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Abstract. A moment-based approach is developed to constructing tree-
structured descriptions of patterns given by region-based shapes with
grayscale attributes. The proposed representation is approximately in-
variant with respect to the pattern rotation, translation, scale, and level
of brightness. The tree-like structure of the pattern representations pro-
vides their independent encoding into prefix code words. Due to this
fact, a pattern recognition procedure amounts to decoding a code word
of the pattern by the nearest code word from a tree of the code words
of selected templates. Efficient application of the pattern representation
technique is illustrated by experimental results on signature and hand
gesture recognition.

1 Introduction

Pattern representation is one of the basic problems in pattern recognition. In
many cases, this problem is solved by constructing invariant descriptions of pat-
terns with respect to their similarity transformations. In addition, it is neces-
sary to construct the structured pattern descriptions that permit to decrease a
computational complexity of a recognition procedure against a full search for a
decision. Our goal consists in developing a technique of constructing the invari-
ant tree-structured representations for a wide class of patterns given by 2D solid
shapes with grayscale features.

A survey of known approaches to 2D shape representation is given in [5].
Among the developed shape descriptors a significant part refers to moment-based
techniques [6] and the techniques based on shape decomposition into geometric
primitives [2], [3]. A problem of appropriate fitting the objects by primitives of
a given shape is considered in [9]. Of particular interest is a recursive decom-
position approach providing tree-structured descriptions of shapes. The repre-
sentations based on such approach are suggested in papers [1] and [4]. However,
in many applications, the patterns are given by both shape and grayscale fea-
tures. The examples are signatures, hand gestures, handwritten sings, and trade
marks with nonuniform brightness. Thus, a demand arises for developing a pat-
tern representation technique that combines the shape and grayscale features,
and provides a similarity transformation invariance and a tree-like structure of
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the pattern description. This kind of pattern representations is convenient for
their fast matching in pattern recognition. For these representations, the prob-
lem of pattern matching amounts to compare the representing trees by using a
tree distance similar to metrics proposed in [7].

In this paper, we propose a technique of constructing tree-structured pattern
representation on the basis of a recursive scheme of pattern partitioning and an
approximation of the pattern parts (segments) by elliptic primitives using central
and axial moments of inertia. The invariance of the representation is achieved by
calculating the primitives in principal axis of the segments and by normalizing
parameters of the primitives. A new dissimilarity measure is suggested in a
space of the pattern representations. Also, an efficient application of the pattern
representation technique is demonstrated by experimental results of signature
and gesture recognition.

2 Statement of the Problem

Given grayscale image in the Cartesian coordinates X and Y , let a pattern be
defined by a set of N pixels

P =
{

pk = {(x, y, z) : z(x, y) = zk, |x−xk| ≤ Δ

2
, |y−yk| ≤ Δ

2
}, k = 1, N

}
(1)

where z(x, y) is a darkness function; Δ is a linear size of the pixel pk; (xk, yk) are
the coordinates of the center and 0 < zk ≤ q is the darkness integer value of pk.
The zero darkness is assigned to background pixels. Let U and V be the Cartesian
coordinates connected with the coordinates X and Y by a transformation

(
u
v

)
=

(
cux cuy

cvx cvy

) (
x − x∗

y − y∗

)
(2)

where (x∗, y∗) is a translation point and cu = (cux, cuy) and cv = (cvx, cvy) are
unit direction vectors of the coordinate axes U and V relative to the axes X and
Y , respectively. In the coordinates U and V , we define an elliptic primitive by a
set of points

Q =
{

(u, v, z∗) : z∗(u, v) = z∗,
u2

r2
u

+
v2

r2
v

≤ 1
}

(3)

where z∗(u, v) = z∗ > 0 is a uniform darkness function and ru > 0 and rv > 0
are the radii along the appropriate axes U and V . According to (2) and (3), the
primitive is determined by the following parameters

(x∗, y∗, z∗), (cu, cv), (ru, rv) . (4)

An error of approximation of the object P by the primitive Q is defined by

E(P, Q) =
1

‖P ∪ Q‖
∑

P∪Q

|z − z∗|
max(z, z∗)
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where the sum is taken over all pixels which centers belong to the union P ∪ Q
and ‖P ∪ Q‖ is the number of these pixels. It is assumed that z and z∗ possess
the zero values in all points outside P and Q, respectively. If 0 ≤ δ < 1 is a given
admissible approximation error, then the criterion of approximation is

E(P, Q) ≤ δ . (5)

A scheme of the approximation of the total pattern P by a set of Q-primitives
is based on partitioning the pattern into a set of segments and fitting the seg-
ments by the primitives satisfying (5). In what follows, we describe the technique
of pattern representation (section 3), the scheme of pattern recognition based
on the representation technique (section 4), and the results of experiments on
signature and gesture recognition (section 5).

