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Preface

This volume contains the papers presented at the 6th Workshop on Experimen-
tal Algorithms (WEA 2007), held at the School of Engineering of the University
of Rome “La Sapienza” on June 6–8, 2007. The conference is devoted to foster-
ing and disseminating high quality research results focused on the experimental
analysis of algorithms and aims at bringing together researchers from the com-
puter science and operations research communities. Papers were solicited from
all areas of algorithmic engineering research.

The preceding workshops were held in Riga (Latvia, 2001), Ascona (Switzer-
land, 2003), Angra dos Reis (Brazil, 2004), Santorini (Greece, 2005), and Menorca
Island (Spain, 2006). The proceedings of the previous WEAs were published as
Springer volumes LNCS 2138 (in conjunction with the 13th International Sympo-
sium on Fundamentals of Computation Theory, FCT 2001), LNCS 2647 (2003),
LNCS 3059 (2004), LNCS 3503 (2005), and LNCS 4007 (2006).

The conference received 121 submissions. Each submission was reviewed by
at least three program committee members and evaluated on its quality, original-
ity, and relevance to the conference. Overall, the program committee wrote 440
reviews with the help of 100 trusted external referees. The committee selected
30 papers, leading to an acceptance rate of 24.8%. On average, the authors of
each submitted paper received 800 words of comments. The decision process was
made electronically using the EasyChair conference management system.

In addition to the accepted contributions, this volume also contains the in-
vited lectures by Corinna Cortes (Google Research), Peter Sanders (Universität
Karlsruhe), and Maria Serna (Universitat Politècnica de Catalunya).

We would like to thank all the authors who responded to the call for papers,
the invited speakers, the members of the program committee, as well as the
external referees and the organizing committee members.

We gratefully acknowledge support from the University of Rome “La Sapienza”
and the University of Rome “Tor Vergata”.

April 2007 Camil Demetrescu
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An Alternative Ranking Problem for

Search Engines

Corinna Cortes1, Mehryar Mohri2,1, and Ashish Rastogi2

1 Google Research,
76 Ninth Avenue,

New York, NY 10011
2 Courant Institute of Mathematical Sciences,

251 Mercer Street
New York, NY 10012

Abstract. This paper examines in detail an alternative ranking prob-
lem for search engines, movie recommendation, and other similar rank-
ing systems motivated by the requirement to not just accurately predict
pairwise ordering but also preserve the magnitude of the preferences
or the difference between ratings. We describe and analyze several cost
functions for this learning problem and give stability bounds for their
generalization error, extending previously known stability results to non-
bipartite ranking and magnitude of preference-preserving algorithms. We
present algorithms optimizing these cost functions, and, in one instance,
detail both a batch and an on-line version. For this algorithm, we also
show how the leave-one-out error can be computed and approximated
efficiently, which can be used to determine the optimal values of the
trade-off parameter in the cost function. We report the results of ex-
periments comparing these algorithms on several datasets and contrast
them with those obtained using an AUC-maximization algorithm. We
also compare training times and performance results for the on-line and
batch versions, demonstrating that our on-line algorithm scales to rela-
tively large datasets with no significant loss in accuracy.

1 Motivation

The learning problem of ranking has gained an increasing amount of interest
in the machine learning community over the last decade, in part due to the re-
markable success of web search engines and recommender systems (Freund et al.,
1998; Crammer & Singer, 2001; Joachims, 2002; Shashua & Levin, 2003; Cortes
& Mohri, 2004; Rudin et al., 2005; Agarwal & Niyogi, 2005). The recent Net-
flix challenge has further stimulated the learning community fueling its research
with invaluable datasets (Netflix, 2006).

The goal of information retrieval engines is to return a set of documents,
or clusters of documents, ranked in decreasing order of relevance to the user.
The order may be common to all users, as with most search engines, or tuned
to individuals to provide personalized search results or recommendations. The
accuracy of this ordered list is the key quality measure of theses systems.

C. Demetrescu (Ed.): WEA 2007, LNCS 4525, pp. 1–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 C. Cortes, M. Mohri, and A. Rastogi

In most previous research studies, the problem of ranking has been formulated
as that of learning from a labeled sample of pairwise preferences a scoring func-
tion with small pairwise misranking error (Freund et al., 1998; Herbrich et al.,
2000; Crammer & Singer, 2001; Joachims, 2002; Rudin et al., 2005; Agarwal &
Niyogi, 2005). But this formulation suffers some short-comings.

Firstly, most users inspect only the top results. Thus, it would be natural
to enforce that the results returned near the top be particularly relevant and
correctly ordered. The quality and ordering of the results further down the list
matter less. An average pairwise misranking error directly penalizes errors at
both extremes of a list more heavily than errors towards the middle of the list,
since errors at the extremes result in more misranked pairs. However, one may
wish to explicitly encode the requirement of ranking quality at the top in the cost
function. One common solution is to weigh examples differently during training
so that more important or high-quality results be assigned larger weights. This
imposes higher accuracy on these examples, but does not ensure a high-quality
ordering at the top. A good formulation of this problem leading to a convex
optimization problem with a unique minimum is still an open question.

Another shortcoming of the pairwise misranking error is that this formulation
of the problem and thus the scoring function learned ignore the magnitude of
the preferences. In many applications, it is not sufficient to determine if one
example is preferred to another. One may further request an assessment of how
large that preference is. Taking this magnitude of preference into consideration is
critical, for example in the design of search engines, which originally motivated
our study, but also in other recommendation systems. For a recommendation
system, one may choose to truncate the ordered list returned where a large gap
in predicted preference is found. For a search engine, this may trigger a search
in parallel corpora to display more relevant results.

This motivated our study of the problem of ranking while preserving the
magnitude of preferences, which we will refer to in short by magnitude-preserving
ranking.1 The problem that we are studying bears some resemblance with that
of ordinal regression (McCullagh, 1980; McCullagh & Nelder, 1983; Shashua &
Levin, 2003; Chu & Keerthi, 2005). It is however distinct from ordinal regression
since in ordinal regression the magnitude of the difference in target values is
not taken into consideration in the formulation of the problem or the solutions
proposed. The algorithm of Chu and Keerthi (2005) does take into account
the ordering of the classes by imposing that the thresholds be monotonically
increasing, but this still ignores the difference of target values and thus does not
follow the same objective. A crucial aspect of the algorithms we propose is that
they penalize misranking errors more heavily in the case of larger magnitudes of
preferences.

We describe and analyze several cost functions for this learning problem and
give stability bounds for their generalization error, extending previously known
stability results to non-bipartite ranking and magnitude of preference-preserving
algorithms. In particular, our bounds extend the framework of (Bousquet &

1 This paper is an extended version of (Cortes et al., 2007).
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Elisseeff, 2000; Bousquet & Elisseeff, 2002) to the case of cost functions over
pairs of examples, and extend the bounds of Agarwal and Niyogi (2005) beyond
the bi-partite ranking problem. Our bounds also apply to algorithms optimizing
the so-called hinge rank loss.

We present several algorithms optimizing these cost functions, and in one in-
stance detail both a batch and an on-line version. For this algorithm, MPRank,
we also show how the leave-one-out error can be computed and approximated
efficiently, which can be used to determine the optimal values of the trade-off pa-
rameter in the cost function. We also report the results of experiments comparing
these algorithms on several datasets and contrast them with those obtained us-
ing RankBoost (Freund et al., 1998; Rudin et al., 2005), an algorithm designed
to minimize the exponentiated loss associated with the Area Under the ROC
Curve (AUC), or pairwise misranking. We also compare training times and per-
formance results for the on-line and batch versions of MPRank, demonstrating
that our on-line algorithm scales to relatively large datasets with no significant
loss in accuracy.

The remainder of the paper is organized as follows. Section 2 describes and
analyzes our algorithms in detail. Section 3 presents stability-based generaliza-
tion bounds for a family of magnitude-preserving algorithms. Section 4 presents
the results of our experiments with these algorithms on several datasets.

2 Algorithms

Let S be a sample of m labeled examples drawn i.i.d. from a set X according to
some distribution D:

(x1, y1), . . . , (xm, ym) ∈ X × R. (1)

For any i ∈ [1, m], we denote by S−i the sample derived from S by omitting
example (xi, yi), and by Si the sample derived from S by replacing example
(xi, yi) with an other example (x′i, y

′
i) drawn i.i.d. from X according to D. For

convenience, we will sometimes denote by yx = yi the label of a point x = xi ∈ X .
The quality of the ranking algorithms we consider is measured with respect

to pairs of examples. Thus, a cost functions c takes as arguments two sample
points. For a fixed cost function c, the empirical error ̂R(h, S) of a hypothesis
h : X �→ R on a sample S is defined by:

̂R(h, S) =
1

m2

m
∑

i=1

m
∑

j=1

c(h, xi, xj). (2)

The true error R(h) is defined by

R(h) = Ex,x′∼D[c(h, x, x′)]. (3)

2.1 Cost Functions

We introduce several cost functions related to magnitude-preserving ranking.
The first one is the so-called hinge rank loss which is a natural extension of the
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pairwise misranking loss (Cortes & Mohri, 2004; Rudin et al., 2005). It penalizes
a pairwise misranking by the magnitude of preference predicted or the nth power
of that magnitude (n = 1 or n = 2):

cn
HR(h, x, x′) =

{

0, if (h(x′) − h(x))(yx′ − yx) ≥ 0
∣

∣(h(x′) − h(x))
∣

∣

n
, otherwise.

(4)

cn
HR does not take into consideration the true magnitude of preference yx′ − yx

for each pair (x, x′) however. The following cost function has this property and
penalizes deviations of the predicted magnitude with respect to the true one.
Thus, it matches our objective of magnitude-preserving ranking (n = 1, 2):

cn
MP(h, x, x′) =

∣

∣(h(x′) − h(x)) − (yx′ − yx)
∣

∣

n
. (5)

A one-sided version of that cost function penalizing only misranked pairs is given
by (n = 1, 2):

cn
HMP(h, x, x′) =

{

0, if (h(x′) − h(x))(yx′ − yx) ≥ 0
∣

∣(h(x′) − h(x)) − (yx′ − yx)
∣

∣

n
, otherwise.

(6)

Finally, we will consider the following cost function derived from the ε-insensitive
cost function used in SVM regression (SVR) (Vapnik, 1998) (n = 1, 2):

cn
SVR(h, x, x′) =

{

0, if |
[

(h(x′) − h(x)) − (yx′ − yx)
]

| ≤ ε
∣

∣(h(x′) − h(x)) − (yx′ − yx) − ε
∣

∣

n
, otherwise.

(7)

Note that all of these cost functions are convex functions of h(x) and h(x′).

2.2 Objective Functions

The regularization algorithms based on the cost functions cn
MP and cn

SVR corre-
spond closely to the idea of preserving the magnitude of preferences since these
cost functions penalize deviations of a predicted difference of score from the
target preferences. We will refer by MPRank to the algorithm minimizing the
regularization-based objective function based on cn

MP:

F (h, S) = ‖h‖2
K + C

1
m2

m
∑

i=1

m
∑

j=1

cn
MP(h, xi, xj), (8)

and by SVRank to the one based on the cost function cn
SVR

F (h, S) = ‖h‖2
K + C

1
m2

m
∑

i=1

m
∑

j=1

cn
SVR(h, xi, xj). (9)

For a fixed n, n = 1, 2, the same stability bounds hold for both algorithms as seen
in the following section. However, their time complexity is significantly different.
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2.3 MPRank

We will examine the algorithm in the case n = 2. Let Φ : X �→ F be the
mapping from X to the reproducing Hilbert space. The hypothesis set H that
we are considering is that of linear functions h, that is ∀x ∈ X, h(x) = w · Φ(x).
The objective function can be expressed as follows

F (h, S) = ‖w‖2 + C
1

m2

m
∑

i=1

m
∑

j=1

[

(w · Φ(xj) − w · Φ(xi)) − (yj − yi)
]2

= ‖w‖2 +
2C

m

m
∑

i=1

‖w · Φ(xi) − yi‖2 − 2C‖w · Φ̄ − ȳ‖2,

where Φ̄ = 1
m

∑m
i=1 Φ(xi) and ȳ = 1

m

∑m
i=1 yi. The objective function can thus

be written with a single sum over the training examples, which results in a more
efficient computation of the solution.

Let N be the dimension of the feature space F . For i = 1, . . . , m, let Mxi ∈
R

N×1 denote the column matrix representing Φ(xi), MΦ̄ ∈ R
N×1 a column

matrix representing Φ̄, W ∈ R
N×1 a column matrix representing the vector w,

MY ∈ R
m×1 a column matrix whose ith component is yi, and MȲ ∈ R

m×1 a
column matrix with all its components equal to ȳ. Let MX ,MX̄ ∈ R

N×m be
the matrices defined by:

MX = [Mx1 . . . Mxm ] MX = [MΦ̄ . . . MΦ̄]. (10)

Then, the expression giving F can be rewritten as

F = ‖W‖2 +
2C

m
‖M�

XW − MY ‖2 − 2C

m
‖M�̄

XW − MȲ ‖2.

The gradient of F is then given by: ∇F = 2W + 4C
m MX(M�

XW − MY ) −
4C
m MX̄(M�̄

X
W − MȲ ). Setting ∇F = 0 yields the unique closed form solution

of the convex optimization problem:

W = C′
(

I + C′(MX − MX̄)(MX − MX̄)�
)−1(MX − MX̄)(MY − MȲ ), (11)

where C′ = 2C
m . Here, we are using the identity MXM�

X − MX̄M�̄
X

= (MX −
MX̄)(MX −MX̄)�, which is not hard to verify. This provides the solution of the
primal problem. Using the fact the matrices (I+C′(MX −MX̄)(MX −MX̄)�

)−1

and MX − MX̄ commute leads to:

W = C′(MX − MX̄)
(

I + C′(MX − MX̄)(MX − MX̄)�
)−1(MY − MȲ ). (12)

This helps derive the solution of the dual problem. For any x′ ∈ X ,

h(x′) = C′K′(I + K̄)−1(MY − MȲ ), (13)

where K′ ∈ R
1×m is the row matrix whose jth component is

K(x′, xj) − 1
m

m
∑

k=1

K(x′, xk) (14)
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and K̄ is the kernel matrix defined by

1
C′

(K̄)ij = K(xi, xj) − 1
m

m
∑

k=1

(K(xi, xk) + K(xj , xk)) +
1

m2

m
∑

k=1

m
∑

l=1

K(xk, xl),

for all i, j ∈ [1, m]. The solution of the optimization problem for MPRank is close
to that of a kernel ridge regression problem, but the presence of additional terms
makes it distinct, a fact that can also be confirmed experimentally. However,
remarkably, it has the same computational complexity, due to the fact that the
optimization problem can be written in terms of a single sum, as already pointed
out above. The main computational cost of the algorithm is that of the matrix
inversion, which can be computed in time O(N3) in the primal, and O(m3) in
the dual case, or O(N2+α) and O(m2+α), with α ≈ .376, using faster matrix
inversion methods such as that of Coppersmith and Winograd.

2.4 SVRank

We will examine the algorithm in the case n = 1. As with MPRank, the hy-
pothesis set H that we are considering here is that of linear functions h, that is
∀x ∈ X, h(x) = w · Φ(x). The constraint optimization problem associated with
SVRank can thus be rewritten as

minimize F (h, S) = ‖w‖2 + C
1

m2

m
∑

i=1

m
∑

j=1

(ξij + ξ∗ij)

subject to

⎧

⎨

⎩

w · (Φ(xj) − Φ(xi)) − (yj − yi) ≤ ε + ξij

(yj − yi) − w · (Φ(xj) − Φ(xi)) ≤ ε + ξ∗ij
ξij , ξ

∗
ij ≥ 0,

for all i, j ∈ [1, m]. Note that the number of constraints are quadratic with
respect to the number of examples. Thus, in general, this results in a problem
that is more costly to solve than that of MPRank.

Introducing Lagrange multipliers αij , α
∗
ij ≥ 0, corresponding to the first two

sets of constraints and βij , β
∗
ij ≥ 0 for the remaining constraints leads to the

following Lagrange function

L = ‖w‖2 + C 1
m2

m
∑

i=1

m
∑

j=1

(ξij + ξ∗ij)+

m
∑

i=1

m
∑

j=1

αij(w · (Φ(xj) − Φ(xi)) − (yj − yi) − ε + ξij)+

m
∑

i=1

m
∑

j=1

α∗ij(−w · (Φ(xj) − Φ(xi)) + (yj − yi) − ε + ξ∗ij)+

m
∑

i=1

m
∑

j=1

(βijξij + β∗ijξ
∗
ij).
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Taking the gradients, setting them to zero, and applying the Karush-Kuhn-
Tucker conditions leads to the following dual maximization problem

maximize
1
2

m
∑

i,j=1

m
∑

k,l=1

(α∗ij − αij)(α∗kl − αkl)Kij,kl−

ε

m
∑

i,j=1

(α∗ij − αij) +
m

∑

i,j=1

(α∗ij − αij)(yj − yi)

subject to 0 ≤ αij , α
∗
ij ≤ C, ∀i, j ∈ [1, m],

where Kij,kl = K(xi, xk) + K(xj , xl) − K(xi, xl) − K(xj , xk). This quadratic
optimization problem can be solved in a way similar to SVM regression (SVR)
(Vapnik, 1998) by defining a kernel K ′ over pairs with K ′((xi, xj), (xk, xl)) =
Kij,kl, for all i, j, k, l ∈ [1, m], and associating the target value yi −yj to the pair
(xi, xj).

The computational complexity of the quadratic programming with respect to
pairs makes this algorithm less attractive for relatively large samples.

2.5 On-Line Version of MPRank

Recall from Section 2.3 that the cost function for MPRank can be written as

F (h, S) = ‖w‖2 +
2C

m

m
∑

i=1

(

(w · Φ(xi) − yi)2 − (w · Φ̄ − ȳ)
)2

. (15)

This expression suggests that the solution w can be found by solving the following
optimization problem

minimize
w

F = ‖w‖2 +
2C

m

m
∑

i=1

ξ2
i

subject to (w · Φ(xi) − yi) − (w · Φ̄ − ȳ) = ξi for i = 1, . . . , m

Introducing the Lagrange multipliers βi corresponding to the ith equality con-
straint leads to the following Lagrange function:

L(w, ξ, β) = ‖w‖2 +
2C

m

m
∑

i=1

ξ2
i −

m
∑

i=1

βi

(

(w · Φ(xi) − yi) − (w · Φ̄ − ȳ) − ξi

)

Setting ∂L/∂w = 0, we obtain w = 1
2

∑m
i=1 βi(Φ(xi)−Φ̄), and setting ∂L/∂ξi = 0

leads to ξi = − m
4C βi. Substituting these expression backs in and letting αi = βi/2

result in the optimization problem

maximize
αi

−
m

∑

i=1

m
∑

j=1

αiαj
˜K(xi, xj) − m

2C

m
∑

i=1

α2
i + 2

m
∑

i=1

αiỹi, (16)

where ˜K(xi, xj) = K(xi, xj)−
1
m

m
∑

k=1

(K(xi, xk)+K(xj , xk))+
1

m2

m
∑

k,l=1

K(xk, xl)

and ỹi = yi − ȳ.



8 C. Cortes, M. Mohri, and A. Rastogi

Based on the expressions for the partial derivatives of the Lagrange function,
we can now describe a gradient descent algorithm that avoids the prohibitive
complexity of MPRank that is associated with matrix inversion:

1 for i ← 1 to m do αi ← 0
2 repeat
3 for i ← 1 to m

4 do αi ← αi + η
[

2(ỹi −
∑m

j=1 αj
˜K(xi, xj)) − m

C αi

]

5 until convergence

The gradient descent algorithm described above can be straightforwardly
modified to an on-line algorithm where points in the training set are processed
in T passes, one by one, and the complexity of updates for ith point is O(i)
leading to an overall complexity of O(T · m2). Note that even using the best
matrix inversion algorithms, one only achieves a time complexity of O(m2+α),
with α ≈ .376. In addition to a favorable complexity if T = o(m.376), an appeal-
ing aspect of the gradient descent based algorithms is their simplicity. They are
quite efficient in practice for datasets with a large number of training points.

2.6 Leave-One-Out Analysis for MPRank

The leave-one-out error of a learning algorithm is typically costly to compute as it
in general requires training the algorithm on m subsamples of the original sample.
This section shows how the leave-one-out error of MPRank can be computed and
approximated efficiently by extending the techniques of Wahba (1990).

The standard definition of the leave-one-out error holds for errors or cost func-
tions defined over a single point. The definition can be extended to cost functions
defined over pairs by leaving out each time one pair of points (xi, xj), i �= j in-
stead of a single point.

To simplify the notation, we will denote hS−{xi,xj} by hij and hS−{x,x′} by
hxx′ . The leave-one-out error of an algorithm L over a sample S returning the
hypothesis hij for a training sample S − {xi, xj} is then defined by

LOO(L, S) =
1

m(m − 1)

m
∑

i=1

m
∑

j=1,i�=j

c(hij , xi, xj). (17)

The following proposition shows that with our new definition, the fundamental
property of LOO is preserved.

Proposition 1. Let m ≥ 2 and let h′ be the hypothesis returned by L when
trained over a sample S′ of size m − 2. Then, the leave-one-out error over a
sample S of size m is an unbiased estimate of the true error over a sample of
size m − 2:

ES∼D[LOO(L, S)] = R(h′), (18)
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Proof. Since all points of S are drawn i.i.d. and according to the same distribu-
tion D,

ES∼D[LOO(L, S)] =
1

m(m − 1)

m
∑

i,j=1,i�=j

ES∼D[c(hij , xi, xj)] (19)

=
1

m(m − 1)

m
∑

x,x′∈S,x �=x′

ES∼D,x,x′∈S [c(hxx′ , x, x′)] (20)

= ES∼D,x,x′∈S [c(hxx′ , x, x′)] (21)

This last term coincides with ES′,x,x′∼D,|S′|=m−2[c(hxx′ , x, x′)] = R(h′). �

In Section 2.3, it was shown that the hypothesis returned by MPRank for a
sample S is given by h(x′) = C′K′(I + K̄)−1(MY − MȲ ) for all x′ ∈ MX . Let
Kc be the matrix derived from K by replacing each entry Kij of K by the sum
of the entries in the same column

∑m
j=1 Kij . Similarly, let Kr be the matrix

derived from K by replacing each entry of K by the sum of the entries in the
same row, and let Krc be the matrix whose entries all are equal to the sum of
all entries of K. Note that the matrix K̄ can be written as:

1
C′

K̄ = K − 1
m

(Kr + Kc) +
1

m2 Krc. (22)

Let K′′ and U be the matrices defined by:

K′′ = K − 1
m

Kr and U = C′K′′(I + K̄)−1. (23)

Then, for all i ∈ [1, m], h(xi) =
∑m

k=1 Uik(yk − ȳ). In the remainder of this sec-
tion, we will consider the particular case of the n = 2 cost function for MPRank,
c2
MP(h, xi, xj) = [(h(xj) − yj) − (h(xi) − yi)]2.

Proposition 2. Let h′ be the hypothesis returned by MPRank when trained on
S−{xi, xj} and let h̄′ = 1

m

∑m
k=1 h′(xk). For all i, j ∈ [1, m], let Vij = Uij −

1
m−2

∑

k �∈{i,j}Uik. Then, the following identity holds for c2
MP(h′, xi, xj).�

(1 − Vjj)(1 − Vii) − VijVji

�2
c2
MP(h′, xi, xj) = (24)�

(1 − Vii − Vij)(h(xj) − yj) − (1 − Vji − Vjj)(h(xi) − yi)

−[(1 − Vii − Vij)(Vjj + Vji)(1 − Vji − Vjj)(Vii + Vij)](h̄′ − ȳ)
�2

.

Proof. By Equation 15, the cost function of MPRank can be written as:

F = ‖w‖2 +
2C

m

m
∑

k=1

[

(h(xk) − yk) − (h̄ − ȳ)
]2

, (25)

where h̄ = 1
m

∑m
k=1 h(xk). h′ is the solution of the minimization of F when the

terms corresponding to xi and xj are left out. Equivalently, one can keep these



10 C. Cortes, M. Mohri, and A. Rastogi

terms but select new values for yi and yj to ensure that these terms are zero.
Proceeding this way, the new values y′i and y′j must verify the following:

h′(xi) − y′i = h′(xj) − y′j = h̄′ − ȳ′, (26)

with ȳ′ = 1
m [y′(xi)+ y′(xj)+

∑

k �∈{i,j} yk]. Thus, by Equation 23, h′(xi) is given
by h′(xi) =

∑m
k=1 Uik(yk − y′). Therefore,

h′(xi) − yi =
�

k �∈{i,j}

Uik(yk − y′) + Uii(y
′
i − y′) + Uij(y

′
j − y′) − yi

=
�

k �∈{i,j}

Uik(yk − y) −
�

k �∈{i,j}

Uik(y′ − y) + Uii(h
′(xi) − h̄′)

+Uij(h
′(xj) − h̄′) − yi

= (h(xi) − yi) − Uii(yi − ȳ) − Uij(yj − ȳ)−
�

k �∈{i,j}

Uik(y′ − y)

+Uii(h
′(xi) − h̄′) + Uij(h

′(xj) − h̄′)

= (h(xi) − yi) + Uii(h
′(xi) − yi) + Uij(h

′(xj) − yj) − (Uii + Uij)(h̄′ − ȳ)

−
�

k �∈{i,j}

Uik(y′ − y)

= (h(xi) − yi) + Uii(h
′(xi) − yi) + Uij(h

′(xj) − yj) − (Uii + Uij)(h̄′ − ȳ)

−
�

k �∈{i,j}

Uik
1

m − 2
[(h′(xi) − yi) + (h′(xj) − yj) − 2(h̄′ − ȳ)]

= (h(xi) − yi) + Vii(h
′(xi) − yi) + Vij(h

′(xj) − yj) − (Vii + Vij)(h̄′ − ȳ).

Thus,

(1 − Vii)(h′(xi) − yi) − Vij(h′(xj) − yj) = (h(xi) − yi) − (Vii + Vij)(h̄′ − ȳ),

Similarly, we have

−Vji(h′(xi) − yi) + (1 −Vjj)(h′(xj) − yj) = (h(xj) − yj) − (Vjj +Vji)(h̄′ − ȳ).

Solving the linear system formed by these two equations with unknown variables
(h′(xi) − yi) and (h′(xj) − yj) gives:�
(1 − Vjj)(1 − Vii) − VijVji

�
(h′(xi) − yi) = (1 − Vjj)(h(xi) − yi) + Vij(h(xj) − yj)

−[(Vii + Vij)(1 − Vjj) + (Vjj + Vji)Vij ](h̄′ − ȳ).

Similarly, we obtain:�
(1 − Vjj)(1 − Vii) − VijVji

�
(h′(xj) − yj) = Vji(h(xi) − yi) + (1 − Vii)(h(xj) − yj)

−[(Vii + Vij)Vji + (Vjj + Vji)(1 − Vii)](h̄′ − ȳ).

Taking the difference of these last two equations and squaring both sides yields
the expression of c2

MP(h′, xi, xj) given in the statement of the proposition. �
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Given h̄′, Proposition 2 and Equation 17 can be used to compute the leave-one-
out error of h efficiently, since the coefficients Uij can be obtained in time O(m2)
from the matrix (I + K̄)−1 already computed to determine h.

Note that by the results of Section 2.3 and the strict convexity of the objective
function, h′ is uniquely determined and has a closed form. Thus, unless the
points xi and xj coincide, the expression [(1−Vjj)(1−Vii)−VijVji

]

factor of
c2
MP(h′, xi, xj) cannot be null. Otherwise, the system of linear equations found

in the proof is reduced to a single equation and h′(xi) (or h′(xj)) is not uniquely
specified.

For larger values of m, the average value of h over the sample S should not
be much different from that of h′, thus we can approximate h̄′ by h̄. Using this
approximation, for a sample with distinct points, we can write for L =MPRank

LOO(L, S)≈ 1

m(m−1)

�
i�=j

�
(1 − Vii − Vij)(h(xj) − yj) − (1 − Vji − Vjj)(h(xi) − yi)�

(1 − Vjj)(1 − Vii) − VijVji

�
− [(1 − Vii − Vij)(Vjj + Vji) − (1 − Vji − Vjj)(Vii + Vij)]�

(1 − Vjj)(1 − Vii) − VijVji

� (h̄ − ȳ)

�2

.

This can be used to determine efficiently the best value of the parameter C based
on the leave-one-out error.

Observe that the sum of the entries of each row of K̄ or each row of K′′ is
zero. Let M1 ∈ R

m×1 be column matrix with all entries equal to 1. In view of
this observation, K̄M1 = 0, thus (I + K̄)M1 = M1, (I + K̄)−1M1 = M1, and
UM1 = C′K′′(I + K̄)−1M1 = C′K′′M1 = 0. This shows that the sum of the
entries of each row of U is also zero, which yields the following identity for the
matrix V:

Vij = Uij − 1
m − 2

∑

k �∈{i,j}
Uik = Uij +

Uii + Uij

m − 2
=

(m − 1)Uij + Uii

m − 2
. (27)

Hence the matrix V computes
m

∑

k=1

Vik(yk − ȳ) =
m

∑

k=1

Vik(yk − ȳ) =
m − 1
m − 2

h(xi). (28)

These identities further simplify the expression of matrix V and its relationship
with h.

3 Stability Bounds

Bousquet and Elisseeff (2000) and Bousquet and Elisseeff (2002) gave stability
bounds for several regression and classification algorithms. This section shows
similar stability bounds for ranking and magnitude-preserving ranking algo-
rithms. This also generalizes the results of Agarwal and Niyogi (2005) which
were given in the specific case of bi-partite ranking.

The following definitions are natural extensions to the case of cost functions
over pairs of those given by Bousquet and Elisseeff (2002).



12 C. Cortes, M. Mohri, and A. Rastogi

Definition 1. A learning algorithm L is said to be uniformly β-stable with re-
spect to the sample S and cost function c if there exists β ≥ 0 such that for all
S ∈ (X × R)m and i ∈ [1, m],

∀x, x′ ∈ X, |c(hS , x, x′) − c(hS−i , x, x′)| ≤ β. (29)

Definition 2. A cost function c is is σ-admissible with respect to a hypothesis
set H if there exists σ ≥ 0 such that for all h, h′ ∈ H, and for all x, x′ ∈ X,

|c(h, x, x′) − c(h′, x, x′)| ≤ σ(|Δh(x′)| + |Δh(x)|), (30)

with Δh = h′ − h.

3.1 Magnitude-Preserving Regularization Algorithms

For a cost function c such as those just defined and a regularization function N ,
a regularization-based algorithm can be defined as one minimizing the following
objective function:

F (h, S) = N(h) + C
1

m2

m
∑

i=1

m
∑

j=1

c(h, xi, xj), (31)

where C ≥ 0 is a constant determining the trade-off between the emphasis on
the regularization term versus the error term. In much of what follows, we will
consider the case where the hypothesis set H is a reproducing Hilbert space
and where N is the squared norm in a that space, N(h) = ‖h‖2

K for a kernel
K, though some of our results can straightforwardly be generalized to the case
of an arbitrary convex N . By the reproducing property, for any h ∈ H , ∀x ∈
X, h(x) = 〈h, K(x, .)〉 and by Cauchy-Schwarz’s inequality,

∀x ∈ X, |h(x)| ≤ ‖h‖K

√

K(x, x). (32)

Assuming that for all x ∈ X, K(x, x) ≤ κ2 for some constant κ ≥ 0, the in-
equality becomes: ∀x ∈ X, |h(x)| ≤ κ‖h‖K . With the cost functions previously
discussed, the objective function F is then strictly convex and the optimization
problem admits a unique solution. In what follows, we will refer to the algo-
rithms minimizing the objective function F with a cost function defined in the
previous section as magnitude-preserving regularization algorithms.

Lemma 1. Assume that the hypotheses in H are bounded, that is for all h ∈ H
and x ∈ S, |h(x)−yx| ≤ M . Then, the cost functions cn

HR, cn
MP, cn

HMP, and cn
SVR

are all σn-admissible with σ1 = 1, σ2 = 4M .

Proof. We will give the proof in the case of cn
MP, n = 1, 2, the other cases can

be treated similarly.
By definition of c1

MP, for all x, x′ ∈ X ,

|c1
MP(h′, x, x′) − c1

MP(h, x, x′)| =
∣

∣|(h′(x′) − h′(x)) − (yx′ − yx)| − (33)

|(h(x′) − h(x)) − (yx′ − yx)|
∣

∣.
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Using the identity
∣

∣|X ′ − Y | − |X − Y |
∣

∣ ≤ |X ′ − X |, valid for all X, X ′, Y ∈ R,
it follows that

|c1
MP(h′, x, x′) − c1

MP(h, x, x′)| ≤ |Δh(x′) − Δh(x)| (34)
≤ |Δh(x′)| + |Δh(x)|, (35)

which shows the σ-admissibility of c1
MP with σ = 1. For c2

MP, for all x, x′ ∈ X ,

|c2
MP(h′, x, x′) − c2

MP(h, x, x′)| = ||(h′(x′) − h′(x)) − (yx′ − yx)|2 (36)
−|(h(x′) − h(x)) − (yx′ − yx)|2|

≤ |Δh(x′) − Δh(x)|(|h′(x′) − yx′ | + (37)
|h(x′) − yx′ | + |h′(x) − yx| + |h(x) − yx|)

≤ 4M(|Δh(x′)| + |Δh(x)|), (38)

which shows the σ-admissibility of c2
MP with σ = 4M . �

Proposition 3. Assume that the hypotheses in H are bounded, that is for all
h ∈ H and x ∈ S, |h(x)−yx| ≤ M . Then, a magnitude-preserving regularization
algorithm as defined above is β-stable with β = 4Cσ2

nκ2

m .

Proof. Fix the cost function to be c, one of the σn-admissible cost function
previously discussed. Let hS denote the function minimizing F (h, S) and hS−k

the one minimizing F (h, S−k). We denote by ΔhS = hS−k − hS .
Since the cost function c is convex with respect to h(x) and h(x′), ̂R(h, S) is

also convex with respect to h and for t ∈ [0, 1],

̂R(hS + tΔhS , S−k) − ̂R(hS , S−k) ≤ t
[

̂R(hS−k , S−k) − ̂R(hS , S−k)
]

. (39)

Similarly,

̂R(hS−k − tΔhS , S−k) − ̂R(hS−k , S−k) ≤ t
[

̂R(hS , S−k) − ̂R(hS−k , S−k)
]

. (40)

Summing these inequalities yields

�R(hS + tΔhS , S−k) − �R(hS , S−k) + �R(hS−k − tΔhS , S−k) − �R(hS−k , S−k) ≤ 0. (41)

By definition of hS and hS−k as functions minimizing the objective functions,
for all t ∈ [0, 1],

F (hS , S)−F (hS + tΔhS, S) ≤ 0 and F (hS−k , S−k)−F (hS−k − tΔhS, S−k) ≤ 0. (42)

Multiplying Inequality 41 by C and summing it with the two Inequalities 42 lead
to

A + ‖hS‖2
K − ‖hS + tΔhS‖2

K + ‖hS−k‖2
K − ‖hS−k − tΔhS‖2

K ≤ 0. (43)
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with A=C
(

̂R(hS , S) − ̂R(hS , S−k)+ ̂R(hS + tΔhS , S−k) − ̂R(hS + tΔhS , S)
)

.
Since

A = C
m2

[
∑

i�=k

c(hS , xi, xk) − c(hS + tΔhS , xi, xk)+

∑

i�=k

c(hS , xk, xi) − c(hS + tΔhS , xk, xi)
]

,
(44)

by the σn-admissibility of c,

|A| ≤ 2Ctσn

m2

∑

i�=k

(|ΔhS(xk)| + |ΔhS(xi)|) ≤ 4Ctσnκ

m
‖ΔhS‖K .

Using the fact that ‖h‖2
K = 〈h, h〉 for any h, it is not hard to show that

‖hS‖2
K − ‖hS + tΔhS‖2

K + ‖hS−k‖2
K − ‖hS−k − tΔhS‖2

K = 2t(1 − t)‖ΔhS‖2
K .

In view of this and the inequality for |A|, Inequality 43 implies 2t(1−t)‖ΔhS‖2
K ≤

4Ctσnκ
m ‖ΔhS‖K , that is after dividing by t and taking t → 0,

‖ΔhS‖K ≤ 2Cσnκ

m
. (45)

By the σn-admissibility of c, for all x, x′ ∈ X ,

|c(hS , x, x′) − c(hS−k , x, x′)| ≤ σn(|ΔhS(x′)| + |ΔhS(x)|) (46)
≤ 2σnκ‖ΔhS‖K (47)

≤ 4Cσ2
nκ2

m
. (48)

This shows the β-stability of the algorithm with β = 4Cσ2
nκ2

m . �

To shorten the notation, in the absence of ambiguity, we will write in the fol-
lowing ̂R(hS) instead of ̂R(hS , S).

Theorem 1. Let c be any of the cost functions defined in Section 2.1. Let L be
a uniformly β-stable algorithm with respect to the sample S and cost function c
and let hS be the hypothesis returned by L. Assume that the hypotheses in H are
bounded, that is for all h ∈ H, sample S, and x ∈ S, |h(x) − yx| ≤ M . Then,
for any ε > 0,

Pr
S∼D

[

|R(hS) − ̂R(hS)| > ε + 2β
]

≤ 2e
− mε2

2(βm+(2M)n)2 . (49)

Proof. We apply McDiarmid’s inequality (McDiarmid, 1998) to Φ(S) = R(hS)−
̂R(hS , S). We will first give a bound on E[Φ(S)] and then show that Φ(S) satisfies
the conditions of McDiarmid’s inequality.

