
Engineering Fast Route Planning Algorithms�

Peter Sanders and Dominik Schultes

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
{sanders,schultes}@ira.uka.de

Abstract. Algorithms for route planning in transportation networks
have recently undergone a rapid development, leading to methods that
are up to one million times faster than Dijkstra’s algorithm. We outline
ideas, algorithms, implementations, and experimental methods behind
this development. We also explain why the story is not over yet because
dynamically changing networks, flexible objective functions, and new
applications pose a lot of interesting challenges.

1 Introduction

Computing an optimal route in a transportation network between specified
source and target nodes is one of the showpieces of real-world applications of
algorithmics. We frequently use this functionality when planning trips with cars
or public transportation. There are also many applications like logistic planning
or traffic simulation that need to solve a huge number of shortest-path queries
in transportation networks. In most of this paper we focus on the simplest case,
a static road network with a fixed cost for each edge. The cost function may
be any mix of travel time, distance, toll, energy consumption, scenic value, . . .
associated with the edges. Some of the techniques described below work best if
the cost function is positively correlated with travel time. The task is to compute
the costs of optimal paths between arbitrary source-target pairs. Some prepro-
cessing is allowed but it has to be sufficiently fast and space efficient to scale to
the road network of a continent.

The main part of this paper is Section 2, which explains the ideas behind
several practically successful speedup techniques for static routing in road net-
works. Section 3 makes an attempt to summarize the development of perfor-
mance over time. In Section 4 we outline generalizations for public transporta-
tion, time-dependent edge weights, outputting optimal paths, and dynamically
changing networks. Section 5 describes some experiences we made with imple-
menting route planning algorithms for large networks. Then, Section 6 explains
our experimental approach giving some examples by applying it to the algo-
rithms we implemented. We conclude in Section 7 with a discussion of some
future challenges.

� Partially supported by DFG grant SA 933/1-3.

C. Demetrescu (Ed.): WEA 2007, LNCS 4525, pp. 23–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

24 P. Sanders and D. Schultes

2 Static Routing in Large Road Networks

We consider a directed graph G = (V, E) with n nodes and m = Θ(n) edges.
An edge (u, v) has the nonnegative edge weight w(u, v). A shortest-path query
between a source node s and a target node t asks for the minimal weight d(s, t)
of any path from s to t. In static routing, the edge weights do not change so
that it makes sense to perform some precomputations, store their results, and
use this information to accelerate the queries. Obviously, there is some tradeoff
between query time, preprocessing time, and space for preprocessed information.
In particular, for large road networks it would be prohibitive to precompute and
store shortest paths between all pairs of nodes.

2.1 “Classical Results”

Dijkstra’s Algorithm [1]—the classical algorithm for route planning—main-
tains an array of tentative distances D[u] ≥ d(s, u) for each node. The algorithm
visits (or settles) the nodes of the road network in the order of their distance
to the source node and maintains the invariant that D[u] = d(s, u) for visited
nodes. We call the rank of node u in this order its Dijkstra rank rks(u). When
a node u is visited, its outgoing edges (u, v) are relaxed, i.e., D[v] is set to
min(D[v], d(s, u) + w(u, v)). Dijkstra’s algorithm terminates when the target
node is visited. The size of the search space is O(n) and n/2 (nodes) on the
average. We will assess the quality of route planning algorithms by looking at
their speedup compared to Dijkstra’s algorithm, i.e., how many times faster they
can compute shortest-path distances.

Priority Queues. Dijkstra’s algorithm can be implemented using O(n) prior-
ity queue operations. In the comparison based model this leads to O(n log n)
execution time. In other models of computation (e.g. [2]) and on the average
[3], better bounds exist. However, in practice the impact of priority queues on
performance for large road networks is rather limited since cache faults for ac-
cessing the graph are usually the main bottleneck. In addition, our experiments
indicate that the impact of priority queue implementations diminishes with ad-
vanced speedup techniques since these techniques at the same time introduce
additional overheads and dramatically reduce the queue sizes.

Bidirectional Search executes Dijkstra’s algorithm simultaneously forward
from the source and backwards from the target. Once some node has been vis-
ited from both directions, the shortest path can be derived from the information
already gathered [4]. In a road network, where search spaces will take a roughly
circular shape, we can expect a speedup around two —one disk with radius d(s, t)
has twice the area of two disks with half the radius. Bidirectional search is im-
portant since it can be combined with most other speedup techniques and, more
importantly, because it is a necessary ingredient of the most efficient advanced
techniques.

