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Abstract. In this work, we present a fast stochastic context-free parsing algo-
rithm that is based on a stochastic version of the Valiant algorithm. First, the
problem of computing the string probability is reduced to a transitive closure
problem. Then, the closure problem is reduced to a matrix multiplication prob-
lem of matrices of a special type. Afterwards, some fast algorithm can be used to
solve the matrix multiplication problem. Preliminary experiments show that, in
practice, an important time savings can be obtained.

1 Introduction

Stochastic Context-Free Grammars (SCFGs) are an important specification formalism
that are frequently used in Syntactic Pattern Recognition. SCFGs have been widely used
to characterize the probabilistic modeling of language in Computational Linguistics
[1,2], Speech Recognition and Understanding [3], and Biological Sequence Analysis
[4]. The main advantages of this formalism are: the capability to model the long-term
dependencies that can be established between the different parts of a sentence, and the
possibility of incorporating the stochastic information to allow for an adequate model-
ing of the variability phenomena that are always present in complex problems. However,
a notable obstacle to using these models is the time complexity of both the stochastic
parsing algorithms and the algorithms that are used for the probabilistic estimation of
the models from a training corpus.

Most of the stochastic parsing algorithms are based either on the Earley algorithm,
for SCFGs in general format [1], or on the Cocke-Younger-Kasami (CYK) algorithm,
for SCFGs in Chomsky Normal Form (CNF) [3]. Both algorithms are based on a Dy-
namic Programming scheme and have a time complexity O(gn3), where n is the length
of the string and g is the size of the grammar. One of the well-known algorithms for
computing the probability of a string given a SCFG in CNF is the inside algorithm [5].

There are theoretical works that attempt to improve the time complexity of the pars-
ing algorithms for context-free grammars. In [6], a version of the CYK algorithm was
proposed whose time complexity is O(M(n)), where M(n) is the time complexity
of the product of two boolean matrices of dimension n. The close relation between
context-free parsing and boolean matrix multiplication is demonstrated in [7]. A version
of the Valiant algorithm that is based on the computation of shortest paths is presented
in [8].
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There are a lot of interesting works in the literature for matrix multiplication [9,10].
The classical method is the well-known Strassen algorithm [9]. This algorithm has a
time complexity O(n2.8). Another method is the Coppersmith & Winograd algorithm,
which has a time complexity O(n2.38) [10]. Although this algorithm is asymptotically
faster, it involves such huge hidden constants that it is not practical.

In this work, we present a fast stochastic context-free parsing algorithm that is based
on a stochastic version of the Valiant algorithm. The parsing problem is reduced to a
multiplication problem of matrices of a special type. Fast algorithms can be used for this
matrix multiplication problem. However, the constant that is associated to fast matrix
multiplication algorithms is large. Moreover, in the case of parsing algorithms that are
based on matrix multiplication, the size of the grammar is another factor that also affects
the time complexity of the algorithm. In real tasks, the grammar can have thousands of
rules.

In the following section, some preliminary concepts are introduced. In Section 3,
we will reduce the computation of the probability of a string to the transitive closure
of matrices. In Section 4, we will reduce the transitive closure to a matrix product. In
Section 5, preliminary experiments are reported.

2 Preliminaries

First, we introduce the notation for SCFGs. Then, we present the preliminary definitions
that constitute the formal framework used in this work.

A Context-Free Grammar (CFG) G is a four-tuple (N, Σ, S, P ), where N is a finite
set of non-terminals, Σ is a finite set of terminals (N ∩Σ = ∅), S ∈ N is the initial non-
terminal, and P is a finite set of rules: A → α, A ∈ N , α ∈ (N ∪ Σ)+ (without loss
of generality, we only consider grammars with no empty rules). A CFG in Chomsky
Normal Form (CNF) is a CFG in which the rules are of the form A → BC or A → a
(A, B, C ∈ N and a ∈ Σ). A left-derivation of x ∈ Σ+ in G is a sequence of rules
dx = (q1, q2, . . . , qm), m ≥ 1, such that: (S

q1⇒ α1
q2⇒ α2

q3⇒ . . .
qm⇒ x), where

αi ∈ (N ∪ Σ)+, 1 ≤ i ≤ m − 1 and qi rewrites the left-most non-terminal of αi−1.
The language generated by G is defined as L(G) = {x ∈ Σ+ | S

∗⇒ x}.
A Stochastic Context-Free Grammar (SCFG) is defined as a pair (G, p), where G

is a CFG and p : P →]0, 1] is a probability function of rule application such that
∀A ∈ N :

∑nA

i=1 p(A → αi) = 1, where nA is the number of rules associated to A.
Let Gs be a SCFG. Then, we define the probability of the derivation dx of the string

x, PrGs(x, dx) as the product of the probability application function of all the rules used
in the derivation dx. Given that for some x ∈ L(G) there can be more than one deriva-
tion, we also define the probability of the string x as: PrGs(x) =

∑
∀dx

PrGs(x, dx).
The probability of generating a string, given Gs, can be computed from the well-

known inside algorithm [5]. The inside algorithm is the stochastic version of the classi-
cal parsing algorithm of Cocke-Kasami-Younger.

