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Abstract. This paper proposes an incremental method for feature se-
lection, aimed at identifying attributes in a dataset that allow to buid
good classifiers at low computational cost. The basis of the approach is
the minimal-redundancy-maximal-relevance (mRMR) framework, which
attempts to select features relevant for a given classification task, avoid-
ing redundancy among them. Relevance and redundancy have been pop-
ularly defined in terms of information theory concepts. In this paper
a modification of the mRMR framework is proposed, based on a more
proper quantification of the redundancy among features. Experimental
work on discrete–valued datasets shows that classifiers built using fea-
tures selected by the proposed method are more accurate than the ones
obtained using original mRMR features.

1 Introduction

In the last years, many research efforts in areas like machine learning, clustering
and data mining have focused on problems that require the management of
big volumes of data. Applications like multimedia indexing, text classification or
gene expression array analysis demand these disciplines to work in domains with
tens or hundreds of thousands of variables, while domains hardly surpassed the
hundred of variables just few years ago. Elements in datasets are described by a
huge number of variables, and selecting a relevant subset of them upon which to
focus attention is still an open problem. This is the task carried out by variable
or feature selection algorithms1. The objective pursued when selecting features
may depend on the final application, being common purposes:

– removing useless features (noise or distracters) in order to save computing
time and data storage;

– improving the performance of a predictor (a classifier or a regressor) learned
from the dataset, since the risk of over-fitting decreases if the domain of the
problem has lower dimensionality;

1 In this paper we use equivalently the terms variables and features to denote the
attributes of elements in a dataset.
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– making the understanding of the process that has generated the dataset
easier (reverse engineering).

For an excellent introduction on feature selection algorithms, the reader is
referred to [1], where different contributions in this field are compiled.

The topic of this paper is feature selection for pattern classification. Given a
labeled dataset of N samples {(xi, li)}N

i=1, where xi = {xij}M
j=1 is a vector of

M features, and li the target classification label, the feature selection problem
consists in finding, from the observation space R

M , a subspace of at most m � M
features R

m from where to train a classifier characterizing l. The difficulty of
this task is that the number of possible subspaces in R

M of dimension less or
equal to m is

∑m
i=1

(
M
m

)
, and examining all of them exhaustively can not be done

in practice. To deal with this problem, different algorithms have been proposed,
based on suboptimal strategies to explore the space of solutions (greedy search,
best–first, genetic algorithms, etc.). These methods require a criterion to evaluate
the inspected subsets and guide the search. Two different philosophies can be
distinguished depending on the nature of this criterion, namely wrapping and
filtering.

Wrappers [2] use the learning machine of interest (the one to be used in the
final classifier) to score subsets according to their predictive power, selecting in
that way features tailored to a particular algorithm. On the other hand, filters
evaluate subsets by criteria independent of the chosen predictor. In general,
filters have a lower computational cost than wrappers, and are commonly used
to preprocess datasets before training classifiers, or before starting a wrapping
process.

This paper proposes a filtering method based on the minimal-redundancy-
maximal-relevance (mRMR) proposal in [3]. The aim of the mRMR approach is
to select a subset of features well–suited for a given classification task, by taking
into account the relevance (ability) of features to identify the classification label,
as well as the redundancy among them. These concepts are defined in terms of
the Mutual Information between features. This paper proposes a modification of
the (mRMR) proposal, based on an alternative formulation of the redundancy
among features. The significance of this modification is evaluated experimentally,
by comparing the performance of classifiers in two different problems, when
features selected by the original mRMR method or the ones selected by the
proposed method are used.

This paper is organized as follows. Section 2 reviews information theory con-
cepts necessary to understand the mRMR criterion, which is presented in sec-
tion 3. Then, section 4 proposes modifications on the mRMR criterion, to make a
more coherent formulation of the concept of redundancy among features. Section
5 quantifies the benefits of the proposed method, by comparing experimentally
the accuracy of classifiers trained with features selected by the presented pro-
posal, against the accuracy of classifiers trained with original mRMR features.
The paper ends by drawing some conclusions.
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2 Information Theory Concepts

Consider a discrete2 random variable x, taking values in the set of N symbols
{si}N

i=1. Let P (sk) be the probability of x = sk, then, the (Shannon’s) informa-
tion obtained when we are informed that x = sk is computed from the expression

I(x) = log
(

1
P (x)

)

= − log (P (x)) . (1)

Thus, the information received by observing x = sk is bigger the less likely sk

is. If the basis 2 is used for the logarithm, the information in x is measured in
bits. For example, if x is a binary variable with states {s1, s2} of equal probability
(i.e. P (s1) = P (s2) = 0.5), a bit of information is obtained when the state of x is
observed. On the other hand, if P (s1) = 1, then the observation of the value of x
does not really provide information, since it is already known that its value will
be s1. Equation (1) quantifies the information obtained when a concrete value
of x is observed. The information that the variable x can provide corresponds to
the average of the information provided by the different values it may take. This
corresponds to the expectation of the information E[I(x)], which is computed by