Engineering Fast Route Planning Algorithms 25

Geometric Goal Directed Search (A∗). The intuition behind goal directed
search is that shortest paths ‘should’ lead in the general direction of the target.
A∗ search [5] achieves this by modifying the weight of edge (u, v) to w(u, v) −
π(u) + π(v) where π(v) is a lower bound on d(v, t). Note that this manipulation
shortens edges that lead towards the target. Since the added and subtracted
vertex potentials π(v) cancel along any path, this modification of edge weights
preserves shortest paths. Moreover, as long as all edge weights remain nonnega-
tive, Dijkstra’s algorithm can still be used. The classical way to use A∗ for route
planning in road maps estimates d(v, t) based on the Euclidean distance between
v and t and the average speed of the fastest road anywhere in the network. Since
this is a very conservative estimation, the speedup for finding quickest routes is
rather small. Goldberg et al. [6] even report a slow-down of more than a fac-
tor of two since the search space is not significantly reduced but a considerable
overhead is added.

Heuristics. In the last decades, commercial navigation systems were developed
which had to handle ever more detailed descriptions of road networks on rather
low-powered processors. Vendors resolved to heuristics still used today that do
not give any performance guarantees: use A∗ search with estimates on d(u, t)
rather than lower bounds; do not look at ‘unimportant’ streets, unless you are
close to the source or target [7]. The latter heuristic needs careful hand tun-
ing of road classifications to produce reasonable results but yields considerable
speedups.

2.2 Exploiting Hierarchy

Small Separators. Road networks are almost planar, i.e., most edges intersect
only at nodes. Hence, techniques developed for planar graphs will often also work
for road networks. Using O(n log2 n) space and preprocessing time, query time
O(

√
n log n) can be achieved [8,9] for directed planar graphs without negative

cycles. Queries accurate within a factor (1+ ε) can be answered in near constant
time using O((n log n)/ε) space and preprocessing time [10]. Most of these the-
oretical approaches look difficult to use in practice since they are complicated
and need superlinear space.

The first published practical approach to fast route planning [11] uses a set
of nodes V1 whose removal partitions the graph G = G0 into small components.
Now consider the overlay graph G1 = (V1, E1) where edges in E1 are shortcuts
corresponding to shortest paths in G that do not contain nodes from V1 in their
interior. Routing can now be restricted to G1 and the components containing s
and t respectively. This process can be iterated yielding a multi-level method. A
limitation of this approach is that the graphs at higher levels become much more
dense than the input graphs thus limiting the benefits gained from the hierarchy.
Also, computing small separators and shortcuts can become quite costly for large
graphs.

26 P. Sanders and D. Schultes

Reach-Based Routing. Let R(v) := maxs,t∈V Rst(v) denote the reach of node
v where Rst(v) := min(d(s, v), d(v, t)). Gutman [12] observed that a shortest-
path search can be stopped at nodes with a reach too small to get to source or
target from there. Variants of reach-based routing work with the reach of edges
or characterize reach in terms of geometric distance rather than shortest-path
distance. The first implementation had disappointing speedups (e.g. compared
to [11]) and preprocessing times that would be prohibitive for large networks.

Highway Hierarchies. (HHs) [13,14] group nodes and edges in a hierarchy of
levels by alternating between two procedures: Contraction (i.e., node reduction)
removes low degree nodes by bypassing them with newly introduced shortcut
edges. In particular, all nodes of degree one and two are removed by this pro-
cess. Edge reduction removes non-highway edges, i.e., edges that only appear on
shortest paths close to source or target. More specifically, every node v has a
neighborhood radius r(v) we are free to choose. An edge (u, v) is a highway edge
if it belongs to some shortest path P from a node s to a node t such that (u, v)
is neither fully contained in the neighborhood of s nor in the neighborhood of
t, i.e., d(s, v) > r(s) and d(u, t) > r(t). In all our experiments, neighborhood
radii are chosen such that each neighborhood contains a certain number H of
nodes. H is a tuning parameter that can be used to control the rate at which the
network shrinks. The query algorithm is very similar to bidirectional Dijkstra
search with the difference that certain edges need not be expanded when the
search is sufficiently far from source or target. HHs were the first speedup tech-
nique that could handle the largest available road networks giving query times
measured in milliseconds. There are two main reasons for this success: Under
the above contraction routines, the road network shrinks in a geometric fashion
from level to level and remains sparse and near planar, i.e., levels of the HH are
in some sense self similar. The other key property is that preprocessing can be
done using limited local searches starting from each node. Preprocessing is also
the most nontrivial aspect of HHs. In particular, long edges (e.g. long-distance
ferry connections) make simple minded approaches far too slow. Instead we use
fast heuristics that compute a superset of the set of highway edges.

