into a
high-level activity, via a look-up table. We have reported extensive experiments,
which testify for the good performance of the proposed methodology.

We plan to extend our work to higher semantic levels. For instance, in the
example shown in the Fig. 2, we may hope to infer that the person is waiting
for another person, while that other person goes to the shop. In the future, we
hope to bring this higher level descriptions (such as “waiting”) by considering
interactions among the trajectories of different people.
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Abstract. We propose a data-driven approach for the Jacobian adaptation (JA) 
to make it more robust against the noisy environments in speech recognition. 
The reference hidden Markov model (HMM) in the JA is trained directly with 
the noisy speech for improved acoustic modeling instead of using the model 
composition methods like the parallel model combination (PMC). This is made 
possible by estimating the Jacobian matrices and other statistical information 
for the adaptation using the Baum-Welch algorithm during the training. The 
adaptation algorithm has shown to give improved robustness especially when 
used in a multi-model structure. From the speech recognition experiments based 
on HMMs, we could find the proposed adaptation method gives better 
recognition results compared with conventional HMM parameter compensation 
methods and the multi-model approach could be a viable solution in the noisy 
speech recognition. 

1   Introduction 

Noise robustness in the automatic speech recognition is essential to prevent the 
performance degradation in real environments where the background noise causes the 
mismatch between the training and testing conditions. Various methods have been 
developed to solve the robustness problem and they can be summarized into a few 
categories, namely, speech enhancement, noise-robust front ends and model 
compensation. In the model compensation approaches based on the HMM, the model 
parameters are updated using the statistics of the noise signal in the testing speech 
[1][2][3]. Among them, the PMC and JA have shown to be effective compared with 
other approaches. In particular, the JA is quite useful when we have HMMs which 
have been already trained in a similar condition as the target environment [3]. In the 
JA, the trained (reference) HMM parameters can be easily adapted to the testing 
speech by using the Jacobian matrices. The reference HMM in the JA is usually 
constructed by the model combination methods like the PMC [1]. The model 
composition approach makes it easy to associate the Jacobian matrix for each mixture 
component of the continuous density HMM with the mean vector of the clean speech 
HMM. However, it is well known that the composite HMM will not perform better 
than the HMM which has been directly trained with the noisy speech in the target 
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environment. We think that the use of the model composition approach in constructing 
the reference HMM makes it difficult for the JA method to outperform the PMC. In 
this paper, we propose to train the reference HMM directly with the noisy speech. But, 
as this will make the state/mixture alignment between the Jacobian matrices and the 
clean speech HMM parameters obscure, the Jacobian matrices and other statistical 
information for the adaptation are estimated during the training along with the HMM 
parameters by using the Baum-Welch algorithm [6]. We also suggest to use the 
proposed adaptation algorithm in a multi-model structure using multiple reference 
HMM sets corresponding to the various Signal-to-Noise ratio (SNR) values and the 
noise types [4]. By using the multiple reference HMM sets in recognition, the 
approximation errors occurring in the JA can be significantly reduced compared with 
the single reference HMM set, thus improving the recognition performance. In section 
2, we explain in detail the proposed adaptation method and experimental results are 
given in section 3. Finally, the conclusions are given in section 4. 

2   Data-Driven Jacobian Adaptation in a Multi-model Structure 

2.1   Data-Driven Jacobian Adaptation (D-JA) 

In this section, we explain the proposed data-driven JA (D-JA) method where the 
reference HMM is trained directly with the noisy speech. We will need to estimate 
some statistical information as well as the Jacobian matrix during the training along 
with the HMM parameters by using the Baum-Welch algorithm.  

In general, the noise-corrupted speech vector y  in the mel-frequecy cepstral 

coefficients (MFCCs) is characterized by the following nonlinear equation.  

)}]exp(){exp([log 11 nCxCCy −− +=         (1) 

where x  and n  represents respectively the clean speech and additive noise in the 
MFCCs. C  is the matrix representing the discrete cosine transformation (DCT). 

In an HMM-based speech recognition, the HMM parameters are usually estimated 
by the Baum-Welch algorithm [6]. For example, in the continuous density HMM, the 

re-estimation formula for the mean vector jkx,μ  in the state j and mixture 

component k is as follows. 

                   

∑

∑

=

== T

t
t

T

t
tt

jkx

kj

kj

1

1
,

),(

),(

γ

γ x
μ                                         (2) 

Here, ),( kjtγ  is the probability of being in state j  at time t  with the k -th mixture 

component accounting for the cepstral feature vector tx  in the HMM.  
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When the noisy speech vector ty  in Eq. (1) is affected by the small changes in the 

cepstral noise vector tn , it can be expressed using the Jacobian matrix tt ny ∂∂  as 

follows. 
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Based on Eq. (2) and (3), the mean vector ty~  of the noisy speech can be written as 

follows. 
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If we make the assumption that the difference )~( tt nnn −≡Δ  in the noise vectors 

can be substituted for its mean value (i.e., independent of the time), the above 
equation can be rewritten as follows. 
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                  Δnμμμ jkJjkyjky ,,,~ +=                                      (6) 

The Jacobian matrix tt ny ∂∂ in Eq. (5) can be easily calculated from Eq. (1). From 

Eq. (6), jky ,μ  is the mean vector for the state j  and mixture component k of the 

reference HMM and jkJ ,μ is the estimated mean Jacobian matrix. nΔ is estimated by 

finding the difference between the mean values of the reference noise and observed 

noise in the testing speech. After estimating jky ,μ and jkJ ,μ during the training, the 

adapted mean vector jky ,~μ  in Eq. (6) is calculated in recognition using the noise 

mean difference nΔ . The distinctive feature of the proposed method is that Jacobian 

matrix jkJ ,μ  is estimated during the training along with the mean vector jky ,μ  of the 

reference HMM. In a similar approach, the covariance matrix can be adapted as in the 
following equation using Eq. (3). 
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We can see from Eq. (7) that some statistics resulting from the multiplication in the 
numerator needs to be estimated for the covariance matrix adaptation and they can be 
estimated directly with the noisy speech. This is contrary to the JA where the adapted 
covariance matrix is derived analytically by using statistical approximations [3]. 

The delta-MFCCs in this paper are calculated as follows. 
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If we substitute Eq. (3) into (8), the mean vector of the delta-MFCCs is calculated as 
follows. 
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From Eq. (9), we can see that the expectation values )( ktE +y , )(
t

ktE
n

y
∂

∂ +  should be 

estimated in the HMM during the training for the delta-MFCCs mean adaptation. 

2.2   Multi-model Structure 

In the D-JA, we assume that the HMM parameters can be well adapted to the noisy 
speech using the linear relation in Eq. (3). But, if the spectral characteristics of the 
noise signal assumed during the training differ significantly with that in the testing  
speech, the accuracy of Eq. (3) will be poor and it will result in performance 
degradation. Thus, the performance improvement by the D-JA algorithm employing 
just a single reference HMM set will have some limitations. We suggest to use the D-
JA algorithm in the multi-model structure where we construct multiple reference 
HMM sets trained on data corresponding to various noise types and SNR values. In 
recognition, we can select the most suitable one among the reference HMM sets by 
classifying the input noise signal and estimating the SNR values. With the partitioning 
of the training data and establishing separate reference HMM sets, we can model 
more precisely the acoustical variations due to the noise in the testing speech. 

In Fig. 1, we show the architecture of the multi-model based noisy speech recogni-
tion system. To select the most appropriate reference HMM set, we estimate the SNR 
values of the testing noisy speech and classify the input noise signal into one of the 
candidate noise types. The parameters of the selected reference HMM set will be 
compensated by using the D-JA. 
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Fig. 1. The architecture of the multi-model based noisy speech recognition system 

3   Experiments and Results 

In this section, the performance of the proposed method of compensating the HMM 
parameters is evaluated on speaker-independent isolated word noisy speech 
recognition. The vocabulary consists of 75 phoneme-balanced Korean words and the 
basic recognition unit is the set of 32 phoneme-like units that are modeled by the left-
to-right continuous density HMM. Utterances from 80 speakers are used in these 
experiments and each speaker uttered the 75 words once. A jack knife approach is 
used in the recognition experiment. We divided the speakers into 4 sets with 20 
speakers in each set. Each set is successively used as the testing set and the remaining 
three as the training sets. The noisy speech was obtained by adding noise signal to the 
clean speech at various signal-to-noise ratios (SNRs). The noise signal was taken 
from the noise files contained in the AURORA 2 database [5]. The types of the noise 
signals are car, babble, exhibition hall, subway, restaurant, street, airport and train 
station. 13-th order mel-frequency cepstral coefficients (MFCC) and their time 
derivatives (delta-MFCC) are used as the feature vectors. 

In Table 1, we compare the recognition rates of the D-JA in the car noise case with 
the conventional model compensation methods such as the PMC and JA. As shown in 
the table, the recognition performance of the baseline recognizer with no compensation 
dropped severely at 10dB or below. For a detailed investigation of the compensation 
results, the HMM parameters were compensated in sequences. First, only the static 
mean vector of the MFCC is compensated and then the mean vector of the delta-
MFCC was adapted as well. And, finally the covariance matrix of the MFCC was 
added in the compensation process. The results are shown in the separate rows of the 
table and we can see that the recognition rates generally increase as we include more  
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feature vectors in the compensation process. The JA shows marginal improvement 
over the PMC. The JA seems to have the ability to correct the approximation errors 
occurring in the model compensation process of the PMC. 

As shown in the table, the results of D-JA outperformed both the PMC and JA at 
all SNRs. The use of the reference HMM which has been trained directly with the 
noisy speech at the SNR of the testing speech may have contributed a lot to the 
superior performance. The recognition error rate reduction ratio was about 50(%) at 
0dB and 10dB and it was about 40(%) at 20dB.  

 
Table 1. Performance comparison in word recognition rates(%) of the proposed method (D-JA) 
with the previous model compensation methods (car noise) 

 0dB 10dB 20dB clean 
Baseline 12.6 60.7 92.5 98.6 
Matched Conditions 82.1 95.0 97.5 98.6 

Static mean 59.8 87.8 95.3 98.6 
+delta mean 62.7 88.3 95.4 98.3 PMC 
+covariance 66.6 88.6 95.4 98.3 
Static mean 59.9 87.8 95.4 98.6 
+delta mean 62.4 88.2 95.5 98.4 JA 

 
+covariance 68.6 89.5 95.8 98.4 
Static mean 82.4 95.0 97.4 98.6 
+delta mean 82.0 95.0 97.4 98.6 D-JA 
+covariance 82.0 94.8 97.5 98.6 

 
The superior performance of the D-JA in Table 1 is obtained when we have a 

separate reference HMM set for each SNR of the testing noisy speech. As it is not 
practical to take many reference HMM sets in the recognition, we investigated the 
robustness of the proposed approach when the reference HMM set was trained at a 
specific SNR condition.  

 
Table 2. Performance comparison in average word recognition rates(%) of the proposed 
method (D-JA) in the multi-model structure with the previous model compensation methods 
when the reference HMM set was trained at the SNR of 10 and 20 dB (car/babble/exhibition 
hall/subway noise) 

        Testing 
Training 

0dB 5dB 15dB 25dB 

10dB 77.2 89.6 95.2 93.5 D-JA 
20dB 66.8 84.8 95.7 97.5 
10dB 60.5 77.4 91.2 90.1 JA 

 20dB 62.8 79.2 92.3 96.4 
MCT 65.2 84.1 94.1 96.1 
PMC 61.2 76.8 91.8 96.6 
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In Table 2, we show the recognition results of the D-JA in the multi-model 
structure as the SNR of the testing speech changes when the selected reference HMM 
sets have been trained at the SNR of 10 and 20 dB, respectively. There are 4 reference 
HMM sets corresponding to the noise types (car, babble, exhibition hall, subway) at 
each SNR. In recognition, we classify the type of the noise signal in the testing speech 
to select the most appropriate reference HMM set. For the noise classification, a 
GMM (Gaussian mixture model) based noise classifier with 5 mixtures was trained 
for each type of the noise signal [4]. The first 20 frames (200ms) of the non-speech 
segments of the testing noisy speech are used for the noise classification. We could 
find that the noise classification results for the 4 types of noise signals were very high 
and it makes the multi-model structure in the noisy speech recognition quite feasible. 
There are also four sets of testing data corresponding to the different noise types. The 
recognition experiments have been done for each set of the testing data and their 
recognition rates are averaged to give the results in the table.  

The recognition results of the proposed method are compared with the JA, PMC and 
the MCT (Multi-condition training). The MCT was originally introduced with the 
AURORA database, where 4 different noise types at 5 different SNRs are considered 
in constructing the training data [5]. The HMM obtained from MCT may be thought to 
be able to well represent the acoustical effects due to the various SNRs and noise 
types. The training data for the MCT in this paper was also organized in a similar way.  
For the JA, the reference HMM was obtained by the PMC during the training. 

The covariance matrices as well as the static and delta-mean vectors of the HMM 
are compensated. As we can see in Table 2, the D-JA is far more robust than the other 
approaches. For example, when the reference HMM is trained at 10 dB, it attains the 
word recognition rates of 77.2(%) and 93.5(%) at the testing SNR of 0 dB and 25 dB, 
respectively while the JA has the recognition rates of 60.5(%) and 90.1(%) at the 
same condition. The error rate reduction ratio is about 40 (%). Also, when the 
reference HMM is trained at 20 dB in the D-JA, it performs better than all the other 
methods at all testing SNRs.  

From the results in Table 2, we can conclude that the D-JA method will perform 
much better than the conventional methods by constructing the reference HMM sets 
only at the SNR of 10 and 20 dB in the multi-model structure. For example, when the 
SNR of the testing speech is 15 dB, the D-JA outperforms the other methods even if 
we choose any one between the reference HMM set trained at 10 and 20 dB. This is 
true for all the testing SNRs except for 25dB. But, in this case, we may easily choose 
the reference HMM set trained at 20 dB by the SNR estimation process. 

In the above results, we only considered the 4 types of the noise signals in the 
testing. For practical purposes, we also investigated the robustness of the proposed 
method when unknown types of noise signal are given in testing speech. In this case, 
the testing noisy speech may contain noise signals which type was not assumed 
during the training as usually happens in real environments.  

For the unknown types of noise signal, the restaurant, street, airport and train 
station noise signals from the AURORA 2 database were employed. The recognition 
experiments have been done for each set of testing data corresponding to the unknown 
types of noise signals and the average word recognition rates are shown in Table 3. 
The results do not show much difference with that in Table 2. The D-JA outperformed  
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Table 3. Performance comparison in average word recognition rates(%) when unknown types 
of noise signal are given in the testing speech (restaurant/street/airport/train station) 

      Testing 
Training 

0dB 5dB 15dB 25dB 

10dB 80.4 90.0 94.6 92.4 D-JA 
20dB 72.9 86.2 95.6 97.1 

MCT 71.6 85.2 94.0 96.1 
PMC 69.4 81.3 93.0 97.0 

 
both MCT and PMC and we could confirm that the proposed D-JA method shows 
superior noise robustness even in the case of unknown noise types. 

4   Conclusion 

In this paper, we proposed a data-driven adaptation method to improve the 
performance of the JA in noisy speech recognition. By using the reference HMM set 
trained directly with the noisy speech, the adapted HMM could more effectively 
represent the acoustical variations due to the noise. We could be confident from the 
experimental results that the proposed adaptation method would be quite effective in 
the multi-model structure by using only a few reference HMM sets for each type of 
noise even in the presence of unknown types of noise signals in the testing speech. 
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Abstract. This work focuses on the development of a computer vision system 
for the automatic on-line inspection and classification of Satsuma segments. 
During the image acquisition the segments are in movement, wet and frequently 
in contact with other pieces. The segments are transported over six semi-
transparent conveyor belts that advance at speed of 1 m/s. During on-line 
operation, the system acquires images of the segments using two cameras 
connected to a single computer and process the images in less than 50 ms. 
Extracting morphological features from the objects, the system identifies 
automatically pieces of skin and row material and separates entire segments 
from broken ones, discriminating between those with slight or large breaking 
degree. Combinations of morphological parameters were employed to decide 
the quality of each segment, classifying correctly 95% of sound segments. 

Keywords: automatic inspection, machine vision. 

1   Introduction 

In the Spanish industry, the economic importance of the processed fruit is low in 
comparison with the fresh fruit. For this reason most of the researches related with 
machine vision applied to the agricultural produces are focused in the field fresh fruit 
[1],[2],[3]. In the same way, manufacturers of automatic fruit sorters are centred in the 
development of machines for grading fresh fruit, being the market of the processed 
fruit minor. This is the case of the canned peaches [4], [5] or the mandarin segments 
[6]. In this industry, when the mandarins come into the production line they are 
peeled, the segments are then separated, peeled, inspected and canned. All the 
operations are performed automatically, but the inspection which is the only part of 
the process that has not already been automated [7]. In this industry, operators carry 
out visual inspections for broken segments or those that contain pips as they go pass 
on a conveyor belt. When a defective segment is detected, it is removed from the 
conveyor belt manually. Problems related to subjectivity, fatigue or the disparity of 
criteria among operators as to how to decide which are broken and which are not 
decrease the quality of the inspection and, consequently, the final product.  

This article presents a contribution to introduce the computer vision in this 
industrial sector designing computer vision techniques for the automatic estimation of 
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the quality of mandarin segments. This paper shows the image analysis algorithms 
developed for the inspection of the segments. The algorithms are intended to allow 
on-line detection of the presence of pips in the segments and to analyze the shape of 
the segments in order to detect broken segments in order to classify the segments in 
different commercial categories. Also pieces of skins or doubles segments (which are 
those that were not properly split in previous processes) have to be detected. 

2   Objective 

The objective is to develop image analysis algorithms for the on-line estimation of the 
quality of mandarin segments. The algorithms use morphological features extracted 
from the images of the segments to identify those broken or containing pips, as well 
as being capable of detecting the presence of raw material while the fruit travels on a 
conveyor belt; an added difficulty is the fact that there are a random number of wet 
segments in each image without a known position. The system have to be capable of 
inspecting 1 T of segments per second. 

3   Material and Methods 

The satsuma segments entered to the inspection machine coming from a vibrating 
plate that spread them along the width of the machine. Then, the high speed of the 
conveyor belts facilitates their separation. Being the averaged weight of the segments 
about 5 g, to achieve the requirements of 1 T per second, the machine must inspect 
about 55 segments per second. Two consecutive segments in the conveyor belt should 
be separated about 30 mm for increasing the performance.  

To get the performance requirements, the speed of the conveyor belts using only 
one camera would be very high and the segments could be damaged due to 
mechanical operations. The computer vision system consists of two progressive scan 
cameras that acquires RGB images format with a resolution of 0.65 mm/pixel. Both 
cameras are connected to a single personal computer trough a frame grabber. The 
images of the segments were acquired using a satsuma mandarin sorter prototype, 
particularly developed for this work (Fig. 1), placed in a satsuma segments producer 
company. Six semi-transparent conveyor belts transport the segments, which allow 
the backlighting of them, thus facilitating the detection of pips and the segmentation 
of the shape of the segments. Each camera is capable of acquiring a scene with three 
conveyor belts. The processing of the image acquired with one camera is overlapped 
with the acquisition of the image with the second camera, which allow saving the 40 
ms required to acquire one image.  

Specific algorithms for detecting the pips and analysing the shape of the segments 
were developed and implemented in C programming language. The first step consists 
on segmenting the image to separate the product from the background. When 
backlighted, objects presented high contrast respect the translucent conveyor belts. In 
the acquired images, the colour of the segments has a small contribution of blue 
component respect to the background which allows separating between them using a 
thresholding in this colour band. However, the objects found include segments, seeds 
and skin pieces. 
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Fig. 1. Prototype for the automatic sorting of satsuma segments 

 

 

Fig. 2. Original image and the result of the image segmentation 

A second segmentation within the area of these objects is performed to 
discriminate between them (fig. 2). In this case, the red image is used because the 
seeds and the skin pieces are more opaque than segments, having lower values of red. 
Also double segments, which are those that had not been properly split in previous 
processes, are detected using this second segmentation. 

This second segmentation separates between segments by one hand and seeds and 
skins by other. Being the seeds normally very smaller than skins, a threshold of size 
was established. The threshold is set a value of area 50% greater that the estimated 
area of the largest seed found in the training set. The area of each object is estimated 
by counting the number of pixels belonging to it. In the case of the double segments, 
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they are normally detected as large opaque objects inside an area of good segment. 
Segments with seeds and skins will be rejected by the prototype and no further 
processing is performed with them.  

The shape of the remaining objects is analysed to estimate morphological features 
that allow determining if they are complete, broken or pieces of segments. The 
sequence of the shape analysis starts with the extraction of the perimeter (P) of the 
objects (the close contour), that is formed by those pixels belonging to the object 
having some neighbour belonging to the background. Then, the centroid is calculated 
as the averaged x and y coordinates of the pixels of the perimeter. The area (A) is 
calculated as the number of pixels inside the perimeter. The moments of inertia are 
calculated following the equations 1 to 3. The principal axis of inertia is used to 
estimate the length and the orientation of the object (fig. 3). 
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Fig. 3. Representation of the axis of inertia 

In the next step the elongation is calculated using the equation (4). The elongation (E) 
provides information about the ration between the length (L) and width (W) of the 
object. 

E=W x L-1 (4) 

A shape factor (R) is calculated to estimate the relative shape of the object against 
a circumference with a perimeter equal to the object. The values of this factor ranges 
between 0 and 1 and was calculated using the equation 5 [8]. 
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R = 4 x PI x A x P-2 (5)

The compactness (C) is used to analyse the presence of concavities and convexities 
in the contour caused by breakings in the segment. It is calculated using the equation (6) 

C = P2 x A-1 (6)

Supposedly, a perfect segment is symmetric while a broken one is irregular. The 
estimation of the distribution of the mass at both sides of the secondary axis of inertia 
can be used as an estimation of the symmetry. The ratio between the number of 
different pixels in both parts respect the total area is calculated. Fig. 4 (left) shows an 
entire segment where the contour of the left part has been projected over the right part 
to check visually the symmetry. Fig. 4 (right) shows the symmetry of a broken 
segment. 

 
Fig. 4. Representation of the symmetry of the segments 

 

Finally, the boundary is coded using the polar signature, represented as a one-
dimensional array that contains the Euclidean distances between the centroid of the 
object (C) and each point of the perimeter p(i) i=[0,P] [9]. Fig. 5 shows this signature 
graphically. The fast Fourier transform (FFT) of this signature is calculated since it 
provides information about their profile that can be used as estimation of the shape of 
the objects [10], [11]. 

 

 
Fig. 5. Polar signature of the boundary of the segment 

 

To test the performance of the algorithms, the inspection prototype was put to work 
in a satsuma segments producer for one season, acquiring and inspecting more than 
15.000 images of mandarin segments randomly chosen from the product lines. All the 
segments were manually analysed and classified by experts from the quality 
laboratory of the producer company. Attending to the experience of these experts, the 
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good segments represent about the 78% of the production, the broken segments the 
18%, double segments 3% and segments with seeds 1%. The distribution of the 
15.000 segments analysed followed this distribution. The results of the proposed 
system were compared with the visual classification of the experts. 

As described above, segments with seeds and double segments are detected and 
classified in a previous process. The rest of the segments were classified through a 
discriminant analysis classification model. To generate the model, a set of 620 
segments (including good and broken segments) were randomly chose from the 
production line, labelled as good or broken and imaged. The morphological 
parameters described above (shape factor, compactness, elongation, length, area, 
symmetry and, following the methodology proposed in [12], the first 10 harmonics 
obtained from the FFT of the polar signature) were calculated for each segment and 
stored. A discriminant analysis was performed using the calculated parameters as 
independent variables and the label as the grouping variable, to classify the segments 
between the classes entire and broken. Discriminant functions were obtained from the 
analysis and implemented in the classification algorithm. The model was then applied 
to the 15.000 images of segments to obtain the performance of the prototype 
classifying segments on line.   

The processing time of the images was measured using an oscilloscope connected 
to the parallel port of the computer. Starting and ending events were triggered to the 
oscilloscope and the time employed for the operation registered. 

4   Results 

This classification of the segments as entire or broken was joined with the skin pieces, 
seeds and double segments detection to obtain a global view of the machine vision 
performance. The results show the performance of the Image analysis algorithms 
developed for the quality inspection of mandarin segments when they travelled by the 
inspection machine at a speed of 1 m/s. The results of the classification given by the 
image processing algorithm were compared with the visual inspection of the producer 
company experts to obtain success ratios for each category (table 1). The system was 
capable of detecting 94% of the segments that contained pips and 94% of pieces of 
skin that were travelling on the conveyor belt. The algorithms’ rate of success in 
separating out sound segments was 95% while the detections of broken ones was only 
77% due, mainly, to the fact that most of breakages in many segments correspond 
with small fragments in one extreme, difficult to detect by the actual system. The  
 

Table 1. Confusion matrix 

Category Complete Broken Seeds Skins Doubles 

Complete 95,2% 4,0% 0,7% 0,0% 0,0% 

Broken 23,2% 76,8% 0,0% 0,0% 0,0% 

Seeds 4,8% 1,2% 94,1% 0,0% 0,0% 

Skins 1,9% 3,9% 0,0% 94,2% 0,0% 

Doubles 21,4% 0,0% 0,0% 0,0% 78,6% 
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average of success in the detection reach 78%. Specific algorithms have to be 
developed to detect these small breakages. The averaged processing time of the 
images was 48 ms. 
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Abstract. Mathematical Morphology is a powerful non-linear image
analysis techniques based on lattice theory. The definitions of morpho-
logical operators need an ordered lattice algebraic structure. In order to
apply these operators to the colour images it is required, on one hand
the choice of a suitable colour space representation and on the other
hand, to establish an order in the colour space providing an ordered lat-
tice algebraic structure. The HSI space represents the colour in terms
of physical attributes that separate the achromatic component from the
chromatic one and it yields a more intuitive description of the colour
properties than the RGB space. The suggested order weighs the hue and
the intensity according to the saturation level: it has a lexicographical
order in which the intensity has priority if the saturation is high, and
the hue has priority if the saturation is low.

1 Introduction

The techniques of Artificial Vision have been developed initially for binary and
grayscale images, where the information is codified by 2 and 2n −1, n ∈ N levels,
respectively. Nevertheless, the colour is an important source of information. For
this reason, during the last years these techniques are being developed for colour
images. However, at present, both the representation and the treatment of colour
images continue to be open problems.

Mathematical Morphology is the natural arena for a rigorous formulation of
many problems in image analysis and powerful non-linear techniques including
operators for the filtering, texture analysis, shape analysis, edge detection or
segmentation. Nevertheless, to define the basic morphological operators, erosion
and dilation, it is necessary to define before an order on the space used for
processing the images.

For grayscale images, this order comes from the usual order of R. For colour
images two problems arise. On one hand, the chromatic space in which the image
is processed, and on the other hand, the order that settles down on it.

This paper is structured as follows. First, in Section 2, the basic operators
in Morphology, erosion and dilation, are defined in sets and binary images. The
natural generalization to grayscale and colour images needs the lattice structure.
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In Section 3, in the HSI space a family of orders is suggested that comes defined
by a cost function, and makes use of the lexicographical order in the RGB space.
In section 4 one of these orders is chosen. It allows to define a lexicographical
order with weight in the hue component when the image has high saturation and
a with priority in the intensity component when the image has low saturation.
Finally, conclusions are included in Section 5.

2 Mathematical Morphology and Lattices

Mathematical Morphology is a well-known non-linear technique for the signal
processing. It was initiated in the sixties with the works by Matheron [1] and
Serra [2] guided by the works on sets by Minkowski. In the eighties, Matheron
and Serra proposed the ultimate mathematical formulation of Morphology within
the algebraic framework of the lattices [3].

The structuring element in the morphological operations is a finite subset
E ⊂ Z

2 with (0, 0) ∈ E. The erosion (resp. dilatation) of A ⊂ Z
2 by E is defined

by the formula εE(A) = {x ∈ Z
2 / Ex ⊆ A} =

⋂
s∈E A−s (resp. δE(A) = {x ∈

Z
2 / (−E)x ∩A �= Ø} =

⋃
s∈E As). Here As = {x+s / x ∈ A}. Hence the erosion

is an infimum and the dilation is a supremum in the lattice P(Z2) (Parts of Z
2).

A binary image is a map f : Ω ⊂ Z
2 → {0, 1} and therefore it is the character-

istic function f = χA of A, where A = {x ∈ Z
2 / f(x) = 1}. Then we can define

the erosion and dilation of f = χA by the structuring element E ⊂ Z
2 as the char-

acteristic functions of εE(A) and δE(A) respectively. Precisely, εE(f) = χεE(A)
and δE(f) = χδE(A). Note that

εE(f) = infs∈E(f ◦ τs)
δE(f) = sups∈E(f ◦ τ−s)

(1)

where τs(x) = s + x ∀x ∈ Z
2. Again, the erosion and dilation are an infimun

and a supremum respectively, now in binary images lattice. Punctually,

εE(f)(x) = infs∈E(f(s + x))
δE(f)(x) = sups∈E(f(−s + x)) (2)

A grayscale image is a map f : Ω ⊂ Z
2 → Z. Since R is a total order (with

its usual order), the grayscale images set is a lattice, which allow us to define
the erosion and the dilation of a grayscale image f by the structuring element
E ⊂ Z

2 by (1) and punctually by (2).
For the extension of the basic morphological operations to colour images, we

need a lattice structure in colour images set. A colour image can be represented
by a map f : Ω ⊂ Z

2 → C, where C ⊂ R
3 is a colour space. If C has a lattice

structure with the order ≤C , then the colour images set is a lattice with the
order

f ≤ g ⇔ f(x) ≤C g(x) ∀x ∈ Ω ∀f, g : Ω ⊂ Z
2 → C (3)
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This allows to define the erosion and dilation of a colour image f : Ω ⊂
Z

2 → C by a structuring element E ⊂ Z
2 by (1) and punctually by (2), where

the infimum and the supremum are calculated with the order ≤C in the colour
space.

For binary and grayscale images, in (2) infimum and supremum are mini-
mum and maximum respectively. For colour images, if the colour space has a
total order, we also have minimum and maximum. However, if the colour space
is partially ordered, infimum and supremum do not have to be minimum nor
maximum. This could originate fake colours, i.e., colours that were not in the
original image.

Eroding binary images is the same as diminishing white objets and dilating
them makes white objets bigger. For grayscale images, eroding is the same as
darkening them and dilating is clarifying them. Nevertheless, for colour images
erosion and dilation do not have this univocal meaning: they depend on the
order relation on the chromatic space. We must select this order depending on
the image features or the type of image processing task.

3 Order in the HSI Colour Space

In the RGB space, colours are specified as (R, G, B) which give the amount of each
red, green and blue primary stimulus in the colour. The transformation from RGB
to hue, saturation and brightness coordinates is simply a transformation from a
cartesian coordinates system to a cylindrical coordinates system. The achromatic
axis is formed by all the achromatic points (R = G = B). The perpendicular
plane to the achromatic axis, and intersecting it at the origin, called chromatic
plane, contains all the colour information. The hue and saturation coordinates
are determined within the achromatic plane. Hanbury and Serra [4], [5], [6] adopt
a family of HSI spaces using norms in R

3, and proving the independence between
chromatic and achromatic components. The equations of transformation between
RGB and HSI using the max-min semi-norm are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I = 0.213R + 0.715G + 0.072B
S = max (R, G, B) − min (R, G, B)⎧⎪⎪⎨
⎪⎪⎩

θ = arccos
(

2R − G − B

2(R2 + G2 + B2 − (RG + RB + GB))
1
2

)

H =
{

2π − θ si B > G
θ si B ≤ G

(4)

where I, S and H are the intensity, the saturation and the hue respectively.
All different orders defined in colour spaces are based on other previous orders

defined in every component of colour. In the specific case of HSI space, there
are two linear components, saturation and intensity; therefore, it is possible to
work with the usual order of the real numbers. However, the hue is an angle
value, H ∈ [0, 2π), and the unit circle neither has relevant order nor dominant
position. In mathematical terms, we cannot construct a lattice on the unit circle
if we do not assign it to an arbitrary origin.
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Peters [7] and Hanbury [8] fix a reference hue, Href and establish an order.
This reference hue is chosen as the minimum value. The hue circle is ordered by
the distance:

d(H, Href ) =
{

|H − Href | if |H − Href | ≤ π
2π − |H − Href | if |H − Href | > π

(5)

From this distance we obtain an order for the hue:

H1 ≤Href
H2 ⇔

⎧⎨
⎩

d(H1, Href ) < d(H2, Href )
or

d(H1, Href ) = d(H2, Href ) y H1 ≤ H2

(6)

It should be observed that the natural order in the linear components, sat-
uration and intensity, agrees with the intuitive order. But there are different
orders for hue component depending on the value Href , so that the intuitive
idea of smaller or bigger point disappears. For this reason some rare results can
be obtained when an angular component plays an important role in the order
defined on the chromatic space.

Fix a (cost) function c : HSI → R, and consider the following order:

(H1, S1, I1) ≤c
Href

(H2, S2, I2)

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(H1, S1, I1) < c(H2, S2, I2) (a)
or

c(H1, S1, I1) = c(H2, S2, I2) and I1 < I2 (b)
or

c(H1, S1, I1) = c(H2, S2, I2) and I1 = I2 and H1 <Href
H2 (c)

or
c(H1, S1, I1) = c(H2, S2, I2) and I1 =I2 and H1 =H2 and S1 ≤ S2 (d)

(7)
Case a) of (7) determines the order almost everywhere. Only for pairs of

points over the same surface c(H, S, I) = c the order must be decided via the
HSI lexicographical order with priority I, H, S. Certainly, RGB space is the
most employed colour space in images acquisition. In addition, if we want to
work using the order defined by (7), it requires a high computational cost for
calculating the equations of a change of coordinates between the spaces RGB
and HSI. However, we can avoid to calculate inverse transform equations if the
lexicographical order given by (7) is considered on RGB space.

4 Erosion and Dilation in the HSI Colour Space

The lexicographical orders are total orders with priority of components. In real
images, the intensity is the attribute that offers greater definition of scenes,
therefore the priority of lexicographic order I, H, S offers good visual results. If
the image has a high saturation, it is mainly determined by the hue, so we set
the hue as first position in the lexicographical order. [8], [9], [10], [11], [12], [13].
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A new order is suggested for HSI space defined by (7), where the cost function
is a function of the hue for high saturation level case and a function of the
intensity for low saturation.

Fixed a hue reference value Href , we defined the normalized hue value by the
formula

h =
d(H, Href )

π
∈ [0, 1] (8)

The above cost function is defined by

c(H, S, I) = a(S)h + (1 − a(S))I (9)

where a : [0, 1] → [0, 1] is increasing with a(0) = 0 and a(1) = 1. Initially, it is
possible to choose a(S) = S [14], so

c(H, S, I) = Sh + (1 − S)I (10)

and the order is expressed by

(H1, S1, I1) ≤Href
(H2, S2, I2)

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − S1)I1 + S1h1 < (1 − S2)I2 + S2h2
or

(1 − S1)I1 + S1h1 = (1 − S2)I2 + S2h2 and R1 < R2
or

(1 − S1)I1 + S1h1 = (1 − S2)I2 + S2h2 and R1 = R2 and G1 < G2
or

(1 − S1)I1 + S1h1 = (1 − S2)I2 + S2h2 and R1 = R2 and G1 = G2
and B1 ≤ B2

(11)
where(R, G, B) and (H, S, I) are the components of a point in the RGB and
HSI spaces respectively.

We remark that:

– Saturation component S and its complementary value 1 − S are weights of
the normalized hue and the intensity respectively. To establish the order
relation it must be taken into account that the hue component has bigger
weight when the saturation is high, whereas the intensity has bigger weight
when the saturation is low.

– If the image has a high saturation level, then the fixed reference hue value
plays an important role. For example, if the predominant colour is red and
we select Href = 0, then eroding (resp. dilating) is the same that increasing
(resp. decreasing) the size of saturate red objects.

The image Miro (368 × 271), used by Hanbury [11], [8] has low saturation
(Fig. 1). However, the image Colours (249 × 245) has medium-high saturation
(Fig. 2). These images are used to testing the goodness of the order above sug-
gested. For the image Miro, the order works by intensity level and for the image
Colours, the order works by hue level.
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a) b) c) d)

Fig. 1. a) Image Miro b) Distance hue with Href = 0o, c) Saturation d) Intensity

a) b) c) d)

Fig. 2. a) Image Colours b) Distance hue with Href = 0o, c) Saturation d) Intensity

Fig. 3 shows the erosion and dilation of image Miro by a disk of width 4 with
the order (11) with Href = 0o in a) and b) and with Href = π in c) and d).
At Fig. 1 c) we can see: the red and yellow shaded regions are areas of high
saturation; the blue and green shaded body and the blue and green coloured
spots over background have medium saturation; the white background, with
green-gray coloured spots and dark border of imagen and dark spots have low
saturation values.

Noting that with Href = 0o the result of erosion increases the size of the image
borders and dark spots. In the dilation by a structuring element big enough, these
elements with low intensity disappear. Green-gray spots over white background
(high intensity), also increase their size after an erosion operation. Finally, the
yellow and red coloured spots at the right bottom of the image, over white back-
ground, are objects with high saturation that also increase their size. However,
yellow and red regions of face with dark border decrease.

Any change of reference hue value give rise to no different behavior of low sat-
uration areas, but we can appreciate some differences at middle-high saturation
regions. For example, if we select Href = π, close to blue colour, then the red
colour has a high hue level. Fig. 3 c) shows at the right bottom of the image that
as result of erosion, the edge of the red spot is not enhanced due to green-gray
spots over background.

Fig. 4 shows the erosion and the dilation of image Colours by a disk of width
4, with the order (11) with Href = 0o in a) and b) and with Href = π in c) and
d). At Fig. 2 c) we can see that image Colours has middle-high saturation level;
therefore, the order works like an intermediate order between the lexicographi-
cal order with intensity as priority component and the lexicographical order with
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a) b) c) d)

Fig. 3. a) Erosion b) Dilation with Href = 0o c) Erosion d) Dilation with Href = π of
image Miro

a) b) c) d)

Fig. 4. a) Erosion c) Dilation with Href = 0o c) Erosion d) Dilation with Href = π of
image Colours

hue as priority component. Fig. 4 is agreed with our intuitive perception: the
reference hue value has more influence than in the above case.

5 Conclusion

A new order has been presented in the HSI colour space in the Mathemat-
ical Morphology framework for colour images. This order allows to select the
saturation level as a weighting factor for the intensity and the hue.

For low saturation regions, the order works in a lexicographical order with
intensity as priority component, whereas if the regions have a high saturation
value, the order chooses the hue as priority component, since these components
are the right ones to determine the image at every case. When saturation is
medium, then the order works like an intermediate order between the lexico-
graphical one with the intensity as priority component and the lexicographical
one with the hue as priority component.

It is possible to prove that the fixed hue reference value has a high influence
on images with medium-large saturation level, whereas this influence is not sig-
nificant for images with low saturation level. Another advantage of the order is
that it allows to reduce the computational cost that involves the work in colour
spaces different the RGB space.

Acknowledgments. This paper has been partially supported by the program
“Ayudas Puente a los grupos de investigación” of Comunidad Autónoma de
Madrid.
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Órdenes en los Espacios de Color para su Aplicación en Morfoloǵıa Matemática.
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Abstract. The basis for the high-level interpretation of observed pat-
terns of human motion still relies on motion segmentation. Popular ap-
proaches based on background subtraction use colour information to
model each pixel during a training period. Nevertheless, a deep analysis
on colour segmentation problems demonstrates that colour segmentation
is not enough to detect all foreground objects in the image, for instance
when there is a lack of colour necessary to build the background model.
In this paper, our segmentation procedure is based not only on colour,
but also on intensity information. Consequently, the intensity model en-
hances segmentation when the use of colour is not feasible. Experimental
results demonstrate the feasibility of our approach.

1 Introduction

The analysis of human motion in image sequences involves different tasks, such as
motion segmentation and tracking, action recognition and behaviour reasoning
[6]. However, the basis for high-level interpretation of observed patterns of human
motion still relies on when and where motion is being detected in the image.
This kind of information is critical for different applications such as smart video
surveillance for intruder detection and suspicious behaviour detection.

To achieve robust detection, many researchers have proposed methods to ad-
dress segmentation problems, such as illumination changes, shadows, camouflage,
background in motion, or deposited and removed objects from the scene [7]. To
overcome these difficulties, different techniques can be applied, such as temporal
differencing, optical flow and background subtraction [9]. The latter is based on a
background model used to compare the current image with such a model. Among
these background subtraction methods, statistical approaches are very popular:
W4 [3] use a bimodal distribution; Pfinder uses a single Gaussian to model the
background; Stauffer et al. [2] use a mixture of Gaussians; and Elgammal et al.
[1] present a non-parametric background model.

On the other hand, several cues are used for segmentation in the literature:
Horprasert et al. [4] use colour information to classify a pixel as foreground,
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Description

Cues

Sensitivity of Sensor

Change of illuminant

Gleaming surface

Saturation

Minimum Intensity

Light Camouflage

Light Foreground 
Camouflage

Dark Camouflage

Dark Foreground 
Anomalies

Foreground
Global Highlight

Local Highlight
Background

Global shadow

Local shadow
Base case

-HigherEqualLowerBrightness

DifferentEqualChromatic

Case Analysis (Colour Model Casuistry)

Description

Cues

Sensitivity of Sensor

Change of illuminant

Gleaming surface

Saturation

Minimum Intensity

Light Camouflage

Light Foreground 
Camouflage

Dark Camouflage

Dark Foreground 
Anomalies

Foreground
Global Highlight

Local Highlight
Background

Global shadow

Local shadow
Base case

-HigherEqualLowerBrightness

DifferentEqualChromatic

Case Analysis (Colour Model Casuistry)

Fig. 1. This table analyzes the differences between an input image and the background
model

background, shadow or highlighted background, while Wallflower [8] uses a three-
level categorization, namely pixel, region and frame level. Jabri et al. [5] use
colour and edge information, and Shen [10] uses a RGB/HSL colour space plus
fuzzy classification.

In this paper, a casuistry of colour-motion segmentation problems is first
presented, since colour is not enough to detect all foreground objects. This allows
to identify when a colour model can and can not be used. Thus, based upon this
casuistry, different colour problems can be then addressed properly. As a result,
a novel background subtraction technique is presented, which combines both
colour and intensity cues in order to solve colour motion segmentation problems
such as saturation or the lack of colour when building the background model.

This paper is organized as follows. Next section presents a casuistry of the
problems when using colour information for motion segmentation. This leads
to our approach to confront segmentation. Section 3 explains our approach to
solve the above aforementioned problems using the colour and intensity cues.
Experimental results are described in section 4. Lastly, section 5 concludes this
contribution and discusses about future work.

2 Problems on Colour Models

Colour information obtained from the recording camera is based on three compo-
nents which depend on the wavelength λ: the object reflectance R, the illuminant
spectral potency distribution E and the sensor wavelength sensitivity S:

Colour =
∫

λ

R(λ)E(λ)S(λ)dλ. (1)

Unfortunately, sensitivity of the sensor may depend on intensities for each
channel which can cause chromaticity changes. In addition, if the illuminant
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(a) (b)

Fig. 2. Intensity RGB values of a) yellow and b) blue colours extracted from a Mac-
beth board which becomes lighter over time. The dashed line corresponds to a wrong
chromaticity line and solid line corresponds to a correct chromaticity line due to: (a)
at least one of the RGB channels is saturated, or (b) there is not enough intensity to
build a colour model.

changes, the perceived chromaticity changes too, so the colour model can be
wrongly built.