3 Recursive Moment-Based Pattern Representation

Due to recursiveness of the proposed pattern representation, it is enough to
describe the moment-based approximation of any segment of the pattern and
then to formalize the scheme of pattern partitioning. The approximation is based
on calculating the extreme moments of inertia for both the object P (segment
or total pattern) and the primitive Q given by (1) and (3), respectively. For the
object P , the central moment of inertia relative to a point (x∗, y∗) is

Jc(P ) =
N∑

k=1

∫

pk∈P

[
(x − x∗)2 + (y − y∗)2

]
wz(x, y) dxdy (6)

and the axial moment of inertia relative to an axis determined by the point
(x∗, y∗) and the unit vector c = (cx, cy) is defined by

Ja(P ) =
N∑

k=1

∫

pk∈P

[cx(y − y∗) − cy(x − x∗)]2 wz(x, y) dxdy (7)

where wz(x, y) = z(x, y)
/∑N

k=1

∫
pk∈P

z(x, y) dxdy is the darkness distribution
function for the object P .

Minimization of the moment (6) over the variables x∗ and y∗ yields the opti-
mum point (x∗ =

∑N
k=1 xkw̃k, y∗ =

∑N
k=1 ykw̃k) with the weights

w̃k = zk

/∑N
i=1 zi , k = 1, N . The minimum and maximum values of the mo-

ment (7) correspond to a pair of orthogonal axes (U, V ) with the origin (x∗, y∗)
and the unit direction vectors cu = (cux, cuy) and cv = (cvx, cvy). These vectors
are determined by a matrix of the second order central moments

G =
(

gyy −gxy

−gyx gxx

)

with the elements gxx =
∑N

k=1(xk−x∗)2w̃k+ Δ2

12 , gyy =
∑N

k=1(yk−y∗)2w̃k+ Δ2

12 ,
and gxy = gyx =

∑N
k=1(xk − x∗)(yk − y∗)w̃k.
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The eigenvalues are equal to λu,v = 1
2 (gxx + gyy)∓ 1

2

√
(gxx − gyy)2 + 4gxygyx

and real due to symmetry of the matrix G. Since G is positive definite (detG >
0), therefore λv ≥ λu > 0. If λv > λu, then the corresponding eigenvectors cu and
cv determine the directions of the unique axes U and V . Notice that there are four
different pairs (cu, cv) for the given pair (λu, λv). We choose the decision (cu, cv)
corresponding to the minimum right rotation in the transformation (2). The
found point (x∗, y∗) and eigenvectors cu and cv provide the following extreme
moments of inertia

Ju(P ) = λu, Jv(P ) = λv, Jc(P ) = λu + λv . (8)

For the primitive Q of the form (3), the moments of inertia relative to the
found principal axes U and V are determined by the weighted mean values

Ju(Q) =
∫

Q

v2w∗
z(u, v) dudv =

r2
v

4
, Jv(Q) =

∫

Q

u2w∗
z(u, v) dudv =

r2
u

4
(9)

with the darkness density w∗
z(u, v) = z∗(u, v)

/∫
Q

z∗(u, v) dudv that is equal to

1
/∫

Q
dudv for the uniform function z∗(u, v) = z∗ of the primitive Q. The para-

meters (x∗, y∗) and (cu, cv) of the primitive Q are determined by the principal
axes U and V of the object P . The radii (ru, rv) follow from conditions of a
moment-based equivalency of P and Q : Ju(Q) = Ju(P ); Jv(Q) = Jv(P ) and,
using (8) and (9), these radii are equal to ru = 2

√
λv and rv = 2

√
λu. The dark-

ness value z∗ of the primitive Q is found by the mean value z∗ =
∑N

k=1 zk /N
that yields a minimum mean square deviation of the darkness values for all pixels
of the object P .