We will denote by Si,j the sample derived from S by replacing xi with x′i and
xj with x′j , with x′i and x′j sampled i.i.d. according to D.
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Since the sample points in S are drawn in an i.i.d. fashion, for all i, j ∈ [1, m],

ES [ ̂R(hS , S)] =
1

m2

m
∑

i=1

m
∑

j=1

E[c(hS , xi, xj)] (50)

= ES∼D[c(hS , xi, xj)] (51)
= ESi,j∼D[c(hSi,j , x′i, x

′
j)] (52)

= ES,x′
i,x

′
j∼D[c(hSi,j , x′i, x

′
j)]. (53)

Note that by definition of R(hS), ES [R(hS)] = ES,x′
i,x

′
j∼D[c(hS , x′i, x

′
j)]. Thus,

ES [Φ(S)] = ES,x,x′[c(hS , x′i, x
′
j) − c(hSi,j , x′i, x

′
j)], and by β-stability (Proposi-

tion 3)

| ES [Φ(S)]| ≤ ES,x,x′[|c(hS , x′i, x
′
j) − c(hSi , x′i, x

′
j)|] + (54)

ES,x,x′[|c(hSi , x′i, x
′
j) − c(hSi,j , x′i, x

′
j)|] (55)

≤ 2β. (56)

Now,

|R(hS) − R(hSk)| = | ES [c(hS , x, x′) − c(hSk , x, x′)]| (57)
≤ ES [|c(hS , x, x′) − c(hSk , x, x′)|] (58)
≤ β. (59)

For any x, x′ ∈ X , |c(hS , xk, xj)−c(hSk , xi, x
′
k)|<ES [|c(hSk , x, x′)−c(hSk , x, x′)|]

≤ (2M)n, where n = 1 or n = 2. Thus, we have

| ̂R(hS) − ̂R(hk
S)| ≤ 1

m2

∑

i�=k

∑

j �=k

|c(hS , xi, xj) − c(hSk , xi, xj)| + (60)

1
m2

m
∑

j=1

|c(hS , xk, xj) − c(hSk , x′k, xj)| + (61)

1
m2

m
∑

i=1

|c(hS , xk, xj) − c(hSk , xi, x
′
k)| (62)

≤ 1
m2 (m2β) +

m

m2 2(2M)n = β + 2(2M)n/m. (63)

Thus,
|Φ(S) − Φ(Sk)| ≤ 2(β + (2M)n/m), (64)

and Φ(S) satisfies the hypotheses of McDiarmid’s inequality. �

The following Corollary gives stability bounds for the generalization error of
magnitude-preserving regularization algorithms.

Corollary 1. Let L be a magnitude-preserving regularization algorithm and let
c be the corresponding cost function and assume that for all x ∈ X, K(x, x) ≤ κ2.
Assume that the hypothesis set H is bounded, that is for all h ∈ H, sample S,
and x ∈ S, |h(x) − yx| ≤ M . Then, with probability at least 1 − δ,
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– for n = 1,

R(hS) ≤ ̂R(hS) +
8κ2C

m
+ 2(2κ2C + M)

√

2
m

log
2
δ
; (65)

– for n = 2,

R(hS) ≤ ̂R(hS) +
128κ2CM2

m
+ 4M2(16κ2C + 1)

√

2
m

log
2
δ
. (66)

Proof. By Proposition 3, these algorithms are β-stable with β = 4Cσ2
nκ2

m . �

These bounds are of the form R(hS) ≤ ̂R(hS)+O( C√
m

). Thus, they are effective
for values of C �

√
m.

4 Experiments

In this section, we report the results of experiments with two of our magnitude-
preserving algorithms, MPRank and SVRank.

The algorithms were tested on four publicly available data sets, three of which
are commonly used for collaborative filtering: MovieLens, Book-Crossings, and
Jester Joke. The fourth data set is the Netflix data. The first three datasets are
available from the following URL:

http://www.grouplens.org/taxonomy/term/14.

The Netflix data set is available at

http://www.netflixprize.com/download.

4.1 MovieLens Dataset

The MovieLens dataset consists of approximately 1M ratings by 6,040 users for
3,900 movies. Ratings are integers in the range of 1 to 5. For each user, a different
predictive model is designed. The ratings of that user on the 3,900 movies (not
all movies will be rated) form the target values yi. The other users’ ratings of
the ith movie form the ith input vector xi.

We followed the experimental set-up of Freund et al. (1998) and grouped the
reviewers according to the number of movies they have reviewed. The groupings
were 20 − 40 movies, 40 − 60 movies, and 60 − 80 movies.

Test reviewers were selected among users who had reviewed between 50 and
300 movies. For a given test reviewer, 300 reference reviewers were chosen at
random from one of the three groups and their rating were used to form the
input vectors. Training was carried out on half of the test reviewer’s movie
ratings and testing was performed on the other half. The experiment was done
for 300 different test reviewers and the average performance recorded. The whole
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Table 1. Performance results for MPRank, SVRank, and RankBoost

Data set Mean Squared Difference Mean 1-Norm Difference

MPRank SVRank RBoost MPRank SVRank RBoost

MovieLens 2.01 2.43 12.88 1.04 1.17 2.59

20-40 ± 0.02 ± 0.13 ± 2.15 ± 0.05 ± 0.03 ± 0.04

MovieLens 2.02 2.36 20.06 1.04 1.15 2.99

40-60 ± 0.06 ± 0.16 ± 2.76 ± 0.02 ± 0.07 ± 0.12

MovieLens 2.07 2.66 21.35 1.06 1.24 3.82

60-80 ± 0.05 ± 0.09 ± 2.71 ± 0.01 ± 0.02 ± 0.23

Jester 51.34 55.00 77.08 5.08 5.40 5.97

20-40 ± 2.90 ± 5.14 ± 17.1 ± 0.15 ± 0.20 ± 0.16

Jester 46.77 57.75 80.00 4.98 5.27 6.18

40-60 ± 2.03 ± 5.14 ± 18.2 ± 0.13 ± 0.20 ± 0.11

Jester 49.33 56.06 88.61 4.88 5.25 6.46

60-80 ± 3.11 ± 4.26 ± 18.6 ± 0.14 ± 0.19 ± 0.20

Netflix 1.58 1.80 57.5 0.92 0.95 6.48

Density:32% ± 0.04 ± 0.05 ± 7.8 ± 0.01 ± 0.02 ± 0.55

Netflix 1.55 1.90 23.9 0.95 1.02 4.10

Density:46% ± 0.03 ± 0.06 ± 2.9 ± 0.01 ± 0.02 ± 0.23

Netflix 1.49 1.93 12.33 0.94 1.06 3.01

Density:58% ± 0.03 ± 0.06 ± 1.47 ± 0.01 ± 0.02 ± 0.15

Books 4.00 3.64 7.58 1.38 1.32 1.72

± 3.12 ± 3.04 ± 9.95 ± 0.60 ± 0.56 ± 1.05

process was then repeated ten times with a different set of 300 reviewers selected
at random. We report mean values and standard deviation for these ten repeated
experiments for each of the three groups. Missing review values in the input
features were populated with the median review score of the given reference
reviewer.

4.2 Jester Joke Dataset

The Jester Joke Recommender System dataset contains 4.1M continuous ratings
in the range -10.00 to +10.00 of 100 jokes from 73,496 users. The experiments
were set up in the same way as for the MovieLens dataset.

4.3 Netflix Dataset

The Netflix dataset contains more than 100M ratings by 480,000 users for 17,700
movies. Ratings are integers in the range of 1 to 5. We constructed three subsets
of the data with different user densities. Subsets were obtained by thresholding
against two parameters: the minimum number of movies rated by a user and
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the minimum of ratings for a movie. Thus, in choosing users for the training
and testing set, we only consider those users who have reviewed more than 150,
500, or 1500 movies respectively. Analogously, in selecting the movies that would
appear in the subset data, we only consider those movies that have received at
least 360, 1200, or 1800 reviews. The experiments were then set-up in the same
way as for the MovieLens dataset. The mean densities of the three subsets (across
the ten repetitions) were 32%, 46% and 58% respectively. Finally, the test raters
were selected from a mixture of the three densities.

4.4 Book-Crossing Dataset

The book-crossing dataset contains 1,149,780 ratings for 271,379 books for a
group of 278,858 users. The low density of ratings makes predictions very noisy
in this task. Thus, we required users to have reviewed at least 200 books, and
then only kept books with at least 10 reviews. This left us with a dataset of 89
books and 131 reviewers. For this dataset, each of the 131 reviewers was in turn
selected as a test reviewer, and the other 130 reviewers served as input features.
The results reported are mean values and standard deviations over these 131
leave-one-out experiments.

4.5 Performance Measures and Results

The performance measures we report correspond to the problem we are solving.
The cost function of MPRank is designed to minimize the squared difference
between all pairs of target values, hence we report the mean squared difference
(MSD) over all pairs in the test set of size m′ of a hypothesis h:

1
m′2

m′
∑

i=1

m′
∑

j=1

((h(xj) − h(xi)) − (yj − yi))
2
. (67)

The cost function of SVRank minimizes the absolute value of the difference be-
tween all pairs of examples, hence we report the average of the 1-norm difference,
M1D:

1
m′2

m′
∑

i=1

m′
∑

j=1

|(h(xj) − h(xi)) − (yj − yi)| . (68)

The results for MPRank and SVRank are obtained using Gaussian kernels. The
width of the kernel and the other cost function parameters were first optimized
on a held-out sample. The performance on their respective cost functions was
optimized and the parameters fixed at these values.

The results are reported in Table 1. They demonstrate that the magnitude-
preserving algorithms are both successful at minimizing their respective objec-
tive. MPRank obtains the best MSD values and the two algorithms obtain com-
parable M1D values. However, overall, in view of these results and the superior
computational efficiency of MPRank already pointed out in the previous section,
we consider MPRank as the best performing algorithm for such tasks.



An Alternative Ranking Problem for Search Engines 19

Table 2. Comparison of MPRank and RankBoost for pairwise misrankings

Data set Pairwise Misrankings

MPRank RBoost

MovieLens 0.471 0.476

40-60 ± 0.005 0 ± 0.007

MovieLens 0.442 0.463

60-80 ± 0.005 ± 0.011

Jester 0.414 0.479

20-40 ± 0.005 ± 0.008

Jester 0.418 0.432

40-60 ± 0.007 ± 0.005

Netflix 0.433 0.447

Density:32% ± 0.018 ± 0.027

Netflix 0.368 0.327

Density:46% ± 0.014 ± 0.008

Netflix 0.295 0.318

Density:58% ± 0.006 ± 0.008

To further examine the ranking properties of MPRank we conducted a number
of experiments where we compared the pairwise misranking performance of the
algorithm to that of RankBoost, an algorithm designed to minimize the number
of pairwise misrankings (Rudin et al., 2005). We used the same features for
RankBoost as for MPRank that is we used as weak rankers threshold functions
over other reviewers’ ratings. As for the other algorithms, the parameter of
RankBoost, that is the number of boosting rounds required to minimize pairwise
misranking was determined on a held-out sample and then fixed at this value.

Table 2 shows a comparison between these two algorithms. It reports the
fraction of pairwise misrankings for both algorithms using the same experimental
set-up as previously described:

∑m′

i,j=1 1yi>yj∧h(xi)≤h(xj)
∑m′

i,j=1 1yi>yj

. (69)

The results show that the pairwise misranking error of MPRank is comparable to
that of RankBoost. This further increases the benefits of MPRank as a ranking
algorithm.

We also tested the performance of RankBoost with respect to MSD and M1D
(see Table 1). Naturally, RankBoost is not designed to optimize these perfor-
mance measure and does not lead to competitive results with respect to MPRank
and SVRank on any of the datasets examined.
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Fig. 1. (a) Convergence of the on-line learning algorithm towards the batch solution.
Rounding errors give rise to slightly different solutions. (b) Training time in seconds
for the on-line and the batch algorithm. For small training set sizes the batch version
is fastest, but for larger training set sizes the on-line version is faster. Eventually the
batch version becomes infeasible.

4.6 On-Line Version of MPRank

Using the Netflix data we also experimented with the on-line version of MPRank
described in Section 2.5. The main questions we wished to investigate were the
convergence rate and CPU time savings of the on-line version with respect to the
batch algorithm MPRank (Equation 13). The batch solution requires a matrix
inversion and becomes infeasible for large training sets.

Figure 1(a) illustrates the convergence rate for a typical reviewer. In this
instance, the training and test sets each consisted of about 700 movies. As can
be seen from the plot, the on-line version converges to the batch solution in
about 120 rounds, where one round is a full cycle through the training set.

Based on monitoring several convergence plots, we decided on terminating
learning in the on-line version of MPRank when consecutive rounds of iterations
over the full training set would change the cost function by less than .01 %.
Figure 1(b) compares the CPU time for the on-line version of MPRank with the
batch solution. For both computations of the CPU times, the time to construct
the Gram matrix is excluded. The figure shows that the on-line version is signifi-
cantly faster for large datasets, which extends the applicability of our algorithms
beyond the limits of intractable matrix inversion.

5 Conclusion

We presented several algorithms for magnitude-preserving ranking problems and
provided stability bounds for their generalization error. We also reported the
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results of several experiments on public datasets comparing these algorithms.
We presented an on-line version of one of the algorithms and demonstrated its
applicability for very large data sets. We view accurate magnitude-preserving
ranking as an important problem for improving the quality of modern recom-
mendation and rating systems. An alternative for incorporating the magnitude
of preferences in cost functions is to use weighted AUC, where the weights re-
flect the magnitude of preferences and extend existing algorithms. This how-
ever, does not exactly coincide with the objective of preserving the magnitude of
preferences.
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Abstract. Algorithms for route planning in transportation networks
have recently undergone a rapid development, leading to methods that
are up to one million times faster than Dijkstra’s algorithm. We outline
ideas, algorithms, implementations, and experimental methods behind
this development. We also explain why the story is not over yet because
dynamically changing networks, flexible objective functions, and new
applications pose a lot of interesting challenges.

1 Introduction

Computing an optimal route in a transportation network between specified
source and target nodes is one of the showpieces of real-world applications of
algorithmics. We frequently use this functionality when planning trips with cars
or public transportation. There are also many applications like logistic planning
or traffic simulation that need to solve a huge number of shortest-path queries
in transportation networks. In most of this paper we focus on the simplest case,
a static road network with a fixed cost for each edge. The cost function may
be any mix of travel time, distance, toll, energy consumption, scenic value, . . .
associated with the edges. Some of the techniques described below work best if
the cost function is positively correlated with travel time. The task is to compute
the costs of optimal paths between arbitrary source-target pairs. Some prepro-
cessing is allowed but it has to be sufficiently fast and space efficient to scale to
the road network of a continent.

The main part of this paper is Section 2, which explains the ideas behind
several practically successful speedup techniques for static routing in road net-
works. Section 3 makes an attempt to summarize the development of perfor-
mance over time. In Section 4 we outline generalizations for public transporta-
tion, time-dependent edge weights, outputting optimal paths, and dynamically
changing networks. Section 5 describes some experiences we made with imple-
menting route planning algorithms for large networks. Then, Section 6 explains
our experimental approach giving some examples by applying it to the algo-
rithms we implemented. We conclude in Section 7 with a discussion of some
future challenges.
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2 Static Routing in Large Road Networks

We consider a directed graph G = (V, E) with n nodes and m = Θ(n) edges.
An edge (u, v) has the nonnegative edge weight w(u, v). A shortest-path query
between a source node s and a target node t asks for the minimal weight d(s, t)
of any path from s to t. In static routing, the edge weights do not change so
that it makes sense to perform some precomputations, store their results, and
use this information to accelerate the queries. Obviously, there is some tradeoff
between query time, preprocessing time, and space for preprocessed information.
In particular, for large road networks it would be prohibitive to precompute and
store shortest paths between all pairs of nodes.

2.1 “Classical Results”

Dijkstra’s Algorithm [1]—the classical algorithm for route planning—main-
tains an array of tentative distances D[u] ≥ d(s, u) for each node. The algorithm
visits (or settles) the nodes of the road network in the order of their distance
to the source node and maintains the invariant that D[u] = d(s, u) for visited
nodes. We call the rank of node u in this order its Dijkstra rank rks(u). When
a node u is visited, its outgoing edges (u, v) are relaxed, i.e., D[v] is set to
min(D[v], d(s, u) + w(u, v)). Dijkstra’s algorithm terminates when the target
node is visited. The size of the search space is O(n) and n/2 (nodes) on the
average. We will assess the quality of route planning algorithms by looking at
their speedup compared to Dijkstra’s algorithm, i.e., how many times faster they
can compute shortest-path distances.

Priority Queues. Dijkstra’s algorithm can be implemented using O(n) prior-
ity queue operations. In the comparison based model this leads to O(n log n)
execution time. In other models of computation (e.g. [2]) and on the average
[3], better bounds exist. However, in practice the impact of priority queues on
performance for large road networks is rather limited since cache faults for ac-
cessing the graph are usually the main bottleneck. In addition, our experiments
indicate that the impact of priority queue implementations diminishes with ad-
vanced speedup techniques since these techniques at the same time introduce
additional overheads and dramatically reduce the queue sizes.

Bidirectional Search executes Dijkstra’s algorithm simultaneously forward
from the source and backwards from the target. Once some node has been vis-
ited from both directions, the shortest path can be derived from the information
already gathered [4]. In a road network, where search spaces will take a roughly
circular shape, we can expect a speedup around two —one disk with radius d(s, t)
has twice the area of two disks with half the radius. Bidirectional search is im-
portant since it can be combined with most other speedup techniques and, more
importantly, because it is a necessary ingredient of the most efficient advanced
techniques.
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Geometric Goal Directed Search (A∗). The intuition behind goal directed
search is that shortest paths ‘should’ lead in the general direction of the target.
A∗ search [5] achieves this by modifying the weight of edge (u, v) to w(u, v) −
π(u) + π(v) where π(v) is a lower bound on d(v, t). Note that this manipulation
shortens edges that lead towards the target. Since the added and subtracted
vertex potentials π(v) cancel along any path, this modification of edge weights
preserves shortest paths. Moreover, as long as all edge weights remain nonnega-
tive, Dijkstra’s algorithm can still be used. The classical way to use A∗ for route
planning in road maps estimates d(v, t) based on the Euclidean distance between
v and t and the average speed of the fastest road anywhere in the network. Since
this is a very conservative estimation, the speedup for finding quickest routes is
rather small. Goldberg et al. [6] even report a slow-down of more than a fac-
tor of two since the search space is not significantly reduced but a considerable
overhead is added.

Heuristics. In the last decades, commercial navigation systems were developed
which had to handle ever more detailed descriptions of road networks on rather
low-powered processors. Vendors resolved to heuristics still used today that do
not give any performance guarantees: use A∗ search with estimates on d(u, t)
rather than lower bounds; do not look at ‘unimportant’ streets, unless you are
close to the source or target [7]. The latter heuristic needs careful hand tun-
ing of road classifications to produce reasonable results but yields considerable
speedups.

2.2 Exploiting Hierarchy

Small Separators. Road networks are almost planar, i.e., most edges intersect
only at nodes. Hence, techniques developed for planar graphs will often also work
for road networks. Using O(n log2 n) space and preprocessing time, query time
O(

√
n log n) can be achieved [8,9] for directed planar graphs without negative

cycles. Queries accurate within a factor (1+ ε) can be answered in near constant
time using O((n log n)/ε) space and preprocessing time [10]. Most of these the-
oretical approaches look difficult to use in practice since they are complicated
and need superlinear space.

The first published practical approach to fast route planning [11] uses a set
of nodes V1 whose removal partitions the graph G = G0 into small components.
Now consider the overlay graph G1 = (V1, E1) where edges in E1 are shortcuts
corresponding to shortest paths in G that do not contain nodes from V1 in their
interior. Routing can now be restricted to G1 and the components containing s
and t respectively. This process can be iterated yielding a multi-level method. A
limitation of this approach is that the graphs at higher levels become much more
dense than the input graphs thus limiting the benefits gained from the hierarchy.
Also, computing small separators and shortcuts can become quite costly for large
graphs.
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Reach-Based Routing. Let R(v) := maxs,t∈V Rst(v) denote the reach of node
v where Rst(v) := min(d(s, v), d(v, t)). Gutman [12] observed that a shortest-
path search can be stopped at nodes with a reach too small to get to source or
target from there. Variants of reach-based routing work with the reach of edges
or characterize reach in terms of geometric distance rather than shortest-path
distance. The first implementation had disappointing speedups (e.g. compared
to [11]) and preprocessing times that would be prohibitive for large networks.

Highway Hierarchies. (HHs) [13,14] group nodes and edges in a hierarchy of
levels by alternating between two procedures: Contraction (i.e., node reduction)
removes low degree nodes by bypassing them with newly introduced shortcut
edges. In particular, all nodes of degree one and two are removed by this pro-
cess. Edge reduction removes non-highway edges, i.e., edges that only appear on
shortest paths close to source or target. More specifically, every node v has a
neighborhood radius r(v) we are free to choose. An edge (u, v) is a highway edge
if it belongs to some shortest path P from a node s to a node t such that (u, v)
is neither fully contained in the neighborhood of s nor in the neighborhood of
t, i.e., d(s, v) > r(s) and d(u, t) > r(t). In all our experiments, neighborhood
radii are chosen such that each neighborhood contains a certain number H of
nodes. H is a tuning parameter that can be used to control the rate at which the
network shrinks. The query algorithm is very similar to bidirectional Dijkstra
search with the difference that certain edges need not be expanded when the
search is sufficiently far from source or target. HHs were the first speedup tech-
nique that could handle the largest available road networks giving query times
measured in milliseconds. There are two main reasons for this success: Under
the above contraction routines, the road network shrinks in a geometric fashion
from level to level and remains sparse and near planar, i.e., levels of the HH are
in some sense self similar. The other key property is that preprocessing can be
done using limited local searches starting from each node. Preprocessing is also
the most nontrivial aspect of HHs. In particular, long edges (e.g. long-distance
ferry connections) make simple minded approaches far too slow. Instead we use
fast heuristics that compute a superset of the set of highway edges.

Routing with HHs is similar to the heuristics used in commercial systems.
The crucial difference is that HHs are guaranteed to find the optimal path. This
qualitative improvement actually make HHs much faster than the heuristics.
The latter have to make a precarious compromise between quality and size of
the search space that relies on manual classification of the edges into levels of the
hierarchy. In contrast, after setting a few quite robust tuning parameters, HH-
preprocessing automatically computes a hierarchy aggressively tuned for high
performance.

Advanced Reach-Based Routing. It turns out that the preprocessing tech-
niques developed for HHs can be adapted to preprocessing reach information
[15]. This makes reach computation faster and more accurate. More impor-
tantly, shortcuts make queries more effective by reducing the number of nodes
traversed and by reducing the reach-values of the nodes bypassed by shortcuts.
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Reach-based routing is slower than HHs both with respect to preprocessing time
and query time. However, the latter can be improved by a combination with
goal-directed search to a point where both methods have similar performance.

Highway-Node Routing. In [16] we generalize the multi-level routing scheme
with overlay graphs so that it works with arbitrary sets of nodes rather than
only with separators. This is achieved using a new query algorithm that stalls
suboptimal branches of search on lower levels of the hierarchy. By using only
important nodes for higher levels, we achieve query performance comparable to
HHs. Preprocessing is done in two phases. In the first phase, nodes are classified
into levels. We currently derive this information from a HH. In the second phase,
we recursively compute the shortcuts bottom up. Shortcuts from level � are found
by local searches in level � − 1 starting from nodes in level �. This second phase
is very fast and easy to update when edge weights change.

Distance Tables. For HHs the network size shrinks geometrically from level to
level. Once a level L has size Θ(

√
n), we can afford to precompute and store a

complete distance table for nodes in level L [14]. Using this table, we can stop a
HH search when it has reached level L. To compute the shortest-path distance, it
then suffices to lookup all shortest-path distances between nodes entering level
L in forward and backward search respectively. Since the number of entrance
nodes is not very large, one can achieve a speedup close to two compared to
pure HH search.

Transit Node Routing precomputes not only a distance table for important
(transit) nodes but also all relevant connections between the remaining nodes
and the transit nodes [17,18]. Since it turns out that only about ten such access
connections are needed per node, one can ‘almost’ reduce routing in large road
networks to about 100 table lookups. Interestingly, the difficult queries are now
the local ones where the shortest path does not touch any transit node. We
solve this problem by introducing several layers of transit nodes. Between lower
layer transit nodes, only those routes need to be stored that do not touch the
higher layers. Transit node routing (e.g., using appropriate levels of a HH for
transit node sets) reduces routing times to a few microseconds at the price of
preprocessing times an order of magnitude larger than HHs alone.

2.3 Advanced Goal-Directed Search

Edge Labels. The idea behind edge labels is to precompute information for
an edge e that specifies a set of nodes M(e) with the property that M(e) is a
superset of all nodes that lie on a shortest path starting with e. In an s–t query,
an edge e need not be relaxed if t �∈ M(e). In [11], M(e) is specified by an angular
range. More effective is information that can distinguish between long range and
short range edges. In [19] many geometric containers are evaluated. Very good
performance is observed for axis parallel rectangles. A disadvantage of geometric
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containers is that they require a complete all-pairs shortest-path computation.
Faster precomputation is possible by partitioning the graph into k regions that
have similar size and only a small number of boundary nodes. Now M(e) is
represented as a k-vector of edge flags [20,21,22] where flag i indicates whether
there is a shortest path containing e that leads to a node in region i. Edge
flags can be computed using a single-source shortest-path computation from
all boundary nodes of the regions. In [23] a faster variant of the preprocessing
algorithm is introduced that takes advantage of the fact that for close boundary
nodes the respective shortest-path trees are very similar.

Landmark A∗. Using the triangle inequality, quite strong bounds on shortest-
path distances can be obtained by precomputing distances to a set of around 20
landmark nodes that are well distributed over the far ends of the network [6,24].
Using reasonable space and much less preprocessing time than for edge labels,
these lower bounds yield considerable speedup for route planning.

Precomputed Cluster Distances (PCD). In [25], we give a different way
to use precomputed distances for goal-directed search. We partition the network
into clusters and then precompute the shortest connection between any pair of
clusters U and V , i.e., minu∈U,v∈V d(u, v). PCDs cannot be used together with
A∗ search since reduced edge weights can become negative. However, PCDs yield
upper and lower bounds for distances that can be used to prune search. This
gives speedup comparable to landmark-A∗ using less space. Using the many-
to-many routing techniques outlined in Section 4, cluster distances can also be
computed efficiently.

2.4 Combinations

Bidirectional search can be profitably combined with almost all other speedup
techniques. Indeed, it is a required ingredient of highway hierarchies, transit
and highway-node routing and it gives more than the anticipated factor two
for reach-based routing and edge flags. Willhalm et al. have made a systematic
comparison of combinations of pre-2004 techniques [26,27]. Landmark A∗ har-
monizes very well with reach-based routing [15] whereas it gives only a small
additional speedup when combined with HHs [28]. The reason is that in HHs,
the search cannot be stopped when the search frontiers meet. However, the same
approach is very effective at speeding up approximate shortest-path queries.

3 Chronological Summary—The Horse Race

In general it is difficult to compare speedup techniques even when restricting
to road networks because there is a complex tradeoff between query time, pre-
processing time and space consumption that depends on the network, on the
objective function, and on the distribution of queries. Still, we believe that some
ranking helps to compare the techniques. To keep things manageable, we will re-
strict ourselves to average query times for computing optimal travel times in one
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Table 1. Chronological development of the fastest speedup techniques. As date for the
first publication, we usually give the submission deadline of the respective conference.
If available, we always selected measurements for the European road network even if
they were conducted after the first publication. Otherwise, we linearly extrapolated the
preprocessing times to the size of Europe, which can be seen as a lower bound. Note
that not all speedup techniques have been preprocessed on the same machine.

method first date data size space preproc. speedup
pub. mm/yy from n/106 [B/node] [min]

separator multi-level [11] 04/99 [30] 0.1 ? > 5 400 52
edge flags (basic) [20] 03/04 [31] 6 13 299 523
landmark A∗ [6] 07/04 [32] 18 72 13 28
edge flags [21,22] 01/05 [23] 1 141 2 163 1 470
HHs (basic) [13] 04/05 [13] 18 29 161 2 645

reach + shortc. + A∗ [15] 10/05 [32] 18 82 1 625 1 559
[32] 08/06 [32] 18 32 144 3 830

HHs [14] 04/06 [14] 18 27 13 4 002
HHs + dist. tab. (mem) [14] 04/06 [14] 18 17 55 4 582
HHs + dist. tab. [14] 04/06 [14] 18 68 15 8 320
HHs + dist. tab. + A∗ [28] 08/06 [28] 18 76 22 11 496
high-perf. multi-level [33] 06/06 [34] 18 181 11 520 401 109
transit nodes (eco) [17] 10/06 [17] 18 110 46 471 881
transit nodes (gen) [17] 10/06 [17] 18 251 164 1 129 143
highway nodes (mem) [16] 01/07 [16] 18 2 24 4 079

of the largest networks that have been widely used—the road network of (West-
ern) Europe provided by the company PTV AG and also used (in a slightly
different version) in the 9th DIMACS Implementation Challenge [29]. We take
the liberty to speculate on the performance of some older methods that have
never been been run on such large graphs and whose actual implementations
might fail when one would attempt it. In Tab. 1 we list speedup techniques in
chronological order that are ‘best’ with respect to speedup for random queries
and the largest networks tackled at that point. Sometimes we list variants with
slower query times if they are considerably better with respect to space con-
sumption or manageable graph size.

Before [11] the best method would have been a combination of bidirectional
search with geometric A∗ yielding speedups of 2–3 over unidirectional Dijkstra.
The separator-based multi-level method from [11] can be expected to work even
for large graphs if implemented carefully. Computing geometric containers [11,19]
is still infeasible for large networks. Otherwise, they would achieve much larger
speedups then the separator-based multi-level method. So far, computing edge
flags has also been too expensive for Europe and the USA but speedups beyond
1 470 have been observed for a graph with one million nodes [23]. Landmark A∗

works well for large graphs and achieves average speedup of 28 using reasonable
space and preprocessing time [6]. The implementation of HHs [13] was the first
that was able to handle Europe and the USA. This implementation wins over all
previous methods in almost all aspects. A combination of reach-based routing
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with landmark A∗ [15] achieved better query times for the USA at the price of a
considerably higher preprocessing time. At first, that code did not work well on
the European network because it is difficult to handle the present long-distance
ferry connections, but later it could be considerably improved [32]. By introduc-
ing distance tables and numerous other improvements, highway hierarchies took
back the lead in query time [14] at the same time using an order of magnitude less
preprocessing time than [13]. The cycle of innovation accelerated even further in
2006. Müller [33] aggressively precomputes the pieces of the search space needed
for separator-based multi-level routing. At massive expense of space and prepro-
cessing time, this method can achieve speedups around 400 000. (The original
implementation cannot directly measure this because it has large overheads for
disk access and parsing of XML-data). Independently, transit node routing was
developed [17], that lifts the speedup to six orders of magnitude and completely
replaces Dijkstra-like search by table lookups. Since transit node routing needs
more space and preprocessing time than other methods, the story is not finished
yet. For example, [16] achieves speedups comparable to HHs, using only a few
bytes per node.

4 Generalizations

Many-to-Many Routing. In several applications we need complete distance
tables between specified sets of source nodes S and target nodes T . For exam-
ple, in logistics optimization, traffic simulation, and also within preprocessing
techniques [25,17]. HHs (and other non-goal-directed bidirectional search meth-
ods [11,15,16]) can be adapted in such a way that only a single forward search
from each source node and a single backward search from each target node is
needed [35]. The basic idea is quite simple: Store the backward search spaces.
Arrange them so that each node v stores an array of pairs of the form (t, d(v, t))
for all target nodes that have v in their backward search space. When a forward
search from s settles a node v, these pairs are scanned and used to update the
tentative distance from s to t. This is very efficient because the intersection be-
tween any two forward and backward search spaces is only around 100 for HHs
and because scanning an array is much faster than priority queue operations
and edge relaxations governing the cost of Dijkstra’s algorithm. For example,
for |S| = |T | =10000, the implementation in [35] needs only one minute.

Outputting Paths. The efficiency of many speedup techniques stems from
introducing shortcut edges and distance table entries that replace entire paths
in the original graph [11,13,15,14,33,17]. A disadvantage of these approaches
is that the search will output only a ‘summary description’ of the optimal
path that involves shortcuts. Fortunately, it is quite straightforward to aug-
ment the shortcuts with information for unpacking them [28,35,17]. Since we
can afford to precompute unpacked representations of the most frequently needed
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long-distance shortcuts, outputting the path turns out to be up to four times
faster than just traversing the edges in the original graph.

Flexible Objective Functions. The objective function in road networks de-
pends in a complex way on the vehicle (fast? slow? too heavy for certain bridges?,
. . . ) the behavior and goals of the driver (cost sensitive? thinks he is fast?, . . . ),
the load, and many other aspects. While the appropriate edge weights can be
computed from a few basic parameters, it is not feasible to perform preprocess-
ing for all conceivable combinations. Currently, our best answer to this problem
is highway-node routing [16]. Assuming that the important nodes are important
for any reasonable objective function, only the second phase of preprocessing
needs to be repeated. This is an order of magnitude faster than computing
a HH.

Dynamization. In online car navigation, we want to take traffic jams etc. into
account. On the first glance, this is the death blow for most speedup techniques
since even a single traffic jam can invalidate any of the precomputed informa-
tion. However, we can try to selectively update only the information affected
by the traffic jam and/or relevant to the queries at hand. Several solutions are
proposed at this conference. Landmark A∗ can be dynamized either by noticing
that lower bounds remain valid when edge weights can only increase, or by us-
ing known dynamic graph algorithms for updating the shortest-path trees from
the landmarks [36]. We have developed highway-node routing for this purpose
[16] because it allows fast and easy updates (2–40ms per changed edge weight
depending on the importance of the edge).

Public Transportation and Time-Dependent Edge Weights. The stan-
dard query in public transportation asks for the earliest arrival at the target
node t given a departure time and the source node s. This means we are (ex-
plicitly or implicitly) searching in a time-dependent network where nodes are
some point in space-time. This means that bidirectional search cannot be used
out of the box since we do not know the target node in the time-dependent
network. This is puzzling because the most successful schemes described above
use bidirectional search. This leaves us with the choice to use the most effective
unidirectional method, or to somehow make bidirectional search work. An ob-
vious fix is to guess the arrival time. This can be done using binary search and
there are many ways to tune this (e.g. by interpolation search).

Parallelization. Most preprocessing techniques and many-to-many routing are
easy to parallelize [35]. Parallelizing the queries seems difficult and unnecessary
(beyond executing forward and backward search in parallel) because the search
spaces are already very small when using one of the best available techniques.
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5 Implementation

Advanced algorithms for routing in road networks require thousands of lines
of well written code and hence require considerable programming skill. In par-
ticular, it is not trivial to make the codes work for large networks. Here is
an incomplete list of problems and complications that we have seen in routing
projects: Graphs have to be glued together from several files. Tools for reading
files crash for large graphs. Algorithm library code cannot handle large graphs
at all. The code slows down by factor six when switching from a custom graph
representation to an algorithm library. 32-bit code will not work. Libraries do
not work with 64-bit code.

Our conclusion from these experiences was to design our own graph data
structures adapted to the problem at hand. We use C++ with encapsulated
abstract data types. Templates and inline functions make this possible without
performance penalties.

Although speedup techniques developed by algorithmicists come with high
level arguments why they should yield optimal paths, few come with a detailed
correctness proof.1 There are plenty of things that can go wrong both with the
algorithms and their implementations. For example, we had several cases where
the algorithm considered was only correct when all shortest paths are unique.
The implementation can help here with extensive consistency checks in asser-
tions and experiments that are always checked against naive implementations,
i.e., queries are checked against Dijkstra’s algorithm and fast preprocessing al-
gorithms are checked against naive or old implementations. On the long run
one also needs a flexible visualization tool that can draw pieces of large graphs,
paths, search spaces, and node sets. Since we could not find tools for this purpose
that scale to large road networks, we implemented our own system [37].

6 Experiments

Before 2005, speedup techniques were difficult to compare since studies were
either based on very small graphs or on proprietary data that could not be used
by other groups. In particular, for ‘newcomers’ it was almost impossible to start
working in this field. In [13] we were able to obtain two large road networks
for the subcontinents Western Europe and the USA. The European network
was made available for scientific use by the company PTV AG. We extracted
the USA network from publicly available geographical data [38]. Since then,
variants of these graphs have been used for most studies. We view it as likely
that the sudden availability of data and the fast rate of innovation since then are
not a coincidence. These networks are not directly annotated with edge weights
but with lengths and road categories. By setting average speeds for each road
category one can obtain realistic estimates of travel time.

Another important issue are which queries should be measured. The obvious
choice is to use randomly selected node pairs on the largest available graph.
1 We are working on one for HHs.
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Fig. 1. Query performance of various speedup techniques against Dijkstra rank. The
median speedups of HHs and highway-node routing cross at r = 218 since HHs are
augmented with distance tables and goal direction. These techniques are particularly
effective for large r and could also be adapted to highway-node routing.

Although this is a meaningful number, it is not quite satisfactory since most
queries will produce very long paths (thousands of kilometers) that are actually
rare in practice. Other studies therefore use random queries on a variety of
subgraphs. However, this leads to a plethora of arbitrary choices that make it
difficult to compare results. In particular, authors will always be tempted to
choose only those subgraphs for which their method performs well.

Sets of real world queries would certainly be interesting, but so far we do
not have them and it is also unlikely that a sample taken from one server is
actually representative for the entire spectrum of route planning applications.
We therefore chose a more systematic approach [13] that has also been adopted
in several other studies: We generate a random query with a specified ‘locality’
r by choosing a random starting node s, and a target node t with Dijkstra rank
rks(t) = r (i.e., the r-th node visited by a Dijkstra search from s). In our studies,
we generate many such queries for each r which is a power of two. We then plot
the distribution with median, quartiles, and outliers for each of these values of r.
For the European road network, Fig. 1 shows the results for highway hierarchies
combined with a distance table and goal-directed search, transit node routing,
and highway-node routing. We view it as quite important to give information on
the entire distribution since some speedup techniques have large fluctuations in
query time.
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In some cases, e.g., for HHs, it is also possible to compute good upper bounds
on the search space size of all queries that can ever happen for a given graph
[14]. We view this as a quite good surrogate for the absence of meaningful worst
case upper bounds that would apply to all conceivable networks.