Fig. 1 shows a Colour Model Casuistry based on a background model which
separates the chromaticity from the brightness component. The Base Case is the
correct operation of the theoretical colour model, and the anomalies are prob-
lems that may appear. The theoretical base case solves some of the segmentation
problems, as sudden or progressive global and local illumination changes, such
as shadows and highlights. However, some problems remain. Foreground pixels
with the same chromaticity component as the background model are not seg-
mented. If the foreground pixel has the same brightness as the background model
appears the Camouflage problem. A Dark Camouflage is considered when the
pixel has less brightness and it cannot be distinguished from a shadow. Next,
Light Camouflage happens when the pixel is brighter than the model, therefore
the pixel cannot be distinguished from a highlight. Dark Foreground denotes
pixels which do not have enough intensity to reliably compute the chromaticity.
Therefore it can not be compared with the chromaticity background model. On
the other hand is Light Foreground which happens when the present pixel is
saturated and can not be compared with the chromaticity background model
either.

Further, the perceived background chromaticity may change due to the sen-
sitivity of the sensor, or local or global illumination changes. For instance, back-
ground pixels corresponding to shadows can be considered as foregrounds. The
Gleaming Surfaces as mirrors cause that the reflect of the object is considered
as foreground. On the other hand, due to saturation or minimum intensity prob-
lems the colour model can not be build correctly. Therefore, a background pixel
can be considered foreground erroneously. Saturation problem happens when the
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intensity value of a pixel for at least one channel is saturated or almost saturated.
An example can be seen in the Fig. 2 where an experiment which consists on
recording a Macbeth board while changing intensity was carried out. The Mach-
bet board is broadly used because it contains a wide range of different colours.
Fig. 2.(a) represents the RGB values of the yellow region extracted from a Mac-
beth board which becomes lighter over time. If the model is built when at least
one of the RGB channels is saturated, the chromaticity line becomes erroneous.
Therefore, the colour model would be build wrongly. In Fig. 2.(a), the dashed
line is the erroneous chromaticity line and the solid line would be the correct
chromaticity line. The second one is minimum intensity problem which happens
when there is not enough chromaticity to build a colour model. This is mainly
due to pixels do not have the minimum intensity value to built the chromaticity
line, as shown in Fig. 2.(b) which represents the RGB values of Blue. The wrong
chromaticity line is the dashed line which is built when there is not enough
intensity. Then, a correct chromaticity line will be built when there is enough
intensity. See the black solid in Fig. 2.(b).

3 Handling Colour-Based Segmentation Problems

The approach is based on background subtraction and uses either colour or in-
tensity statistics, depending on the casuistry. First, the parameters of the back-
ground model are defined, next the colour and intensity models are explained
in detail, and finally the segmentation procedure is presented. An sketch of the
system can be seen in Fig. 3.

Fig. 3. Overview of the system
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3.1 Background Modelling

The background model takes into account the problems depicted before. A mo-
tion filter is used to avoid moving foreground pixels of the images acquired during
the training period, such as walking people or moving cars:

Motion(x, t) =
{

1 if |V(x, t) − λ(x)| < max(2 ∗ σ(x), Tm)
0 otherwise,

(2)

where V (x, t) is the intensity of a pixel location x in the t image of sequence V ,
λ(x) is the median value, and σ(x) is the standard deviation computed for all
pixels in the image. The threshold Tm is a minimum constant value.

Pixels below a minimum intensity value (NImin) or pixels over a saturation
intensity value (NSat) are not used to compute the colour model, but to build
the intensity model:

Imin(x, t) =
{

1 if V(x, t) > NImin

0 otherwise
(3)

Sat(x, t) =
{

1 if V(x, t) < NSat

0 otherwise
(4)

Lastly, a Nmin filter is used to know if a pixel position x in the image has
enough values to build colour statistics:

Nmin(x) =

⎧⎨
⎩ 1

N∑
t=1

Motion(x, t)&Sat(x, t)&Imin(x, t) > NNmin

0 otherwise
(5)

As a result, the colour model is built using those pixels which have passed the
Nmin filter, without saturation Sat(x, t) neither minimum intensity Imin(x, t)
nor motion pixels Motion(x, t) for each frame.

Next, the intensity model is built with those pixels which have not passed the
Nmin filter but without considering motion pixels Motion(x, t). Nevertheless, if
almost all the pixels corresponding a place x are in motion, then there is not
enough statistics to build the model correctly.

3.2 The Colour and Intensity Models

The colour model is based on the algorithm presented in [4], which computes
the chromatic and brightness distortion components of each pixel. Furthermore,
it can solve local and global shadows and highlights.

Each pixel is modelled by a 4-tuple < E(x), s(x), a(x), b(x) >, where E(x) =
[μR(x), μG(x), μB(x)] is the expected colour value, μ is the arithmetic mean of
the xth pixel’s red, green, blue values computed over the training period of N
frames, s(x) = [σR(x), σG(x), σB(x)] is the standard deviation of colour value,
a(x) is the variation of the brightness distortion, and b(x) is the variation of the
chromaticity distortion of the xth pixel. See [4] for more details.
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The intensity model is built based on a 2-tuple < E(x), s(x) > for every pixel,
where E(x) = μ[(R(x)+G(x)+B(x))/3] is the arithmetic mean of the xth pixel
computed over the training period, and s(x) = σ[(R(x)+G(x)+B(x))/3] is the
standard deviation of colour value.

Foreground detection is thus achieved by using the normalised brightness and
normalised chromaticity measures from colour model and the statistics from the
intensity model for every new images, and then applying the pixel classification
procedure explained next.

3.3 Image Segmentation

The combination of colour and intensity models allows to cope with different
problems. In fact, our algorithm can detect different situations. If the background
colour model of the current pixel is not available due to the lack of colour or
saturation problems during the training period, then this pixel is segmented
using intensity model. A pixel is considered foreground (FI) using a mean filter1,
in other case is considered background (BI):

meanfilter(x, t) =
{

1 if |V(x, t) − E(x)| < max(2 ∗ s(x), Ti)thenBg.
0 otherwiseforeground,

(6)

In other case, the colour model is used. When the current pixel has not chro-
maticity, it can be only segmented using the brightness component from the
colour model. A threshold over brightness classifies if this pixel is a Dark Fore-
ground (DF ) or Light Foreground (LF ). The thresholds TCD, Tα1, Tα2 are given
by the colour model defined in [4], and the thresholds Tαlo = k1 ∗ Tα1 and
TαHi = k1 ∗ Tα2, where k1 is a constant value. In other case this pixel is clas-
sified as Background(BB). Finally, if the pixel have chromaticity, then this will
be compared with the background model chromaticity. The pixel is foreground
(F ) if it has different chromaticity. If the pixel have the same chromaticity, it
is classified depending on the brightness as Shaded Background or Shadow (S),
Highlighted Background (H), or Original Background (B).

Summarizing all the parameters of the background and colour model explained
before, a pixel of the segmented image M(i) is classified as:

M(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FI if ¬meanfilter & ¬Nmin
BI else if ¬Nmin
DF else if α̂i < Tαlo & ¬Imin
LF else if α̂i > TαHi & ¬Sat
BB else if ¬Sat | ¬Imin
F else if ĈDi > TCD

B else if α̂i > Tα1 & α̂i < Tα2
S else if α̂i < 0
H otherwise

then Fg.
then Bg.}

Fg.

then Bg.
then Fg.⎫⎬

⎭ Bg.

(7)

1 The threshold Ti is a minimum constant value.
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4 Experimental Results

Our approach has been tested with multiple and different sequences with mul-
tiples segmentation problems. The first row of Fig. 4 shows the results obtained
using colour model presented in [4]. In these images the saturated sky (blue sky
colour) and saturated floor (yellow colour) are detected wrongly as foreground
regions due to saturation problem. Furthermore, second image show as a black
shadow is detected as foreground erroneously due to lack of colour problem.
The second row shows that these problems are solved using our approach. The
Fig. 5 shows that our approach works in different datasets, such as PETS and
CAVIAR, among others.

Fig. 4. First row shows erroneous blobs wrongly segmented by the colour model [4]
due to the lack of colour and/or saturation. Second row shows that these blobs are
removed by our approach, using both colour and intensity cues.

Fig. 5. Foreground region segmentation applying our approach to different datasets,
such as PETS and CAVIAR, among others
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5 Conclusion

In this paper, firstly a casuistry of the possible colour-motion segmentation prob-
lems is presented. This allows us to define when the colour model can be used.
Then, an approach is proposed to cope with different colour problems as dark
foreground and light foreground. Furthermore, it solves saturation problems and
minimum intensity problems using intensity cue. The approach reduces the num-
ber of false negatives, false positives and increase the detected correct foreground
regions as it can be seen in the experimental results. Future Work needs to ad-
dress news cues, like edges or corners because the intensity model can not work
with intense shadows and highlights. Furthermore, these kind of cues can help
solving problems related to the sensitivity of sensor and changes of illumination
which are not being tackled in this paper. Finally, an object based multilayer
background model is required to face problems as ghosts [8].
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Abstract. Random forest is a collection (ensemble) of decision trees. It
is a popular ensemble technique in pattern recognition. In this article,
we apply random forest for cancer classification based on gene expres-
sion and address two issues that have been so far overlooked in other
works. First, we demonstrate on two different real-world datasets that
the performance of random forest is strongly influenced by dataset com-
plexity. When estimated before running random forest, this complexity
can serve as a useful performance indicator and it can explain a dif-
ference in performance on different datasets. Second, we show that one
should rely with caution on feature importance used to rank genes: two
forests, generated with the different number of features per node split,
may have very similar classification errors on the same dataset, but the
respective lists of genes ranked according to feature importance can be
weakly correlated.

1 Introduction

Gene expression based cancer classification is a supervised classification problem.
However, unlike many other classification problems in machine learning, it is un-
usual because the number of features (gene expressions) far exceeds the number
of cases (samples taken from patients). This atypical characteristic makes this
task much more challenging than the problems where the number of available
cases is much larger than the number of features.

In gene expression based cancer classification, a subset of the original genes is
relevant and related to cancer, but genes constituting this subset are frequently
unknown and need to be discovered and selected by means of machine learning
methods. As remarked in [1], classification algorithms providing measures of fea-
ture importance are of great interest for gene selection, especially if the classifica-
tion algorithm itself ranks genes. One of such algorithms is random forest.

Random forest has not been frequently utilised in bioinformatics [1,2,3,4,5,6].
However, it has several properties that make it attractive. The most important
among them are 1) it does not overfit when the number of features exceeds the
number of cases, 2) it implicitly performs feature selection, 3) it incorporates
interactions among features, and 4) it returns feature importance. In addition,
it was claimed [1,2] that its performance is not much influenced by parameter
choices.

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 483–490, 2007.
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The most significant parameter of random forest is mtry, the number of fea-
tures used at each split of decision tree. In [2] they claimed that the performance
of random forest is often relatively insensitive to the choice of mtry as long as
mtry is far from its minimum or maximum possible values (1 or m, respectively,
where m is the total number of features). Another parameter is the number of
trees, which should be quite large (say, 500 to several thousands).

In gene expression based cancer classification there are two goals: to achieve
as high as possible classification rate with as few as possible genes. Often re-
searchers concentrate on high accuracy while overlooking the analysis of the
selected genes. Based on tests with two gene expression datasets, we discovered
in this article that although the random forest performance in terms of error
rate may be similar or the same for two different values of mtry, gene rankings,
produced by two forests applied to a certain dataset, can be weakly correlated.
In other words, genes that are very important in one case can be almost irrele-
vant in another case. This is the first overlooked issue emphasising that feature
importance provided by random forest should be treated with caution.

Another overlooked issue concerns a less severe but nevertheless important
problem. It is often said that random forests are competitive with respect to
other classifiers used in cancer research. We do not argue against this claim, but
would like to emphasise that dataset complexity computed before trying random
forest on a certain dataset can provide a useful performance estimate. Again, we
demonstrate based on several complexity measures borrowed from [7] that the
performance of random forest can be roughly predicted from these measures.
Our goal was not to obtain precise numerical predictions but rather to attain a
kind of indication of the expected performance without classifying a dataset.

2 Random Forest

A random forest is a collection of fully grown CART-like (CART stands for
Classification and Regression Tree) decision trees combined by averaging the
predictions of individual trees in the forest. For each tree, given that the total
number of cases in a dataset is N , a training set is first generated by randomly
choosing N times with replacement from all N cases (bootstrap sample). It can
be shown [8] that this botstrap sample includes only about 2/3 of the original
data. The rest of the cases is used as a test (or out-of-bag) set in order to
estimate the out-of-bag (OOB) error of classification, which serves as a fair
estimate of accuracy. If there are m features, a number mtry � m is specified
such that at each node, mtry out of m features are randomly selected (thus,
random forest uses two random mechanisms: bootstrap aggregation and random
feature selection) and the best split on these mtry features is used to split the
node. Various splitting criteria can be employed such as Gini index, information
gain, node impurity. The value of mtry is constant during the forest growing
(typical values of mtry are chosen to be approximately equal to either

√
m
2 or√

m, or 2
√

m). Unlike CART, each tree in the forest is fully grown without
pruning. Each tree is a weak classifier and because of this fact, averaging the
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predictions of many weak classifiers results in significant accuracy improvement
compared to a single tree. In other words, since the unpruned trees are low-bias,
high-variance models, averaging over an ensemble of trees reduces variance while
keeping bias low.

In addition to being the useful estimate of classification accuracy, the out-of-
bag error is also used to get estimates of feature importance. However, based
on the out-of-bag error alone, it is difficult to define a sharp division between
important and unimportant features.

3 Datasets

Two datasets were chosen for experiments. They differ in technology used to
produce a dataset and in dataset complexity. Dataset complexity is discussed in
detail below.

3.1 SAGE Dataset

SAGE stands for Serial Analysis of Gene Expression [9,10]. This is technology
alternative to microarrays (cDNAs and oligonucleotides). Though SAGE was
originally conceived for use in cancer studies, there is not much research using
SAGE datasets regarding ensembles of classifiers (to our best knowledge, this
is the first research on random forests based on SAGE data). SAGE provides a
statistical description of the mRNA population present in a cell without prior
selection of the genes to be studied [11]. This is the main distinction of SAGE
over microarray approaches (cDNA and oligonucleotide) that are limited to the
genes represented in the chip. SAGE “counts” the number of transcripts or
tags for each gene, where the tags substitute the expression levels. As a result,
counting sequence tags yields positive integer numbers in contrast to microarray
measurements.

In the chosen dataset [12], there are expressions of 822 genes in 74 cases (24
cases are normal while 50 cases are cancerous) [13]. Unlike many other datasets
with one or few types of cancer, it contains 9 different types of cancer. We decided
to ignore the difference between cancer types and to treat all cancerous cases as
belonging to a single class. No preprocessing was done.

3.2 Colon Dataset

This microarray (oligonucleotide) dataset [14], introduced in [15], contains ex-
pressions of 2,000 genes for 62 cases (22 normal and 40 colon tumour cases).
Preprocessing includes the logarithmic transformation to base 10, followed by
normalisation to zero mean and unit variance as usually done with this dataset.

4 Dataset Complexity

It is known that the performance of individual classifiers and their ensembles is
strongly data-dependent. It is often impossible to give any theoretical bounds on
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performance or these bounds are limited to few very specific cases and too weak
to be useful in practice. To gain insight into a supervised classification problem
such as gene expression based cancer classification, one can adopt complexity
measures introduced and studied in [7]. Knowing the dataset complexity can
help to predict the behaviour of a certain classifier before it is applied to the
dataset, though the prediction may be not absolute because of finite dataset
size. Complexity measures described below assume two-class problems and they
are classifier-independent, i.e., they do not rely on a certain classification model.
Employing classifier-dependent measures would not provide an absolute scale for
comparison. For example, it is well known that a nearest neighbour classifier can
sometimes easily classify a highly nonlinear dataset.

The following characteristics were adopted to estimate the dataset complexity.

4.1 Fisher’s Discriminant Ratio (F1)

Fisher’s discriminant ratio is defined as f = (μ1−μ2)2

σ2
1+σ2

2
, where μ1, μ2, σ2

1 , σ2
2 are

the means and variances of the two classes, respectively. The higher f (f → ∞
corresponds to two classes represented by two spatially separated points), the
easier the classification problem. Hence F1 = max{fi}, i = 1, . . . , m.

4.2 Volume of Overlap Region (F2)

A similar measure is the overlap of the tails of the two class-conditional dis-
tributions. Let min(gi, cj) and max(gi, cj) be the minimum and maximum val-
ues of feature gi in class cj . Then the overlap measure F2 is defined to be
F2 = Πm

i=1
MIN(max(gi,c1),max(gi,c2))−MAX(min(gi,c1),min(gi,c2))
MAX(max(gi,c1),max(gi,c2))−MIN(min(gi,c1),min(gi,c2))

. If F2 → 0, it im-
plies that there is at least one feature for which value ranges of the two classes
do not overlap. In other words, the smaller F2, the easier the dataset to classify.

4.3 Feature Efficiency (F3)

This measure accounts for how much each feature individually contributes to
the class separation. Each feature takes values in a certain interval. If there is
an overlap of intervals of two classes, there is ambiguity of classification in the
overlapping region. The larger the number of cases lying outside this region, the
easier class separation. For linearly separated classes, the overlapping region is
empty and therefore all cases are outside of it. For highly overlapped classes,
this region is large and the number of cases lying outside is small. Thus, feature
efficiency is defined as the fraction of cases outside the overlapping region. F3
corresponds to the maximum feature efficiency.

5 Experimental Details

In all experiments below we used Random Forest software from Salford Systems
(San Diego, CA, USA), version 1.0. The number of trees in the forest was equal
to the default value, 500.
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5.1 Complexity Measures

As can be seen from the described complexity measures, they are computed
before classification. Values of all complexity measures are summarised in Table 1
for both datasets. SAGE dataset appears to be more complex for classification
than Colon one. It is therefore natural to expect a worse performance of random
forest on the SAGE data. A higher complexity of the SAGE data is not very
surprising since this dataset comprises nine different types of cancer treated as
one class, while the colon data only includes one cancer type. Table 2 confirms
this idea as well as the results from Table 1. Hence, it can be good to estimate
the dataset complexity before applying random forest to the dataset in order to
have a rough estimate of classification accuracy which can be achieved. Table 2
points to dramatic performance degradation of random forest occurred on the
SAGE data, compared to the Colon data. This in turn implies that random
forest might not achieve acceptable performance in complex problems.

Table 1. Summary of dataset complexity measures for both datasets. Italicised values
point to a more complex dataset according to each measure.

Dataset F1 F2 F3

SAGE 0.35 2.86e-154 0.34
Colon 1.39 5.15e-300 0.42

Table 2. OOB error rates. For each dataset, three typical values of mtry were tried

mtry SAGE mtry Colon

14 0.398 22 0.191

28 0.410 44 0.143

56 0.400 88 0.143

5.2 Receiver Operating Characteristic

Except for OOB error, we also utilised a Receiver Operating Characteristic
(ROC) for performance evaluation. ROC is a plot of false positive rate (X-axis)
versus true positive rate (Y-axis) of a binary classifier. The true positive rate
(TPR) is defined as the ratio of the number of correctly classified positive cases
to the total number of positive cases. The false positive rate (FPR) is defined
as the ratio of incorrectly classified negative cases to the total number of nega-
tive cases. Cancer (normal) cases are positives (negatives). TPR and FPR vary
together as a threshold on a classifier’s continuous output varies.

The diagonal line y = x corresponds to a classifier which predicts a class
membership by randomly guessing it. Hence, all useful classifiers must have
ROC curves above this line. The best possible classifier would yield a graph that
is a point in the upper left corner of the ROC space, i.e., all true positives are
found and no false positives are found.
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The ROC curve is a two-dimensional plot of classifier performance. To com-
pare classifiers one typically prefers to work with a single scalar value. This
value is called the Area Under Curve or AUC. It is calculated by adding the
areas under the ROC curve between each pair of consecutive FPR values, us-
ing, for example, the trapezoidal rule. Because the AUC is a portion of the area
of the unit square, its value will always lie between 0 and 1. Because random
guessing produces the diagonal line between (0,0) and (1,1), which has an area
of 0.5, no realistic classifier should have an AUC less than 0.5 [16]. In fact, the
better a classifier performs, the higher the AUC. The AUC has an important
statistical property: the AUC of a classifier is equivalent to the probability that
the classifier will rank a randomly chosen positive case higher than a randomly
chosen negative case [16]. AUC values for both datasets and typical choices of
mtry are shown in Table 3.

Table 3. AUC values. For each dataset, three typical values of mtry were tried.

mtry SAGE mtry Colon

14 0.667500 22 0.873864

28 0.659167 44 0.873864

56 0.671667 88 0.852273

Looking at Tables 2 and 3, one can notice that the performance of random
forest on each dataset remains almost the same as mtry varies. This is the ex-
pected result just confirming conclusions of other researchers. We went, however,
one step further and analysed the gene rankings produced according to the Gini
index of feature importance. The Gini index is computed as follows. For every
node split by a feature in every tree in the forest we have a measure of how
much the split improved the separation between classes. Accumulating these im-
provements leads to scores that are then standardised. The most important gene
always gets a score of 100.00 and a rank of 1. The second most important gene
will get a smaller score and a rank of 2, etc.

We used these ranks to compute rank correlation coefficients. We opted for the
rank correlation coefficients such as Kendall’s τ and Spearman’s ρ instead of the
linear (Pearson) correlation coefficient, because they provide appropriate results
even if the correlation between two variables is not linear. Both Kendall’s τ and
Spearman’s ρ with a correction for ties were computed for all possible pairs of
ranked genes lists (for details, see [17]). There were three pairs for each dataset
because of three values of mtry. Two statistical tests were done: two-tailed test
that correlation is not zero and one-tailed test that correlation is greater than
zero. For SAGE, positive correlation if existed at significance levels 0.05 and 0.01
was about 0.12-0.17 at maximum, while for Colon its value was even smaller
(0.04-0.11). It means that gene ranks turned out to be almost uncorrelated.
Hence, given two similar OOB error rates, one should use feature importance
provided by random forest with caution in order to avoid spurious conclusions
about biological relevance of top ranked genes.
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The fact that different subsets of genes can be equally relevant when predict-
ing cancer has been already highlighted in several works [18,19]. It was argued
that one of the possible explanations for such multiplicity and non-uniqueness is
a strong influence of the training set on gene selection. In other words, different
groups of patients can lead to different gene importance rankings due to genuine
differences between patients (cancer grade, stage, etc.). In random forest, boot-
strap naturally produces different training sets and these sets have a significant
overlap. Although there are many trees in random forest, it seems that multi-
plicity and non-uniqueness still cannot be avoided. This observation implies that
for random forest the rank in the list is not necessarily a reliable indicator of
gene importance. Despite of this pessimistic conclusion, random forest remains
a good predictive method that probably needs to be complemented by more
rigorous and careful analysis of the results.

6 Conclusion

We considered the overlooked issues related to random forests for cancer clas-
sification based on gene expression. To facilitate biological interpretation, it is
important to know which genes are relevant to cancer. It was claimed that ran-
dom forest can attach importance measure to each gene, which may point to
gene relevance. We showed that despite of similar OOB errors for several typical
choices of mtry, gene importance can significantly vary. Perhaps, one alterna-
tive could be to combine explicit feature selection and random forest (see, e.g.
[1,4]), but it needs extra verification since it was reported in [1] (see “Stability
(uniqueness) of results” there) that this strategy does not always lead to very
stable results. In addition, dataset complexity computed before running ran-
dom forest can be a useful performance predictor. Based on it, users can decide
whether to apply random forest or not.
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Abstract. Median graphs have been presented as an useful tool for
capturing the essential information of a set of graphs. The computation
of the median graph is a complex task. Exact algorithms are, in the
worst case, exponential both in the number of graphs and their size. The
known bounds for the minimum and maximum number of nodes of the
candidate median graphs are in general very coarse and they can be used
to achieve only limited improvements in such algorithms. In this paper
we present more accurate bounds based on the well-known concepts of
maximum common subgraph and minimum common supergraph. These
new bounds on the number of nodes can be used to improve the existing
algorithms in the computation of the median graph1.

1 Introduction

In object prototyping, finding the median is an important issue for capturing the
global information of a set of patterns. When objects are represented by graphs,
the element representing the mean is called the median graph. Given a set of
graphs, the median is defined as the graph that has the smallest sum of distances
to all graphs in the set [1]. The computation of the median graph is exponential
both in the number of input graphs and their size [2]. As a consequence, in
order to make the practical use of the median-graph concept possible, we have
to resort to approximate solutions. In [1], a genetic algorithm has been used
to synthesize good approximations of the median graphs. The same authors
computed the median graph using the same algorithm in [3] and applied their
results to the synthesis of graphical symbols. Other approximate algorithms have
been presented for the computation of median graphs [4,5].

In addition, in [1] some properties have been derived concerning median
graphs. Such properties include the bounds for the median graphs related to
both the number of nodes and the sum of distances. These bounds turn out to
be useful in assessing the quality of the approximate solutions of the median
graph. In this work we will focus our attention on the bounds for the median
1 This work was sponsored research Fellowship number 401-027 (UAB) / Cicyt

TIN2006-15694-C02-02 (Ministerio Ciencia y Tecnoloǵıa).
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related to the number of nodes. The bounds given in [1] are very coarse and
may not be very useful for the existing algorithms in the computation of the
median graph. Using the well-known concepts of maximum common subgraph
and minimum common supergraph, we present a reduction in these bounds that
may be useful to improve the efficiency of such algorithms and consequently may
help us in the computation of median graphs. In particular, we show that the
number of nodes of the median graph must be in between the number of nodes
of the maximum common subgraph and the number of nodes of the minimum
common supergraph of a set of graphs. We prove this result from a theoretical
point of view and we also give a detailed example to validate and clarify the
theoretical results.

The rest of the paper will be as follows. In sections 2 and 3, we introduce the
basic terminology used in the paper. Section 4 contains the new contribution on
the bounds of the size of the median graph. In section 5 a detailed example and
some results are presented. Finally, some discussions conclude the paper.

2 Definitions and Notation

2.1 Basic Definitions

Definition 1. Given L, a finite alphabet of labels for nodes and edges, a graph
is a triple g = (V, α, β) where, V is the finite set of nodes, α is the node labeling
function (α : V −→ L), and β is the edge labeling function (β : V × V −→ L).

We assume that our graphs are fully connected, i.e., E = V × V . Consequently,
the set of edges is implicitly given. Such assumption is only for notational con-
venience, and it doesn’t impose any restriction in the generality of our results.
In the case where no edge exists between two given nodes, we can include the
special label null in the set of labels L. The number of nodes of a graph g is
denoted by |g|.

Definition 2. Given two graphs g = (V, α, β), and g′ = (V ′, α′, β′), g′ is a
subgraph of g, denoted by g′ � g if,

– V ′ � V
– α′(x) = α(x) for all x ∈ V ′

– β′((x, y)) = β((x, y)) for all (x, y) ∈ V ′ × V ′

From definition 2 it follows that, given a graph g = (V, α, β), a subset V ′ � V
of its vertices uniquely defines a subgraph, called the subgraph induced by V ′.

Definition 3. Given two graphs g1 = (V1, α1, β1), and g2 = (V2, α2, β2), a
graph isomorphism between g1 and g2 is a bijective mapping f : V1 −→ V2
such that,

– α1(x) = α2(f(x)) for all x ∈ V1
– β1((x, y)) = β2((f(x), f(y))) for all (x, y) ∈ V1 × V1
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In the real world, when encoding objects into graph-based representations some
degree of distortion may be introduced due to multiple reasons. Hence, graph
representations of two identical objects may not have an exact match. Therefore,
it is necessary to introduce some degree of error tolerance into the matching
process. Hence, we need an algorithm for error-correcting graph matching [6]
or equivalently, a method to compute a similarity measure between two given
graphs.

Definition 4. Let g1 = (V1, α1, β1) and g2 = (V2, α2, β2) be two graphs. An
error-correcting graph matching (ecgm) from g1 to g2 is a bijective function
f : V̂1 −→ V̂2, where V̂1 � V1 and V̂2 � V2.

We say that node x ∈ V̂1 is substituted by node y ∈ V̂2 if f(x) = y. If α1(x) =
α2(f(x)) then the substitution is called identical. Otherwise it is called non-
identical. In addition, any node from V1 − V̂1 is deleted from g1 and any node
from V2 − V̂2 is inserted in g2 under f . Indirectly, the mapping f implies the
same edit operations on the edges of g1 and g2 (see [7] for more details).

Definition 5. The cost of an ecgm f : V̂1 −→ V̂2 from a graph g1 = (V1, α1, β1)
to a graphg2 = (V2, α2, β2) denoted by c(f) is the sum of the costs of insertion,
deletion and substitution of both nodes and edges. These costs are represented by
cni(x), cnd(x), cns(x), cei(e), ced(e), ces(e) respectively.

All costs are real non-negative numbers and are used to model the probability of
errors and distortions that may change the original model. Usually, the higher the
probability of a distortion is to occur, the lower is its cost. Normally, it is assumed
that the cost of an identical node/edge substitution is zero, while the cost of any
other edit operation is greater than zero. The set of all costs is the cost function
γ and it is usually written in a tuple form, i.e. γ = {cni, cnd, cns, cei, ced, ces}.
If the cost function γ is explicitly given the notation cγ(f) for the ecgm is used
instead of c(f).

Definition 6. Given a cost function γ, and an ecgm f from g1 to g2, f is called
an optimal ecgm under γ if there is no other ecgm f ′ from g1 to g2 such that
cγ(f ′) < cγ(f). The cost of an optimal ecgm, cγ(f) is also called the edit distance
between g1 and g2 denoted by d(g1, g2), and it can be seen as the sequence of graph
edit operations that transforms g1 into g2 with the minimum cost.

d(g1, g2) = min(cγ(f)) (1)

Notice that for a given cost function γ there are usually more than one optimal
ecgm from a graph g1 to another graph g2.

2.2 Maximum Common Subgraph

Definition 7. Let g1 = (V1, α1, β1) and g2 = (V2, α2, β2) be two graphs, and
g′1 � g1, g′2 � g2. If there exists a graph isomorphism between g′1 and g′2 then,
both g′1 and g′2 are called a common subgraph of g1 and g2.
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Definition 8. Let g1 = (V1, α1, β1) and g2 = (V2, α2, β2) be two graphs. A
graph gM is called a maximum common subgraph (MCS) of g1 and g2 if gM is
a common subgraph of g1 and g2 and there is no other common subgraph of both
g1 and g2 having more nodes than gM .

2.3 Minimum Common Supergraph

Definition 9. Let g1 = (V1, α1, β1), g2 = (V2, α2, β2) and d g′ = (V ′, α′, β′) be
three graphs. If both g1 and g2 are subgraphs of g′ then g′ is called a common
supergraph of g1 and g2.

Definition 10. Let g1 = (V1, α1, β1) and g2 = (V2, α2, β2) be two graphs. A
graph gm is called a minimum common supergraph (mcs) of g1 and g2 if gm is a
common supergraph of both g1 and g2 and there is no other common supergraph
of g1 and g2 having less nodes than gm.

2.4 Generalized Median Graph

Definition 11. Let U be the set of graphs that can be constructed using labels
from L. Given S = {g1, g2, ..., gn} ⊂ U , the generalized median graph ḡ of S is
defined as follows:

ḡ = arg

⎛
⎝min

g∈U

∑
gi∈S

d(g, gi)

⎞
⎠ (2)

In other words, the generalized median graph is a graph g ∈ U which minimizes
the sum of distances (SOD) from g to all the graphs in S.

3 Important Results Based on the Previous Definitions

In this section we present the three basic elements that we will use to demonstrate
the new and more accurate bounds on the size of the median graphs: 1. A
particular cost function; 2. A distance measure based on the maximum common
subgraph; and 3. The known bounds for number of nodes of the median graph.

A particular cost function: We will use a particular cost function given in
[7], where the cost of node deletion and insertion (cnd(x) and cni(x)) is always
1, the cost of edge deletion and insertion (ced(e) and cei(e)) is always 0 and the
cost of node and edge substitution (cns(x) and ces(e)) takes the values 0 or ∞
depending on whether the substitution is identical or not, respectively.

Relation between edit distance and MCS: In [7], it has been proven that,
using the cost function given before, the edit distance between two graphs can
be expressed in terms of their MCS in the following way:

d(g1, g2) = |g1| + |g2| − 2 |gM | (3)
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Bounds on the size of the median graph: Let U be the set of graphs that
can be constructed with labels from L and S = {g1, ..., gn} ∈ U . In [1] it is shown
that the minimum and maximum number of nodes of the median graph is:

0 ≤ |ḡ| ≤
n∑

i=1

|gi| (4)

4 Reducing the Bounds on the Size of the Median Graph

In this section we present and demonstrate the new minimum and maximum
bounds on the number of nodes of the median graph using the concepts of max-
imum common subgraph and minimum common supergraph of a set of graphs.

Definition 12. Let S = {g1, g2, ..., gn} be a set of graphs. A graph gMS is
called a maximum common subgraph of S if gMS is a common subgraph of
{g1, g2, · · · , gn} and there is no other common subgraph of {g1, g2, · · · , gn} hav-
ing more nodes than gMS .

Definition 13. Let S = {g1, g2, ..., gn} be a set of graphs. A graph gmS is called
a minimum common supergraph of S if {g1, g2, · · · , gn} are subgraphs of gmS

and there is no other common supergraph of {g1, g2, · · · , gn} having less nodes
than gmS .

Theorem 1. The number of nodes of ḡ is in the limits,

0 ≤ |gMS | ≤ |ḡ| ≤ |gmS | ≤
n∑

i=1

|gi| (5)

Proof. To demonstrate the first part of the equation (5) (i.e. |gMS | ≤ |ḡ|), sup-
pose that |ḡ| < |gMS |. If we compute the term SOD(gMS ), we will arrive to the
next expression:

SOD(gMS ) =
n∑

i=1

d(gi, gMS ) =
n∑

i=1

|gi| + |gMS | − 2|gMS | =
n∑

i=1

|gi| − n|gMS |

(6)
Notice that gMS is the maximum common subgraph of S and, then, it is

a subgraph of any graph gi in S. Therefore, if we compute d(gi, gMS) using
expression (3) the term |gM | is exactly |gMS |.

For the computation of SOD(ḡ) we will follow a similar reasoning. Assuming
that |ḡ| < |gMS |, we can determine the minimum value that SOD(ḡ) can take:

SOD(ḡ) =
n∑

i=1

d(gi, ḡ) ≥
n∑

i=1

|gi| + |ḡ| − 2|ḡ| =
n∑

i=1

|gi| − n|ḡ| (7)

Notice that, in this case, if |ḡ| < |gMS | then |ḡ| < |gi|. Consequently the
maximum value for |gM | in (3) will be precisely |ḡ| and the minimum value for
SOD(ḡ) will be obtained when |ḡ| = |gM | as expressed in equation 7.
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At this point, using equations (6) and (7) and assuming that |ḡ| < |gMS | we
arrive to the following conclusion:

SOD(ḡ) ≥
n∑

i=1

|gi| − n|ḡ| >
n∑

i=1

|gi| − n|gMS | = SOD(gMS ) (8)

This is a contradiction because, by definition of the median, SOD(ḡ) must be
minimum. Thus |ḡ| must be greater or equal than |gMS |.

Let’s now proof the second part of equation (4) (i.e. |ḡ| ≤ |gmS |). Suppose
now that |ḡ| > |gmS |. In this case the term SOD(gmS ) will take this value:

SOD(gmS ) =
n∑

i=1

|gi| + |gmS | − 2|gi| = n|gmS | −
n∑

i=1

|gi| (9)

Again, equation 9 holds because if gmS is the minimum common supergraph
of S, then any gi will have precisely gi as a maximum common subgraph between
itself and gmS and consequently the term |gM | in (3) is exactly |gi|.

To compute the minimum value of SOD(ḡ), if |ḡ| > |gmS | then every graph
gi can share at most |gi| nodes with ḡ and then the maximum value for |gM | in
(3) is |gi|. Then:

SOD(ḡ) ≥
n∑

i=1

|gi| + |ḡ| − 2|ḡi| = n|ḡ| −
n∑

i=1

|gi| (10)

Then, from equations (9) and (11), and assuming that |ḡ| > |gmS | we obtain:

SOD(ḡ) ≥ n|ḡ| −
n∑

i=1

|gi| > n|gmS | −
n∑

i=1

|gi| = SOD(gmS ) (11)

Again, this is a contradiction and, thus |ḡ| must be less or equal than |gmS |. �	

5 Practical Example

Consider the situation where S = {g1, g2, ..., gn}. In this framework, basically
3 situations may arise regarding the size of MCS and mcs (figure 1 shows an
example of each of these situations for S = {g1, g2, g3, g4}):

1. At least one MCS of all graphs in S exists: |gMS | 
= 0 (figure 1(a)). Notice
that, in this case, |gmS | is always less than

∑n
i=1 |gi|.

2. No MCS between all graphs in S exists (|gMS | = 0) and |gmS | =
∑n

i=1 |gi|
(figure 1(b)).

3. No MCS between all graphs in S exists (|gMS | = 0) and |gmS | <
∑n

i=1 |gi|
(figure 1(c)).

For each case in figure 1, the true median ḡ, the maximum common subgraph
gMS of S and the minimum common supergraph gmS of S were manually ob-
tained and |ḡ|, |gMS | and |gmS | were also computed. The results are summarized
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Fig. 1. A set S = {g1, g2, g3, g4} of graphs and the 3 possible situations: 1 (a), 2 (b)
and 3 (c)

in table 1. Each row corresponds to one of the three examples in figure 1. Notice
that the values of the reference bounds of previous works for |0| and |

∑n
i=1 |gi|

(expression (4)) are 0 and 13 respectively for all situations.
First, notice that our hypothesis (0 ≤ |gMS | ≤ |ḡ| ≤ |gmS | ≤

∑n
i=1 |gi|)

holds in all cases. But there are some differences in the reduction of the bounds
depending on the situation. The maximum reduction of the bounds is achieved
when a gMS exists. In this case there is a reduction in both the minimum and the
maximum number of nodes of the median graph and the possible improvement

Table 1. Results for gMS , ḡ, gmS , |gMS |, |ḡ| and |gmS | for the situations of figure 1
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in the computation of the median graph is maximum. This result is shown in
row 1 of table 1. The reduction in the bounds in the other cases is lower than in
the first case. Concretely, no reduction in the lower bound is achieved (because
gMS = ∅), but some reduction can be achieved in the upper bound depending
on whether gmS exists (row 3) or not (row 2).

6 Conclusions

The median graph is an alternative and useful concept to represent prototypes
of a set of graphs. However, the computation of both exact and approximate
solutions have been shown very hard. In this paper we have shown that under
a certain cost function, the bounds on the minimum and maximum number of
nodes od the median graph can be reduced using the concepts of maximum
common subgraph and minimum common supergraph. In order to show the
practical usefulness of this result, a detailed example has been presented.

The results show that, in general, some reduction in the minimum and maxi-
mum number of nodes of the median graph can be introduced. This result could
be interesting beyond the theoretical point of view. We are convinced that the
existing algorithms for the computation of the median graph could be improved
using these bounds to reduce the space where the median is searched for. There-
fore, we are currently working on the development of more efficient algorithms
for the computation of both exact and approximate solutions for the median
graphs.
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Abstract. This paper makes use of several performance metrics to ex-
tend the understanding of a challenging imbalanced classification task.
More specifically, we refer to a problem in which the minority class is
more represented in the overlap region than the majority class, that is,
the overall minority class becomes the majority one in this region. The
experimental results demonstrate that the use of a set of appropriate
performance measures allows to figure out such an atypical case.

1 Introduction

The class imbalance problem has received considerable attention in areas such
as Machine Learning and Pattern Recognition. A data set is said to be imbal-
anced when one of the classes (the minority one) is heavily under-represented
in comparison to the other class (the majority one). This issue is particularly
important in real-world applications where it is costly to misclassify examples
from the minority class, such as the diagnosis of rare diseases and the detection
of fraudulent telephone calls, among others. Because of examples of the minority
and majority classes usually represent the presence and absence of rare cases,
respectively, they are also known as positive and negative examples.

The research in this topic has been mainly addressed to find solutions for
learning from imbalanced data [1,2,4,9]. This constitutes a challenging task be-
cause standard discriminant learning tends to bias towards the most represented
class [9]. A closely related issue that has also received much attention refers to
the evaluation of the classifier performance in these domains [5,6]. The usual
method consists of measuring the fraction of test examples correctly (or incor-
rectly) classified. Numerous investigations have demonstrated that this metric is
not the most appropriate in imbalance problems because it may produce good
overall performance, but ignoring (and hiding) results on the minority (and usu-
ally the most important) class [6,8,10,11].

Alternative measures have been proposed to evaluate classifiers, which are
especially useful in the presence of two-class imbalanced data [5,8,9,11]. Their
common characteristic is that they are based upon performance indexes over
each individual class, being able to find out skewed behavior of classifiers in
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favor of a specific class. Some widely known examples are Receiver Operating
Characteristic (ROC) curve, area under the ROC curve, g-mean, sensitivity,
specificity, and precision. Apart from being useful for classifier evaluation, these
measures could help to characterize the data complexity so as to find out the
reasons that affect the classifier behavior.

It is generally accepted that imbalance is the main responsible for a significant
degradation of the performance on individual classes, even under the presence
of other difficulties, such as overlapping. It seems to be true in cases where the
imbalance ratio in the overlap region(s) is similar to the overall imbalance ratio.
In these common situations, alternative metrics have been exhaustively analyzed
and their values, easily interpreted. Nevertheless, less frequent but possible cases
in which the minority class is more represented than the majority class in the
overlap region, have not been studied enough. Considering that classification
errors come mostly from overlap, how would the performance measures evaluate
those atypical scenarios? How can they be explained by these measures?

The ultimate aim of this paper is to answer those questions. For such a pur-
pose, we have designed two classification experiments over two-class synthetic
data sets with a fixed overall imbalance ratio in order to make results not de-
pendent on this parameter. The first experiment considers a typical situation in
which both the imbalance in the overlap region and the overall imbalance are
identical while overlapping changes. This will establish a baseline to analyze the
results of the next part. The second experiment operates on data sets where the
minority class is locally denser than the majority class in the overlap region.
This situation leads to obtain values different from those expected, considering
the only a priori knowledge (the overall imbalance). Discussion of new results
will focus on the difficulty of figure out such particular data complexity, which
is not usually taken into account in general studies.

2 Performance Measures in Class Imbalance Problems

Most of performance measures for two-class problems are built over a 2 × 2
confusion matrix as illustrated in Table 1. From this, four simple measures can
be directly obtained: TP and TN denote the number of positive and negative
cases correctly classified, while FP and FN refer to the number of misclassified
positive and negative examples, respectively.

The most widely used metrics for measuring the performance of learning sys-
tems are the error rate and the accuracy, which can be computed as (TP +
TN)/(TP +FN +TN +FP ). Nevertheless, researchers have demonstrated that,

Table 1. Confusion matrix for a two-class problem

Positive prediction Negative prediction
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)
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when the prior class probabilities are very different, these measures are not ap-
propriate because they do not consider misclassification costs, are strongly biased
to favor the majority class, and are sensitive to class skews [6,8,10,11].