The pattern representation is constructed by the following recursive scheme.
At the zero level (l = 0), the total pattern P is regarded as the object P0 with the
number n = 0. The object P0 is approximated by the finest matched primitive
Q0 as described above. Given admissible error δ, if the pair (P0, Q0) satisfies the
criterion (5) or P0 consists of a single pixel, the primitive Q0 is marked as ”end”
node. Otherwise, the object P0 is partitioned into two segments by the principal
axis V that moment of inertia λv > λu. The obtained segments are regarded as
the new objects P1 and P2 of the first level l = 1. The described procedure is
repeated for the objects P1 and P2 and for the new objects of the next levels.
In general case, the object Pn of the l-th level produces two new objects P2n+1
and P2n+2 of the (l + 1)-th level. The maximum level of partitioning is upper
bounded by a given L and all primitives of the L-th level are marked as ”end
nodes”. Note that if λu = λv for some object, then the pair (λu, λv) does not give
the unique pair of eigenvectors (cu, cv). For this object, the pair of axes (U, V )
is assigned by the principal axes of the total pattern. The last notice limits a
class of admissible patterns which matrices G have different eigenvalues.

Given pattern P , the described recursive scheme produces the pattern repre-
sentation R in a form of a complete binary tree of the primitives (nodes)

R = {Qn : 0 ≤ n ≤ nmax} (10)
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where n is the node number of the level ln = �log2(n + 1)	 ≤ L. Each node
Qn in the tree (10) is described by the parameters (4) that are recalculated into
the principal coordinates (U = U0, V = V0) of the root node Q0 by using the
transformation (2). The recalculated centers (u∗, v∗), radii (ru, rv), and darkness
values z∗ of the primitives are normalized for providing scale and brightness
invariance of the representation (10).

Two examples of the representations are shown in Fig. 1 for signature and
hand gesture. The left pictures correspond to real images, the middle pictures
show the extracted patterns (q = 255 for signature and q = 120 for gesture), and
the right pictures illustrate the pattern representations by the grayscale elliptic
primitives (δ = 0.05, L = 7). Increasing L provides more detailed representation.

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Examples of the representations for grayscale signature and hand gesture

4 Application for Pattern Recognition

Pattern recognition by the nearest template requires a dissimilarity measure for
any pair of the pattern representations. This measure is based on defining both
a correspondence between the nodes of a pair of trees and an intersection of the
trees. For the trees (R, R̂) of the form (10), the nodes Qn ∈ R and Q̂n ∈ R̂ are
regarded corresponding to each other if these nodes have the same numbers. A
set of the corresponding nodes gives the intersection R ∩ R̂.

Let ρ(Qn, Q̂n) ≥ 0 be a dissimilarity function of the corresponding nodes Qn

and Q̂n for the pairs (Qn, Q̂n) ∈ (R ∩ R̂). Using this function, we define a loss
function

d(Qn, Q̂n) =
{

ρ(Qn, Q̂n), if Qn and/or Q̂n are ”end” nodes,
0, otherwise.

(11)
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Then, the dissimilarity measure of the trees (R, R̂) is defined by

D(R, R̂) =
∑

R∩R̂
d(Qn, Q̂n)w(Qn, Q̂n) (12)

where w(Qn, Q̂n) = 2−ln and the sum is taken over all pairs (Qn, Q̂n) ∈ (R ∩
R̂). The measure (12) requires a definition of the function ρ(Qn, Q̂n) for the
ellipses Qn and Q̂n given in the same principal coordinate axes U and V of the
root nodes Q0 and Q̂0. A pair of recalculated and normalized primitives Qn :
((u∗

n, v∗n, z∗n), (cnu, cnv), (rnu, rnv)) and Q̂n : ((û∗
n, v̂∗n, ẑ∗n), (ĉnu, ĉnv), (r̂nu, r̂nv))

is shown in Fig. 2. According to Fig. 2, the ellipses Qn and Q̂n are determined
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Fig. 2. A pair of primitives Qn and Q̂n in principal axes U and V of the pattern

by the center vectors rn = (u∗
n, v∗n) and r̂n = (û∗

n, v̂∗n), and the appropriate pairs
of the direction vectors (un = rnucnu, vn = rnvcnv) and (ûn = r̂nuĉnu,
v̂n = r̂nv ĉnv), respectively. Taking into account the above vectors, we choose

ρ2(Qn, Q̂n)=
|rn − r̂n|2

max2(|rn|, |r̂n|)+
|un − ûn|2 + |vn − v̂n|2

max(|un|2 + |vn|2, |ûn|2 + |v̂n|2)+
(z∗n − ẑ∗n)2

max2(z∗n, ẑ∗n)

that coupled with (11) completely defines the measure (12).
Selection of the templates is performed at the stage of training the classifier.