7 Conclusions and Open Problems

Speedup techniques for routing in static road networks have made tremendous
progress in the last few years. Were it not for challenging applications such as
logistics planning and traffic simulation, we could even say that the methods
available now are too fast since other overheads like displaying routes or trans-
mitting them over the network are the bottleneck once the query time is below
a few milliseconds.

A major challenge is to close the gap to theory, e.g., by giving meaningful
characterizations of ‘well-behaved’ networks that allow provably good worst-
case bounds. In particular, we would like to know for which networks the existing
techniques will also work, e.g., for communication networks, VLSI design, social
networks, computer games, graphs derived from geometric routing problems, . . .

Even routing techniques themselves are not quite finished yet. For example,
we can look at better ways to select transit and highway nodes. We could also try
to integrate edge labels with hierarchical routing schemes so that hierarchies help
to approximate edge labels that in turn allow strong goal direction for queries.

Perhaps the main academic challenge is to go beyond static point-to-point
routing. Public transportation and road networks with time-dependent travel
times are an obvious generalization that should also be combined with updates
of edge weights due to traffic jams. Further beyond that, we want multi-criteria
optimization for individual paths and we want to compute social optima and
Nash-equilibria taking the entire traffic in an area into account.

The main practical issue is how to transfer the academic results into applica-
tions. Many details have to be taken care of, like turn penalties, implementations
on mobile devices, user specific objective functions, and compatibility with ex-
isting parts of the applications. The difficulty here is not so much scientific but
one of finding the right approach to cooperation between academia and industry.
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Abstract. In the last decade there has been an increasing interest in
graphs whose nodes are placed in the plane. In particular when model-
ing the communication pattern in wireless ad-hoc networks. The differ-
ent communication ways or protocol implementations have directed the
interest of the commnity to study and use different intersection graph
families as basic models of communication. In this talk we review those
models when the graph nodes are placed at random in the plane. In
general we assume that the set of vertices is a random set of points gen-
erated by placing n points uniformly at random in the unit square. The
basic distance model, the random geometric graph connects two points
if they are at distance at most r where r is a parameter of the model [2].
A second model is the k-neighbor graph in which each node selects as
neighbors the k-nearest neighbors in P [3]. Another variation, inspired
by the communication pattern of directional radio frequency and optical
networks, is the random sector graph, a generalization of the random ge-
ometric graph introduced in [1]. In the setting under consideration, each
node has a fixed angle α (0 < α ≤ 2π) defining a sector Si of transmis-
sion determined by a random angle between the sector and the horizontal
axis. Every node that falls inside of Si can potentially receive the signal
emitted by i. In this talk we survey the main properties and parame-
ters of such random graph families, and their use in the modelling and
experimental evaluation of algorithms and protocols for several network
problems.
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Abstract. We present significant improvements to a practical algorithm
for the point-to-point shortest path problem on road networks that com-
bines A∗ search, landmark-based lower bounds, and reach-based pruning.
Through reach-aware landmarks, better use of cache, and improved algo-
rithms for reach computation, we make preprocessing and queries faster
while reducing the overall space requirements. On the road networks of
the USA or Europe, the shortest path between two random vertices can
be found in about one millisecond after one or two hours of preprocessing.
The algorithm is also effective on two-dimensional grids.

1 Introduction

We study the point-to-point shortest path problem (P2P): given a directed graph
G = (V, A) with nonnegative arc lengths, a source s, and a destination t, find a
shortest path from s to t. Preprocessing is allowed, as long as the amount of pre-
computed data is linear in the input graph size; preprocessing time is limited by
practical considerations. The algorithms have two components: a preprocessing
algorithm that computes auxiliary data and a query algorithm that computes
an answer for a given s-t pair. We are interested in exact solutions only.

No nontrivial theoretical results are known for the general P2P problem. For
the special case of undirected planar graphs, sublinear bounds are known [7].
Experimental work on exact algorithms with preprocessing includes [8,10,11,12,
14,16,18,19,20,22,23,25]. Next we discuss the most relevant recent developments.

Gutman [12] introduced the notion of vertex reach. Informally, the reach of a
vertex v is large if v is close to the middle of some long shortest path and small
otherwise. Intuitively, local intersections have low reach and highways have high
reach. Gutman showed how to prune an s-t search based on (upper bounds on)
reaches and (lower bounds on) vertex distances from s and to t, using Euclidean
distances as lower bounds. He also observed that efficiency improves further
when reaches are combined with Euclidean-based A∗ search, which uses lower
bounds on the distance to the destination to direct the search towards it.

Goldberg and Harrelson [8] (see also [11]) have shown that A∗ search (with-
out reaches) performs significantly better when landmark-based lower bounds
� Work partially done while this author was visiting Microsoft Research Silicon Valley.
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are used instead of Euclidean ones. The preprocessing algorithm computes and
stores the distances between every vertex and a small set of special vertices,
the landmarks. Queries use the triangle inequality to obtain lower bounds on
the distances between any two vertices in the graph. This leads to the alt (A∗

search, landmarks, and triangle inequality) algorithm for the P2P problem.
Sanders and Schultes [19, 20] use the notion of highway hierarchies to design

efficient algorithms for road networks. The preprocessing algorithm builds a
hierarchy of increasingly sparse highway networks ; queries start at the original
graph and gradually move to upper levels of the hierarchy, greatly reducing the
search space. To magnify the natural hierarchy of road networks, the algorithm
adds shortcuts to the graph: additional edges with length equal to the original
shortest path between their endpoints.

We have recently shown [10] how shortcuts significantly improve the perfor-
mance of reach-based algorithms, in terms of both preprocessing and queries.
The resulting algorithm, called re, can be combined with alt in a natural way,
leading to the real algorithm. Section 2 presents a more detailed overview of
these algorithms. This paper continues our study of reach-based point-to-point
shortest paths algorithms and their combination with landmark-based A∗ search.

An important observation about re and real is that, unless s and t are
very close to each other, an s-t search will visit mostly vertices of high reach.
Therefore, as shown in Section 3.1, reordering vertices by reach can significantly
improve the locality (and running times) of reach-based queries. In Section 3.2
we develop the concept of reach-aware landmarks, based on the intuition that
accurate lower bounds are more important for vertices of high reach. In fact,
as we suggested in [10], one can keep landmark data for these vertices only.
Balancing the number of landmarks and the fraction of distances that is actually
kept, a memory-time trade-off is established. For large graphs, we were able to
reduce both time and space requirements compared to our previous algorithm.

In addition, motivated by the work of Sanders and Schultes [20], Section 3.4
describes how shortcuts can be used to bypass vertices of arbitrary (but usually
low) degree, instead of just degree-two vertices as our previous method did. This
improves both preprocessing and query performance. We also study two tech-
niques for accelerating reach computation: a modified version of our partial trees
algorithm (for finding approximate reaches) and a novel algorithm for finding
exact reaches. They are described in Sections 3.3 and 3.5, respectively.

Experimental results are presented in Section 4. On road networks, the
algorithmic improvements lead to substantial savings in time, especially for pre-
processing, and memory. The road networks of Europe or the USA can be pre-
processed in one or two hours, and queries take about one millisecond (while
Dijkstra’s algorithm takes seconds). We also obtain reasonably good results for
2-dimensional grids. For grids of higher dimension and for random graphs, how-
ever, preprocessing becomes too expensive and query speedups are only marginal.

A preliminary version of this paper [9] was presented at the 9th DIMACS
Implementation Challenge: Shortest Paths [5], where several other algorithms
were introduced [1,3,4,15,17,21]. Section 5 discusses these recent developments.
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2 Algorithm Overview

Our algorithms have four main components: Dijkstra’s algorithm, reach-based
pruning, A∗ search, and their combination. We discuss each in turn.

Dijkstra’s algorithm. The labeling method finds shortest paths from a source s to
all vertices in the graph as follows (see e.g. [24]). It keeps for every vertex v its dis-
tance label d(v), parent p(v), and status S(v) ∈ {unreached, labeled, scanned}.
Initially, d(v) = ∞, p(v) = nil, and S(v) = unreached for every vertex v. The
method starts by setting d(s) = 0 and S(s) = labeled. While there are la-
beled vertices, it picks a labeled vertex v, relaxes all arcs out of v, and sets
S(v) = scanned. To relax an arc (v, w), one checks if d(w) > d(v) + �(v, w) and,
if true, sets d(w) = d(v) + �(v, w), p(w) = v, and S(w) = labeled. By always
scanning the vertex with the smallest label, Dijkstra’s algorithm [6] ensures that
no vertex is scanned more than once. The P2P version can stop when it is about
to scan the target t: the s-t path defined by the parent pointers is the solution.

One can also run Dijkstra’s algorithm from the target on the reverse graph
to find the shortest t-s path. The bidirectional algorithm alternates between the
forward and reverse searches, each maintaining its own set of distance labels
(denoted by df (·) and dr(·), respectively). When an arc (v, w) is relaxed by
the forward search and w has already been scanned by the reverse search, we
know the shortest s-v and w-t paths have lengths df (v) and dr(w), respectively.
If df (v) + �(v, w) + dr(w) is less than the shortest path distance found so far
(initially ∞), we update it. We perform similar updates during the reverse search.
The algorithm stops when the two searches meet.

Reach-based pruning. Given a path P from s to t and a vertex v on P , the
reach of v with respect to P is the minimum of the lengths of the s-v and v-t
subpaths of P . The reach of v, r(v), is the maximum, over all shortest paths P
through v, of the reach of v with respect to P [12]. We assume shortest paths are
unique, which can be achieved through perturbation. Computing exact reaches
is impractical for large graphs; we must resort to upper bounds instead. We
denote an upper bound on r(v) by r(v), and a lower bound on the distance
dist(v, w) from v to w by dist(v, w). If, during an s-t query, we observe that
r(v) < dist(s, v) and r(v) < dist(v, t), then v is not on a shortest path from s to
t and therefore Dijkstra’s algorithm can prune the search at v.

To apply this, we need lower bounds on dist(s, v) and dist(v, t). During a
bidirectional search, one can use the bounds implicit in the search itself [10].
Consider the forward direction (the reverse case is similar), and let γ be the
smallest distance label of a labeled vertex in the reverse direction (i.e., the top-
most label in the reverse heap). If a vertex v has not been scanned in the reverse
direction, then γ is a lower bound on the distance from v to t. We can prune the
search at v if v has not been scanned in the reverse direction, r̄(v) < df (v), and
r̄(v) < γ. The algorithm can still stop when the searches meet.

Reach upper bounds are computed during the preprocessing phase. It works
in rounds, each associated with a threshold εi (which grows exponentially with i).
Round ibounds the reach of verticeswhose reach is atmost εi. It does so by growing
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partial trees from each vertex, each with depth roughly 2εi. A vertex whose reach is
bounded is eliminated from the graph and considered only indirectly in subsequent
rounds. We also add shortcuts to the graph before each round [10]. Given two edges
(u, v) and (v, w), a shortcut is a new edge (u, w) with length �(u, v)+�(v, w) (�(·, ·)
denotes the length of an edge). When ties are broken appropriately, the shortcut
will ensure that v does not belong to the shortest path between u and w, potentially
reducing v’s reach, thus making pruning more effective and speeding up prepro-
cessing. After all reaches are bounded, a refinement step builds the graph induced
by the �5√

n� vertices with highest reach bounds and recomputes the reaches using
an exact algorithm. The preprocessing algorithm, as well as improvements relative
to [10], are discussed in detail in Sections 3.3, 3.4, and 3.5.

A∗ search and the alt algorithm. A potential function maps vertices to reals.
Given a potential function π, the reduced cost of an arc is defined as �π(v, w) =
�(v, w) − π(v) + π(w). Suppose we replace � by �π. The length of every s-t path
changes by the same amount, π(t)−π(s), so finding shortest paths in the original
graph is equivalent to finding shortest paths in the transformed graph. Let πf

be a potential function such that πf (v) gives an estimate on the distance from
v to t. In the context of this paper, A∗ search [13] is an algorithm that works
like Dijkstra’s algorithm, but at each step selects a labeled vertex v with the
smallest key, defined as kf (v) = df (v) + πf (v), to scan next. This effectively
guides the search towards t. It is easy to see that A∗ search is equivalent to
Dijkstra’s algorithm on the graph with length function �πf

. If πf is such that �π

is nonnegative for all arcs (i.e., if πf is feasible), the algorithm will find the correct
shortest paths. We use as potential functions lower bounds on the distance from
v to the target t. During the preprocessing stage, we pick a constant number
of vertices as landmarks and store distances between them and every vertex in
the graph; queries use these distances, together with the triangle inequality, to
compute the lower bounds. The alt algorithm is a bidirectional version of A∗

search with landmark bounds and triangle inequality.

Combining reaches and landmarks. We can combine A∗ search and reaches
in the obvious way: running A∗ search and pruning vertices based on reach
conditions. Specifically, when A∗ search is about to scan a vertex v with key
kf (v) = df (v) + πf (v), it can prune the search at v if r̄(v) < df (v) and
r̄(v) < πf (v). Note that this method (which we call real) has two prepro-
cessing algorithms: reach computation and landmark generation. Although they
are in principle independent, Section 3.2 will show that it might be useful to
take reaches into account when generating landmarks.

3 Algorithmic Improvements

3.1 Improving Locality

When reaches are available, a typical point-to-point query spends most of its
time scanning high-reach vertices. Except at the very beginning of the search,
low-reach vertices are pruned by reach. This suggests an obvious optimization:
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during preprocessing, reorder the vertices such that high-reach vertices are close
together in memory to improve cache locality. Simply sorting vertices in non-
increasing order of reach would destroy the locality of the input, which is often
quite high. Instead, we partition the vertices into equal-sized sets, the first with
the n/2 higher-reach vertices, and the other with the rest. We keep the original
relative ordering in each part, then recursively process the first (high-reach) part.
This also facilitates the optimizations described below.

3.2 Reach-Aware Landmarks

We can reduce the memory requirements of the algorithm by storing landmark
distances only for high-reach vertices, with marginal performance degradation.
If we use the saved space to add more landmarks, we get a wide range of trade-
offs between query performance and memory requirement. We call the resulting
method, a variant of real, the partial landmark algorithm.

Queries for this algorithm work as follows. Let R, the reach threshold, be
the smallest value such that all vertices with reach at least R have landmark
distances available. We say these vertices have high reach. Queries start as re,
with reach pruning but without A∗ search, until both balls searched have radius
R (or the algorithm terminates). From this point on, only vertices with reach R
or higher will be scanned. We switch to real by removing labeled vertices from
the heaps and reinserting them with new keys that incorporate lower bounds.

To process a vertex v, A∗ search needs lower bounds on the distance from
v to t (in the forward search) or from s to v (in the reverse search). They are
computed with the triangle inequality, which requires distances between these
vertices (v, s, and t) and the landmarks. These are guaranteed to be available for
v, which has high reach, but not for s or t; for them, we must use proxies. The
proxy for s, which we denote by s′, is the high-reach vertex that is closest to s (t
is treated similarly). A lower bound on dist(s, v) using distances to a landmark
L is given by dist(s, v) ≥ dist(s′, L)−dist(v, L)−dist(s′, s). Other bounds (using
distances from landmarks and involving s and t) can be computed in a similar
way. Proxies (and related distances) are computed during the initialization phase
of the query algorithm with a multiple-source version of Dijkstra’s algorithm.

We use the avoid algorithm [11] to select landmarks: it picks landmarks one by
one, always in regions of the graph not already “covered” by existing landmarks.
It does so by assigning to each vertex a weight that measures how well-covered
it is. We changed the algorithm slightly from [11]: instead of computing the
weights of all vertices in the graph, we only consider n/k of them (where k
is the number of landmarks). This makes the algorithm linear in k, instead of
quadratic, without a significant effect on solution quality.

3.3 Growing Partial Trees

Next we describe the partial-trees routine executed in each iteration of our pre-
processing algorithm. For simplicity, we describe the algorithm as if it computed
vertex reaches; it actually computes arc reaches and eventually converts them
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to vertex reaches [10]. (The reach of an arc (v, w) with respect to a shortest s-t
path containing it is min{dist(s, w), dist(v, t)}.) In each round, we are given a
graph G = (V, A) and a threshold ε, and our goal is to find upper bounds on the
reaches of vertices in V whose actual reaches are smaller than ε. The remaining
reaches will be bounded in subsequent rounds, when ε will be larger.

Fix a vertex v. To prove that r(v) < ε, we must consider all shortest paths
through v, but only minimal paths must be processed explicitly. Let Pst =
(s, s′, . . . , v, . . . , t′, t) be the shortest s-t path, and assume that v has reach at
least ε with respect to this path. Path Pst is ε-minimal with respect to v if and
only if the reaches of v with respect to Ps′t and Pst′ are both smaller than ε.

The algorithm works by growing a partial tree Tr from each vertex r ∈ V .
It runs Dijkstra’s algorithm from r, but stops as soon as it can prove that all
ε-minimal paths starting at r have been considered. Let v be a vertex in this
tree, and let x be the first vertex (besides r) on the path from r to v. We say
that v is an inner vertex if either (1) v = r or (2) d(x, v) < ε, where d(x, v)
denotes the distance between x and v in the tree. The inner vertices are those
whose reaches we will try to bound. When v is not an inner vertex, no path Prw

starting at r will be ε-minimal with respect to v: if v’s reach is greater than ε
with respect to Prw, it will also be greater than ε with respect to Pxw. To get
accurate bounds on reaches, we must grow the tree until every inner vertex v
has one of two properties: (1) v has no labeled (unscanned) descendents; or (2)
v has at least one scanned descendent whose distance to v is ε or greater. For
efficiency, we relax the second condition and stop when every labeled vertex is
within distance greater than ε from the closest inner vertex.

Once the tree is built, we process it. Given an inner vertex v, we know its
depth, equal to d(r, v). In O(|Tr|) time, we can also compute its height, defined
as the distance from v to its farthest descendent (labeled or scanned). The reach
of v with respect to Tr is the minimum between its depth and its height, and
the reach of v with respect to the entire graph is the maximum over all such
reaches. If this maximum is ε or greater, we declare the reach to be ∞.

Penalties. As described, the algorithm assumes that partial trees will be grown
from every vertex in the graph. We would like, however, to run the partial-
trees routine even after some of the vertices have been eliminated in a previous
iteration. We use penalties to account for the eliminated vertices. The in-penalty
of a vertex v is the maximum over the reaches of all arcs (u, v) that have already
been eliminated; out-penalties are defined similarly, considering outgoing arcs
instead. Partial trees are processed as before, but the definitions of height and
depth must change. The (redefined) depth of a vertex v within a tree Tr, denoted
by depthr(v), is the distance from r to v plus the in-penalty of r. The (modified)
height of v is the distance to its farthest descendent not in Tr itself, but in a
pseudo-tree in which each vertex v in Tr is attached to a pseudo-leaf v′ by an
arc whose length is equal to the out-penalty of v.

For correctness, it is enough to take penalties into account only when process-
ing the tree, as we did in [10]. We can, however, use penalties to stop growing
partial trees sooner, thus speeding up preprocessing. First, we now consider
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vertex v to be an inner vertex if either (1) v = r or (2) depthx(v) < ε (recall
that x is the second vertex on the path from r to v). If v �= r and depthr(v) <
in-penalty(v), however, v will not be considered an inner vertex (because its
modified depth will be even higher in the tree rooted at v), and neither will
its descendents. Second, we stop growing the tree when no labeled (unscanned)
vertex is relevant. All inner vertices are considered relevant; an outer vertex v is
relevant if d(u, v)+out-penalty(v) ≤ ε, where u is the closest inner ancestor of v.

3.4 Adding Shortcuts

Our previous implementation of the preprocessing procedure [10] only shortcuts
vertices with degree two. Sanders and Schultes [20] suggested shortcutting other
vertices of small degree as well, which is more general and works better for
both preprocessing and queries. A vertex v can be bypassed as follows. First, we
examine all pairs of incoming/outgoing arcs ((u, v), (v, w)) with u �= w. For each
pair, if the arc (u, w) is not in the graph, we add a shortcut arc (u, w) of length
�(u, v) + �(v, w). Otherwise, we set �(u, w) ← min{�(u, w), �(u, v) + �(v, w)}.
Finally, we delete v and all arcs adjacent to it from the current graph.

The processing algorithm will produce a graph containing all original arcs and
all shortcuts. To prevent the graph from being too large, we only bypass v if both
its in-degree and its out-degree are bounded by a constant (5 in our experiments);
this ensures that only O(n) arcs will be added. In addition, we consider the ratio
cv between the number of new arcs added and the number of arcs deleted by the
procedure above. A vertex v is deemed bypassable only if cv ≤ c, where c is a
user-defined parameter. For road networks, we used c = 0.5 in the first round of
preprocessing, 1.0 in the second, and 1.5 in the remaining rounds. As a result,
relatively few shortcuts are added during the first two rounds, when the graph
is larger but shrinks faster. For two- and three-dimensional grids, which do not
shrink as fast, we fixed c at 1.0 and 2.0, respectively.

We also consider two additional measures (besides cv) related to v: the length
of the longest shortcut arc introduced when v is bypassed, and the largest reach
of an arc adjacent to v (which will be removed). The maximum between these
two values is the cost of v, and it must be bounded by εi/2 during iteration i for
the vertex to be considered bypassable. As explained in [10], long arcs and large
penalties can decrease the quality of the reach upper bounds provided by the
preprocessing algorithm; they should not appear too soon. When deciding which
vertex to bypass next, we take those that minimize the product between cv and
cost, since they are less likely to affect the bypassability of their neighbors.

3.5 Exact Reach Computation

The standard algorithm for computing exact reaches (during the refinement step)
builds a shortest path tree from each vertex r in the graph and computes the
minimum between the depth and the height of each vertex v in the tree. The
maximum of these minima over all trees will be the reach of v. We developed
an algorithm that has the same worst-case complexity, but can be significantly
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faster in practice on road networks. It follows the same basic principle, but builds
parts of some of the shortest path trees implicitly by reusing previously found
subtrees. The algorithm partitions the vertices of the graph into k regions. (In our
experiments, we picked the regions of the Voronoi diagram of k =

√
n randomly

selected vertices.) The frontier of a region A is the set of vertices v ∈ A such that
there exists at least one arc (v, w) with w �= A. When processing a region, the
algorithm first grows full shortest path trees from the frontier. Typically, they
will have large subtrees in common, and it is easy to see that the same subtrees
would appear in the full shortest path trees rooted at non-frontier vertices as well.
It therefore suffices to grow truncated trees from these vertices, which account
for the common subtrees only implicitly.

4 Experimental Results

Our code was written in C++ and compiled with Microsoft Visual C++ 2005.
All tests were performed on a dual-processor, 2.4 GHz AMD Opteron running
Microsoft Windows Server 2003 with 16 GB of RAM, 32 KB instruction and 32
KB data level 1 cache per processor, and 2 MB of level 2 cache. Our code is
single-threaded, but an execution is not pinned to a single processor.

We tested the alt (with 16 landmarks), re, real-(16, 1), and real-(64, 16)
algorithms. Here real-(i, j) denotes an algorithm that uses i landmarks but
maintains landmark data for n/j highest-reach vertices only (when j = 1, all
landmark distances are kept, as in the original real algorithm). Due to space
constraints, we omit detailed results for other values of i and j. In general,
however, we observed that moderately increasing sparsity does affect running
times, but not too much: on large road networks, real-(16,16) is less than 30%
slower than real-(16,1), for instance. The sparser the landmarks, the more the
algorithm will rely on re (at the beginning); the slight increase in the number
of vertices scanned is offset by the fact that scans are on average faster, since
re does not need to access landmark data.

For machine calibration purposes, we also ran the DIMACS Challenge im-
plementation of the P2P version of Dijkstra’s algorithm, denoted by d, on the
largest road networks. Our experiments on road networks are described in Sec-
tion 4.1, and experiments on grid graphs are reported in Section 4.2.

4.1 Road Networks

We first test our algorithm on the road networks of the USA and Europe, which
belong to the DIMACS Challenge [5] data set. The USA is symmetric and has
23 947 347 vertices and 58 333 444 arcs; Europe is directed, with 18 010 173 ver-
tices and 42 560 279 arcs. Both graphs are strongly connected. Two length func-
tions are available in each case: travel times and travel distances.

Random queries. For each graph and each length function, we tested the algo-
rithms on 1 000 pairs of vertices picked uniformly at random. Table 1 reports
the average query time (in milliseconds), the average number of scanned vertices
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Table 1. Data for random queries on Europe and USA graphs

prep. time disk space query

graph method (min) (MB) avg sc. max sc. time (ms)

Europe alt 13.2 1597 82348 993015 160.34
(times) re 82.7 626 4643 8989 3.47

real-(16,1) 96.8 1849 814 4709 1.22
real-(64,16) 140.8 1015 679 2955 1.11
re-old 1558 570 16122 34118 13.5
real-old 1625 1793 1867 8499 2.8
hh 15 1570 884 — 0.8
hh-mem 55 692 1976 — 1.4
d — 393 8984289 — 4365.81

USA alt 18.6 2563 187968 2183718 400.51
(times) re 44.3 890 2317 4735 1.81

real-(16,1) 63.9 3028 675 3011 1.14
real-(64,16) 121.0 1575 540 1937 1.05
re-old 366 830 3851 8722 4.50
real-old 459 2392 891 3667 1.84
hh 18 1686 1076 — 0.88
hh-mem 65 919 2217 — 1.60
d — 536 11808864 — 5440.49

Europe alt 10.1 1622 240750 3306755 430.02
(distances) re 49.3 664 7045 12958 5.53

real-(16,1) 60.3 1913 882 5973 1.52
real-(64,16) 89.8 1066 583 2774 1.16
d — 393 8991955 — 2934.24

USA alt 14.5 2417 276195 2910133 530.35
(distances) re 70.8 928 7104 13706 5.97

real-(16,1) 87.8 2932 892 4894 1.80
real-(64,16) 138.1 1585 628 4076 1.48
d — 536 11782104 — 4576.02

and, when available, the maximum number of scanned vertices. Also shown are
the total preprocessing time and the total space on disk used by the preprocessed
data. For d, this is the graph itself; for alt, this includes the graph and land-
mark data; for re, it includes the graph with shortcuts and an array of vertex
reaches; the data for real includes the data for re plus landmark data.

For travel times, the table also reports the performance of other algorithms
available at the time of writing. We give the data for our previous implementa-
tions, re-old and real-old from [10] (run on the same machine). real-old

uses 16 landmarks selected with the maxcover method (which finds slightly bet-
ter landmarks than avoid, but is slower). In addition, we present results for the
highway hierarchy-based algorithm of Sanders and Schultes from [20], run se-
quentially on a dual-core 2.0 GHz AMD Opteron machine (which is about 20%
faster than our machine on the DIMACS benchmark due to a different memory
architecture). There are two versions of their algorithm: hh-mem, entirely based
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Fig. 1. USA queries: random on subgraphs (left) and local on the full graph (right)

on highway hierarchies, and hh, which replaces high levels of the hierarchy by a
table with distances between all pairs of vertices in the corresponding graph.

The table shows that re is considerably faster than alt for queries, and
that real-(16,1) yields an additional speedup. Comparing real-(16,1) to real-
(64,16), we see they have almost identical query performance with transit times,
and that real-(64,16) is slightly better with travel distances. Given that real-
(64,16) requires about half as much disk space, it has the edge for these queries.
With travel distances, real-(64,16) wins both in time and in space, but prepro-
cessing takes roughly twice as long. re is less robust than real.

With travel times, re and real substantially improve on their old counter-
parts, especially in terms of preprocessing time. re and hh-mem have similar
performance on USA, and hh-mem is slightly better on Europe. For queries,
real-(64,16) performs similarly to hh: real-(64,16) uses less space, while hh is
slightly faster. Preprocessing for hh, however, is faster, especially for Europe.

Graph size dependence. To test the performance on smaller graphs, we performed
random queries on the subgraphs of USA that are part of the DIMACS data set;
their sizes range from 264 thousand (NYC) to 14 million (CTR) vertices. Figure 1
(left) shows how query times scale with graph size when travel times are used as
the length function. Although times tend to increase with graph size, they are not
strictly monotone: graph structure clearly plays a part. Reach-based algorithms
have better asymptotic performance than alt. Regarding preprocessing (not
shown in the figure), with a fixed number of landmarks alt is roughly linear in
the graph size. With 16 landmarks, alt preprocessing is faster than re, and the
ratio between the two remains roughly constant as the graph size increases; with
64, reach computation and landmark selection take roughly the same time.

Local queries. Up to this point, we have considered only random queries; we now
test what happens when queries are more local. If v is k-th vertex scanned when
Dijkstra’s algorithm is run from s, then the Dijkstra rank of v with respect to s
is �log2 k� (our definition differs slightly from [19]). To generate a local query with
rank k, we pick s uniformly at random from V and pick t uniformly at random from
all verticeswithDijkstra rank kwith respect to s. Figure 1 (right) shows the average
query times as a function of Dijkstra rank (1 000 pairs were tested in each case). For
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Table 2. Effect of applying (•) or discarding (◦) each of the improvements to re on
USA with travel times: generalized shortcuts (s), penalty-aware partial trees (p), faster
exact reach computation (e) and improved locality (l)

features prep. time disk space query

s p e l (min) (MB) avg sc. max sc. time (ms)

• • • • 44.3 890 2317 4735 1.81
◦ • • • 63.8 817 3861 7679 2.64
• ◦ • • 76.2 888 2272 4633 1.75
• • ◦ • 58.7 890 2317 4735 1.81
• • • ◦ 44.3 890 2317 4735 3.20
◦ ◦ ◦ ◦ 156.1 816 3741 7388 3.89

high Dijkstra ranks, the results are similar to those for random queries: alt is the
slowest algorithm, and the real variants are the fastest. For small Dijkstra ranks,
real-(16,1) scans the fewest vertices, but due to higher overhead its running time
is slightly worse than that of re. real-(64,16) mostly visits low-reach vertices and
thus fails to take advantage of the landmark data. It scans about the same number
of vertices as re, but is slower due to higher overhead. Although alt has the worst
asymptotic performance, for small ranks it scans only slightly more vertices than
re. As the rank grows, real-(64,16) eventually catches up with real-(16,1).

Improvement breakdown. Table 1 has shown that the new version of re is signif-
icantly more efficient than re-old. Table 2 shows how each of the four major
improvements affect the performance of re on USA with travel times. Starting
with all improvements, we turn them off one at a time, and then all at once. Pre-
processing is accelerated by generalized shortcuts (Section 3.4), penalty-aware
partial trees (Section 3.3), and faster exact reach computation (Section 3.5).
Sorting by reach to improve locality (Section 3.1) actually slows preprocessing,
but by a negligible amount. When these improvements are combined, the overall
speedup is more than 3.5. On Europe with travel times (not shown), the com-
bined speedup is more than 6. Queries benefit from generalized shortcuts and
sorting by reach, and are largely unaffected by the other improvements.

Refinement step. During preprocessing, the refinement step recomputes the
�5

√
n� highest reaches (24 469 vertices in the USA graph) with an exact al-

gorithm. If we quadruple this value, re query times decrease from 1.86 ms to
1.66 ms (with travel times as lengths); however, preprocessing time increases
from under 45 minutes to 2.5 hours. With no refinement step, the preprocessing
time decreases to 32 minutes, but query times increase to 2.00 ms. Recomputing
all reaches is too expensive. Even on Bay Area, which has only 321 270 ver-
tices, exact reach computation takes almost 2.5 hours with the new algorithm
(10 hours with the standard one). Computing upper bounds takes less than a
minute, but queries are 40% faster with exact reaches.

Retrieving the shortest path. The query times reported so far for re and real

consider only finding the shortest path on the graph with shortcuts. This path
has much fewer arcs then the corresponding path in the original graph. On
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Table 3. Average results for 1 000 random queries on 2-dimensional grids

prep. time disk space query

vertices method (min) (MB) avg sc. max sc. time (ms)

65536 alt 0.05 11.5 851 6563 1.19
re 1.83 3.4 2195 3706 1.50
real-(16,1) 1.87 12.7 214 1108 0.30
real-(64,16) 2.00 5.9 1999 3134 1.69
d — 2.2 33752 — 14.83

131044 alt 0.11 23.8 1404 11535 3.62
re 4.72 6.8 3045 5025 2.33
real-(16,1) 4.82 26.1 266 1261 0.61
real-(64,16) 5.09 12.1 2370 3513 2.19
d — 4.5 66865 — 30.72

262144 alt 0.22 48.3 2439 27936 5.72
re 16.61 13.2 4384 6933 3.52
real-(16,1) 16.83 52.5 410 2024 0.88
real-(64,16) 17.42 23.9 1869 2453 2.28
d — 9.0 134492 — 63.58

524176 alt 0.27 96.6 6057 65664 8.11
re 15.45 25.9 6334 9843 4.23
real-(16,1) 15.76 104.5 524 2663 1.08
real-(64,16) 16.68 47.5 2001 3113 1.97
d — 18.0 275589 — 112.80

USA with travel times, for example, the shortest path between a random pair of
vertices has around 5 000 vertices in the original graph, but only about 30 in the
graph with shortcuts. We can retrieve the original path in time proportional to
its length, which means about 1 ms on the USA graph. This is comparable to the
time it takes for real to compute the distances. For applications that require a
full description of the path, our algorithms are therefore close to optimal.

4.2 Grid Graphs

Reach-based pruning works well on road networks because they have a natural
highway hierarchy, so that relatively few vertices have high reach. We also tested
the algorithms on graphs without an obvious hierarchy. We created square 2-
dimensional with the spgrid generator, available at the 9th DIMACS Challenge
download page. The graphs are directed and each vertex is connected to its
neighbors in the grid with arcs of length chosen uniformly at random from the
range [1, n], where n is the number of vertices. Comparing the results in Table 3
to those reported in [10], we see that our new preprocessing algorithm is an
order of magnitude faster on these graphs. Query times improve by a factor
of about five. This makes re competitive with alt; in fact, re appears to be
asymptotically faster. Performance of real-(16,1) improves as well. This shows
that reaches help even when a graph does not have an obvious highway hierarchy,
and that the applicability of real is not restricted to road networks. On the
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largest grid, it is four times faster than alt, and two orders of magnitude faster
than Dijkstra’s algorithm. On such small graphs, extra landmarks do not help
much, and real-(64,16) does not perform as well as real-(16,1).

Similar experiments on cube-shaped three-dimensional grids (not shown) re-
vealed that the alt algorithm is much less effective than on two-dimensional
grids. For a quarter of a million vertices, queries are only five times as fast as
bidirectional Dijkstra’s algorithm. A combination with pruning by reach does
improve the algorithm for large graphs, but only marginally. Moreover, reach
computation becomes asymptotically slower (the time roughly triples when the
graph size doubles), thus making preprocessing large graphs prohibitively expen-
sive. Results for higher-dimension grids and random graphs were even worse.

5 Final Remarks

Several other papers presented at the 9th DIMACS Implementation Challenge [5]
also dealt with the P2P problem. Lauther [17] and Köhler et al. [15] presented
algorithms based on arc flags, but their (preprocessing and query) running times
are dominated by real and hh. Delling, Sanders, et al. [4] presented a variant
of the partial landmarks algorithm in the context of highway hierarchies, but
with only modest speedups; for technical reasons A∗ search cannot be combined
naturally with hh. Delling, Holzer, et al. [3] showed how multi-level graphs can
support random queries in less than 1 ms, but only after weeks of preprocessing.

The best results were those based on transit node routing, introduced by Bast
et al. [1] and combined with highway hierarchies by Sanders and Schultes [21]
(see also [2]). With travel times, the road networks of both USA and Europe
can be processed in about three hours and random queries take 5 μs on average.
With travel distances, preprocessing takes about eight hours, and average query
times are close to 0.1 ms. Performance would probably be worse on grids.

Queries with transit node routing are significantly faster than with real.
Our method does appear to be more robust, however, when the length function
changes. Moreover, these approaches are not mutually exclusive. As Bast et al.
observe [2], reaches could be used instead of highway hierarchies to compute the
transit nodes and the corresponding distance tables. An actual implementation
of the combined algorithm is an interesting topic for future research.
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Abstract. Many speed-up techniques for route planning in static graphs
exist, only few of them are proven to work in a dynamic scenario. Most of
them use preprocessed information, which has to be updated whenever
the graph is changed. However, goal directed search based on landmarks
(ALT) still performs correct queries as long as an edge weight does not
drop below its initial value. In this work, we evaluate the robustness
of ALT with respect to traffic jams. It turns out that—by increasing
the efficiency of ALT—we are able to perform fast (down to 20 ms on
the Western European network) random queries in a dynamic scenario
without updating the preprocessing as long as the changes in the network
are moderate. Furthermore, we present how to update the preprocessed
data without any additional space consumption and how to adapt the
ALT algorithm to a time-dependent scenario. A time-dependent scenario
models predictable changes in the network, e.g. traffic jams due to rush
hour.

1 Introduction

Computing shortest paths in graphs G = (V, E) is used in many real-world appli-
cations like route planning in road networks, timetable information for railways,
or scheduling for airplanes. In general, Dijkstra’s algorithm [1] finds the short-
est path between a given source s and target t. Unfortunately, the algorithm
is far too slow to be used on huge datasets. Thus, several speed-up techniques
exist [2] yielding faster query times for typical instances, e.g., road or railway net-
works. Recent research [3,4] even made the calculation of the distance between
two points in road networks of the size of Europe a matter of microseconds.
Thus, at least for road networks, shortest path computation seems to be solved.