Thus, several metrics that measure the classification performance on positive
and negative classes independently can be derived from Table 1. The true positive
rate, also referred to as recall or sensitivity, TPrate = TP/(TP + FN), is the
percentage of correctly classified positive examples. The true negative rate (or
specificity), TNrate = TN/(TN + FP ), is the percentage of correctly classified
negative examples. The false positive rate, FPrate = FP/(FP + TN) is the
percentage of misclassified positive examples. The false negative rate, FNrate =
FN/(TP +FN) is the percentage of misclassified negative examples. Finally, the
precision (or purity), Precision = TP/(TP + FP ), is defined as the proportion
of positive cases that are actually correct.

A way to combine the TP and FP rates is by using the ROC curve. The ROC
curve is a two-dimensional graph to visualize, organize and select classifiers based
on their performance. It also depicts trade-offs between benefits (true positives)
and costs (false positives) [7,11]. In the ROC curve, the TP rate is represented
on the Y-axis and the FP rate on the X-axis. To assess the overall performance
of a classifier, one can measure the fraction of the total area that falls under
the ROC curve (AUC) [8]. AUC varies between 0 and +1. Larger AUC values
indicate generally better classifier performance.

Kubat et al. [9] use the geometric mean (g-mean) of accuracies measured
separately on each class, g−mean =

√
recall × specificity. This measure relates

to a point on the ROC curve and the idea is to maximize the accuracy on each of
the two classes while keeping these accuracies balanced. An important property
of the g-mean is that it is independent of the distribution of examples between
classes. Another property is that it is nonlinear, that is, a change in recall (or
specificity) has a different effect on this measure depending on the magnitude
of recall (or specificity). An alternative metric that does not take care of the
performance on the majority class corresponds to the geometric mean of precision
and recall, which is defined as gpr =

√
precision × recall. Like the g-mean, this

measure is higher when both precision and recall are high and balanced.

3 Experimental Results and Discussion

Here, we try to show the utility of several performance measures as a tool to
characterize the data complexity in class imbalance domains. To this end, we
employ two distinct overlapping scenarios, both using two-dimensional synthetic
data sets. Pseudo-random bivariate patterns have been generated following a
uniform distribution in a square of length 100. There are 400 negative examples
and 100 positive patterns, in all cases keeping the overall majority/minority ratio
equal to 4. It should be pointed out that, although only one dimension appears
as discriminant, inclusion of two dimensions is with the aim of making easier the
interpretation of the results.
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From the two scenarios employed in the experiments, the first constitutes a
typical class imbalance problem with overlapping, in the sense that imbalance
equally affects to the whole representation space. The second experiment refers
to a more challenging situation, where the imbalance ratio in the overlap region
is inverse to the overall imbalance ratio, that is, the majority and minority classes
have interchanged their roles.

We have adopted a 10-fold cross-validation method: each data set was divided
into ten equal parts, using nine folds as the training set and the remaining block
as an independent test set. This process has been repeated ten times. The exper-
iments consist of computing the performance metrics reported in Sect. 2, when
using several classifiers of distinct natures: a nearest neighbor (1-NN) classifier,
a multilayer perceptron (MLP), a naïve Bayes (NBS) classifier, a radial basis
function (RBF), and a C4.5 decision tree.

3.1 Experiment I: A Typical Class Imbalance Situation

The first experiment has been over a series of six data sets with increasing class
overlap. In all cases, the positive examples are defined on the X-axis in the range
[50..100], while those belonging to the majority class are generated in [0..50] for
0% of class overlap, [10..60] for 20%, [20..70] for 40%, [30..80] for 60%, [40..90]
for 80%, and [50..100] for 100% of overlap. Note that the overall imbalance ratio
matches the imbalance ratio corresponding to the overlap region.

In Fig. 1, we have plotted the average values of g-mean, gpr, TN rate, TP
rate, precision and AUC obtained by each classifier when varying the overlap-
ping degree. First, we concentrate our analysis on the mid case of 40% of class
overlap, supposing that the only a priori knowledge refers to the presence of
class imbalance, ignoring the overlapping degree. From the results, it is possible
to remark some observations. In particular, while the TN rates for all classifiers
(except 1-NN) are 97-100%, the TP rates are close to 60%, relation that can be
expected in an imbalance scenario. This, jointly with the fact that there are not
relevant differences in the behavior of the distinct classifiers (i.e., the results are
independent of the classifiers), suggest that measures are revealing a certain level
of overlapping between both classes and more importantly, that the percentage
of positive examples in the overlap region has to be approximately equal to the
error on the minority class (i.e., 100% − TP rate ≈ 40%). This hints that the TP
rate and the TN rate can be viewed as good descriptors of the data complexity.

Indeed, all these comments can be now corroborated by making use of the
whole knowledge about the artificial data sets. Thus it is possible to see that
in the previous case of study, about 40% of positive examples are inside the
overlap region. Even, we can observe that very similar effects appear on the rest
of cases. On the other hand, focusing on the geometric means (see Fig. 1(c-d)),
one can observe that both decrease as the overlapping degree increases, despite
the imbalance ratio does not vary along the different data sets. When analyzing
Fig. 1(e), the high values of precision indicate that almost all classifiers produce
very few false positives. In a scenario with class imbalance, this should be fully
expected because most of the negative examples will result correctly classified
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Fig. 1. Classifier performance metrics for Experiment I: (a) g-mean, (b) gpr, (c) TN
rate, (d) TP rate, (e) precision, and (f) AUC

(in fact, this can also be observed in the TN rates). The close to 0% of precision
in the case of 100% of class overlap means that almost all positive examples have
been misclassified, thus corroborating the previous results of the TP rate.

3.2 Experiment II: An Unexpected Practical Case

The second experiment has been carried out over a collection of five artificial
data sets in which the number of elements in the overlap region varies in such
a way that the overall minority class becomes majority in this region. To this
end, the negative examples have been defined on the X-axis to be in the range
[0..100] in all data sets, while the positive cases have been generated in the ranges
[75..100], [80..100], [85..100], [90..100], and [95..100]. The first means that both
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Fig. 2. Two different cases in Experiment II: [75..100] and [85..100]. For this latter case,
note that in the overlap region, the majority class is under-represented in comparison
to the minority class

classes have the same number of patterns (and density) in the overlap region
(i.e, no imbalance in this region). The latter has 100 positive and 20 negative
examples in the overlap region, that is, the minority class appears as majority
in such a region. Fig. 2 illustrates two examples of these data sets.

Fig. 3 shows the averaged values of g-mean, gpr, TN rate, TP rate, precision
and AUC obtained by each classifier for the five different cases described above.
As in the previous experiment, we firstly discuss the results for the mid case
[85..100], with the aim of finding out some data characteristics by using the
performance metrics and the (only) a priori knowledge concerning the presence
of a high imbalance ratio in all data sets.

Values of g-mean, gpr, TP rate and TN rate in Fig. 3 indicate significant errors
(close to 10-20%) on both classes. Surprisingly, the results reveal that, despite
addressing an imbalance problem, for each classifier the TP and TN rates are
comparable: the TP rate is 80-100% and the TN rate is 85-90%. On the other
hand, the precision, unlike the first experiment, is low enough (about 65%),
mainly due to the amount of (unexpected) errors on the majority class. All these
observations suggest high overlapping between the two classes. Nevertheless, the
fact that the overlapping affects both positive and negative examples, can be
deemed as contradictory to our a priori knowledge (the existence of an important
class imbalance) since this effect is more likely to be produced in a balanced
set. Finally, a deeper analysis of the comparable values of TP and TN rates
in absolute terms, considering this strongly imbalance scenario, concludes that
there are many more errors on the majority class than on the minority one. Thus,
taking all these into account, it can be guessed that the different classifiers have
identified the overlapping region as belonging to the minority class. In other
words, in such an overlap region there exists a majority of positive examples.

The full knowledge of class distributions confirms again our suspects. Figure 3
shows the performance measures used while the minority class becomes denser
along with the decrease of the overlapping region. Despite the full overlapping (of
the minority class) and the strong imbalance, all the measures reveal an improve-
ment of classifier performances. This is due to the change of the imbalance ratio



When Overlapping Unexpectedly Alters the Class Imbalance Effects 505

 0

 20

 40

 60

 80

 100

95-10090-10085-10080-10075-100

g-
m

ea
n

NBS
MLP
RBF

1-NN
C4.5

(a)

 0

 20

 40

 60

 80

 100

95-10090-10085-10080-10075-100

gp
r

NBS
MLP
RBF

1-NN
C4.5

(b)

 50

 60

 70

 80

 90

 100

95-10090-10085-10080-10075-100

T
N

 r
at

e

NBS
MLP
RBF

1-NN
C4.5

(c)

 50

 60

 70

 80

 90

 100

95-10090-10085-10080-10075-100

T
P

 r
at

e

NBS
MLP
RBF

1-NN
C4.5

(d)

 0

 20

 40

 60

 80

 100

95-10090-10085-10080-10075-100

P
re

ci
si

on

NBS
MLP
RBF

1-NN
C4.5

(e)

 0

 20

 40

 60

 80

 100

95-10090-10085-10080-10075-100

A
U

C

NBS
MLP
RBF

1-NN
C4.5

(f)

Fig. 3. Classifier performance measures for Experiment II: (a) g-mean, (b) gpr, (c) TN
rate, (d) TP rate, (e) Precision, and (f) AUC

in the overlapping region which benefits both classes, that is, the increase of the
density of the positive examples and the reduction of the number of (affected)
negative examples.

The discussion just exposed should provide some guidelines of how to predict
these rare situations through a number of classifier performance measures. In this
way, when individual errors in a two-class imbalance domain are significant and
similar (for more than one classifier), there likely exists an overlapping region
where the minority class is more represented than the majority one.
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4 Conclusion

This paper has been motivated by two main issues. First, we believe that per-
formance measures used in imbalance domains can be suitable to characterize
data complexity, besides their primary role, i.e., classifier evaluation. Second,
when the imbalance ratio in the overlap region is inversely related to the over-
all imbalance, the classification results may be different from those expected in
a typical imbalance scenario. These ideas have been validated by inferring the
complexity of a challenging two-class imbalanced data set in which the minority
class becomes majority in the overlap region.

After carrying out two experiments, some conclusions can be drawn. In most
cases, it will be necessary to employ a set of performance measures so as to get
a better understanding of the data characteristics and the classifier behavior. In
this sense, the use of diverse classification models allows to find out the degree
of influence of the classifiers on the performance results. When most classifiers
coincide, the measures can describe the complexity of data distributions.
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Abstract. This paper describes a new aerial images segmentation algorithm. 
Kernel Matching Pursuit (KMP) method is introduced to deal with the nonlinear 
distribution of the man-made objects’ features in the aerial images. In KMP 
algorithm, a lot of training samples containing substantive information are used 
to detect the man-made objects. With KMP classifier, pixels in large aerial 
images will be labeled as different prediction values, which can be classified 
linearly. Then the modified Mumford-Shah model, which comprises the 
features of the KMP prediction values, is built to segment the aerial image by 
necessary level set evolution. The proposed method is proven to be effective by 
the results of experiments.  

1   Introduction 

Nowadays, many remotely sensed image processing algorithms have appeared for the 
purpose of the segmentation or classification of man-made objects. Some aerial image 
segment algorithms based upon modified Mumford-Shah model[1] have been 
proposed recently, but the experiment result is still frustrating when dealing with 
nonlinear distribution of man-made objects’ features in aerial images. However, the 
methodology proposed in this paper, which is based upon the Kernel Matching 
Pursuit (KMP) method[2]

，can solve the problems effectively. 
KMP method, one of the sparse classifier approaches, requires far fewer support 

points than SVM[3] does, and it has no constraint on the form of kernels in a certain 
instance. KMP classifier usually requires a threshold to label samples as different 
classes, but it is challenging to select a proper threshold. In light of that, the modified 
Mumford-Shah model is introduced to integrate the features of the KMP prediction 
values, so the remotely sensed images can be segmented into different classes 
automatically, and the level set method is responsible for the image evolution. 

This paper is organized as follows: Section 2 introduces the modified Mumford- 
Shah model, which comprises the mapped features. Linear distribution in high 
dimensional spaces, which is equivalent to non-linear distributions in the input space 
by the kernel methods, is obtained. Section 3 introduces the KMP method, including 
the overview of the method, and the detailed description on how the algorithm 
implements in the aerial image segment. Section 4 elaborates on the new aerial 
images segmentation algorithm. The outputs of experiments are presented and 
illuminated in Section 5 and the conclusions are listed in Section 6. 
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2   Mumford-Shah Model and the Modification 

2.1   Mumford-Shah Model 

Mumford-Shah model[1] is a commonly used model in image segmentation. Based on 
it, Chan and Vese [4] applied the active contour evolving method to minimize the 
Mumford-Shah function. The energy function in Chan and Vese’s two-phase model is 
given by 
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where ( )yxI ,  is the grey level in ),( yx , and C is the curve which indicates the 

border of the different regions, oc and bc are the mean of grey levels of the object 

region and the background region, u , 1λ and 2λ are the parameters. When C is the 

border of optimal classification, the value of the energy function is at a minimum. 

2.2   Modified Mumford-Shah Model and the Improvement 

The active contour evolving method can combine other features besides the grey level 
features. Jean-Francois Aujol, Gilles Aubert, and Laure Blanc-Féraud[5] presented a 
supervised classification model based upon a variational approach. The wavelet 
features are taken into consideration in their model. Cao Guo[6] proposed a simplified 
Mumford-Shah model, in which the features of fractal error metric and DCT 
coefficients of texture edges are considered. Based upon the knowledge of image multi-
scale geometric analysis, which can capture the image’s intrinsic geometrical structure 
effectively, the contourlet features are also selected in recent model[10]. 

Modified Mumford-Shah models are effective in most situations. However, when 
dealing with non-linear distribution of the features in the input space, all these 
techniques become less effective.  

Non-linear distribution of the features also exists in the aerial images, especially for 
man-made objects. After mapping the original features, we can obtain the energy 
function as follows: 
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where )(xf is a non-linear function. 

3   Kernel Matching Pursuit 

Since Pascal Vincent and Yoshua Bengio introduced Kernel Matching Pursuit me- 
thod[2] in 2002, this new classification technique has achieved rapid development.  
K- MP Classifier has the advantage over SVM method as KMP usually requires far 
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fewer support points and permits different forms of kernels in one instance. Vlad 
Popovici etc. [7] developed the algorithm to enable KMP Classifier to be applied in 
large datase- ts. Moreover, Licheng Jiao and Qing Li[8] introduced an ensemble 
method to overco- me KMP Classifier’s drawbacks in practical application. In [9], 
S.Sathiya Keerthi and Wei Chu successfully applied KMP method in sparse GP 
regression models. 

KMP Classifier indicates that the target function is an approximation of the classi- 
fication function, which can be calculated as follows. 
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where N is the number of basis functions in the expansion, { }Ngg ,,1 L  are basis  

functions selected from the dictionary in a Hilbert space.{ } N
N Raa ∈,,1 L  are the 

co- efficients corresponding to the set of { }Ngg ,,1 L  . 

In this paper, KMP method described by S.Sathiya Keerthi and Wei Chu is sele- 
cted. The algorithm is matching pursuit with back-fitting and has lower calculating 
complexity when dealing with large datasets. 

The procedure of KMP Classifier developed by Wei Chu can be described as 
follows[9]:  

 Selection of basis functions 

Step1: Randomly select c  samples from the n  training samples; 

Step2: Calculate the corresponding selection score 
iΔ of each selected sample; 

Step3: Sort the selected samples by their 
iΔ  values; 

Step4: Select the sample with the biggest 
iΔ  values as a basis function, and save it in- 

to the basis list. 

Step5: Randomly reselect κ  samples from the n  training samples. Replace the one 

with the biggest 
iΔ  value and the 1−κ  samples with the lowest 

iΔ  value in the orig-

inal c  samples. 

Step6: Repeat the steps of 2~5, until the criterion of termination is met. 

The selection score 
iΔ  can be calculated as follows: 
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where *
iα  is defined by equation (5); 2σ  refers to the parameter of the noise variance; 
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 Calculation of the coefficients corresponding to the basis functions 

The set of the coefficients *
Iα  can be obtained as follows: 
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 The target function and the KMP prediction 
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1 Lκ= , x  refers to the test sample. 

In this paper, we also use the ARD Gaussian kernel defined by equation (8): 
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where 0,,0 >bl vvv ,
l
ix  is the l-th element of ix .  

We can set the value of lv  to control each element’s influence to KMP Classifier. 

In aerial image, the elements of middle-high frequency in the feature vector usually 
have higher weight values.  

4   KMP Approach to Man-Made Objects Detection 

4.1   Feature Extraction 

The features of aerial images are mainly concentrated in the middle and high 
frequency components, while the low-frequency components usually contain the gray 
scale information. So we only need to extract the features of the middle and high 
frequency components in which we are interested. Using the Discrete Cosine 
Transform, the Wavelet Transform or the Contourlet Transform to extract features, 
satisfactory experiment results[6][10] have been achieved.   

Manesh Kokare[11] proposed a new rotationally invariant feature extraction method, 
in which the images are decomposed into different sub-bands by DT-CWT and DT-
RCWF. Then the final rotation invariant wavelet features are obtained from these sub-
bands. Referring to Manesh Kokare’s method, the rotation invariant contourlet 
features can also be extracted.  

In this paper, we will use the rotation invariant wavelet. To calculate the features of 
a certain point in a remotely sensed image, we select a block sized 1616 ×  or 

3232 × ,  with a certain point located in the center of the block.  Then we decompose 
this block into three levels by the wavelet transform. The wavelet features are 
sequentially extracted from three levels wavelet decompositions. Supposing that the 
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size of sub-band is NM ×  in ith level, the value of mean and standard deviation of 
the HL and LH channel’s coefficients are calculated as shown in equation (9) and 
(10). Then the rotation invariant features are given by equation (11) and (12). Finally, 
the six-dimensional rotation invariant wavelet features are obtained. 
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4.2   Modified Mumford-Shah Model with KMP Prediction Feature 

After extracting the KMP prediction features, which equals to mapping the rotation 
invariant wavelet features by non-linear function, we can obtain the energy function 
as follows: 
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where feature are the KMP prediction features of point ( )yx, , 
ofeature  denotes the 

mean value inside of the curve C, 
bfeature  is the mean value outside of the curve C. 

Function (13) can be represented in another form as follows: 
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where φ  is the level set function, Ω  is the domain of definition of ( )yxfeature , ,. 

The associated Euler-Lagrange equations to (14) give the following expression: 
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， ( )xδ  is the Dirac function.  
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4.3   Description of the Aerial Images Segment Algorithm 

The aerial image segmentation algorithm proposed in this paper is a supervised 
method. The algorithm contains two parts, namely training part and prediction part. 
The procedure of segmentation can be described as follows: 

 The algorithm of the KMP samples training part: 

Step1: Randomly select the representative sections of different classes from the aerial 
image and save these sections into the original training samples dataset. 

Step2: Calculate the rotation invariant wavelet features of each training sample. The- 
n combine the features with the target value as the input training vector. 

Step3: The training procedure begins. The proper basis functions are selected seque-
ntially by matching pursuit with back-fitting. Finally, the classification function is  
acquired as a linear combination of some basis functions.  

 The algorithm of the man-made objects prediction part: 

Step1: Calculate rotation invariant wavelet features of every point in the aerial image. 
Save the features as

wavfeature . 

Step2: Load the classification function. Then predict every point in the aerial image. 
Save the KMP prediction values as 

KMPfeature . 

Step3: Referring to Chan and Vese[12], initial closed curves in the aerial image are 
given in this algorithm, just as Fig. 1(c) show. 

Step4: The curve begins to evolve as described in the equation (15). 

Step 5: Update and evolve the level set functionφ and check whether the criterion of 
termination is met or not. If the criterion of termination is met, the area inside the 
closed curves is the area of the object. 

5   Experiment Results and Discussion 

In the experiment, the criterion of termination is set as below: 
The difference between two evolving steps is smaller than a pre-defined threshold 

as 0.015 or the evolution reach 20 times.  

Set the parameters as 1λ = 2λ =0.1. 

 

        

(a)                                  (b)                                 (c)                                  (d) 

Fig. 1. Aerial image to be classified. (a) The aerial image. (b) KMP prediction values. (c) Initial 
conditions. (d) Result of evolution. 
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           (a)                                          (b)                                      (c) 

                          
(d)                                          (e)                                        (f) 

                  
 (g)                                          (h)                                     (i) 

Fig. 2. Segmentation results. (a) The aerial image a. (b) KMP prediction values of a.  
(c) Segmentation result of a. (d) The aerial image d. (e) KMP prediction values of d.  
(f) Segmentation result of d. (g) The aerial image g. (h) KMP prediction values of g.  
(i) Segmentation result of g. 

The original aerial image is shown in Fig. 1(a). 50 training samples are randomly 
selected from the image. 20 selected samples belong to man-made objects, with target 
value set as 5; The rest samples are part of the nature areas, with target value set as 1. 
The target function is acquired by KMP training procedure, then the whole aerial 
image can be predicted. The pixels in large aerial imagery are labeled as different 
prediction values as shown in Fig. 1(b). Initial closed curves in the aerial image are 
shown in Fig. 1(c), while the segmentation results are shown in Fig. 1(d). 

More experiment results are shown as Fig. 2. The statistics of the errors is about 0.19. 

6   Conclusion 

In this paper, a new aerial images segmentation algorithm is proposed. It is built upon 
the basis of the modified two-phase Mumford-Shah model with the calculated 
features constraint. The features are obtained via the KMP prediction values. In order 
to achieve better aerial images segmentation results, kernel matching pursuit method 
is included to solve the problem of the feature’s nonlinear distribution. Finally, the 
proposed method is proven to be effective by the results of experiments. 
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Anisotropic Continuous-Scale Morphology
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Abstract. We describe a new approach to incorporate adaptivity into
the partial differential equations (PDEs) of morphological dilation and
erosion. By multiplication of the image gradient with a space-variant
matrix, the speed of the evolution is locally adapted to the data. This is
used to create anisotropic morphological evolutions that enhance coher-
ent, flow-like image structures. We show that our adaptive method can
be implemented by means of a simple modification of the classical Rouy-
Tourin finite difference scheme. Numerical experiments confirm that the
proposed dilations and erosions are capable of real anisotropic behaviour
that can be used for closing interrupted lines.

1 Introduction

Mathematical morphology is concerned with image analysis of shapes. It is one
of the oldest and most successful areas of digital image processing; see e.g. the
textbooks [6,9,17,18,19] for an overview. Its fundamental operations are called
dilation and erosion. They form the basis of many other morphological processes
such as openings, closings, top hats and morphological derivative operators.

Dilation and erosion are frequently implemented by algebraic set operations,
see e.g. [19] for a detailed overview. However, for convex structuring elements
tB with a mask B and a scaling parameter t>0, there is also an alternative for-
mulation in terms of partial differential equations (PDEs) [1,2,5,16,20]: Consider
some initial greyscale image f(x, y), a disk

B :=
{
z ∈ IR2, |z| ≤ 1

}
, (1)

and the evolution equations
∂tu = ±|∇u| , (2)

where ∇ = (∂x, ∂y)� denotes the spatial nabla operator. Moreover, assume that
at “time” t = 0, the evolution is initialised with f(x, y):

u(x, y, 0) = f(x, y). (3)

Then the solution u(x, y, t) at time t > 0 gives the dilation (for the plus sign) or
erosion (for the minus sign) with a disk of radius t.

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 515–522, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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PDEs of this type using a continuous scaling parameter t for the structuring
element create a continuous-scale morphology. They offer advantages when non-
digitally scalable structuring elements such as disks or ellipses are desirable, or
subpixel accuracy is required.

So far continuous-scale morphology is mainly used in a non-adaptive fashion
where all locations are treated equally. In other image analysis areas such as dif-
fusion filtering, however, interesting results have been obtained by replacing ho-
mogeneous processes by space-variant [13] or even direction-variant (anisotropic)
ones [21]. The latter ones can be used for processing anisotropic image features
such as coherent, flow-like structures. Some first attempts have been made to
extend such anisotropic ideas into morphological shock filters that switch lo-
cally between dilation or erosion processes [23]. However, even in this case the
underying morphological processes use a nonadaptive structuring element, and
adaptivity only results from the fact that the shock fronts limit dilation and
erosion. Similar shape restrictions are used for the recently introduced morpho-
logical amoebae [10] that are described in a set-theoretic framework.

The goal of the present paper is to introduce a space-variant anisotropic be-
haviour directly into the PDEs of dilation and erosion. In this way one benefits
from the advantages of continous-scale morphology, and creates real anisotropic
behaviour without the need to impose explicit or implicit shape restrictions.

We study a generalisation of (2) enabling the implementation of dilation or
erosion processes adapted to the local structure of a given image. To this end, we
consider adaptive norms by multiplying ∇u with a suitable matrix D, yielding
the new PDEs

∂tu = ±|D∇u| . (4)

The purpose of (4) is to obtain a morphological approach to coherence-enhance-
ment. This is of importance in order to reconstruct interrupted anisotropic image
structures. We introduce a corresponding model of the matrix D using informa-
tion from local structure tensors [4,8,15].

Our paper is organised as follows. After a detailed discussion of the inter-
pretation of (4) and the modeling of D in Section 2, we present a numerical
approximation of (4) as well as some numerical experiments in Section 3 and 4,
respectively. The paper is finished by concluding remarks in Section 5.

2 Interpretation and Modelling

As can easily be shown, the introduction of a matrix D in (4) is equivalent with
the multiplication of |∇u| with a function κ ≥ 0, where κ is defined by the
deformation of the unit circle by D in direction of the normalised gradient:

|D∇u| =
∣∣∣∣D ∇u

|∇u| |∇u|
∣∣∣∣ =

|D∇u|
|∇u|︸ ︷︷ ︸
=: κ

|∇u| . (5)

So, in effect, we have

∂tu (x, y, t) = ± κ (x, y, t) |∇u (x, y, t)| (6)
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with a scaling function κ. However, the formulation using the matrix D is ap-
propriate for our purpose since we will incorporate directional information into
our model by the use of structure tensors.

Important modeling ingredients are the following. As the norm of a matrix D
is defined by considering the deformation of the unit circle, we obtain

0 ≤ κ =
|D∇u|
|∇u| ≤ max

v �=0

|Dv|
|v| = ‖D‖ . (7)

Now, instead of stretching the unit circle in a desired direction, we consider nor-
malised matrices D, so that we (i) keep a maximal signal speed by ‖D‖ = ‖I‖ =
1, and (ii) attenuate the flow given by |∇u| at non-coherent image structures.

This desired behaviour is modeled by use of the structure tensor S, see [4,8,15].
It is given by the 2 × 2-matrix

S := Kρ ∗
(
∇uσ∇uT

σ

)
, (8)

where ∇uσ is the gradient of the image u pre-smoothed by a Gaussian kernel
with variance σ, and where Kρ∗ describes an analogous, element-wise convolution
with a Gaussian. In this context, ρ is the so-called integration scale.

∇uσ

∇uσ

C
v1

v1

v2

v2

∇uσ

C

Fig. 1. (a) Left: Coherent structure C (thick line) together with image gradients (black
arrows) and integration scale (circle) around marked point. (b) Right: Zoom into
region around marked point, with representants of v1, v2 (dotted arrows) and image
gradient ahead of C (black arrow).

Choosing, without a loss of generality, λ1 ≥ λ2 for the two eigenvalues of
S, important information about the structure of the image u is then inferred
from the two eigenvectors v1, v2: v1 describes the orientation of highest contrast
variation within the window given by the integration scale ρ, and v2⊥v1.

Let us stress that the purpose of the structure tensor is robust estimation of
directional information in an image. The pre-smoothing of u is done to atten-
uate sensitivity to noise. The decisive step in the construction of the structure
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tensor is the subsequent averaging over a neighborhood conveniently achieved
by componentwise convolution with a Gaussian of width ρ, the integration scale
as displayed in (8). This especially has the effect that the eigenvector for the
larger eigenvalue of S is a reliable estimate of the direction of features in the
neighborhood, more robust than the direct average of the gradients itself.

What is the role of the integration scale? Let us stress explicitly, that v1
and v2 are supposed to incorporate orientation information on a larger scale,
determined by ρ in (8), in comparison to the more local gradient information
given by ∇uσ. The parameter σ determining the pre-smoothing is usually chosen
relatively small (≤ 1), while typical integration scales we have employed for
numerical testing are ρ ≥ 3. The idea followed in this paper is to compare
pointwise an average orientation given by v1, v2 (where we make use, especially,
of v2), with local orientations given by ∇uσ, compare Figure 1.

Is the selection of the integration scale related to the size of gaps
in coherent structures? The answer is no. The integration scale is only of
importance in its role computing (8). This is confirmed by a simple illusory
contour type experiment in Figure 2: while the integration scale is given by

Fig. 2. (a) Top left: Initial image, 385 × 300 pixels. (b) Top right: Eroded image
after 40 time steps. (c) Bottom left: After 100 time steps. (d) Bottom left: After
170 time steps.
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ρ = 4, i.e., practically, it is limited by 12 pixels after truncating the Gaussian
convolution kernel, the gaps that are going to be closed have widths of about
100 − 200 pixels. The figure displays the temporal evolution of an anisotropic
erosion process.

How do we implement orientation information in our model? As illus-
trated by Figure 1 (b), directly at the end of a coherent structure the vectors v2
and ∇uσ have approximately the same orientation, but they do not necessarily
point in the same direction. In this situation, the function η,

η (v2, ∇uσ) := |cos∠ (v2, ∇uσ)| =
∣∣∣∣ 〈v2, ∇uσ〉
|v2| · |∇uσ|

∣∣∣∣ , (9)

where 〈·, ·〉 denotes the inner product of vectors, is close to 1. Note, that we sup-
pressed for the sake of brevity the dependence of η on space and time variables.
If ∇uσ is evaluated at points not too close to the end of C, then 0 ≤ η � 1
will hold. In order to enforce a strong damping of the function η in this case,
we exponentiate η by a nonnegative integer μ. The influence of μ on the qual-
ity of numerical results is shown in Figure 3: if μ is chosen too small, then the
propagated coherent structures will be diffused.

Fig. 3. From left to right: (i) Initial image, 106 × 238 pixels, (ii) eroded image after
50 time steps with Δt = 0.5, μ = 1, (iii) analogously, but with μ = 2, (iv) analogously,
with μ = 4

We then define
κ ≡ κ (x, y, t) := η (v2, ∇uσ)μ

, (10)

compare the discussion of (5)-(7). Because of |cos (·)| ≤ 1 it is guaranteed that
‖D‖ ≤ 1. Note, that ‖D‖ = 1 holds if and only if v2 and ∇uσ have identical
orientations (which is not likely in a numerical computation).
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3 The Numerical Method

The PDEs (2) are of hyperbolic type [7]. This means, in analogy to the Huygens
principle of wave propagation, object boundaries are moved with or against
the direction of their normal vector, depending on the given grey values. Thus,
numerically, the task is to accurately approximate moving fronts given by the
dilated/eroded object boundaries. A standard method for this purpose which we
use here in a slight variation is the Rouy-Tourin (RT) scheme, see [14]. With
the usual abbreviation Un

ij ≈ u(i, j, nΔt), the method reads:

Un+1
i,j = Un

i,j + κn
i,jΔt

([
max

(
0, Un

i+1,j − Un
i,j , Un

i−1,j − Un
i,j

)]2

+
[
max

(
0, Un

i,j+1 − Un
i,j , Un

i,j−1 − Un
i,j

)]2 )1/2
. (11)

Fig. 4. (a) Top left: Synthetic image, 393 × 278 pixels. (b) Top right: Anisotropic
dilation after 50 time steps. (c) Bottom left: Original image of a fingerprint with
interrupted coherent structures, 300 × 300 pixels. (d) Bottom right: Anisotropic
erosion of fingerprint after 20 time steps.
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Specifying κn
i,j = 1 for all i, j, n, we retreive the original RT method. For more

information on numerical methods for hyperbolic equations and more details
concerning (11), we refer the interested reader to [3,11,12,14].

4 Numerical Experiments

We show two more experiments illuminating the capability of our method to
enhance coherent image structures, supplementing the previous simple tests.

For the computation of κ, we use the procedure described in Paragraph 2, see
especially (10). The parameters we use within the numerical experiments are set
as σ = 0.5, ρ = 4, μ = 4 and Δt = 0.5. For the computation of gradients, we
use central differences for computing S and the Sobel operator for all other local
gradients, respectively. These choices yield an accurate and efficient method.

We consider first an synthetic image featuring linear and round structures of
several, randomly chosen orientation, and its anisotropic dilation, see Figure 3
(top row). We especially observe that interrupted lines are closed.

This desired outcome is also observable in real-world images, see Figure 3
(bottom row). The displayed image of a fingerprint is used as the initial condi-
tion for an anisotropic erosion process. Note, that our morphological anisotropic
process does not introduce additional smoothing into the processed image.

5 Concluding Remarks

We have shown that our method yields morphology-based anisotropic enhance-
ment of images. In our ongoing research, we study extensions of the method for
image areas where structures cross, which is a hard problem for algorithms for
coherence enhancement. Furthermore, we investigate possibilities to make the
scheme more accurate with respect to the estimation of local flow directions, so
that even very large gaps in thin image structures (i.e., width of, effectively, one
pixel) oblique to the grid orientation can be closed without directional deviation.
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Abstract. Carotid atherosclerosis is the most common life-threatening
neurological disease and therefore an accurate assessment of atheroma-
tous plaques is clinically important. Several studies were developed to
characterize plaques from two-dimensional (2D) ultrasound images that
are associated with high risk of stroke. However, 2D characterization may
not be very accurate because it depends on the selection of a represen-
tative ultrasound image of the plaque by an experimented physician. In
this paper we present a novel approach for diagnosis based on 3D ul-
trasound, which only requires a common ultrasound equipment without
need of any additional and expensive devices like spatial locators. The
semi-automatic algorithm uses medical guidance to obtain a 3D repre-
sentation of the carotid artery and plaque and automatically generates
measures to characterize the plaque in terms of dimensions and texture.
A useful analysis tool is provided to allow the identification of vulnerable
foci within the plaque.

1 Introduction

In the majority of western countries, atherosclerosis is the most prevalent and
main cause of death. It is a disease of the large and medium size arteries, being
characterized by plaque formation due to sub-endothelial accumulation of lipid,
protein, and cholesterol esters. The most frequent location of the atherosclerotic
lesion in the cerebrovascular sector is the common carotid bifurcation where
plaque formation tends to produce stenosis which reduces the blood flow to the
brain. Therefore, a significant effort has been done in the development of new
techniques to assess the atherosclerosis state of the carotid artery.

Up to now the degree of stenosis has been targeted as the main indicator for
plaque vulnerability and is the primary factor for deciding a surgical interven-
tion [1]. This decision presents relevant clinical and financial consequences and
therefore accurate diagnosis tools are needed. To increase the accuracy of the
diagnosis, parameters aiming to identify vulnerable lesions have been studied
using 2D B-mode ultrasound (US) imaging with computer-assisted analysis [2].

� This work was supported by Fundação para a Ciência e a Tecnologia (ISR/IST pluri-
anual funding) through the POS Conhecimento Program which includes FEDER
funds.
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The ultrasound images are used to extract the carotid contours and measure the
stenosis severity, to automatically or semi-automatically segment the intima-
media layer thickness and to segment and classify the plaques with respect to
their instability, based on intensity and texture [3]. However, 2D characteriza-
tion is difficult and not very accurate because it depends on the selection of a
representative ultrasound image of the plaque by an experimented physician.
The classical methods do not allow a global visualization of the carotid anatomy
nor the global extension and morphology of the plaques. For this reason an in-
creasing amount of work has been published where 3D reconstructions of the
carotid and plaques are used to better assess the risk of stroke.

Usually, in 3D ultrasound, a spatial locator is attached to the ultrasound
probe to measure its position and orientation. The manipulation of the probe
can be performed by mechanical devices or in a free-hand basis by the medical
doctor. These devices are expensive and not usually provided with the tradi-
tional ultrasound equipment. Hence, 3D ultrasound algorithms usually require
specialized experimental setup which is only available in academic laboratories
or highly technological equipped medical centers.

a) b)

Fig. 1. a) Carotid anatomy. b) Acquisition protocol.

In this paper we propose an acquisition protocol that does not need spatial lo-
cators to obtain the 3D reconstruction. The anatomy and location of the carotid
makes it possible to keep a uniform sweep velocity of the ultrasound probe al-
lowing the acquisition of a set of nearly parallel cross sections. Furthermore, the
paper proposes a volume based analysis algorithm of the atherosclerotic plaques
in order to classify them with respect to its instability in a global and local basis.
This new local approach analysis leads to significant and important improve-
ments in the assessment of the atherosclerotic disease, primarly in concerning
the risk of stroke.

2 Problem Formulation and Acquisition Protocol

The carotid is the major vessel which supplies the brain and face with blood. It
is located in the lateral side of the neck, along its longitudinal axis and branches
off in the external and internal carotids along the upward direction (see Fig.1a).
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This paper is focused on the bifurcation region where the plaque formation is
more frequent. The goal is to acquire parallel cross-sections of the carotid to build
a 3D mesh representing its anatomy. Since no spatial locators are being used the
acquisition protocol is a critical process to guarantee the quality of the results.
The ultrasound probe should be manipulated as uniformly as possible from the
base of the neck up to the base of the skull keeping its orientation as static as
possible. In a typical acquisition session, 60 images are acquired with a 5 to 12
MHz dynamic range linear transducer. Small variations on the orientation of the
ultrasound probe are not critical because the algorithm performs the alignment
of the images. This acquisition protocol is performed using two metallic strips
(see Fig.1b), which come apart by a known distance, that are used as landmarks
for signaling the limits of the probe course. Small variations on the sweep velocity,
V = V0 +ΔV with ΔV < 0.1V0 and V0 = 8cm/2sec = 4cm/sec, leads to position
errors ≤ 0.02cm, which are small when compared with the total length of the
probe course, d = 8cm (for details see [4]).

3 Three-Dimensional Reconstruction

The reconstruction of the carotid and plaques is performed using a surface ren-
dering approach where the contours of both structures are extracted from each
image of the data sequence. To produce the final meshes these contours are reg-
ularized, linked, aligned and longitudinally smoothed. Since the spatial informa-
tion inside the plaque is clinically relevant, volume rendering is also performed,
only inside the plaques, to allow the assessment of its global and local instability.
The overall mesh generating process is performed in the following steps:

1) Pre-processing. This step is used to attenuate the speckle noise present in
the ultrasound images. The Bayesian denoising process is based on the maximum
a posteriori (MAP) criterion and in the total variation (TV) edge preserving
prior, being the optimization achieved by solving the Lyapounov equation [5]
for which there are fast and efficient solvers described in the literature. Fig.2a-c
displays an example of application of the pre-processing in a 346×440 pixel ultra-
sound noisy image (fig.2a), the filtered image using a combination of median and
gaussian filters (fig.2b) and the filtered image using the MAP method (fig.2c).
This image demonstrates the edge-preserving nature of this type of filter.

2) Contour extraction. The extraction of contours from the pre-processed
images is done by using the active contours algorithm described in [6], based
on the Gradient Vector Flow (GVF). The algorithm is used to automatically
segment the anatomic objects under medical supervision. That is, under reg-
ular conditions the initialization of the GVF algorithm for a given image is
obtained from the previous one, as displayed in fig.2d-f. However, the medical
doctor may interfere with the process. He may change the initial contour or
the default parameters, such as the internal and external energies of the con-
tour. This functionality is useful when the algorithm wrongly converges due to
bad initialization or, more important, when topological modifications arise. The
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need for accuracy and precision during the segmentation makes it necessary to
use semi-automatic methods because the results are relevant for surgery taking
decisions. Two situations need a special initialization: 1) the beginning of the
bifurcation, where two contours must be merged into a single one. Both con-
tours (fig.2d) intersect, after convergence, in the bifurcation plane (fig.2e). The
new single contour results from these two contours by removing the intersec-
tion region; finally, the composed contour is used as initialization to segment
the carotid in the bifurcation region (fig.2f); 2) in the first image containing the
plaque, which must be manually defined (fig.2g). In the next images, the plaque
segmentation is made automatically. However, in order to force consistency of
both contours, carotid and plaque, a post processing is needed. This procedure
consists in the extraction of the plaque region from the intersection between the
new contour defined for the plaque and the already existing one for the carotid,
as well as, the correction of the carotid artery wall, by removing the region of
the plaque.

a     b       c 

                            g 

d     e       f 

Fig. 2. a-c) Pre-processing. d-f) Segmentation of the carotid artery in the bifurcation.
g) Manual detection of the plaque.

3) Contour re-sampling, smoothing and linking. The contours of the
carotid and plaques are described by a set of control points not evenly spaced.
These must be linked to build the 3D mesh representing the anatomy of the
carotid and plaques. Therefore, a re-sampling is needed and smoothing is de-
sirable. In this step a continuous vectorial function depending on scalar pa-
rameter s, describing each contour is estimated from the corresponding control
points.

Let c(s) = [x(s), y(s)] be the closed continuous contour where 0 ≤ s ≤ 1. The
control points describing this contour are pi = [xi(si), yi(si)] where si are the
normalized positions of each point, along the contour, that is s0 = 0 and sM−1 =
1. The M control points are considered noisy observations of the unknown curve,
c(s) = [Φ(s)T A, Φ(s)T B], where Φ(s) = [φ0, φ1, ..., φN−1]T is a column vector of
the N basis functions, computed at position s, and A = [a0, ..., aN−1]T and
B = [b0, ..., bN−1]N are vectors of coefficients to be estimated. The estimation of
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A (B is estimated in the same way) is performed by minimizing the following
quadratic energy function,

E = (X − ΘA)T (X − ΘA) + α(θA)T (θA) (1)

with

θ =

⎛
⎜⎜⎝

1 0 0 ... 0 −1
−1 1 0 ... ... 0
... ... ... ... 1 0
0 0 0 ... −1 1

⎞
⎟⎟⎠ , Θ =

⎛
⎜⎜⎝

φ0(s0) φ1(s0) ... φN−1(s0)
φ0(s1) φ1(s1) ... φN−1(s1)

... ... ... ...
φ0(sM−1) φ1(sM−1) ... φN−1(sM−1)

⎞
⎟⎟⎠ ,

where θ is a difference operator and Θ is M×N matrix depending on the location
of the control points. The vector Â that minimizes (1) is

Â = (ΘT Θ + αθT θ)−1ΘT X. (2)

The vector B̂ is obtained as Â by replacing X by Y . From Â and B̂ the new
evenly spaced control points are computed from

qi = [Φ(si)T Â, Φ(si)T B̂] (3)

where si = i/(L − 1), 0 ≤ i ≤ L − 1 and L is the number of the new control
points which will be used in the sequel of the segmentation process.

The re-sampled contours are linked in a pairwise basis, i.e. the contours on
the second image are linked with the homologous in the first one, the contours
on the third are linked with the homologous in the second one and successively,
up to the last image. However, it is necessary to match them to allow a correct
pairing of homologous control points. This is done by using the Iterative Closest
Point (ICP) [7] algorithm which estimates a rigid transformation applied to the
second set of points in order to minimize the distance between them. Once paired
the linking of both set of points is possible.