For this goal, we use a training set R0 that contains a fixed number of semantic
groups of patterns with a given number of the pattern representations in each
group. Processing of the semantic groups in R0 is performed independently and
produces a fixed number m of the selected representations in each group. In the
result, a set of the templates Rm ⊂ R0 is constructed by combining the templates
selected in each semantic group. In case of m = 1, the single template R̂ in the
given group of R0 yields

∑
i D(Ri, R̂) = minj

∑
i D(Ri, Rj), where the sums are

taken over all pattern representations of the given semantic group. The template
R̂ provides the smallest dissipation σ =

∑
i D(Ri, R̂) /

∑
i 1 per one sample of

the group in R0. In case of m > 1, the selected templates R̂1, R̂2, . . . , R̂m in each
semantic group of R0 yield the conditional maximum

∑m
i=1

∑m
j=i+1 D(R̂i, R̂j) =

max
∑m

i=1
∑m

j=i+1 D(Ri, Rj) over all possible sequences R1, R2, . . . , Rm satisfy-
ing the inequality

∑m
i=1 D(Ri, R̂) ≤ mσ.
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Given Rm, the recognition decision about a pattern P via the pattern repre-
sentation R is made by the nearest template R̂∗ ∈ Rm providing D(R, R̂∗) =
minR̂∈Rm D(R, R̂). The recognition efficiency is determined by a probability
Ptrue = Pr{”true decision” } that is a ratio of a number of true decisions to
a total number of patterns being under recognition.

Any representing tree R of the form (10) can be written as a code word which
length of the code word is proportional to the number of the nodes in R. Due
to completeness of the representing trees, a given finite set of the code words
satisfies the Kraft inequality [8]. This property yields the set Rm in a form of a
tree T (Rm), in which the search for the nearest template can be performed by a
modification of the Viterbi sequential decoding algorithm [8]. This step by step
algorithm processes a limited number of subpaths in T (Rm) at each step. If the
length of the subpaths is equal to K = γ log N , where γ > 0 and N = 2L+1 is the
upper estimation of the code word length, then the computational complexity
of the search algorithm is upper bounded by O(Nγ+1).

5 Experimental Results

The utility of the developed pattern representation technique was confirmed
by experiments on recognition of signatures and hand gestures given by real
grayscale images. The signatures were kindly submitted by our students and
the gestures were the letters of American Sign Language (ASL) taken from the
website http://www.vision.auc.dk/∼tbm/Gestures/database.html.

The training set R0 of the signatures consisted of 32 (number of persons)
semantic groups with 4 signatures of one person in each group. The test set
of signatures submitted for recognition contained the same 32 semantic groups
with 4 other samples of signatures in each group. In the case of hand gestures,
the number of semantic groups was determined by the size of the downloaded
ASL alphabet and it was equal to 25 signs. Each semantic group in the gesture
training set R0 was given by 8 samples and the test set of gestures contained
the same 25 signs per 8 other samples in each group. In both cases, the sets of
the templates R2 ⊂ R0 (m = 2) were used. For δ = 0.05 and different values
L, the results in terms of Ptrue are given by table in Fig. 3. As shown in the
table, the pattern representations based on shape and grayscale features (q > 1)
provide a profit relative to the representations using only shape features (q = 1).
As a whole, the recognition efficiency grows when L increases and, for fixed L,
it can be improved by increasing the parameter m.

δ=0.05

grayscale (q=120) binary (q=1) grayscale (q=255) binary (q=1)

L=6 0.980 0.975 0.977 0.969

L=7 0.990 0.980 0.992 0.969

L=8 0,995 0.980 0.992 0.977

L=9 0,995 0.985 0.992 0.992

Gestures Signatures

Fig. 3. Experimental results of gesture and signature recognition
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6 Conclusion

In this paper, we proposed the new technique for constructing the tree-structured
representations of region-based grayscale patterns. The basis of the technique
consists of the recursive pattern decomposition and moment-based approxima-
tion of the pattern segments by elliptic primitives taken in principal axis of the
segments. The last property provides the rotation and translation invariance of
the pattern representation. The scale and brightness invariance is achieved by
appropriate normalization of the primitives. As compared with classical descrip-
tors using Zernike moments or Fourier expansions, our technique is based on
zero, first, and second geometric moments and it is meant for structured recog-
nition algorithms. The tree-like structure of the pattern representations permits
to construct any set of templates as a tree of code words and to search for the
decision templates by a scheme of sequential decoding. The search algorithm has
a polynomial computational complexity of the length of the code words. More-
over, a multiresolution property of the proposed representation gives a chance
to accelerate the recognition procedure using a scheme of successive refinement.
The experiments on recognition of real signatures and ASL gestures showed the
probability of true decisions within 0.98−0.99. We plan to develop our technique
with other primitives and measures as well as to make experiments on handwrit-
ten sign recognition. Also, an accelerated recognition algorithm based on the
multiresolution property of the pattern representations will be researched.
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