However, most of the existing techniques require a static graph, i.e. the graph
is known in advance and does not change between two shortest path compu-
tations. A more realistic scenario is a dynamic one: new roads are constructed
and closed or traffic jams occur. Furthermore, we often know in advance that
the motorways are crowded during rush hour. In this work, we adapt the known
technique of goal directed search based on landmarks—called ALT [5]—to these
dynamic scenarios.
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1.1 Related Work

We focus on related work on dynamic speed-up techniques. For static scenar-
ios, see [2] for an overview. An adaption of Dijkstra’s algorithm to a scenario
where travel times depend on the daytime, the time-dependent scenario, can be
found in [6]. Throughout the paper, we distinguish time-dependent and time-
independent scenarios. For the latter, edge weights are not dependent on the
daytime. A classical speed-up technique is bidirectional Dijkstra which also
starts a search from the target. As bidirectional Dijkstra uses no preprocess-
ing, it can be used in a time-independent dynamic scenario without any effort.
However, its adaption to a time-dependent scenario is more complicated as the
arrival time is unknown in such a scenario.

Goal directed search, also called A∗ [7], pushes the search towards a target by
adding a potential to the priority of each node. The usage of Euclidean potentials
requires no preprocessing. The ALT algorithm, introduced in [5], obtains the
potential from the distances to certain landmarks in the graph. Although this
approach requires a preprocessing step, it is superior with respect to search space
and query times. Goldberg and Harrelson state that ALT may work well in a
dynamic scenario. In this work, we persue and advance their ideas. In [8], A∗

using Euclidean potentials is adapted to a time-dependent scenario.
Geometric containers [9] attach a label to each edge that represents all nodes

to which a shortest path starts with this particular edge. A dynamization has
been published in [9] yielding suboptimal containers if edge weights decrease.
In [10], ideas from highway hierarchies [11] and overlay graphs [2] are combined
yielding very good query times in dynamic road networks.

Closely related to dynamic shortest path computation are the Single-Source
and All-Pair-Shortest-Path problems. Both of them have been studied in a dy-
namic scenario [12,13].

1.2 Overview

In Section 2 we review the ALT algorithm, introduced in [14] and enhanced
in [15]. We improve the original algorithm by storing landmark data more effi-
ciently. In Section 3, we briefly discuss how to model traffic in predictable and
unexpected cases. The adaption of ALT to our models from Section 3 is lo-
cated in Section 4. First, we show how to update the preprocessing efficiently
without any additional requirements of data. The update is based on dynamic
shortest path trees that can be reconstructed from the graph with data provided
by ALT. However, as already mentioned in [14], it turns out that for the most
common type of update, i.e., traffic jams, the update of the preprocessing needs
not be done in order to keep queries correct. Finally, we are able to adapt a
unidirectional variant of ALT to the time-dependent model. An extensive ex-
perimental evaluation can be found in Section 5, proving the feasibility of our
approach. There, we focus on the performance of ALT with no preprocessing
updates when traffic jams occur. Section 6 concludes this work by a summary
and possible future work.
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2 Goaldirected Search Based on Landmarks

In this section, we explain the known ALT algorithm [14]. In general, the algo-
rithm is a variant of bidirectional A∗ search [7] in combination with landmarks.
We follow the implementation presented in [15] enriched by implementation de-
tails that increase efficiency.

The search space of Dijkstra’s algorithm can be interpreted as a circle
around the source. By adding a ‘good’ potential π : V → R to the priority
of each node, the order in which nodes are removed from the priority queue
is altered in such a way that nodes lying on a shortest path to the target
yield a low priority. In [7], it is shown that this technique—known as A∗—is
equivalent to Dijkstra’s algorithm on a graph with reduced costs, formally
wπ(u, v) = w(u, v) − π(u) + π(v). Since Dijkstra’s algorithm works only on
nonnegative edge costs, not all potentials are allowed. We call a potential π
feasible if wπ(u, v) ≥ 0 for all (u, v) ∈ E. The distance from each node v of
G to the target t is the distance from v to t in the graph with reduced edge
costs minus the potential of t plus the potential of v. So, if the potential π(t)
of the target t is zero, π(v) provides a lower bound for the distance from v
to the target t. There exist several techniques [16] to obtain feasible poten-
tials using the layout of a graph. The ALT algorithm uses a small number
of nodes—so called landmarks—and the triangle inequality to compute feasi-
ble potentials. Given a set S ⊆ V of landmarks and distances d(L, v), d(v, L)
for all nodes v ∈ V and landmarks L ∈ S, the following triangle inequations
hold: d(u, v) + d(v, L) ≥ d(u, L) and d(L, u) + d(u, v) ≥ d(L, v). Therefore,
d(u, t) := maxL∈S max{d(u, L)−d(t, L), d(L, t)−d(L, u)} provides a lower bound
for the distance d(u, t) and, thus, can be used as a potential for u.

The quality of the lower bounds highly depends on the quality of the selected
landmarks. Thus, several selection strategies exist. To this point, no technique
is known for picking landmarks that yield the smallest search space for random
queries. Thus, several heuristics exist; the best are avoid and maxCover [15].

As already mentioned, ALT is a bidirectional variant of A∗. In general, the
combination of A∗ and bidirectional search is not that easy as it seems. Correct-
ness can only be guaranteed if πf—the potential for the forward search—and
πr—the potential for the backward search—are consistent. This means wπf

(u, v)
in G is equal to wπr (v, u) in the reverse graph. We use the variant of an aver-
age potential function [7] defined as pf (v) = (πf (v) − πr(v))/2 for the forward
and pr(v) = (πr(v) − πf (v))/2 = −pf(v) for the backward search. Note, that
πf provides better potentials than pf . Moreover, for a bidirectional variant, the
stopping criterion has to be altered: Stop the search if the sum of minimum keys
in the forward and the backward queue exceeds μ + pf (s), where μ represents
the tentative shortest path length.

Improved Efficiency. One downside of ALT seemed to be its low efficiency.
In [17], a reduction of factor 44 in search space only leads to a reduction in
query times of factor 21. By storing landmark data more efficiently, this gap
can be reduced. First, we sort the landmarks by ID in ascending order. The
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distances from and to a landmark are stored as one 64-bit integer for each node
and landmark: The upper 32 bits refer to the ‘to’ distance and the lower to the
‘from’ distance. Thus, we initialize a 64-bit vector of size |S| · |V |. Both distances
of node number i ∈ [0, |V | − 1] and landmark number j ∈ [0, |S| − 1] are stored
at position |S| · i + j. As a consequence, when computing the potential for given
node n, we only have one access to the main memory in most times.

3 Modeling Traffic

In the following, we briefly discuss how to model several scenarios of updates
due to traffic in road networks. We cover unexpected and predictable updates.

Dynamic Updates. The most common updates of transit times in road net-
works are those of traffic jams. This can just be slight increases for many roads
due to rush hour. Nevertheless, increases of higher percentage can happen as
well. In the worst case, routes may be closed completely. Currently, traffic re-
ports concentrate on motorways. Nevertheless, with new technologies like car-
to-car communication [18] information for all roads will be available. This will
lead to scenarios where updates happen quite frequently for all kinds of roads.
Analyzing the type of updates one may notice that transit times may increase
(high traffic) and may decrease afterwards but will not drop below the transit
times of an ‘empty’ road. Overall, a dynamic speed-up technique for shortest
path computation should handle this kind of updates very well and very fast. In
the ideal case, the technique should not need any update at all.

Like traffic jams, construction sites increase transit times when they are in-
stalled and decrease them when the work is done. In most cases, the transit
times do not fall below the original value. So, for this case, an updating routine
for handling traffic jams can also handle construction sites.

Another type of change in the structure of a network is the construction
or demolition of roads. This can be modeled by insertions or deletions of edges
and/or nodes. On the one hand, these type of updates are known in advance and
on the hand, they happen not very often. Thus, a dynamic algorithm should be
capable of handling these updates but the performance on these updates is not
that important like traffic jams.

Normally, transit times of roads are calculated by the average speed on these
roads. But profiles of clients differ: some want to be as fast as possible, others
want to save fuel. Furthermore, the type of vehicle has an impact on travel times
(a truck is slower than a sports car) and even worse, some roads are closed to
specific types of vehicles.

Time-Dependency. Most of the changes in transit times are predictable. We
know in advance that during rush hour, transit times are higher than at night.
And we know that the motorways are crowded at the beginning and end of a
holiday. This scenario can be modelled by a time-dependent graph [8] which
assigns several weights to a specific edge. Each weight represents the travel time
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at a certain time. As a consequence, the result of an s-t query depends on the
time of departure from s. In [19], it is shown that time-dependent routing gets
more complicated if the graph is not time consistent. Time consistency means
that for each edge (u, v) a delayed departure from u does not yield a earlier
arrival in v. Throughout this paper, we focus on time consistent graphs. Note
that our models from Section 3 can be used in a time-dependent scenario by
updating some or all of the weights assigned to an edge.

4 Dynamization

In this section, we discuss how the preprocessing of the ALT algorithm can be
updated efficiently. Furthermore, we discuss a variant where the preprocessing
has to be updated only very few times. However, this approach may lead to a
loss in performance. At the end of this section we introduce a time-dependent
variant of the unidirectional ALT algorithm.

4.1 Updating the Preprocessing

The preprocessing of ALT consists of two steps: the landmark selection and
calculating the distance labels. As the selection of landmarks are heuristics, we
settle for static landmarks, i.e., we do not reposition landmarks if the graph is
altered. The update of the distance labels can be realized by dynamic shortest
path trees. For each landmark, we store two trees: one for the forward edges, one
for the backward edges. Whenever an edge is altered we update the tree structure
including the distance labels of the nodes. In the following we discuss a memory
efficient implementation of dynamic shortest path trees. The construction of a
tree can be done by running a complete Dijkstra from the root of the tree.

Updating Shortest Path Trees. In [12] the update of a shortest path tree is dis-
cussed. The approach is based on a modified Dijkstra, trying to identify the
regions that have to be updated after a change in edge weight. Therefore, a tree
data structure is used in order to retrieve all successors and the parent of a node
quickly. As road graphs are sparse we do not need to store any additional infor-
mation to implement these operations. The successors of n can be determined
by checking for each target t of all outgoing edges e whether d(n) + w(e) = d(t)
holds. If it holds, t can be interpreted as successor of n. Analogously, we are able
to determine the parent of a node n: Iterate all sources s of the incoming edges e
of n. If d(s)+w(e) = d(n) holds, s is the parent of n. This implementation allows
to iterate all successors of n in O(δ) where δ is the degree of n. The parent of n
can be found in O(δ) as well. Note that we may obtain a different tree structure
than rerunning a complete Dijkstra, but as we are only interested in distance
labels, this approach is sufficient for the correctness of ALT.

The advantage of this approach is memory consumption. Keeping all distance
labels for 16 landmarks on the road network of Western Europe in memory
already requires about 2.2 GB of RAM (32 trees with 18 million nodes, 32 bit
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per node). Every additional pointer would need an additional amount of 2.2 GB.
Thus, more advanced tree structures (1, 2, or 4 pointers) lead to an overhead
that does not seem worth the effort.

4.2 Two Variants of the Dynamic ALT Algorithm

Eager Dynamic ALT. In the previous section we explained how to update
the preprocessed data of ALT. Thus, we could use the update routine whenever
the graph is altered. In the following, we call this variant of the dynamic ALT

the eager dynamic version.

Lazy Dynamic ALT. However, analyzing our dynamic scenarios from Sec-
tion 3 and the ALT algorithm from Section 2 we observe two important facts.
On the one hand, ALT-queries only lose correctness if the potential of an edge
results in a negative edge cost in the reduced graph. This can only happen if the
cost of the edge drops below the value during preprocessing. On the other hand,
for the most common update type—traffic jams—edge weights may increase and
decrease but do not drop below the initial value of empty roads. Thus, a poten-
tial computed on the graph without any traffic stays feasible for those kinds of
updates even when not updating the distances from and to all landmarks. Due
to this observation, we may do the preprocessing for empty roads and use the ob-
tained potentials even though an edge is perturbed. In [14], this idea was stated
to be semi-dynamic, allowing only increases in edge weights. Nevertheless, as our
update routine does not need any additional information, we are able to handle
all kinds of updates. Our lazy dynamic variant of ALT leaves the preprocessing
untouched unless the cost of an edge drops below its initial value.

This approach may lead to an increase in search space. If an edge e on the
shortest path is increased without updating the preprocessing, the weight of e
is also increased in G′, the graph with reduced costs. Thus, the length of the
shortest path increases in G′. So, the search stops later because more nodes are
inserted in the priority queue (cf. the stopping criterion in Section 2). However,
as long as the edges are not on the shortest path of a requested query the search
space does not increase. More precisely, the search space may even decrease
because nodes ‘behind’ the updated edge are inserted later into the priority
queue.

4.3 The Time-Dependent ALT Algorithm

In time-independent scenarios, ALT is implemented as bidirectional search. But
in time-dependent scenarios, a backward search is prohibited. Thus, we have
to use an unidirectional variant of ALT that only performs a forward search.
As a consequence, we may use the known stopping criterion of Dijkstra’s
algorithm: Stop the search when the target node is taken from the priority queue.
Furthermore, we may use the potential πf instead of the average potential pf

yielding better lower bounds (Section 2).
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Based on the ideas from 4.2, we can adapt the unidirectional ALT algorithm
to the time-dependent scenario. When doing the preprocessing, we use the min-
imum weight of each edge to compute the distance labels. It is obvious that we
obtain a feasible potential. The time-dependent ALT algorithm works analo-
gously to an unidirectional ALT but calculates the estimated departure time
from a node in order to obtain the correct edge weight. We alter the priority of
each node by adding the potential computed during preprocessing.

Note that the time-dependent ALT algorithm also works in a dynamic time-
dependent scenario. Using the same arguments from Section 4.2, the algorithm
still performs accurate queries as long as an edge weight does not drop below
the value used during the preprocessing. If this happens, the distance labels can
be updated using the routine from Section 4.1.

5 Experiments

Our experimental evaluation was done on one CPU of a dual AMD Opteron
252 running SUSE Linux 10.1. The machine is clocked at 2.6 GHz, has 16 GB
of RAM and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.1,
using optimization level 3.

As inputs, we use the road map of Western Europe, provided by PTV AG
for scientific use, and the US network taken from the TIGER/Line Files. The
former graph has approximately 18 million nodes and 42.6 million edges, where
edge lengths correspond to travel times. The corresponding figures for the USA
are 23.9 million and 58.3 million, respectively. Each edge belongs to one of four
main categories representing motorways, national roads, local streets, and urban
streets. The European network has a fifth category representing rural roads. For
updates, we do not consider these rural roads. In general, we measure a low
perturbation of an edge by an increase of its weight by factor 2. For a high
perturbation we use an increase by factor 10. In the following, we identify the
unidirectional, bidirectional and time-dependent ALT algorithm by uni-ALT,
ALT and time-ALT, respectively. The number of landmarks is indicated by a
number after the algorithm, e.g. ALT-16 for 16 landmarks.

The Static ALT Algorithm. In order to compare our ALT implementations
in a dynamic scenario, we report the performance of the bi- and unidirectional
ALT algorithm in a static scenario. We evaluate different numbers of landmarks
with respect to preprocessing, search space and query times performing 10 000
uniformly distributed random s-t queries. Due to memory requirements we used
avoid for selecting 32 and 64 landmarks. For less landmarks, we used the superior
maxCover heuristic. Table 1 gives an overview.

We see for bidirectional ALT that doubling the number of landmarks re-
duces search space and query times by factor 2, which does not hold for the
unidirectional variant. This is due to the fact that goal direction works best on
motorways as these roads mostly have reduced costs of 0 in the reduced graph.
In the unidirectional search, one has to leave to motorway in order to reach the
target. This drawback cannot be compensated by more landmarks.
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Table 1. Preprocessing, search space, and query times of uni- and bidirectional ALT

and Dijkstra based on 10 000 random s-t queries. The column dist. refers to the time
needed to recompute all distance labels from scratch.

Preprocessing Query Unidir. Query Bidir.

time space dist. # settled time # settled time
graph algorithm [min] [MB] [min] nodes [ms] nodes [ms]

Dijkstra 0.0 0 0.0 9 114 385 5591.6 4 764 110 2713.2
ALT-8 26.1 1 100 2.8 1 019 843 391.6 163 776 127.8

Europe ALT-16 85.2 2 200 5.5 815 639 327.6 74 669 53.6
ALT-32 27.1 4 400 11.1 683 566 301.4 40 945 29.4
ALT-64 68.2 8 800 22.1 604 968 288.5 25 324 19.6

Dijkstra 0.0 0 0.0 11 847 523 6780.7 7 345 846 3751.4
ALT-8 44.5 1 460 3.4 922 897 329.8 328 140 219.6

USA ALT-16 103.2 2 920 6.8 762 390 308.6 180 804 129.3
ALT-32 35.8 5 840 13.6 628 841 291.6 109 727 79.5
ALT-64 92.9 11 680 27.2 520 710 268.8 68 861 48.9

Comparing uni- and bidirectional ALT, one may notice that the time spent
per node is significantly smaller than for uni-ALT. The reason is the compu-
tational overhead for performing a bidirectional search. A reduction in search
space of factor 44 (USA, ALT-16) yields a reduction in query time of factor 29.
This is an overhead of factor 1.5 instead of 2.1, suggested by the figures in [15],
deriving from our more efficient storage of landmark data (cf. Section 2).

Client profiles. As we do not consider repositioning landmarks, we only have to
recompute all distance labels by rerunning a forward and backward Dijkstra

from each landmark whenever the client profile changes. With this strategy, we
are able to change a profile in 5.5 minutes when using 16 landmarks on the
European network.

Updating the Preprocessing. Before testing the lazy variant of dynamic
ALT, we evaluate the time needed for updating all distance labels. Note, that
even the lazy variant has to update the preprocessing sometimes. With the ob-
tained figures we want to measure the trade-off for which types of perturbations
the update of the preprocessing is worth the effort. Figure 1 shows the time
needed for updating all 32 trees needed for 16 landmarks if an edge is increased
or decreased by factor 2 and 10. We distinguish the different types of edges.

We observe that updating the preprocessing if an important edge is altered
is more expensive than the perturbation of other road types. This is due to the
fact that motorway edges have many descendants within the shortest path trees.
Thus, more nodes are affected by such an update. But the type of update has
nearly no impact on the time spent for an update: neither how much an edge
is increased nor whether an edge is increased or decreased. For almost all kind
of updates we observe high fluctuations in update time. Very low update times
are due to the fact that the routine is done if an increased edge is not a tree



60 D. Delling and D. Wagner

●
●
●●●

●

●
●●●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●●

●●●●

●

●

●

●

●
●
●●
●

●●

●

●
●
●
●●

●

●
●
●
●●●

●

●

●●

●
●
●●●

●

●●●●●

●
●

●

●
●

●
●●

●

●●●●
●

●

●●●

●

●

●

●

●
●●●

●

●

●●
●

●
●

●

●

●

●

●●

●●

●
●

●

●

●
●

●●

●●

●
●●
●

●

●●

●

●

●

●
●

●

●
●

●●●
●
●

●

●●●●
●
●●●●

●

●●
●●●●
●

●

●●●●
●
●●●●●●●●●

●
●●●●●●

●●
●

●●●●
●
●●
●●
●
●
●●
●
●
●●
●
●

●

●
●
●●●●●●●
●
●●●●
●
●●●
●
●
●●●●●●●●●●
●●
●●
●
●●
●

●●

●●●

●

●

●●●●
●●●
●●
●●
●●

●
●
●
●●●
●
●
●●
●●
●●
●
●
●
●

●

●●●●●●

●●

●●●
●●●
●●●●
●●●●
●
●●●
●●

●

●●

●●

●

●

●●●
●
●

●

●

●
●

●

●●●

●

●●●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●●
●
●
●●
●

●

●

●
●●
●
●
●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●●●●

●●●●

●

●

●●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●
●
●
●

●

●●●
●●

●
●
●●●

●

●

●

●●

●
●

●

●
●
●●

●

●

●

●●

●●
●●
●●
●

●
●

●

●

●

●●

●
●●

●

●●

●

●

●

●
●
●

●

●●●
●●
●

●

●●

●
●●
●●●●
●
●●
●●
●●●●●

●
●

●

●
●

●
●
●●
●

●

●
●
●
●●●
●

●

●

●
●

●

●●
●
●

●

●●
●

●

●

●
●
●

●
●

●●

●

●

●
●●●
●●
●●

●●

●

●

●
●
●●
●●

●

●
●
●
●●

●

●●

●●
●

●

●

●

●

●

●●●

●

●
●●
●

●

●
●
●

●

●
●●●
●●●●

●

●●
●●
●

●

●
●
●●

●

●●

●
●●
●●
●●
●
●●

●●

●●●

●
●●●●

●
●

●

●

●
●
●●●●
●

●

●
●

●

●
●

●

●
●
●

●

●

●
●
●

●

●

●●●
●●

●

●

●

●●

●

Edge Category

U
pd

at
e 

T
im

e 
[m

s]

●

●
●
●
●

●

●

●
●
●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●●

●

●●

●

●

●

●

●●

●
●
●
●●

●

●

●

●

●●

●

●●

●

●●●
●●

●

●●●
●●●
●●●

●

●●
●
●●●●

●

●
●
●●●

●

●

●

●

●

●

●

●●●

●●●
●
●
●

●●

●
●

●

●

●
●
●●

●

●

●●

●

●
●

●

●

●
●●

●●

●
●
●

●

●

●

●●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●●
●
●
●

●●●
●
●

●
●●

●

●●●
●●●

●
●●●
●●●●●●●●
●
●●
●
●●

●●

●
●●●●●●●
●
●
●

●
●

●

●●

●

●
●●
●
●
●

●
●
●●●●
●●●
●●
●●
●●●●●●●

●
●●●

●●

●
●●
●●
●●●●
●
●●
●●●
●

●●●●
●
●
●●
●
●●●

●●

●
●
●
●
●

●

●

●●●
●●●●
●●

●●

●

●

●
●
●●

●

●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●●
●●
●

●
●

●

●

●●
●

●
●
●●
●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●●●●

●
●●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●
●
●●
●

●

●

●

●

●

●●
●●●
●

●

●●●●●●●
●
●
●

●

●
●

●

●

●

●
●

●

●●●

●

●●●●
●●●
●●

●
●
●

●

●
●
●●
●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●●●
●●●●
●
●●
●●
●
●
●
●

●

●

●

●

●
●
●
●
●●

●

●●●
●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●

●

●●

●●

●
●

●

●
●

●
●
●●●
●●
●

●●

●

●
●
●
●

●

●●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●
●
●
●●
●

●
●●●●

●

●
●●●●●

●

●

●

●●●

●

●
●

●
●
●
●
●
●●●
●
●

●●
●

●

●
●
●●
●
●●●

●●

●

●
●●

●

●●●

●

●

●

●

●●
●
●●●

●

●

●●
●
●

●●
●●

●

●

●

●●●

●

random motorway national road local road urban street

0.
01

0.
1

1
10

10
0

10
3

10
4 low pert.

high pert.

●
●
●●●

●

●

●●●

●●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●●

●●

●

●

●
●
●●

●

●
●

●
●
●●
●

●

●

●●

●
●
●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●●

●

●●●
●

●

●●

●

●

●

●

●
●●●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●●●●●
●●●●

●

●●
●●●●
●●
●●●●
●●●
●●●
●●●●●

●

●●●●●●

●●
●

●●●●●●●●●●

●

●
●
●
●
●●●●

●

●
●
●
●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●
●●
●
●●●
●
●

●
●
●●●

●

●

●

●

●●
●●●
●●●●
●●

●
●
●
●●●●●●
●●
●●●
●●●

●

●●●●●●

●
●

●●●
●●●
●●●●●●
●●●●●●●●

●

●●

●

●

●●
●
●

●

●

●

●
●●

●

●●
●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●
●
●
●●
●

●

●

●
●●

●
●
●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●●

●●●●

●

●

●●
●
●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●●
●●●
●

●

●●●
●●
●
●
●●●

●

●
●
●

●
●

●

●●●

●

●

●

●●
●
●
●●
●●

●

●
●

●

●

●●

●●

●
●●

●

●●

●

●

●

●
●●

●

●●●
●
●

●

●●

●
●●
●●●●
●
●●
●●
●●●
●●

●
●

●

●
●

●●
●
●

●

●

●
●●●
●

●

●

●

●

●

●●
●
●

●

●●
●
●

●

●

●
●

●
●

●●

●

●

●
●●●
●●●
●

●
●
●
●

●●
●●

●

●
●
●
●●●

●

●●

●
●●
●

●

●

●●

●

●

●
●

●

●●●●

●

●
●●

●

●

●
●●●●●

●

●●
●
●

●
●
●

●●

●

●

●
●

●
●●
●
●●

●●

●
●●

●●

●
●
●

●
●●
●
●●●

●

●

●
●
●●●

●

●
●

●

●
●

●

●

●●

●

●

●
●●
●

●

●●●
●●

●

●

●

●●●

●

Edge Category

U
pd

at
e 

T
im

e 
[m

s]

●

●
●
●
●

●

●
●●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●●
●●

●

●

●

●

●

●

●
●●

●●

●

●

●
●●●

●

●
●
●
●●

●

●
●
●
●●●

●

●
●

●

●
●

●
●

●

●
●

●●

●

●
●●●

●

●
●
●

●

●●

●

●
●

●●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●
●
●
●

●

●●●●
●
●●●

●

●●
●●
●
●●
●●
●●●
●●●●●●●●●●

●
●●●●●
●●
●

●●●●●●●●●●

●
●
●
●
●●●●

●

●●●●●●●
●
●●●●●●
●●●●●●
●
●●●●
●
●●
●
●●●
●
●

●
●
●●●

●
●

●

●

●●
●●
●●●●●

●
●
●
●●●●●●
●●
●●●
●●●

●

●●●●●

●●

●●●●
●●●●●●●●
●●●●●●●●

●●

●

●

●●
●●
●

●

●

●

●●
●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●●
●

●
●●
●

●

●

●
●●
●
●
●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●●●

●

●●●●

●

●

●●
●
●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●●

●
●

●

●
●

●

●

●●
●
●●●
●

●

●●●
●●
●
●
●●●

●

●
●
●

●

●

●
●

●

●●●

●

●

●

●●
●●
●●
●●
●

●
●

●

●

●●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●●●
●
●

●

●●

●
●●
●

●
●●●●
●●
●●
●●●
●●

●

●

●

●

●
●

●●
●
●

●

●●●
●

●

●

●

●

●
●●

●●
●
●

●

●

●●
●
●

●

●

●

●
●

●●

●

●

●
●●●
●●●
●
●

●●●

●
●
●●

●

●●●
●●●

●

●●

●●
●●
●
●
●

●

●

●

●

●

●

●●●●

●

●
●●
●

●

●●●●
●
●●

●

●●
●

●
●
●●

●

●●
●●●
●●●●

●●
●
●●

●

●

●

●

●●●
●●●
●●

●

●
●●●●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●
●●●●

●

●●

●

●●●●

●

random motorway national road local road urban street

0.
01

0.
1

1
10

10
0

10
3

10
4 low pert.

high pert.

Fig. 1. Required time for updating the 32 shortest path trees needed for 16 landmarks
on the European instance. The figure on the left shows the average runtime of increasing
one edge by factor 2 (grey) and by 10 (white) while the right reports the corresponding
values for decrementing edges. For each category, the figures are based on 10 000 edges.

edge or a decreased edge does not yield a lower distance label. Outliers of high
update times are due to the fact that not only the type of the edge has an impact
on the importance for updates: altering a urban street being a tree edge near
a landmark may lead to a dramatic change in the structure of the tree of this
landmark.

Lazy Dynamic ALT. In the following, we evaluate the robustness of the lazy
variant of ALT with respect to network changes. Therefore, we alter different
types and number of edges by factor 2 and factor 10.

Edge Categories. First, we concentrate on different types of edge categories.
Table 2 gives an overview of the performance for both dynamic ALT variants if
1 000 edges are perturbed before running random queries.

We see that altering low-category edges has nearly no impact on the perfor-
mance of lazy ALT. This is independent of the level of increase. As expected,
altering motorway edges yields a loss in performance. We observe a loss of 30–
45% for Europe and 15–19% for the US if the level of increase is moderate (factor
2). The situation changes for high perturbation. For Europe, queries are 3.5–5.5
times slower than in the static case (cf. Table 1), depending on the number of
landmarks. The corresponding figures for the US are 1.8–2.3. Thus, lazy ALT is
more robust on the US network than on the European. The loss in performance
is originated from the fact that for most queries, unperturbed motorways on the
shortest path have costs of 0 in the reduced graph. Thus, the search stops later
if these motorways are perturbed yielding a higher search space (cf. Section 4.2).
Nevertheless, comparing the query times to a bidirectional Dijkstra, we still
gain a speed-up of above 10. Combining the results from Figure 1 with the ones
from Table 2, we conclude that updating the preprocessing has no advantage.
For motorways, updating the preprocessing is expensive and altering other types
of edges has no impact on the performace of lazy ALT.

Number of Updates. In Table 2, we observed that the perturbation of motorways
has the highest impact on the lazy dynamic variant of ALT. Next, we change
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Table 2. Search space and query times of lazy dynamic ALT algorithm performing
10 000 random s-t queries after 1 000 edges of a specific category have been perturbed
by factor 2. The figures in parentheses refer to increases by factor 10. The percentage
of affected queries (the shortest path contains an updated edge) is given in column
number 3.

lazy ALT-16 lazy ALT-32
graph road type aff.[%] # settled nodes increase [%] # settled nodes increase [%]

All roads 7.5 74 700 (77 759) 0.0 (4.1) 41 044 (43 919) 0.2 (7.3)
urban 0.8 74 796 (74 859) 0.2 (0.3) 40 996 (41 120) 0.1 (0.4)

EUR local 1.5 74 659 (74 669) 0.0 (0.0) 40 949 (40 995) 0.0 (0.1)
national 28.1 74 920 (75 777) 0.3 (1.5) 41 251 (42 279) 0.7 (3.3)
motorway 95.3 97 249 (265 472) 30.2 (255.5) 59 550 (224 268) 45.4 (447.7)

All roads 3.3 181 335 (181 768) 0.3 (0.5) 110 161 (110 254) 0.4 (0.5)
urban 0.1 180 900 (180 776) 0.1 (0.0) 109 695 (110 108) 0.0 (0.3)

USA local 2.6 180 962 (181 068) 0.1 (0.1) 109 873 (109 902) 0.1 (0.2)
national 25.5 181 490 (184 375) 0.4 (2.0) 110 553 (112 881) 0.8 (2.9)
motorway 94.3 207 908 (332 009) 15.0 (83.6) 130 466 (247 454) 18.9 (125.5)

the number of perturbed motorways. Table 3 reports the performance of lazy
dynamic ALT when different numbers of motorways are increased by factor 2
and factor 10, respectively, before running random queries on Europe.

For perturbations by factor 2, we observe almost no loss in performance for
less than 500 updates, although up to 87% of the queries are affected by the
perturbation. Nevertheless, 2 000 or more perturbed edges lead to significant
decreases in performance, resulting in query times of about 0.5 seconds for 10 000
updates. Note that the European network contains only about 175 000 motorway
edges. As expected, the loss in performance is higher when motorway edges are
increased by factor 10. For this case, up to 500 perturbations can be compensated
well. Comparing slight and high increases we observe that the lazy variant can

Table 3. Search space and query times of the dynamic ALT algorithm performing
10 000 random s-t queries after a variable number of motorway edges have been in-
creased by factor 2. The figures in parentheses refer to increases by factor 10. The
percentage of affected queries (the shortest path contains an updated edge) is given in
column 2.

lazy ALT-16 lazy ALT-32
#edges aff.[%] # settled nodes increase [%] # settled nodes increase [%]

100 39.9 75 691 (91 610) 1.4 (22.7) 41 725 (56 349) 1.9 (37.6)
200 64.7 78 533 (107 084) 5.2 (43.4) 44 220 (69 906) 8.0 (70.7)
500 87.1 86 284 (165 022) 15.6 (121.0) 50 007 (124 712) 22.1 (204.6)

1 000 95.3 97 249 (265 472) 30.2 (255.5) 59 550 (224 268) 45.4 (447.7)
2 000 97.8 154 112 (572 961) 106.4 (667.3) 115 111 (531 801) 181.1 (1198.8)
5 000 99.1 320 624 (1 286 317) 329.4 (1622.7) 279 758 (1 247 628) 583.3 (2947.1)

10 000 99.5 595 740 (2 048 455) 697.8 (2643.4) 553 590 (1 991 297) 1252.0 (4763.3)
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compensate four times more updates, e.g. 500 increases by factor 10 yield almost
the same loss as 2 000 updates by factor 2.

The number of landmarks has almost no impact on the performance if more
than 5 000 edges are perturbed. This is due to the fact that for almost all mo-
torways the landmarks do not yield good reduced costs. We conclude that the
lazy variant cannot compensate such a high degree of perturbation.

Comparing Lazy and Eager Dynamic ALT. Table 2 shows that lazy ALT-
32 yields an increase of 40% in search space for random queries on the European
network with 1 000 low perturbed motorway edges. In order to obtain a more
detailed insight for which types of queries these differences are originated from,
Figure 2 reports the query times of eager and lazy ALT-32 with respect to the
Dijkstra rank1 (of the target node) in this scenario.
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Fig. 2. Comparison of query times of the lazy and eager dynamic variant of ALT

using the Dijkstra rank methodology. The queries were run after 1 000 motorways were
increased by factor 2. The results are represented as box-and-whisker plot. Outliers are
plotted individually.

Query performance varies so heavily that we use a logarithmic scale. For each
rank, we observe queries performing 20 times worse than the median. This is
originated from the fact that for some queries no landmark provides very good
lower bounds resulting in significantly higher search spaces. Comparing the eager
and lazy dynamic version, we observe that query times differ only by a small
factor for Dijkstra ranks below 220. However, for 224, the eager version is about
factor 5 faster than the lazy one. This is due to the fact that those types of
queries contain a lot of motorways and most of the jammed edges are used.
The eager version yields a good potential for these edge while the lazy does

1 For an s-t query, the Dijkstra rank of node v is the number of nodes inserted in the
priority queue before v is reached. Thus, it is a kind of distance measure.
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not. We conclude that lazy ALT is more robust for small range queries than
for long distance requests. Note that in a real-world scenario, you probably do
not want to use traffic information that is more than one hour away from your
current position. As the ALT algorithm provides lower bounds to all positions
within the network, it is possible to ignore traffic jams sufficiently without any
additional information.

Time-Dependent ALT. Our final experiments cover the time-dependent sce-
nario, in which bidirectional search is prohibited. Thus, we compare time-ALT

with a time-dependent variant of Dijkstra’s algorithm [6]. This variant of Di-

jkstra works like the normal one but calculates the departure time from a
node in order to use the correct edge weight. Our current implementation of
time-dependency assigns 24 different transit times to each edge, representing
the travel time at each hour of a day. Again, we interpret the initial values as
empty roads and add transit times according to rush hours. Table 4 gives an
overview of the performance on the European network for different scenarios of
traffic during the day. We study three models differing in how much transit time
is added to all edges during the rush hours. The first (high traffic) increases the
transit time on all roads by factor 3 during peak hours. The low traffic scenario
uses increases of factor 1.5. For comparison, the no traffic scenario uses the same
(initial) edge weight for all times of the day. Our models are inspired by [8].

Table 4. Search space and query times of time-dependent ALT and Dijkstra perform-
ing 10 000 random s-t queries for different types of expected traffic in a time-dependent
scenario. As input, the European network is used.

no traffic low traffic high traffic
algorithm # settled time [ms] # settled time [ms] # settled time[ms]

Dijkstra 9 029 972 8 383.2 9 034 915 8 390.6 9 033 100 8 396.1
time-ALT-16 794 622 443.7 1 969 194 1543.3 3 130 688 2 928.3

We observe a speed-up of approximately factor 3 − 5 towards Dijkstra’s
algorithm, depending on the scenario. This relatively low speed-up in contrast
to a speed-up of factor 50 for time-independent bidirectional ALT-16 towards
bidirectional Dijkstra is due to two facts. On the one hand, the unidirectional
ALT algorithm performs much worse than the bidirectional variant (see Table 1).
On the other hand, lower bounds are much worse than in a time-independent
scenario because an edge increased by factor 2 during rush hour counts like a
perturbed edge in the time-independent scenario. As lazy ALT cannot compen-
sate a very high degree of perturbation and we apply our traffic model to all
edges including motorways, these figures are not counterintuitive.

Comparing Table 1 and 4, our time-dependent variant is 30% slower than the
time-independent unidirectional ALT. This is due to overhead in computing the
estimated departure time from each node.
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Table 5. Comparison of lazy ALT and DynHNR [10]. ’Space’ indicates the additional
overhead per node. We report the performance of static and dynamic random queries.
For the latter the average search space is reported after 10 and 1000 edges have been
increased by factor 2 and—in parentheses—factor 10. Note that the tests for DynHNR
were performed on a slightly different maschine.

preprocessing static queries dynamic queries
time space time #settled #settled nodes

method [min] [B/node] [ms] nodes 10 updates 1000 updates

lazy ALT-16 85 128 53.6 74 441 74 971 (75 501) 97 123 (255 754)
lazy ALT-32 27 256 29.4 40 945 41 060 (43 865) 59 550 (224 268)
lazy ALT-64 62 512 19.6 25 324 26 247 (26 901) 42 930 (201 797)

DynHNR 18 32 1.2 1 414 2 385 (8 294) 204 103 (200 465)

Comparison to Dynamic Highway-Node Routing. Analyzing the figures
from Table 5, it turns out that an approach based solely on landmarks cannot
compete with Dynamic Highway-Node Routing [10] as long as the number of
perturbed edges stay little. However, the situation changes if more than 1000
edges are updated. For factor-2 perturbations, ALT yields lower search spaces
than DynHNR and for factor-10 perturbations both techniques are very close to
each other. Nevertheless, with respect to space requirements, DynHNR is supe-
rior to ALT, and the preprocessing of DynHNR can be updated more efficiently
than the preprocessing of ALT.

6 Discussion

We evaluated adaptions of ALT to dynamic scenarios covering predictable and
unexpected changes. In a time-independent scenario, a variant not updating the
preprocessing loses almost no performance as long as the number of perturbed
roads stays moderate. When using 64 landmarks, random queries are done in
20 ms on the European network and in 50 ms on the US network. However,
for some types of updates the preprocessing can be updated in moderate time
without storing any additional data.