4) Vertical alignment and smoothing. In order to compensate the small
lateral displacements of the ultrasound probe during the acquisition process an
alignment procedure of the contours is needed. In this step, the contours are
aligned with the homologous ones in the previous image. After the alignment, a
smoothing operation is applied to the vertical lines to attenuate discontinuities
in the final mesh. This procedure is similar to the one applied to the contours in
step 3. The alignment of two consecutive images is achieved by minimizing an
energy function involving translation vectors associated with each image, i.e.

Ei =
L−1∑
k=0

[pi(k) − pi−1(k) − ti]
2 (4)

where pτ (k) is the k-th control point of the i-th contour and ti is the compen-
sation vector related to the i-th image. Using matrix notation leads to

Ei = (Pi − Pi−1 − θti)T (Pi − Pi−1 − θti) (5)
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with Pτ = [pτx(0), pτy(0), ..., pτx(L − 1), pτy(L − 1)]T , ti = [tix, tiy]T and θ =(
1 0 1 ... 0 1
0 1 0 ... 1 0

)T

. The vector that minimizes (5) is

ti = (θT θ)−1θT (Pi − Pi−1) (6)

5) VRML generation. The final step of the reconstruction algorithm consists
in the creation of a finite-element mesh, by applying different luminescence and
transparency codes to the defined elements in order to facilitate the anatomy
inspection. This information and criteria are used to create 3D virtual reality
models of both carotid artery and atherosclerotic plaque, like shown in Fig.4.

4 Plaque Classification

The morphology and texture of the plaques have prognostic relevance [8]. For
instance, a smooth surface and a homogenous texture indicates a stable plaque,
while an irregular surface and a heterogeneous texture are typical in unstable
plaques. Studies comparing plaque histology with ultrasonography have sug-
gested that echolucent (darker) plaques have more lipid and hemorrhage, which
indicates inflammatory activity and therefore instability. Conversely, echogenic
(brighter) plaques are associated with the presence of more calcium and fibrous
tissue, which are stable components. Therefore, a method is proposed for compu-
tational analysis of atherosclerotic disease, either based on global or local data.
In the former approach, plaque volume and extension, level of stenosis, grayscale
median (GSM) and percentage of echolucent pixels (PEP) are used. In the local
analysis, statistical measures, such as mean, median, variance, standard devia-
tion, skewness and curtosis, are computed for each location inside the plaque.
Global measures characterize heterogeneity and echogenicity of plaques and local
statistics allow the identification of possible active and unstable foci whithin the
plaque. This new local analysis methodology improves the diagnosis based only
on global characterization of the plaque. Fig.3a shows the plaque segmentation

a) b)

Fig. 3. a) Extraction of plaque US information. b) 3D US reconstruction.
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results. Fig.3b displays a 3D view of an entire reconstructed plaque which may
be inspected using opaque or semi-transparent visualization techniques.

5 Experimental Results

In this section examples of reconstructions using real data from two clinical stud-
ies are presented. Fig.4 shows 3D views of a healthy (a) and a diseased carotid
(b) where the plaque is well observed. In this framework is easy and fast to eval-
uate the geometry and extension of the plaques and its precise localization inside
the carotid. The local assessment of plaque severity is also available by using the
program interface, as shown in Fig. 5. The results for plaque characterization
are based on a third clinical study. Besides the carotid anatomy, the program
also gives important global information. The example presents a diseased carotid
containing a moderately echogenic plaque (GSM of 37), with a considerable level
of stenosis (61% at most and 51% in average), PEP of 53% and a smooth surface.
The estimated plaque volume of 1, 352mm3 is also important, but its relevance
depends on the plaque extension. Even more important than the volume itself is
the respective evolution along the time. This application is particularly suitable
for this type of prospective clinical approach, allowing the comparison of the
atherosclerotic plaque volume and extension at different stages of the disease.

a)

External carotid 

Internal carotid

Common carotid

Bifurcation

b)

Atheromatous plaque

Fig. 4. 3D realistic models of normal (a) and diseased (b) carotid arteries

The plaque echogenic analysis, in particular the GSM, determines whether
(or not) the plaque is stable, considering the consensual threshold given in the
literature (GSM = 32). This binary classification is however very simplist be-
cause it does not take into account if the GSM is closer to the threshold and,
even worst, it does not give any information about the extension of the unstable
regions inside the plaque.

Local assessment is needed to obtain information not provided by the global
measurements. Fig. 5b shows the local analysis of the plaque using two different
criteria to identify the unstable regions: first, the most echolucent regions at the
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a) b)

   Echogenicity               Heterogeneity 

Fig. 5. a) User-interface for plaque classification. b) Local detection of unstable regions
within the plaque.

central core (on the left), where the median values are below 20, and the most
heterogeneous regions (on the right), where the standard deviation is above 20,
mainly in the peripheral locations of the plaque.

6 Conclusion

This project proposes a new computer-based tool for plaque characterization, in-
volving the reconstruction of a 3D mesh of the carotid and plaque and a volume
based classification method of the plaques. This is important for the identifica-
tion of individuals at high risk of stroke, making easier the clinical decision of
surgical intervention. This classification is much more accurate than those based
only on 2D images, since it considers the entire information from the plaque.
Furthermore, the heterogeneity and echogenicity of the plaque is also analyzed
in a local basis, in order to identify possible unstable locations inside the plaque.

The application presents a user-friendly interface which allows a complete
medical exam in about one hour, including image acquisition. Furthermore, the
acquisition process only needs a common ultrasound equipment without need of
additional expensive equipment such as spatial locators or mechanical scanners.
Automatic global and local evaluation of textural parameters in conjunction with
its 3D integration in the carotid artery anatomy, leads to significant improve-
ments of the current state-of-the-art atherosclerosis diagnosis tools.
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Abstract. Case-Based Reasoning (CBR) systems solve new problems
using others which have been previously resolved. The knowledge is com-
posed of a set of cases stored in a case memory, where each one describes
a situation in terms of a set of features. Therefore, the size and organiza-
tion of the case memory influences in the computational time needed to
solve new situations. We organize the memory using Self-Organization
Maps, which group cases with similar properties into patterns. Thus,
CBR is able to do a selective retrieval using only the cases from the
most suitable pattern. However, the data complexity may hinder the
identification of patterns and it may degrade the accuracy rate. This
work analyses the successful application of this approach by doing a pre-
vious data complexity characterization. Relationships between the per-
formance and some measures of class separability and the discriminative
power of attributes are also found.

Keywords: Statistical and Structural Pattern Recognition, Data
Complexity, Neural Networks, Self-Organization Maps, Case-Based
Reasoning, Soft Computing.

1 Motivation

Case-Based Reasoning (CBR) [1] is an approach based on solving new problems
using others which have been previously solved. The knowledge is represented
by a case memory, where each case is defined by a set of features that describe
the problem. The way in which CBR works can be summarized in the following
steps: (1) it retrieves the most similar cases from the case memory, (2) it adapts
them to propose a new solution, (3) it checks if this solution is valid, and finally,
(4) it stores the solution according to a learning policy. The CBR performance,
in terms of computational time, is related to the size of the case memory because
CBR has to explore it in the retrieval phase. Therefore, its organization can help
to improve this issue by avoiding the selection of useless cases. There are mainly
two organization strategies: (1) The identification of patterns for using only the
cases from the best matching patterns [2,3], and; (2) The rejection of cases in
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function of their features’ values [4]. However, the use of fewer cases may imply
a reduction of the solving capabilities.

The SOMCBR (Self-Organization Map in a Case-Based Reasoning) [5] system
is a CBR framework where the case memory has been organized by a Self-
Organization Map (SOM) [6]. SOM is a clustering technique that defines patterns
by highlighting the most important features of the data. These patterns allow
SOMCBR to do a selective retrieval based on using only the cases from the most
suitable pattern instead of all the cases. Thus, the computational time is reduced
obtaining a meaningful property for real time environments [9]. Nevertheless, the
SOMCBR success depends on the existence of reliable data patterns.

The goal of this paper is to show how a previous data complexity [11] analysis
can help us to predict the SOMCBR applicability by evaluating the presence of
useful data patterns.

The paper is organized as follows. Section 2 explains the previous work on
SOMCBR. Section 3 briefly describes the data complexity analysis and proposes
a set of metrics as predictors of the SOMCBR applicability. Section 4 summarizes
the experiments and the results. Finally, we present the conclusions and further
work.

2 Self-organization Map in a Case-Based Reasoning
System

SOM is an unsupervised clustering technique from the neural network approach.
It defines a topology map, where the cases are grouped in patterns. This ability
is used to organize the CBR case memory in the SOMCBR approach [5]. Figure 1
illustrates a case memory organized by a 2-dimensional map of M ×M patterns.
The SOM has two layers: (1) The input layer is composed of N neurons, where
each neuron represents one of the N -dimensional features of the input case,
and; (2) The output layer is composed of M × M neurons, where each neuron
contains a set of similar cases represented by a director vector. Each input neuron
is connected to all the output neurons. When a new input case C is introduced in
the input layer, each neuron from the output layer computes a degree of similarity
between the input case C and its director vector applying a similarity function.
In our approach, we use the complementary of the normalized Euclidean distance
(see Eq. 1). A value closer to 1 means that the input case C should be similar
to the elements from the Xth pattern (MX). Otherwise, it should be different.

similarity(C, MX) =
∣∣1 − d(C, MX)

∣∣ =

∣∣∣∣∣1 −
√∑

n:1..N(C(n) − MX(n))2

N

∣∣∣∣∣ (1)

The retrieval consists in: (1) Looking for the most similar pattern, and;
(2) Comparing with the cases from the selected pattern. Consequently, SOM-
CBR reduces the computational time because only a subset of the cases are
used. Nevertheless, the patterns definition can be compromised due to the data
complexity.
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Case
Memory

Input layer

Output layer

M

M

N

Fig. 1. The case memory is organized by the SOM in order to define M × M groups
of cases with similar properties. This organization allows the CBR system to improve
the computational time in the retrieval phase.

3 Data Complexity Measures

The study of data complexity addresses the characterization of the intrinsic com-
plexity of the dataset, and to what extent this complexity is related to the clas-
sifier’s performance [10]. Although dataset complexity may be related to three
main causes (class ambiguity, boundary complexity, and training set sparsity)
the previous studies in this matter have been focused on the characterization of
boundary complexity, due to the difficulty to determine class ambiguity and the
real sparsity of a training set. Ho & Basu [11] proposed a measurement space
to identify the different aspects of boundary complexity: the discriminant power
of attributes, the separability of classes, and the topology of classes such as the
degree of overlap and the geometry of classes distributed as hyperspheres. Based
on this previous study, we select those measures that are most relevant to iden-
tify meaningful structures in the dataset that could be correlated with SOMCBR
clusters. We find that measures related to the separability of classes are the most
useful to predict SOMCBR’s success. Also measures detecting the degree of class
overlap with respect to the feature space are useful to explain SOMCBR’s be-
haviour. Other types of measures given in [11] do not reveal any structure as
seen by SOMCBR’s clusterization. In the following, we briefly describe these
relevant metrics.

Feature efficiency (F3): it defines the efficiency of each feature individually
and describes to what extent the feature takes part in the class separability. For
each feature, the measure uses a local continuity heuristic which supposes that
all the points belonging to the same class are included in the interval between
the minimum and maximum value of that feature. Thus, if two instances of
opposite classes have the same value for an attribute, there is an overlap and
the instances are considered ambiguous for this dimension. The ambiguity is
solved removing these instances. The efficiency is then assessed as the ratio of
the remaining (non-overlapping) points to all the training points. The measure
of feature efficiency is the maximum feature efficiency of all dimensions.

Length of class boundary (N1): it measures the number of training points
located near the class boundary. It is based on building a minimum spanning tree
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(MST) connecting all training points, using Euclidean distances between each
pair of points. Then, the measure computes the number of points of opposite
classes that are connected in the MST with respect to the total number of points.
N1 is an indicator of class separability and cluster tendency; the higher the
measure, the greater the presence of points of different classes on the boundary.

Intra/inter class nearest neighbour distances (N2): it describes the dis-
persion within classes with respect to the separability of classes. It is based
on computing the Euclidean distance of each point with the nearest neighbour
within the same class and the nearest neighbour of the opposite class. N2 is the
ratio between the average within-class nearest neighbour distances and the av-
erage opposite-class nearest neighbour distances. A low value indicates a major
degree of clustering and higher separability among different classes.

4 Results and Discussion

4.1 Testbed and Results

Several datasets of different domains and characteristics from the UCI Reposi-
tory [13] are considered for studying the relation between the data complexity
and the SOMCBR applicability. Due to the way in which the complexity mea-
sures are implemented [11], the datasets of N -class are split in N datasets of two
classes: each class versus all other classes. The name and the number of features
and instances are described in table 1.

The experimentation is performed in two parts. First, we compute the data
complexity of each normalized dataset for several measures. Next, CBR and
SOMCBR are executed applying a 10-fold stratified cross-validation with the
following configuration: (1) The retrieve phase uses the Euclidean distance as
similarity function; (2) The reuse phase proposes a solution using the most sim-
ilar case, and; (3) The retain phase does not learn. Additionally, the SOMCBR
is tested with 10 random seeds. All these results are also summarized in table 1:
N1, N2 and N3 are the complexity measures; %AR and σ are the accuracy rate
and its standard deviation for CBR, and for the best configuration of SOMCBR;
%R is the reduction in the number of operations between CBR and SOMCBR;
p-value is the probability to reject the null hypothesis assuming equal values for
%AR of both approaches [14]. Small values of p-value imply a high probability
of significant difference between both %AR.

Table 1 is divided (by an horizontal line) in two categories ordered by p-value.
Type 1 represents situations where the computational time is improved and the
accuracy rate is at least maintained. On the other hand, type 2 is produced
when the accuracy rate is proportional to the number of cases retrieved and,
consequently, the accuracy rate depends on the number of cases used. Therefore,
the difference between both types indicates if the SOM is capable or not to
splitting the domain in well defined patterns.
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Table 1. Summary of the dataset description (number of instances and attributes), the
results from CBR and SOMCBR (accuracy rates (%AR) with their standard deviation
(σ)) and, the results from the comparison between CBR and SOMCBR (percentage of
reduction (%R) and the probability of CBR and SOMCBR being equal (p-value)). The
horizontal line divides datasets into type 1 and 2, which are ordered by the p-value.

Dataset Measures CBR SOMCBR Statistics
Name Inst. Attr. N1 N2 F3 %AR(σ) %AR(σ) %R p-value
Waveform c1 5000 41 0.24 0.86 0.23 83.2 (1.2) 81.1 (1.2) 89.2 0.00
Vehicle c1 846 19 0.12 0.42 0.46 93.4 (2.4) 87.5 (4.7) 86.9 0.00
Vehicle c4 846 19 0.09 0.54 0.22 96.0 (4.2) 89.2 (3.6) 87.7 0.00
Balance c2 625 5 0.20 0.62 0.00 87.0 (3.1) 81.8 (4.1) 89.7 0.00
Waveform c2 5000 41 0.27 0.90 0.15 80.2 (1.4) 78.8 (1.6) 89.7 0.01
Pim 768 9 0.44 0.84 0.01 71.3 (3.4) 69.9 (3.4) 87.9 0.03
Wpbc 198 34 0.42 0.91 0.18 73.7 (7.1) 73.2 (9.2) 82.5 0.03
Waveform c3 5000 41 0.23 0.85 0.24 83.6 (1.8) 82.7 (1.6) 89.3 0.03
Balance c3 625 5 0.20 0.62 0.00 86.9 (3.7) 82.3 (6.5) 89.5 0.04
Tao 1888 3 0.07 0.16 0.36 95.4 (1.3) 94.9 (1.6) 81.8 0.06
Wdbc 569 31 0.07 0.56 0.52 95.1 (3.2) 95.3 (2.7) 80.2 0.09
Wbcd 699 10 0.06 0.34 0.12 95.3 (2.2) 94.6 (2.6) 86.9 0.09
Vehicle c3 846 19 0.37 0.74 0.06 73.9 (4.1) 73.4 (4.5) 82.5 0.11
Vehicle c2 846 19 0.37 0.71 0.04 75.3 (3.4) 75.4 (2.9) 81.9 0.11
Bpa 345 7 0.58 0.91 0.03 62.9 (6.0) 63.2 (5.1) 52.6 0.17
Heart-Statlog 270 14 0.37 0.67 0.01 74.1 (6.4) 76.3 (8.3) 87.1 0.19
Balance c1 625 5 0.21 0.65 0.00 83.7 (2.2) 86.1 (4.9) 89.0 0.21
Wisconsin 699 10 0.06 0.33 0.12 96.1 (2.0) 96.9 (2.4) 84.5 0.33
Ionosphere 351 35 0.23 0.63 0.19 86.9 (4.1) 88.1 (3.6) 64.0 0.41

Iris c2 150 5 0.01 0.10 1.00 100.0 (0.0) 100.0 (0.0) 56.3 0.00
Thyroids c2 215 6 0.06 0.23 0.81 98.1 (3.3) 97.2 (4.0) 52.8 0.01
Thyroids c1 215 6 0.05 0.23 0.85 98.1 (3.3) 96.3 (4.3) 51.4 0.02
Iris c1 150 5 0.09 0.17 0.75 95.3 (4.3) 93.3 (5.9) 60.7 0.04
Wine c1 178 14 0.05 0.43 0.72 98.3 (3.7) 97.2 (5.1) 68.6 0.05
Wine c2 178 14 0.07 0.49 0.76 97.2 (4.3) 97.2 (4.3) 67.9 0.05
Thyroids c3 215 6 0.10 0.31 0.67 97.2 (4.0) 95.8 (4.4) 54.2 0.08
Iris c3 150 5 0.10 0.21 0.56 94.7 (5.8) 93.3 (6.6) 60.9 0.08
Wine c3 178 14 0.12 0.57 0.58 94.9 (5.2) 95.5 (4.9) 65.3 0.09

4.2 Relationship Between Data Complexity and SOMCBR

We establish a classification where the datasets are divided into the two types
previously explained. Regarding type 2 datasets, the computational time does
not improve in a great percentage (%R < 70%) and the probability defined by
the p-value is small (p-value < 10%). Figure 2(a) shows the relationship between
the p-value and the percentage of reduction of the computational time, %R, for
all datasets tested. The perpendicular lines delimit the region of type 2 datasets.

Even so, the goal is to find a representation on the complexity space to distin-
guish between types 1 and 2. Thus, this should indicate a priori the applicability
of SOMCBR according to the defined threshold values of p-value and %R. The
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Fig. 2. The charts show how the combination of p-value, %R, and complexity measures
are useful tools for distinguishing the behaviour of type 1 and 2. The chart (f) allow
us to predict the SOMCBR applicability.

F3, N1, and N2 complexity measures present interesting properties to distin-
guish between both types. Because the N1 and N2 separability measures have a
similar behaviour, we can work with their product in order to promote extreme
behaviours, especially in the case of datasets with low values.

Figures 2(b, c, d, e) depict the complexity measures (F3 and N1·N2) with the
previously defined p-values and %R. In Figure 2(b), we observe that all datasets
of type 2 are near to the origin, with low values of N1·N2 and p-value, but there are
some overlaps with the location of type 1 datasets. On the other hand, Figure 2(c)
shows that type 2 problems are separated from type 1 with respect to F3. More-
over, type 2 problems are mainly related to high values of F3. Figures 2(d)
and 2(e) show similar results, where we also plot the complexity measures and the
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percentage of reduction %R. On both figures, the values of F3 and N1·N2 define
separated regions in two types.

These figures suggest some tendencies: (1) Datasets with high values of %R
appear in regions with low values of F3. (2) Datasets with high values of F3 have
very low values of p-value. (3) Low values of %R are slightly correlated with low
values of N1 and N2 product.

Furthermore, Figure 2(f) represents a complexity space on N1·N2 and F3,
where there are four possible situations. We can see how these measures settle
ranges for all datasets belonging to type 2: high values (> 0.55) of F3 measure
and very low values (< 0.1) of the mentioned N1·N2. A high value of F3 means a
high separability of classes because the attributes are not overlapped. A low value
of N1·N2 implies high linear separability. The arrow indicates the sense of data
complexity. Thus, SOMCBR is recommendable for the rest of the complexity
space represented in figure 2(f), that is, for complex domains.

Therefore, the a priori discrimination between type 1 and 2 with complexity
measures allows us to obtain patterns of good performance of the SOMCBR
without having to apply it.

5 Conclusions and Further Research

SOMCBR is a CBR characterized by the organization of the case memory by
means of a SOM, which is responsible for grouping the cases into patterns. These
patterns allow the retrieval phase to reduce its computational time because it
only uses the cases associated with the most similar pattern instead of using the
whole case memory. However, the solving capabilities can be compromised if the
patterns are not well defined. This can happen in complex and noisy domains.

This paper is a first step in trying to relate the data topology and the SOM-
CBR application using complexity measures. These measures are based on es-
timating the problem hardness through the geometrical data structure. By the
study of some graphical representations of the complexity space, we can con-
clude that the F3 measure and the product of N1 and N2 measures are useful
to determine when the SOMCBR should be used, namely, for complex domains.
Therefore, these complexity measures help us to predict a priori the performance
of the SOMCBR without applying it.

Further work involves two issues. First, extending the analysis of the effects
of other complexity measures and more datasets. Second, studying others ways
of retrieving cases from SOMCBR in order to avoid losing useful cases if clusters
are not well defined.
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Abstract. In traffic sign recognition systems, one of the normal appro-
aches is the identification of the shape of the sign prior to the recognition
itself. Normally, the recognition process needs an accurate localization
of the sign for a good performance. If we are dealing with triangular,
rectangular and circular signs, this means the accurate localization of the
vertices of the triangle and the rectangle, or the parameters of the ellipse.
In this paper we have developed a system which searches the above
mentioned parameters from the signature of the blob using techniques of
algebraic-distance minimization. Comparisons with previous works show
good improvements in the localization of the shape, especially in the
presence of slight occlusions. This work is part of a traffic sign recognition
system, and in this paper we focus on the shape localization step.

1 Introduction

A traffic sign recognition system consists of a video camera mounted on a vehicle
recording the road at usual speed, and an image processing system implemented
in a computer. The goal of these systems is the detection and recognition of
the traffic signs of the road. Some examples can be found in [1,2,3]. In [4],
the image processing system consists of three steps, namely, the segmentation,
detection and the recognition blocks. The objective of the segmentation block
is the isolation of possible blobs which are candidates to be a traffic sign from
the background. The output of this block is the list of connected components
for each color mask. The block also performs a filtering of the blobs according
to the size of its bounding box and area.

The detection block can be divided into two sub-blocks. The shape classifica-
tion sub-block performs the identification of the shape of the blob comparing the
signature of the blob (defined as the distance from the mass center to the edge
of the blob as a function of the angle [5]) with the signature of the theoretical
shapes of an equilateral triangle, a square and a circle. The main advantages
of the implemented algorithm are its invariance to object translation, scaling,
rotations and a great robustness to camera projection deformation. A complete
description of this block can be found in [6]. The output is the blob list returned
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by the segmentation step updated with its estimated shape. The other sub-block
achieves the localization of the shape. For a triangle and a rectangle, localization
means the estimation of the position of its three or four vertices respectively. For
a circle, it means the estimation of the coordinates of the center, the major and
minor axes and the orientation of the major axis of the corresponding ellipse.

Finally, the recognition block performs the identification of the meaning of the
sign according to its content. This is achieved using a series of Support Vector
Machines (SVMs) trained with samples previously selected from each category.
A complete description of the system can be found in [4]. In this paper, we will
focus in the improvement of the localization sub-block, increasing the accuracy
in estimating the position of the shapes. Since we are dealing with three different
shapes, three different algorithms must be designed, one for each shape.

2 Shape Localization

Shape localization is a fundamental process when we are dealing with geometric
distortions, like object rotation, scaling, shifts and projection deformation, for a
correct performance of the recognition step. In most of the previous works found
in the literature, including the one developed in this project, the recognition is
based on a pixel wise comparison of the candidate blob with the reference sam-
ples previously stored. Here, comparison means the use of correlations, SVMs,
neural networks or whatever other kind of classifier. This kind of algorithms is
highly dependent on geometric distortions. Even a slight displacement of two
pixels between the current blob and the samples can make the algorithm fail.
For this reason, an accurate localization of the shape is needed for a proper
operation of the recognition block. Once the shape has been localized, a planar
affine transformation allows the system to place the blob on a reference position,
undoing any possible geometric distortion. This transformation, called homog-
raphy, is computed through a 2D Direct Linear Transformation (DLT) [7], and
implies the design of three different algorithms, one for each shape.

2.1 Triangle and Rectangle Cases

For the triangle case, the three vertices of the triangle must be found. Our
previous work tries to find these vertices directly from the signature of the blob
previously computed for the shape classification task. As can be seen in Fig. 1,
the vertices of the triangle match the three peaks of the signature. Therefore,
a peak-search algorithm would be enough to find the position of the vertices.
For the rectangle case, it is easy to see that the algorithm is essentially the
same to the one designed for the triangle except from being 4 peaks instead of
3. Because of this, hereafter we will only describe the algorithm for triangular
shapes, having into account that the algorithm for the rectangle is very similar.

Although this method is a good strategy in the theoretical case, as can be
seen in Fig. 1, when applied to real images the results become very inaccurate.
This is due to two main reasons. First of all, we rely on the information of only
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Fig. 1. Correspondences between the vertices and the peaks of the signature

one pixel, which can be corrupted with noise. Secondly, if an occlusion makes
disappear one of the vertex, the estimated coordinates of the hidden vertex will
be located at a very different position. We also need to have into account that
the system does not yield sub-pixel precision, since the output of the algorithm
is the position of the three pixels corresponding to the peaks of the signature.

The first problem may be overcome if we consider more than one pixel. There-
fore, instead of determine directly the coordinates of the pixels corresponding
to the vertices, we can estimate the parameters of the three straight lines which
compose the triangle. This estimation can be performed using a number of pixels
from the contour of the blob. The easiest way of doing this is using directly the
samples of the signature. Considering that the three peaks of the signature have
already been localized, all the pixels between two peaks compose one straight
line. Using homogeneous coordinates [7], a point xi = (xi, yi, 1)T belongs to a
straight line l = (la, lb, lc)

T if:

(
xi, yi, 1

) (
la, lb, lc

)T = 0 . (1)

Stacking the equation for all the available points for a particular line, we get:

X · l =

⎛
⎜⎜⎜⎝

x1 y1 1
x2 y2 1
...

...
...

xN yN 1

⎞
⎟⎟⎟⎠

(
la lb lc

)T = 0 , (2)

which implies the computation of the null-space of matrix X. Since the num-
ber of rows of X is, in general, greater than two, and are affected by noise, (2)
defines an over-determined system, and must be solved using some minimiza-
tion techniques. Although the use of iterative geometric-distance minimization
techniques should be used to get the most accurate solution, simple algebraic-
distance minimization is accurate enough for our purpose, taking advance of its
less computational complexity. Geometric-distance minimization is suitable in
the presence of outliers, or when the data is highly affected by noise. Note, how-
ever, that in our case neither there are outliers nor the noise is high. Otherwise,
the shape detection algorithm would have failed and none of this would make
sense.
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Before go on, at this point we can estimate the degree of confidence of the
computed line. Computing the mean geometric error of the points according to:

e =
1
N

N∑
i=1

∣∣∣∣∣
laxi + lbyi + lc√

l2a + l2b

∣∣∣∣∣ , (3)

allows us to evaluate the degree of fitting of the list of points to the line. The
mean geometric error of each line can be thresholded, and if one of the errors
exceeds the given threshold, the blob can be considered as a false alarm. That is,
the shape classification algorithm classified the blob as a triangle but, actually,
the blob is not a triangle because it is not composed of straight lines, according to
our threshold. Once the three lines of the triangle have been correctly obtained,
the vertices of the triangle can be computed using:

xij = li × lj =

∣∣∣∣∣∣
a b c
lia lib lic
lja ljb ljc

∣∣∣∣∣∣ =
(
libljc − licljb, liclja − lialjc, lialjb − liblja

)
, (4)

and so, the three vertices have been estimated. After this step, three (four in the
rectangle case) points correspondences have been obtained, and the computation
of the homography of the affine transformation between the current blob and
the reference shape (an equilateral triangle of side 1 or a square of side 1), is
straightforward using the standard DLT algorithm, as it is described in [7].

2.2 Circle Case

Although many algorithms have been described in the literature for fitting points
to ellipses [8], they focus on the computation of the parameters of the ellipse. Our
novel approach however computes directly the homography required for the re-
orientation of the shape without any other extra computation. In our previous
work we compute the parameters of the ellipse directly from the moments of
the mask. The main drawback of this approach is that occlusions can modify
the moments of the blob, mistaking the localization of the circle. Taking into
account only blob contour pixels, or equivalently, the samples of the signature,
instead of all pixels of the blob, we can improve considerably the accuracy. If we
consider the ellipse as a conic [7], it can be described by a symmetric matrix of
the form:

C =

⎡
⎣ a b/2 d/2

b/2 c e/2
d/2 e/2 f

⎤
⎦ , (5)

with five degrees of freedom, accounted for the six elements of a symmetric ma-
trix less one for scaling, and therefore, a minimum of 5 points are required to
define an ellipse. Any point laying on the ellipse must fulfill:

xTi Cxi = 0 , (6)
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or equivalently: (
x2

i , xiyi, y2
i , xi, yi, 1

)
c = 0 , (7)

where c = (a, b, c, d, e, f)T is the conic C represented as a 6-vector. Stacking
the equation for all the available points of the signature of the blob we get the
following system: ⎛

⎜⎜⎜⎝
x2

1 x1y1 y2
1 x1 y1 1

x2
2 x2y2 y2

2 x2 y2 1
...

...
...

...
...

...
x2

N xNyN y2
N xN yN 1

⎞
⎟⎟⎟⎠ c = 0 . (8)

If the number of points N is greater than 5, (8) implies the computation of
the null-space of an over-determined system, which can be solved easily using
algebraic-distance minimization techniques. Once the conic C has been com-
puted, the following step is the computation of a 2D homography which trans-
forms the ellipse into a reference circle, of radius 0.5 centered at the coordinates
origin, according to [7]:

C′ = H−TCH−1 , (9)

where C′ = diag (4, 4, −1) is the reference circle represented as a 3 × 3 diagonal
matrix with diagonal entries 4, 4 and -1. Taking the inverse transformation, and
decomposing H into a product of matrices:

C = HT
RHT

PHDC′HDHPHR , (10)

where HR is an orthogonal matrix. Furthermore C = HT
RCDHR, where CD is a

diagonal matrix, can be seen as the Singular Value Decomposition (SVD) of C,
which can be solved using standard SVD algorithms. Matrix HP is a permutation
matrix to ensure that CD = HT

PCEHP , being CE a diagonal matrix with entries
e11 and e22 positive, and entry e33 negative. Finally, HD is a diagonal matrix
with entries:

d11 =
√

e11/2; d22 =
√

e22/2; d33 =
√

−e33 . (11)

Matrix H = HDHPHR is then the 2D homography matrix which transforms
the ellipse C into the reference circle C′ of radius 0.5 centered at the origin
of coordinates. We can measure the mean geometric error for all points of the
signature according to:

e =
1
N

N∑
i=1

|d (Hpi,0) − 0.5| , (12)

where d (x1,x2) is the euclidean distance between points x1 and x2, x′ = Hxi

are the original points of the signature mapped to the reference plane, 0 are
the coordinates of the circle center (0,0), and 0.5 is the radius of the circle. The
mean geometric error, then, can be thresholded to discard false alarms.
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3 Experimental Results

The algorithm described in this paper was implemented using VC++ 6.0, taking
as input the results of the shape detection algorithm of the traffic sign recog-
nition system developed in our project. This input comprises the kind of shape
(i.e. triangle, square or circle) and the 64-sampled signature of the blob. The
output will be the 3 × 3 matrix corresponding to the 2D planar affine trans-
formation. Since the goal of this section is the evaluation of the accuracy in
locating the parameters of the shape, the evaluation is different for each kind
of shape. Although the whole system can work with real images, in this section
we are going to evaluate errors between the estimated position and the real one,
which implies that we must know the real position of the shape. Since this would
be impossible for real images, even it we did it by hand, we finally decided to
generate synthetic figures, obviously with known position, to this end.

For the triangle case, we constructed a synthetic triangle with known ver-
tices, v = {p1,p2,p3}, or equivalently, composed of the lines lij = pi × pj for
i, j = (1, 2), (2, 3), (3, 1). If the vertices of the triangle are defined clockwise, a
pixel of the image belongs to the triangle if its scalar product with the three lines
lij is negative for all lines, that is lTijp < 0 for l12, l23 and l31. To simulate the
effect of the noise introduced by the camera, we generated a random distance
dn of gaussian probability with zero mean and particular standard deviation, so
that a point finally belongs to the triangle if lTijp + dn < 0 for the three lines.
With a further close operation (i.e. an erosion followed by a dilation) finally we
get a mask very similar to that we would obtain from a real noisy camera. In
Fig. 2(a) and (b) we can see some examples for different values of the standard de-
viation of the random distance dn. The construction of noisy rectangles is similar
than the one for triangles, except that four vertices are needed instead of three.
Figure 2(a) and (b) shows some examples.

We have also evaluated the performance of the algorithm in the presence
of slight occlusions. To this end, we manually delete some parts of a triangle

(a) (b)

(c)

Fig. 2. Examples of shapes generated for evaluation: (a-b) Noisy shapes with standard
deviation of dn equal to: (a) 2 pixels, (b) 4 pixels. (c) Partially hidden shapes.
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Table 1. Comparison between ADM (Algebraic-Distance Minimization), and NLSM
(Non-Least Square Minimization) algorithms. In (a), σ is the standard deviation for
random distance dn. The results shown are the mean error distance measured in pixels.

ADM NLSM

σ (pixels) 1 2 4 1 2 4

Triangle 1.06 1.50 1.92 2.85 3.00 5.29

Rectangle 1.03 1.56 2.17 1.56 2.96 4.92

Ellipse 1.21 1.78 2.16 1.47 2.23 4.18

ADM NLSM

Triangle 2.28 6.84

Rectangle 3.22 5.10

Ellipse 2.15 5.36

(a) Results for noisy samples (b) Results for occlusion samples

or rectangle with known vertices, as can be seen in Fig. 2(c). We have paid
attention specially to occlusions in the vertices, since occlusions in the straight
parts of the shape do not cause any problem neither in the detection nor in
the localization of the shape. The occlusion must be slight since quite strong
occlusion would make the shape classification algorithm fail. Generally, most of
the shape classification algorithms described in the literature fail in the presence
of important occlusions.

The circle localization accuracy has been also evaluated. In this case, an ellipse
with random noise can be constructed from:

f (x, y) =

√
(x − xc)

2 +
(

y − yc

k

)2

− r + dn , (13)

where (xc, yc) is the center of the ellipse, r is the major semi-axis and kr the
minor semi-axis with 0 < k < 1, and dn is a random distance with particular
standard deviation. A pixel belongs to the ellipse if f (x, y) in (13) is negative.
Figure 2(a) and (b) show some examples of ellipses with different standard de-
viation for parameter dn. We have also evaluated the effect of occlusions on
ellipses. In Fig. 2(c) are shown some occlusion examples for ellipses.

In Table 1 the accuracy results of the proposed method are shown. To make
some comparison, this table displays also the same results for our previous al-
gorithm. So, column ADM (Algebraic-Distance Minimization) shows the results
for the algorithm described in this paper, while NLSM (Non-Least Square Min-
imization) is for the previous one. For the triangle and rectangle cases, the
measured error is the mean euclidean distance from the estimated coordinates

(a) (b)

Fig. 3. Results using real images
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of each vertex p′
i of the triangle or rectangle to the true one pi. For the cir-

cle case, the measured error is the mean of the sum of the euclidean distance
from the coordinates of the center of the estimated ellipse to the true one,
plus the difference in distance between both the estimated axes and the true
ones.

Finally, in Fig. 3 some examples for a triangle, a circle and a rectangle using
real images are shown to test the performance of the whole system in real en-
vironments. In Fig. 3(a), the real images are shown, while (b) corresponds with
the output of the detection block printed over the original images.

4 Conclusion

This paper describes a method to accurately localize the position of a traffic sign
within the image. Accurate localization is fundamental for a successful achieve-
ment of the sign recognition. The accuracy is reached using algebraic-distance
minimization techniques applied to the samples of the signature of the blob.
Comparison with our previous work shows a great improvement in accuracy,
specially in the presence of occlusions. From the evaluation of the whole system,
the work described here has proved to be accurately enough when working in
outdoor normal conditions, such as sunny days, rain or at night.

Acknowledgments. This work was supported by the project of the Ministerio
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Abstract. Colposcopy  test is the second most used technique to diagnose cer-
vical cancer disease. Some researchers have proposed to use temporal changes 
intrinsic to the colposcopic image sequences to automatically characterize cer-
vical lesion. Under this approach, every single pixel on the image is represented 
as a Time Series of length equal to the sampling frequency times acquisition 
points. Although this approach seems to show promising results,  the data 
analysis procedures have to deal with huge data set that rapidly increase with 
the number of cases (patients) considered in the analysis. In the present work, 
we perform principal component analysis (PCA) to reduce the dimensionality 
of the data in order to facilitate similarity measures for classification and clus-
tering. The importance of this work is that we propose a model to parameterize 
the dynamics of the system using an efficient representation getting a 1.11% 
data compression ratio and similarity on clustering of 0.78. The feasibility of 
the proposed model is shown testing the similarity of the clusters generated us-
ing the k-means algorithm over the raw data and the compressed representation 
of real data. 

1   Introduction 

Cervical cancer is one of the most common cancers affecting women. If it is detected 
early, the probability of cure is very high. After Pap smear test, colposcopy  is the 
most used technique to diagnose this disease because, although it is more economi-
cally expensive, it has a higher sensitivity and specificity [1, 2]. Basically, the colpo-
scopic test consists of the evaluation of the level of white color intensity that the  
cervical tissue reaches after acetic acid application. Some researchers have suggested 
to use the temporal patterns intrinsic to the color changes [7-9], but as far as we know, 
at the time in which this publication was made, there is not a complete understanding 
of how to represent the dynamic of the whitening occurred after acetic acid applica-
tion and how to use these temporal patterns to automatically segment the image, far 
from only subtracting images before and after acetic acid application [7, 8]. More-
over, none of the Time Series Data Mining methods has been used to approach this  
application.  
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In the present work we propose a methodology analysis to segment the colposcopic 
image using the temporal changes regarding reflection of light in tissue, that is the 
essence  of the analysis made by the colposcopist. The hypothesis is that not only 
color changes are important to categorize the lesion, but also, the temporal component 
of this change (dynamics) is important to be considered in the analysis. The impor-
tance of this work is that we propose a model to parameterize the dynamics of the 
system and a way to segment the image with respect to these parameters.  

2   Materials and Methods 

2.1   Subject Preparation 

Six women with abnormal Papanicolaou, aged from 22 to 35 years participated in the 
experiment. All of them gave informed written consent. Before colposcopy, the cervi-
cal mucus was cleaned using a cotton-wool swabs. The colposcopic tests were made 
spreading three milliliters of acetic acid (3%) over the cervix using a needle for fast 
application. A cotton-wool was put in the low part of the cervix to absorb the remain-
ing acetic acid that drops after the application. A leg-holder structure was used to 
make the patient feel comfortable and to reduce movements. After colposcopy, a 
biopsy was taken for histological analysis and PCR test [10].  

2.2   Data Acquisition 

Images were acquired using a colposcope dfv Vasconsellos model CP-M7 with mag-
nification 16 X without any optical filter. The viewing distance was 20 cm. Images 
were acquired using a color camera Sony SSC-DC50A and a frame grabber Matrox 
Meteor-II/Standard driven by a HP workstation XW6000 running Matlab 7.0 image 
acquisition toolbox. During the first ten seconds of the image acquisition 10 images 
(640x480) were taken as base line reference (1 frame/second), then after acetic acid 
application, three hundred and sixty images were taken in 6 minutes using the same 
sampling frequency. Control images taken at the beginning of each trial have a double 
purpose, the first one is to have a base reference to assess the signal percentage of 
change and the second one is to estimate the amount of signal noise. Each image was 
saved independently as a BMP file.  In order to simplify the image analysis the  
images were processed in gray scale. 

3   Data Analysis 

Our data consist of a sequence of 2D images of the reflectance of the surface of the 
cervix taken over a period of time, before and after acetic acid application.  

The colposcopic image sequence can be represented as a sequence of t 2D images 
Ιt(x,y) with acquisition time t with t < t+1. The color variation over time of each pixel 
in the image provides a time series. The resulting image sequence can be viewed as a 
3D image block Ι(x,y,t) defined on the spatio-temporal domain. The methodology 
proposed in this paper to analyze the colposcopic sequences involves 3 main  
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processes: preprocessing, feature extraction and classification. Those processes are 
explained in detail in the following sections. 

3.1   Preprocessing 

The acquisition process of colposcopic images spans over 6 minutes and even though 
that the patient is fixed some small random movements are unavoidable. They have 
often local character (patient’s breathing, movements due to the muscle tonus etc.). 
To be able to analyze the sequence of the images, i.e. compare and evaluate corre-
sponding structures, the structures in the images should be brought into the same 
position by removing the differences due to the patient movements - the colposcopic 
images have to be registered. This step is very important in this application, the goal 
of the 2D image spatial alignment, is to enable comparison between corresponding 
anatomical positions. There are various registration methods, a good overview can be 
found in [11] or in [12]. Medical registration methods are covered in more detail for 
example in [13]. The appropriate method has to be chosen with respect to the ex-
pected geometric differences and the type of processed data. Our previous experimen-
tal assessment suggests that the main source of the misalignments in colposcopic 
sequences can be modeled by simple translation. The method can transform the whole 
data using the same parameters, or can be local, depending on the local variations. It 
can be based directly on the image intensity values (area-based methods) or can be 
done using some features computed from the images (feature-based methods). Be-
cause colposcopic images do not contain many distinctive details, an area-based 
method was chosen. The classical representative of the area-based methods is the 
normalized  cross-correlation (CC), this method exploits for matching directly image 
intensities, this measure of similarity is computed for window pairs from the input 
and reference images and its maximum is searched [12]. 

The input and the reference images are actualized continuously starting with the 
first and second images of the sequence respectively, then the input and the reference 
images are redefined by the second and the third images and so on. The starting points 
to initialize the search are updated by the last position in which the pattern window 
was found. This registration strategy allows not only to contend with the fact that the 
searched pattern changes over time, but also, to reduce the spatial space over which to 
develop the search. Because cervical lesions are spread over the tissue as regions 
(forming areas with homogeneous tissue), a high spatial resolution is not needed. 
Then after registration the spatial resolution was reduced at 20% of the original size. 
The intensity value of each pixel over time was used to construct a time series, which 
we call,  the Aceto-white response function (Awrf).  

3.2   Parametric Modeling 

Time Series Data Mining (TSDM) is a very active area of research interested in the 
preprocessing, representation, and interpretation of temporal data stored in a data 
base. More specifically, this area of research investigates efficient representations of 
time series, change point detection, and similarity measures for time series classifica-
tion and clustering [14]. A colposcopic data set can be seen as a time series data base, 
the segmentation task consists of finding the similar temporal patterns with regular 
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shapes. The shape of the Awrf is determined by the aceto white dynamical process 
occurred on tissue. The most frequently used methods in TSDM are techniques that 
perform dimensionality reduction on the data, then use this compact representation to 
show the data in a parameter space, facilitating similarity search and clustering. Some 
goodnesses of the time series transformation are data compression, temporal smooth, 
outliers detection and feature extraction among others. 