Routing with HHs is similar to the heuristics used in commercial systems.
The crucial difference is that HHs are guaranteed to find the optimal path. This
qualitative improvement actually make HHs much faster than the heuristics.
The latter have to make a precarious compromise between quality and size of
the search space that relies on manual classification of the edges into levels of the
hierarchy. In contrast, after setting a few quite robust tuning parameters, HH-
preprocessing automatically computes a hierarchy aggressively tuned for high
performance.

Advanced Reach-Based Routing. It turns out that the preprocessing tech-
niques developed for HHs can be adapted to preprocessing reach information
[15]. This makes reach computation faster and more accurate. More impor-
tantly, shortcuts make queries more effective by reducing the number of nodes
traversed and by reducing the reach-values of the nodes bypassed by shortcuts.

Engineering Fast Route Planning Algorithms 27

Reach-based routing is slower than HHs both with respect to preprocessing time
and query time. However, the latter can be improved by a combination with
goal-directed search to a point where both methods have similar performance.

Highway-Node Routing. In [16] we generalize the multi-level routing scheme
with overlay graphs so that it works with arbitrary sets of nodes rather than
only with separators. This is achieved using a new query algorithm that stalls
suboptimal branches of search on lower levels of the hierarchy. By using only
important nodes for higher levels, we achieve query performance comparable to
HHs. Preprocessing is done in two phases. In the first phase, nodes are classified
into levels. We currently derive this information from a HH. In the second phase,
we recursively compute the shortcuts bottom up. Shortcuts from level � are found
by local searches in level � − 1 starting from nodes in level �. This second phase
is very fast and easy to update when edge weights change.

Distance Tables. For HHs the network size shrinks geometrically from level to
level. Once a level L has size Θ(

√
n), we can afford to precompute and store a

complete distance table for nodes in level L [14]. Using this table, we can stop a
HH search when it has reached level L. To compute the shortest-path distance, it
then suffices to lookup all shortest-path distances between nodes entering level
L in forward and backward search respectively. Since the number of entrance
nodes is not very large, one can achieve a speedup close to two compared to
pure HH search.

Transit Node Routing precomputes not only a distance table for important
(transit) nodes but also all relevant connections between the remaining nodes
and the transit nodes [17,18]. Since it turns out that only about ten such access
connections are needed per node, one can ‘almost’ reduce routing in large road
networks to about 100 table lookups. Interestingly, the difficult queries are now
the local ones where the shortest path does not touch any transit node. We
solve this problem by introducing several layers of transit nodes. Between lower
layer transit nodes, only those routes need to be stored that do not touch the
higher layers. Transit node routing (e.g., using appropriate levels of a HH for
transit node sets) reduces routing times to a few microseconds at the price of
preprocessing times an order of magnitude larger than HHs alone.

2.3 Advanced Goal-Directed Search

Edge Labels. The idea behind edge labels is to precompute information for
an edge e that specifies a set of nodes M(e) with the property that M(e) is a
superset of all nodes that lie on a shortest path starting with e. In an s–t query,
an edge e need not be relaxed if t �∈ M(e). In [11], M(e) is specified by an angular
range. More effective is information that can distinguish between long range and
short range edges. In [19] many geometric containers are evaluated. Very good
performance is observed for axis parallel rectangles. A disadvantage of geometric

28 P. Sanders and D. Schultes

containers is that they require a complete all-pairs shortest-path computation.
Faster precomputation is possible by partitioning the graph into k regions that
have similar size and only a small number of boundary nodes. Now M(e) is
represented as a k-vector of edge flags [20,21,22] where flag i indicates whether
there is a shortest path containing e that leads to a node in region i. Edge
flags can be computed using a single-source shortest-path computation from
all boundary nodes of the regions. In [23] a faster variant of the preprocessing
algorithm is introduced that takes advantage of the fact that for close boundary
nodes the respective shortest-path trees are very similar.