Analyzing the dynamic scenarios, the time-dependent model seems to be supe-
rior to the time-independent model. Especially for long range queries, updates
may occur during the traversal of the shortest path. While this can be com-
pensated by rerunning a query from the current position, one cannot take into
account jams that are on the route but probably will have disappeared as soon
as you reach the critical section.

Summarizing, landmark based routing yields good query times in dynamic
scenarios. Furthermore, landmarks harmonize well with other techniques like
reach [15], highway hierarchies [11], or even transit nodes [4]. As the dynamiza-
tion of ALT comes for free, adding landmarks to other techniques in dynamic
scenarios may be worth focusing on.
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Abstract. We introduce a dynamic technique for fast route planning in
large road networks. For the first time, it is possible to handle the prac-
tically relevant scenarios that arise in present-day navigation systems:
When an edge weight changes (e.g., due to a traffic jam), we can update
the preprocessed information in 2–40 ms allowing subsequent fast queries
in about one millisecond on average. When we want to perform only a
single query, we can skip the comparatively expensive update step and
directly perform a prudent query that automatically takes the changed
situation into account. If the overall cost function changes (e.g., due to a
different vehicle type), recomputing the preprocessed information takes
typically less than two minutes.

The foundation of our dynamic method is a new static approach that
generalises and combines several previous speedup techniques. It has
outstandingly low memory requirements of only a few bytes per node.

1 Introduction

Computing fastest routes in road networks is one of the showpieces of real-world
applications of algorithmics. In principle we could use Dijkstra’s algorithm. But
for large road networks this would be far too slow. Therefore, in recent years,
there has been considerable interest in speed-up techniques for route planning.
For an overview, we refer to [1]. The most successful methods are static, i.e.,
they assume that the network—including its edge weights—does not change.
This makes it possible to preprocess some information once and for all that can
be used to accelerate all subsequent point-to-point queries. Today, the static
routing problem in road networks can be regarded as largely solved.

However, real road networks change all the time. In this paper, we address
two such dynamic scenarios: individual edge weight updates, e.g., due to traffic
jams, and switching between different cost functions that take vehicle type, road
restrictions, or driver preferences into account.

1.1 Related Work

Bidirectional Search. simultaneously searches forward from s and backwards
from t until the search frontiers meet. Many speedup techniques (including ours)
use bidirectional search as an ingredient.
� Partially supported by DFG grant SA 933/1-3.
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Separators. Perhaps the most well known property of road networks is that
they are almost planar, i.e., techniques developed for planar graphs will often
also work for road networks.

Using O(n log2 n) space and preprocessing time, query time O(
√

n log n) can
be achieved [2,3] for directed planar graphs without negative cycles; edge weights
can be updated in amortised O(n2/3 log5/3 n) time per operation (provided that
all edge weights are positive).

A previous practical approach is the separator-based multi-level method [4,5,6].
Out of several existing variants, we mainly refer to [5, basic variant]. For a graph
G = (V, E) and a node set V ′ ⊆ V , a shortest-path overlay graph G′ = (V ′, E′)
has the property that E′ is a minimal set of edges such that each shortest-path
distance d(u, v) in G′ is equal to the shortest-path distance from u to v in G.
In the separator based approach, V ′ is chosen in such a way that the subgraph
induced by V \V ′ consists of small components of similar size. The overlay graph
can be constructed by performing a search in G from each separator node that
stops when all neighbouring separator nodes have been found. In a bidirectional
query algorithm, the components that contain the source and target nodes are
searched considering all edges. From the border of these components, i.e., from
the separator nodes, however, the search is continued considering only edges of
the overlay graph. By recursing on G′, this basic idea is generalised to multiple
levels.

Bauer [7] observes that if the weight of an edge within some component C
changes, we do not have to repeat the complete construction process of G′. It is
sufficient to rerun the construction step only from some separator nodes at the
boundary of C. No experimental evaluation is given. In a theoretical study on
the dynamisation of shortest-path overlay graphs [8], an algorithm is presented
that requires O(|V ′|(n+m) logn) preprocessing time and O(|V ′|(n+m)) space,
which seems impractical for large graphs.

Highway Hierarchies. Commercial systems use information on road cate-
gories to speed up search. ‘Sufficiently far away’ from source and target, only
‘important’ roads are used. This requires manual tuning of the data and a del-
icate tradeoff between computation speed and suboptimality of the computed
routes. In previous papers [9,10] we introduced the idea to automatically com-
pute highway hierarchies that yield optimal routes uncompromisingly quickly.
The basic idea is to define a neighbourhood for each node to consist of its H
closest neighbours. Now an edge (u, v) is a highway edge if there is some shortest
path 〈s, . . . , u, v, . . . t〉 such that neither u is in the neighbourhood of t nor v is
in the neighbourhood of s. This defines the first level of the highway hierarchy.
After contracting the network to remove low degree nodes—obtaining its so-
called core—, the same procedure (identifying the highway network at the next
level followed by contraction) is applied recursively. We obtain a hierarchy. The
query algorithm is bidirectional Dijkstra with restrictions on relaxing certain
edges. Roughly, far away from source or target, only high level edges need to be
considered.
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Reach-Based Routing [11,12] is a speed-up technique that is similar to high-
way hierarchies. A dynamic version that handles a set of edge weight changes
is presented in [7]. The basic idea is to rerun the construction step only from
nodes within a certain area, which has to be identified first. So far, the con-
cept of shortcuts [9,12], which is important to get competitive construction and
query times, has not been integrated in the dynamic version. No experimental
evaluation for the dynamic scenario is given in [7].

Transit Node Routing. [13] is based on the following observation: “When you
drive to somewhere ‘far away’, you will leave your current location via one of only
a few ‘important’ traffic junctions [transit nodes ]”. Distances from each node to
all neighbouring transit nodes and between all transit nodes are precomputed so
that a non-local shortest-path query can be reduced to a small number of table
lookups. Currently, transit node routing provides the best query times on road
networks, but so far no dynamic version is available.

Goal Direction. Another interesting property of road networks is that they
allow effective goal directed search using A∗ search [14]: lower bounds define a
vertex potential that directs search towards the target. This approach was shown
to be very effective if lower bounds are computed using precomputed shortest-
path distances to a carefully selected set of about 20 Landmark nodes [15] using
the Triangle inequality (ALT ). In [15] it is also briefly mentioned that in case of
an edge weight increase, the query algorithm stays correct even if the landmarks
and the landmark distances are not updated. To cope with drastic changes or
edge weight decreases, an update of the landmark distances is suggested. In [16],
these ideas are pursued leading to an extensive experimental study of landmark-
based routing in various dynamic scenarios. For a comparison to our approach,
see Section 5.

1.2 Overview and Main Contributions

Our first main contribution is the generalisation of the separator-based multi-
level method to highway-node routing where overlay graphs are defined using
arbitrary node sets V ′ ⊆ V rather than separators. This requires new algorithms
for preprocessing and queries since removing V ′ will in general not partition the
graph into small components. Section 2 lies the ground for these new algorithms
by systematically investigating the graph theoretical problem of finding all nodes
from V ′ that can be reached on a shortest path from a given node without passing
another node from V ′. In Section 3 we apply the results to static highway-node
routing. The main remaining difficulty is to choose the highway nodes. The
idea is that important nodes used by many shortest paths will lead to overlay
graphs that are more sparse than for the separator-based approach. This will
result in faster queries and low space consumption. The intuition behind this
idea is that the number of overlay graph edges needed between the separator
nodes bordering a region grows quadratically with the number of border nodes
(see also [6]). In contrast, important nodes are uniformly distributed over the
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network and connected to only a small number of nearby important nodes (see
also [13]). Indeed, our method is so far the most space-efficient preprocessing
technique that allows query times several thousand times faster than Dijkstra’s
algorithm. A direct comparison to the separator-based variant is difficult since
previous papers use comparatively small graphs1 and it is not clear how the
original approach scales to very large graphs.

While there are many ways to choose important nodes, we capitalise on pre-
vious results and use highway hierarchies to define all required node sets. There
is an analogy to transit node routing where we also used highway hierarchies to
find important nodes.

On the first glance, our approach to highway-node routing looks like a round-
about way to achieve similar results as with the direct application of highway hi-
erarchies. However, by factoring out all the complications of highway hierarchies
into a pre-preprocessing step, we simplify data structures, the query algorithm,
and, most importantly, dynamic variants. The idea is that in practice, a set of
nodes important for one weight function will also contain most of the important
nodes for another ‘reasonable’ weight function. The advantage is obvious when
the cost function is redefined—all we have to do is to recompute the edge sets
of the overlay graphs. Section 4 discusses two variants of the scenario when a
few edge weights change: In a server setting, the overlay graphs are updated so
that afterwards the static query algorithm will again yield correct results. In a
mobile setting, the data structure are not updated. Rather, the query algorithm
searches at lower levels of the node hierarchy, (only) where the information at
the higher levels might have been compromised by the changed edges.

Together with [16], we are the first to present an approach that tackles such
dynamic scenarios and to demonstrate its efficiency in an extensive experimental
study using a real-world road network, which is summarised in Section 5.

2 Covering Nodes

Dijkstra’s Algorithm can be used to solve the single-source shortest-path
problem, i.e., to compute the shortest paths from a single source node s to all
other nodes in a given graph. Starting with the source node s as root, Dijkstra’s
algorithm grows a shortest-path tree T that contains shortest paths from s to
all other nodes. During this process, each node of the graph is either unreached,
reached, or settled. A node that already belongs to the tree is settled. If a node
u is settled, a shortest path P ∗ from s to u has been found and the distance
d(s, u) = w(P ∗) is known. A node that is adjacent to a settled node is reached.
Note that a settled node is also reached. If a node u is reached, a path P from
s to u, which might not be the shortest one, has been found and a tentative
1 For a subgraph of the European road network with about 100 000 nodes, [6] gives

a preprocessing time of “well over half an hour [plus] several minutes” and a query
time 22 times faster than Dijkstra’s algorithm. For a comparison, we take a subgraph
around Karlsruhe of a very similar size, which we preprocess in seven seconds. Then,
we obtain a speedup of 94.
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distance δ(u) = w(P ) is known. Reached but not settled nodes are also called
queued. Nodes that are not reached are unreached.

Problem Definition. During a Dijkstra search from s, we say that a settled
node u is covered by a node set V ′ if there is at least one node v ∈ V ′ on the path
from the root s to u. A queued node is covered if its tentative parent is covered.
The current partial shortest-path tree T is covered if all currently queued nodes
are covered. All nodes v ∈ V ′ ∩ T that have no parent in T that is covered are
covering nodes, forming the set CG(V ′, s).

The crucial subroutine of all algorithms in the subsequent sections takes a
graph G, a node set V ′, and a root s and determines all covering nodes CG(V ′, s).
We distinguish between four different ways of doing this.

Conservative Approach. The conservative variant (Fig. 1 (a)) works in the
obvious way: a search from s is stopped as soon as the current partial shortest-
path tree T is covered. Then, it is straightforward to read off all covering nodes.
However, if the partial shortest-path tree contains one path that is not covered
for a long time, the tree can get very big even though all other branches might
have been covered very early. In our application, this is a critical issue due to
long-distance ferry connections.

Aggressive Approach. As an overreaction to the above observation, we might
want to define an aggressive variant that does not continue the search from
any covering node, i.e., some branches might be terminated early, while only
the non-covered paths are followed further on. Unfortunately, this provokes two
problems. First, we can no longer guarantee that T contains only shortest paths.
As a consequence, we get a superset CG(V ′, s) of the covering nodes, which
still can be used to obtain correct results. However, the performance will be
impaired. In Section 3, we will explain how to reduce a given superset rather
efficiently in order to obtain the exact covering node set. Second, the tree T
can get even bigger since the search might continue around the covering nodes
where we pruned the search.2 In our example (Fig. 1 (b)), the search is pruned
at u so that v is reached using a much longer path that leads around u. As a
consequence, w is superfluously marked as a covering node.

Stall-in-Advance Technique. If we decide not to prune the search immedi-
ately, but to go on ‘for a while’ in order to stall other branches, we obtain a
compromise between the conservative and the aggressive variant, which we call
stall-in-advance. One heuristic we use prunes the search at node z when the path
explored from s to z contains p nodes of V ′ for some tuning parameter p. Note
that for p := 1, the stall-in-advance variant corresponds to the aggressive vari-
ant. In our example (Fig. 1 (c)), we use p := 2. Therefore, the search is pruned

2 Note that the query algorithm of the separator-based approach virtually uses the
aggressive variant to compute covering nodes. This is reasonable since the search
can never ‘escape’ the component where it started.
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s v w x yu s u v w x y

(a) conservative (b) aggressive

s u v w x y
stall

wake
s u v w x y

(c) stall-in-advance (d) stall-on-demand

Fig. 1. Simple example for the computation of covering nodes. We assume that all
edges have weight 1 except for the edges (s, v) and (s, x), which have weight 10. In
each case, the search process is started from s. The set V ′ consists of all nodes that are
represented by a square. Thick edges belong to the search tree T . Nodes that belong
to the computed superset CG(V ′, s) of the covering nodes are highlighted in grey. Note
that the actual covering node set contains only one node, namely u.

not until w is settled. This stalls the edge (s, v) and, in contrast to (b), the node
v is covered. Still, the search is pruned too early so that the edge (s, x) is used
to settle x.

Stall-on-Demand Technique. In the stall-in-advance variant, relaxing an
edge leaving a covered node is based on the ‘hope’ that this might stall an-
other branch. However, our heuristic is not perfect, i.e., some edges are relaxed
in vain, while other edges which would have been able to stall other branches,
are not relaxed. Since we are not able to make the perfect decision in advance,
we introduce a fourth variant, namely stall-on-demand. It is an extension of the
aggressive variant, i.e., at first, edges leaving a covered node are not relaxed.
However, if such a node u is reached later via another path, it is woken up and a
breadth-first search (BFS) is performed from that node: an adjacent node v that
has already been reached by the main search is inserted into the BFS queue if we
can prove that the best path P found so far is suboptimal. This is certainly the
case if the path from s via u to v is shorter than P . All nodes encountered dur-
ing the BFS are marked as stalled. The main search is pruned at stalled nodes.
Furthermore, stalled nodes are never marked as covering nodes. The stalling pro-
cess cannot invalidate the correctness since only nodes are stalled that otherwise
would contribute to suboptimal paths. In our example (Fig. 1 (d)), the search is
pruned at u. When v is settled, we assume that the edge (v, w) is relaxed first.
Then, the edge (v, u) wakes the node u up. A stalling process (a BFS search) is
started from u. The nodes v and w are marked as stalled. When w is settled, its
outgoing edges are not relaxed. Similarly, the edge (x, w) wakes the stalled node
w and another stalling process is performed.

3 Static Highway-Node Routing

Multi-Level Overlay Graph. For given highway-node sets V =: V0 ⊇ V1 ⊇
... ⊇ VL, we give a definition of the multi-level overlay graph G = (G0, G1, ..., GL)
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that is almost equivalent to the definition in [5]: G0 := G and for each � > 0,
we have G� := (V�, E�) with E� := {(s, t) ∈ V� × V� | ∃ shortest path P =
〈s, u1, u2, . . . , uk, t〉 in G�−1 s.t. ∀i : ui �∈ V�}.

Node Selection. We can choose any highway-node sets to get a correct pro-
cedure. However, this choice has a big impact on preprocessing and query per-
formance. Roughly speaking, a node that lies on many shortest paths should
belong to the node set of a high level. In a first implementation, we use the set
of level-� core nodes of the highway hierarchy of G as highway-node set V�. In
other words, we let the construction procedure of the highway hierarchies decide
the importance of the nodes.

Construction. The multi-level overlay graph is constructed in a bottom-up
fashion. In order to construct level � > 0, we determine for each node s ∈ V�

its covering node set C := CG�−1(V� \ {s}, s). For each u ∈ C, we add an edge
with weight d(s, u) to E�. The stall-in-advance and the stall-on-demand variant
introduced in Section 2 are efficient algorithms for computing a superset of C,
implying that they add some superfluous edges. Optionally, we can apply the
following reduction step to eliminate those edges: for each node u ∈ V�, we
perform a search in G� (instead of G�−1) until all adjacent nodes have been
settled. For any node v that has been settled via a path that consists of more
than one edge, we can remove the edge (u, v) since a (better) alternative that
does not require this edge has been found.

Query. The query algorithm is a symmetric bidirectional procedure so that it
suffices to describe the forward search, which works in a bottom-up fashion. For
conciseness, we only describe the variant based on stall-on-demand. We perform
a modified Dijkstra search from s in (V, E0∪· · ·∪EL). From a node whose highest
level is i, only edges in Ei ∪· · ·∪EL are relaxed. When an edge in E0 ∪· · ·∪Ei−1
reaches a node v in Vi, v is ‘woken up’ and performs a BFS in the shortest path
tree to stall nodes that are not on shortest paths.

Forward and backward search are interleaved. We keep track of a tentative
shortest-path length resulting from nodes that have been settled in both search
directions. We abort the forward (backward) search when all keys in the forward
(backward) priority queue are greater than the tentative shortest-path length.

4 Dynamic Highway-Node Routing

When a small set of edges change their weight, we can distinguish between a
server scenario and a mobile scenario: In the former, a server has to react to
incoming events by updating its data structures so that any point-to-point query
can be answered correctly; in the latter, a mobile device has to react to incoming
events by (re)computing a single point-to-point query taking into account the
new situation. In the server scenario, it pays to invest some time to perform the
update operation since a lot of queries depend on it. In the mobile scenario, we
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do not want to waste time for updating parts of the graph that are irrelevant to
the current query.

Server Scenario. Similar to an exchange of the cost function, when a single
or a few edge weights change, we keep the highway-node sets and update only
the overlay graphs. In this case, however, we do not have to repeat the complete
construction from scratch, but it is sufficient to perform the construction step
only from nodes that might be affected by the change. Certainly, a node v whose
partial shortest-path tree of the initial construction did not contain any node u
of a modified edge (u, x) is not affected: if we repeated the construction step from
v, we would get exactly the same partial shortest-path tree and, consequently,
the same result.

During the first construction (and all subsequent update operations), we man-
age sets A�

u of nodes whose level-� preprocessing might be affected when an
outgoing edge of u changes: when a level-� construction step from some node
v is performed, for each node u in the partial shortest-path tree3, we add v to
A�

u. Note that these sets can be stored explicitly (as we do it in our current
implementation) or we could store a superset, e.g., by some kind of geometric
container (a disk, for instance). Figure 2 contains the pseudo-code of the update
algorithm.

input: set of edges Em with modified weight;
define set of modified nodes: V m

0 := {u | (u, v) ∈ Em};
foreach level �, 1 ≤ � ≤ L, do

V m
� := ∅; R� :=

⋃

u∈V m
�−1

A�
u;

foreach node v ∈ R� do
repeat construction step from v;
if something changes, put v to V m

� ;

Fig. 2. The update algorithm that deals with a set of edge weight changes

Mobile Scenario. In the mobile scenario, we only determine the sets of poten-
tially unreliable nodes by using a fast variant of the update algorithm (Fig. 2),
where from the last two lines only the “put v to V m

� ” is kept. (Note that in
particular the construction step is not repeated.) Then, for each node u ∈ V , we
define the reliable level r(u) := min{i − 1 | u ∈ Ri} with min ∅ := ∞. In order
to get correct results without updating the data structures, the query algorithm
has to be modified. First, we do not relax any edge (u, v) that has been created

3 When the stall-in-advance technique is used, some nodes are only added to the tree
to potentially stall other branches. Upon completion of the construction step, we can
identify nodes that have been added in vain, i.e., that were not able to stall other
branches. Those nodes had no actual influence on the construction and, thus, can
be ignored at this point.
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during the construction of some level > r(u). Second, if the search at some node
u has already reached a level � > r(u), then the search at this node is downgraded
to level r(u). In other words, if we arrive at some node from which we would
have to repeat the construction step, we do not use potentially unreliable edges,
but continue the search in a sufficiently low level to ensure that the correct path
can be found.

Note that the update procedure, which is also used to determine the sets of
potentially unreliable nodes, is performed in the forward direction. Its results
cannot be directly applied to the backward direction of the query. It is simple
to adjust the first modification to this situation (by considering r(v) instead of
r(u) when dealing with an edge (u, v)). Adjusting the second modification would
be more difficult, but fortunately we can completely omit it for the backward
direction. As a consequence, the search process becomes asymmetric. While the
forward search is continued in lower levels whenever it is necessary, the backward
search is never downgraded. If ‘in doubt’, the backward search stops and waits
for the forward search to finish the job.

5 Experiments

Environment and Instances. The experiments were done on one core of a
single AMD Opteron Processor 270 clocked at 2.0 GHz with 8 GB main memory
and 2 × 1 MB L2 cache, running SuSE Linux 10.0 (kernel 2.6.13). The program
was compiled by the GNU C++ compiler 4.0.2 using optimisation level 3.

We deal with the road network of Western Europe4, which has been made
available for scientific use by the company PTV AG. It consists of 18 029 721
nodes and 42 199 587 directed edges. The original graph contains for each edge
a length and a road category. There are four major road categories (motorway,
national road, regional road, urban street), which are divided into three subcat-
egories each. In addition, there is one category for forest and gravel roads. We
assign average speeds (130, 120, . . ., 10 km/h) to the road categories, compute for
each edge the average travel time, and use it as weight. We call this our default
speed profile. Experiments which we did on a US and Canadian road network of
roughly the same size (provided by PTV as well) show exactly the same relative
behaviour as in [10], namely that it is slightly more difficult to handle North
America than Europe (e.g., 20% slower query times). Due to space constraints,
we give detailed results only for Europe.

For now, we report the times needed to compute the shortest-path distance
between two nodes without outputting the actual route. Note that we could
also output full path descriptions using the techniques from [17], expecting a
similar performance as in [17]. The query times are averages based on 10 000
randomly chosen (s, t)-pairs. In addition to providing average values, we use
the methodology from [9] in order to plot query times against the ‘distance’
of the target from the source, where in this context, the Dijkstra rank is used
as a measure of distance: for a fixed source s, the Dijkstra rank of a node t

4 14 countries: at, be, ch, de, dk, es, fr, it, lu, nl, no, pt, se, uk.
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Fig. 3. Query performance against Dijkstra rank for the default speed profile, with
edge reduction. Each box represents the three quartiles [18, box-and-whisker plot].

is the rank w.r.t. the order which Dijkstra’s algorithm settles the nodes in.
Such plots are based on 1 000 random source nodes. After performing a lot of
preliminary experiments, we decided to apply the stall-in-advance technique to
the construction and update process (with p := 1 for the construction of level 1
and p := 5 for all other levels) and the stall-on-demand technique to the query.

Highway Hierarchy Construction. In order to determine the highway node
sets, we construct seven levels of the highway hierarchy using our default speed
profile and neighbourhood size5 H = 70. This can be done in 16 minutes. For
all further experiments, these highway-node sets are used.

Static Scenario. The first data column of Tab. 1 contains the construction
time of the multi-level overlay graph and the average query performance for the
default speed profile. Figure 3 shows the query performance against the Dijkstra
rank. The disk space overhead of the static variant is 8 bytes per node to store
the additional edges of the multi-level overlay graph and the level data associated
with the nodes. Note that this overhead can be further reduced to as little as 2.0
bytes per node yielding query times of 1.55ms (Tab. 4). The total disk space6 of
32 bytes per node also includes the original edges and a mapping from original
to internal node IDs (that is needed since the nodes are reordered by level).

Changing the Cost Function. In addition to our default speed profile, Tab. 1
also gives the construction and query times for a few other selected speed profiles
(which have been provided by the company PTV AG) using the same highway-
node sets. Note that for most road categories, our profile is slightly faster than
5 For details on the highway hierarchy construction and the definition of neighbourhood

size, we refer to [9,10].
6 The main memory usage is somewhat higher. However, we cannot give exact numbers

for the static variant since our implementation does not allow to switch off the
dynamic data structures.
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Table 1. Construction time of the overlay graphs and query performance for different
speed profiles using the same highway-node sets. For the default speed profile, we also
give results for the case that the edge reduction step (Section 3) is applied.

speed profile default (reduced) fast car slow car slow truck distance

constr. [min] 1:40 (3:04) 1:41 1:39 1:36 3:56
query [ms] 1.17 (1.12) 1.20 1.28 1.50 35.62
#settled nodes 1 414 (1 382) 1 444 1 507 1 667 7 057

Table 2. Update times per changed edge [ms] for different road types and different
update types: add a traffic jam (+), cancel a traffic jam (−), block a road (∞), and
multiply the weight by 10 (×). Due to space constraints, some columns are omitted.

any road type motorway national regional urban
|change set| + − ∞ × + − ∞ × + ∞ + ∞ + ∞

1 2.7 2.5 2.8 2.6 40.0 40.0 40.1 37.3 19.9 20.3 8.4 8.6 2.1 2.1
1000 2.4 2.3 2.4 2.4 8.4 8.1 8.3 8.1 7.1 7.1 5.3 5.3 2.0 2.0

Table 3. Query performance depending on the number of edge weight changes (select
only motorways, multiply weight by 10). For ≤ 100 changes, 100 different edge sets
are considered; for ≥ 1 000 changes, we deal only with one set. For each set, 1 000
queries are performed. We give the average percentage of queries whose shortest-path
length is affected by the changes, the average number of settled nodes (also relative to
zero changes), and the average query time, broken down into the init phase where the
reliable levels are determined and the search phase.

affected #settled nodes query time [ms]
|change set| queries absolute relative init search total

1 0.6 % 2 347 (1.7) 0.3 2.0 2.3
10 6.3 % 8 294 (5.9) 1.9 7.2 9.1

100 41.3 % 43 042 (30.4) 10.6 36.9 47.5
1 000 82.6 % 200 465 (141.8) 62.0 181.9 243.9

10 000 97.5 % 645 579 (456.6) 309.9 627.1 937.0

PTV’s fast car profile. The last speed profile (‘distance’) virtually corresponds to
a distance metric since for each road type the same constant speed is assumed.
The performance in case of the three PTV travel time profiles is quite close to the
performance for the default profile. Hence, we can switch between these profiles
without recomputing the highway-node sets. The constant speed profile is a
rather difficult case. Still, it would not completely fail, although the performance
gets considerably worse. We assume that any other ‘reasonable’ cost function
would rank somewhere between our default and the constant profile.

Updating a Few Edge Weights (Server Scenario). In the dynamic sce-
nario, we need additional space to manage the affected node sets A�

u. Further-
more, the edge reduction step is not yet supported in the dynamic case so that
the total disk space usage increases to 56 bytes per node. In contrast to the static
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Table 4. Comparison between pure highway hierarchies [17], three variants of highway-
node routing (HNR), and dynamic ALT-16 [16]. ‘Space’ denotes the average disk space
overhead. We give execution times for both a complete recomputation using a similar
cost function and an update of a single motorway edge multiplying its weight by 10.
Furthermore, we give search space sizes after 10 and 1 000 edge weight changes (mo-
torway, ×10) for the mobile scenario. Time measurements in parentheses have been
obtained on a similar, but not identical machine.

preprocessing static queries updates dynamic queries
time space time #settled compl. single #settled nodes

method [min] [B/node] [ms] nodes [min] [ms] 10 chgs. 1000 chgs.

HH pure 17 28 1.16 1 662 17 – – –

StHNR 19 8 1.12 1 382 3 – – –
StHNR mem 24 2 1.55 2 453 8 – – –
DynHNR 18 32 1.17 1 414 2 37 8 294 200 465

DynALT-16 (85) 128 (53.6) 74 441 (6) (2 036) 75 501 255 754

variant, the main memory usage is considerably higher than the disk space usage
(around a factor of two) mainly because the dynamic data structures maintain
vacancies that might be filled during future update operations.

We can expect different performances when updating very important roads
(like motorways) or very unimportant ones (like urban streets, which are usually
only relevant to very few connections). Therefore, for each of the four major
road categories, we pick 1 000 edges at random. In addition, we randomly pick
1 000 edges irrespective of the road type. For each of these edge sets, we consider
four types of updates: first, we add a traffic jam to each edge (by increasing the
weight by 30 minutes); second, we cancel all traffic jams (by setting the original
weights); third, we block all edges (by increasing the weights by 100 hours,
which virtually corresponds to ‘infinity’ in our scenario); fourth, we multiply the
weights by 10 in order to allow comparisons to [16]. For each of these cases,
Tab. 2 gives the average update time per changed edge. We distinguish between
two change set sizes: dealing with only one change at a time and processing 1 000
changes simultaneously.

As expected, the performance depends mainly on the selected edge and hardly
on the type of update. The average execution times for a single update operation
range between 40ms (for motorways) and 2 ms (for urban streets). Usually, an
update of a motorway edge requires updates of most levels of the overlay graph,
while the effects of an urban-street update are limited to the lowest levels. We get
a better performance when several changes are processed at once: for example,
1 000 random motorway segments can be updated in about 8 seconds. Note that
such an update operation will be even more efficient when the involved edges
belong to the same local area (instead of being randomly spread), which might
be a common case in real-world applications.

Updating a Few Edge Weights (Mobile Scenario). Table 3 shows for
the most difficult case (updating motorways) that using our modified query
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algorithm we can omit the comparatively expensive update operation and still
get acceptable execution times, at least if only a moderate amount of edge weight
changes occur. Additional experiments have confirmed that, similar to the results
in Tab. 2, the performance does not depend on the update type (add 30 minutes,
multiply by 10, . . .), but on the edge type (motorway, urban street, . . .) and, of
course, on the number of updates.

Comparisons. Highway-node routing has similar preprocessing and query
times as pure highway hierarchies [17, w/o distance table], but (in the static
case) a significantly smaller memory overhead. Table 4 gives detailed numbers,
and it also contains a comparison to the dynamic ALT approach [16] with 16
landmarks. We can conclude that as a stand-alone method, highway-node rout-
ing is (clearly) superior to dynamic ALT w.r.t. all studied aspects.7

6 Conclusion

Combining and considerably extending ideas of several previous static point-to-
point route planning techniques yields a new static approach with extremely
low space requirements, fast preprocessing, and very good query times. More
important and innovative, however, is the fact that the approach can be extended
to work in dynamic scenarios: we can efficiently react to events like traffic jams.
Furthermore, we deal with the case that different cost functions are handled.

There is room to improve the performance both at the implementation and at
the algorithmic level. In particular, better ways to select the highway-node sets
might be found. The memory consumption of the dynamic variant can be con-
siderably reduced by using a more space-efficient representation of the affected
node sets. There is also room for additional functionality. For instance, we can
adapt the algorithm from [19] to work with the new approach in order to support
many-to-many shortest-path computations for exchangeable cost functions. An
extension to a time-dependent scenario—where the edge weights depend on the
time of day according to some function known in advance—is an important open
problem.
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Abstract. Dynamic tree data structures maintain forests that change
over time through edge insertions and deletions. Besides maintaining con-
nectivity information in logarithmic time, they can support aggregation
of information over paths, trees, or both. We perform an experimen-
tal comparison of several versions of dynamic trees: ST-trees, ET-trees,
RC-trees, and two variants of top trees (self-adjusting and worst-case).
We quantify their strengths and weaknesses through tests with various
workloads, most stemming from practical applications. We observe that a
simple, linear-time implementation is remarkably fast for graphs of small
diameter, and that worst-case and randomized data structures are best
when queries are very frequent. The best overall performance, however,
is achieved by self-adjusting ST-trees.

1 Introduction

The dynamic tree problem is that of maintaining an n-vertex forest that changes
over time. Edges can be added or deleted in any order, as long as no cycle is
ever created. In addition, data can be associated with vertices, edges, or both.
This data can be manipulated individually (one vertex or edge at a time) or in
bulk, with operations that deal with an entire path or tree at a time. Typical
operations include finding the minimum-cost edge on a path, adding a constant
to the costs of all edges on a path, and finding the maximum-cost vertex in
a tree. The dynamic tree problem has applications in network flows [14,22,25],
dynamic graphs [9,11,12,15,20,28], and other combinatorial problems [16,17,18].

Several well-known data structures can (at least partially) solve the dynamic
tree problem in O(log n) time per operation: ST-trees [22,23], topology trees
[11,12,13], ET-trees [15,25], top trees [4,6,26,27], and RC-trees [1,2]. They all
map an arbitrary tree into a balanced one, but use different techniques to achieve
this goal: path decomposition (ST-trees), linearization (ET-trees), and tree con-
traction (topology trees, top trees, and RC-trees). As a result, their relative
performance depends significantly on the workload. We consider nine variants
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of these data structures. Section 2 presents a high-level description of each of
them, including their limitations and some implementation issues. (A more com-
prehensive overview can be found in [27, Chapter 2].)

Our experimental analysis, presented in Section 3, includes three applications
(maximum flows, online minimum spanning forests, and a simple shortest path
algorithm), as well as randomized sequences of operations. Being relatively sim-
ple, these applications have dynamic tree operations as their bottleneck. We test
different combinations of operations (queries and structural updates), as well as
different types of aggregation (over paths or entire trees). The experiments allow
for a comprehensive assessment of the strengths and weaknesses of each strategy
and a clear separation between them. Section 4 summarizes our findings and
compares them with others reported in the literature.

2 Data Structures

ET-trees. The simplest (and most limited) dynamic-tree data structures are ET-
trees [15,25]. They represent an Euler tour of an arbitrary unrooted tree, i.e., a
tour that traverses each edge of the tree twice, once in each direction. It can be
thought of as a circular list, with each node representing either an arc (one of
the two occurrences of an edge) or a vertex of the forest. For efficiency, the list
is broken at an arbitrary point and represented as a binary search tree, with the
nodes appearing in symmetric (left-to-right) order. This allows edge insertions
(link) and deletions (cut) to be implemented in O(log n) time as joins and splits
of binary trees. Our implementation of ET-trees (denoted by et) follows Tarjan’s
specification [25] and uses splay trees [23], a self-adjusting form of binary search
trees whose performance guarantees are amortized.

As described by Tarjan [25], ET-trees associate values with vertices. Besides
allowing queries and updates to individual values, the ET-tree interface also has
operations to add a constant to all values in a tree and to find the minimum-
valued vertex in a tree. These operations take O(log n) time if every node stores
its value in difference form, i.e., relative to the value of its parent in the binary
tree; this allows value changes at the root to implicitly affect all descendants.
ET-trees can be adapted to support other types of queries, but they have a
fundamental limitation: information can only be aggregated over trees. Efficient
path-based aggregation is impossible because the two nodes representing an edge
may be arbitrarily far apart in the data structure.

ST-trees. The best-known dynamic tree data structures supporting path oper-
ations are Sleator and Tarjan’s ST-trees (also known as link-cut trees). They
predate ET-trees [22,23], and were the first to support dynamic-tree operations
in logarithmic time. ST-trees represent rooted trees. The basic structural op-
erations are link(v, w), which creates an arc from a root v to a vertex w, and
cut(v), which deletes the arc from v to its parent. The root can be changed by
evert(v), which reverses all arcs on the path from v to the previous root. Func-
tions findroot(v) and parent(v) can be used to query the structure of the tree.
As described in [23], ST-trees associate a cost with each vertex v, retrievable by
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the findcost(v) function. Two operations deal with the path from v to the root
of its tree: addcost(v, x) adds x to the cost of every vertex on this path, and
findmin(v) returns its minimum-cost vertex.

The obvious implementation of the ST-tree interface is to store with each node
its value and a pointer to its parent. This supports link, cut, parent and findcost
in constant time, but evert, findroot, findmin and addcost must traverse the entire
path to the root. Despite the linear-time worst case, this representation might be
good enough for graphs with small diameter, given its simplicity. We tested two
variants of this implementation, lin-v and lin-e; the former associates costs
with vertices, the latter with edges. Both store values at vertices, but lin-e

interprets such a value as the cost of the arc to the parent (the values must be
moved during evert).

To achieve sublinear time per operation, Sleator and Tarjan propose an indi-
rect representation that partitions the underlying tree into vertex-disjoint solid
paths joined by dashed edges. Each solid path is represented by a binary search
tree where the original nodes appear in symmetric order. These binary trees are
then “glued” together to create a single virtual tree: the root of a binary tree rep-
resenting a path P becomes a middle child (in the virtual tree) of the parent (in
the original forest) of the topmost vertex of P . For an efficient implementation
of addcost and evert, values are stored in difference form.

To manipulate a path from v to the root, the data structure first exposes it,
i.e., changes the partition of the tree (by a series of joins and splits of binary
trees) so that the unique solid path containing the root starts at v. Standard
binary tree operations can then be applied to the exposed path to implement
findroot, parent and findmin in logarithmic time. When paths are represented
as splay trees, expose and the other dynamic tree operations run in O(log n)
amortized time [23]. A worst-case logarithmic bound is achievable with globally
biased search trees [22], but this solution is too complicated to be practical.

We call the splay-based implementation used in our experiments st-v. Al-
though it has costs on vertices, it can also represent costs on edges as long as
evert is never called. Supporting evert with costs on edges requires maintaining
additional nodes to represent the edges explicitly. Our implementation of this
variant, st-e, uses st-v as the underlying data structure.

ST-trees can be modified to support other types of queries, as long as in-
formation is aggregated over paths only. Aggregation over arbitrary trees would
require traversing the ST-tree in a top-down fashion, which is impossible because
nodes do not maintain pointers to their (potentially numerous) middle children.
A solution is to apply ternarization to the underlying forest, which replaces each
high-degree vertex by a chain of low-degree ones [14,16,17,18,20].

Tree contraction. A third approach is to represent a contraction of the tree,
as done by topology trees, RC-trees, and top trees. We concentrate on the most
general, top trees, and briefly discuss the other two.