The most used time series representations reported in the literature are Discrete 
Fourier Transforms (DFT), Discrete Wavelet Transforms (DWT), Principal Compo-
nent Analysis (PCA), Dynamic Time Warping (DTW), Clipped representations, 
Polynomial Models, Picewise Linear Approximations (PLA) and Symbolic Aggregate 
Approximations (SAX). The appropriate technique to use depends on the particular 
application [15, 16]. For the application reported in this work and because we are 
interested in a data adaptive model representation, the Principal Component Analysis 
(PCA) technique was used. PCA is a multivariate statistical method which, given a set 
of correlated variables, finds a reduced set of  orthogonal variables (principal compo-
nents) from which the observations can be explained as a linear combination [17]. 
This transformation can be thought of as a data rotation such that maximum variabili-
ties are projected onto certain axes called eigenvectors. After data rotation, the eigen-
vectors can be ordered with respect to the data variability that each one explains  
(eigenvalues). The m-th eigenvalue λm represents the variance of data along the m- 
th principal eigenvector νm. Since most of the data can be explained in terms of the 
linear combination of the firsts eigenvectors, PCA is used as a dimensionality reduc-
tion method. For our application, each Awrf can be represented as a discrete-time 
multivariable stochastic system.  

εααα ++++= nnGGGAwrf ...2211  (1) 

Where G are the orthogonal axes and α are the projections of data over those axes, 
plus some differences (ε) than can not be explained by the regresors. The colposcopic 
set of images can be thought of as a spatiotemporal data matrix. Let Awrf(m,n,t) rep-
resent a stack of t images of size (m,n). Thus there are (m*n) pixels, each of which is a 
time series of length t. Let p(i,j) represent the colour of the pixel (i,j), i=1, …, m,  
j=1, …, n. The PCA can be carried out by treating each image as a variable and each 
pixel as an observation. The objective of the analysis is to find the set matrix G which 
explains the Awrf volume in order to reduce the dimensionality of the data. Using this 
compressed representation, every single Awrf can be approximated through a linear 
regression of the data on the principal components.  

This model not only reduces the dimensionality of the data, but also provides a fea-
ture vector on which a similarity measures can be done to facilitate time series cluster-
ing and image segmentation. Additionally, it can be used as a temporal low pass filter. 

3.3   Image Segmentation 

Given the parametric model obtained from using PCA, a parametric fashion repre 
sentation can be used to visualize the colposcopic image as a parametric Maps.  
Parameters can be computed using the General Linear Model [17], in which: 

εα += GAwrf     (2) 
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Where Awrfs is the spatiotemporal data matrix, G is the design matrix (for our case is 
represented by k first principal components computed as explained above), α  is the 
parameter matrix corresponding to the projections of Awrf in G, and ε is the error. 

Parameter estimation can be done using least square:  

GG

AwrfG
T

T

=α      (3) 

Once the parameters have been computed, they can be used as a features to segments 
the image according with the different temporal patterns represented by the values of 
α. The fitted model can be easily recovered using (2). The goodness of fit of the 
model can be assessed comparing the signal noise with the error (ε) computed as the 
difference between the Awrf and its model. 

3.3.1 Clipped Representation 
Colposcopic image sequences can contain outliers due to errors in the registration 
process or due to illumination inhomogeneities in the surroundings, so knowing the 
characteristic shape expected from the data, a generic representation can be used as a 
lower bounding estimator to make an early detection of outliers. The dynamics of the 
system can be captured through the rate of change on the Awrf, it is assessed using 
the first derivative which is equivalent to the instantaneous velocity: 

t

tAwrfttAwrf

dt

d
Awrf Awrf

Δ
−Δ+== )()(

´    (4) 

For analytical purposes the Awrf can be divided in two sets: the “upwards” part and 
the “downwards” part.  The first part (Awrf’ > 0) represents that the signal reaches the 
maximum level at some time from the base line and the second one, represents the 
dynamics of how the signal goes back from the maximum to the base line (Awrf’ < 0).  

Clipped representation serves as a mean of outlier detection and a method of iden-
tifying model misspecification through the use of learned constraints, rather than use 
the raw data, we used the local derivatives computed as velocities [18, 19]. Where 
clipped(i) = 1 if Awrf(i)’ > 0 or clipped(i) = 0 if Awrf(i)’ < 0. Under this representa-
tion, Run Length Encoding (RLE) can be used to get a compressed representation of 
the Awrf [20]. RLE is a compressed form to represent binary sequences, under this 
representation the number of consecutive positions (bits) with the same value are 
counted to form a vector of n+1 positions, where the first element represents the par-
ity bit, i.e. [1, x1,x2 …, xn]. Using RLE clipped representation the outlier detection can 
be done using apriori constrains known about the Awrf expected shape [21]. 

4   Results 

Image registration was made using the cross-correlation  technique explained above 
[23]. The search window was defined selecting a region feature over which some 
anatomical features show high contrast boundaries, e.g. cervical hole. For the lack of 
space, motion correction results are not shown, see [23]. Once the data set was regis-
tered, PCA was applied to the database conformed by the volumes of the six subjets 
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included in this study. The four principal components were selected to explain the 
98.78% of the variance (figure 1). This transformation provides a data compression 
ratio of 1.11% (4/360). 
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Fig. 1. Principal component analysis. At the left are shown the first four eigenvectors obtained 
after to apply PCA. Their corresponding eigenvalues shows the percentage of variance  
explained by each of them (meddle). At the right, an Awrf is presented in blue with its  
corresponding fitted model in red. Clipped representation is also shown on this graph. 

Although the nature of this application requires to use a supervised learning algo-
rithm to learn from the expert the classification criteria, as an exploratory analysis to 
investigate the viability to use the proposed model to represent the raw data, an  
unsupervised learning algorithm (k-means) was used to compare the similarity of the 
clusters obtained using raw data versus those obtained using model parameters. The 
algorithm was run asking to form two clusters (k=2) suggested by the expert (colpo-
scopist). The input of the algorithm was the observations (n*m), represented as a raw 
data or as a feature vector of parameters (α). The criteria defined in [22] was used to 
measure the similarity between the clusters found using both data bases. The similar-
ity measure is computed following the formula: 
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Where Cr refers to raw data (complete time series) and Cp refers to the compressed 
representation proposed. This similarity measure will return 0 if the two clusterings 
are completely dissimilar and 1 y they are the same. The algorithm was run 10 times 
per each data set. Table 1 shows the average values obtained per each patient.   

Table 1. Similarity results obtained doing clustering over raw data against feature vectors 
expressed as parametric values obtained using (3). The number of clusters (k) used to run  
k-mean algorithm over each patient (P) was suggested by the expert. 

 P1,k=2 P2,k=2 P3,k=2 P4,k=2 P5,k=2 P6,k=3 
Similarity 0.58 0.71 0.88 0.82 0.96 0.70 
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5   Conclusion and Future Work 

Preliminary results using 6 data sets, show that different acetowhite temporal patterns 
can be discriminated using the temporal information intrinsic to the change of color 
occurred during colposcopic analysis. Different temporal patterns (Awrfs) can be 
characterized and used to segment a colposcopic image. Although some approaches 
have been proposed to analyze colposcopic images using temporal patterns, none of 
them has used time series data mining techniques to explore compressed representa-
tions to facilitates clustering and classification. In this work, a compact representation 
of the temporal patterns (Awrfs) was proposed parameterising the Awrfs using the 
four first principal components obtained after applying PCA. This efficient represen-
tation can  approximate and store the raw data with a compression ratio less than 2% 
and acceptable similarity results when compared against raw data (0.78).  It was 
shown that the clipped representation of the first derivative is a good signature to 
detect outliers. Our results about the segmentation obtained using the k-means algo-
rithm suggests that automatic segmentation can be possible. However, it is necessary 
to train a supervised algorithm  in order to correlate the Awrf parameters with the 
class of lesion. As a continuation of this work we are working with a group of colpo-
scopist experts who are manually segmenting the images and to explore other time 
series representations. Using this information we are going to be able to train a super-
vised algorithm under the structure proposed in [23], to automatically associate the 
Awrf with precancerous cervical lesions.  
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Abstract. Automatic Speech/Music Discrimination (SMD) has become
a research topic of interest in the last years. This paper present a new
approach for such goal, which is mainly based on a distributed expert
system that incorporates fuzzy rules into its knowledge base. The pro-
posed SMD scheme consists of two stages: 1) features extraction, 2)
classification of parameters. Classification is performed by cascading a
GMM-based classifier with an Evolutionary Fuzzy Expert (EFE) system.
The EFE system improves the accuracy rate provided by the GMM-
based classifier taking into account information of current and past au-
dio frames. Testing the kindness of new fuzzy rules for the expert system
has a high computacional cost. For that reason, a distributed learning
approach based on web services has been implemented.

1 Introduction

There are several situations that can benefit from efficient SMD. This tool can be
used to perform a content-based selection of broadcast programs [1]. An exam-
ple of this kind of application is the selection of radio stations that are actually
playing music. The SMD is also a basic part in Automatic Speech Recognition
(ASR) [2][3] and Automatic Music Transcription (AMT) [4], which often need
to analyze unstructured or unknown audio data. In the case of ASR, only speech
segments must be considered, whereas AMT must process only music excerpts.
Modern hearing-aid devices often include algorithms that change the operation
of the devices according to the type of sound that reaches the ear [5]. Finally, an-
other application that can benefit from distinguishing speech from music is low
bit-rate audio coding. A challenging approach is to design a multi-mode coder
that can accommodate different signals. The appropriate module is selected us-
ing SMD [6]. For all applications, it is important that the signal be segmented
properly before being submitted to the corresponding tool.

Soft Computing [7][8] is a methodology with high uncertainty tolerance. It
includes, among other issues, fuzzy logic, evolutionary computation, neural net-
works and probabilistic reasoning. Using partial truths, the behavior of the in-
volved systems is improved with a reasonable computational cost. Concretely,
fuzzy logic controllers [9] are expert systems which incorporate human knowl-
edge in its knowledge bases using fuzzy rules [7][10]. One of the most important
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features of this kind of expert systems is its facility or working in uncertainty
environments (classification, systems modelling, control systems, robotics,...).
Evolutionary computation constitutes a class of search and optimization meth-
ods which imitates the principles of natural evolution [11].

Finally, web services [12] are modular applications that can be published,
located and invoked from any part of the Web or within any local network
based on Internet standards. Software systems may interact with web services
in a way prescribed by its definition, using XML-based messages conveyed by
Internet protocols.

This work deals with SMD based on an EFE system for intelligent audio cod-
ing (a suitable audio coder is selected every 23 ms according to the decision of
the expert system). We propose to cascade a standard Statistical Pattern Recog-
nition (SPR) classifier with the EFE system in order to improve the classification
accuracy rate. Furthermore, the knowledge base for the EFE system is obtained
in a distributed way using web services technology with the aim at reducing
the associated computational cost. For testing the proposed approach, we have
considered some commonly used timbral features.

2 Speech/Music Discrimination

Speech/music discrimination involves a suitable processing for two main tasks:
audio feature extraction and classification of the extracted parameters. Five
commonly used timbral features are considered for assessing the proposed SMD
scheme. It assumes that classification is performed by cascading a SPR classifier
with an EFE system. A decision is taken every 23 ms from the features extracted
during the last one second. The intelligent audio coder chooses the suitable coder
every 23 ms according to the decision of the cascaded classifier. The proposed
scheme is represented in figure 1.

2.1 Analysis Stage: Features Extraction

The literature describes a wide variety of features that can be used to classify
audio segments. Comparative view of different types of features in speech music
discrimination is provided in [13][14], where different types of features are com-
pared for discriminating speech and music signals. Mel Frequencies Spectral or
Cepstral Coefficients (MFSC or MFCC) are very often used features for audio
classification tasks, providing quite good results. MFCC [3] are a compact rep-
resentation of the spectrum of an audio signal taking into account the nonlinear
human perception of pitch, as described by the Mel scale. They are one of the
most used features in speech recognition and its use to separate speech and music
has recently been explored in [15].

The first step of the feature extraction process is the division of the signal into
frames, which is performed using a Hanning window of 23 ms, with an overlap
of 50% between consecutive frames. The signals used in this work are sampled
at 44.1 kHz, resulting in frames of 1024 samples. In our approach, each 23 ms-
length Hanning-windowed frame is called analysis frame. We also define frames
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Fig. 1. SMD general scheme for intelligent audio coding

of 1 second and 250 ms, which are called long texture frames and short texture
frames, respectively. Note that each long texture frame of 1 seconds contains 43
analysis frames. Taking overlapping into account, the vector for describing each
considered feature, when using long texture frames, consists of 85 values, which
are updated every 23 ms. This large dimensional feature vector is difficult to be
handled for classification tasks. Therefore, it is required to reduce the feature
space to a few statistical values. In this work, the mean and variance of each
feature vector are only computed.

Once the feature extraction process has been described, we focus on the fea-
tures to be extracted. In this paper, the following timbral features are considered:
Mel Frequencies Cepstral Coefficients (MFCC), Spectral Centroid (SC), Spec-
tral Rolloff (SR), Spectral Flux (SF) and Time Domain Zero Crossings (ZC) are
used. Analysis comparative between them is provided in section 3.

2.2 Classification Stage: Gaussian Mixture Model-Based Classifier

For classification purposes, a number of standard SPR classifiers [16] have been
evaluated. The basic idea behind SPR is to estimate the probability density
function (pdf) for the feature vectors of each class. In the simple Gaussian (GS)
classifier, each pdf is assumed to be a multidimensional Gaussian distribution
whose parameters are estimated using a labelled training set. In the Gaussian
Mixture Model (GMM) classifier, each class pdf is assumed to consist of a mix-
ture of a specific number K of multidimensional Gaussian distributions. Unlike
the k-NN classifier, which needs to store all the training feature vectors in or-
der to compute the distances to the input feature vector, the GMM classifier
only needs to store the set of estimated parameters for each class. The iterative
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Expectation-Maximization (EM) algorithm is used to estimate the parameters
of each Gaussian component and the mixture weights.

In this work a three-component GMM classifier with diagonal covariance ma-
trices is used because it has showed a slightly better performance than other
SPR classifiers. The performance of the system does not improve when using
a higher number of components in the GMM classifier. The GMM classifier is
initialized using the K-means algorithm with multiple random starting points.
Modern classification techniques, such as Neural Networks (NN), Support Vector
Machines (SVM), and dynamic programming, could also be used. Other statis-
tical techniques, such as Hidden Markov Models (HMMs) and n-grams could
be of interest to deal with the classification based on sequences. We decided to
use standard SPR classifiers because this work is mainly focussed on SMD for
intelligent audio coding using an EFS system.

2.3 Classification Stage: Evolutionary Expert Fuzzy System

We are interested in discriminating between speech and music for intelligent
audio coding. A suitable coder must be selected each 23 ms-length analysis
frame according to the decision of the SMD system (i.e. a HVXC coder can be
applied to speech frames, whereas the ACC coder is used for music frames).
If the audio coder selection is only based on current analysis frame data, the
GMM classifier obtains low success rate. It is very important to assure a robust
performance of the SMD scheme for intelligent audio coding. Hence, we propose
to cascade the 3-GMM classifier with an EFE system for selecting the suitable
coder every 23 ms. The EFE system takes into account information not only
of the current frame but also of past frames. The inclusion of the evolutionary
fuzzy system within the classification stage produces an improvement on the
classification accuracy rate regarding the case of only using the GMM classifier,
as shown in section 3.

How does the EFE system take the final decision?. The EFE system
takes the final decision from four input parameters. The input parameters (p0,
p1, p2 and p3) represent the probabilities obtained by the 3-GMM classifier for
the last four consecutive 250 ms-length short texture frames. The last of them
includes the current 23 ms-length analysis frame, as shown in figure 2. Using
these probabilities and a knowledge base, the EFE system selects the suitable
coder (a coder adapted to speech or music) for intelligent audio coding. The
general structure of the EFE system appears in figure 2.

All inputs has been calculated using the 3-GMM classifier from the mean and
variance of the vector associated to each 250 ms-length short texture frame. This
vector consists of the considered feature values computed for all 23 ms-length
analysis frames contained within the corresponding 250 ms-length short texture
frame. All probabilities range from 0 to 1. There is only one output variable,
called Coder, which also ranges from 0 to 1. If the output value is higher than
0.5, a speech coder is selected. Otherwise, a music coder is selected.
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Fig. 2. EFE system general structure

How is the knowledge base obtained?. The new rules added to the knowl-
edge of the EFE system base have been calculated using evolutionary compu-
tation. The learning algorithm is based on random rules generation with conse-
quent mutation. A new rule is incorporated into the knowledge base whether an
improvement in the classification accuracy rate is achieved when the EFE sys-
tem takes that rule into account. The learning process for the EFE system uses
different audio signals with an approximated duration of 1000 seconds, which
implies a high computational cost.

To reduce the high computacional cost derived from building the knowledge
base, a distributed learning process based on web services technology is proposed.
In this sense, two approaches have been explored: 1) each computer evaluates a
different rule; 2) each rule is evaluated in a distributed way. The first approach
involves a synchronization mechanism for the rules, because they are evaluated
in different environments. In the second approach each computer processes a
certain audio fragment according to its computation power. Since the second
approach is more simple, it has been chosen in this work. The audio signal is
divided in so many parts as computers (agents) have the web services provider.
Hence, each agent does a partial evaluation of the rule behavior. The agents are
acceded by a client (scheduler), which coordinates the global evaluation of each
rule.

The EFE system takes a decision every 23 ms. Two types of error can appear:
an audio frame is labelled as speech when it is a music frame and the opposite.
The first one (Music as Speech Error, MSE) is considered more serious than the
second one (Speech as Music Error, SME), since it gives rise to a higher loss of
audio quality. The SME error is less critical, because it implies an increase in
the necessary bandwidth to transmit the signal, but no loss of audio quality is
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produced. In order to design and evaluate the EFE system, a fitness function
which considers both types of error is proposed:

Ev = a · MSE + b · SME (1)

The values for parameters a and b in (1) are chosen aiming to reduce MSE
as much as possible. In this work, we have chosen the following values: a = 0.8
and b = 0.2. The fitness function in (1) penalizes MSE more than SME, since
the first type of error is more critical than the second.

3 Experimental Evaluation

First of all, the audio test database is carefully prepared. It consists of a con-
tinuous 1-hour audio signal representative of the two audio classes (speech and
music). The speech data come from news programs, dialogs and announcing
of radio and TV stations. The speakers involve male and female with different
ages. The music data come from musical programs of radio and TV stations too,
and consist of songs and instrumental music. The songs cover as more styles as
possible (rock, pop, folk, funky,...) and they are sung by male and female in En-
glish and Spanish. The instrumental music covers different instruments (piano,
violin, cello, pipe, clarinet) and styles (symphonic music, chamber music, jazz,
electronic music). We have attempted that the data set is representative of the
two classes to be classified (speech and music) so that the results are indicative
of the discrimination performance with real-world unknown signals.

The classification results are calculated using a ten-fold cross-validation eval-
uation where the data set to be evaluated is randomly partitioned so that 10%
is used for testing and 90% is used for training. The process is iterated with
different random partitions and the results are averaged. The results presented
in this section are obtained with 50 iterations. This ensures that the calculated
accuracy will not be biased because of a particular partitioning of the whole data
set for training and testing.

Table 1 shows the improvement in the classification accuracy rate (averaged
results) due to the inclusion of the EFE system within the classification stage
regarding the case of only using the GMM classifier. Note that equation (1) has
been used for the learning process, but not for computing the percentages in
table 1.

From table 1, we can see that the EFE system gives rise to a better perfor-
mance of the proposed SMD system. Concretely, the fuzzy system leads to a
reduction of about 6% in the total error rate.

To assess the performance of the proposed distributed scheme, the following
experiment is performed: first, only one computer is used. Later, this number is
increased by 1 up to reach 9. In all cases, the processing time for building the
knowledge base using evolutionary computation is determined. In figure 3, the
processing time for the learning process appears as a function of the number of
computers.
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Table 1. Classification accuracy percentage

FEATURE CLASSIFIER SPEECH (%) MUSIC (%) TOTAL (%)

SC GMM 93.98 86.55 90.26

SC GMM + EFES 95.64 95.47 95.55

SR GMM 96.99 71.69 84.34

SR GMM + EFES 95.49 88.56 92.02

SF GMM 67.34 75.19 71.26

SF GMM + EFES 70.20 78.16 74.18

ZC GMM 95.18 85.51 90.34

ZC GMM + EFES 96.09 92.41 94.25

MFCC GMM 98.12 84.55 91.33

MFCC GMM + EFES 98.80 94.43 96.61
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Fig. 3. Processing time evolution

4 Conclusion

This work proposes to use evolutionary fuzzy logic for designing an improved SMD
scheme. Cascading the proposed the EFE system with a GMM-based classifier an
improvement of about 6% is achieved regarding the case of only using the GMM-
based classifier. Experiment results demonstrate the robustness of the proposed
SMD scheme. A classification accuracy percentage higher than 96% is obtained
for a wide range of audio samples. The new rules incorporated to the knowledge
base of the expert system have been calculated using evolutionary computation.
Since this process makes the computational cost expensive, we have implemented
a Web services-based distributed approach to achieve time-saving in the fuzzy
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rules learning process. The proposed SMD scheme is intended for intelligent audio
coding, and it is evaluated using commonly used timbral features.
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Abstract. This paper presents a novel methodology to obtain the breast
skin line in mammographic images. The breast edge provides important
information of the breast shape and deformation which is posteriorly used
by other processing techniques, typically mammographic image registra-
tion and abnormality detection. The proposed methodology is based on
applying edge detection algorithms and scale space concepts. The pro-
posed method is a particular implementation (application focused) of a
growing active contour with common considerations. Quantitative and
qualitative evaluation is provided to show the validity of the approach.

1 Introduction

Breast cancer is one of the most devastating and deadly diseases in women [1].
X-ray mammography remains currently the most effective method for early signs
of breast cancer. Although the estimation of the breast skin-line (the bound-
ary between breast tissue in the mammogram and the background) has not
received much attention in the field of mammographic image analysis, it should
be regarded as an important initial step for achieving an specific task. This
includes the delimitation of the region of interest for the detection of abnormal-
ities (microcalcifications and/or masses) in Computer Aided Detection systems
or the estimation of breast deformation for image registration. In addition, the
removal of non interesting regions in images would also reduce image storage and
transmission sizes.

Most of the methods found in the literature are based on combining histogram
thresholding techniques (which provides a fair initial estimate of the breast area)
with other more elaborated approaches. In contrast, the aim of this paper is to
investigate the feasibility of applying an edge detection approach for extracting
the breast skin-line. This is based on the combination of edge detection using
scale-space representation and active contours concepts.

The paper is structured as follows. The following section explains in more
detail the difficulty of extracting the breast skin-line, as well as describes typical
approaches for such task, underlining the main key works. Subsequently, the
proposed method is described in Sect. 3 and results are shown in Sect. 4. The
paper ends with the conclusions and future work.
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2 Skin-Line Segmentation

Although skin-line segmentation might be naively regarded as a simple task,
obtaining an accurate segmentation is not often straightforward. This is mainly
due to the projective nature of the acquisition process. Even though compres-
sion is applied to the breast, the thickness of the breast is not constant and
decreases along the skin boundary toward the nipple, this fact decreases film
contrast in this area. Besides, an added difficulty is the amount of noise found
in the background. This might be due to different reasons involving the acquisi-
tion (i.e. scattering) and to the digitalisation process. This latter factor is more
pronounced in mammographic films which have been digitised using a film scan-
ner compared to full field digital acquisition systems, in which the heterogenous
nature of the background is less prononounced. However, the number of film
mammograms being used for diagnosis is still important, as well as the contrast
problem still persists in the digital world.

A common approach to breast skin-line segmentation is thresholding algo-
rithms. Their main drawback is that they do not account for the non-
homogeneity of the mammographic background and usually low contrast parts
of the breast are being considered background. This is partially solved by us-
ing post-processing strategies. Thus, in the works of Sallam et al. [2] and Yin et
al. [3], the post-processing operations include morphology and line smoothing. In
contrast, in the work of Méndez et al. [4] a tracking of the boundary is done using
gradient information. In addition, Wirth [5] used active contours and fuzzy clas-
sification. A kindly different approach was adopted by Chandrasekhar [6], who
modelled the breast background using a polynomial form and, subsequently,
subtracted this from the original image obtaining the breast profile. A deeper
review of these techniques can be found in [7]. In 2006, Pan et al. [8] presented
a novel approach based on incorporating phase, amplitude and orientation from
multiscale analysis obtaining very successful results.

3 Method

The idea behind the proposed method is based on finding the skin-line by using
a contour growing technique. The growing process is stated following similar
concepts of attraction and regularisation found in active contours. The method
starts by computing an scale space representation of the image in order to per-
form edge detection using different scales. Subsequently, an initial seed point
lying in the skin-line contour is located based on a robustly estimation process.
Using this seed point, a contour growing process starts based on enlarging and
adapting a contour using different criteria. Basically, and following the simile of
active contours or snakes we adapt the concept of attraction forces (which make
the contour enter a region) and what we refer to regularisation forces which
penalises rapid curvature and position changes. An overview of the method is
illustrated in the Fig. 1.
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Fig. 1. Overview of the proposed skin-line segmentation method

3.1 Skin-Line Detection in Scale Space

The scale-space representation [9] describes an image as its decomposition at
different scales. This is achieved by the convolution of the image with a Gaus-
sian smoothing function at various scales (given by the σ value of the Gaussian
function). This representation has been used in conjunction with edge detection
in order to automatically extract edges at their optimum scale. If a small scale
is used, the edge localisation is accurate but results are sensitive to noise. On
the other hand, edges at larger scales have a better tolerance to noise but poor
edge localisation. The motivation of using scale space edge detection is given by
the nature of the breast skin-line: a low contrast edge often affected by noise.
Various approaches to automatic scale selection have been proposed [9]. A simple
and common approach is to select as the optimum scale the one which obtains a
maximum response from scale invariant descriptors. This is in general given by
normalised derivatives, for instance Lindeberg [9] defines

Lnorm = σα/2(L2
x + L2

y) (1)

as an edge strength measure for scale σ. Lx is the convolution of the image func-
tion with a first derivative Gaussian function. Here α is a parameter used as an
additional degree of freedom for edge and ridge detection. A typical value of 1
is generally used in the definition of normalised derivatives for edge detection.
Edge points are obtained detecting zero-crossing points of the second deriva-
tive in the scale-space representation. The final edge strength of a zero crossing
will be given by the maximum normalised strength measure along the differ-
ent scales. This maximum scale is regarded as the edge scale at that particular
point.
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3.2 Seed Point

The first step of the method focuses on finding the starting point (or seed point)
from which the contour will start growing. Special care has to be taken on es-
timating this point which directly affects the accuracy of the segmentation. As
stated before, mammographic image segmentation presents difficulties mainly
due to the low contrast in the skin-line and to the non-homogeneous background.
From our experience this lower contrast is less severe for points close the nipple.
Therefore a seed point can be easily detected in points at this area. An initial
guess of a seed point is obtained as the first local maxima of the gradient in
the scale space representation along the x axis at half the height of the image.
Obviously, this first estimation lacks of robustness if this first local maxima does
not correspond to the skin-line. That could be the case if the point lies inside
the breast area (due to a low contrast of the skin-line) or in the background (due
to noise, label and other image artifacts). A more robust approach is adopted
based on analysing the position of various seed points at close the same position
(at a small range in the y coordinate). The final seed point is obtained using a
least median error estimation. Edge direction will also provide an important in-
formation in the contour growing process. Therefore the estimation of the initial
angle it is also important. In this case a similar least median error estimation is
adopted for the angle measure. Figure 2a shows an example of seed detection.

3.3 Contour Growing

Once the seed point has been obtained a contour growing process starts based on
the combination of different criteria. For each point, a set of candidate growing
points are obtained situated in a normal line along the gradient direction. A
measure of affinity or cost Ci is computed for all points and the value with
the minimum cost is taken as the next growing point. This iterative process is
illustrated in the Fig. 2b.

As one may note from the figure, the growing scheme incorporates several
parameters which need to be defined. These include a kernel size K, normal to
the previous point, and a growing step S. Those values have been empirically
determined (i.e. typical values are K = 51 and S = 20) and kept constant trough
all the experiments.

Also from the experiments we noted that a more robust approach should be
used for the process of selecting the next candidate point as it was often affected
by noise and outliers. Instead of evaluating only a set of normal points at a given
distance and obtain the candidate with a minimum cost over Ci, several sets of
points on the normal are evaluated at different positions close to the desired
position of the candidate point. A set of cost functions Ck

i is then obtained for
each set of normal points. Using this approach the candidate point will be the
one with the minimum cost over all the different sets Ck. One should note that
in the different cost functions, the same (or nearly the same) point can lie in
a shifted position. In order to make those cost functions comparable the cost
functions are iteratively right and left shifted. The global minimum cost for each
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Fig. 2. Contour growing scheme: (a) Initial seed point and (b) contour growing process

point is obtained as the minimum using those shifted functions and the original
cost. Figure 3 shows the minimum cost function of candidate points with and
without cost shifting. Note that transportation effects have been minimised when
costs are shifted allowing a better estimation of the minimum cost.

Candidate points are obtained from the zero crossing points along the nor-
malised gradient using the scale space representation described earlier. The cost
of choosing a candidate point i is given by a weighted function Ci, following the
typical snake additive model formulation. This includes gradient, intensity, con-
tour curvature and position information. Hence, the contour tends to grow find-
ing areas of increasing intensity keeping minimal position and direction changes.

Ci = αGi + βDi + (1 − α − β)Ai (2)

where Gi refers to an attraction factor (i.e. intensity or gradient), while the
other two respond to regularisation terms penalising position differences (Di)
and direction changes (Ai). The factors α and β are scalar constants which
will weight the importance of each term. As in many other approaches using
weighted cost functions, it is important to obtain a good estimation of those
factors in order to achieve a satisfactory segmentation. The selection of those
factors will be later discussed in the paper (see the results section). Different
attraction factors can be stated based on the represented information and how
it is computed. Here two commonly used attraction factors are evaluated based
on gradient and intensity information.

Gi = 1 − exp(−1/f) (3)

where f is the gradient or intensity image function, depending on the factor used.
Gradient is obtained from the gradient of the zero crossing pixels while intensity
information is given by the median intensity value in a local small window (i.e.
5x5 pixels).
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Fig. 3. Cost functions for robust candidate selection: (a) cost without shifting and (b)
with cost shifting

The segmented breast skin-line should be continuous without having abrupt
changes. This obviously corresponds to the continuous nature of the breast. A
way to ensure this continuity is to impose some regularisation conditions to the
contour growing process. This continuity assumption might not hold in all cases
(i.e. when the nipple appears in the skin-line) but in this case the attraction
factors described earlier will be able to adapt the contour to those changes. The
first regularisation factor Di biases the cost to points closer to the centre of the
kernel of size K. This means that between two similar points the factor will
select as a better point the one with a closer distance to the kernel centre. This
factor is independent of the image contents and is given by,

Di = exp(−1/abs((i − 1) − (K − 1)/2)/((K − 1)/2)) (4)

The last regularisation term is defined computing the curvature change in a
local neigbourhood. Curvature values at each pixel are obtained with a similar
approach as used in [10]. Curvature (or directional change) between two pixels
i and j is defined by the scalar product of their normal vectors. Hence, the
curvature measure of a given pixel i is obtained by computing the scalar product
between i and its neighbouring pixels,

Ai =
1
N

N∑
j=1

exp(−d2
ij)(1 − cos(φi − φj)) (5)

where φi is the angle of the normal at a pixel i. N is the number of points in a
local neighbourhood and dij is the Euclidean distance between points i and j.
The distance factor is used here to weight the curvature of each point j, in order
to incorporate a bias to points closer to i.

4 Results and Discussion

In this section we show initial results obtained using the proposed skin-line
segmentation algorithm. Evaluation has been carried out in several experiments
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using different mammographic databases: the MIAS [11] and the DDSM
database [12]. A total of 65 images were segmented from the MIAS database
and compared to manually segmented images, regarded here as ground truth.
Similarly, 24 images were evaluated from the DDSM database. All images were
randomly selected. Evaluation results have been computed using completeness
and correctness measures for both databases. Those measures are related to
the True Positives (TP ), True Negatives (TN), False Negatives (FN) and False
Positives (FP ) values: Completeness = TP/(TP + FN) and Correctness =
TP/(TP + FP ). For the MIAS database we have obtained mean correctness
and completeness values of 0.9697 (std: 0.0507) and 0.9547 (std: 0.0618), respec-
tively. For the DDSM case the mean correctness and completeness values were
0.9524 (std: 0.0557) and 0.9744 (std: 0.0103), respectively. Special care has to
be taken when looking at those values as they tend to be too optimistic. For
instance, it is accepted that values over 0.95 can be considered as good segmen-
tation but also results below 0.90 were often regarded in our experiments as
unacceptable. Those results are slightly lower compared to other approaches [5]
for the case of the MIAS database but also interestingly better for the DDSM,
which has been generally perceived as more difficult to segment due to the larger
amounts of noise. Moreover, one has to keep in mind that those are initial re-
sults and are likely to be improved in the future. In addition to the DDSM and
MIAS database and although not quantitatively evaluated, we have tested the
algorithm using full field digital mammograms from our local database. As ex-
pected, and due to the less noise found in the background, the segmentation
results were all considered satisfactory.

In some cases the algorithm does not obtain what could be considered an ac-
ceptable segmentation. Those are mainly related to a large amount of noise in the
image which lead to a poor estimate of the initial seed point and to non-uniform
breast intensity distribution which yields undersegmented images. On the other
hand, it is also important to notice that the performance of the algorithm does
not substantially depend on the database used which usually has been reported
with other approaches [5]. The weighting factors of the growing criteria described
in the methodology section were established empirically, experiencing that ex-
treme values of any of the factors did not obtain satisfactory results and that the
attraction factor (intensity and gradient information) were the most important
in order to reach more accurate segmentation. However, additional experiments
will be carried out in order to asses the information apported by each factor.

5 Conclusions

A novel approach to the segmentation of the skin-line in digital mammograms
has been presented based on a novel contour growing technique using scale-space
edge detection and attraction and regularisation terms. Although we have pre-
sented initial evaluation results these have shown that our method can robustly
obtain an accurate segmentation in most of cases using different databases. Fu-
ture work will focus in further evaluating our method using a larger number of
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cases and additional databases, including full field digital mammograms. In ad-
dition, this evaluation will be compared to other recent approaches [8] for which
we have been unable to include in this work.
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Abstract. Shape elongation is one of the basic shape descriptors that
has a very clear intuitive meaning. That is reason for its applicability in
many shape classification tasks. In this paper we define a new method for
computing shape elongation for shapes with polygonal boundaries. The
measure is the ratio of the maximal and minimal of the sums of squared
lengths of the projections of all of the edges of the polygonal boundary
onto a line which has a particular slope. We express the measure with
a closed formula. This measure finds the elongation for shapes whose
boundary is not extracted completely, which is impossible to achieve
with existing area based measures.

Keywords: Shape, elongation, orientation, image processing, computer
vision.

1 Introduction

This paper introduces a new shape elongation measure. Elongation has an intu-
itively clear meaning and is hence a very common shape descriptor. In literature,
shape orientation and shape elongation are strongly connected, and usually con-
sidered together ([2,3,4]). The standard measure of shape elongation is derived
from the definition of shape orientation that is based on the axis of the least sec-
ond moment of inertia. Precisely, the axis of the least second moment ([2,3,4])
is the line which minimises the integral of the squares of distances of the points
(belonging to the shape) to the line. The integral is

I(S, ϕ, ρ) =
∫
S

∫
r2(x, y, ϕ, ρ)dxdy (1)

where r(x, y, ϕ, ρ) is the perpendicular distance from the point (x, y) to the line
given in the form

x · cosϕ − y · sin ϕ = ρ.
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The angle ϕ for which the above integral reaches a minimum defines the orien-
tation of the shape S. This angle is easy to compute and it can be shown that
such an angle ϕ satisfies the following equation:

sin(2ϕ)
cos(2ϕ)

=
2 · m1,1(S)

m2,0(S) − m0,2(S)
, (2)

where mp,q(S) are centralised moments of the shape S defined as

mp,q(S) =
∫
S

∫ (
x −

∫∫
S xdxdy∫∫
S

dxdy

)p

·
(

y −
∫∫

S ydxdy∫∫
S

dxdy

)q

dx dy. (3)

The minimum and maximum of I(S, ϕ, ρ) are also easy to compute. They are:

max
ρ≥0

ϕ∈[0,2π]

{I(S, ϕ, ρ)} =

m2,0(S) + m0,2(S) +
√

4 · (m1,1(S))2 + (m2,0(S) − m0,2(S))2

2

and

min
ρ≥0

ϕ∈[0,2π]

{I(S, ϕ, ρ)} =

m2,0(S) + m0,2(S) −
√

4 · (m1,1(S))2 + (m2,0(S) − m0,2(S))2

2
.

Next, the ratio between max
ϕ∈[0,π)

I(S, ϕ, ρ) and min
ϕ∈[0,π)

I(S, ϕ, ρ)

Es(S) =
max{I(S, ϕ, ρ) | ϕ ∈ [0, 2 · π], ρ ≥ 0}
min{I(S, ϕ, ρ) | ϕ ∈ [0, 2 · π], ρ ≥ 0} (4)

is the standard measure of elongation of the shape S. Some generalisation of
the standard method for measuring shape elongation can be found in [8]. Let
us mention that there are also some naive measures of elongation. For example,
shape elongation can be measured as the ratio of the longer and shorter edges
of the minimum area bounding rectangle for the measured shape. It is worth
mentioning that such bounding rectangles are easy to compute ([1,5]).

The standard measure (4) of shape elongation is area based because all points
belonging to the shape are involved in the computation (area moments are used).
Our new shape elongation measure is boundary based, because only the bound-
ary points are used in its computation. In this paper we will use the above given
idea while considering a recently disclosed method [9] for computing shape ori-
entation for deriving the new measure for shape elongation.

The restriction to polygonal shapes is not strictly enforced since real image
processing applications deal with discrete data that are a result of a particular
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discretization process. In order to enhance the data manipulation, the bound-
aries of the original shapes are usually approximated with canonical arc sec-
tions (circular arcs, parabolic arcs, straight line segments, etc.). Approximating
boundaries by straight line sections (i.e., polygonal approximation) is used most
frequently and many algorithms for the polygonal shape approximation already
exist – see [6].

The new elongation measure defined in this paper takes into account all the
boundary points – not only those that belong to the convex hull or to bounding
rectangles of the shape, for example.

2 Boundary Based Shape Orientation

As mentioned, we will derive a new shape elongation measure from a recent
boundary based method for computing the orientation of polygonal shapes. We
will first give a short sketch of the main result from [9]. Let us start with the
following definition from the same paper.

Definition 1. Let P be a planar shape with a polygonal boundary, and let −→a =
(cosα, sin α) denotes the unit vector with direction α. Then, the orientation of
the shape is defined by the angle α such that the total sum

F (α, P ) =
∑

e is an edge of P

|pr−→a (e)|2 (5)

of squared lengths of projections of all the edges of P onto a line having the slope
α is maximal possible.

Since the length of the projection pr−→a (ei) of the edge ei onto a line having the
slope α is

|pr−→a (ei)| = |ei||(cosαi cosα + sin αi sin α)| = |ei|| cos(αi − α)|,

the function F (α, P ) that should be maximised (in order to compute the orien-
tation of P ) can be expressed as

F (α, P ) =
n∑

i=1

|pr−→a (ei)|2 =
n∑

i=1

|ei|2 cos2(αi − α). (6)

By setting the first derivative dF (α, P )/dα equal to zero it can be shown that
both angles for which F (α, P ) reaches its minimum and maximum satisfy

sin(2α)
cos(2α)

=

n∑
i=1

|ei|2 sin(2αi)

n∑
i=1

|ei|2 cos(2αi)
. (7)

Once again, for a detailed proof and more details we refer to [9].
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3 New Shape Elongation Measure for Polygonal Shapes

Following the idea of the standard method for measuring shape elongation we
define the new elongation measure as the ratio of the maximum and minimum
value of the function that has been used for computing the shape orientation.

Definition 2. Let P be a shape with a polygonal boundary. Then, the elongation
of P is defined as the ratio

E(P ) =
max{F (α, P ) | α ∈ [0, 2 · π]}
min{F (α, P ) | α ∈ [0, 2 · π]} (8)

of the maximum and minimum of the function F (α, P ).

The new definition seems well motivated. For practical applications it would
be a desirable property if E(P ) is easily computable. We will show that the
computation is straight forward, and more over it turns up that there is a closed
formula for computing shape elongation as defined by (8).

Theorem 1. Let P be a shape with a polygonal boundary. Then the new elon-
gation measure of P can be expressed as

E(P ) =

∑
1≤i≤n

|ei|2 +

√√√√
( ∑

1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 · sin(2αi)

)2

∑
1≤i≤n

|ei|2 −

√√√√
( ∑

1≤i≤n

|ei|2 · cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 · sin(2αi)

)2

(9)
where ei (1 ≤ i ≤ n) are edges of the boundary of P and αi (1 ≤ i ≤ n) are
angles between the edges ei and the x-axis.

Proof. By using a simple trigonometric identity cos2(α) =
1 + cos 2α

2
we can

transform the optimising function F (α, P ) from the form (6) into:

F (α, P ) =

1
2

·
∑

1≤i≤n

|ei|2 +
1
2

·
∑

1≤i≤n

|ei|2(cos(2αi) cos(2α) + sin(2αi) sin(2α)). (10)

As already proved (see (7)), the angle values γ for which F (α, P ) reaches its

minimum and maximum satisfy
sin(2γ)
cos(2γ)

=

n∑
i=1

|ei|2 sin(2αi)

n∑
i=1

|ei|2 cos(2αi)
. Now, using the

trigonometric identities: sin(2ϕ)=
± tan(2ϕ)√
1 + tan2(2ϕ)

and cos(2ϕ)=
±1√

1 + tan2(2ϕ)
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we derive that cos(2γ) and sin(2γ) at the extreme points of F (α, P ) can be
expressed (together) as

cos(2γ) =
±

∑
1≤i≤n

|ei|2 cos(2αi)
√√√√

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2

sin(2γ) =
±

∑
1≤i≤n

|ei|2 sin(2αi)
√√√√

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2
.

Entering the last two equalities into (10) we derive that the minimum and max-
imum of F (α, P ) can be expressed as

1
2

∑
1≤i≤n

|ei|2 +
1
2

∑
1≤i≤n

|ei|2 ·
±cos(2αi) ·

∑
1≤i≤n

|ei| 2cos(2αi)
√√√√

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2

+
1
2

∑
1≤i≤n

|ei|2 ·
± sin(2αi) ·

∑
1≤i≤n

|ei|2 sin(2αi)
√√√√

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2

or equivalently as

1
2

·
∑

1≤i≤n

|ei|2 ± 1
2

·

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2

√√√√
( ∑

1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2
.