H(x) =
N∑

i=1

P (si)I(si) = −
N∑

i=1

P (si) log (P (si)) . (2)

By H(x) is denoted the Shannon’s entropy of x, and it is a measure of its
uncertainty. Using this same concept, one can compute the uncertainty about x
when the state of a second discrete random variable y = sj is known. Similarly
to expression (2), the conditional entropy of x given y = sj is computed by

H(x|sj) = −
N∑

i=1

P (si|sj) log (P (si|sj)) .

The conditional entropy of x for any value of y corresponds to the weighted
average (with respect to P (y) probabilities) of the entropies H(x|sj). Therefore,
it corresponds to

H(x|y) = −
N∑

j=1

P (sj)
N∑

i=1

P (si|sj) log (P (si|sj)) .

H(x|y) measures the uncertainty in x once variable y is known. Combining
H(x|y) and H(x), one can quantify the information about x provided by y, what
has been termed as the mutual information between x and y. This is done with
the expression

MI(x, y) = H(x) − H(x|y) .

2 Continuous variables imply equivalent expressions, replacing summatories by inte-
grals, and probabilities by density functions.
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That is to say, if from the uncertainty of x one subtracts the uncertainty
of x once y is known, this provides the information (in bits) that variable y
provides about x. MI is widely used as a measure to determine the dependency
of variables. It can be shown that MI can also be computed by

MI(x, y) =
N∑

i=1

N∑

j=1

P (si, sj) log
P (si, sj)

P (si)P (sj)
.

Next section describes a proposal to use this concept in order to select a
proper subset of features for classification tasks.

3 mRMR Criterion

Many filter approaches to feature selection are based on first ranking features
according to a scoring function, to then defining a subset of them from the m
ones of highest score. For classification tasks, this scoring function has to identify
features with the highest relevance to the class label l. One common approach
to quantify this relevance is the mutual information between features and the
class label MI(x, l).

The major weakness of this scheme is that, in order to obtain a good classifi-
cation performance, selecting the m best features does not imply that the best
subset of m features is actually selected. Indeed, the combination of two good
features does not imply improving the classification performance, if both have
a very similar behavior in determining l. Thus, it seems reasonable to avoid the
redundancy among selected features. The work in [3] proposes to do that with
the heuristic minimal–redundancy–maximal–relevance framework, where the re-
dundancy between two features x and y is determined by MI(x, y). The task
of feature selection is posed as selecting from the complete set of features S, a
subset Sm of m features that maximizes

1
m

∑

xi∈Sm

MI(xi, l) − 1
(
m
2

)
∑

xi,xj∈Sm

MI(xi, xj) . (3)

This expression takes into account the relevance of features with the class label
while penalizing redundancy among them. Since the search space of subsets of
m elements in R

M is too big to be explored in practice, the paper proposes to
determine Sm incrementally by means of a forward search algorithm. Having a
subset Sm−1 of m − 1 features, the feature xi ∈ {S − Sm−1} that determines
a subset {xi, Sm−1} maximizing (3) is added. It can be shown that this nested
subset strategy is equivalent to iteratively optimize the following condition:

max
xi∈S−Sm−1

⎛

⎝MI(xi, l) − 1
m − 1

∑

xj∈Sm−1

MI(xj , xi)

⎞

⎠ . (4)

Experiments in [3] show that for subsets of more than 20 features, the Sm

obtained with this method achieves more accurate classification performances
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than the subset obtained by maximizing the MI(Sm, l) value3 , while the re-
quired computation cost is significantly lower.

4 A Reformulation of the mRMR Criterion

The criterion presented in the previous section is based on an heuristic formu-
lation of how a subset of good features for classification purposes should be. It
should contain features that provide maximal information of the classification
label l, while providing minimal information of the rest of the features in the
set. These two concepts are considered in (4) by quantifying this information
in bits. However, we found that in order to quantify the redundancy among
features, this is not a proper way to proceed. Let’s consider an example where
MI(x, y) = 0.5. This half a bit of information may correspond to different re-
dundancy situations of x and y. For instance, if the uncertainty (information) in
x is equal to 0.5 (i.e., its entropy is H(x) = 0.5), then MI(x, y) = 0.5 tells that
y provides at least the same information than x. This means that if a feature
subset Sm already contains y, adding the feature x is completely redundant. On
the other hand, if H(x) > 0.5 and H(y) > 0.5, then the redundancy among both
variables is weaker. By using expression (4) to select features, these two situa-
tions are considered identical. In order to represent the concept of redundancy
more properly, this paper proposes the use of the coefficient of uncertainty [4].
Given two variables x and y, the term