In the following sections, we will present the inside algorithm in terms of the matrix
product. To do this, the following concepts must be introduced.

Definition 1. Given a SCFG Gs, we define a stochastic non-terminal symbol vec-
tor (SNTV) related to this SCFG as a vector C with |N | components, where each
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component is associated with a non-terminal symbol such that 0 ≤ C[A] ≤ 1, ∀A ∈ N .
A special SNTV 0 can be defined: 0[A] = 0, ∀A ∈ N .

We define a binary operation ⊕ on arbitrary SNTVs, a and b as follows:

(a ⊕ b)[A] = a[A] + b[A] ∀A ∈ N

It can be seen that this operation is associative, commutative, and a + 0 = 0 + a = a.
Note that this operation is not always an inner operation. However, we will see later that
depending in the context of use, it can be an inner operation.

We also define another binary operation � on arbitrary SNTVs, a and b as follows:

(a � b)[A] =
∑

B,C∈N

Pr(A → BC)a[B]b[C] ∀A ∈ N (1)

This is an inner operation because 0 ≤ a[B], b[C] ≤ 1, ∀B, C ∈ N , and
∑

B,C∈N

Pr(A → BC) = 1. Note that a � 0 = 0 � a = 0. This operation is neither associative
nor commutative. However, operation � distributes over operation ⊕.

Definition 2. A SNTV matrix is a square matrix in which each element is a SNTV.

Given two n × n square SNTV matrices, U and V , their sum is defined as:

(u + v)i,j = ui,j ⊕ vi,j 1 ≤ i, j ≤ n

and the product is defined as:

(u v)i,j =
n∑

k=1

ui,k � vk,j 1 ≤ i, j ≤ n

where the sum is defined in terms of operation ⊕. We will see later that the conditions
in which these operations are used guarantee that both of them are inner operations.
The sum of SNTV matrices is associative and commutative and has unit element. The
product is neither associative nor commutative. However, the product distributes over
the sum.

From the previous definitions and following a notation very close to [11], the inside
algorithm can expressed in terms of a (n + 1) × (n + 1) SNTV matrix t, such that:

ti,j [A] = PrGs(A
∗⇒ xi+1 . . . xj)

Initializing ti,j = 0, 0 ≤ i, j ≤ n, and ∀A ∈ N :

ti,i+1[A] = Pr(A → xi+1) 0 ≤ i < n,

ti,i+j [A] =
∑

B,C∈N

Pr(A→BC)
j−1∑

k=1

ti,i+k[B]ti+k,i+j [C] 2 ≤ j ≤ n, 0 ≤ i ≤ n − j

and therefore,

ti,i+j =
j−1∑

k=1

ti,i+k � ti+k,i+j (2)

In this way, PrGs(x) = t0,n[S].
Note that in expression (2), the sum is defined in terms of ⊕. It can be observed that

by definition, ti,j [A] ≤ 1, and because the combinations of probabilities are always
bounded by one then the ⊕ operation is only used as an inner operation.
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3 Reducing the Inside Probability to the Transitive Closure

Following a presentation that is similar to the one in [12], we now explain how the
SNTV matrix t can be computed by means of square SNTV matrix operations.

Definition 3. Given a SCFG Gs and a string x1 · · ·xn ∈ Σ∗, we define E as a square
SNTV matrix with dimension n + 1 such that ∀A ∈ N :

ei,i+1[A] = Pr(A → xi+1) 0 ≤ i ≤ n − 1,

ei,j = 0 otherwise.

From this definition, E2 can be computed in the following way:

e
(2)
i,j =

n∑

k=0

ei,k � ek,j , 0 ≤ i, j ≤ n − 2

Given that ei,k = 0 if k 
= i + 1 and, consequently, ek,j = 0 if j 
= i + 2, then the only
element that is different from zero in row i is:

e
(2)
i,j = ei,i+1 � ei+1,i+2

Therefore, e(2)
i,i+2 
= 0, 0 ≤ i < n − 2, and e

(2)
i,j = 0, otherwise.