Thus, we derived that the maximum and minimum of F (α, P ) are as follows:

max{F (α, P ) | α ∈ [0, 2π]} =

1
2

·
∑

1≤i≤n

|ei|2 +
1
2

·

√√√√√
⎛
⎝ ∑

1≤i≤n

|ei|2 · cos(2αi)

⎞
⎠

2

+

⎛
⎝ ∑

1≤i≤n

|ei|2 · sin(2αi)

⎞
⎠

2
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and

min{F (α, P ) | α ∈ [0, 2π]} =

1
2

·
∑

1≤i≤n

|ei|2 − 1
2

·

√√√√√
⎛
⎝ ∑

1≤i≤n

|ei|2 · cos(2αi)

⎞
⎠

2

+

⎛
⎝ ∑

1≤i≤n

|ei|2 · sin(2αi)

⎞
⎠

2

.

This establishes the proof. �
Lemma 1 considers two properties that encompass the new elongation mea-

sure. The proof is omitted because it follows directly from the definitions.

Lemma 1. The new elongation measure satisfies the following properties:

– E(P ) ∈ [1, ∞) for each polygonal shape P ;
– E(P ) is invariant with respect to similarity transformations.

Remark. It is worth mentioning that the new elongation measure is valid for
both open and closed polygons, as it considers the boundary of the polygo-
nal shape. It can be applied to open polygonal lines, but also to the set of
several polygonal lines. This enables the method to be applicable to shapes
whose boundaries are not completely extracted. The reasons for an incomplete
extracted boundary could be: the shape is partially overlaid, there are large
similarities between background pixels and pixels belonging to the shape, etc.

4 Experiments

In the previous section we proposed a new shape elongation measure. It is nat-
urally motivated and simple to compute. There is a closed formula (9) that
expresses the elongation of a given polygonal shape as a function of the bound-
ary edges and angles that those edges made with the x-axis. It performs well in
some canonical cases. For example, let us consider a rectangle T (a) having edge
lengths a and 1. In accordance with (9) its measured elongation is

E(T (a)) =
1 + a2 +

√
(a2 − 1)2

1 + a2 −
√

(a2 − 1)2
=

⎧⎨
⎩

a2 if a > 1
1 if a = 1

1/a2 if a < 1

which is acceptable. In the limit cases where a → ∞ and a → 0 the rectangle
degenerates into a line segment while the measured elongations tend to infinity.
This behaviour is expected, and in fact preferred. In the case of a = 1 the
measured elongation is equal to 1. In this case the rectangle degenerates into a
square which is a 4-fold rotationally symmetric shape. Problems arising when
working with manyfold rotationally symmetric shapes are discussed in [7,8].

Next we give several shapes with their measured elongations. The new measure
E is boundary based and it is more sensitive to noise or to boundary defects (e.g.
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5.1173
(2.1218)

2.9167
(2.3975)

2.5274
(2.1093)

1.6553
(1.0604)

3.2768
(1.9653)

2.5775
(2.558)

Fig. 1. Computed elongations by the new method. Elongations computed by the stan-
dard method are in brackets.

4.7473 1.3609 4.3489

2.3787 2.762 1.3162

Fig. 2. Computed elongations of polygonal lines by the new method

intrusions on the boundary) than the standard measure Es. That is illustrated
by the first two examples from Fig.1. There is an essential difference between the
measured elongations if the new measure E is used. On the other hand, there is
only a small difference if those shapes are measured by the standard elongation
measure Es. Such “sensitivity” is not necessarily a disadvantage – particularly
when working in high precision (inspection) tasks.

The last two shapes in Fig.1 illustrate how shape deformations could affect
the measured elongation. In those examples the rankings given by E and Es are
different.
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An advantage of the method is that it can be applied to shapes whose bound-
ary consists of several polygonal lines (see the fourth shape in Fig.1.) or to
shapes with missing parts on their boundaries (see the last example on Fig.2).
The fourth shape in Fig.1 presents a square with a triangular hole. It has a
measured elongation Es very close to one. It is not surprising, because results
from [7,8] imply that all N -fold rotationally symmetric shapes (if N > 2) have
the same, minimal possible, measured elongation which is equal to 1. Since the
percentage of pixels that correspond to the triangular hole is relatively small, it
does not lead to an essential change in the measured elongation Es. If the new
measure E is applied then the impact of the hole is more significant. That can
be understood as a desirable property.

Several shapes that are presented usually by a curved line (or several of them)
are given in Fig.2.

5 Conclusion

The traditional shape elongation measure is area based. It is therefore defined
only for closed shapes. In this article, we proposed a shape boundary based
measure, with a closed formula. Using our new method, elongation can be mea-
sured for any open shape, including shapes composed of several components.
The measure is invariant with respect to rotation, translation and scaling.
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Abstract. The median graph is a useful tool to cluster a set of graphs
and obtain a prototype of them. The spectral graph theory is another
approach to represent graphs and find “good” approximate solutions
for the graph-matching problem. Recently, both approaches have been
put together and a new representation has emerged, which is called
Spectral-Median Graphs. In this paper, we summarize and compare two
techniques to synthesize a Spectral-Median Graph: one is based on the
correlation of the modal matrices and the other one is based on the
averaging of the spectral modes. Results show that, although both ap-
proaches obtain good prototypes of the clusters, the first one is slightly
more robust against the noise than the second one.

1 Introduction

Graphs, specially labelled or attributed relational graphs, are general and pow-
erful data structures for object representation in structural pattern recognition
and computer vision applications. When objects are represented by graphs, graph
matching is used to compare such objects. Algorithms for graph matching in-
clude graph and subgraph isomorphism [1]. However, due to errors and noise in
the input data, many times it is not possible to find a perfect match between two
elements and then, algorithms for approximate or error-tolerant matching must
be considered. These algorithms compute a similarity measure between two given
graphs. An excellent survey on graph matching algorithms and applications to
pattern recognition is [2].

In some of these applications it may be necessary to obtain the prototype of
a set of objects. Given a set of noisy samples of a certain object, error-tolerant
graph matching can be useful to infer a representative model that captures the
essential information of the class while rejecting small distortions due to noise. In
this context the concept of median graph [3] can be very useful and it has already
been applied to the synthesis of a prototype of a set of graphical symbols [4].
� This work was sponsored research Fellowship number 401-027 (UAB) / Cicyt

TIN2006-15694-C02-02 (Ministerio Ciencia y Tecnoloǵıa).
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It is well-known that one of the drawbacks of graph matching is its compu-
tational complexity. However, in the last years, spectral graph theory have been
applied to graph matching as an alternative way to obtain approximate solutions
in a reasonable time [5]. In this paper, we perform an evaluation and compar-
ison between two spectral-based methods for the computation of the median
graph. The first one [6] is based on the correlation of the modal matrices and
the latter [7] is based on the averaging of the spectral modes. Concretely, we
have applied such methods to compute the representative prototype of a set of
graphical symbols. Thus, we first define a graph-based representation of symbols
that is suitable for applying spectral techniques. Then we evaluate both meth-
ods performing two experiments: 1) the similarity of the approximate solutions
to the ideal median graph 2) the recognition rate. Finally, such methods are
compared based on these experiments. The results show that with both meth-
ods good prototypes are obtained. However the method based on the correlation
of the modal matrices is slightly more robust against the distortions than the
method based on the spectral modes average.

The rest of the paper is organized as follows. In section 2, we present the
methods for the spectral-median graph computation. In section 3 we introduce
the representation of graphical symbols used to perform the tests. Section 4
presents the experiments and the results obtained. We terminate with some
conclusions and possible future research lines.

2 Synthesis of Spectral-Median Graphs

Given a set of graphs, the generalized median is defined as the graph that has
the smallest sum of distances to all graphs in the set. Formally speaking, median
graph can be defined as follows:

Let Z be the set of graphs that can be constructed using labels from LV and
LE. Given S = {G1, G2, ..., Gn} ⊂ Z, the generalized median graph ḡ of S are
defined as follows:

ḡ = arg

(
min
G∈Z

∑
Gi∈S

d(G, Gi)

)
(1)

In the following lines we present two methods for the synthesis of spectral-
median graphs. The first one is based on the correlation of the modal matrices
while the latter is based on the averaging of the spectral modes.

2.1 Modal Matrix Correlation Method (C-Method)

The first method is that presented in [6]. Merging the concepts of median graph
[3] and spectral graph theory and using the Umeyama’s method [5] to solve
the weighted graph matching problem, they presented the concept of spec-
tral median graph. Concretely, they used an incremental algorithm to compute
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the generalized spectral median graph. Let {Φ1, Φ2, . . . , Φn} be the set of modal
matrices which represents the spectral counterpart of S in definition 1. If Φ =(
φ1|φ2| . . . |φ|V |

)
is the modal matrix of a graph G = (V, E) with ordered eigen-

vectors and Λ = diag(λ1, λ2, . . . , λ|V |) the diagonal matrix containing the or-
dered eigenvalues, they first perform a maximization of the correlation between
the modal matrices of two graphs in the set using the procedure explained in
[5]. In this step they obtain an intermediate median graph. Then, the modal
matrix of this intermediate median graph is used to maximize the correlation
to the next graph in the set, and the process is repeated iteratively until the
last graph in the set is processed, giving the final spectral-median graph. The
median graph is obtained in each iteration computing the adjacency matrix by
means of the eigenvalues and eigenvectors applying G = ΦΛΦT . The reader is
referred to [6] for more details.

2.2 Spectral Modes Averaging Method (M-Method)

The second approach has been presented in [7]. They propose the direct mixing
or averaging of spectral modes. If Φ = (φ1|φ2| . . . |φ|V |) is the modal matrix of a
graph G = (V, E) with ordered eigenvectors and the diagonal matrix of ordered
eigenvalues is Λ = diag(λ1, λ2, . . . , λ|V |), the first step before mixing the two
representations of two graphs is to align the rows of Φ. This can be done using the
methods proposed in [5,6]. Once aligned a sign correction must be done on each
modal matrix in order to mix correctly the eigenmodes. First they must find the
largest magnitude component for each mode. Then, they have to correct the sign
of the eigenvectors by ensuring that the largest component is positive for each
mode in all modal matrices. Once aligned the spectral matrices may be merged
by simply taking the average of the matrices, Φm = (Φ̂1 + Φ̂2)/2 and Λm =
(Λ̂1 + Λ̂2)/2. The reconstruction of the graph can be done performing a reverse
eigendecomposition Xm = ΦmΛmΦT

m as in the previous described method. As we
are working with adjacency matrices, we will obtain in general consistent results
and the last step (projection of the obtained graph onto the nearest graph)
described in [7] is not necessary.

3 Representation of Graphical Symbols and the Dataset

In this paper we have applied such methods to the computation of the prototype
of a given set of graphical symbols. We have chosen a subset of the symbols used
in the Sixth IAPR International Workshop on Graphics Recognition - GREC
2005 [8]. This subset contains 80 different symbols (classes), extracted from
architectural, electric and other technical fields. Some representative symbols of
such subset are shown in figure 1. Notice that all of them are composed of a set of
straight lines. Each segment terminates either with a terminal point or a junction
point (confluence point between two or more segments). For convenience, from
now to the end of this work, we will refer to these kinds of points as TP and JP
respectively.



Evaluation of Spectral-Based Methods for Median Graph Computation 583

Fig. 1. Six symbols corresponding to GREC 2005 database

Graph-based representation: In order to compute the prototypes a graph-
based representation of the symbols must be defined. We have defined two
different representations, namely node-based representation and edge-based rep-
resentation. In both of them a symbol is represented as an undirected labeled
graph, where the TPs and JPs are represented as nodes. Edges correspond to the
segments connecting those points. The information associated to nodes or edges
are their coordinates (x, y). As labels can only be real numbers we have created
two adjacency matrices for each symbol, one of them containing x-coordinates
and the other containing y-coordinates. In the edge-based representation, infor-
mation associated to nodes is always 0 while edge labels are the coordinates
(x, y) of the mid point of the segment. In the node-based representation, labels
of nodes are the coordinates (x, y) of the point while labels of edges are always 1.
In both cases we store a 0 when no edge exists between two nodes. The distance
between two symbols will be the mean between the x and y distances. Figure 2
shows the two representations of a symbol.
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Fig. 2. Two graph-based representations of a graphical symbol

Generation of the dataset: In order to prove the robustness of the prototypes
against noise, 7 different levels of distortion have been introduced. Distortion is
generated moving each TP or JP randomly within a circle of radius r, given as
a parameter for each level, centered at original coordinates of the point. If a JP
is randomly moved, all the segments connected to it are also moved. With such
distortion, gaps in line segments, missing line segments and wrong line segments
are not allowed. But the number of nodes of each symbol is not changed. Figure 3
shows an example of such distortions. In addition we have generated another
set of symbols using the same distortion and adding structural variations by



584 M. Ferrer, F. Serratosa, and E. Valveny

randomly dropping an edge in each symbol. For each class, for each distortion,
and for each structural variation level we have created 100 images. Thus for each
class we have 1400 elements (100 for each distortion and structural variation).
Therefore, we have 11200 (80*700*2) images to perform the experiments.

(a) (b) (c) (d) (e)

Fig. 3. Original model (a) and distorted models (levels: 1 (b), 3 (c), 5 (d) and 7 (e))

4 Experiments and Results

In this section the experiments we have performed will be further explained.
Concretely, we propose two measures in order to test the accuracy and the
robustness of the two methods explained in section 2 to compute the prototype
of a set of a given models. This measures are Intra-class Median Accuracy and
Recognition Rate. Recall that for each class and distortion we have generated
100 elements. For the experiments mentioned before we have defined, for each
class and distortion, a training set composed of 25 symbols used to compute the
medians and a test set composed of the remaining 75 symbols. Both methods
explained in section 2 have been tested using the two representations explained
above. In addition, we have introduced some structural variations in the node-
based representation by randomly dropping one edge in each symbol. Due to
space constraints we will refer to these combinations in the experiments as Edge,
Node-0 and Node-1 respectively.

Intra-class Median Accuracy: In this measure, the sum of distances (SOD)
of the median to all the other elements in the class is computed and compared to
the SOD of all the elements in the class. According to its definition, the median
graph would always have the minimum SOD. So, if we rank the median and all
the other elements according to SOD, the lower is the position of the median,
the better is the representation for the median. Two variants of this experiment
were performed. In both cases the Spectral-median graphs were computed using
1, 10 and 25 symbols from the training set. While in the first variant, the Intra-
class Median Accuracy was computed using the 25 symbols in the training set,
in the second variant, the Intra-class Median Accuracy was computed using the
75 symbols in the test set. These two variants were designed in order to prove
the goodness of the obtained Spectral-median graphs. The results for these two
variants are shown in figures 4 and 5 respectively.

Regarding the first variant, the results show that when the median is com-
puted with only one model, the position of the SOD of the median with respect
to the rest of the elements in the class is distributed randomly. As a conse-
quence, the accumulative frequency tends to be linear from 0 to 100. For the



Evaluation of Spectral-Based Methods for Median Graph Computation 585

5 10 15 20 25
0

20

40

60

80

100

Mean Intra−class Median Accuracy
 (median = 1 model(s))

Median Position

A
cc

um
ul

at
e 

fr
eq

ue
nc

y 
[%

]

 

 

Edge
Node−0
Node−1

(a)

5 10 15 20 25
0

20

40

60

80

100

Mean Intra−class Median Accuracy
 (median = 10 model(s))

Median Position

A
cc

um
ul

at
e 

fr
eq

ue
nc

y 
[%

]

 

 

Edge
Node−0
Node−1

(b)

5 10 15 20 25
0

20

40

60

80

100

Mean Intra−class Median Accuracy
 (median = 25 model(s))

Median Position

A
cc

um
ul

at
e 

fr
eq

ue
nc

y 
[%

]

 

 

Edge
Node−0
Node−1

(c)

5 10 15 20 25
0

20

40

60

80

100

Mean Intra−class Median Accuracy
 (median = 1 model(s))

Median Position

A
cc

um
ul

at
e 

fr
eq

ue
nc

y 
[%

]

 

 

Edge
Node−0
Node−1

(d)

5 10 15 20 25
0

20

40

60

80

100

Mean Intra−class Median Accuracy
 (median = 10 model(s))

Median Position

A
cc

um
ul

at
e 

fr
eq

ue
nc

y 
[%

]

 

 

Edge
Node−0
Node−1

(e)

5 10 15 20 25
0

20

40

60

80

100

Mean Intra−class Median Accuracy
 (median = 25 model(s))

Median Position

A
cc

um
ul

at
e 

fr
eq

ue
nc

y 
[%

]

 

 

Edge
Node−0
Node−1

(f)

Fig. 4. Intra-class median accuracy of C-method ((a)-(c)) and M-method ((d)-(f)) for
the training set
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Fig. 5. Intra-class median accuracy for the test set

other cases we can see that both methods have better behavior. However these
results show that the representation of the median obtained with the C-method
(figure 4 (b)-(c)) outperforms the results of M-method (figure 4 (e)-(f)). In ad-
dition, the results obtained in both methods for the node-based representations
are better with respect to those obtained in the edge-based representation. For
this reason we performed the second variant only taking into account the node-
based representation. Results for this variant (figure 5) show similar behavior
of the methods as in the first variant. It is interesting to notice that for the
M-method the curves for the training and the test set are more similar than in
the case of the C-method. This fact means that the median obtained using the
M-method is more general and therefore, it represents better the class. However,
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the curve of the C-method is more abrupt. This could mean more stability in
the generalization of the solution.

Recognition Rate: In this case, one median was computed for each class and
distortion level using the training set. Then, all the models in the database (test
set) were matched against the computed medians and classified according to
the median with minimum distance. It must be noticed, that, as spectral graph
matching requires the two graphs to have the same number of nodes, only 20
classes, those with the same number of nodes in their elements, have been used.
Tables 1 and 2 show the mean recognition rates as a function of distortion level
and number of symbols used to compute the median respectively. In both tables
the results are the mean values over all 20 classes.

Table 1. Experiment 2: Recognition Rate [%] vs Distortion Level

C-method M-method
Dist. Level Edge Node-0 Node-1 Edge Node-0 Node-1

1 95.90 99.67 99.68 89.83 99.62 99.57
2 93.18 97.96 97.97 92.21 97.97 97.95
3 93.63 97.12 97.11 88.18 97.12 97.15
4 93.11 95.93 95.92 90.01 95.63 95.91
5 91.81 95.55 95.56 91.68 95.01 95.01
6 93.54 94.14 94.14 90.15 93.05 93.32
7 92.81 93.40 93.40 80.77 90.88 90.64

Table 2. Experiment 2: Recognition Rate [%] vs Number of symbols

C-method M-method
Num. of Symbols Edge Node-0 Node-1 Edge Node-0 Node-1

1 91.49 94.40 94.40 92.26 94.40 94.40
5 93.44 96.45 96.43 88.95 96.15 96.13
10 92.80 96.27 96.28 87.98 95.01 95.27
15 93.91 96.66 96.67 87.77 96.10 96.12
20 95.05 96.85 96.85 88.20 95.77 95.86
25 93.85 96.88 96.88 88.70 96.24 96.11

Results show that both methods have similar recognition rates. Nevertheless,
concerning the results obtained regarding the distortion levels the C-method is
slightly better than M-method specially in high levels of distortion and using
the edge-based representation. The results regarding the number of symbols
used to compute the median are very similar for both methods, except in the
case of the edge-based representation. It is to be noted too that the node-based
representation obtains better results in all cases.
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5 Conclusion

The median graph concept as an alternative to represent prototypes of a set of
graphs has been turned out very useful, but the computation of both exact and
approximate solutions has been shown very hard.

In this paper we have applied two different schemes for the computation of
spectral-median graphs. In particular they have been applied to the computation
of approximate solutions for the mean graph to the graphical symbol recogni-
tion problem. Intra-class median accuracy experiment shows some differences
between the methods regarding the generalization and the stability of the so-
lutions they provide. The results for the recognition rate experiment show that
the two methods have similar results, but some differences have been detected
regarding the level of distortion. In particular we have shown that the C-method
outperforms the M-method when high distortion is introduced in the symbols.
We have defined two graph representations of graphical symbols, obtaining bet-
ter results with the node-based representation in both algorithms. These results
suggest that a deep study of the influence of the representation and the struc-
ture of the adjacency matrix should be done in order to characterize as well as
possible the behavior of spectral techniques.
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Abstract. This paper reports the results obtained by analysing some of the most 
well-known features used in Computer Vision to describe and classify shapes in 
an appealing real application. We aim to demonstrate the applicability of shape 
descriptors to classify muscles on Magnetic Resonance Imaging (MRI). The 
mechanized classification of ham muscles could help the industries to automate 
the ripening process for Iberian ham. The excellent classification percentages 
obtained in our experiments suggest the real viability of the feature vector de-
veloped in this paper to recognize and classify muscles. 

1   Introduction 

In the last decades, a large number of techniques have been developed to extract im-
age features which are invariant under translation, scale change and rotation caused 
by the image formation process. These invariant features have been used in object 
recognition and image classification processes [14]. 

Moment invariants, boundary chain coding, geometric features and Fourier de-
scriptors [4] [12] have been used in this paper to obtain a large feature vector that can 
be used to characterise objects within images [6] [8]. A great deal of research has 
been conducted to identify and classify patterns in images. However, none of work 
done, as far as we know, has focused on feature extraction of ham muscles and their 
later classification. In this respect, the applicability of muscular pattern recognition 
and evaluation of usefulness have become desirable tasks for ham industries. This is 
especially due to the fact that nowadays physical-chemical and sensorial methods 
evaluate the different parameters in relation to the quality of Iberian ham; such proce-
dures tend to be destructive, expensive and tedious [1]. In contrast, the application of 
Computer Vision and Magnetic Resonance Imaging (MRI) offers great capabilities to 
non-invasive explorations into the tissues. A pattern recognition system designed to 
identify muscles at different maturation stages could help the industries both to con-
trol the ripening process of the hams and to cut down on the production costs. 
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The experiments have been carried out to recognize and classify the shapes of two 
muscles, biceps femoris (B) and semimembranosus (S), acquiring MR images at four 
stages during the ripening of the ham (raw, post-salting, semi-dry and cured stages). 
In our research, the shape categories (classes) are especially unclear and the problem 
requires the classification of a particular shape (a muscle) into a general class of simi-
lar object shapes. To prove the effectiveness of the pattern vector obtained by  
the automatic feature extraction, four different statistical classifiers have been  
implemented [2]: Euclidean classifier (EC), discriminant analysis (DA), multinomial 
logistic regression (MLR) and Bayesian multinomial logistic regression (BMLR). A 
Principal Component Analysis (PCA) has also been computed to reduce the computa-
tional time required for classification [9]. 

The practical viability of the feature vector has been demonstrated by applying the 
above methods. Optimal results have been achieved by reducing the dimensionality of 
this vector, while the computational performance of the classification process has 
increased. Finally, the recognition percentages reached by means of this feature vector 
exceed by 75% for any of the classifier developed. Therefore, we may conclude that 
the shape classification based on the feature vector developed is highly reliable. 

2   Materials 

Our experimental study has been carried out with a total of six Iberian hams. They 
were scanned over four stages during their ripening time. The MRI volume data set 
was obtained using the “body” antenna of a Philips Gyroscan NT Intera 1.5 T scan-
ner, from sequences of T1 images with a FOV (field-of view) of 120x85 mm and a 
slice thickness of 2 mm, i.e. a voxel resolution of 0.23x0.20x2 mm. As a result, a 
large image database is obtained: 960 shapes (muscles) have been considered. A total 
of 480 shapes per muscle (120 shapes in each of the four stages) have been processed. 

3   Shape Descriptors 

Active Contours [13] was applied to recognise the two main muscle forms of Iberian 
ham (biceps femoris and semimembranosus). 

An experiment was designed to study the ripening process of the hams. Four stages 
during the maturation process were selected: raw, post-salting, semi-dry and dry-
cured, acquiring MR images of the six hams in each of the stages. These images were 
processed using non-destructive computer vision techniques (Active Contours) [3]. 
Once the Active Contours recognised the muscles in the MR images, a complete da-
tabase of shapes was formed. Figure 1 contains MR images with the final snake for 
both biceps femoris (a) and semimembranosus (b) muscles, as examples of the ob-
tained shapes. 

In image analysis, statistical object description uses elementary numerical descrip-
tions called features. The feature vector (or pattern) describes an object as a vector of 
elementary descriptions. These shape descriptors should be invariant to translation, 
rotation and scale [14]. 
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      a) Biceps femoris muscle                                b) Semimembranosus muscle 

Fig. 1. Illustration of Iberian ham MR images, which include the detection of the muscles 

The feature vector used in this paper consists of 104 features, and is based on in-
variant moments (positions 0-58 of the vector), Fourier descriptors (positions 59-74), 
geometric features (positions 75-103) and boundary chain codes (positions 95-101). 
Figure 2 presents the set of these features. 

 
 
 
 
 
 
 
 
 

Fig. 2. The vector of 104 features, grouped in invariant moments, Fourier descriptors, geomet-
ric descriptors and chain code features 

 
Invariant moments can provide characteristics of an object that uniquely represent 

its shape. Features from 0 to 58 of the vector shown in Figure 2 belong to this type of 
shape descriptors. In detail, the invariant moments and their positions in the feature 
vector were: general moments m00, m01, m10, m11, m02, m20, m12, m21, m03, m30 (posi-
tions 0-9), central moments μ00, μ01, μ10, μ11, μ02, μ20, μ12, μ21, μ03, μ30 (positions 10-
19), normalised central moments η00, η01, η10, η11, η02, η20, η12, η21, η03, η30 (positions 
20-29), moments invariant to rotation θ00, θ01, θ10, θ11, θ02, θ20, θ12, θ21, θ03, θ30 (posi-
tions 30-39), Hu’s moments [7] (positions 40-46), Flusser and Suk invariant moments 
[14] (positions 47-50) and Zernike’s moments [11] (positions 51-58). 

0 …                                                                      59 …           75 …           95…  102 

59  7 20 16  2 

   Invariant Moments                    Fourier              Geometric 
                                                  Descriptors         Descriptors 

Chain Code Descriptors 
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Two approaches have been used to compute the feature vector: descriptors based 
on object regions (region-based, internal description) and descriptors based on object 
boundary information (contour-based, external description) [14]. Approaches based 
on object regions consider binary images to compute the descriptor values. Thus, a 
double loop is needed to process these binary images, which requires a large number 
of iterations [6]. On the other hand, boundary-based computations of moments con-
sider the contour of the shape. Since the data dimension of the boundary representa-
tion is substantially smaller than that of the region representation, the boundary-based 
computation of moments is more efficient than region-based approaches [6]. A disad-
vantage of this method is its insufficient flexibility. If moments of the highest order 
are needed, new formulas have to be worked out and programmed [6]. 

Features from 59 to 74 represent the lower-order Fourier descriptors of the feature 
vector (Figure 2). They were computed by using boundary chains. Fourier descriptors 
numerically describe shapes and are normalised to make them independent of transla-
tion, scale and rotation. These Fourier descriptor values produced by the Fourier 
transformation of a given image represent the shape of the object in the frequency 
domain. The lower frequency descriptors store the general information of the shape 
and the higher frequency the smaller details. Therefore, the lower frequency compo-
nents of the Fourier descriptors define a rough shape of the original object [12]. The 
high-quality boundary shape representation obtained using only a few lower-order 
coefficients is a favourable property, common to Fourier descriptors.  

Examples of geometric descriptors are the features from 75 to 103 of the vector 
showed in Figure 2. Particularly, the following geometric features were used in this 
paper: centroid (positions 75 and 76), angle of minimum inertia (position 77), area 
and perimeter (positions 0 and 78), ratio of area and perimeter (position 79), com-
pactness and roundness (positions 80 and 81), major and minor axis of fitted ellipse 
(positions 82 and 83), diameter (positions 84), ratio medium, major and minor (posi-
tions 85-87), rates of changes (positions 88-90), curvature (position 91), bending 
energy (position 92), thickness and rate of thickness (positions 93-94), chain code 
histogram (positions 95-101), ratio major to minor axis of fitted ellipse (position 102), 
aspect ratio (position 103) and number of image (position 104). These descriptors are 
based on scalar features derived from the boundary of an object. They use several 
characteristics of the object for performing shape recognition.  

Eventually, boundary chain coding encodes piecewise linear curves as a sequence 
of directed straight-line segments called links. Features 91, 92, 95 to 101 and even 59 
to 74 (Fourier descriptors) are descriptors based on chain codes that have been added 
to the developed feature vector. 

4   Dimensionality Reduction and Classification Process 

Indexing a vector typically turns to a complex task when the size of the vector is high. 
Computational problems tend to arise when the recognition process is performed in a 
high-dimensional space. Significant improvements can be achieved by first mapping 
the data into a lower-dimensionality space. Principal Component Analysis (PCA) has 
been used to reduce the dimensionality of the feature vector. The goal of the PCA is 
to reduce the dimensionality of the data while retaining as much as possible of the 
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variation present in the original dataset. PCA allows us to compute a linear transfor-
mation that maps data from a high dimensional to lower dimensional space. In our 
experiments, the original vector of 104 features was redimensioned by PCA to 18 
variables. 

Different statistical classifiers are implemented in order to compare the perform-
ance of the feature vector. These classifiers are based on the concept of similarity: 
similar patterns are assigned to the same class [2]. Even though this methodology 
produces satisfactory results, a convenient metric of similarity is required. In our 
research, experiments are carried out with Euclidean- (E), discriminant analysis- 
(DA), multinomial logistic regression- (MLR) and Bayesian multinomial logistic 
regression- (BMLR) classifiers. These are some best-known classifiers [5] [10], and 
the results achieved by using them could help to study the feasibility of the feature 
vector developed. 

5   Results and Discussion 

This paper aims to study the shape of the muscles and their evolution during the matu-
ration process. In an attempt to check the usefulness of the feature vector to recognize 
and classify muscles, the four different classifiers presented are applied in our ex-
periment. A Principal Component Analysis (PCA) is carried out on DA- and MLR-
classifiers to prove effectiveness or dimensionality reduction in the classification 
process. All the shapes of the database are used as test images. The experimental 
design consists of three different tests: 

Test 1: shape classification on biceps femoris or semimembranosus. Food technology 
experts deem muscle distinction as a noteworthy option. The first test is designed to 
verify this crucial issue. Thus, the 960 shapes are classified by the four classifiers into 
two classes (muscles), having 480 shapes per class. Table 1 shows the results obtained 
for this test. The results display a high percentage of true positives in the classification 
process. The good separation achieved between classes, using any of the classifiers, 
entails an excellent performance of the feature vector to discriminate between these 
two muscles.  

Table 1. Percentage of true positives for the classification of muscles (B:biceps femoris; 
S:semimembranosus)  

Class EC DA DA + PCA MLR MLR + PCA BMLR 
B 88,8 88,5 88,1 100,0 92,1 89,8 
S 91,5 95,0 91,5 99,4 93,8 92,7 

Average 90,1 91,8 89,8 99,7 93,0 91,2 

 
Test 2: classification on four classes, distinction among muscles considering two 
maturation stages. This test is run as a first approach to check the possibility that the 
feature vector adequately sort out the two muscles, considering their initial maturation 
stage (raw) and the last one (cured). Four classes are considered, two for muscles at 
the raw stage, and the other two for muscles at the cured stage. There were 480 shapes 
and, consequently, 120 shapes per class. The results achieved for the second test are 
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shown in Table 2. The high percentage of true positives achieved determines the high 
performance of the feature vector to discriminate among muscles at their initial and 
final maturation stages. 

Table 2. Percentage of true positives for classification into raw and cured muscles (RB:raw 
biceps femoris; CB:cured biceps femoris; RS:raw semimembranosus; CS:cured semimem-
branosus)  

Class EC DA DA + PCA MLR MLR + PCA BMLR 
RB 84,2 92,5 90,0 100,0 91,7 93,3 
CB 85,8 87,5 90,8 100,0 76,7 91,7 
RS 78,3 87,5 91,7 100,0 96,7 95,8 
CS 83,3 96,7 87,5 99,2 87,5 94,2 

Average 82,9 91,1 90,0 99,8 88,2 93,7 

 
Test 3: distinction among muscles considering all the maturation stages, with a classi-
fication into eight classes (two muscles at the four maturation stages). Considering the 
positive results obtained for the second test, the next step involves increasing the 
number of classes accounted by the classifiers. Eight classes are thus considered for 
these two muscles at all four ripening stages. A total of 960 shapes are used in this 
experiment, with 120 shapes per class. The results for test 3 are shown in Table 3. 
Again, the percentages of true positives ensure that the feature vector could discrimi-
nate among the two main muscles at all their ripening stages. 

Table 3. Percentage of true positives for the classification of two muscles and their maturation 
stages (RB:raw biceps femoris; PB:post-salting biceps femoris; SB:semi-dry biceps femoris; 
CB:cured biceps femoris; RS:raw semimembranosus; PS:post-salting semimembranosus; 
SS:semi-dry semimembranosus; CS:cured semimembranosus)  

Class EC DA DA + PCA MLR MLR + PCA BMLR 
RB 92,5 86,7 97,5 70,0 97,5 94,2 
PB 59,2 51,7 54,2 86,7 72,5 65,0 
SB 59,2 45,8 50,0 75,0 60,8 57,5 
CB 40,0 78,3 65,8 71,7 75,8 75,0 
RS 75,0 70,8 87,5 52,5 99,2 95,8 
PS 69,2 65,0 73,3 77,5 81,7 76,7 
SS 74,2 40,8 56,7 60,8 67,5 55,8 
CS 74,2 38,3 65,0 70,8 78,3 80,8 

Average 67,9 59,7 70,6 75,1 79,2 75,1 

 
The average percentages of true positives retrieved in the four tests are summarized 

in Table 4. For our classification process, 75% may be an acceptable percentage of 
true positives (three in every four).  For our experiment, nearly all the obtained per-
centages are higher than this value. Hence, the results in this paper are analysed as 
optimal. In turn, results below 70% could be caused by the high number of classes 
and covariables. Two classes in Statistic are usually considered in the most part of the 
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classification process [2]. The higher the number of classes, the higher the possibility 
for a biased classification. In spite of the amount of classes used in the experiments 
(two, four and eight), high percentages are given for classes (when they are two and 
four), and acceptable results are reached for eight classes. 

 
Table 4. Average percentage of true positives for each of the tests 

 
Classifier Test 1 Test 2 Test 3 Average 

EC 90,6 83,5 67,9 80,3 
DA 93,9 92,0 59,7 80,9 

DA + PCA 90,3 92,2 70,6 83,5 
MLR 99,7 99,7 75,1 91,5 

MLR + PCA 93,5 86,1 79,2 86,8 
BMLR 91,8 94,4 75,1 86,7 

Average 92,6 91,0 71,3  

 
Regarding the most suitable method, discriminant analysis leads to the good  

results, perhaps because its simplicity (with or without PCA), whereas logistic regres-
sion (multinomial or Bayesian) yields best average values. 

In relation to the PCA, the average results are quite similar to the averages obtained 
by considering all the variables of the feature vector. Lower percentages may be a 
consequence of the high number of classes and covariables. There are some variations 
among the percentages because there are classes with patterns that are very different 
from one another. Likewise, there exists elements from one class that are very similar 
to others from other classes. In spite of the large number of classes, the results from 
using all the features remain high while the percentages for each test are promising. 

6   Conclusion 

This paper presents a direct application of classification techniques to an appealing 
real problem, in order to get an automatic shape-based classification of ham muscles 
in MRI. The method considers large amount of features that are used by different 
classifiers. The extended validation demonstrates the feasibility of shape-based fea-
ture vectors. Highly positive values have been obtained by the pattern vector for two 
and four classes. These significant results demonstrate the robustness of the given 
feature vector. In addition, the method to reduce cardinality in the pattern vector while 
keeping its discriminant capability has proved to be an interesting aspect of the re-
search. Eventually, the feasibility of applying Computer Vision techniques to auto-
mate the ripening process of the Iberian ham constitutes a cornerstone in our research. 
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Abstract. A novel method for simultaneously acquiring and registering
range data of a real object from different viewpoints is presented. Cur-
rently, most 3D model reconstruction techniques do not cooperate with
the existing range data for shape recovery of future viewpoints. In this
work, a stereo vision system is developed for 3D model acquisition. To
reduce the computation and increase the accuracy of stereo matching
algorithms, the recovered range data from previous viewpoints are regis-
tered and then used to provide additional constraints for 3D acquisition
of the next viewpoint. Experiments have shown that our approach gives
better performance on both execution time and stereo matching results.

1 Introduction

3D model acquisition of real-world objects is an active research area with appli-
cations in reverse engineering, pattern recognition, industrial inspection, com-
puter graphics and multimedia systems, etc. Most commonly used approaches
for obtaining a 3D model acquire partial 3D shapes of an object from different
viewpoints and then fuse the range data sets into a common coordinate system.
Thus, the procedure for 3D model reconstruction usually consists of the following
four stages: (i) data acquisition, (ii) data registration, (iii) surface integration,
and (iv) texture mapping. The data acquisition stage is to acquire the partial 3D
shapes and the texture information of an object. The acquired range images are
registered to a common reference frame based on their acquisition viewpoints.
The registered range images are then integrated into a single surface represen-
tation. Finally, the texture information is mapped onto the surface to create a
textured 3D model.

Most 3D model reconstruction methods use passive camera systems or laser
range scanners to collect partial 3D shapes of an object. Data registration for
multiple views either heavily relies on the accuracy of 3D measurements or re-
quires significant manual assistance. The separation of data acquisition and reg-
istration not only restricts the applicability to many systems, but also lacks data
correction functionality from the registration stage. For example, Pulli et al. pre-
sented a complete system for scanning the range and color information of a 3D
object from arbitrary viewpoints [1]. Albamont and Goshtasby designed a scanner
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Fig. 1. Flowcharts of the conventional 3D model acquisition approach and the proposed
registration assisted method

system using four synchronous camera heads equipped with laser line generators
to obtain the 3D structure of the object [2]. Reed and Alan built a robotic system
consisting of a laser range finder attached to a robot arm to acquire range im-
ages [3]. Lin and Subbarao developed a stereo vision system using a single camera
for range data acquisition by rotating the object [4]. Although some of the above
work used incremental shape acquisition approach for view planning and range
image registration, all of them separated the data acquisition stage from the data
registration stage.

In this work, we present a novel method to integrate the partial shape ac-
quisition stage and range data registration stage for different viewpoints. It is
basically an incremental method for 3D model acquisition, but the main focus
is on the assistance of partial shape recovery rather than data registration from
predetermined range images. Intensity images and the corresponding range data
of a viewpoint are acquired by our stereo vision system. Different from con-
ventional stereo-based techniques for 3D shape recovery, stereo pairs recorded
from different image frames are not processed independently in our approach.
3D shapes recovered from the previous image frames are first registered to find
the rotation matrix and translation vector of the transformation and generate
a larger 3D surface. 3D reconstruction of the current viewpoint is then based
on the information to reduce the computation and increase the accuracy and
robustness of the stereo matching algorithms.

Figure 1(a) shows the conventional 3D model acquisition approach used in
the earlier research. Partial 3D shapes acquired by stereo based approaches or
laser range scanning techniques are registered and integrated to create a more
complete 3D model. Range data acquisition for the present viewpoint does not
utilize any information from the previous viewpoints. Thus, error correction and
processing speedup are not possible with this method. Figure 1(b) illustrates the
proposed registration assisted stereo matching for range data acquisition. The
major difference is that the registration constraint available after the first two
sets of range data are obtained and registered. The information is then used for
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providing additional constraints for the next viewpoint range data acquisition.
It is noted that the initial steps of the flowcharts are identical for both cases.

2 Range Data Acquisition

For a given object, the range data and intensity images from a fixed viewpoint
are acquired by our stereo vision system. It consists of two video cameras placed
side-by-side on a twin camera bar with an adjustable baseline and a computer
controlled turntable. Sequences of stereo image pairs are transferred to a com-
puter at a frame rate of 15 fps. A background of uniform color is used to facilitate
the segmentation of the real object against the background regions. 3D acqui-
sition of the object is then achieved by shape from stereo, i.e., recovering the
depth information using triangulation. Multiple partial 3D shapes of the object
for different viewpoints are collected by rotating the turntable gradually.

In our earlier work, multiple base-angle rotational stereo concept has been
proposed to achieve multi-baseline stereo by rotating the object placed on the
turntable [4]. This technique, however, requires fairly accurate rotation angle to
establish the epipolar geometry. In this research we are more interested in recov-
ering range data using the assistance of previous registration information, rather
than 3D shape reconstruction with precise rotation angle calibration. Thus, two
cameras are installed to meet the conventional stereo configuration, i.e., the
optical axes are parallel and the image planes are coplanar, for range range
data acquisition. Furthermore, the rotation axis of the turntable is estimated by
Tsai’s calibration method [5] using a planar checkerboard pattern aligned with
the axis. With a fixed angle of rotation, the matches of the control points on the
calibration pattern are used to estimate the corresponding transformation.

3 Multi-view Range Data Registration

The goal of registration is to find the spatial transformation between the range
images taken from an object at different viewpoints, so that the points found in
different range image views that represent the same surface point are aligned.
A popular method for refining a given registration is the iterative closest point
(ICP) technique, first introduced by Besl and McKay [6]. It uses a nonlinear
optimization procedure to further align the data sets from coarse registration.
Most ICP based registration algorithms require a fairly good initial rotation
matrix and translation vector between the data sets to avoid the registration
result stuck in a local minimum. In our data acquisition system, since the differ-
ence between two consecutive viewpoints is very small, the rotation matrix and
translation vector are given by identity matrix and zero vector, respectively.

To obtain a more complete 3D model of an object, multi-view registration of
the partial 3D shapes is required. If a pair of range data from two consecutive
viewpoints are registered at a time, it is clear that the registration errors will
accumulate. General approach to this problem is to consider the network of views
as a whole and minimize the registration errors of all views simultaneously,
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such that the registration errors are equally distributed [7]. Since our vision
system focuses on 3D model acquisition, multi-view registration up to the n-
th viewpoint (n-th frame) only depends on the previous n − 1 viewpoints. To
reduce the processing time and take the advantage of small changes between the
viewpoints, the registration approach for newly added data set is implemented
as follows.

First, the registration is based on the modified ICP algorithm [6], but with
m range data sets considered at a time. Suppose Si, Si+1, · · · , Si+m−1 are the
consecutive data sets, and Ti−1 represents the initial transformation (rotation
and translation) to the data sets. Then the algorithm for the block of m data
sets is given by

Algorithm 1. Block Registration

1: S ′
i ← Ti−1 ◦ Si

2: j = 1
3: while j < m do
4: S ← Si+j

5: for k = −1 to j − 2 do
6: S ← Ti+k ◦ S
7: end for
8: S ′

i+j ← S
9: Ti+j−1 ← Apply ICP on {S ′

i+j−1, S ′
i+j}

10: j + +
11: end while

It is clear that m < n, and the computation and correctness of the registration
simultaneously increase with m.

After the registration has been done for the 3D data sets from newly added
viewpoints, there might exist some isolated points due to data acquisition error.
Those points are considered as noise and will be removed if the following two
criteria are met: (i) the distances between the point and any other points are
larger than a threshold, (ii) for a partitioned working volume, the point belongs
to a cube with density lower than a threshold. Since the overlapping parts of the
object surface accumulate as the the number of acquisition viewpoints increases,
the error points can be removed efficiently without affecting the points belonging
the true object surface.