R(x, y) =
MI(x, y)

H(y)
, (5)

quantifies the redundancy of y with respect to x with a value between [0, 1],
with 1 being a situation of complete redundancy. It measures the ratio of infor-
mation of y already provided by x. Note that this definition of redundancy
is non–symmetric (i.e., R(x, y) may not be equal to R(y, x)), which is con-
sistent with reality. The fact that the value of x can completely determine
the value of y does not mean that the same occurs in the opposite direction.
Examples are feature relationships like y = |x|, or y = x2. In these cases,
adding x in a set that contains y is not completely redundant (some new in-
formation is added to the data set), while the opposite assignment is uninforma-
tive. By using the redundancy factor in (5), now a new incremental feature
selection algorithm is proposed, based on maximizing at each iteration the
condition

max
xi∈X−Sm−1

⎛

⎝MI(xi, l) − 1
m − 1

∑

xj∈Sm−1

R(xj , xi)

⎞

⎠ .

3 That is, the mutual information between the whole subset of variables and the
classification label l.
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5 Experiments

In order to test the proposed feature selection algorithm, the experiments on
discrete data proposed in [3] have been reproduced, using the Multiple Features
dataset of handwritten digits (HDR) and the Arrhythmia dataset (ARR). Both
datasets, available at the UCI repository [5], describe its elements by a rela-
tively big number of continuous features. In the experiments, features have been
discretized as proposed in [3]. Table 1 details dataset characteristics.

Table 1. Datasets used in the experiments

Dataset Acronym Discretization # Classes # Examples/class # Features

Multi-Feature HDR -1 if xi ≤ μ 10 200 per class 649
1 otherwise

-1 if xi < μ − σ
Arrhythmia ARR 1 if xi > μ + σ 2 237 and 183 278

0 otherwise

Performance of the mRMR and the proposed method is evaluated by a 10-
fold cross validation procedure (Figure 1). From each dataset, 10 pairs of train-
ing/testing sets are generated. Then, the feature selection algorithm is applied in
each training set, generating a sequence of 50 nested subsets S1 ⊂ S2 ⊂ . . . ⊂ S50
maintaining the features selected to solve the classification task. For a given
subset Si, a linear Support Vector Machine (SVM) is trained using the training
portion of the dataset, and then its accuracy is quantified by the classification
error rate on the testing portion. To train and test classifiers, the SVM imple-
mentation in the LIBSVM package [6] has been used, using default parameters.

The feature selection methods implemented require the availability of the
probability terms P (x) and P (x, y) for features in the dataset. These terms
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Fig. 1. 10–fold Cross-Validation process
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Fig. 2. Mean error rate of the classifiers learned using the mRMR approach, and the
proposed method, for the HDR and ARR datasets. Circles on plotted lines highlight
cases where the difference in performance is statistically significant (α = 0.05).

have been simply estimated by counting the relative frequency of the categorical
symbols of each feature in the dataset. For instance, P (x = 1) is determined
by the number of examples in the dataset having x = 1, divided by the total
number of examples.

Figure 2 shows, for each dataset, the mean classification error rate of the
classifiers learned using features selected by the two methods considered. For
each subset of features Si, an statistical test has been applied to determine
whether the classifiers obtained with the proposed method really outperform
the mRMR ones. This has been done using the 10-Fold Cross-Validated Paired t
test described in [7]. For the cases in which methods have a statistical significant
difference in their performance, plots have been highlighted with a circle.
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Fig. 3. Difference between the mean error rates obtained with each method. Posi-
tive values correspond to improvements provided by the proposed method. Circles on
plotted lines highlight statistically significant differences (α = 0.05).
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Results show that in the HDR dataset, the performance achieved when us-
ing the proposed method is clearly better for most of the subsets of features
considered. For the ARR dataset, both methods perform similarly. Only in one
case one method significantly outperforms the other, and this method is the one
proposed in the paper. For a clearer view of the improvement achieved in the
average classification performance, Figure 3 shows the difference between the
mean error rate obtained with each method.

6 Conclusions

A feature selection method for classification tasks has been presented. The pro-
posal is based on the mRMR framework [3], an introduces an alternative criterion
to quantify the redundancy among features. This criterion leads to a feature
selection algorithm better suited for classification purposes than the original
mRMR proposal. This has been certified in experiments done, measuring the
performance of SVM classifiers when trained using the features selected by our
proposal and the ones by [3]. Results show that with the features selected by the
proposed method, classifiers perform at least as well, and in many cases statis-
tically significantly better, than using the original mRMR selected features.
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