Landmark A∗. Using the triangle inequality, quite strong bounds on shortest-
path distances can be obtained by precomputing distances to a set of around 20
landmark nodes that are well distributed over the far ends of the network [6,24].
Using reasonable space and much less preprocessing time than for edge labels,
these lower bounds yield considerable speedup for route planning.

Precomputed Cluster Distances (PCD). In [25], we give a different way
to use precomputed distances for goal-directed search. We partition the network
into clusters and then precompute the shortest connection between any pair of
clusters U and V , i.e., minu∈U,v∈V d(u, v). PCDs cannot be used together with
A∗ search since reduced edge weights can become negative. However, PCDs yield
upper and lower bounds for distances that can be used to prune search. This
gives speedup comparable to landmark-A∗ using less space. Using the many-
to-many routing techniques outlined in Section 4, cluster distances can also be
computed efficiently.

2.4 Combinations

Bidirectional search can be profitably combined with almost all other speedup
techniques. Indeed, it is a required ingredient of highway hierarchies, transit
and highway-node routing and it gives more than the anticipated factor two
for reach-based routing and edge flags. Willhalm et al. have made a systematic
comparison of combinations of pre-2004 techniques [26,27]. Landmark A∗ har-
monizes very well with reach-based routing [15] whereas it gives only a small
additional speedup when combined with HHs [28]. The reason is that in HHs,
the search cannot be stopped when the search frontiers meet. However, the same
approach is very effective at speeding up approximate shortest-path queries.

3 Chronological Summary—The Horse Race

In general it is difficult to compare speedup techniques even when restricting
to road networks because there is a complex tradeoff between query time, pre-
processing time and space consumption that depends on the network, on the
objective function, and on the distribution of queries. Still, we believe that some
ranking helps to compare the techniques. To keep things manageable, we will re-
strict ourselves to average query times for computing optimal travel times in one

Engineering Fast Route Planning Algorithms 29

Table 1. Chronological development of the fastest speedup techniques. As date for the
first publication, we usually give the submission deadline of the respective conference.
If available, we always selected measurements for the European road network even if
they were conducted after the first publication. Otherwise, we linearly extrapolated the
preprocessing times to the size of Europe, which can be seen as a lower bound. Note
that not all speedup techniques have been preprocessed on the same machine.

method first date data size space preproc. speedup
pub. mm/yy from n/106 [B/node] [min]

separator multi-level [11] 04/99 [30] 0.1 ? > 5 400 52
edge flags (basic) [20] 03/04 [31] 6 13 299 523
landmark A∗ [6] 07/04 [32] 18 72 13 28
edge flags [21,22] 01/05 [23] 1 141 2 163 1 470
HHs (basic) [13] 04/05 [13] 18 29 161 2 645

reach + shortc. + A∗ [15] 10/05 [32] 18 82 1 625 1 559
[32] 08/06 [32] 18 32 144 3 830

HHs [14] 04/06 [14] 18 27 13 4 002
HHs + dist. tab. (mem) [14] 04/06 [14] 18 17 55 4 582
HHs + dist. tab. [14] 04/06 [14] 18 68 15 8 320
HHs + dist. tab. + A∗ [28] 08/06 [28] 18 76 22 11 496
high-perf. multi-level [33] 06/06 [34] 18 181 11 520 401 109
transit nodes (eco) [17] 10/06 [17] 18 110 46 471 881
transit nodes (gen) [17] 10/06 [17] 18 251 164 1 129 143
highway nodes (mem) [16] 01/07 [16] 18 2 24 4 079

of the largest networks that have been widely used—the road network of (West-
ern) Europe provided by the company PTV AG and also used (in a slightly
different version) in the 9th DIMACS Implementation Challenge [29]. We take
the liberty to speculate on the performance of some older methods that have
never been been run on such large graphs and whose actual implementations
might fail when one would attempt it. In Tab. 1 we list speedup techniques in
chronological order that are ‘best’ with respect to speedup for random queries
and the largest networks tackled at that point. Sometimes we list variants with
slower query times if they are considerably better with respect to space con-
sumption or manageable graph size.