4 Registration Assisted 3D Shape Recovery

3D reconstruction using correlation based stereo algorithms is usually time-
consuming due to template matching and the unknown searching areas. In ad-
dition to the commonly used constraints for stereo matching (such as ordering
constraint, epipolar constraint), we propose a registration constraint to reduce
the computation and increase the accuracy of 3D shape recovery. The basic idea
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is to use the recovered and registered 3D shapes from previous image frames
(viewpoints) to restrict the searching areas of the current stereo image pair. Un-
der the assumption of slow object motion between different image frames, the
corresponding motion vectors are bounded by some constants predicted from
previous 3D registration.

Suppose the 3D data are obtained and registered for image frames n − 2 and
n − 1, and the registration is given by rotation matrix Rn−1 and translation
vector tn−1, respectively. If the corresponding 3D point of an image point pn−1
with respect to image frame n−1 is Pn−1, as illustrated in Fig. 2, then the same
3D point with respect to image frame n − 2 is given by

Pn−2 = R−1
n−1(Pn−1 − tn−1) (1)

Thus, the displacement of the 3D point between the image frames is given by
Pn−1−Pn−2. If we assume the object motion (both the rotation and translation)
is smooth, then the same 3D point with respect to image frame n should be
bounded by a sphere with radius w · r centered at Pn−1, where r is given by
‖Pn−1 − Pn−2‖ and w is a weighting factor. Therefore, the searching areas
corresponding to the 3D point Pn are the projections of the sphere onto the left
and right images.

There is a sphere associated with each image point in frame n − 1, and the
spheres can be constructed based on the previous registration result. As shown
in Figure 2, for a given image point pn of the left image from viewpoint n,
the searching area in the right image is given by the projections of the spheres
which intersect the ray passing through the optical center and the image point
pn. More precisely, suppose the spheres are given by Sj , for j = 1, 2, ..., n, where
n is the total number of image pixels. Bj and B̂j are the projections of Sj onto
the left and right images, respectively. Then for a given point x in the left image
with x ∈ ∩k

j=1Bj , the stereo correspondence x̂ in the right image is given by
x̂ ∈ ∪k

j=1B̂j . Consequently, the searching range is bounded by the union of the
projected circles of the spheres.
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The above observations on the stereo searching range and the required com-
putation can be further reduced for the overlapping foreground (object) region
of two consecutive image frames. As shown in Figure 3, suppose the projection
of an object point P onto the left image is given by p for the n-th image frame,
and there exists a foreground image point at the same image point pl in the
(n + 1)-th image frame. Then there must exist a point Q, after the object mo-
tion, such that the projection of Q onto the left image in the (n + 1)-th image
frame is also given by p. Thus, the searching range for the object point Q from
image frame (n + 1) can be fully determined by a single sphere centered at the
point P. Consequently, the searching range for the left image point pl given by
the n-th frame is bounded by a single circle centered at pr, the correspondence
of pl in the n-th image frame.

Since the motion of the object or the cameras is relatively slow compared to
the video frame rate during image acquisition, the foreground and background
difference between two consecutive image frames is usually small and happens
near the object boundary. In the experiments, the searching range of more than
80% of the object region in the left image can be covered by a single circle
centered at the matching point in the previous image frame. The radius of the
circle is given by a weighting factor times the motion vector derived from range
data registration with previous two image frames. If the object motion (rotation
and translation) is fairly uniform, a constant weighting factor can be used for the
whole image sequence. In practice, smaller weighting (less than one, for instance)
is preferred since both the possibility of stereo mismatch and computation time
can be reduced. For the rest of the object regions which do not exist in the
previous image frame, the union of projected circles has to be used for the
searching region.

5 Experimental Results

The described algorithms have been implemented on a stereo vision system, and
tested on a number of real objects. The baseline of the stereo cameras is set
as 60 mm and the pose of the test object is changed slowly in front of a static
background. A blue screen technique is used to segment the background, and only
the foreground regions are used for stereo matching. The foreground regions of
two consecutive image frames are also used to identify their common image area
for single circular stereo searching regions. In the implementation, the epipolar
constraint is applied and the searching range is given by the intersection of the
union of the circles and the epipolar line. One interesting observation is that the
resulting searching range varies for different image positions.

Figure 4 shows the first set of experimental results. The test object is manu-
factured via rapid prototyping without additional texturing. The disparity maps
of the 3D reconstruction without registration information are shown in the sec-
ond rows, followed by those obtained with registration assistance using weight-
ing factors of 0.6, 0.8, 1, and 2, respectively. It can be seen that the disparity
maps obtained from registration assistance with weighting factor of 0.8 give the
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Fig. 4. From top to bottom: the acquired intensity images from the left sequence, the
disparity maps obtained without registration information, the disparity maps obtained
with registration assistance using weighting factors of 0.6, 0.8, 1, and 2, respectively

best results in terms of smoothness and correctness. Table 1 shows the exe-
cution times (in seconds) of the results in Figure 4. The processing time for
stereo reconstruction is speeded up about five times with the assistance of data
registration.
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Table 1. Execution times of the results shown in Figures 4 (in seconds)

Frame No. 1 2 3 4 5 6 7

without registration assistance 1.25 1.24 1.23 1.22 1.22 1.20 1.20

with registration (weighting = 0.6) 1.25 1.24 0.22 0.22 0.22 0.23 0.30

with registration (weighting = 0.8) 1.25 1.24 0.24 0.25 0.25 0.25 0.31

with registration (weighting = 1) 1.25 1.24 0.30 0.28 0.28 0.34 0.38

with registration (weighting = 2) 1.25 1.24 0.39 0.47 0.42 0.44 0.52

6 Conclusion and Future Work

Most of the existing 3D model acquisition techniques lack data correction func-
tionality due to the separation of range data registration and 3D data collection
stages. In this work, we have presented a novel method to simultaneously acquire
and register range data of an object from different viewpoints. A stereo vision
system was developed to acquire the 3D shapes of an object. The range data
obtained from previous viewpoints are first registered and then used to provide
additional geometric constraints for the 3D acquisition of the next viewpoint.
Experiments have shown that the proposed approach gives better performance
on both execution time and 3D reconstruction result. In the future work, more
sophisticated prediction model based Kalman filter should be adopted to further
reduce the correspondence searching time. The possibility of extending current
research to deal with generically shaped object will also be investigated.
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Abstract. This paper describes an approach to estimate the parame-
ters of a motion blur (direction and length) directly form the observed
image. The motion blur estimate can then be used in a standard non-
blind deconvolution algorithm, thus yielding a blind motion deblurring
scheme. The estimation criterion is based on recent results about the
general spectral behavior of natural images. Experimental results show
that the proposed approach is able to accurately estimate both the length
and orientation of motion blur kernels, even for small lengths which are
traditionally difficult.

1 Introduction

In image deconvolution/deblurring problems, the goal is to estimate an original
image f = {f(x, y), x = 1, ..., N, y = 1, ..., N} from an observed image g =
{g(x, y), x = 1, ..., N, y = 1, ..., N}, assumed to have been produced according
to

g = f ∗ h + w, (1)

where h = {h(x, y), x = 1, ..., N, y = 1, ..., N} is the blur point spread function
(PSF), w = {w(x, y), x = 1, ..., N, y = 1, ..., N} is a set of independent samples
of zero-mean Gaussian noise of variance σ2, and ∗ denotes the discrete two-
dimensional (2D) convolution,

(f ∗ h)(x, y) ≡
∑

u

∑
v

h(u, v) f(x − u, y − v). (2)

After collecting the elements of f , g, and w into vectors f ,g,w ∈ R
N×N ,

usually in lexicographic order, (1) can be written in vector notation as

g = Hf + w, (3)

where H is a matrix representing the blur operator. This makes clear that (1) is a
particular case of the general problem of signal/image restoration from linear and
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noisy observations. For most non-trivial blur kernels, the corresponding matrix
is severely ill-conditioned, or even singular, making deconvolution an ill-posed
inverse problem.

It’s well known that the ill-posed nature of image deconvolution demands
some kind of regularization to be used. Among the state of the art methods, we
find those based on total variation (TV) regularization (see [3,4,8] and further
references therein) which favors images of bounded variation, without penalizing
possible discontinuities, as well as wavelet-based methods [2,9,10], which also
provide regularization without overly penalizing image discontinuities.

In standard deconvolution problems, it is assumed that H (equivalently h) is
fully and exactly known. In blind deconvolution, the goal is to deblur an image
with (total of partial) lack of knowledge about the blurring operator [13,14].
Blind deconvolution is significantly more difficult than its non-blind counterpart
[1]. The problem is now ill-posed both with respect to the unknown original
image and to the blur operator. Simply put (and because convolution can be
expressed as a product in the Fourier domain), blind deconvolution can be seen
as the problem of recovering two functions from their product; a clearly hopeless
goal, in the absence of some rather strong assumptions or prior knowledge about
the underlying image and blur. Assumptions about the blur PSF which have been
used are positiveness, known shape (e.g., Gaussian blur) or known support.

There are essentially two alternative approaches to blind deconvolution: (i)
simultaneously estimate the image and the blur [1,7]; (ii) perform a previous
step of blur estimation and then feed this blur estimate to a classical non-blind
image deblurring algorithm [6]. In this paper, we introduce a blur estimation
technique to be used in an approach of type (ii). More specifically, we introduce
a method to estimate the parameters of a “motion blur” from the noisy blurred
image, with weak assumptions on the underlying original image.

The particular class of blur operators herein considered, known as motion
blur, arises when there is relative motion between the acquisition device (i.e., the
camera) and the scene being acquired. For simplicity, we assume that the camera
is moving with constant speed and direction, with respect to the scene. The
resulting blur kernel/filter has a linear support in the spacial domain and a sinc-
like (recall that sinc(x) = sin(x)/x) behavior in the Fourier domain, leading to
well pronounced valleys in the logarithm of the magnitude of the spectrum of the
observed image. The method proposed in this paper, exploits the identification
of the parameters characterizing this sinc-like behavior (namely, the orientation
and period, which correspond to the orientation and length of the blur kernel)
using the Radon transform [5]. As will be shown in the experimental results, the
proposed algorithm is able to accurately estimate the motion blur parameters
(orientation and length) for motion blurs with lengths as short as three pixels.

This paper is organized as follows. In Section 2 we define the motion blur
and corresponding parameters for the continuous and the discrete cases. We
also define the blur kernel structure used in this work. In Section 3.1, we review
some of the state of the art methods and present the proposed algorithm. In
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section 4 we report experimental results on the performance of the proposed
method. Finally, section 5 draws some conclusions.

2 Motion Blur Parameters

In the continuous case, the motion blur PSF is characterized by a normalized
delta function, supported on a line segment with length L and an angle θ (say,
with respect to the horizontal). The angle gives the direction of motion, and the
length L is proportional to the motion speed. To deal with digital images, we
need a discrete version of this motion blur, defined on the discrete pixel grid. To
produce a straight line segment on a digital grid, we use a standard algorithm
(well known in computer graphics): the digital differential analyzer (DDA) [11].
The length L is assumed to be, for all angles, the number of pixels, and is directly
proportional to the motion speed. As can be easily verified, there is no way to
exactly produce lines with one pixel width in all possible directions.

One big limitation of this DDA-based discrete PSF approximation, or any
discrete representation in general, is that it cannot distinguish between two blur
kernels with nearby angles. This effect is stronger for shorter motion blur kernels.
For example, a three pixels long kernel can only have five different directions
between 0o and 90o. With all these assumptions and limitations in hand, our
goal is to estimate the motion angle and speed parameters from an observed
image, without knowledge of the underlying original image.

3 Estimation of Motion Blur Parameters

3.1 Natural Image Models

Let us denote as F (ξ, η) the 2D Fourier transform of a natural image f(x, y). As
pointed out in [6], the behavior of log |F (ξ, η)| along lines η = ξ tan θ in the (ξ, η)
plane, is roughly the same for most natural images. While local behavior may be
irregular, the coarse/global behavior is essentially monotonically decreasing with
|ξ|. In [6], the approximate model log |F (ξ, ξ tan θ)| � −a |ξ|b, with a, b > 0, was
proposed. Although a and b can vary for different images, this global behavior
is approximately true, regardless of the considered angle.

If we take the Fourier transform of equation (1), we obtain

G(ξ, η) = F (ξ, η)H(ξ, η) + W (ξ, η), (4)

where F, G, H, and W are the Fourier transforms of f, g, h, and w, respectively.
As is common in deconvolution problems, assuming the noise is weak, we have

log |G(ξ, η)| ≈ log |F (ξ, η)H(ξ, η)|, (5)

so the coarse behavior of the G(ξ, η) depends essentially on F (ξ, η)H(ξ, η). Since
the coarse behavior F (ξ, η) along lines η = ξ tan θ in the (ξ, η) plane is approxi-
mately independent of θ, the sinc-like structure of H(ξ, η) is preserved in G(ξ, η).
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In the presence of noise, the zeros of this sinc function become local minima. In
order to capture these coarse behaviors, we will use the Radon transform (RT)
of log |G(ξ, η)|, as described in the following subsections.

3.2 The Radon Transform

Recall that the Radon transform (RT) of a real-valued function φ(x, y) defined
on R

2, at angle θ and distance ρ from the origin, is defined as

R(φ, ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
φ(x, y) δ(ρ − x cos θ − y sin θ) dx dy, (6)

where δ denotes the Dirac delta function. Equivalently,

R(φ, ρ, θ) =
∫ ∞

−∞
φ(ρ cos θ − s sin θ, ρ sin θ + s cos θ) ds. (7)

The Radon transform R(φ, ρ, θ) is equal to the integral of φ along a line that
forms an angle θ with the x-axis and is at a distance ρ from the origin [5].

3.3 Angle Estimation

The RT has been recently proposed for motion blur estimation in [12,15]. In [15],
the angle estimate is the one for which the maximum of the RT occurs; naturally,
this only works for rather long blurs, so that the image gets flat, leading to a
maximum of the RT. In [12], the angle estimate is that for which R(φ, ρ, θ),
as a function of ρ, has highest entropy. The authors claim to have a problem
at 45o (due to the finite support of the images): at this angle, the entropy is
maximum because the length of the integral is maximum, thus picking up the
largest amount of noise (according to the authors’ explanation). To circumvent
this problem, they normalize the RT of the image with the RT of a matrix of
1’s of the same dimension as the image. However, this explanation is not true;
the true reason is related to the implementation of RT for digital images.

Our approach circumvents these limitations and allows excellent angle esti-
mation performance, even for very short lengths. We use an exact RT for digital
images, the details of which can be found in [16]. As explained above, for natural
images, log |G(ξ, η)| has an approximate coarse behavior along radial lines, inde-
pendent of the angle; thus the RT obtained by integrating on similar intervals,
that is, with the same area for any direction, will also be approximately equal.
Accordingly, instead of computing the RT for the whole image, we integrate in
the maximum inscribed square,

Rd(f, ρ, θ) =
∫ d

−d

f(ρ cos θ − s sin θ, ρ sin θ + s cos θ)ds, (8)

with d =
√

2
2 N . This RT of log |G(ξ, η)| has approximately the same variance,

independently of θ, thus avoiding the angle-dependence problem pointed out
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Fig. 1. Radon transform of the blurred cameraman (L = 10)

in [16]. Consequently, the variance of Rd(log |G(ξ, η)|, ρ, θ), as a function of θ,
depends fundamentally on the orientation of the blur kernel.

The observations made in the previous paragraph lead to our proposed esti-
mate for the angle of the motion blur kernel, which is given by

θ̂ = arg max
θ

var {Rd(log |G(ξ, η)|, ρ, θ)} (9)

where var{} is the variance of the set of values obtained by varying ρ.

3.4 Length Estimation

Once we have θ̂ (the estimate of the motion blur direction), we proceed to
estimate the length of the motion blur kernel. Given that the sinc-like behavior
is preserved in the RT at angle θ̂, we base the estimation of the blur length on
Rd(log |G(ξ, η)|, ρ, θ̂). This line of attack is also followed in [15] using fuzzy sets
and in [12] exploiting cepstral features. Figure 1 illustates this behaviour. The
RT of the “cameraman” image, for angles θ = 0◦ and θ = 60◦ and blur length
L = 10 exibits a clear sinc-like pattern.

In the present work, we propose an heuristic algorithm simpler than those
introduced in [15,12], yet accurate. Let’s denote Π(ω) = Rd(log |G(ξ, η)|, ω, θ̂).
From the above rationale, we conclude that the minima of Π(ω) are the minima
of the Fourier transform of a rectangular pulse of size L. Let’s then assume for a
while that Π(ω) is indeed the Fourier transform of a rectangular pulse of length
LS, i.e,

Π(ω) = ejψ(ω) sin(ωLS

2 )
sin(ω

2 )
. (10)

Our goal is to find LS by seeking for the first positive zero of Π(ω) given by
ω0 = 2π

LS
. Since we have determined Rd based on an M point FFT, we approxi-

mate ω0 = 2π
LS

with the frequency 2π
M i corresponding to the minima of the FFT

magnitude. We have then L̂S = round(M/i).
Algorithm 1 shows the pseudo-code for the estimation of the length L̂, where

lines 2, 3, and 4 implement a robust estimator of the first minimum. Line 5 con-
verts distance to number of pixels. Figure 2 illustrates the working of Algorithm
1 with two different RTs.
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Algorithm 1. Length Estimation Algorithm
1: Compute the differences Δi = Π(ωi) − Π(ωi−1) (only for ω > 0)
2: Compute

Δ∗
i =

{
p Δi, if Δi > 0

Δi, otherwise
(11)

where p = 3.
3: Compute the cumulative sums {S1, S2, ...} where Si =

∑i
j=1 Δ∗

i .

4: Find the minimum L̂S = min{S1, S2, ...}.
5: Compute

L̂ =
N

L̂S

C (12)

where C is correction term is given by

C =

{
cos(θ̂), if |θ̂| ≤ π/4

sin(θ̂), if π/4 < |θ̂| ≤ 3π/4
(13)

0 10 20 30 40 50 60 70 80 90
1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

0 10 20 30 40 50 60 70 80 90
−800

−700

−600

−500

−400

−300

−200

−100

0

a) RT, BSNR = 30dB b) Cummulative sums Si, BSNR = 30dB

Fig. 2. Radon transform and cummulative sums Si for motion blur of length = 10
pixels, angle = 0o

4 Experimental Results

In this section we evaluate the performance of the proposed algorithm in terms
of the root mean squared error (RMSE) of the estimated parameters. We consid-
ered a set of 7 well known images: cameraman, Lena, Barbara, boats, mandrill,
goldhill and peppers, all of size 256 by 256 pixels. RMSE is computed based on
70 runs, 10 for each image.

4.1 Angle Estimation

The use of DDA-based discrete PSF approximations makes it impossible to dis-
tinguish two kernels with nearby angles. Given a blur length L, we compute
the intervals and respective middle angle, θm(L), that leads to the same blur
kernel. For each test angle, we choose the closest θm(L) and use this value in the
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simulations. We proceed in the same way for the estimated angle, which leads
to the error defined by

error = θ̂m(L) − θm(L). (14)

Since we can not evaluate all possible scenarios, we considered six different mo-
tion blur lengths, L ∈ {4, 12, 20, 24, 32, 40} pixels, with two different blur-signal-
to-noise ratios (BSNR) of 10dB and 40dB. The obtained results are shown in
figure (3).
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Fig. 3. Estimation angle error for different BSNR and different blur length

The results obtained clearly show the accuracy of the proposed algorithm.
The worst errors are obtained for small blur kernels, as we would expect.

4.2 Length Estimation

In a similar way, we considered four different angles, θ ∈ {0o, 15o, 30o, 45o}, and
two different BSNR, 15 and 40 (dB). The obtained results are shown in figure 4.

The results again show the accuracy of the proposed algorithm, even in the
worst BSNR. For large blur lengths, the errors are bigger, given that the first
zero of Π(ω) is close to the origin and L̂ is inversely proportional to this fre-
quency. Then, small errors in this location are very amplified. For short blurs,
the proposed algorithm fails when the BSNR is low. In this situation, the RT is
too noisy, and the heuristic value of p used in Algorithm 1 leads to poor estimate.
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5 Conclusion

This paper introduced a robust algorithm to infer motion blur parameters,
namely the motion direction and the motion length. The angular quasi-invariance
of natural images spectrum was exploited in the Radom transform domain. The
effectiveness of the method was illustrated in a set of experiments.
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Abstract. Linear unmixing decomposes a hyperspectral image into a
collection of reflectance spectra of the materials present in the scene,
called endmember signatures, and the corresponding abundance fractions
at each pixel in a spatial area of interest.

This paper introduces a new unmixing method, called Dependent
Component Analysis (DECA), which overcomes the limitations of un-
mixing methods based on Independent Component Analysis (ICA) and
on geometrical properties of hyperspectral data.

DECA models the abundance fractions as mixtures of Dirichlet den-
sities, thus enforcing the constraints on abundance fractions imposed
by the acquisition process, namely non-negativity and constant sum.
The mixing matrix is inferred by a generalized expectation-maximization
(GEM) type algorithm. The performance of the method is illustrated us-
ing simulated and real data.

1 Introduction

Spaceborn and airborne hyperspectral sensors acquire images of ground surface
radiance in hundreds of narrow contiguous bands simultaneously [1]. The radi-
ance, collected in a spectral vector, are mixtures of spectra from the substances
present in the respective pixel coverage.

Given a set of mixed hyperspectral vectors, linear unmixing aims at estimat-
ing the number of reference substances, also called endmembers, their spectral
signatures, and their abundance fractions.

Linear spectral unmixing considers that a mixed pixel is a linear combination
of endmember signatures weighted by the correspondent abundance fractions [2].
Under this model, the observations from a scene are in a simplex whose vertices
correspond to the endmembers.

Several approaches such as vertex component analysis (VCA) [3], pixel purity
index (PPI) [4], and N-FINDR [5] have exploited geometric features of hyper-
spectral mixtures to determine the smallest simplex containing the data. Those
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methods assume the presence in the data of at least one pure pixel of each
endmember. This is a strong requisite that may not hold in some data sets.

Independent Component Analysis (ICA) has recently been proposed as a tool
to blindly unmix hyperspectral data [6, 7, 8]. However, ICA applicability is
compromised by the statistical dependence existing among abundances [9]. This
dependence results from the constant sum constraint imposed on the abundance
fractions by the acquisition process [2]. In ICA jargon, sources are not indepen-
dent. Thus, the central assumption of ICA is not satisfied.

This paper proposes a new method to blindly unmix hyperspectral data,
termed dependent component analysis (DECA), where abundance fractions are
modelled by a mixture of Dirichlet densities, thus automatically enforcing source
nonnegativity and constant sum constraints. DECA is in the vein of works
[10, 11] replacing independent sources represented by Mixtures of Gaussians
(MOGs) with mixtures of Dirichlet (MODs) sources. The mixing matrix is in-
ferred by a generalized expectation-maximization (GEM) type algorithm. The
resulting scheme is suited to hyperspectral unmixing since abundance fractions
dependence is ensured. Whereas works [10, 11] assume independent sources
(abundance fractions), which is not the hyperspectral data case. Compared with
the geometric based approaches, the advantage of DECA is that there is no need
to have pure pixels in the observations.

The paper is organized as follows. Section 2 describes the fundamentals of
the proposed method. Sections 3 and 4 illustrate aspects of the performance of
DECA approach with experimental and real data, respectively. Section 5 ends
the paper by presenting a few concluding remarks.

2 Statistical Modelling and Unmixing Algorithm

Assuming the linear observation model, each pixel r of an hyperspectral image
can be represented as a spectral vector in R

L (L is the number of bands) and is
given by r = Ms, where M ≡ [m1,m2, . . . ,mp] is a L × p mixing matrix (mi

denotes the ith endmember signature), p is the number of endmembers present
in the covered area, and s = [s1, s2, . . . , sp]T is the abundance vector containing
the fractions of each endmember (notation (·)T stands for vector transposed).

To be physically meaningful [2], abundance fractions are subject to nonnega-
tivity and constant sum constraints, i.e., {s ∈ R

p : sj ≥ 0,
∑p

j=1 sj = 1}. Note
that only p − 1 components of s are free, i.e., sp = 1 −

∑p−1
j=1 sj . Therefore the

spectral vectors are in a p − 1 dimensional simplex in R
L.

Usually the number of endmembers is much lower than the number of bands
(p � L). Thus, the observed spectral vectors can be projected onto the signal
subspace. The identification of the signal subspace improves the SNR, allows a
correct dimension reduction, and, thus, yields gains in computational time and
complexity [12]. Let Ep be a matrix with orthonormal columns, spanning the
signal subspace. The coordinates of the spectral vector r with respect to Ep are
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x ≡ ET
p r

= ET
p Ms

= As, (1)

where A is a p × p square mixing matrix and x = [x1, x2, . . . , xp]T is a p × 1
vector. Let’s assume that W ≡ A−1 exists. Then, we have s = Wx.

Consider that each vector x represents one particular outcome of a p-
dimensional random variable X = [X1, . . . , Xp]T . Given a set of N independent
and identically distributed samples X = {x(1), . . . ,x(N)}, then, we may write
the likelihood of the unmixing matrix W and of the set of parameters θ as

LN (W, θ) ≡ 1
N

log pX(X|W, θ)

= T [log pX(x|W, θ)]
= T [log pS(s|θ)] + log | detW|, (2)

where we have used the fact that pX(x) = pS(s)| det(W)| and T[x] ≡
1/N

∑N
i=1 x(i), i.e., T[x] is the sample average of x.

Assume that the abundance fractions follow a K-component Dirichlet finite
mixture given by

pS(s|θ) =
K∑

q=1

εq

Γ (
∑p

j=1 θqj)∏p
j=1 Γ (θqj)

p∏
j=1

s
θqj−1
j

︸ ︷︷ ︸
D(s|θq)

, (3)

where the complete set of parameters is θ = {ε1, . . . , εK , θ1, . . . , θK} with
ε1, . . . , εK being the weight of the Dirichlet modes and θq = {θq1, . . . , θqp}, for
q = 1, . . . , K, the q-component parameters. Replacing expression (3) in to (2),
it follows that

LN (W, θ) = T

[
log

K∑
q=1

εqD(s|θq)

]
+ log(| detW|). (4)

The maximum likelihood (ML) estimate
(
Ŵ, θ̂

)
= argmaxW,θ LN (W, θ) can

not be found analytically [13]. The usual choice for obtaining the ML estimates of
the parameters is the EM framework [14], which relies on the so-called incomplete
data and missing data. In our setup, X denotes the incomplete data and Z ={
z(1), . . . , z(N)

}
the missing data. Each label z(i) =

[
z
(i)
1 , . . . , z

(i)
K

]
is a binary

K-vector, where only one component zi
q is set to one indicating which mode

produced the i-sample. The complete log-likelihood is then

LC(W, θ) =
1
N

log [pX,Z(X , Z|θ)]

= T

[
K∑

q=1

zq log εqD(s|θq)

]
+ log (| detW|) . (5)
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The EM algorithm iterates between the E-step and the M-step [14, 15]:

– E-step: Computes the conditional expectation of the complete log-likelihood,
given the samples and the current estimate θ̂(t). The result is the so-called
Q-function

Q(θ, θ̂
(t)

) = T

[
K∑

q=1

E
[
zq| s, θ̂

(t)
]

︸ ︷︷ ︸
β

(t)
q

log
[
ε(t)q D

(
s|θ(t)

q

)]]
+ log (| detW|) , (6)

where

β(t)
q (s) =

ε̂
(t)
q D

(
s|θ̂

(t)
q

)

∑K
l=1 ε̂

(t)
l D

(
s|θ̂

(t)
l

) . (7)

– M-step: Updates the parameter estimates according to

θ̂
(t+1)

= argmax
θ

{
Q

(
θ, θ̂

(t)
)}

. (8)

The maximization of Q in (8) is still a hard problem. Instead of computing

θ̂
(t+1)

, we maximize Q(θ, θ̂
(t)

) with respect to θj , for j = 1, . . . , p, resulting
in the following learning rules for the mixing probabilities and for the mixture
of Dirichlet source parameters (see [16, 18]):

ε(t)q = T

[
β(t)

q (s)
]
, (9)

θ̂
(t+1)
qj = psi−1

⎛
⎝psi

(
p∑

l=1

θ̂
(t)
ql

)
+

T

[
β

(t)
q (s) log ŝ

(t)
j

]

T

[
β

(t)
q (s)

]
⎞
⎠ , (10)

for q = 1 . . . , K and j = 1 . . . , p, respectively1.
The resulting algorithm is of the generalized expectation-maximization

class (GEM) [14]: the learning rule (9) maximizes Q-function with respect
to ε

(t)
q , whereas expression (10) assures that the Q-function does not decrease

(see [16, 17] for details).

To solve the equation ∂Q/∂W = 0 we implement an iterative gradient type
learning rule is derived for the unmixing matrix W:

W(t+1) = W(t) + τ (t)
(

∂Q

∂W

)(t)

, (11)

1 psi(·) and psi−1(·) denote the psi function (logarithmic derivative of the Gamma
function) and its inverse, respectively.



616 J.M.P. Nascimento and J.M. Bioucas-Dias

where τ (t) determines the learning rate on iteration t and

(
∂Q

∂wj

)(t)

= T

[
K∑

q=1

β(t)
q

(
(θ̂(t)

qj − 1)
ŝj

− (θ̂(t)
qp − 1)
ŝp

)
xT

]
+

[
W−T

]
j,: −

[
W−T

]
p,: ,

(12)
where wj , for j = 1, . . . , p − 1 denotes the jth row of matrix W and

[
W−T

]
j,:

denotes the jth row of the inverse of W transposed.

3 Evaluation with Simulated Data

In this section DECA is tested in simulated scenes. The data is generated ac-
cording to expression (1), where three signatures where selected from the USGS
digital spectral library The scene is composed by 105 pixels partitioned into two
regions; region A has the half size of the region B. The abundance fractions
follow a Dirichlet distribution with θa = [9, 2, 9] and θb = [2, 15, 7] for regions
A and B of the scene, respectively. Pure pixels were removed from the data set
in order to illustrate the robustness of DECA to the absence of pure pixels.

0 0.5 10

0.2

0.4

0.6

0.8

1

channel 50 (  = 827nm)

ch
an

ne
l 1

50
 (

 =
 1

78
0n

m
)

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

Mixing probabilities ( q)

(b)

Fig. 1. (a) Scatterplot (bands λ = 827nm and λ = 1780nm) of the three endmem-
bers mixture: true endmembers (circles); VCA estimate (triangles); DECA estimate
(diamonds); (b) Dirichlet mixing probabilities

In this experiment the number of modes is set to K = 5, the Dirichlet param-
eters are randomly initialized, and the mixing probabilities are set to εq = 1/K,
for q = 1, . . . , K. This setting reflects a situation in which no knowledge of the
size and of the number of regions in the scene exist. Fig. 1(a) presents a scat-
terplot (bands λ = 827nm and λ = 1780nm) of the simulated scene, where dots
represent the pixels. The two clouds correspond to the two regions A and B, re-
spectively. It is also presented the true endmembers (circles), the endmembers es-
timation (diamonds), and, for comparison purposes the endmembers estimation
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by VCA (triangles) which, has shown in [3], performs better than PPI and better
or equal than N-FINDR.

The estimates provided by the DECA algorithm are very close to the true
endmembers, whereas those provided by VCA are not. The reasoning behind
this behavior is that DECA searches for the smallest simplex that contains all
data, whereas VCA finds the most pure pixels in data (see triangles in Fig. 1(a)).
Since there is no pure pixels in data, VCA performs worse than DECA.

Fig 1(b), presents the evolution of the Dirichlet mixing probabilities (εq, for
q = 1, . . . , K) as function of the number of iterations of the algorithm. Note that
three modes tend to zero and the remaining modes have the values of 0.65 and 0.33,
corresponding to the weight of the region B and region A respectively. Table 1
presents the Dirichlet parameters and their estimates. Although the estimated
values are near from the true parameter values, we note that this does not have
to happen necessarily, since the same distribution can be modelled with different
MODs. We note that the main purpose of the DECA algorithm is the estimation
of the unmixing matrix W and not the estimation of the MOD parameters.

Table 1. Estimated Dirichlet parameters

region A B

θ 9 2 9 2 15 7

θ̂ 9.0 2.2 10.0 2.5 14.8 9.7

The result of the separation process is illustrated trough the product of the un-
mixing matrixW and square mixing matrixAwhich wouldbe, in an ideal scenario,
the identity matrix Ip, apart from a permutation. In this experiment, we obtained

WA =

⎡
⎣ 0.97 0.02 −0.02

0.03 0.93 −0.02
0.00 0.04 1.03

⎤
⎦ . (13)

The same pattern of behavior was, however, found on a set of simulated ex-
periments for different endmember signatures, different number of endmembers,
and different abundance fraction distributions.

4 Experiments with Real Hyperspectral Data

In this section, DECA is applied to real hyperspectral data collected by the
AVIRIS sensor over Cuprite, Nevada2. This site has been extensively used for
remote sensing experiments over the past years and its geology was previously
mapped in detail [19]. This site has become a standard test site for comparison
of unmixing and endmember extraction algorithms.

Fig. 2 (a) presents the subimage (50×90 pixels and 224 bands) for this exper-
iment. Due to several degradation mechanisms normally found in hyperspectral
applications (namely signature variability, topography modulation, and noise),
2 Available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html



618 J.M.P. Nascimento and J.M. Bioucas-Dias

(a)

(b)

(c)

(d)

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

 ( m)

re
fle

ct
an

ce

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

 ( m)

re
fle

ct
an

ce

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

 ( m)

re
fle

ct
an

ce

(e)

(f)

(g)

Fig. 2. (a) Band 30 (wavelength λ = 667.3nm) of the subimage of AVIRIS cuprite
Nevada data set (rectangle denotes the image fraction used in the experiment);(b)-(d)
Alunite, Kaolinite, and Montmorillonite abundance fractions; (e)-(g) Alunite, Kaolinite,
and Montmorillonite spectra (solid line) and DECA estimated signatures (dotted line)

the observed data is not in a simplex. To obtain a simplex, a projective projec-
tion of data onto a hyperplane yT u = 1 is implemented as a pre-processing step
(see [3] for more details). A visual comparison between the abundance fractions
estimates on the cuprite data set and the ground truth presented in [19] shows
that first, second, and third extracted endmembers are predominantly Alunite,
Kaolinite, and Montmorillonite, respectively (see Fig. 2 (b)-(d)).

A comparison of the estimated endmember signatureswith laboratory spectrum
is presented in Fig. 2. The signatures provided by DECA are scaled in order to
minimize the mean square error between them and the respective library spectra.
The estimated signatures are very close to the laboratory spectra reflectances.

5 Conclusion

Blind hyperspectral linear unmixing aims at estimating the number of endmem-
bers, their spectral signatures, and their abundance fractions at each pixel, using
only the observed data (mixed pixels). In this paper, a new method is proposed
to blindly unmix hyperspectral data, where abundance fractions are modelled
as Dirichlet sources. This model forces abundance fractions to be nonnegative
and to have constant sum on each pixel. The mixing matrix is inferred by an
EM type algorithm. The main advantage of this model is that there is no need
to have pure pixels in the observations.
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The performance of the proposed model is illustrated with simulated and real
hyperspectral data. Comparisons with pure pixel estimation methods are con-
ducted. The results achieved show the effectiveness of DECA on hyperspectral
data unmixing. In future work, the proposed algorithm shall be improved in
order to account for sensor noise.
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Abstract. We present a new method for the synchronization of a pair
of video sequences and the spatial registration of all the temporally cor-
responding frames. This is a mandatory step to perform a pixel wise
comparison of a pair of videos. Several proposals for video matching can
be found in the literature, with a variety of applications like object de-
tection, visual sensor fusion, high dynamic range and action recognition.
The main contribution of our method is that it is free from three com-
mon restrictions assumed in previous works. First, it does not impose
any condition on the relative position of the two cameras, since they can
move freely. Second, it does not assume a parametric temporal mapping
relating the time stamps of the two videos, like a constant or linear time
shift. Third, it does not rely on the complete trajectories of image features
(points or lines) along time, something difficult to obtain automatically
in general. We present our results in the context of the comparison of
videos captured from a camera mounted on moving vehicles.

1 Introduction

Image matching or registration has received a considerable attention for many
years and is still an active subject for its role in segmentation (background sub-
traction), recognition, sensor fusion, construction of panoramic mosaics, motion
estimation, etc. Video matching shares with still image matching a great deal of
potential applications. It requires simultaneous alignment in the temporal and
spatial dimensions. Temporal alignment or synchronization means to find out a
mapping from the time domain of the first sequence to the second one, such that
corresponding frame pairs, each from one sequence, show ’similar content’. The
simplest notion of similar content is that a warping can be found which spatially
aligns one frame with the other, to the extent that they can be compared pixel
wise. But it is not unique, as we will comment.

Several solutions to the problem of video synchronization can be found in the
literature. Here we briefly review those we consider the most significant. This is
relevant to put into context our work, but also because, under the generic label of
temporal alignment, they try to solve rather different problems. The distinction
is based on the assumptions made by each method. For instance, some methods
[1,2,3,4,5,6] assume the temporal correspondence to be a simple constant time
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offset c(t1) = β or linear [7,8] c(t1) = αt1 + β, the later due to the different
frame rate of the two cameras, whereas others [9,10] let it be of free form. More
importantly, some methods [1,2,3,7,4,5] are tailored to videos acquired simulta-
neously, in order to show exactly the same motion or keep constant the relative
position and orientation of the two cameras. Others [10,9,8,6], instead, can also
deal with sequences recorded at different times, showing slightly different object
motions, like one same action performed by different people. A few works [9,4]
address the case of free moving cameras, where no fixed geometric relationship
exists among them. Each method needs some input data which can be more
or less difficult to obtain and hamper its practical applicability. For instance,
feature–based methods require tracking one or more characteristic points along
the two whole sequences [7,3,10,5,6], or points and lines in three sequences [4].
In contrast, direct methods are those built just on the image intensity values
[7,9,8]. What’s more, some methods need to estimate quantities for which not
very robust techniques exist, like the fundamental matrix [2,6] and the trifocal
tensor [4].

Concerning the basis of these methods, most of them rely on the existence
of a geometric entity which somehow constraints the relationship between the
coordinate systems of two frames if they are corresponding: an affine transform
[8], a plane–induce homography [1,7], the fundamental matrix [2,6], the trifocal
tensor [4], and a deficient rank condition on a matrix made of the complete
trajectories of tracked points along a whole sequence [10,3,5]. This fact allows
either to formulate some minimization over the time correspondence parameters
(e.g. α, β), to perform an algorithmic search for them, or at least to directly look
for pairs of corresponding times. A few methods, in our opinion more realistic
from the point of view of practical applicability, are based on the image intensities
instead of point trajectories [7,9,8].

Our goal is to synchronize videos recorded simultaneously or at different times,
which can thus differ in intensity and even in content, i.e., show different objects
or actions (motion), up to an extent. Videos can be recorded by a pair of free
moving cameras, but their motion is not completely free. For the video matching
to be possible, there must be some overlapping in the field of view of the two
cameras, when they are at the same or close positions. Thus, we require that
they follow approximately coincident trajectories and, more importantly, that
the relative camera rotations between corresponding frames are not too large.
Note that, even in this case, free motion precludes the use of a constant epipolar
constraint. The scene is 3D: we do not impose the condition of planar or very
far away scenes, so that the constant homography constraint can not be applied.
Neither do we want to depend on error–free and complete feature trajectories,
provided manually or by an ideal tracker. Finally, the time correspondence is
free form: anyone of the cameras can stop while the other keeps moving.

Our work is most closely related to [9] in the sense of striving for generality
and applicability. Beyond this, each of the former steps is completely different.
For instance, they do not adopt any explicit motion field model for corresponding
frames, as we do. Also, their frame matching measure is based on point (Harris
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corners) correspondences, computed with an EM–like algorithm plus a Kanade–
Lucas–Tomasi local motion optimization. We guess this makes their method
dependent on having a number of such characteristic points evenly distributed
on the images, along the whole sequences, as shown in their results. In contrast,
we will be able to synchronize videos with a much more sparse structure (e.g.
night sequences).

We propose a method which replaces the former constraints on the coordi-
nates of every pair of corresponding frames (provided by a certain fixed affine
transform, homography, fundamental matrix or trifocal tensor) by a specific im-
age motion field model (Sect. 2.1). Its five parameters can vary from pair to pair
due to the free moving cameras assumption, but some dependencies exist among
them that we enforce. For each candidate pair of frames, the estimation of these
parameters allows to compute an spatial alignment error (Sect. 2.2). Based on
it, an efficient divide–and–conquer procedure searches the corresponding frame
in the second video for all the frames in the first one (Sect. 2.3). We present
some results in the context of a realistic and challenging application (Sect. 4).
Imagine a car, equipped with a forward facing camera, which repeatedly drives
along one same track, for building surveillance. We want to compare two videos,
at different times, because differences are potential signs of intruders: office lights
switched on or off, parked cars etc. which have changed from the previous round.
Finally, Sect. 5 draws the conclusions.

2 Method

2.1 A Motion Model for Corresponding Frames

Two frames, one from each video sequence, are corresponding if the cameras were
on the same 3D location at the time they were recorded. Thus, ideally, only the
camera pose could vary, that is, their relative orientation which is expressed by
a rotation matrix R. Let be P1 = K1 [I | 0] and P2 = K2 [R | 0] the projection
matrices of the two cameras, having centered the reference coordinate system in
the first camera. It can be seen then that the coordinates of the two frames are
related by the homography H = K2RK−1

1 .
We aim at defining a simple, linear parametrized model for the image coor-

dinate difference (or motion vector) of two corresponding points, both in space
and time. To this end, we are going to state several simplifying, yet reasonable
assumptions:

1. The two cameras have the same intrinsic parameters, that is, K1 = K2 = K.
Then H = KRK−1, a conjugate rotation.

2. The principal point (the origin of the image coordinate system) is at the
image center, and the focal lengths for the x and y axis are equal, fx = fy =
f . Hence, K = diag(f, f, 1).

3. Let the rotation R be parametrized by the Euler angles Ωx, Ωy, Ωz (respec-
tively pitch, yaw and roll). If they are all small enough, R can be substituted
by its first order approximation, R = [(Ωx, Ωy, Ωz)]×. Accordingly,
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H =

⎡
⎣ 1 −Ωz fΩy

Ωz 1 −fΩx

−Ωy/f Ωx/f 1

⎤
⎦ (1)

Note that the relationship between coordinates of corresponding frames is
linear but in homogeneous coordinates. Thus, the motion vector between a
point x from the first to the second frame is

u(x) = x2 − x1 =
[
u(x)
v(x)

]
=

1
H3x

[
(H1 − xH3)x
(H2 − yH3)x

]
(2)

where Hi denotes the i–th row of H . Let us add a final assumption to obtain
a linear dependence in non–homogeneous coordinates.

4. For f large enough (that is, a medium to narrow camera field of view), since
the rotation angle is small, H3x = −xΩy/f + yΩx/f + 1 ≈ 1.