Top trees were introduced by Alstrup et al. [4,6], but we borrow the notation
used by Tarjan and Werneck [26]. The data structure represents free (unrooted)
trees with sorted adjacency lists (i.e., the edges adjacent to each vertex are
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arranged in some fixed circular order, which can be arbitrary). A cluster repre-
sents both a subtree and a path of the original tree. Each original edge of the
graph is a base cluster. A tree contraction is a sequence of local operations that
successively pair up these clusters until a single cluster remains. The top tree is
merely the binary tree representing the contraction. If two clusters (u, v) and
(v, w) share a degree-two endpoint v, they can be combined into a compress clus-
ter (u, w). Also, if (w, x) is the successor of (v, x) (in the circular order around
x) and v has degree one, these clusters can be combined into a rake cluster, also
with endpoints w and x. Each rake or compress cluster can be viewed as a parent
that aggregates the information contained in its children. It represents both the
subtree induced by its descendants and the path between its two endpoints, and
can also be viewed as a higher-level edge. The root of the top tree represents
the entire underlying tree. Whenever there is a link or cut, the data structure
merely updates the contractions affected.

An important feature of the top tree interface is that it decouples the contrac-
tion itself from the values that must be manipulated. The data structure decides
which operations (rake or compress) must be performed, but updates no values
on its own. Instead, it calls user-defined internal functions to handle value up-
dates whenever a pairing of clusters is performed (join) or undone (split). The
interface stipulates that these calls will be made when all clusters involved are
roots of (maybe partial) top trees—none of the input clusters will have a parent.
This makes the implementation of the call-back functions easier, but it may hurt
performance: because joins must be called bottom-up and splits top-down, the
tree cannot be updated in a single pass.

To perform a query, the user calls the expose(v, w) operation, which returns
a root cluster having v and w as endpoints (or null, if v and w are in different
trees). Note that, even if v and w are in the same tree, expose may need to
change the contraction to ensure that the root cluster actually represents the
path from v to w. In principle, the user should define the internal functions so
that the cluster returned by expose automatically contains the answer to the
user’s query; there is no need to actually search the tree. Top trees support
aggregation over paths or trees directly, with no degree limitation. In particular,
they naturally support applications that require both types of aggregation, such
as maintaining the diameter, the center, or the median of a tree [6].

The first contraction-based data structures were in fact not top trees but Fred-
erickson’s topology trees [11,12,13]. They interpret clusters as vertices instead of
edges. This leads to a simpler contraction algorithm, but it requires all vertices
in the forest to have degree bounded by a constant. Although ternarization can
remedy this, it is somewhat inelegant and adds an extra layer of complexity to
the data structure. Recently, Acar et al. [1,2] invented RC-trees, which can be
seen as a simpler, randomized version of topology trees. RC-trees also require
the underlying tree to have bounded degree, and use space proportional to the
bound (following [2], we set the bound to 8 in our experiments). We call the
implementation (by Acar et al. [2]) of RC-trees used in our experiments rc. The
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name “RC-trees” is a reference to rake and compress, which were introduced by
Miller and Reif [19] in the context of parallel algorithms.

RC-trees have a generic interface to separate value updates from the actual
contraction. Unlike top trees, queries require a traversal of the tree. This makes
queries faster, but requires extra implementation effort from the user and is less
intuitive than a simple call to expose (as in top trees). In addition, the interface
assumes that the underlying tree has bounded degree: with ternarization, the
interface will be to the transformed tree, with dummy vertices.

Alstrup et al. [6] proposed implementing top trees not as a standalone data
structure, but as a layer on top of topology trees. Given the complexity of topol-
ogy trees, this extra layer (which may as much as double the depth of the con-
traction) is undesirable. Recently, Holm, Tarjan, Thorup and Werneck proposed
a direct implementation that still guarantees O(log n) worst-case time without
the extra layer of topology trees. (Details, still unpublished, can be found in [27].)
The data structure represents a natural contraction scheme: it works in rounds,
and in each round performs a maximal set of independent pairings (i.e., no clus-
ter participates in more than one pair). Level zero consists of all base clusters
(the original edges). Level i+1 contains rake and compress clusters with children
at level i, with dummy clusters added as parents of unpaired level-i clusters.

After a link, cut, or expose, the contraction can be updated in O(log n) worst-
case time [27]. In practice, however, this implementation (which we refer to as
top-w) has some important drawbacks. First, to preserve the circular order,
each level maintains a linked list representing an Euler tour of its clusters, which
makes updating the contraction expensive. Second, even though a “pure” top
tree representing an n-vertex forest will have no more than 2n nodes, when
dummy nodes are taken into account this number might be as large as 6n. As a
result, top-w uses considerably more memory than simpler data structures.

To overcome these drawbacks, Tarjan and Werneck [26] proposed a self-
adjusting implementation of top trees (which we call top-s) that supports all
operations in O(log n) amortized time. It partitions a tree into maximal edge-
disjoint paths, each represented as a compress tree (a binary tree of compress
clusters with base clusters as leaves). Each subtree incident to a path is rep-
resented recursively as a binary tree of rake clusters (which is akin to ternar-
ization, but transparent to the user), and its root becomes a middle child of a
compress node. This is the same basic approach as ST-trees, but ST-trees repre-
sent vertex-disjoint paths, have no embedded ternarization, and do not support
circular adjacency lists directly.

3 Experimental Results

Experimental Setup. This section presents an experimental comparison of the
data structures discussed above: ET-trees (et), self-adjusting top trees (top-s),
worst-case top trees (top-w), RC-trees (rc), and ST-trees implemented both
with splay trees (st-v/st-e) and explicitly (lin-v/lin-e). We tested these on
algorithms for three problems: maximum flows, minimum spanning trees, and
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shortest paths on arbitrary graphs. Given our emphasis on the underlying data
structures, we did not test more elaborate dynamic graph algorithms, in which
dynamic trees are typically just one of several components; the reader is referred
to [28] for a survey on this topic.

All algorithms were implemented in C++ and compiled with g++ 3.4.4 with
the -O4 (full optimization) option. We ran the experiments on a Pentium 4
running Microsoft Windows XP Professional at 3.6 GHz, 16 KB of level-one
data cache, 2 MB of level-two cache, and 2 GB of RAM. With the exception of
RC-trees, all data structures were implemented by the authors and are available
upon request. RC-trees, available at http://www.cs.cmu.edu/∼jvittes/rc-trees/,
were implemented by Acar, Blelloch, and Vittes [2]. We only tested RC-trees on
online minimum spanning forests, readily supported by the code provided.

CPU times were measured with the getrusage function, which has precision
of 1/60 second. We ran each individual computation repeatedly (within a single
loop in the program) until the aggregate time (measured directly) was at least
two seconds, then took the average. The timed executions were preceded by a
single untimed run, used to warm up the cache. Running times do not include
generating or reading the input data (which is done only once by the entire pro-
gram), but include the time to allocate, initialize, and destroy the data structure
(each done once per run within the program). For each set of parameters, we
report the average results from five different randomized inputs.

To ensure uniformity among our implementations, we reused code whenever
possible. In particular, routines for splaying were implemented only once (as
template functions) and used by top-s, st-e, st-v, and et. To update values,
each data structure defines an inline function that is called by the splaying
routine whenever there is a rotation. Also, the user-defined functions used by
top trees were implemented as templates (thus allowing them to be inlined)
and were shared by both top tree implementations. Values were stored as 32-bit
integers. At initialization time, each data structure allocates all the memory it
might need as a single block, which is managed by the data structure itself (the
only exception is RC-trees, which allocates memory as needed in large blocks,
and frees it all at once). All executions fit in RAM, unless specifically noted.

Maximum flows. One of the original motivations for dynamic tree data structures
was the maximum flow problem (see, e.g., [3]). Given a directed graph G = (V, A)
(with n = |V | and m = |A|) with capacities on the arcs, a source s and a sink
t, the goal is to send as much flow as possible from s to t. We implemented
the shortest augmenting path algorithm for this problem, due to Edmonds and
Karp [10]. In each iteration, it finds a path with positive residual capacity that
has the fewest arcs and sends as much flow as possible along it; the algorithm
stops when no such augmenting path exists. Intuitively, the algorithm grows a
path from s containing only admissible arcs (potential candidates to belong to
the shortest path) until it reaches t, backtracking whenever it reaches a vertex
with no outgoing admissible arcs. A direct implementation takes O(n2m) worst-
case time, which can be reduced to O(mn log n) if we use dynamic trees to
maintain a forest of admissible arcs. The modified algorithm always processes
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the root v of the tree containing the source s. If v has an admissible outgoing
arc, the arc is added to the forest (by link); otherwise, all incoming arcs into v
are cut from the forest. Eventually s and t will belong to the same tree; flow is
sent along the s-t path by decrementing the capacities of all arcs on the path
and cutting those that drop to zero. See [3] for details.

The operations supported by the ST-tree interface (such as addcost, findmin,
findroot) are, by construction, exactly those needed to implement this algorithm.
With top trees, we make each cluster C = (v, w) represent both a rooted tree
and a directed path between its endpoints. The cluster stores the root vertex of
the subtree it represents, a pointer to the minimum-capacity arc on the path
between v and w (or null, if the root is neither v nor w), the actual capacity of
this arc, and a “lazy” value to be added to the capacities of all subpaths of v · · · w
(it supports the equivalent of ST-tree’s addcost). We also tried implementing the
full ST-tree interface on top of top trees, as suggested in [5], but it was up to
twice as slow as the direct method.

Our first experiment is on random layer graphs [7], parameterized by the
number of rows (r) and columns (c). Each vertex in column i has outgoing
arcs to three random vertices in column i + 1, with integer capacities chosen
uniformly at random from [0; 216]. In addition, the source s is connected to all
vertices in column 1, and all vertices in column c are connected to the sink t
(in both cases, the arcs have infinite capacity). We used r = 4 (thus making all
augmenting paths have Θ(n) length) and varied c from 128 to 16 384. Figure 1
reports average running times normalized with respect to st-v.

Our second experiment is on directed meshes, also parameterized by the num-
ber of rows (r) and columns (c). A mesh consists of a source s, a sink t, and an
r × c grid. Each grid vertex has outgoing arcs to its (up to four) neighbors1 with
random integer capacities in the range [0; 216]. The grid is circular: the first and
last rows are considered adjacent. In addition, there are infinite-capacity arcs
1 A similar description was mistakenly given to the “directed meshes” tested in [27];

those graphs, obtained with a different generator [7], were actually acyclic.
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from s to the first column, and from the last column to t. We kept the product
of r and c constant at 216 and varied their ratio. See Figure 2.

For both graph families, the O(log n) data structures have similar relative
performance: ST-trees are the fastest, followed by self-adjusting top trees and,
finally, worst-case top trees. Although there are costs (capacities) on edges, st-v

can be used because evert is never called; st-e, included in the experiments
for comparison, is slightly slower. With the linear-time data structure (lin-v),
the maximum flow algorithm is asymptotically worse, running in O(n2m) time.
Being quite simple, the algorithm is still the fastest with small trees, but is
eventually surpassed by st-v. On random layer graphs, this happens when aug-
menting paths have roughly 500 vertices; for directed meshes, both algorithms
still have comparable running times when augmenting paths have more than
16 384 vertices. With so many columns, the average number of links between
augmentations is almost 9000 on directed meshes, but only four on layer graphs
(which are acyclic). This explains the difference in performance.

In the maximum flow algorithm, every query is soon followed by a structural
update (link or cut). Next, we consider an application in which queries can vastly
outnumber structural updates.

Online minimum spanning forests. The online minimum spanning forest problem
is that of maintaining the minimum spanning forest (MSF) of an n-vertex graph
to which m edges are added one by one. If we use a dynamic tree to maintain
the MSF, each new edge can be processed in O(log n) time. Suppose a new edge
e = (v, w) is added to the graph. If v and w belong to different components, we
simply add (link) e to the MSF. Otherwise, we find the maximum-cost edge f
on the path from v to w. If it costs more than e, we remove (cut) f from the
forest and add (link) e instead. This is a straightforward application of the “red
rule” described by Tarjan in [24]: if an edge is the most expensive in some cycle
in the graph, then it does not belong to the minimum spanning forest.

To find the maximum-cost edge of an arbitrary path with ST-trees, we simply
maintain the negative of the original edge costs and call findmin. Because the
evert operation is required, we must use st-e in this case. With top trees, it
suffices to maintain in each cluster C = (v, w) a pointer to the maximum-cost
base cluster on the path from v to w, together with the maximum cost itself.

Our first experiment is on random graphs: edges are random pairs of distinct
vertices with integer costs picked uniformly at random from [1; 1000]. We varied
n from 210 to 220 and set m = 8n. With this density, we observed that roughly
37% of the edges processed by the algorithm are actually inserted; the others
generate only queries. Figure 3 shows the average time necessary to process each
edge. For reference, it also reports the time taken by Kruskal’s algorithm, which
is offline: it sorts all edges (with quicksort) and adds them to the solution one at
a time (using a union-find data structure to detect cycles). Being much simpler,
it is roughly 20 times faster than st-e.

Our second experiment also involves random graphs, but we now fix n = 216

and vary the average vertex degree from 4 to 512 (i.e., we vary m from 217 to
225). As the density increases, relatively fewer links and cuts will be performed:
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when the average degree is 512, only roughly 2.5% of the input edges are actually
inserted into the MSF. As a result, as Figure 4 shows, the average time to process
an edge decreases with the density, and queries dominate the running time. The
speedup is more pronounced for top-w and rc, since the self-adjusting data
structures (st-e and top-s) must change the tree even during queries.

Recall that top-w must change the contraction when performing queries (ex-
pose) to ensure that the relevant path is represented at the root of its top tree. In
principle, this would make exposes about as expensive as links and cuts. As sug-
gested by Alstrup et al. [6], however, we implemented expose by marking some
existing top tree nodes as “invalid” and building a temporary top tree with the
O(log n) root clusters that remain. This eliminates expensive updates of Euler
tours during queries. Fast queries help explain why top-w is more competitive
with top-s for the online MSF application as compared to maximum flows. Be-
ing self-adjusting, top-s also benefits from the fact that consecutive dynamic
tree operations are correlated in the maximum flow application.

RC-trees do not modify the tree (even temporarily) during queries: instead,
they traverse the tree in a bottom-up fashion, aggregating information contained
in internal nodes. For comparison, we have implemented top-q, a variant of
top-w that explicitly traverses the tree during queries, with no calls to expose.
Technically, top-w is not an implementation of top trees, since it violates its
well-defined interface. As Figure 4 shows, however, it is significantly faster than
top-w when queries are numerous, and about as fast as rc. Speed comes at a
cost, however: implementing a different query algorithm for each application is
much more complicated (and less intuitive) than simply calling expose.

To further assess query performance, we tested the algorithms on augmented
random graphs. A graph with n vertices, m edges, and core size c ≤ n is created
in three steps: first, generate a random spanning tree on c vertices; second,
progressively transform the original edges into paths (until there are n vertices in
total); finally, add m−n+1 random edges to the graph. Costs are assigned so that
only the first n−1 edges (which are processed first by the online MSF algorithm,
in random order) result in links ; the remaining edges result in queries only.
Figure 5 shows the performance of various algorithms with n = 213, m = 218,
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and c varying from 2 to 213. The average length of the paths queried is inversely
proportional to the core size; when the length drops below roughly 100, lin-e

becomes the fastest online algorithm (surpassing top-q, which is particularly
fast because more than 95% of the operations are queries). The crossover point
between lin-e and st-e is closer to 150 (in Figure 3 as well).

Finally, we investigate the effect of caching on the data structures. We ran
the MSF algorithm on graphs consisting of 32c vertices (for a given parameter
c) randomly partitioned into c equal-sized components. Edges are inserted into
the graph by first picking a random component, then a random pair of vertices
within it. The total number of edges added is 128c, so that each component
has 128 edges on average. Figure 6 shows that, due to cache effects, the average
time to process each edge actually varies as a function of c: all methods become
slower as the number of components increases. Interestingly, lin-e has the most
noticeable slowdown: almost a factor of eight, compared to around two for other
data structures. It benefits the most from caching when processing very small
instances, since it has the smallest footprint per node (only 16 bytes). This
is significantly less than st-e (57 bytes), top-s (216), top-w (399), and rc

(roughly one kilobyte). If fact, RC-trees even ran out of RAM for the largest
graph tested (this is the only case reported in the paper in which this happened—
all other tests ran entirely in memory); the excessive memory usage of this
particular implementation helps explain why it is consistently slower than worst-
case top trees, despite being presumably much simpler.

Even though Figure 6 shows an extreme case, cache effects should not be
disregarded. Take, for instance, the layer graphs used in the maximum flow
application. The graph generator assigns similar identifiers to adjacent vertices,
which means that path traversals have strong locality. Randomly permuting
vertex identifiers would slow down all algorithms, but lin-v (which uses only 8
bytes per node) would be affected the most: on layer graphs with 65 538 vertices,
running times would increase by 150% for lin-v, 40% for st-v (which uses 24
bytes per node), and only 11% for top-w.

Single-source shortest paths. The applications considered so far require dynamic
trees to aggregate information over paths. We now test an application that



90 R.E. Tarjan and R.F. Werneck

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 65536 32768 16384 8192 4096 2048 1024 512 256 128 64

m
ic

ro
se

co
nd

s 
pe

r 
ed

ge
 p

er
 it

er
at

io
n

vertices

TOP-W
TOP-S
TOP-Q

ET-S
BELLMAN

Fig. 7. Single-source shortest paths on
graphs with Hamiltonian circuits

 64

 32

 16

 8

 4

 2

 1

1/2

1/4

1/8

1/16
21821721621521421321221121029282726

m
ic

ro
se

co
nd

s 
pe

r 
op

er
at

io
n

vertices

RC
TOP-W
TOP-S

ET
ST-E
ST-V
LIN-E
LIN-V

Fig. 8. Average time per operation on a
randomized sequence of links and cuts

aggregates over trees: a label-correcting single-source shortest path algorithm.
Given a directed graph G = (V, A) (with |V | = n and |A| = m), a length function
�, and a source s ∈ V , it either finds the distances between s and every vertex
in V or detects a negative cycle (if present). Bellman’s algorithm [8] maintains
a distance label d(v) for every vertex v, representing an upper bound on its dis-
tance from s (initially zero for s and infinite otherwise). While there exists an arc
(v, w) ∈ A such that d(v) + �(v, w) < d(w), the algorithm relaxes it by setting
d(w) ← d(v) + �(v, w). After n − 1 passes through the list of arcs (in O(mn)
time) either all distance labels will be exact or a negative cycle will be found.

After an arc (v, w) is relaxed, we could immediately decrease the distance la-
bels of all descendants of w in the current candidate shortest path tree. Bellman’s
algorithm will eventually do it, but it may take several iterations. With a dy-
namic tree data structure that supports aggregation over trees (such as ET-trees
or top trees), we can perform such an update in O(log n) time. Although dy-
namic trees increase the worst-case complexity of the algorithm to O(mn log n),
one can expect fewer iterations to be performed in practice.

We tested this algorithm on graphs consisting of a Hamiltonian circuit (cor-
responding to a random permutation of the vertices) augmented with random
arcs. We used m = 4n arcs, n of which belong to the Hamiltonian circuit. All
arcs have lengths picked uniformly at random; those on the cycle have lengths
in the interval [1; 10], and the others have lengths in [1; 1000].

Figure 7 shows the average time each method takes to process an arc. (ST-
tree implementations are omitted because they cannot aggregate information
over arbitrary trees.) ET-trees are much faster than both versions of top trees
(top-w and top-s), and about as fast as top-q, which explicitly traverses the
tree during queries instead of calling expose. In these experiments, only 10% of
the arcs tested result in structural updates. This makes top-w competitive with
top-s, and top-q competitive with et (which is much simpler).

The standard version of Bellman’s algorithm (denoted by bellman), which
maintains a single array and consists of one tight loop over the arcs, can process
an arc up to 600 times faster than et. Even though dynamic trees do reduce the
number of iterations, they do so by a factor of at most four (for n = 262 144,
the algorithm requires 14.4 iterations to converge with dynamic trees and 56.6
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without). As a result, et is 100 to 200 times slower than Bellman’s algorithm.
This is obviously a poor application of dynamic trees, since the straightforward
algorithm is trivial and has better running time; the only purpose of the exper-
iment is to compare the performance of the data structures among themselves.

Random structural operations. In order to compare all data structures at once,
we consider a sequence of m operations consisting entirely of links and cuts, with
no queries. We start with n − 1 links that create a random spanning tree. We
then execute a sequence of m − n + 1 alternating cuts and links : we remove a
random edge from the current tree and replace it with a random edge between
the two resulting components. We fixed m = 10n and varied n from 26 to 218.
For implementations of the ST-interface, every link or cut is preceded by the
evert of one of the endpoints. Even though there are no queries, values were
still appropriately updated by the data structure (as if we were maintaining
the MSF). Figure 8 shows the average time to execute each operation of the
precomputed sequence. The results are in line with those observed for previous
experiments. ST-trees are the fastest logarithmic data structure, followed by
ET-trees, self-adjusting top trees, worst-case top trees, and RC-trees.

Additional observations. An efficient implementation of the evert operation in
ST-trees requires each node to store a reverse bit (in difference form), which
implicitly swaps left and right children. Our implementation of lin-v always
supports evert, even in experiments where it is not needed (such as the maximum
flow algorithm). Preliminary tests show that a modified version of lin-v with no
support for evert is roughly 5% faster in the maximum flow application. Also, as
observed by Philip Klein (personal communication), an additional speedup of at
least 10% can be obtained with a more specialized implementation of splaying
that delays value updates until they are final (our current implementation does
each rotation separately, updating all values). In an extreme case, if we do not
update values at all during rotations, st-v becomes almost 20% faster on a
random sequence of links and cuts. The main reason is better locality: value
updates require looking outside the splaying path.

The performance of the data structures also depends on how much data is
stored in each node. If we stored values as 64-bit doubles (instead of 32-bit
integers), all data structures would be slightly slower, but more compact ones
would be affected the most. For random links and cuts, 64-bit values slow down
st-v by at least 10% and top-w by only 1%.

4 Final Remarks

We have shown that the linear-time implementation of the ST-tree interface can
be significantly faster than other methods when the paths queried have up to a
few hundred vertices, but they become impractical as path sizes increase. Alstrup
et al. [5] observed the same for randomized sequences of operations. Recently,
Ribeiro and Toso [21] have used the linear-time data structure as a building
block for a simple method to maintain fully dynamic minimum spanning trees,
which can be competitive with more elaborate algorithms for some graphs.
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Among the logarithmic data structures, the self-adjusting implementation of
ST-trees is generally the fastest, especially when links and cuts are numerous. It
is relatively simple and can benefit from correlation of consecutive operations,
as in the maximum flow application. Self-adjusting top trees are slower than
ST-trees by a factor of up to four, but often much less. These are reasonably
good results, given how much more general top trees are: our implementation
supports sorted adjacency lists and aggregation over trees. As explained in [26],
the data structure can be simplified if these features are not required (as in the
maximum flow and MSF applications). We plan to implement restricted versions
in the future, but even the current slowdown (relative to ST-trees) is arguably
a reasonable price to pay for generality and ease of use. None of the logarithmic
data structures studied is particularly easy to implement; the ability to adapt
an existing implementation to different applications is a valuable asset.

When queries vastly outnumber links and cuts, worst-case and randomized
data structures are competitive with self-adjusting ones. Even top-w, which
changes the tree during queries, can be faster than self-adjusting top trees. But
top-q and rc prove that not making changes at all is the best strategy. Similar
results were obtained by Acar et al. [2], who observed that RC-trees are signif-
icantly slower than ST-trees for structural operations, but faster when queries
are numerous. In [9], a randomized implementation of ET-trees is used in con-
junction with (self-adjusting) ST-trees to speed up connectivity queries within a
dynamic minimum spanning tree algorithm. Although ST-trees can easily sup-
port such queries, the authors found them too slow.

This situation is not ideal. A clear direction for future research is to create
general data structures that have a more favorable trade-off between queries
and structural operations. A more efficient implementation of worst-case top
trees would be an important step in this direction. In addition, testing the data
structures on more elaborate applications would be valuable.

Acknowledgements. We thank Umut Acar, Guy Blelloch, Adam Buchsbaum,
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Abstract. We present an extensive experimental study of authenticated
data structures for dictionaries and maps implemented with skip lists.
We consider realizations of these data structures that allow us to study
the performance overhead of authentication and persistence. We explore
various design decisions and analyze the impact of garbage collection and
virtual memory paging, as well. Our empirical study confirms the effi-
ciency of authenticated skip lists and offers guidelines for incorporating
them in various applications.

1 Introduction

A proven paradigm from distributed computing is that of using a large collec-
tion of widely distributed computers to respond to queries from geographically
dispersed users. This approach forms the foundation, for example, of the DNS
system. Of course, we can abstract the main query and update tasks of such
systems as simple data structures, such as distributed versions of dictionar-
ies and maps, and easily characterize their asymptotic performance (with most
operations running in logarithmic time). There are a number of interesting im-
plementation issues concerning practical systems that use such distributed data
structures, however, including the additional features that such structures should
provide. For instance, a feature that can be useful in a number of real-world ap-
plications is that distributed query responders provide authenticated responses,
that is, answers that are provably trustworthy. An authenticated response in-
cludes both an answer (for example, a yes/no answer to the query “is item x
a member of the set S?”) and a proof of this answer, equivalent to a digital
signature from the data source.

Given the sensitive nature of some kinds of data and the importance of trust-
worthy responses to some kinds of queries, there are a number of applications
of authenticated data structures, including scientific data mining [3, 13, 16, 17],
geographic data servers [10], third party data publication on the Internet [5],
and certificate revocation in public key infrastructure [1, 4, 7, 11, 14, 20, 21].
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For example, in the CalSWIM project (see calswim.org), with whom we are col-
laborating, data providers allow users to query their water monitoring data and
create publishable summaries from such queries. Because of the high stakes in-
volved, however, in terms of both health and politics, data providers and data
users want to be assured of the accuracy of the responses returned by queries.
Thus, data authentication is a critical additional feature of some data querying
applications. Another feature that is also of use in such applications (e.g., for
non-repudiation) is the efficient implementation of persistence [6], which allows
users to ask questions of a previous version of the data structure. That is, a per-
sistent data structure can provide answers to the queries “was item x a member
of the set S at time t?”. For example, in the CalSWIM application, a user might
wish to compare the level of a given water constituent today with its level several
months ago.

In this paper, we study the features of persistence and authentication, and
report on results concerning various implementation choices. In particular, we
study the relative costs of adding persistence and authentication to dictionar-
ies and maps, answering the question of how much overhead is needed in order
to provide this extra functionality that is called for in some applications (like
CalSWIM). Also we investigate various implementation decisions (e.g., using
different primitive data structures, such as arrays and pointers, to implement
more complex data structures) concerning dictionaries and maps. We focus on
implementations based on the skip list data structure [26], as this simple data
structure has been proven empirically to be superior in practice to binary search
trees. In addition, we also show results concerning more “system-oriented” im-
plementation issues, such as the influence of the garbage collector in our experi-
ments, some system limitations concerning scaling of the performance in terms of
memory usage and also the effect of virtual memory paging on the performance.

Concerning related previous work, as an experimental starting point, we note
that Pugh [26] presents extensive empirical evidence of the performance advan-
tages of skip lists over binary search trees. To review, the skip list data structure
is an efficient means for storing a set S of elements from an ordered universe. It
supports the operations find(x) (determine whether element x is in S), insert(x)
(insert element x in S) and delete(x) (remove element x from S). It stores a set
S of elements in a series of linked lists S0, S1, S2,. . . , St. The base list, S0, stores
all the elements of S in order, as well as sentinels associated with the special
elements −∞ and +∞. Each successive list Si, for i ≥ 1, stores a sample of the
elements from Si−1. To define the sample from one level to the next, we choose
each element of Si−1 at random with probability 1

2 to be in the list Si. The
sentinel elements −∞ and +∞ are always included in the next level up, and the
top level, t, is maintained to be O(log n) and contains only the sentinels w.h.p.
We therefore distinguish the node of the top list St storing −∞ as the start node
s. An element that exists in Si−1 but not in Si is said to be a plateau element
of Si−1. An element that is in both Si−1 and Si is said to be a tower element in
Si−1. Thus, between any two tower elements, there are some plateau elements.
Pugh advocated an array-based implementation of skip lists [26], in C, and this
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Fig. 1. Implementation of a skip list with arrays (left) and pointers (right)

is also the skip-list implementation used in the LEDA C++ library [19]. In this
implementation, each element x in the set is represented with an array Ax of
size equal to the height of the tower that corresponds to x. Each entry, Ax[i], of
the array Ax holds local data (for example in the authenticated data structures
we store authentication information that correspond to Ax[i]) and a pointer to
the array Ay , such that for all z such that x < z < y, the size of the array Az

is less than i. All the usual dictionary operations take time O(log n) with high
probability and run quite fast in practice as well.

Using arrays for the towers is not the only way to implement skip lists, how-
ever. For example, there is an alternative pointer-based implementation of skip
lists that uses nodes linked by pointers (see, e.g., [9]). We can optimize this im-
plementation further, in fact, by taking advantage of the observation that for
the operations supported by the skip list, some of the nodes and links are un-
necessary and can be omitted. Then the skip list is somewhat like a binary tree
(whose root is the highest-level node with value −∞). In Figure 1 we illustrate
two different implementations of a skip list storing the set S = {5, 12, 20, 21},
one array-based and the other pointer-based.

In addition to other studies of skip lists themselves (e.g., see [12, 15, 24, 25]), a
considerable amount of prior work exists on authenticated data structures (e.g.,
see [2, 5, 7, 8, 10, 11, 20, 21, 27, 28]). In [8], the implementation of an authen-
ticated dictionary with skip lists and commutative hashing is presented, again
using arrays to implement the towers, but now using Java as the implementa-
tion language. In [2], a persistent version of authenticated dictionary is presented,
where the user can now validate the historic membership of an element in a set,
e.g., authenticated answers to the queries “was element e present in the data set
S at time t?” Authenticated data structures for graph and geometric searching
are presented in [10]. In [18], it is shown that almost any data structure can be
converted into an authenticated one. In [22], alternate verification mechanisms
are discussed. The authentication of simple database queries is studied in [23].

The main contribution of this paper is the empirical study of a number
of important issues regarding the implementation of authenticated data struc-
tures using skip lists. In particular, we address the following questions: (i) the
overheads for authentication and/or persistence; (ii) the relative costs of these
various features and implementation decisions (e.g., which is more expensive–
authentication or persistence?); (iii) the relative costs between updates and
queries in authenticated skip lists; (iv) the differences between implementing
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skip lists with arrays and pointers; (v) the impact of garbage collection on the
performance (especially for fast O(log n)-time operations); and (vi) the system
limitations for implementing authenticated skip lists, including maximum mem-
ory constraints and the impacts of paging in virtual memory. We give extensive
experiments that address all of the above questions. In addition, we show how
to extend the notion of a persistent authenticated dictionary [2] to a persistent
authenticated map, where each key is bound to a certain value and we present
an efficient implementation of this new feature.

2 Implementing Authenticated Dictionaries and Maps

An authenticated data structure involves three types of parties: a trusted source,
one or more untrusted directories, and one or more users (see Figure 2). The
source maintains the original version of the data structure S by performing
insertions and deletions over time. A directory maintains a copy of the data
structure and periodically receives time-stamped updates from the source plus
signed statements about the updated version of the data structure S. A user
contacts a directory and performs membership queries on S of the type “is
element e present in S?” (authenticated dictionary) or of the type “was element
e present in S at time t?” (persistent authenticated dictionary) or finally of the
type “what value was element e bound to at time t?” (persistent authenticated
map). The contacted directory returns to the user an authenticated response,
which consists of the answer to the query together with the answer authentication
information, which yields a cryptographic proof of the answer assembled by
combining statements signed by the source with data computed by the directory.
The user then verifies the proof by relying solely on its trust in the source and
the availability of public information about the source that allows the user to
check the source’s signature. The design of authenticated data structures should
address the following goals:

– Low computational cost: The computations performed internally by each
entity (source, directory, and user) should be simple and fast.
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– Low communication overhead: source-to-directory communication (update
authentication information) and directory-to-user communication (answer
authentication information) should be kept as small as possible.

– High security: the authenticity of the answers given by a directory should
be verifiable with a high degree of certainty.

Regarding the computational cost, an authenticated data structure should ef-
ficiently support the following operations: updates (insertions and deletions)
executed by the source and directories, queries executed by directories, and ver-
ifications executed by the users. Various efficient realizations of authenticated
data structures have been designed that achieve O(log n) query update, and
verification time on a dictionary. In this paper, we consider authenticated data
structures based on skip lists [2, 8, 28].

2.1 Authenticated Dictionary

We consider an authenticated dictionary for a set S with n items consists of the
following components:

– A skip list data structure storing the items of S.
– A collection of values f(v) that label each node v of the skip list.
– A statement signed by the source consisting of the timestamp of the most

recent label f(s) of the start node of the skip list. We recall that s is the
left-uppermost node of the skip list.

Let h be a commutative cryptographic hash function [8]. We recall that if g is a
collision resistant cryptographic hash function1 then the respective commutative
cryptographic hash function h is defined as [8]

h(x, y) = g(min{x, y}, max{x, y})

We use h to compute the label f(v) of each node v in the skip list, except for
the nodes associated with the sentinel value +∞. These labels are set to 0. The
value f(s) stored at the start node, s, represents a digest of the entire skip list.
Intuitively, each label f(v) accumulates the labels of nodes below v, possibly
combined with the labels of some nodes to the right of v.

We present this computation by using the pointer-based implementation,2

where each node v stores two pointers, u = down(v) and w = right(v). We
distinguish the following cases:

– if v is on the base level, then f(v) = h(elem(v), x), where x is the element
of the node following v on the base level (this node may or may not have a
right pointer from v);

1 This means that it is computationally infeasible to find two inputs x1 and x2 such
that g(x1) = g(x2) and to invert the function.

2 Note that the implementation of an authenticated skip list mentioned in [8] is array-
based.



On the Cost of Persistence and Authentication in Skip Lists 99

– if v is not on the base level, then
• if w = null, then f(v) = f(u).
• if w �= null (w is a plateau node), then f(v) = h(f(u), f(w)).

When we update an authenticated dictionary we need to take into account the
labels of the nodes. Consider an insertion (see Figure 3(a)). We start by perform-
ing an insertion into the underlying skip list. Next, we recompute the affected
labels of the nodes of the skip list as well. It turns out that all we have to do
is to update the labels of the nodes belonging to the path P that we traverse
when we search for the element we want to insert. The length of this path is
O(log n) with high probability. The importance of the authenticated data struc-
tures comes in the verification of the result. When the user queries the directory
about the membership of an element x in the dictionary, the directory returns the
answer and the answer authentication information, which consists of the signed
digest that was received from the source and a sequence of values stored along
the search path for x (see Figure 3(a)). This sequence has length O(log n). The
users verifies first the signature of the signed digest. If this verification succeeds,
the user recomputes the digest, by iteratively hashing the sequence of values,
and compares this computed digest with the signed digest. For more details on
authenticated data structures and their implementation with skip lists, see [8, 2].

2.2 (Persistent) Authenticated Maps and Dictionaries

An authenticated map data structure is an authenticated data structure where
each key k is bound to a certain value v. The authentication information in
this case should also take into account the association between keys and values.
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Fig. 3. (a) Insertion of element 27 in the skip list of Figure 1. The labels (hash values) of
the dotted nodes change. The answer authentication information for a query on element
21 is the sequence (27, 21, 20, f(e), f(g)). (b) The insertion of element 15 creates a new
version of the persistent authenticated dictionary. The insertion of element 13 is made
next on this version, without creating a new version. Note that in this case we copy
only the nodes 5, 12 (that were originally created when the very first version was
instantiated) and create the large nodes 5 and 12. Note that in the final version. the
node with element 5 will have only the gray down pointer.
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We can build an authenticated map on top of an authenticated dictionary by
storing the value together with the key only at the nodes of the base level. The
authentication information for the authenticated map is computed as follows:
if v is on the base level, then f(v) = h(h(elem(v), value(v)), h(x, y)), where x
and y are the key and value of the node following v on the base level (this
node may or may not have a right pointer from v); else the authentication
information is computed exactly in the same way as in the authenticated dic-
tionary. Regarding the query authentication information, the proof returned by
the directory also contains key-value pairs. Suppose, for example, the skip list of
Figure 3(a) includes the (key,value) pairs (27, α), (21, β) and (20, γ). Then the
query authentication information for a query on key 21 would be the sequence
{(27, α), (21, β), (20, γ), f(e), f(g)}.

Additionally, a persistent authenticated dictionary [2] is an authenticated dic-
tionary that supports also queries on past versions of the data structure of the
type “was element e present in the dictionary at time t?”. We can implement
a persistent authenticated dictionary by modifying the implementation of an
authenticated dictionary such that every update (insertion or deletion) creates
a new version of the data structure. As shown in [2], to implement this update,
we only have to copy nodes that belong to the search path of the skip list. This
is because the authentication information of only these nodes differs for the two
successive versions of the data structure. In [2], the insertions/deletions always
create a new version of the data structure. We have implemented a more versa-
tile form of persistence that supports also updates to the current version of the
data structure, without creating a new version. In Figure 3(b), we illustrate the
insertion algorithm. The insertion of element 15 creates a new version of the data
structure and then the insertion of element 13 is done on the same version. Note
that during the latter insertion, we only have to copy nodes that were originally
created when a previous version of the data structure was instantiated.

3 Experimental Results

We have conducted experiments on the performance of various types of skip
lists (ephemeral, persistent, and/or authenticated) containing up to 1,000,000
randomly generated 256-bit integers (for dictionaries) or pairs of two randomly
generated 256-bit integers (for maps). For each operation, the average running
time was computed over 10,000 executions. The experiments were conducted on
a 64-bit, 2.8GHz Intel based, dual-core, dual processor machine with 8GB main
memory and 2MB cache, running Debian Linux 3.1 with Linux kernel 2.6.15
and using the Sun Java JDK 1.5. The Java Virtual Machine (JVM) was most
of the times launched with a 7GB maximum heap size. Cryptographic hashing
was performed using the standard Java implementation of the MD5 algorithm.