Before [11] the best method would have been a combination of bidirectional
search with geometric A∗ yielding speedups of 2–3 over unidirectional Dijkstra.
The separator-based multi-level method from [11] can be expected to work even
for large graphs if implemented carefully. Computing geometric containers [11,19]
is still infeasible for large networks. Otherwise, they would achieve much larger
speedups then the separator-based multi-level method. So far, computing edge
flags has also been too expensive for Europe and the USA but speedups beyond
1 470 have been observed for a graph with one million nodes [23]. Landmark A∗

works well for large graphs and achieves average speedup of 28 using reasonable
space and preprocessing time [6]. The implementation of HHs [13] was the first
that was able to handle Europe and the USA. This implementation wins over all
previous methods in almost all aspects. A combination of reach-based routing

30 P. Sanders and D. Schultes

with landmark A∗ [15] achieved better query times for the USA at the price of a
considerably higher preprocessing time. At first, that code did not work well on
the European network because it is difficult to handle the present long-distance
ferry connections, but later it could be considerably improved [32]. By introduc-
ing distance tables and numerous other improvements, highway hierarchies took
back the lead in query time [14] at the same time using an order of magnitude less
preprocessing time than [13]. The cycle of innovation accelerated even further in
2006. Müller [33] aggressively precomputes the pieces of the search space needed
for separator-based multi-level routing. At massive expense of space and prepro-
cessing time, this method can achieve speedups around 400 000. (The original
implementation cannot directly measure this because it has large overheads for
disk access and parsing of XML-data). Independently, transit node routing was
developed [17], that lifts the speedup to six orders of magnitude and completely
replaces Dijkstra-like search by table lookups. Since transit node routing needs
more space and preprocessing time than other methods, the story is not finished
yet. For example, [16] achieves speedups comparable to HHs, using only a few
bytes per node.

4 Generalizations

Many-to-Many Routing. In several applications we need complete distance
tables between specified sets of source nodes S and target nodes T . For exam-
ple, in logistics optimization, traffic simulation, and also within preprocessing
techniques [25,17]. HHs (and other non-goal-directed bidirectional search meth-
ods [11,15,16]) can be adapted in such a way that only a single forward search
from each source node and a single backward search from each target node is
needed [35]. The basic idea is quite simple: Store the backward search spaces.
Arrange them so that each node v stores an array of pairs of the form (t, d(v, t))
for all target nodes that have v in their backward search space. When a forward
search from s settles a node v, these pairs are scanned and used to update the
tentative distance from s to t. This is very efficient because the intersection be-
tween any two forward and backward search spaces is only around 100 for HHs
and because scanning an array is much faster than priority queue operations
and edge relaxations governing the cost of Dijkstra’s algorithm. For example,
for |S| = |T | =10000, the implementation in [35] needs only one minute.

Outputting Paths. The efficiency of many speedup techniques stems from
introducing shortcut edges and distance table entries that replace entire paths
in the original graph [11,13,15,14,33,17]. A disadvantage of these approaches
is that the search will output only a ‘summary description’ of the optimal
path that involves shortcuts. Fortunately, it is quite straightforward to aug-
ment the shortcuts with information for unpacking them [28,35,17]. Since we
can afford to precompute unpacked representations of the most frequently needed

Engineering Fast Route Planning Algorithms 31

long-distance shortcuts, outputting the path turns out to be up to four times
faster than just traversing the edges in the original graph.

Flexible Objective Functions. The objective function in road networks de-
pends in a complex way on the vehicle (fast? slow? too heavy for certain bridges?,
. . .) the behavior and goals of the driver (cost sensitive? thinks he is fast?, . . .),
the load, and many other aspects. While the appropriate edge weights can be
computed from a few basic parameters, it is not feasible to perform preprocess-
ing for all conceivable combinations. Currently, our best answer to this problem
is highway-node routing [16]. Assuming that the important nodes are important
for any reasonable objective function, only the second phase of preprocessing
needs to be repeated. This is an order of magnitude faster than computing
a HH.

Dynamization. In online car navigation, we want to take traffic jams etc. into
account. On the first glance, this is the death blow for most speedup techniques
since even a single traffic jam can invalidate any of the precomputed informa-
tion. However, we can try to selectively update only the information affected
by the traffic jam and/or relevant to the queries at hand. Several solutions are
proposed at this conference. Landmark A∗ can be dynamized either by noticing
that lower bounds remain valid when edge weights can only increase, or by us-
ing known dynamic graph algorithms for updating the shortest-path trees from
the landmarks [36]. We have developed highway-node routing for this purpose
[16] because it allows fast and easy updates (2–40ms per changed edge weight
depending on the importance of the edge).