For E3: E3 = E2E + EE2, given that the product between square SNTV matrices
is not commutative. Thus:

e
(3)
i,j =

n∑

k=0

e
(2)
i,k � ek,j +

n∑

k=0

ei,k � e
(2)
k,j = e

(2)
i,i+2 � ei+2,i+3 + ei,i+1 � e

(2)
i+1,i+3

Therefore, e(3)
i,i+3 
= 0, 0 ≤ i < n − 3, and e

(3)
i,j = 0, otherwise.

This result can be easily extended for l, 1 ≤ l ≤ n:

e
(l)
i,i+l 
= 0 0 ≤ i ≤ n − l .

Lemma 1. The positive closure of a square SNTV matrix E is defined as: E+ =∑n
i=1 Ei .

From the result of the previous definition, it can be seen that, for l = n, the only no null
value in En is e

(n)
0,0+n and, for l > n, all values of El are null.

Theorem 1. Let Gs be a SCFG and let x ∈ Σ+ be a string. Let E+ be the positive
closure of matrix E which was defined previously. Then E+ = En = t, and e

(l)
i,i+l =

ti,l, 1 ≤ l ≤ n, 0 ≤ i ≤ n − l.

The demonstration is by induction on l. For l = 1, by definition of E and t:

ei,i+1[A] = Pr(A → xi+1) = ti,i+1[A] 0 ≤ i ≤ n − 1, ∀A ∈ N.
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Suppose that for j, 1 < j < l, then: e
(j)
i,i+j [A] = ti,i+j [A] By expression (2) in the

definition of t:

ti,i+j [A] =
∑

B,C∈N

Pr(A → BC)
j−1∑

k=1

ti,i+k[B]ti+k,i+j [C] =
j−1∑

k=1

ti,i+k � ti+k,i+j

For l:

e
(l)
i,i+l =

l−1∑

j=1

e
(j)
i,i+je

(l−j)
i+j,i+l =

l−1∑

j=1

ti,i+jti+j,i+l = ti,i+l

�

Corollary 1. Let Gs be a SCFG and let x ∈ Σ+ be a string. Then PrGs(x) =
t0,n[S] = e

(n)
0,0+n.

4 Reducing the Transitive Closure to a Matrix Multiplication

In this section, we describe how to compute the positive closure of a square SNTV
matrix E by reducing the computation to the multiplication of a square SNTV matrix.
Following Valiant’s work [6] and taking into account the properties of the operation for
square SNTV matrices defined in Section 2, the following lemma is proposed:

Lemma 2. Let E be a (n × n) SNTV matrix, and suppose that, for some r > n/2, the
transitive closure of the partitions [1 ≤ i, j ≤ r] and [n − r < i, j ≤ n] is known. Then
the closure of E can be computed by

(i) performing a single matrix multiplication, and
(ii) finding the closure of a 2(n − r) × 2(n − r) upper triangular matrix for which the

closure of the partitions [1 ≤ i, j ≤ n − r] and [n − r < i, j ≤ 2(n − r)] is known.

The demonstration of the lemma is similar to the one that is presented in [6]. The lemma
shows that the only part of E+ that needs to be calculated is the top-right partition.
Figure 1 shows in bold the parts of the upper triangular matrix E of the lemma that are
known. The parts of E in the squares are multiplied in step (i) of the lemma, and an
(n − r) × (n − r) matrix C is obtained. This gives a partial computation of the closure
of ei,j , 1 ≤ i ≤ n − r, r < j ≤ n. The computation is completed in step (ii), which is
explained below.

�
������������������������

e1,1 · · · e1,n−r e1,n−r+1 · · · e1,r e1,r+1 · · · e1,n

.
.
.

en−r,n−r en−r,n−r+1 · · · en−r,r en−r,r+1 · · · en−r,n
en−r+1,n−r+1 · · · en−r+1,r en−r+1,r+1 · · · en−r+1,n

.
.
.

er,r er,r+1 · · · er,n
er+1,r+1 · · · er+1,n

.
.
.

en,n

�
������������������������

Fig. 1. Upper triangular matrix E
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Let D be the 2(n − r) × 2(n − r) matrix obtained from E by replacing its top-right
part by C, and eliminating all the ith rows and columns for n − r < i ≤ r. In the step
(ii), the closure of D is computed and the top-right partition of E+ is obtained.

Theorem 2. Let M(n) be the time complexity of a matrix multiplication algorithm
that is well behaved in the sense that there is a constant γ ≥ 2 such that for all m,
2γ · M(2m) ≤ M(2m+1). Then, there is a transitive closure algorithm of complexity
T (n) such that T (n) ≤ M(n) · f(n), where f(n) is a constant function if γ > 2, and
f(n) = O(log n) in any case.