We report the running times obtained in our experiments separating the time
consumed by the garbage collector. Our experimental results provide a measure
of the computational overhead caused by adding persistence and/or authentica-
tion to a dictionary implemented with skip lists. Also, they show some advantage
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in relative performance for some operations (e.g., queries) between pointer-based
and array-based implementations. The running times reported also exclude the
time for signing the digest by the source and the time for verifying the signature
on the digest by the user. Each of these times is about 5 milliseconds for 1,024
bit RSA signatures on MD5 (128 bit) digests using the standard java.security.∗
package. In typical applications, multiple updates are performed by the source
during a time quantum. Thus, the signature creation time by the source should
be amortized over all such update operations. Similarly, the user typically veri-
fies multiple answers during a time quantum and thus the signature verification
time should be amortized over all such verification operations.

3.1 Authenticated Dictionary

We first compare five different data structures based on the dictionary abstract
data type and supporting yes/no membership queries: (a) Ephemeral Authenti-
cated Dictionary Array-based (EADA), (b) Ephemeral Authenticated Dictionary
Pointer-based (EADP), (c) Persistent Authenticated Dictionary Pointer-based
(PADP), (d) Persistent Dictionary Pointer-based (PDP), (e) Ephemeral Dic-
tionary Pointer-based (EDP). The results of the experiments are summarized
in Figure 4, where we do not take into account the time taken by the garbage
collector, which is discussed in Section 3.3. We discuss first the running times for
pointer-based implementation and then consider array-based implementations.
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Fig. 4. Query, verification and insertion times (in microseconds) for ephemeral, persis-
tent, and authenticated dictionaries implemented with skip lists, excluding the time for
garbage collection. The times shown are the average of 10,000 executions on dictionary
sizes varying from 0 to 106 elements.

Regarding queries (Figure 4(a)), the overhead due to persistence is less than
the one due to authentication. See, e.g., the running times of PDP vs. EADP.
This is explained by the fact that a query in an ephemeral authenticated dic-
tionary has to assemble the proof by retrieving a logarithmic number of hash
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values located at nodes adjacent to the nodes encountered in the search (but
does not perform any hash computation). Also, every query (whether unsuc-
cessful or successful) must reach the bottom level of the skip list. Conversely, in
a persistent (non authenticated) dictionary, a query does not have to assemble
any proof and, if successful, may stop before reaching the bottom level. Adding
both persistence and authentication (see the times for PADP) combines the two
overheads, as expected. It should be also noted that the running time of verifi-
cation operations (Figure 4(a)) does not depend on the data structure since in
all cases, a verification consists of executing a sequence of cryptographic hash
computations. The verification time is proportional to the size of the authenti-
cation information. Our experiments indicate that the number of values in the
authentication information is about 1.5 logn, thus confirming the analysis in [28].

Regarding insertions (Figure 4(b)), we observe the same relative performance
of the various data structures as for queries. However, the authentication over-
head is now more significant since an update of an authenticated data structure
requires a logarithmic number of cryptographic hash computations. Finally, we
observe that for query operations array-based skip lists significantly underper-
form pointer-based ones. This is due to the fact that a query in the array-based
implementation must traverse one by one all the levels, whereas in the pointer-
based implementation, it can skip over multiple levels using pointers. In partic-
ular, the performance penalty of the array-based implementation is comparable
to the authentication overhead, as can be seen in the running times for query op-
erations in EADA vs. PADP. This can be explained by the fact that access to an
array element in Java requires one level of indirection and that the JVM always
checks that array indices are within bounds. For other operations, the array-
based implementation has almost the same performance as the pointer-based
implementation.

3.2 Authenticated Map

We also present experiments executed on persistent authenticated maps and
dictionaries implemented with pointer-based skip lists (PAMP and PADP). The
results of these experiments are summarized in Figure 5, where we do not take
into account the time taken by the garbage collector, which is discussed in Sec-
tion 3.3. Figure 5(a) compares the performance of persistent authenticated dic-
tionaries with that of persistent authenticated maps. The experiments show that
the additional functionality of the map abstract data type requires a small time
overhead. For queries, the overhead is virtually nonexistent since searches in
maps and dictionaries involve essentially the same computation. For insertion
operations, the overhead is due to the need to perform some hash computations
over larger data (the search key and its associated value).

In Figure 5(b) we present experiments on the running time of insertions in
a variation of authenticated persistent maps such that a new version is created
every 1/p insertions, where parameter p (0 ≤ p ≤ 1) denotes the frequency of
insertions. For example, frequency p = 0.25 implies that 10,000 insertions cause
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Fig. 5. Query, insertion, and verification times for persistent authenticated dictionaries
and maps implemented with pointer-based skip lists, excluding the time for garbage
collection. The times shown are the average of 10,000 executions on dictionary sizes
varying from 0 to 106 elements.

the creation of 2,500 versions, frequency p = 1 denotes the original persistent
authenticated map, and frequency p = 0 denotes an ephemeral map. Thus, in a
series of m insertions, pm insertions create a new version while the remaining
(1 − p)m versions are executed on the current version. This variation of a per-
sistent map models common applications where updates are accumulated and
periodically executed in batches (e.g., daily expiration/revocation of access cre-
dentials). The chart of Figure 5(b) shows how the insertion time increases with
the version creation frequency p.

Figure 6 summarizes the deletion time in persistent and ephemeral authen-
ticated dictionaries and maps implemented with pointers. We can see that the
deletion times are similar to the insertion times. Indeed, both delete and insert
operations on the skip list involve an initial search, followed by pointers updates
and recomputation of hash values along the search path.

3.3 Garbage Collector

In the charts of Figures 4–6, we have subtracted from the running times, the
time consumed by the garbage collector (GC). The garbage collector is a thread
of the JVM that periodically attempts to reclaim memory used by objects that
will no longer be accessed by the running program.The exact schedule of the
garbage collector cannot be completely controlled. Even if we force the garbage
collector to run before and after a series of 10,000 operations (by explicitly
calling System.gc()), we found that it also runs during the time interval that
such operations are performed. Additionally, the garbage collector cannot not
be turned off in the current version (JDK 1.5) of the Sun JVM. In our attempt
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Fig. 7. The effect of the garbage collector on the insertion and query times on a per-
sistent authenticated dictionary and an ephemeral authenticated dictionary

to reduce the execution of the garbage collector, we tried to tune it by using
some JVM invocation options, such as

−XX : +UseAdaptiveSizePolicy, −XX : MaxGCPauseMillis = a, −XX : GCTimeRatio = b,

that define the ratio of the execution times of the garbage collector and appli-
cation. However we did not notice any important difference when we used the
option −XX : MaxGCPauseMillis = a and we noticed only minor differences for
the option −XX : GCTimeRatio = b, such as a slightly lower frequency of execu-
tion of the garbage collector vs. the application, combined with more time per
execution. Therefore, using these options did not influence the performance of
the data structure. The behavior of the garbage collector is depicted in Figure 7.

The experiments show that the work of the garbage collector affects un-
evenly runs of 10,000 operations (both insertions (Figure 7(a)) and queries
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(Figure 7(b))). Also the effect is more obvious in the case of the persistent au-
thenticated dictionary, compared with the ephemeral authenticated dictionary.
As the size of the data structure increases, the amount of time consumed by the
garbage collector also increases. Also, since the frequency of garbage collection
sweeps is constant over time, we have that the garbage collector overhead is
greater for insertions (longer operations) than for queries (shorter operations).

3.4 System Limitations and Virtual Memory

In an attempt to see how our implementation scales up to large data sets, we
have performed a series of insertions on the data structure until we get a Java
out-of-memory exception. In this experiment, the JVM was launched with 8GB
maximum heap size (we use all the memory we can before the system is forced
to swap to the disk). Note that the JVM could have been launched with a lot
more than 8GB maximum heap size since we use a 64-bit machine. In Figure
8(a), we can see how the version creation frequency p influences the exact size
that can be handled by the JVM. As expected, the maximum size of the data
structure decreases as the version creation frequency p grows. Note that for
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Fig. 8. (a) Maximum size (until machine crashes) of the persistent authenticated map
as a function of the version creation frequency p. (b) Time overhead due to paging for
insertions in a persistent authenticated map with version creation frequency p = 0.5.

p = 0 (ephemeral authenticated map), we can store up to 26 million items
whereas for p = 0.5 we can store up to about 3 million items. Finally we show
the influence of virtual memory on performance. To avoid an “out of memory”
exception, we launch the JVM with more than 8GB maximum heap size so that
the system will eventually resort to paging to disk. We show in Figure 8(b) how
paging affects the performance of our persistent authenticated map. Namely, for
p = 0.5, paging starts to impair performance when the map size reaches 3.5
million items.
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4 Conclusions

In this paper, we present extensive experiments on authenticated data structures
that are implemented with a skip list. We address implementation issues concern-
ing ephemeral and persistent authenticated dictionaries and maps and we show
that authenticated skip lists are quite efficient. We show that there are low over-
heads for adding authentication and persistence to distributed skip lists and ex-
tending authenticated dictionaries to become authenticated maps. We finally note
that the overheads involved for garbage collection and virtual memory paging are
not as significant as one might at first believe they would be.
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Abstract. A Bloom filter is a very compact data structure that supports
approximate membership queries on a set, allowing false positives.

We propose several new variants of Bloom filters and replacements
with similar functionality. All of them have a better cache-efficiency
and need less hash bits than regular Bloom filters. Some use SIMD
functionality, while the others provide an even better space efficiency.
As a consequence, we get a more flexible trade-off between false positive
rate, space-efficiency, cache-efficiency, hash-efficiency, and computational
effort. We analyze the efficiency of Bloom filters and the proposed re-
placements in detail, in terms of the false positive rate, the number of
expected cache-misses, and the number of required hash bits. We also de-
scribe and experimentally evaluate the performance of highly-tuned im-
plementations. For many settings, our alternatives perform better than
the methods proposed so far.

1 Introduction

The term Bloom filter names a data structure that supports membership queries
on a set of elements. It was introduced already in 1970 by Burton Bloom [1]. It
differs from ordinary dictionary data structures, as the result for a membership
query might be true although the element is not actually contained in the set.
Since the data structure is randomized by using hash functions, reporting a false
positive occurs with a certain probability, called the false positive rate (FPR).
This impreciseness also makes it impossible to remove an element from a Bloom
filter. The advantage of a Bloom filter over the established dictionary structures
is space efficiency. A Bloom filter needs only a constant number of bits per
(prospective) element, while keeping the FPR constant, independent from the
size of the elements’ universe.

The false positives can often be compensated for by recalculating or retrans-
ferring data. Bloom filters have applications in the fields of databases, network
applications [2] and model checking [4,5]. The requirements on the Bloom filter
and the way of usage differ greatly among these fields of applications.

Paper Outline. In Section 2 we review “standard” Bloom filters which are based
on setting k bits in a bit array which are determined by k hash functions. Sec-
tion 3 introduces and analyzes a family of cache-efficient variants of standard
Bloom filters. There are two main ideas here: concentrate the k bits in one (or
only few) cache blocks and precompute random bit patterns in order to save both

C. Demetrescu (Ed.): WEA 2007, LNCS 4525, pp. 108–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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hash bits and access time. While these Bloom filter variants improve execution
time at the cost of slightly increased FPR, the ones presented in Section 4 saves
space by engineering practical variants of the theoretically space optimal Bloom
filter replacements proposed by Pagh et. al. [11]. The basic idea is a compressed
representation of a Bloom filter with k = 1. Our main algorithmic contribution
is the observation that a technique from information retrieval fits perfectly here:
Since the distances between set bits are geometrically distributed, Golomb codes
yield almost optimal space [10]. After giving some hints on the implementation
in Section 5, we present an experimental evaluation in Section 6. We conclude
our paper in Section 7.

2 Standard Bloom Filters with Variants

The original Bloom filter for representing a set of at most n elements consists
of a bit vector of length m. Let c := m/n be the bits-per-element rate. Initially,
all bits are set to 0. For inserting an element e into the filter, k bits are set in
the Bloom filter according to the evaluations of k independent hash functions
h1(e), . . . , hk(e). The membership query consists of testing all those bits for the
query element. If all bits are set, the element is likely to be contained in the set,
otherwise, it is surely not contained.

For a fixed number of contained elements, the FPR is lowest possible if the
probability of a bit being set is as close as possible to 1

2 . One can easily show
that it is optimal to choose k = ln 2 · c = ln 2 · m

n ≈ 0.693m
n .

The probability that a bit has remained 0 after inserting n elements, is1

p′ :=
(

1 − 1
m

)kn
i=kn≈ lim

i→∞

(

1 − kn

mi

)i

= e−kn/m . (1)

The false positive rate for a standard Bloom filter (std) is

fstd(m, n, k) = (1 − p′)k =

(

1 −
(

1 − 1
m

)kn
)k

≈
(

1 − e−kn/m
)k !≈ 1

2k
(2)

for the optimal k. The detailed calculation can be found in Mitzenmacher’s
survey paper [2].

Classification. The original Bloom filter can be termed a semi-static data
structure, since it does not support deletions. Variants that do support deletion
are called dynamic. The other extreme is a static filter where not even additions
to the set may occur after construction.

Existing Variants for Different Requirements. A variant called Count-
ing Bloom Filters [6] allows deletion of elements from the Bloom filter by using

1 We assume throughout the paper that the hash functions are perfectly random.
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(small) counters instead of a single bit at every position. This basic technique is
also used by [11] in combination with a space-efficient multiset data structure,
to yield an asymptotically space-optimal data structure.

In [7], Mitzenmacher et al. show that we can weaken the prerequisite of in-
dependent hash functions. The hash values can also be computed from a linear
combination of two hash functions h1(e) and h2(e). This trick does not worsen
the false positive rates in practice.

3 Blocked Bloom Filters

We will now analyze the cache efficiency of a standard Bloom filter, which we
assume to be much larger than the cache. For negative queries, only less than
two cache misses are generated, on the average. This is because each bit is set
with probability q = 1/2, when choosing the optimal k, and the program will
return false as soon as an unset bit is found. This cannot be improved much,
since at most one cache fault is needed for accessing some randomly specified
cell in the data structure.

Standard Bloom filters are cache-inefficient since k cache misses are generated
by every input operation and (false or true) positive membership query.

In this section, we present a cache-efficient variant called blocked Bloom filter
(blo). It consists of a sequence of b comparatively small standard Bloom filters
(Bloom filter blocks), each of which fits into one cache-line. Nowadays, a common
cache line size is 64 bytes = 512 bits. For best performance, those small filters
are stored cache-line-aligned. For each potential element, the first hash value
selects the Bloom filter block to be used. Additional hash values are then used
to set or test bits as usual, but only inside this one block. A blocked Bloom filter
therefore only needs one cache miss for every operation. In the setting of an
external memory Bloom filter, the idea of blocking was already suggested in [8],
but the increase of the FPR was found negligible for the test case there (k = 5),
and no further analysis was done. The blocked Bloom filter scheme differs from
the partition schemes mentioned in [7, Section 4.1], where each bit is inserted
into a different block.

Let primed identifiers refer to the “local” parameters of the Bloom filter block.
On the first glance, blocked Bloom filters should have the same FPR as standard
Bloom filters of the same size since the FPR in Equation (2) only depends on k
and n/m, since k = k′ and since the expected value of n′/m′ is n/m. However,
we are dealing with small values of m so that the approximation is not perfect.
More importantly, n′ is a random variable that fluctuates from block to block.
Some blocks will be overloaded and others will be underloaded. The net effect is
not clear on the first glance. The occupancies of the blocks follow a binomial dis-
tribution B(n, 1/b) that can be closely approximated by a Poisson distribution
with parameter n/b = B/c since n is usually large, and B/c is a small constant.
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An advantage of this approximation is that it is independent of the specific value
of n. For the overall FPR of a blocked Bloom filter with local FPR finner(B, i, k)
we get the following infinite but quickly converging sum:

fblo(B, c, k) :=
∞
∑

i=0

PoissonB/c(i) · finner(B, i, k) (3)

For a blocked Bloom filter using the typical value c = 8 bits per element,
the decline in accuracy is not particularly bad; the FPR is 0.0231 instead of
0.0215 for B = 512 bits. By increasing c by one, we can (over-)compensate for
that. For larger c, the effect of the non-uniform distribution can be diminished
by choosing a smaller k than otherwise optimal. Still, for c = 20 and k = 14,
the FPR almost triples: it rises from 0.0000671 to 0.000194, which might not
be acceptable in certain applications. Thus, we have to increase c to 24. The
numerically computed results for many values of c are shown in Table 1. These
values are impractical for c > 28, since more than 50% additional memory must
be used to compensate for the blocking. However, for c < 20, the additional
memory required is only 20%. This can be acceptable, and often even comes
with an improvement to the FPR, in the end. For c > 34, the blocked Bloom
filter with B = 512 cannot compensate the FPR any more, for a reasonable
number of bits per element.

Table 1. Increasing the space for a blocked Bloom filter to compensate the FPR
(B=512)

c 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
c’ 6 7 8 9 10 11 12 13 14 16 17 18 20 21 23 25 26 28 30 32 35 38 40 44 48 51 58 64 74 90
+% 20 16 14 12 11 10 9 8 7 14 13 12 17 16 21 25 23 27 30 33 40 46 48 57 65 70 87 100 124 165

Bit Patterns (pat). A cache miss is usually quite costly in terms of execution
time. However, the advantage in performance by saving cache misses can still
be eaten up if the computation is too complex. For the blocked Bloom filters,
we still have to set or test k bits in for every insertion or positive query. On the
other hand, modern processors have one or two SIMD units which can handle up
to 128 bits in a single instruction. Hence, a complete cache-line can be handled
in only two steps.

To benefit from this functionality, we propose to implement blocked Bloom
filters using precomputed bit patterns. Instead of setting k bits through the
evaluation of k hash functions, a single hash function chooses a precomputed
pattern from a table of random k-bit pattern of width B. With this solution,
only one small (in terms of bits) hash value is needed, and the operation can be
implemented using few SIMD instructions. When transferring the Bloom filter,
the table need not be included explicitly in the data, but can be reconstructed
using the seed value.

The main disadvantage of the bit pattern approach is that two elements may
cause a table collision when they are hashed to the same pattern. This leads to
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an increased FPR. If � is the number of table entries, the collision probability
in an n element Bloom filter block is pcoll(n, �) := 1 −

(

1 − 1
�

)n. Hence we can
bound the FPR for one block by

fpat(m, n, k, �) ≤ pcoll(�) + (1 − pcoll(�))fstd(m, n, k) . (4)

This local FPR can be plugged into Equation (3) to yield the total FPR. Bit
patterns work well when on the one hand, the pattern table is small enough to
fit into the cache and on the other hand, the table is big enough to ensure that
table collisions do not increase the FPR by too much.

Multiplexing Patterns. To refine this idea once more, we can achieve a larger
variety of patterns from a single table by bitwise-or-ing x patterns with an
average number of k/x set bits. Ignoring rounding problems, dependencies, etc.

fpat[x](m, n, k, �) ≈ fpat(m, xn, k/x, �)x . (5)

Multi-Blocking. One more variant that helps improving the FPR, is called
multi-blocking. We allow the query operation to access X Bloom filters blocks,
setting or testing k/X bits respectively in each block. (When k is not divisible
by X , we set an extra bit in the first k mod X blocks.) Multi-blocking performs
better that just increasing the block size to XB, since more variety is introduced
this way. If we divide the set bits among several blocks, the expected number
of 1 bits per block remains the same. However, only k/X bits are considered in
each participating block, when accessing an element. Thus, we have to generalize
Equation (2):

fstd[X](m, n, k) =

(

1 −
(

1 − 1
m

)kn/X
)k

(6)

We get an estimate for the total FPR of

fblo[X](B, c, k) :=
∞
∑

i=0

PoissonXB/c(i) · fstd[X](B, i/X, k)X (7)

This can be adapted to bit patterns as before. The multiplexing and the multi-
blocking factor will be denoted by appending them to either variant, i. e. blo[X]
and pat[x, X] respectively.

Combinations. Using the formulas presented, all combinations of the variants
presented here can be theoretically analyzed. Although the calculations make
simplifying assumptions, mainly through disregarding dependencies, they match
the experimental results closely, as shown in Figure 1. The differences are very
small, and only appear for large c, where random noise in the experimental values
comes into play.
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Table 2. Number of hash bits used by the various variants. f is the desired FPR, n
the number of elements, and m the available space, B the block size, and � the length
of the pattern table. Throughout this paper, log x stands for log2 x.

Operation Insert / Positive Query Negative Query

std k log m 2 log m

blo[X] X log(m/B) + k log B log(m/B) + 2 log B

pat[x,X] X(log(m/B) + x log �) log(m/B) + x log �

ch log n/f log n/f

gcs log n/f log n/f

Hash Complexity. Besides the cost for memory access, Bloom filters incur a
cost for evaluating hash functions. Since the time needed for this is very appli-
cation dependent, we choose to compare the different algorithms based on the
number of hash bits needed for a filter access. Table 2 summarizes the results.

Exemplary values for m = 800, 000, 000 are shown in Figure 2. The values
follow the theoretical computation in Table 2. Obviously, the proposed variants
perform better than the standard Bloom filters, for a reasonable choice of c.

4 Space-Efficient Bloom Filter Replacements

In the previous section, we have proposed methods for making Bloom filters
produce less cache faults and use less hash bits. The aim was to improve the
execution time, while at the same time, sacrificing FPR and/or space efficiency.
In this section, we describe Bloom filters with near optimal space consumption
that are also cache-efficient. We pay for this with a trade-off between execution
time and an additive term in the space requirement.
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Our basic solution is also static, i. e. the data structure must be constructed
in a preprocessing step, with all elements given, before any query can be posed.
At the end of this section we outline how the data structure can be dynamized.

The original Bloom filters are space-efficient, but not space-optimal [11]. When
ignoring membership query time, one could just store one hash value in the range
{1, . . . , n/f} to obtain an FPR of f . This would cost only log

(

n/f
n

)

≈ n log e
f

bits instead of n
ln 2 log(1/f) bits. Hence, a traditional Bloom filter needs about

1/ ln 2 ≈ 1.44 times as much space, even worse by an additive constant when com-
pared to the information-theoretic minimum, n log(1/f) bits. This amount of ex-
tra memory can be saved by sacrificing some access time. Pagh and Pagh [11] use a
asymptotically space-optimal hash data structure invented by Cleary [3] for stor-
ing just those hash values. Let this approach be termed CH filter (ch) here. How-
ever, to guarantee expected constant membership query time, a constant number
of bits must be spent additionally for each contained element. Those bits comprise
a structure that gives some hints to find the desired element more quickly. The
more extra bits are provided, the faster the data structures will work. Although
the number of bits is independent of n, and more importantly, of the FPR, it eats
up most of the savings achieved, for reasonably small values of c. Another point is
that a hash data structure should never get close to full, i. e. there must be some
maximal load α, which in turn increases memory usage. Summarizing this, access
time must be traded off with space efficiency again, but this time with the ability
to get arbitrarily close to the theoretical optimum, asymptotically.

Our own solution proposed here is based on an approach used in search en-
gines to store sorted lists of integers [12]. Imagine a simple Bloom filter with
k = 1, i. e. a hashed bitmap, yielding an FPR of 1/c. This bitmap can be greatly
compressed, as the 1 bits are sparse. However, differently to [9], we do not use
(optimal) arithmetic coding, since this prohibits random access (without un-
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packing all the data again). Instead, we do not compress the bitmap, but the
sorted sequence of hash values in the range {0, . . . , nc} for all the contained
elements. These values are uniformly distributed, therefore, the differences be-
tween two successive values are geometrically distributed with p = 1/c. For a
geometric distribution, Golomb coding [10, p. 36] is a minimal-redundancy code,
i. e. by choosing the right parameter, we lose only at most half a bit per element,
compared to the information-theoretic optimum.

However, this compressed sequence still does not allow any random-access,
since the Golomb codes have value-dependent sizes. Hence, we have to augment
it with a index data structure so we can seek to a place near the desired location
quickly. Therefore, we divide the number range of the hash function into parts
of equal size I. In addition, for each of these blocks, a bit-accurate pointer to the
beginning of the subsequence that contains the corresponding values, is stored.
So there is a trade-off once again: For a small search time we want a small I,
but large I are good for saving space.

This data structure, termed Golomb-Compressed Sequence (gcs) is static, in
contrast to the compact-hash approach, i.e., all hash values and thus, all elements
in the set must be known beforehand.

Dynamization of gcs. We can support insertions by maintaining a small dy-
namic hash table Ti for recently inserted elements. It suffices if Ti stores the bit
positions for the main table. When Ti becomes too big, we empty it by recon-
structing the main table. With a bit of caution we can even support deletion
using a deletion buffer Td. This works if both the main table and Td store mul-
tisets of bit positions. This can be done very space efficiently in the main table.
We just need to provide a code word for the distance 0. Since this does not sig-
nificantly increase the lengths of the other code words and since there are only
few collisions, the resulting space and time overhead is small.

5 Implementation Aspects

Blocked Bloom filters with bit patterns profit from storing the Bloom filter in
negated form—a membership query then reduces to testing whether the bitwise-
and of the pattern and the negated filter block is zero. Insertion amounts to a
bitwise-and of negated pattern and negated filter block.

To scale the hash values to the appropriate range, we use floating-point mul-
tiplication and rounding instead division with remainder. Our measurements
indicate that this is crucial for performance.

We implemented all algorithms in a library-style way that makes them easy to
use in real applications. This includes easy configuration of all tuning parameters,
most of them allowed to be changed at runtime. Through generic programming,
we are able to plug in arbitrary data types and hash functions, without any
runtime overhead. The code can be obtained from the authors.

With all those details described, we can state that everything possible was
done to achieve best practical performance for all of the contestants, thus guar-
anteeing a fair comparison.
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6 Experimental Evaluation

We evaluate our implementations using one core of an Intel Xeon 5140 dual-core
processor, running at 2.33GHz with 4 MB of L2-cache using 64 Byte cache lines.
They use the automatic vectorization feature of the Intel C++ Compiler2 to
enable SIMD operations without hand-written assembler code. We benchmark
the operations

1. insert an element
2. query an element contained in the set, returning true
3. query an element not contained in the set, returning true or false

The elements are random strings of length 8. They are hashed using one or two
variants of Jenkins’ hash function [5] with different seeds which output a total
of 64 bits. When even more bits are needed, hash values are generated as needed
using a linear combination of those two hash values, as proposed in [7]. In each
case, the number of elements n is chosen so that the filter data structure has
size 95MB. After inserting n elements, querying for the same set is performed.
Additional n elements are queried for in the second step. This made it possible
to measure the running times for both positive and negative queries. The cache-
line size is 64 bytes, so we chose B = 512. For the pattern-based filters, the table
size is set to the full 4MB, resulting in � = 64K.

To make the comparison fair, we also include variants of the standard Bloom
filter that for a given c use a k value just large enough to ensure an FPR at least
as good as blo[1] (std[1]) and blo[2] (std[2]) respectively.

Figures 3 and 4 show running times for the positive and negative queries as
well as the filter size, for c from 1 to 34. The insertion times are omitted since
they are very similar to the times for positive queries.

As stated before, there is not much improvement to expect for negative
queries, since their detection is already quite cache-efficient for the original
Bloom filter. Also, they do not use many hash bits. For both positive queries
and insertions, the blocked Bloom Filter variants outperform the original Bloom
filter, in particular for low FPRs, i. e. high reliability. The maximum speedup fac-
tor is close to 4, using 32% more memory than the standard variant. However,
the speedup is actually smaller than one would expect from the difference in
cache misses (see Appendix A). Apparently, the system can hide cache latencies
using prefetching.

The normal pattern variants are only slightly faster than the regular blocked
Bloom filter. One reason is that we use very cheap hash functions. But there is
another cause: When the pattern table occupies all of the cache, almost every
filter access evicts a pattern from the cache whose next access will cause a cache
fault. Reducing the table size (slowly) reduces this problem. The normal pattern
variant also does not reach the area of very large FPRs. For c = 34, the FPR
is limited by the probability of table collisions, about 512/34/64K ≈ 2.310−4.

2 Version 9.1.045.
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in bits per contained element (bottom). For comparison, lines connect data points with
the same number of bits per element. For readability, only the variants accessing one
block are shown here in (top) and (middle), the two-block variants can be found in
Figure 4.

The multiplexing versions are able to overcome this limitation, but need more
computational effort.

Regarding the single-blocking variants, for positives and insertions, pat[1, 1]
performs best for rather high FPRs, while pat[2, 1] extends this behavior to
smaller FPRs, using 2-fold multiplexing.
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Regarding the two-blocking variants, for positives and insertions, pat[1, 2] per-
forms best, being up to almost twice as fast as any standard variant, for a low
FPRs. It this range, pat[1, 2] can also compete for negative queries. When an
even smaller FPR is requested, blo[2] should be used, which is only marginally
slower than pat[1, 2].

We performed a similar test for the space-efficient replacements. The ch data
structure used 3 additional bits per entry, while varying the load factor from
0.90 to 0.99.

The results are stated in Figure 5, comparing to the standard Bloom filter
for c = 40, all featuring the same FPR. For this FPR, the lower bound in space
for storing the hash values is − log 4.5110−9 + log e = 29.14bits per element.
The minimum space requirement in this experiment for gcs is in fact 29.14bits
(I → ∞), reaching the optimum, while for ch, it is 30.80bits (α → 1 and omitting
one redundant helper bit per entry). For gcs, the index data structure can be
easily and flexibly rebuilt after compact transmission, but for ch, the whole filter
must be rebuilt to achieve acceptable execution times.

As we can see, the static gcs implementation provides excellent performance
when the memory limitations are tight. If more space is available, Compact
hash (ch) gives better query times, but collapses in terms of insertion
performance.

7 Conclusion

Which variant or replacement of a Bloom filter works best depends on the appli-
cation a lot. Standard Bloom filters are still a good choice in many cases. They
are particularly efficient for negative queries. Even insertions and positive queries
work better than one might think because modern hardware can mitigate cache
faults by overlapping multiple memory accesses and because a reduction of k
below the “optimal” value brings considerable speedup at moderate increase in
space consumption or FPR. Blocked Bloom filters, possibly together with pre-
computed bit patterns, can mean a significant speedup if insertions and positive
queries are important operations or when hash bits are expensive. Multiplex-
ing and multiblocking Bloom filters become important when a very low FPR
is required. Space-efficient Bloom filter replacements are particularly interest-
ing when one wants to reduce communication volume for transferring the filter.
Somewhat surprisingly, the price one pays in terms of access time is small or
even negative if one uses our implementation based on bucketed Golomb coding.
If internal space efficiency is less important than access time and saving com-
munication volume, one could accelerate our implementation further by using
Golomb coding only for the communication and by using a faster representation
internally.

We believe that, independent of the particular results, our paper is also in-
structive as a case study in algorithm engineering and its methodology: Modeling
both the machine (cache, prefetching, SIMD instructions) and the application
(operation mix, difficulty of hashing) are very important here. The paper con-
tains nontrivial components with respect to design, analysis, implementation,
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experimental evaluation, and algorithm library design. In particular, the analysis
is of a “nonstandard” type, i. e. , analysis only seems tractable with simplifying
assumptions that are then validated experimentally.

Acknowledgments. We would like to thank M. Dietzfelbinger for valuable
discussions and hints how to analyze the false positive rate of blocked Bloom
filters. Frederik Transier provided a first implementation of Golomb coding.
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Appendix

A Cache-Efficiency Evaluation

Table 3 lists the number of cache faults that are triggered by executing the
experiment. We used a table of size either 64KB, 2048KB or 4096KB. For
c = 20, we inserted and queried 40,000,000 elements, respectively. blo[1] causes
about one cache miss per operation, which is quite accurately reflected by the
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Table 3. Number of cache misses for various algorithms, operations, and table sizes

Table Size / Operation
64KB 2048 KB 4096 KB

Algorithm insert / pos neg insert / pos neg insert / pos neg

std 538601538 111606798 538864877 111633776 538878911 111644012

blo[1] 38564348 38547086 38539297 38522083 38508814 38489184

blo[2] 77068492 38929639 77079012 38936222 77077903 38937805

pat[1,1] 38616001 38567585 54681670 54577097 64018108 63925035

pat[1,2] 77270265 40841892 109155069 55279812 128127287 64866149

pat[2,1] 38656675 38602126 54665523 54575523 64065832 63974708

pat[2,2] 77278236 40868585 109409646 55392837 128379947 65000473

pat[3,1] 38657692 38606045 54601020 54510319 63965985 63891726

pat[3,2] 77203292 40808134 109413361 55396675 128109749 64862561

numbers. For a insertion or positively answered query, the number of cache faults
is reduced by a factor of 13.96 compared to std. This is also just as expected, since
k = 14. However, Figure 3 indicates that for c = 20, blo[1] is only about 3 times
faster than std. Part of the explanation is that the number of hash bits needed
by the two schemes only differs by a factor of about three. However, since the
execution time is still dominated by the memory access times, an important part
of the explanation seems to be that the compiler schedules memory accesses (or
prefetches) already in the loop iteration before the actual use of the data. Thus,
cache latency can be hidden behind other operations. This prefetching behavior
also explains why there are about 2.9 cache faults per negative query of std
although the analysis predicts only two. Apparently, once the query algorithm
found a zero bit, one more memory access has already been issued.

For the two-blocking variants, the number of cache misses obviously doubles.
When using patterns, the pattern table and the accessed blocks fight for the
cache. When the table is as large as the cache, the numbers go up by a factor of
1.7, compared to a table of negligible size. But still, the number of cache misses
is far lower than for the standard variants.
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Abstract. Given a bipartite graph G = (L0, L1, E) and a fixed ordering
of the nodes in L0, the problem of finding an ordering of the nodes in L1

that minimizes the number of crossings has received much attention in
literature. The problem is NP-complete in general and several practically
efficient heuristics and polynomial-time algorithms with a constant ap-
proximation ratio have been suggested. We generalize the problem and
consider the version where the edges have nonnegative weights. Although
this problem is more general and finds specific applications in automatic
graph layout problems similar to those of the unweighted case, it has not
received as much attention. We provide a new technique that efficiently
approximates a solution to this more general problem within a constant
approximation ratio of 3. In addition we provide appropriate generaliza-
tions of some common heuristics usually employed for the unweighted
case and compare their performances.

1 Introduction

Given a bipartite graph G = (L0, L1, E), the crossing minimization problem
consists of finding an ordering of the nodes in L0 and L1 such that placing
the two layers on two horizontal lines and drawing each edge as a straight line
segment, the number of pairwise edge crossings is minimized. A related version
is one where the ordering in one of the layers is already fixed. The former is
usually referred to as the both layers free bipartite crossing minimization whereas
the latter as the one layer free bipartite crossing minimization. Both problems
have been extensively studied in literature. Unfortunately they are both NP-
hard [6,10]. As a result extensive research has been devoted to the design of
heuristics and approximation algorithms for these problems.

Both crossing minimization problems, especially the one layer free version,
have been used as basic building blocks for automatic layout of directed graphs
following the approach of Sugiyama, Tagawa, and Toda [18]. This approach
consists mainly of three steps: Assigning the nodes to horizontal layers, ordering
the nodes within each layer so as to minimize the number of crossings, and
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finally assigning actual coordinates for the nodes and edge bends. A commonly
used approach for the second step is the “layer-by-layer sweep” method which
requires a solution to the one layer free crossing minimization problem.

The current paper examines the weighted generalization of the (unweighted)
one layer free crossing minimization problem, from now on referred to as OLF.
Specifically we consider the following:

Weighted One Layer Free Problem (WOLF): Given an edge-weighted bipartite
graph G = (L0, L1, E) and a fixed ordering of nodes in L0, find an ordering of
nodes in L1 such that the total weighted crossings in the resulting drawing is
minimized. If two edges e1, e2 ∈ E cross then this crossing amounts to W(e1) ×
W(e2) in the total weighted crossings, where W(e1), W(e2) denote the weights
of e1, e2 respectively. We assume all weights are nonnegative.

Besides the fact that it is a generalization of OLF, its wide range of applica-
tions provides further motivation to study WOLF. Similar to OLF, natural ap-
plications include those related to computing layered layouts of directed graphs.
Many such instances assign an edge weight to indicate its “importance”. The
goal then is to compute layouts with few crossings between important edges of
large weight [3,4,8]. Other applications specific to WOLF include recent prob-
lems related to wire crossing minimization in VLSI [16].

1.1 Previous Work

Crossing minimization problems in drawings of bipartite graphs have been stud-
ied extensively in literature. A common method to solve the both layers free
version of the problem is to iteratively apply a solution to OLF, while alternat-
ing the fixed layer at each iteration. Therefore considerable attention has been
devoted to the OLF problem and its variations [2,5,6,7,11,12,14,15,17,19].

Since OLF is NP-complete even when the graph instances are sparse [14],
much of related research concentrates on the design of heuristics and approxima-
tion algorithms. Most popular heuristics include the barycenter method of [18]
and the median heuristic of [6]. Jünger and Mutzel survey various heuristics
and experimentally compare their performances [11]. They conclude that the
barycenter method yields slightly better results than the median heuristic in
practice. On the other hand from a theoretical point of view median heuristic
is better. Specifically, they both run in linear time and the median heuristic is
a 3-approximation, whereas the approximation ratio of the barycenter method
is Θ(

√

|L0|) [6]. Yamaguchi and Sugimoto [19] provide a greedy algorithm GRE
that has the same approximation ratio of 3 in the worst case and that works well
in practice. However the running time of GRE is quadratic. Recently, Nagamochi
devised a 1.47-approximation algorithm for OLF [15].

Another promising technique for OLF is the penalty graph approach intro-
duced by Sugiyama et al. [18]. The performance of this method depends on an
affective solution to the minimum feedback arc set (FAS) problem which is also
NP-complete [9]. Demetrescu and Finocchi experimentally compare the perfor-
mance of the penalty graph method based on their algorithm for FAS to that of
the barycenter, median, and the GRE heuristics [5].
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Applications requiring a solution to WOLF usually employ a weighted modi-
fication of the barycenter method [3,4,8] or a penalty graph based approach [16].
Such practices are based on the presupposition that simple extensions of desir-
able methods for OLF should also lead to efficient solutions for WOLF. To the
contrary, our experiments indicate this may not necessarily be the case.