Public Transportation and Time-Dependent Edge Weights. The stan-
dard query in public transportation asks for the earliest arrival at the target
node t given a departure time and the source node s. This means we are (ex-
plicitly or implicitly) searching in a time-dependent network where nodes are
some point in space-time. This means that bidirectional search cannot be used
out of the box since we do not know the target node in the time-dependent
network. This is puzzling because the most successful schemes described above
use bidirectional search. This leaves us with the choice to use the most effective
unidirectional method, or to somehow make bidirectional search work. An ob-
vious fix is to guess the arrival time. This can be done using binary search and
there are many ways to tune this (e.g. by interpolation search).

Parallelization. Most preprocessing techniques and many-to-many routing are
easy to parallelize [35]. Parallelizing the queries seems difficult and unnecessary
(beyond executing forward and backward search in parallel) because the search
spaces are already very small when using one of the best available techniques.

32 P. Sanders and D. Schultes

5 Implementation

Advanced algorithms for routing in road networks require thousands of lines
of well written code and hence require considerable programming skill. In par-
ticular, it is not trivial to make the codes work for large networks. Here is
an incomplete list of problems and complications that we have seen in routing
projects: Graphs have to be glued together from several files. Tools for reading
files crash for large graphs. Algorithm library code cannot handle large graphs
at all. The code slows down by factor six when switching from a custom graph
representation to an algorithm library. 32-bit code will not work. Libraries do
not work with 64-bit code.

Our conclusion from these experiences was to design our own graph data
structures adapted to the problem at hand. We use C++ with encapsulated
abstract data types. Templates and inline functions make this possible without
performance penalties.

Although speedup techniques developed by algorithmicists come with high
level arguments why they should yield optimal paths, few come with a detailed
correctness proof.1 There are plenty of things that can go wrong both with the
algorithms and their implementations. For example, we had several cases where
the algorithm considered was only correct when all shortest paths are unique.
The implementation can help here with extensive consistency checks in asser-
tions and experiments that are always checked against naive implementations,
i.e., queries are checked against Dijkstra’s algorithm and fast preprocessing al-
gorithms are checked against naive or old implementations. On the long run
one also needs a flexible visualization tool that can draw pieces of large graphs,
paths, search spaces, and node sets. Since we could not find tools for this purpose
that scale to large road networks, we implemented our own system [37].

6 Experiments

Before 2005, speedup techniques were difficult to compare since studies were
either based on very small graphs or on proprietary data that could not be used
by other groups. In particular, for ‘newcomers’ it was almost impossible to start
working in this field. In [13] we were able to obtain two large road networks
for the subcontinents Western Europe and the USA. The European network
was made available for scientific use by the company PTV AG. We extracted
the USA network from publicly available geographical data [38]. Since then,
variants of these graphs have been used for most studies. We view it as likely
that the sudden availability of data and the fast rate of innovation since then are
not a coincidence. These networks are not directly annotated with edge weights
but with lengths and road categories. By setting average speeds for each road
category one can obtain realistic estimates of travel time.

Another important issue are which queries should be measured. The obvious
choice is to use randomly selected node pairs on the largest available graph.
1 We are working on one for HHs.

Engineering Fast Route Planning Algorithms 33

Dijkstra Rank

Q
ue

ry
 T

im
e

[μ
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

10
10

0
10

00

10
10

0
10

00

Highway Hierarchies Star
Transit Node Routing
Highway−Node Routing

Fig. 1. Query performance of various speedup techniques against Dijkstra rank. The
median speedups of HHs and highway-node routing cross at r = 218 since HHs are
augmented with distance tables and goal direction. These techniques are particularly
effective for large r and could also be adapted to highway-node routing.

Although this is a meaningful number, it is not quite satisfactory since most
queries will produce very long paths (thousands of kilometers) that are actually
rare in practice. Other studies therefore use random queries on a variety of
subgraphs. However, this leads to a plethora of arbitrary choices that make it
difficult to compare results. In particular, authors will always be tempted to
choose only those subgraphs for which their method performs well.