Finally, we obtain a parametric motion field model which is called quadratic for
its dependence on the terms x2, y2 [11] but linear with regard its parameters pi:

u(x;p) = Xp =
[
1 y x2 xy 0
0 −x xy y2 1

]
⎡
⎢⎢⎢⎢⎣

p1
p2
p3
p4
p5

⎤
⎥⎥⎥⎥⎦ ,p = SΩ =

⎡
⎢⎢⎢⎢⎣

0 f 0
0 0 −1
0 1/f 0

−1/f 0 0
−f 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎣Ωx

Ωy

Ωz

⎤
⎦(3)

2.2 Spatial Frame Matching

We need a measure of spatial registration of a pair of frames, in order to choose
the frame K in the second sequence that best matches a given frame J from
the first one. To this end, we have devised the motion field model of Eq. (3),
which parametrizes the motion field between frames if they are corresponding.
Consequently, we need to estimate the parameters p that minimize some regis-
tration error measure and use its magnitude. We have chosen the sum of squared
linearized differences (i.e., the linearized brightness constancy):∑

x

(
K(x) − J(x + u(x;p))

)2 ≈
∑
x

(
K(x) − J(x) − ∇J(x)T Xp

)2
(4)

where ∇J(x) = (∂J
∂x (x), ∂J

∂y (x))T is the spatial gradient of J . It has been widely
used in the past in the context of image matching, for instance to build panoramic
mosaics or matching neighbour frames in sequences of planar scenes [12,13]. The
reason to choose this technique is that it does not depend on characteristic
points/regions, that is, we do not require images to have a prominent struc-
ture (distinct objects well distributed on the image). In addition, we intend to
synchronize sequences recorded at night, where often there is not much ‘content’.

The error minimization is achieved by deriving with respect to the unknown
p and setting to zero. This leads to a system of five linear equations in the five
unknowns

C p = b, C =
∑
x

XT ∇J(x)∇J(x)T X, b =
∑
x

(K(x) − J(x))XT ∇J(x) (5)
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In practice, we can not directly solve for p because the first order approx-
imation of Eq. 4 holds only if the motion field u(x;p) is small. Instead, p is
successively estimated in a coarse–to–fine manner. A Gaussian pyramid is built
for both J and K and at each resolution level p is re–estimated based on the
value of the previous level. This means that K is successively warped towards
J . At the same time, at each pyramid level, several iterations of this process are
performed. For a detailed description we refer the reader to [12,13,7].

2.3 Correspondence Finding

In the former section we have explained how to assess the matching between
a pair of frames. But how to use it to determine the correspondence c from
the first to the second sequence ? Obviously, the brute force approach of an
exhaustive test of all possible pairs is infeasible since our target videos may have
hundreds to thousands of frames. Less costly, trying a fixed number of frames in
the second sequence, for every frame in the first one, misses out the chance to
cut down the number of comparisons, as we will see. We propose for this task a
divide–and–conquer procedure.

Let be S1 and S2 two sequences m and n frames long, respectively. We im-
pose the condition that the first sequence is contained within the second one
S2, that is, first and last frames of S1 have some corresponding frame within
S2. The mapping c must be defined for all the time instants t1 = 1 . . .m and
be monotonically increasing, c(t1 + 1) − c(t1) ≥ 0. Equality accounts for the
fact that the first camera may move slower than the second one, or even stop
while the other keeps moving. The reverse case is c(t1 + 1) > c(t1) + 1. Suppose
that, somehow, we decide frames S1(t1) and S2(t2) are corresponding. Then
necessarily, 1 ≤ t ≤ t1 ⇒ 1 ≤ c(t) ≤ t2 and t1 ≤ t ≤ m ⇒ t2 ≤ c(t) ≤ n.
This means that each time we augment c with a pair of corresponding time
instants, the possible pairs may be strongly reduced. Consider the particular
case that each camera was moving at (may be different) constant speed and
we already know the corresponding frames of t1 = 1, m. Then c would be the
line t2 = c(1) + t1(c(m) − c(1))/m (Fig. 1a). The largest possible reduction, to
a half, is achieved by looking for the correspondence of t1 = m/2. In Fig. 1a
the possible correspondences prior to this decision are within the lighter rect-
angle and posterior to it the two darker ones. Based on it, the procedure for
correspondence finding, illustrated by Fig. 1b, is:

1. Set a maximum time offset ΔT (height of thin bars)
2. For t1 = 1 try t2 = 1 . . .ΔT/2 and for t1 = m, t2 = n − ΔT/2 . . . n, and

choose in each case the one of minimum error as c(1) and c(m), respectively
3. Look for the corresponding frame to t1 = m/2 : first interpolate a line

l1,m(t) between (1, c(1)) and (m, c(m)) and then try t2 = max{c(1), l(m/2)−
ΔT/2} . . .min{c(m), l(m/2) + ΔT/2}, taking the time of minimum error as
c(m/2)

4. Repeat step 3 for the two resulting intervals (now [1, m/2], [m/2, m]) if the
interval length is greater than 2.
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Fig. 1. Divide–and–conquer correspondence search, see text

Fig. 1b shows the intervals and their bounds for the first two subdivisions, the
darker the later. Fig. 1c illustrates a real case: vertical bars represent the tried
pairs and ΔT = 120. In another experiment, for m = 521, n = 421 frames and
ΔT = 200 the number of evaluated pairs was only 3423.

3 Efficiency

Efficiency can not be an afterthought in this problem. For the method to be of
practical use, it must be able to synchronize videos of hundreds or thousands of
frames in a reasonable time. We briefly report two ways to improve efficiency,
without an important loss of precision. The first is to speed up the spatial regis-
tration of a pair of frames. It can be done by not iterating the linear system of
Eq. 3 at the lowest level of the image pyramid, that is, at maximum resolution.
This achieves a gain because at each iteration one of the images must be warped
according to the newly computed parameters p. The second way is to reduce the
number of frame pairs to match by sampling the temporal dimension of the first
video: instead of finding the correspondence for each frame in the first video,
do it just for each tenth, for instance, and interpolate the correspondence and
parameters for frames in between. Just to provide some specific figures, with
our current Matlab implementation two videos of 720×288 pixels/frame, around
720 frames each, were synchronized in 3 hours 45 min. With the former two
approximations the computation time was reduced to 24 min.

4 Results

The application motivating this research was to compare videos recorded at
night from a moving vehicle, with the camera forward facing. This may be a
complement to the surveillance of parkings, warehouses or widespread facilities.
We have successfully synchronized relatively long parts of day and night videos
(hundreds of frames), even with significant differences in content. The main
limitation of our method is the ability to deal with large initial misalignments
due to significant camera translation and/or relative rotation, which may give
rise to synchronization errors. The reason is that, to deal with this situation,
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Fig. 2. Registration of corresponding frames. From left to right: frame of first video,
warped frame of the second video and contrast inverted difference.

we rely only on the hierarchical estimation of the motion parameters. Another
source of synchronization errors is the hard (irreversible) decisions of the cor-
respondence finding algorithm: wrong correspondences introduce errors locally
because they determine a bound for the following correspondences to be found.
And the sooner they are computed, the wider their influence. Fig. 2 shows
some examples from which small differences could be detected by substraction.
Figures however, are a poor reflex of synchronized videos. They can be viewed
at www.cvc.uab.es/adas/projects/sincro/IbPRIA07.html.

5 Conclusion

We have presented a new method for video synchronization, which includes spa-
tial in addition to temporal registration. Compared to most of the previous
works, we try to solve an under constrained version of this problem: free camera
motion and no need of tracked features or geometric entities difficult to estimate
like the fundamental matrix. Efficiency is an issue in this problem, which we
address through the correspondence search procedure, the interpolation of the
correspondence and motion parameters along time and the fast registration of
frame pairs. The main limitation of our method is the registration errors due to
large misalignments. In spite of this, it can synchronize many sequences without
paying special care to the camera motion (driving speed and style), including
night sequences where the structure is sparse.
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Abstract. Tracking the Left Ventricle (LV) in ultrasound sequences re-
mains a challenge due to speckle noise, low SNR and lack of contrast.
Therefore, it is usually difficult to obtain accurate estimates of the LV
cavities since feature detectors produce a large number of outliers. This
paper presents an algorithm which combines two main operations: i) a
novel denoising algorithm based on the Lyapounov equation and ii) a
robust tracker, based on an outlier feature model. Experimental results
are provided, showing that the proposed algorithm is computationally
efficient and leads to accurate estimates of the LV.

1 Introduction

The left ventricle (LV) boundary estimation plays an important role in clini-
cal diagnosis since it allows to extract relevant measures of the heart dynamic
behavior, among which the ejection fraction and local wall motion.

Ultrasound imaging is a popular technique to observe the dynamical behavior
of the heart. However, the low signal-to-noise ratio (SNR) and the multiplicative
nature of the noise (speckle) corrupting the ultrasound images, make the LV
segmentation a difficult task.

The major edge detection algorithms fail due to the presence of multiplicative
noise in heart ultrasound imagery. The strongest edges are often not located on
the endocardium. In [1] it is proposed the instantaneous coefficient of variation
(ICOV) providing good segmentation results, but the so called problem of “edge
dropout” still remains (this is typical in the diastole phase). Therefore, noise
reduction must be applied before edge detection. Several techniques have been
proposed to reduce the speckle noise without distorting the relevant clinical
details, e.g., Bayesian methods [2], mixture distribution of the Rician pdf with
the inverse Gaussian as a mixture distribution (RiIG) [3], soft thresholding [4],
wavelet based methods [5], wavelet soft-shrinking [6], median filtering [7], and
anisotropic diffusion [8].
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Even though the denoising algorithms significantly reduce the speckle noise,
advanced tracking techniques are needed to segment the LV boundary. Prior
art in segmentation of echocardiographic sequences of the heart includes active
shape models [9], or level set techniques [10].

In this paper we join a novel edge preserving total variation (TV) based denois-
ing algorithm and a robust tracker [11]. The denoising algorithm must process a
large number of ultrasound images in an efficient way. This is obtained by formu-
lating the filtering operation as the solution of a Sylvester/Lyapunov equation
for which there are fast and computationally efficient algorithms described in
the literature.

The robustness of the tracker is obtained by using feature grouping (line
segments), which are labeled as valid or invalid. Since the labels are unknown
they are replaced by their probabilities computed using a probabilistic model of
the observations. A data association filter is then used to update the contour
parameters under the presence of outliers.

The tracking algorithm proposed in the paper was assessed using a set of
image sequences, segmented by medical doctors. These images, are used as a
ground truth to compute FOM (figures of merit).

The paper is organized as follows: Section 2 describes the overall system.
Sections 3, 4 and 5 describe the pre-processing, feature detection and tracking
steps respectively. Section 6 describes experimental and section 7 concludes the
paper.

2 System Overview

The proposed system aims is to track the boundary of the left ventricle during
the cardiac cycle. The system input is a sequence of ultrasound images sampled
at 25Hz.

The system performs three main operations: i) denoising : to reduce the
speckle noise and enhance the contrast; due to the large amount of data to
be processed a novel algorithm was developed to perform this task, ii) feature
detection : detects intensity transitions along orthogonal lines radiating from the
contour. Transitions are obtained by applying a matched filter to the intensity
profiles and computing the local maxima [12], and iii) tracking : based on a ro-
bust tracking algorithm which fits a deformable curve (quadratic B-spline) to
the points detected in the image. This algorithm must be able to deal with a
large number of outliers and to interpolate the boundary when no features are
detected due to low contrast of the heart boundary. This is specially important
close to the apex and in the presence of sudden motion changes (e.g., in the
mitral valve). A recent tracking algorithm is used in this step.

3 Pre-processing

The performance of the tracker depends on the SNR of the input images which
have multiplicative noise.
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The goal of the pre-processing step is to reduce the noise without losing rele-
vant information. In this paper a MAP criterion is used to estimate the original
images from the noisy ones. This approach is usually slow and computationally
demanding, furthermore, there is a large number of images to process.

A Bayesian framework is used with the MAP criterion, and the optimization
algebraic problem is formulated as Sylvester/Lyapunov equation for which there
are fast em computationally efficient algorithms described in the literature.

The denoising algorithm estimates the original image, X , by minimizing the
following energy function E(Y, X) = − log [p(Y |X)p(X)] where Y is the noisy
image, p(Y |X) is the observation model and p(X) is the prior distribution of the
unknown image.

Assuming conditional independence of the observations, leads to p(Y |X) =∏N,M
ij p [y(ij)|x(ij)] where p(y|x) = y

xe−y2/2x is the Rayleigh distribution [13].
An edge preserving prior p(X) was chosen to avoid over-smoothing the tran-

sitions. The prior is based on the total variation (TV) function as p(X) =
1
Z e−α

∑
i,j g(i,j) where g(i, j) = |∇X(i, j)| is the gradient magnitude of X at

the (i, j) pixel, α is a parameter and Z is a partition function. This gradient
magnitude may be approximated by using the first order differences, g(i, j) =√

δ2
vi,j

+ δ2
hi,j

where δvi,j = x(i, j) − x(i, j − 1) and δhi,j = x(i, j) − x(i − 1, j).
The denoised image is obtained by solving the following equation

X̂ = arg min
X

E(Y, X) (1)

where

E(Y, X) =
∑
i,j

[
log

(
y(i, j)
x(i, j)

)
− y2(i, j)

2x(i, j)

]
+ α

∑
i,j

g(i, j) (2)

To find out the minimizer of (2), its stationary points must be computed, i.e.,
∇E(Y, X) = 0, which is equivalent to

x(i, j) − xML(i, j)
x2(i, j)

+
∂

∂x(i, j)

∑
i,j

g(i, j) = 0, 0 ≤ i, j ≤ N − 1, M − 1 (3)

where xML(i, j) = y2(i, j)/2 is the maximum likelihood (ML) estimate for the
Rayleigh distribution. The set of equations (3) is non-linear on X and it is
iteratively solved. The fixed point method and the majorize/minimize (MM)
algorithm described in [14] leads too the following recursion equation,

x(i, j) − xML(i, j)
x2

t−1(i, j)
+

∂

∂x(i, j)

∑
i,j

δ2
vi,j

+ δ2
hi,j

wt−1(i, j)
= 0, 0 ≤ i, j ≤ N − 1, M − 1 (4)

where xt−1(i, j) and wt−1(i, j) = 1/gt−1(i, j) are the image and gradient magni-
tude reciprocals, respectively, computed in the (t − 1)-th iteration.
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The set of equations (4) can be written in the following matrix notation as
shown in [15]

Xt−1 � (X − XML) + 2αG−1
t−1 � [φvX + Xφh] = 0 (5)

where φv = θT
v θv, φh = θT

h θh and G−1
t−1(i, j) = 1/|∇Xt−1(i, j)| is the matrix

whose elements are the reciprocals of the gradient magnitudes of Xt−1. The
operator � stands for Hadamard product, i.e., element wise product. θv and
θh are n × n vertical and m × m horizontal difference operators respectively.
Therefore, equation (5) can be rewritten as follows

ΦvX + XΦh + Qt−1 = 0 (6)

where Φv = βIN/2 + 2αφv, Φh = βIM/2 + 2αφh, Qt−1 = Wt−1 � (Xt−1 −
XML) − βXt−1 and Wt−1 = Gt−1 � / [Xt−1 � Xt−1]. IN and IM are N and M
dimensional identity matrices respectively and β is a conditioner parameter to
improve the stability of the algorithm (typically β = 1).

The equation (6) is the so called Sylvester equation for which there are efficient
and fast solver algorithms. Fig.1 shows an example of denoised ultrasound image
using the pre-processing described above.
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Fig. 1. (a) Real image, (b) denoised image using the proposed technique, (c) image
profile of (a), image profile of (b)

4 Feature Detection

Feature detection detects line segments belonging to the boundary of the LV.
This is done in two steps. First we detect intensity transitions along lines or-
thogonal to the predicted contour. This is done by template matching. Feature
detection along the ith direction is performed by computing the local maxima
of the function

J (t0) =
∫

t

|pi(t) − T (t, t0)|2dt (7)

where pi(t) is the image profile taken at the ith direction, t denotes the distance
to the object boundary and T (t, t0) is a template which is obtained off-line. The
template T is obtained as follows: T (t) is equal to the typical intensity of the
object for t ≤ t0 and T (t) is equal to the background intensity for t > t0. In the
second step, feature points detected at consecutive lines are grouped, by mutual
by mutual favorite pairing, forming image line-segments.
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5 Tracking

A deformable curve (B-spline) is used to approximate the LV contour. The pa-
rameters of the B-spline at time k, xk ∈ R are estimated from the image features
obtained in the previous step using a tracking algorithm.

This is not an easy task since there are many invalid features detected in
the ultrasound image and the tracker must able to ignore them and to track
valid features only. The Kalman filter fails in this problem since it is not able to
separate valid features from invalid ones.

In this paper we have used a data association filter which was recently pro-
posed in [11]. This method considers all the hypothesis of valid/invalid features,
Hi, and assigns a probability to each of them (see [11] for the details).

To avoid an exponential growth of hypothesis at different time instants, a
simplifying assumption is adopted: it is assumed that the state distribution given
past observations is Gaussian, i.e.,

p[xk | Y k−1] = N [xk; x̂k|k−1, Pk|k−1] (8)

where x̂k|k−1, Pk|k−1 are the mean and covariance of xk given past observations
Y k−1. This hypothesis was proposed by Bar-Shalom in the context of target
tracking [16].

The computation of the state estimate (state mean) given current and past
observations is done considering all the hypothesis

x̂k|k = x̂k|k−1 +
mk∑
i=1

αi kKi kνi k (9)

This resembles the Kalman filter. In (9) x̂k|k is the estimate of the state vec-
tor, Ki k, νi k are the Kalman gain and the innovation respectively, and αi k �
p(Hi k | Y k) is the a posteriori probability of the i-th hypothesis Hi k. The in-
terpretation of equation (9) suggests that we have a bank of Kalman filters each
one specialized to each ith data hypothesis.

A recursive equation can also be derived for the covariance matrix (see details
in [11])

6 Experimental Results

This section shows experimental results obtained with the proposed method. A
echocardiographic sequence of the left ventricle is used in this study. The length
of the sequence has 490 frames comprising 27 cardiac cycles and each image has
320 × 240 pixels.

The experiments involve three main steps: i) the LV boundary is manually
defined by an expert (ground-truth) in several images; ii) the sequence is auto-
matically processed by the tracker; iii) metrics between automatic and manual
boundaries are computed for the sequence. The tests are performed under three
options: i) without, ii) median, iii) and Lyapounov pre-processing.
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(a) (b) (c)

Fig. 2. Features (dots) detected in three situations: without pre-processing (a), median
filtering (b), proposed algorithm (c)

6.1 Ground Truth

To obtain the ground truth, an observer provides a hand-labeled contours for
the sequence. Four images in each cardiac cycle are selected for hand labeling:
two images in the systole phase and two images in the diastole phase. A total
number of 108 contours were manually generated (54 in each phase). The tracker-
generated boundaries are compared to the ground truth resulting in an error
measurement in each image.

6.2 Error Metrics

Three error metrics are used to compare the tracker-generated boundaries against
the boundaries outlined by the observer.

The two curves are represented as sets of points X = {x1,x2, . . . ,xNx}, and
Y = {y1,y2, . . . ,yNy}, where Ny > Nx. Each xi and yi is a pair of coordinates
of the point in the image plane.

The distance from a point xi to the curve Y is

d(xi, Y) = min
j

||yj − xi|| (10)

The average distance from the contour model X to the ground truth boundary
Y (ideal contour) is

dav =
1

Nx

Nx∑
i=1

d(xi, Y) (11)

The Hausdorff distance between the two curves is defined as the maximum
distance from a point to the other curve

dmax(X , Y) = max
(
max

i
{d(xi, Y)}, max

j
{d(yj , X )}

)
(12)

The third metric is the Hammoude [17] measure proposed in the context of
ultrasound images and given by

dH =


(
(X ∪ Y ) − (X ∩ Y )

)

(X ∪ Y )

(13)
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where X , Y are binary images such that all pixels inside the curves have label 1
and remaining pixels have label 0. This metric computes the normalized number
of pixels which receive different labels.

Fig. 3 shows the evolution of the metrics for the sequence. The first measure
(Fig. 3 (a)) belongs to the interval [0, 1], the remaining ones are expressed in
terms of pixels. The dashed line refers to the results obtained by using a median
filter in the pre-processing step. The solid line represents the values obtained
by the proposed method, (we do not show the results obtained without pre-
processing since they are much worse). Fig. 3 shows the results at specific frames.
These frames correspond to the time instants when the cardiac phase switch from
systole to the diastole and vice-versa. This figure also shows the situation when
the tracker has difficulties to represent the apex of the ventricle.
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Fig. 3. Metric statistics for the heart sequence, (a) dH , (b) dav, (c) dmax, (d) number
of outliers without pre-processing and with the proposed technique. Median filtering
(dashed line), proposed method (solid line).

Fig. 3 shows that the denoising technique proposed herein has a much better
performance compared with the median filter (the solid line is under the dashed
line). The first and second order statistics of the contour metrics are shown in
Table 1. Here, it is shown the average computation time associated to the tracker
in seconds. We conclude that the proposed pre-processing method is twofold: i)
the mean and variance error of the shape estimates is smaller than in the other
cases; ii) it allows a faster tracking since less outlier features are detected in the
image. See Fig. 2 where it is clearly shown that the number of outliers decrease

Table 1. Mean and variance values for the metrics shown in the Fig. 3 and the com-
putation time (average per frame) for the three different cases

Hammoude metric-dH Average Distance-dav Hausdorff Distance-dmax

without Median Denoising without Median Denoising without Median Denoising

E[.] 0.29 0.28 0.26 6.1 5.7 5.2 14.2 13.7 11.7

var[.] 0.01 0.01 0.008 5.5 4.6 4.0 38.0 26.5 22.9

without Median Denoising

Timeav 0.87 0.86 0.76
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from (a) (without pre-processing) through (c) (proposed algorithm), the latter
preserving the contour.

7 Conclusion

This paper proposes a system for tracking the left ventricle using two key opera-
tions. The first is a novel denoising algorithm based on the Lyapounov equation.
The second is a robust tracker used to estimate the evolution of the LV con-
tour. The robustness is achieved by using data-association within the detected
line-segments.

It is concluded from the experimental results that the proposed algorithm
manages to accurately track the heart motion in images with a low contrast
between the heart cavity and the miocardium. It is also concluded that the
denoising algorithm plays an important role and significantly reduces the number
of outliers.
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Abstract. This paper extends and generalizes the Bayesian semi-supervised 
segmentation algorithm [1] for oil spill detection using SAR images. In the 
base algorithm on which we build on, the data term is modeled by a finite mix-
ture of Gamma distributions. The prior is an M-level logistic Markov Random 
Field enforcing local continuity in a statistical sense. The methodology pro-
posed in [1] assumes two classes and known smoothness parameter. The pre-
sent work removes these restrictions. The smoothness parameter controlling 
the degree of homogeneity imposed on the scene is automatically estimated 
and the number of used classes is optional. Semi-automatic estimation of the 
class parameters is also implemented. The maximum a posteriori (MAP) seg-
mentation is efficiently computed via the α-expansion algorithm [2], a recent 
graph-cut technique, The effectiveness of the proposed approach is illustrated 
with simulated (Gaussian or Gamma data term and M-level logistic classes)  
and real ERS data. 

1   Introduction 

Segmentation of dark patches in SAR images is an important step in any oil spill 
detection system and many different approaches to the problem have been proposed 
so far. These approaches are built on off-the-shelf segmentation algorithms such as 
‘Adaptive Image Thresholding’, ‘Hysteresis Thresholding’, ‘Edge Detection’ (see [3] 
and references therein) and entropy based methods like the ‘Maximum Descriptive 
Length’ technique [4]. 

Work [1] introduces a Bayesian segmentation algorithm where the observed data 
(oil and water) data is modeled by a finite Gamma mixture, with a given predefined 
number of components. To estimate the parameters of the class conditional densities, 
an expectation maximization (EM) algorithm was developed. The used prior is a sec-
ond order Markov Random Field (MRF), more specifically an isotropic Ising Model. 
To estimate the labels, the posterior distribution is maximized (MAP) via graph-cut 
techniques [5]. 

                                                           
* The work was supported in part by the Portuguese “Fundação para a Ciência e Tecnologia” 

(FCT) under the grant PDCTE/CPS/49967/2003 and by the European Space Agency (ESA) 
under the grant ESA/C1:2422.  
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Notwithstanding the promising results provided by the above described segmenta-
tion method, it has restrictions that the present work overcomes. The first restriction 
concerns the number of classes that is limited to two. The second restriction concerns 
the smoothness parameter that has to be manually tuned. Furthermore, the class pa-
rameters estimation process is completely supervised, requiring an interaction with 
the user in order to manually select a region containing oil pixels and a region con-
taining water pixels. 

In the present work we generalize [1] by: (1) extending the number of segmented 
classes to a predefined optional number c, (2) automatically estimating the homogene-
ity parameter β in the MRF, and (3) automatically estimating the class parameters. 

To extend [1] to an optional number of classes, the so-called α-expansion algo-
rithm [2] is implemented. In order to estimate the smoothness parameter, two differ-
ent techniques are tested, namely the Least Squares (LS) Fit and the Coding Method 
(CD) [6]. A first attempt is carried out to implement unsupervised segmentation using 
a semi-supervised initialization. 

To evaluate the accuracy of the algorithm, different simulations are carried out. 
The simulations address both the Gamma and the Gaussian data model. For the real 
images, the Gamma mixture data model proposed in [1] is adopted to model the ob-
served SAR intensity values. 

The article is organized as follows: Section 2 gives a short overview of the original 
algorithm that builds the base to this work; Section 3 describes, in pseudo-code, the 
main steps of the proposed segmentation methods; Section 4 presents simulation and 
real results, and finally Section 5 contains concluding and future work remarks.    

2   Overview of Base Algorithm 

The algorithm proposed in [1] addresses the problem of finding an estimation f̂  of a 

labeling for a set of N pixels P := {1, 2, …, N}. When c possible classes are available, 
a labeling f := {f1,f2,…fN} is a mapping from P to L, where L := {l1,l2,…,lc} is the set 
of discrete values that the pixels may take. The vector y:={y1,y2,…yN} stands for the 
observed data, corresponding to the image intensity measurements at the pixels.  

In order to infer f̂ , we adopt the MAP criterion. This amounts to maximize the pos-

terior density of the labeling given the observed data. As described in [1] in detail, 
this is equivalent to minimizing the objective function 
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+=              (1) 

 

where p, j ∈ P are pixel locations, pE  is the negative likelihood given by 
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p fypfE −=      (2) 

 
where p(yp|fp) is the conditional density of yp given fp, called data model or  
sensor function, and jpE ,  is the prior clique potential associated with the clique {p,j}  
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containing the pair of neighboring pixels p and j  [6]. Since we have adopted an MLL, 
we have 

),(),(,
jpjp

jp ffffE βδ−= ,   (3) 

 

where δ is the discrete delta function and β controls the degree of homogeneity we 
wish to impose on the scene. Note that 
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where n(fi) is the number of neighbors in neighborhood Ni having the same label as 
pixel i. 

As demonstrated in [1], E(f1,…fN) is graph representable for c = 2 and in these cir-
cumstances, the global minimum of the objective function may be computed by ap-
plying the graph-cut algorithm described in [5]. 

3   Proposed Segmentation Methods 

In the next Sections we propose supervised and unsupervised approaches to the seg-
mentation. The first approach assumes known class parameters, whereas the second 
does not. In both methods, the smoothness parameter is assumed unknown.  

3.1   Supervised Segmentation with Beta Unknown 

In the first segmentation method, we adopt iterative labeling-estimation, with the two 
steps being performed alternately, inspired by the EM algorithm [6].  The initial val-
ues for the labeling and the parameter estimator are optional and don’t seem to have a 
relevant influence on the final performance. Since the class parameters are assumed 
known, they are omitted from the pseudo-code. 

 
Algorithm-1: 
1. Start with an arbitrary initial labeling f 0 and arbi-

trary parameter β̂ =β0 

2.  While δβ ≤Δ ˆ  or nrIterations < ItMaxNr do 

 2.1 Find f̂ = α_Expansion( f 0, β̂ ) 
 2.2 Find β̂ =LS_Estimation( f̂ )or CodingMethod( f̂ ) 

3. Return ( f̂ , β̂ ) 
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3.2   Unsupervised Segmentation with Semi-supervised Initialization 

In this second method, we have also adopted iterative labeling-estimation as in ‘Algo-
rithm-1’, but now the class parameters are also iteratively estimated. The initialization 
of the class parameters is performed in a semi-automatic way: the user provides a 
region of pixels corresponding to one (for example the most frequent) of the classes 
(class1). This region is then used to estimate the ML (Maximum Likelihood) parame-
ters of the class1 distribution. In a second step, pixels are clustered in two sets, class1 
and not-class1, by applying a simple threshold to the estimated distribution. Then, the 
parameters of the remaining classes are initialized by applying an EM mixture estima-
tion procedure to the pixels clustered in the set not-class1.  
 
Algorithm-2: 
1. Start with an arbitrary parameter β̂ =β0 

and arbitrary initial labeling f 0 

2. Provide initial class parameter estimations θ̂ =θ0  

3. Provide initial f̂  = α_Expansion( f 0,β0,θ0) 

4. While δβ ≤Δ ˆ  or nrIterations < ItMaxNr do 

 4.1 Find θ̂ = ML_Estimation( f̂ ) 

 4.2 Find f̂ = α_Expansion( f 0, β̂ ,θ̂ ) 
 4.3 Find β̂ =LS_Estimation( f̂ ,θ̂ )or CodingMethod( f̂ ,θ̂ ) 
5. Return ( f̂ , β̂ ,θ̂ ) 

4   Results: Simulated and Real Images 

This section presents results for simulated and for real SAR images. In the first case, 
different test scenarios are provided, corresponding to Gaussian and Gamma data 
terms. Although simulations have been restricted to one Gamma mode per class, the 
developed procedure also works with Gamma mixtures as developed in [1]. 

4.1   Simulated Images  

Three different test scenarios have been adopted: 
 
Scenario 1: the simulated image contains three classes generated by an MLL Markov-
Gibs distribution corrupted with Gaussian noise. Segmentation is performed applying 
“Algorithm-1”, described in Section 3.1. The parameter estimation is performed using 
the LS method and the class parameters are known (same values as used for the simu-
lation). The test is performed for five different images, corresponding to an increasing 
difficulty grade of segmentation. Each test is run three times and the mean values of 
the overall accuracies (OA) corresponding the percentage of correct label are com-
puted. For comparison, the estimation of β is performed in a supervised way, applying 
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the LS method to the ‘ground-truth’ image and running the α-expansion algorithm 
once with the estimated β.  

Scenario 2: here a simulated image of three classes corrupted by Gamma noise is 
used. The ground-truth is ‘hand-made’ and contains structures resembling those that 
may be found in oil-spill scenarios. The same algorithm as in ‘Scenario 1’ is used, 
both with the LS and the CD estimation methods. The unsupervised segmentation is 
compared with the results given by the best achievable segmentation using α-
expansion, corresponding to tuning the β parameter manually. 

Scenario 3: here, for the same simulated image used in scenario 1, the class parame-
ters estimation is also incorporated in the algorithm, by applying ‘Algorithm-2’, de-
scribed in Section 3.2. Initial class parameters estimation is provided by performing a 
one-class supervised estimation based on one-class clustering. 
 
Scenario 1: To assess the segmentation performance, we compare the OA with that 
obtained without the MRF prior, i.e., β=0. For Gaussian classes with equal standard 
deviation σ, means equally D-spaced, we have 
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OA ,   (6) 

 

where erfc( ) is the complementary error function and c is the number of classes. 
Figure 1 shows the OA’s obtained by segmenting the image using ‘Algorithm-1’ 
(legend: unsupervised) and using the supervised estimated beta value (legend: super-
vised) against the values provided by (6). 

 

 

Fig. 1. On the left: overall accuracies against OAMAP(β=0). On the right: upper image is the 
MLL ground-truth with 3 classes; lower image are the simulated intensity values. 

Scenario 2: In Figure 2 and 3 as in Scenario 1 but the OA (β=0) is now estimated by 
running the algorithm with β=0, since there is no close expression for it.  
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Fig. 2. Upper image: OA’s obtained by unsupervised segmentation using LS and best achiev-
able results with manually tuned β. Lower image: LS estimated β and best β. 

 

 
 

Fig. 3. Overall accuracies obtained by unsupervised segmentation using CD and best achiev-
able results with manually tuned α-expansion 

Figure 2 shows the results obtained with the LS method and Figure 3 the results 
obtained with the CD method. Figure 4 displays an example of simulated image and 
corresponding segmentation results. 

Scenario 3: By applying ‘Algorithm-2’ to an MLL image like the one adopted in 
Scenario 1, for a OA(β=0) of 85.9% given by expression (9), the achieved OA value 
is 94.5% using LS estimation. The Best achievable OA is 99.1%. 
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.  
              (a) 

 
             (b)          (c)             (d) 

Fig. 4. (a) Density functions used to generate the simulated image with superimposed histo-
gram of generated data set. (b) Ground-truth (c) Simulated image (d) Segmentation result using 
‘Algorithm-1’: unsupervised LS estimated β = 0.4213, OA = 95.3%. The best achievable OA 
for this image was determined to be 95.4% . The OA for β = 0 is 83.2%. 

4.2   Real Images  

The ‘Algorithm-1’ has been applied to a real ERS-1 SAR image fragment. The scene 
(frame 2367, orbit 17211) containing the fragment has been acquired on 30 October 
1994, and covers several oil platforms in the Norwegian and British sector of the 
North Sea. The image has been radiometric calibrated and corrected for the incidence 
angle effect. We have assigned a class to ‘oil’, a class to ‘water’ and a class to ‘plat-
form’ and learned the class parameters using the supervised method described in [1]. 
Figure 5 displays the obtained results after applying ‘Algorithm-1’.  

 

   
(a)                         (b)                       (c) 

Fig. 5. (a) ERS image: intensity values (b) Segmentation with LS (c) Segmentation with CD 

5   Conclusion 

The first results of applying the proposed methodology to simulated images with 
Gaussian and Gamma data models and to real ERS SAR data are promising. With 
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‘Algorithm-1’ higher OA accuracies have been achieved. The analysis of the resulting 
OA plots for Gamma data exhibits a maximum around circa OAno prior= 85%. This 
value corresponds to a value for the estimated β equal to the best β. At this point the 
add-on value provided by introducing a prior into the segmentation starts to decrease. 
Regarding ‘Algorithm-2’, the adopted methodology seems to be adequate but needs 
further assessment. In the example given in Scenario 3, the inclusion of the parameter 
estimation into the segmentation procedure only reduces the OA from 97,3% to 
94,5%. By applying ‘Algorithm-1’ to a real ERS image, we have been able to suc-
cessful segment a platform of reduced size, the water and the oil. Hereby, the CD 
estimation method seems to provide a better segmentation than the LS method, con-
trarily to what happened for simulated images, where the LS method provided slightly 
better results. 

These are preliminary results and more tests, with more trials per test, are required 
to fully determine the accuracy of the proposed methods..  
 
Acknowledgments. The authors acknowledge Vladimir Kolmogorov for the max-
flow/min-cut C++ code. 
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Abstract. In this article, scale and orientation invariant object detec-
tion is performed by matching intensity level histograms. Unlike other
global measurement methods, the present one uses a local feature de-
scription that allows small changes in the histogram signature, giving
robustness to partial occlusions. Local features over the object histogram
are extracted during a Boosting learning phase, selecting the most dis-
criminant features within a training histogram image set. The Integral
Histogram has been used to compute local histograms in constant time.

1 Introduction

Color histograms are often used as local features for object identification and
tracking [1,2], specially, given its invariance to pose change. However its main
drawback is its sensitivity to illumination conditions. Schiele and Crowley [3]
have extended the idea of representing the object by histograms, incorporating
other local image features like the gradient magnitude, orientation and lapla-
cian, resulting in a multidimensional histogram representation. This approach
performs robust object recognition under different viewing conditions, such as,
orientation, scale and view points changes.

With the propose of attaining object detection for real time applications,
many methods have arisen that tackle the feature computation cost. One simple
and effective method is based on the use of integral images. Viola and Jones [4]
presented their integral image based on accumulation of pixel intensities over
the image axes. Other extensions have been proposed to calculate other local
properties efficiently. Villamizar et al. [5] and Porikli [6] developed the Inte-
gral Histogram, with which is possible to compute rapidly any local histogram
independently of its size and location.

2 Proposed Method

In this paper we combine the benefits of speed from the integral image compu-
tation with the invariant properties that color histograms give, and build on top

J. Mart́ı et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 645–651, 2007.
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Fig. 1. Haar features a) sign + b) sign − c) Haar description

of our previous work on Boosting algorithms to produce a fast and robust object
recognition system. The major benefit of the proposed method relies on its ro-
bustness to partial occlusions, since the histogram matching is performed locally,
using a robust boosted classifier based on the combination of local features.

The work reported here introduces a novelmultiscale unidimensional histogram
representation based on a linear combination of Haar features, that follows the
spirit of other typical feature sets learned via Boosting. These histograms are ef-
ficiently computed using our previously reported integral histogram image [5] and
we compare on its use for object detection against the Swain and Ballard
histogram intersection metric.

2.1 Local Features

We propose to describe objects by means of intensity level histograms, in order
to achieve viewpoint invariance [1,3]. However, our similarity measurement relies
on a linear boosted classifier that uses Haar local features over the histogram
signature. Histogram matching is carried out locally.

Those local features that are more discriminant during the Boosting learning
phase are selected as weak hypothesis or classifiers, and their linear combina-
tion gives a strong hypothesis, called strong classifier. The Haar local features
showed in Figure 1 represent a simple and suitable form to describe a histogram
signal. They encode the inflexions in the histogram at any location, width, and
sign. Consequently, the object can be modelled as a Haar decomposition of its
histogram signature using the more relevant coefficients (see Figure 1c).

Intensity level histograms are computed from both the patch training images
(30x30 pixels) for the Boosting stage, and patches extracted from test images.

2.2 Boosting Classifier

Feature selection is performed via AdaBoost [7]. AdaBoost extracts in each itera-
tion the weak classifier (feature width, location and sign) that best discriminates
objects from background training histogram images. A weak classifier can be ex-
pressed as

h(s) =
{

1 : s ∗ f > t
0 : otherwise , (1)
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where s is a training sample histogram, f is the feature being tested, with all
its parameters (width, location and sign), ∗ indicates the convolution operation,
and t is the response threshold. The algorithm selects the most discriminant
weak classifier h, as well as its contribution α in classifying the entire training
set, as a function of the classification error ε.

α =
1
2

ln
1 − ε

ε
(2)

At each iteration, the algorithm also updates a set of weights over the train-
ing set. Initially, all weights are set equally, but on each round, the weights of
missclassified samples are increased so that the algorithm is forced to focus on
such hard samples in the training set the previously chosen classifiers missed.
In a certain way, the technique is similar to a Support Vector Machine, in that
both search for a class separability hyperplane, although using different distance
norms, l2 for SVMs, and l1 for boosting [8]. The dimensionality of the separating
hyperplane in AdaBoost is given by the number N of weak classifiers that form
the strong classifier:

H(s) =
{

1 :
∑N

i=1 αihi(s) ≥ 1
2

∑N
i=1 αi object

0 : otherwise no-object
. (3)

2.3 Integral Histogram

An integral image is a representation of the image that allows fast computation
of features because it does not work directly with the original image intensities.
Instead, it works over an incrementally built image that adds feature values along
rows and columns. Once computed this image representation, any one of the local
features can be computed at any location and scale in constant time [4].

Extending the idea of having cumulative data at each pixel in the integral
image, we have proposed to store on it the histogram data instead of intensity
sums [5]. The integral histogram stores intensity level histograms which, once
constructed, allow for the computation of histogram within a rectangular area
in constant time.

The value of the integral histogram s at coordinates u, v contains the intensity
histogram of the region above and to the left of u, v, inclusive,

s(u, v) =
∑

i≤u,j≤v

s(i, j) . (4)

then, it is possible to compute for example, the intensity histogram in a rectan-
gular region, called Area, simply by adding and subtracting the cumulative his-
tograms at its four corners in the integral histogram representation (see figure 2),

histogram(Area) = s(A) + s(D) − s(B) − s(C) (5)
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Fig. 2. The integral histogram

Furthermore, the construction of the integral histogram is computed iteratively
with

s(u, v, bin) = bin(I(u, v))+ s(u− 1, v, bin)+ s(u, v − 1, bin)− s(u− 1, v − 1, bin)
(6)

where

bin(I(u, v)) =
{

1 : I(u, v) ∈ bin
0 : otherwise (7)

3 Object Detection

We have decided to compare our proposed method with the known Swain and
Ballard method [1] in terms of classification. The tests are based on patch images
of both object and background outdoor scenes. The Swain and Ballard color
intersection metric is defined as

⋂
(H, T ) =

m∑
i=1

min(H(i), T (i)) (8)

where H(i) is the new class test histogram, T (i) the reference histogram asso-
ciated to the object image and m the number of bins. This method makes the
comparison with such specific object histogram H(i), that is, it only uses one
canonical image to perform object detection.

Conversely, our method performs a object detection in a local manner, taking
into account possible changes in the histograms, due to small object translation,
non uniform illumination, scale and partial occlusions. As the learning process is
carried out over a set of training histogram images, the selected weak classifiers
become robust to small image transformations present in the training set. Some
of the training histogram images that have been used for our proposed method
are shown in the Figure 3a-l.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 3. Training set images. a-f) Object g-l) Background m-r) Occluded object.

The first experiment consists in applying the measurement over a validation
set of 30 object patch images. In the proposed method, we required a training
set of 50 object images and 100 background images. The number of bins selected
was of 12 as tradeoff between reliability and computation burden. The results
appear in table.

The second experiment is carried over 300 background patch images, extracted
from outdoor and indoor scenes, (none with the object). This test is performed
to show the method performance to background scenes and its discrimination.
One false positive is detected for our method (figure 4).

The third experiment was aimed at evaluating the descriptor robustness to
mild occlusions. The table shows the results for the occluded object shown in
Figure 3(m-r). Thanks to the local matching property of the proposed method,
the correct detection is high.

Method Correct False negatives False positives Test
Proposed method 96% 4% 0% Validation
Swain & Ballard 93% 6% 0%
Proposed method 99% 0% 1% Background
Swain & Ballard 85% 0% 15%
Proposed method 90% 10% 0% Occlusions
Swain & Ballard 73% 27% 0%

The detection is performed by applying the strong classifier H(s) over the
entire test image, at every location and scale. Therefore the use of the integral
histogram is of utmost importance in this hard task.

Some detection results are shown in Figure 5. We can appreciate that the
detection is achieved even when the object presents several scales, locations and
rotations in the plane.
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Fig. 4. False positive a) Object image b) Object histogram c) False positive patch
d) False positive histogram
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Fig. 5. Object detection a) Box object b-e) Object detection
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4 Conclusions

We have presented an appearance method to perform object detection invariant
to object scale and orientation changes, and robust under partial occlusions. The
classification rule is based on Haar local features extracted during a Boosting
training phase, giving a local measurement that accounts for small changes in
the object histogram signature. In order to reduce the computational cost of
performing object detection, the integral histogram has been incorporated.
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Borràs, Agnés II-33

Bougioukos, Panagiotis I-410
Breuß, Michael II-515

Brox, Thomas II-56
Brun, Luc I-185

Buera, Luis II-1
Buf, J.M. Hans du I-459

Burgeth, Bernhard II-515

Campilho, Aurélio II-170
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Gascó i Mora, Guillem I-257
Gaspar, José II-17
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Rodŕıguez, Luis Javier II-48
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