The demonstration of this theorem can be seen in [6].
Note that the elements of the matrices are SNTVs, and the matrix product is stated in

terms of operation (1). Therefore, the size of the grammar affects the time complexity of
the most inner operation of the matrix product. A fast matrix multiplication algorithm
that decreased the number of operations could lead to important improvement in real
tasks. In the following section, we explore this idea.

5 Experiments

In this section, we describe the experiments that were carried out to test the stochastic
parsing algorithm described in the previous section. Two different experiments were
carried out. In the first experiment, we tested the parsing algorithm with synthetic tasks.
In the second experiment, we tested the parsing algorithm with a SCFG obtained from
the UPenn treebank corpus.

For these experiments, we implemented both the classical version of the inside algo-
rithm and the new version of the parsing algorithm that is based on matrix multiplica-
tion. Note that both algorithms produce exactly the same results, that is, the probability
of the input string (see Corollary 1). We chose a simple fast matrix multiplication al-
gorithm, since the emphasis of these experiment was on the reduction of the parsing
problem to the matrix multiplication problem. In these experiments, we used the classi-
cal version of the Strassen algorithm [9]. In all the experiments, we measured the time
complexity for both algorithms. The memory consumption of the matrix multiplication
based parsing algorithm increased a logarithmic factor, depending on the size of the
input string, with respect to the classical algorithm.

All the software was implemented in C language and thegcc compiler (version 3.3.5)
was used. All experiments were carried out on a personal computer with an Intel Pentium
4 processor of 3.0GHz, with 1.0 GB of RAM and with a Linux 2.6.12 operating system.

5.1 Experiments with Synthetic Tasks

In this first experiment, we considered a very simple task. We parsed strings of increas-
ing length with only one terminal symbol, given that the number of terminal symbols is
not relevant for the parsing algorithm. We parsed the strings with grammars of increas-
ing size. We used ergodic grammars with different numbers rules. Note that since the
probabilities of the rules are not relevant for the parsing algorithm, they were randomly
generated. In all the experiments, we measured the time in the number of seconds that
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were necessary to parse each string. Figure 2 shows the ratio between the time needed
by the classical algorithm and the fast algorithm for strings of different length with
grammars of increasing size. Note that in all cases the ratio was between two and three.
The ratio decreased for small strings and large grammars due to the amount of overhead.
However, the ratio kept over two for large grammars and large strings.
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Fig. 2. Ratio between the time needed by the classical algorithm and the fast algorithm for strings
of different length (8, 16, 32, 64, 128) with grammars of increasing size

5.2 Experiments with a Real Task

In this section, we describe the experiment that was carried out with a real task. The
corpus used in the experiment was the UPenn Treebank corpus [13]. This corpus was
automatically labeled, analyzed, and manually checked as described in [13]. There are
two kinds of labeling: a POStag labeling and a syntactic labeling that is represented
by brackets. The POStag vocabulary is composed of 45 labels. For this experiment, we
used only the tagged part of the corpus.

We constructed an initial ergodic SCFG with the maximum number of rules that can
be composed with 45 terminal symbols (the POStag set) and 35 non-terminal symbols.
Therefore, the initial grammar had 44,450 rules. We trained this ergodic SCFG with the
inside-outside algorithm [5]. After the estimation process, most of the rules disappeared
due to underflow issues, and the final estimated grammar had 35 non-terminal symbols,
45 terminal symbols, and 1,741 rules.

Then, we parsed a string of the corpus of size 2n for n ≥ 2 with this SCFG. The
results obtained in this experiment are shown in Figure 3.

Note that this figure corresponds to one point in the x−axis of the Figure 2. This
figure shows that in this experiment the fast parsing algorithm parsed the strings in
less time than the classical parsing algorithms. For strings with length near the average
length (24 words in this corpus) the fast algorithm was twice quicker than the classical
algorithm. This result shows that the fast parsing algorithm can be used in real problems.
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Fig. 3. Results obtained from the SCFG estimated with the UPenn Treebank corpus. The SCFG
had 1,741 rules.

6 Conclusions

In this work, a stochastic version of the Valiant parsing algorithm has been presented.
It has been shown that, in real tasks, the new algorithm notably improves the parsing
time with respect to the classical inside algorithm. For future work, we intend to study
the improvement of the time complexity of the estimation algorithms for SCFGs. In
addition, we plan to use other fast matrix multiplication algorithms.
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