Sets of real world queries would certainly be interesting, but so far we do
not have them and it is also unlikely that a sample taken from one server is
actually representative for the entire spectrum of route planning applications.
We therefore chose a more systematic approach [13] that has also been adopted
in several other studies: We generate a random query with a specified ‘locality’
r by choosing a random starting node s, and a target node t with Dijkstra rank
rks(t) = r (i.e., the r-th node visited by a Dijkstra search from s). In our studies,
we generate many such queries for each r which is a power of two. We then plot
the distribution with median, quartiles, and outliers for each of these values of r.
For the European road network, Fig. 1 shows the results for highway hierarchies
combined with a distance table and goal-directed search, transit node routing,
and highway-node routing. We view it as quite important to give information on
the entire distribution since some speedup techniques have large fluctuations in
query time.

34 P. Sanders and D. Schultes

In some cases, e.g., for HHs, it is also possible to compute good upper bounds
on the search space size of all queries that can ever happen for a given graph
[14]. We view this as a quite good surrogate for the absence of meaningful worst
case upper bounds that would apply to all conceivable networks.

7 Conclusions and Open Problems

Speedup techniques for routing in static road networks have made tremendous
progress in the last few years. Were it not for challenging applications such as
logistics planning and traffic simulation, we could even say that the methods
available now are too fast since other overheads like displaying routes or trans-
mitting them over the network are the bottleneck once the query time is below
a few milliseconds.

A major challenge is to close the gap to theory, e.g., by giving meaningful
characterizations of ‘well-behaved’ networks that allow provably good worst-
case bounds. In particular, we would like to know for which networks the existing
techniques will also work, e.g., for communication networks, VLSI design, social
networks, computer games, graphs derived from geometric routing problems, . . .

Even routing techniques themselves are not quite finished yet. For example,
we can look at better ways to select transit and highway nodes. We could also try
to integrate edge labels with hierarchical routing schemes so that hierarchies help
to approximate edge labels that in turn allow strong goal direction for queries.

Perhaps the main academic challenge is to go beyond static point-to-point
routing. Public transportation and road networks with time-dependent travel
times are an obvious generalization that should also be combined with updates
of edge weights due to traffic jams. Further beyond that, we want multi-criteria
optimization for individual paths and we want to compute social optima and
Nash-equilibria taking the entire traffic in an area into account.

The main practical issue is how to transfer the academic results into applica-
tions. Many details have to be taken care of, like turn penalties, implementations
on mobile devices, user specific objective functions, and compatibility with ex-
isting parts of the applications. The difficulty here is not so much scientific but
one of finding the right approach to cooperation between academia and industry.

Acknowledgements

We would like to thank our coauthors on route planning, Holger Bast, Daniel
Delling, Stefan Funke, Sebastian Knopp, Domagoj Matijevic, Jens Maue, Frank
Schulz, and Dorothea Wagner for their valuable contributions. We also had
many interesting discussions with Rob van den Berg, Sebastian Egner, An-
drew Goldberg, Joaquim Gromicho, Martin Holzer, Stefan Hug, Ali Nowbakht
Irani, Ekkehard Köhler, Ulrich Lauther, Ramon Lentink, Rolf Möhring, Kirill
Müller, Matthias Müller-Hannemann, Paul Perdon, Heiko Schilling, Mikkel Tho-
rup, Jaques Verrier, Peter Vortisch, Renato Werneck, and Thomas Willhalm.

Engineering Fast Route Planning Algorithms 35

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

2. Thorup, M.: Integer priority queues with decrease key in constant time and the
single source shortest paths problem. In: 35th ACM Symposium on Theory of
Computing. pp. 149–158 (2003)

3. Meyer, U.: Single-source shortest-paths on arbitrary directed graphs in linear
average-case time. In: 12th Symposium on Discrete Algorithms. pp. 797–806 (2001)

4. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1962)

5. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on System Science and Cybernet-
ics 4(2), 100–107 (1968)

6. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A∗ meets graph the-
ory. In: 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165. ACM
Press, New York (2005)

7. Ishikawa, K., Ogawa, M., Azume, S., Ito, T.: Map Navigation Software of the
Electro Multivision of the ’91 Toyota Soarer. In: IEEE Int. Conf. Vehicle Navig.
Inform. Syst. pp. 463–473 (1991)

8. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci. 72(5), 868–889 (2006)

9. Klein, P.: Multiple-source shortest paths in planar graphs. In: 16th ACM-SIAM
Symposium on Discrete Algorithms, SIAM, pp. 146–155 (2005)

10. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. In: 42nd IEEE Symposium on Foundations of Computer Science. pp.
242–251 (2001)

11. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE
1999. LNCS, vol. 1668, pp. 110–123. Springer, Heidelberg (1999)

12. Gutman, R.: Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In: 6th Workshop on Algorithm Engineering and
Experiments. pp. 100–111 (2004)

13. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579.
Springer, Heidelberg (2005)

14. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

15. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A∗: Efficient point-to-point short-
est path algorithms. In: Workshop on Algorithm Engineering & Experiments, Mi-
ami (2006) 129–143

16. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: 6th Workshop on
Experimental Algorithms (2007)

17. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In: transit to constant
time shortest-path queries in road networks. In: Workshop on Algorithm Engineer-
ing and Experiments (2007)

18. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science (to appear, 2007)

19. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths
in large sparse graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS,
vol. 2832, pp. 776–787. Springer, Heidelberg (2003)

36 P. Sanders and D. Schultes

20. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Geoinformation und Mobilität – von
der Forschung zur praktischen Anwendung. Vol. 22, pp. 219–230, IfGI prints, In-
stitut für Geoinformatik, Münster (2004)

21. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and con-
strained shortest path computation. In: 4th International Workshop on Efficient
and Experimental Algorithms (2005)

22. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speed up Dijkstra’s algorithm. In: 4th International Workshop on Effi-
cient and Experimental Algorithms. pp. 189–202 (2005)

23. Köhler, E., Möhring, R.H., Schilling, H.: Fast point-to-point shortest path compu-
tations with arc-flags. In: 9th DIMACS Implementation Challenge [29] (2006)

24. Goldberg, A.V., Werneck, R.F.: An efficient external memory shortest path algo-
rithm. In: Workshop on Algorithm Engineering and Experimentation. pp. 26–40
(2005)

25. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using
Precomputed Cluster Distances. In: Àlvarez, C., Serna, M. (eds.) WEA 2006.
LNCS, vol. 4007, pp. 316–328. Springer, Heidelberg (2006)

26. Holzer, M., Schulz, F., Willhalm, T.: Combining speed-up techniques for shortest-
path computations. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS,
vol. 3059, pp. 269–284. Springer, Heidelberg (2004)

27. Willhalm, T.: Engineering Shortest Path and Layout Algorithms for Large Graphs.
PhD thesis, Universität Karlsruhe (TH), Fakultät für Informatik (2005)

28. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In:
9th DIMACS Implementation Challenge [29] (2006)

29. 9th DIMACS Implementation Challenge: Shortest Paths.
http://www.dis.uniroma1.it/∼challenge9 (2006)

30. Holzer, M., Schulz, F., Wagner, D.: Engineering multi-level overlay graphs for
shortest-path queries. invited for ACM Journal of Experimental Algorithmics (spe-
cial issue Alenex 2006) (2007)

31. Lauther, U.: An experimental evaluation of point-to-point shortest path calculation
on roadnetworks with precalculated edge-flags. In: 9th DIMACS Implementation
Challenge [29] (2006)

32. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In:
9th DIMACS Implementation Challenge [29] (2006)

33. Müller, K.: Design and implementation of an efficient hierarchical speed-up tech-
nique for computation of exact shortest paths in graphs. Master’s thesis, Universtät
Karlsruhe supervised by Delling, D., Holzer, M., Schulz, F., Wagner, D.: (2006)

34. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance
multi-level graphs. In: 9th DIMACS Implementation Challenge [29] (2006)

35. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-
to-many shortest paths using highway hierarchies. In: Workshop on Algorithm
Engineering and Experiments (2007)

36. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: 6th Work-
shop on Experimental Algorithms (2007)

37. Bingmann, T.: Visualisierung sehr großer Graphen. Student Research Project, Uni-
versität Karlsruhe, supervised by Sanders, P., Schultes, D. (2006)

38. U.S. Census Bureau, Washington, DC: UA Census 2000 TIGER/Line Files.
http://www.census.gov/geo/www/tiger/tigerua/ua tgr2k.html (2002)

http://www.dis.uniroma1.it/~challenge9
http://www.census.gov/geo/www/ tiger/tigerua/ua_tgr2k.html

	Introduction
	Static Routing in Large Road Networks
	``Classical Results''
	Exploiting Hierarchy
	Advanced Goal-Directed Search
	Combinations

	Chronological Summary---The Horse Race
	Generalizations
	Implementation
	Experiments
	Conclusions and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