1.2 Our Contributions

To the best of our knowledge this is the first study to consider specifically the
WOLF problem and to compare various promising methods. The following sum-
marizes the main contributions:

– We provide an efficient approximation algorithm 3-WOLF for the WOLF
problem. Specifically, algorithm 3-WOLF 3-approximates WOLF in O(|E| +
|V | log |V |) time, where V = L0 ∪ L1. We note that this is the first polyno-
mial time algorithm to have a constant approximation ratio for the WOLF
problem. Although there are several polynomial-time, constant approxima-
tions for OLF [6,15,19], it is not obvious how to generalize them for WOLF
while retaining the same approximation ratio.

– We devise weighted modifications of common heuristics that are shown
to have a good performance for OLF in practical settings. Specifically we
present extensions of the barycenter, median, GRE, and the penalty graph
methods previously suggested for OLF.

– We experimentally compare the performances of these methods to that of
3-WOLF. Our experiments indicate that the performance of 3-WOLF, in terms
of the resulting number of crossings, is better than the performances of the
methods with comparable running times. Besides, its performance is almost
the same as that of the methods with expensive running time requirements.

– The distinction between efficient methods for the OLF and WOLF problems
arises as an interesting result of our experiments. A particular instance of
this is the barycenter method. Although it seems to outperform the methods
with comparable running times in the OLF settings, its weighted extension
does not share the same performance results in the WOLF settings.

2 3-WOLF: A 3-Approximation Algorithm for WOLF

Given a bipartite graph G = (L0, L1, E), let n0, n1 denote the sizes of the layers
L0, L1 respectively. Assume the nodes in L0 are labeled with integers from 1
through n0. For u ∈ L1 and j ≤ l, let W(u)l

j =
∑l

p=j W(u, p), where W(u, p)
is the weight of the edge (u, p) for p ∈ L0. With this notation we assume that
W(u, p) = 0 if there is no edge between u and p. We also note that all weights
are assumed to be nonnegative. For u, v ∈ L1, let cuv denote the sum of the
weighted crossings between the edges incident on u and the edges incident on v
when u is placed to the left of v, that is cuv =

∑n0−1
p=1 W(v, p) × W(u)n0

p+1.
Algorithm 3-WOLF consists mainly of two phases: A coarse-grained ordering

phase followed by a fine-grained ordering phase. The initial coarse-grained phase
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Algorithm 1: Coarse-grained Ordering

/*Initially each partition Pr, where 0 ≤ r ≤ n0 − 1, is empty.*/
forall u ∈ L1 do

leftsum = 0; rightsum = W(u)n0
2 ;

for r ← 0 to n0 − 1 do
if leftsum ≥ rightsum then break;
leftsum = leftsum + W(u, r + 1);
rightsum = rightsum − W(u, r + 2);

Pr = Pr ∪ {u};
/*Partitions are ordered according to indices: P0, P1, . . . , Pn0−1*/

partitions L1 into disjoint sets and orders the partitions. Then the second phase
orders the nodes within each partition independently (without considering the
the nodes in other partitions).

2.1 Phase-1: Coarse-Grained Ordering

To make the description easier, for now we assume that G is a complete weighted
bipartite graph (some weights can be zero). We later provide the details necessary
to implement it more efficiently.

We partition L1 into n0 disjoint sets P0, . . . Pn0−1 where L1 =
⋃

0≤r≤n0−1 Pr.
For ease of notation let W(u)01 = W(u)n0

n0+1 = 0, for u ∈ L1. We define initial
partition P0 as, P0 = {u ∈ L1|W(u)01 ≥ W(u)n0

2 }. For r ≥ 1, Pr is defined as:

Pr = {u ∈ L1|W(u)r−1
1 < W(u)n0

r+1 and W(u)r
1 ≥ W(u)n0

r+2}

Obviously each node in L1 belongs to exactly one partition. The partitions
are ordered in the increasing order of their indices from left to right. Algorithm 1
provides a pseudocode for Phase-1. The following lemma shows the correctness
of the described partitioning and ordering:

Lemma 1. Given u ∈ Pq and v ∈ Pr, where q < r, after Phase-1 of Algorithm
3-WOLF, cuv ≤ 3cvu.

Proof. If q = 0 then W(u)n0
2 = 0. Since q < r we have W(v)n0

2 > 0. This implies
cuv ≤ cvu and the lemma holds trivially. Now assume q > 0. Since u ∈ Pq and
v ∈ Pr, by definition the following inequalities hold:

W(u)q−1
1 < W(u)n0

q+1 and W(u)q
1 ≥ W(u)n0

q+2 (1)

W(v)r−1
1 < W(v)n0

r+1 and W(v)r
1 ≥ W(v)n0

r+2 (2)

We write cuv = A + B + C and cvu = A′ + B′ + C′ where,

A=W(v)q
1×W(u)n0

q+1, B =
q−1
∑

p=1

W(v, p)×W(u)q
p+1, C =

n0−1
∑

p=q+1

W(v, p)×W(u)n0
p+1
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A′=W(u)q
1×W(v)n0

q+1, B′=
q−1
∑

p=1

W(u, p)×W(v)q
p+1, C′=

n0−1
∑

p=q+1

W(u, p)×W(v)n0
p+1

We show that A, B, C ≤ cvu. We have W(u)q
1 ≥ W(u)n0

q+2 by (1). This implies
W(u)q+1

1 ≥ W(u)n0
q+1. Since q < r, we have W(v)q

1 < W(v)n0
r+1 by the first

inequality in (2). Putting together we get,

W(v)q
1 × W(u)n0

q+1 ≤ W(u)q+1
1 × W(v)n0

r+1

Since q < r, the right side is at most W(u)q
1 ×W(v)n0

q+1 +W(u, q+1)×W(v)n0
r+1.

The first term in this sum is equal to A′. The second term is at most C′. Therefore
it follows that A ≤ cvu.

To prove it for B, we have
∑q−1

p=1 W(v, p) × W(u)q
p+1 ≤ W(u)q

2 × W(v)q−1
1 .

Since q < r, by (2) we have that W(v)q−1
1 < W(v)n0

r+1, which further implies
W(v)q−1

1 < W(v)n0
q+1. Putting together, we have B ≤ A′ and therefore B ≤ cvu.

Similarly for C, we get
∑n0−1

p=q+1 W(v, p)×W(u)n0
p+1 ≤ W(u)n0

q+2 ×W(v)n0−1
q+1 . We

have W(u)q
1 ≥ W(u)n0

q+2 by (1) which implies C ≤ A′ and therefore C ≤ cvu.

2.2 Phase-2: Fine-Grained Ordering

Let π(Pr) be a permutation of the nodes in Pr. We define the following invariant:

Definition 1. Given a partition Pr and S such that S ⊆ Pr, let π(S) be a per-
mutation of S. We call π(S) a partition invariant satisfying permutation
(PISP) if for any u ∈ S and for all v ∈ S\{u} that is placed to the right of u
in π(S) the following holds:

W(v)r
1 × W(u)n0

r+1 ≤ W(u)r
1 × W(v)n0

r+1

We show that an algorithm that orders Pr according to the partition invariant
is appropriate for our purposes:

Lemma 2. Let π(Pr) be a PISP of Pr. For any pair u, v ∈ Pr where u is to the
left of v in π(Pr) we have cuv ≤ 3cvu.

Proof. We write cuv = A + B + C and cvu = A′ + B′ + C′ where,

A= W(v)r
1×W(u)n0

r+1, B=
r−1
∑

p=1

W(v, p)×W(u)r
p+1, C =

n0−1
∑

p=r+1

W(v, p)×W(u)n0
p+1

A′=W(u)r
1×W(v)n0

r+1, B′=
r−1
∑

p=1

W(u, p)×W(v)r
p+1, C′=

n0−1
∑

p=r+1

W(u, p)×W(v)n0
p+1
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We show that A, B, C ≤ A′. This is true for A since π(Pr) is a PISP.
For B, we note that

∑r−1
p=1 W(v, p) × W(u)r

p+1 ≤ W(u)r
1 × W(v)r−1

1 . From
the definition of Pr we have W(v)r−1

1 < W(v)n0
r+1. Therefore the inequality

∑r−1
p=1 W(v, p) × W(u)r

p+1 ≤ W(u)r
1 × W(v)n0

r+1 holds, which implies B ≤ A′.
For C, we note that

∑n0−1
p=r+1 W(v, p) × W(u)n0

p+1 ≤ W(u)n0
r+2 × W(v)n0−1

r+1 .
From the definition of Pr we have W(u)r

1 ≥ W(u)n0
r+2. Therefore the inequality

∑n0−1
p=r+1 W(v, p) × W(u)n0

p+1 ≤ W(u)r
1 × W(v)n0

r+1 holds and C ≤ A′.

We show that we can construct a PISP efficiently. The following transitivity
lemma will be helpful for further results.

Lemma 3. Given u, v, w ∈ Pr, each with degree at least one, assume the fol-
lowing inequalities hold for some j, 1 ≤ j ≤ n0:

W(v)j
1 × W(u)n0

j+1 ≤ W(u)j
1 × W(v)n0

j+1 (3)

W(w)j
1 × W(v)n0

j+1 ≤ W(v)j
1 × W(w)n0

j+1 (4)

Then W(w)j
1 × W(u)n0

j+1 ≤ W(u)j
1 × W(w)n0

j+1.

Proof. Multiplying both sides of the inequality (3) with W(w)j
1 and replacing

W(v)n0
j+1 × W(w)j

1 with W(v)j
1 × W(w)n0

j+1 we get:

W(v)j
1 × W(u)n0

j+1 × W(w)j
1 ≤ W(u)j

1 × W(v)j
1 × W(w)n0

j+1 (5)

If W(v)j
1 �= 0, we can divide both sides of (5) with W(v)j

1 and the lemma holds.
On the other hand if W(v)j

1 = 0, then W(v)n0
j+1 �= 0 since v has degree at least

one. This implies W(w)j
1 = 0 and the lemma holds trivially.

Constructing π(Pr) from Pr: We assume all nodes in Pr have degree at
least one, as nodes with degree zero can be placed arbitrarily. We use a divide-
and-conquer approach. We first divide Pr into two subsets of equal size Pr1, Pr2.
We solve the problem for those subsets to obtain two PISPs for Pr1, Pr2 and
finally we merge the resulting PISPs. The details are presented in Algorithm 2.

Assuming π(Pr1), π(Pr2) are PISPs, we need to prove the correctness of the
merge procedure. We do so inductively. Let π(Pr)t denote π(Pr) after t steps of
the merge procedure. Let u′, v′ be the current nodes of π(Pr1), π(Pr2) respec-
tively at the end of t steps. Let ’◦’ denote the concatenation operator.

Lemma 4. π(Pr)t ◦ {u′} and π(Pr)t ◦ {v′} are PISPs, where 0 ≤ t ≤ |Pr|.

Proof. The proof is by induction on t. The base case of t = 0 holds trivially. Let
u, v be the current nodes in π(Pr1), π(Pr2) respectively, at the beginning of step
t. Assume inductively that π(Pr)t−1 ◦ {u} and π(Pr)t−1 ◦ {v} are PISPs.

Without loss of generality assume

W(v)r
1 × W(u)n0

r+1 ≤ W(u)r
1 × W(v)n0

r+1 (6)
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Algorithm 2: Fine-grained Ordering

/*Nodes in Pr have nonzero degrees. Initially π(Pr) is empty. */
if |Pr| = 1 then

π(Pr) = {u} where u ∈ Pr;
else

Divide Pr into partitions of equal size Pr1, Pr2;
/*Solve for each partition.*/
π(Pr1) = Fine-grained Ordering Pr1;
π(Pr2) = Fine-grained Ordering Pr2;
/*Merge the resulting permutations.*/
New node a s.t. W(a)r

1 = −1, W(a)n0
r+1 = 0;

π(Pr1) = π(Pr1) ◦ {a};
π(Pr2) = π(Pr2) ◦ {a};
Let u, v be the first nodes in π(Pr1), π(Pr2) respectively;
for t ← 1 to |Pr| do

if W(v)r
1 × W(u)n0

r+1 ≤ W(u)r
1 × W(v)n0

r+1 then
π(Pr) = π(Pr) ◦ {u};
u = u′ where u′ follows u in π(Pr1);

else
π(Pr) = π(Pr) ◦ {v};
v = v′ where v′ follows v in π(Pr2);

Note that this implies v′ = v. We show the following:

1. π(Pr)t−1 ◦ {u} ◦ {u′} is a PISP:
We note that

W(u′)r
1 × W(u)n0

r+1 ≤ W(u)r
1 × W(u′)n0

r+1 (7)

as u is to the left of u′ in π(Pr1) which is a PISP.
We need to show that W(u′)r

1 × W(x)n0
r+1 ≤ W(x)r

1 × W(u′)n0
r+1 for all x ∈

π(Pr)t−1 ◦ {u}. If x = u the inequality is satisfied because of (7). On the
other hand if x �= u, we have W(u)r

1 × W(x)n0
r+1 ≤ W(x)r

1 × W(u)n0
r+1 since

by the inductive hypothesis π(Pr)t−1 ◦ {u} is a PISP. Using the transitivity
property stated in Lemma 3, we combine this last inequality and that of (7)
which implies W(u′)r

1 × W(x)n0
r+1 ≤ W(x)r

1 × W(u′)n0
r+1.

2. π(Pr)t−1 ◦ {u} ◦ {v} is a PISP:
We need to show that W(v)r

1 × W(x)n0
r+1 ≤ W(x)r

1 × W(v)n0
r+1 for all x ∈

π(Pr)t−1 ◦ {u}. If x = u the inequality is satisfied because of the initial
assumption in (6). On the other hand if x �= u the inequality holds by the
inductive hypothesis.

The lemma below is an immediate consequence of Lemma 4:

Lemma 5. Let π(Pr) be the output permutation of Algorithm 2 applied on Pr.
π(Pr) is a PISP.

The correctness of Phase-2 follows from Lemma 2 and Lemma 5:

Lemma 6. Given u, v ∈ Pr, where u is placed to the left of v after Phase-2 of
Algorithm 3-WOLF, cuv ≤ 3cvu.
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Running Time of Algorithm 3-WOLF: In order to implement Phase-1 effi-
ciently we note that a node u ∈ L1 may not be connected to all the nodes in
L0. Let Nu denote the set of neighbors of u. We assume the nodes in L0 are
labeled from 1 to |L0| and that nodes in Nu are already in sorted order ac-
cording to these labels. We compute the sum

∑|Nu|
i=1 W(u, Nu[i]) exactly once

at the beginning. Here Nu[i] indicates the ith neighbor’s label. Going through
every neighbor of u we increment leftsum value each time, and decrement the
rightsum value only whenever necessary, where leftsum indicates W(u)k

1 and
rightsum indicates W(u)n0

k+2, for 0 ≤ k < |Nu|. The partition of u is found once
the leftsum value is greater than or equal to the rightsum value. We defer the
rest of the implementation details in the form of a pseudo-code to the full version
of the paper. The running time required by this implementation of Phase-1 is
O(|E| + |L0| + |L1|). We assume the values W(u)r

1, W(u)n0
r+1 are also recorded

during Phase-1, once they are computed. Therefore following the description of
Phase-2 in Algorithm 2, the second phase requires time O(|L0| + |L1| log |L1|).
The theorem below summarizes the main result:

Theorem 1. Given a bipartite graph G = (L0, L1, E), algorithm 3-WOLF 3-
approximates WOLF in time O(|E| + |L0| + |L1| log |L1|).

Proof. For a given input graph G = (L0, L1, E), a trivial lowerbound on the
number of crossings is LB =

∑

u,v∈L1
min(cuv, cvu). The proof then follows the

correctness results presented in Lemma 1 and Lemma 6, and the discussion above
regarding the running time.

Remark 1. We show that there exist instances of WOLF for which the bounds of
Lemma 1 and Lemma 6 are almost met. Therefore the performance ratio analysis
of those lemmas are tight in the worst case. We defer the details regarding the
constructions of such instances to the full version.

3 Weighted Modifications of Common Methods for OLF

In addition to 3-WOLF, we consider modifications of four well-known methods
suggested previously for OLF: The median, barycenter, GRE heuristics, and the
penalty graph method.

W-MED (Weighted Median): The original median algorithm as described by
Eades and Wormald [6], assigns x-coordinate of u ∈ L1 to be the median of the
x-coordinates of the nodes in Nu. If two nodes are assigned the same median,
then one of them is placed to the left randomly, except when one has odd degree,
and the other even, in which case the odd degree node is placed to the left.

The weighted version we propose, W-MED, in essence is similar to 3-WOLF.
Algorithm W-MED also proceeds in two phases. In the coarse-grained phase we
decide on the partition of each node u ∈ L1. Node u is placed in Pr, where r is
the smallest integer value such that W(u)r

1 ≥ W(u)n0
r+1. The partitions are then

ordered from left to right in the increasing order of their indices. In the second
phase of W-MED we apply W-BARY, described next, on each partition Pr.
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Remark 2. We note that the initial coarse-grained phase of W-MED is analogous to
the median assignment in the OLF settings, assuming the medians are different.
Consider the unweighted graph constructed by replacing each neighbor Nu[i] of
u ∈ L1 with W(u, Nu[i]) artificial nodes and connecting each one to u with an
unweighted edge. Let x be the artificial node that is computed as the median of
u as a result of applying the original median algorithm on the unweighted graph.
Then the median node (the partition Pr) picked by the first phase of W-MED is
the one that is replaced by the artifical nodes including x. Since the original
median algorithm provides a guaranteed constant approximation ratio of 3, it is
natural to expect a good performance from the first phase of W-MED. In fact we
can prove that nodes in different partitions are placed appropriately, up to the
constant approximation ratio of 3, after this initial phase. Details of this result,
analogous to Lemma 1 of 3-WOLF are deferred to the full version. For the second
phase, in OLF settings, the median algorithm simply checks the node degrees
to order the nodes within each partition to guarantee the same approximation
ratio. However similar reasoning does not seem to apply to WOLF.

W-BARY (Weighted Barycenter): The original barycenter method assigns the
x-coordinate of each u ∈ L1 as the average of the x-coordinates of its neigh-
bors [18]. In W-BARY edge weights are introduced to this average. That is, the
x-coordinate of u is assigned to

∑|Nu|
i=1 (W(u, Nu[i]) × Nu[i])

∑|Nu|
i=1 W(u, Nu[i])

Remark 3. The approximation ratio of the barycenter method applied to OLF
is Θ(

√

|L0|) [6]. In contrast, there exist instances of WOLF for which W-BARY
produces outputs where the performance ratio is Ω(|L0| + |L1|). Interestingly
such instances are plausible even when degrees are restricted to 2. We note that
in OLF settings the barycenter method achieves an optimal solution under this
restriction [14]. Details are deferred to the full version.

W-GRE (Weighted GRE): The GRE algorithm described for OLF greedily
assigns u ∈ L1 as the next node to place in the rightmost position [19]. It does
so by choosing u that minimizes

∑

v∈L′
1
cuv

∑

v∈L′
1
min(cuv, cvu)

among all not yet placed nodes, denoted by L′1. The W-GRE algorithm works the
same way, except edge weights are taken into account while computing cuv.

W-PM (Weighted Penalty Minimization): The PM algorithm for OLF starts
with the construction of a weighted directed graph called the penalty graph. The
node set is that of L1. An edge with weight cvu−cuv from u to v is inserted in the
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penalty graph if cuv < cvu. The algorithm then seeks for a minimum feedback
arc set (FAS) in the penalty graph [18]. Demetrescu and Finocchi propose an
implementation of the PM method based on their algorithm for approximating
FAS [5]. The W-PM method is based on their implementation, except as with
W-GRE, the computation of cuv takes into account the edge weights.

Remark 4. All algorithms assume Nu is sorted for u ∈ L1. Therefore all running
times presented exclude such a cost. Both W-MED and W-BARY run in linear time.
The running time of W-GRE is O(|E|2 + |L1|2) and that of W-PM is O(|E|2 + |L1|4).
Both W-GRE and W-PM require the computation of a cross table. All cuv values
are retrieved from this table which is computed beforehand. A straightforward
implementation of this computation requires time O(|E|2). In OLF settings it
can be implemented in time O(|E| × |L1|). This improvement is based on the
observation that each crossing increments the total crossings by the same amount
of 1. However this is no longer true in WOLF settings. Therefore our construction
of the cross table requires O(|E2|) time, although this does not have too much
affect on the actual CPU times required by the algorithms.

4 Experimental Setup and Results

We implemented all the algorithms in C++ using the LEDA library [13]. The
implementations are freely available in [1]. Experiments are performed on com-
puters with the configuration of P4 3.2 GHz of CPU and 1GB of RAM.

4.1 Random Graph Generator and Parameters

We constructed a parameter list that is relevant to the WOLF problem. We
implemented a random graph generator that takes as input an instance of such
a list and produces an output graph compatible with the requirements of that
instance. Each output graph is then fed to all the algorithms and the results
are recorded. We repeat this sequence of calls to graph generator followed by
calls to algorithms k times, where k is assigned a value in the range from 5 to
50 depending on the edge density. An average of the resulting crossing numbers
from these k iterations are computed.

The implementation of the random graph generator is also available in [1].
We briefly describe the problem parameters. Two items included in our param-
eter list are n0, n1 which represent the sizes of the layers L0, L1 respectively.
The rest of the items are as follows: Edge Density (ED) is the probability of
creating an edge between any pair of nodes and varies between 0.001 and 1.
Average Weight (AW ) is the expected average weight of a randomly generated
edge. Weight Balance (WB) is a parameter we introduce for the random as-
signment of weights and it is used to compute an upperbound on the weight of
an edge. Specifically, it represents the ratio of sum of weights in the graph to
the maximum potential weight to be assigned to an edge.

Random graph generator consists of two phases. The first phase creates a
random unweighted graph that satisfies the ED constraint. To this aim, for
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Fig. 1. Quality of the outputs, in terms of the crossing/LB values, provided by the
algorithms for the sparsest graphs experimented (when edge density is in the range
[0.001, 0.01])

each pair of nodes (u, p), where u ∈ L1, p ∈ L0, a uniform random num-
ber t ∈ [0, 1] is generated for every pair. If t ≤ ED then the edge (u, p) is
added to E. After this phase the expected number of edges is n0 × n1 × ED.
The second phase consists of assigning random weights to the set of edges
in a way that AW constraint is satisfied. First a random permutation of E
is created. Each edge e ∈ E is selected in this order and W(e) is increased
by a uniform random integer w where 0 ≤ w < SW/WB. Here SW indi-
cates Sum of Weights which is equal to n0 × n1 × ED × AW initially. Its
value is decreased by w after each weight assignment to an edge e. Intuitively
SW/WB indicates a continually decreasing upper bound for the randomly gen-
erated weight.

4.2 Experiments and Discussion of Results

We have two performance measures. We compute crossing/LB values for each
algorithm to measure the quality of its solution for WOLF. Here crossing indi-
cates the total weighted crossings that arise in the output layout of an algorithm.
The second measure is the running time required by each algorithm. All experi-
ments are performed on randomly generated weighted bipartite graphs with 500
nodes in both layers L0 and L1.
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Fig. 2. (a) Quality of the outputs provided by the algorithms when edge density is
in the range [0.01, 0.1]; (b) Quality of the outputs provided by the algorithms for the
densest graphs experimented (when edge density is in the range [0.1, 0.5])
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Fig. 3. (a) Quality of the outputs provided by W-BARY for the complete range
[0.001, 0.01]); (b) Running times measured in terms of the actual CPU times required

The quality of results in terms of crossing/LB values are depicted in Fig-
ures 1, 2-a and 2-b, where edge density varies in the ranges [0.001, 0.01],
[0.01, 0.1], and [0.1, 0.5] respectively. These figures include the results of all algo-
rithms except for W-BARY which provided very large crossing/LB values. There-
fore, to provide a better visualization of the comparison between the rest of the
algorithms, the results of W-BARY for the complete density range of [0.001, 0.5]
are depicted separately in Figure 3-a. We can summarize the quality results for
almost all the ranges as follows: W-PM had the best results. 3-WOLF performed
almost as good as W-PM (sometimes even better). W-GRE and W-MED followed
them with similar performances. No clear winner among the two could be de-
cided. Finally W-BARY provided the worst results in all the ranges and was clearly
separated from the rest of the algorithms with its poor performance.

Figure 3-b depicts the running time results in terms of the measured CPU time
required by each algorithm. We provide this measure only for the range [0.01, 0.1]
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since the plots for the rest of the ranges were almost the same. We note that the
running time plots are log-scale, therefore the actual time differences between
the algorithms W-GRE, W-PM and the algorithms 3-WOLF, W-MED, W-BARY are
much larger than visualized in the plots.

It is interesting to note that even though the time requirements of W-GRE and
W-PM is much larger than that of 3-WOLF (almost 10000 times as much for dense
graphs) the output qualities measured in terms of crossing/LB values are almost
the same. Another interesting result of our experiments is the distinction between
the settings of OLF and WOLF. In the OLF settings the barycenter method
has remarkable performance given its running time requirement. The median
algorithm seems not to perform well in practice in this case. Additionally, the
quality of results produced by the GRE and the PM methods is so good that they
may be appealing even with such poor performance in terms of running time.
However in the WOLF settings W-BARY is the worst in terms of the crossings
produced. The intuition behind this bad performance in terms of the quality
of results is in part provided in Remark 3. Furthermore the quality of results
produced by the W-GRE, W-PM algorithms is not remarkable anymore. In fact
even a simple combination of the median and the barycenter heuristics, W-MED,
provides similar quality.

5 Conclusion

The extensively studied OLF problem is that of minimizing edge crossings in
bipartite graphs when one layer is fixed. We generalized the problem to WOLF,
where the edges of the bipartite graph have nonnegative weights. We presented
an algorithm, 3-WOLF, that provides a 3-approximation for the WOLF problem.
Although several algorithms with constant approximation ratios for OLF were
known previously, this is the first analogous result regarding WOLF. We also
provided appropriate generalizations of methods commonly suggested for OLF.
We experimentally evaluated all the suggested algorithms. Our experiments in-
dicate that 3-WOLF not only has the advantage of a theoretically proven constant
approximation ratio, it also has good perfomance in terms of the quality of the
output and the time required to compute it.
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Abstract. The Metric Traveling Salesman Problem (TSP) is a classical
NP-hard optimization problem. The double-tree shortcutting method for
Metric TSP yields an exponential-sized space of TSP tours, each of which
is a 2-approximation to the exact solution. We consider the problem of
minimum-weight double-tree shortcutting, for which Burkard et al. gave
an algorithm running in time O(2dn3) and memory O(2dn2), where d is
the maximum node degree in the rooted minimum spanning tree (e.g. in
the non-degenerate planar Euclidean case, d ≤ 4). We give an improved
algorithm running in time O(4dn2) and memory O(4dn), which allows
one to solve the problem on much larger instances. Our computational
experiments suggest that the minimum-weight double-tree shortcutting
method provides one of the best known tour-constructing heuristics.

1 Introduction

The Metric Travelling Salesman Problem (TSP) is a classical combinatorial opti-
mization problem. We represent a set of n points in a metric space by a complete
weighted graph on n nodes, where the weight of an edge is defined by the distance
between the corresponding points. The objective of Metric TSP is to find in this
graph a minimum-weight Hamiltonian cycle (equivalently, a minimum-weight
tour visiting every node at least once). The most common example of Metric
TSP is the planar Euclidean TSP, where the points lie in the two-dimensional
Euclidean plane, and the distances are measured according to the Euclidean
metric.

Metric TSP, even restricted to planar Euclidean TSP, is well-known to be NP-
hard [10]. Metric TSP is also known to be NP-hard to approximate to within
a ratio 1.00456, but polynomial-time approximable to within a ratio 1.5. Fixed-
dimension Euclidean TSP is known to have a PTAS (i.e. a family of algorithms
with approximation ratio arbitrarily close to 1) [3]; this generalises to any metric
defined by a fixed-dimension Minkowski vector norm.

Two simple methods, double-tree shortcutting [14] and Christofides’ [5,15],
allow one to approximate the solution of Metric TSP within a factor of 2 and
1.5, respectively. Both methods build an Eulerian graph on the given point set,
select an Euler tour of the graph, and then perform shortcutting on this tour
by removing repeated nodes, until all node repetitions are removed. Thus, the
minimum-weight tour is approximated by picking an element from a restricted

C. Demetrescu (Ed.): WEA 2007, LNCS 4525, pp. 136–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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space of tours, namely the shortcuttings of a particular Euler tour of a particu-
lar Eulerian graph. Both the double-tree shortcutting and Christofides’ methods
belong to the class of tour-constructing heuristics, i.e. “heuristics that incremen-
tally construct a tour and stop as soon as a valid tour is created” [8].

The two methods differ in the way the initial weighted Eulerian graph is con-
structed. In the tree shortcutting method, it is obtained by finding a minimum-
weight spanning tree (MST), and then doubling every edge in the tree. In the
Christofides method, the Eulerian graph is obtained by adding to the MST a
minimum-weight matching built on the set of odd-degree nodes in the MST.

All tours obtained by the double-tree shortcutting (respectively, Christofides)
method are guaranteed to have weight at most a factor of 2 (respectively, 1.5)
higher than the minimum-weight tour. Indeed, this is already true for the weight
of the original Euler tour, and in Metric TSP the shortcutting process cannot
increase the tour weight.

While any shortcutting of the original Euler tour provides the approxima-
tion ratio 2 (respectively, 1.5), clearly, it is still desirable to find the minimum-
weight tour among all possible shortcuttings. Given an Eulerian graph on a set
of points, we will consider its minimum-weight shortcutting, i.e. the minimum-
weight shortcutting across all possible Euler tours of this Eulerian graph. We
shall correspondingly speak about the minimum-weight double-tree shortcutting
and the minimum-weight Christofides methods.

The problem of finding the minimum-weight double-tree shortcutting is NP-
hard for Metric TSP. Indeed, consider an instance of the Hamiltonian cycle
problem, which can be regarded as an instance of Metric TSP with distances 1
and 2. Add an extra node connected to all other nodes by edges of weight 1, and
take the newly added edges as the MST. It is easy to see that the minimum-
weight shortcutting problem on the resulting instance is equivalent to the original
Hamiltonian cycle problem. The minimum-weight double-tree shortcutting prob-
lem was also believed for a long time to be NP-hard for planar Euclidean TSP,
until a polynomial-time algorithm was given by Burkard et al. [4]. In contrast,
the problem of finding the minimum-weight Christofides shortcutting is NP-hard
both for Metric TSP and planar Euclidean TSP [11].

In the rest of this paper, we will mainly deal with the rooted MST, which
is obtained from the MST by selecting an arbitrary node as the root. In the
rooted MST, the terms parent, child, ancestor, descendant, sibling all have their
standard meaning. Let d denote the maximum number of children per node in
the rooted MST. Note that in the Euclidean plane, the maximum degree of an
unrooted MST is at most 6. Moreover, a node can have degree equal to 6, only
if it is surrounded by six equidistant nodes; we can exclude this degenerate case
from consideration by a slight perturbation of the input points. This leaves us
with an unrooted MST of maximum degree 5. By choosing a node of degree less
than 5 as the root, we obtain a rooted MST with d ≤ 4.

The minimum-weight double-tree shortcutting algorithm by Burkard et al. [4]
applies to the general Metric TSP, and runs in time O(2dn3) and space O(2dn2).
In this paper, we give an improved algorithm, running in time O(4dn2) and
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memory O(4dn), We then describe our implementation of the new algorithm,
which incorporates a couple of additional heuristics designed to speed up the
algorithm and to improve its approximation quality. Computational experiments
show that the approximation quality and running time of our implementation
are among the best of all known tour-constructing heuristics.

2 The Algorithm

Preliminaries. Let G be a weighted graph representing the Metric TSP problem
on n points. The double-tree method consists of the following stages:

– construct the minimum spanning tree of G;
– duplicate every edge of the tree, obtaining an n-node Eulerian graph;
– select an Euler tour of the double-tree graph;
– reduce the Euler tour to a Hamiltonian cycle by repeated shortcutting, i.e.

replacing a node sequence a, b, c by a, c, as long as node b appears elsewhere
in the current tour.

We say that a Hamiltonian cycle conforms to the doubled spanning tree, if it
can be obtained from that tree by shortcutting one of its Euler tours. We also
extend this definition to paths, saying that a path conforms to the tree, if it is
a subpath of a conforming Hamiltonian cycle.

In our minimum-weight double-tree shortcutting algorithm, we refine the
bottom-up dynamic programming approach of [4]. Initially, we select an arbi-
trary node r as the root of the tree. For a node u, we denote by C(u) the set of
all children of u, and by T (u) the node set of the maximal subtree rooted at u,
i.e. the set of all descendants of u (including u itself). For a set of siblings U , we
denote by T (U) the (disjoint) union of all subtrees T (u), u ∈ U .

The characteristic property of a conforming Hamiltonian cycle is as follows:
for every node u, upon entering the subtree T (u), the cycle must visit all nodes
of T (u) before leaving the subtree, and must not re-enter the subtree afterwards.
For an arbitrary node set S, we will say that a path through the graph sweeps S,
if it visits all nodes of S consecutively in some order. In this terminology, a con-
forming Hamiltonian cycle must, for every node u, contain a subpath sweeping
the subtree T (u).

In the rest of this section, we denote the metric distance between u and v by
d(u, v). We use the symbol � to denote disjoint set union. For brevity, given a
set A and an element a, we write A � a instead of A � {a}, and A \ a instead of
A \ {a}.

Computing the solution weight (upsweep). The algorithm proceeds by computing
minimum-weight sweeping paths in progressively increasing subtrees, beginning
with the leaves and finishing with the whole tree T (r). A similar approach is
adopted in [4], where in each subtree, all-pairs minimum-weight sweeping paths
are computed. In contrast, our algorithm only computes single-source minimum-
weight sweeping paths originating at the subtree’s root. This leads to substantial
savings in time and memory.
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Fig. 1. Computation of Du
V,W (v)

A non-root node v ∈ C(u) is active, if its subtree T (v) has already been
processed, but its parent’s subtree T (u) has not yet been processed. In every
stage of the algorithm, we choose the current node u, so that all children of u
(if any) are active. We call T (u) the current subtree. Let V ⊆ C(u), a ∈ T (V ).
By Du

V (a) we denote the weight of the shortest conforming path starting from
u, sweeping subtree u � T (V ), and finishing at a.

Consider the current subtree T (u). Processing this subtree will yield the values
Du

V (a) for all V ⊆ C(u), a ∈ T (V ). In order to process the subtree, we need the
corresponding values for all subtrees rooted at the children of u. More precisely,
we need the values Dv

W (a) for every child v ∈ C(u), every subset W ⊆ C(v),
and every destination node a ∈ T (W ). We do not need any explicit information
on subtrees rooted at grandchildren and lower descendants of u.

Given the current subtree T (u), the values Du
V (a) are computed inductively

for all sets V of children of u. The induction is on the size of the set V . The base
of the induction is trivial: no values Du

V exist when V = ∅.
In the inductive step, given a set V ⊆ C(u), we compute the values Du

V �v(a)
for all v ∈ C(u) \ V , a ∈ T (v), as follows. By the inductive hypothesis, we have
the values Du

V (a) for all a ∈ T (V ). The main part of the inductive step consists
in computing a set of auxiliary values Du

V,W (v), for all subsets W ⊆ C(v). Every
such value represents the weight of the shortest conforming path starting from
node u, sweeping the subtree u � T (V ), then sweeping the subtree T (W ) � v,
and finishing at node v. Suppose the path exits the subtree u � T (V ) at node x
and enters the subtree T (W ) � v at node y. We have

Du
V,W (v) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d(u, v) if V = ∅, W = ∅
miny∈T (W )

[

d(u, y) + Dv
W (y)

]

if V = ∅, W �= ∅
minx∈T (V )

[

Du
V (x) + d(x, v)

]

if V �= ∅, W = ∅
minx∈T (V );y∈T (W )

[

Du
V (x) + d(x, y) + Dv

W (y)
]

if V �= ∅, W �= ∅
(1)

(see Figure 1). The required values Dv
W (y) have been obtained when processing

subtrees T (v) for v ∈ C(u). Note that the computed auxiliary set contains
Du

V �v(v) = Du
V,C(v)(v).

Now we can compute the values Du
V �v(a) for all remaining a ∈ T (v). A

path corresponding to Du
V �v(a) must sweep u � T (V ), and then T (v), finishing
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(b) Case W �= ∅

Fig. 2. Computation of Du
V �v(a), a ∈ T (v)

at a. While in T (v), the path will first sweep a (possibly single-node) subtree
v � T (W ), finishing at v. Then, starting at v, the path will sweep the subtree
v � T (W ), where W = C(V ) \ W , finishing at a. Considering every possible
disjoint bipartitioning W � W = C(V ), such that a ∈ T (W ), we have

Du
V �v(a) = min

W�W=C(V ): a∈T (W )

[

Du
V,W (v) + Dv

W
(a)

]

(2)

(see Figure 2).
We now have the values Du

V �v(a) for all a ∈ T (v). The computation (1)–(2)
is repeated for every node v ∈ C(u) \ V . The inductive step is now completed.

The computation eventually reaches the root r of the tree, and establishes the
values Dr

S(a) for all S ⊆ C(r), a ∈ T (S). This includes the values Dr
C(r)(a) for

all a �= r. The weight of the minimum-weight conforming Hamiltonian cycle can
now be determined as

min
a�=r

[

Dr
C(r)(a) + d(a, r)

]

(3)

Theorem 1. The upsweep algorithm computes the weight of the minimum-
weight tree shortcutting in time O(4dn2) and space O(2dn).

Proof. In computation (1), the total number of quadruples u, v, x, y is at most
n2 (since for every pair x, y, the node u is determined uniquely as the lowest
common ancestor of x, y, and the node v is determined uniquely as a child of
u and an ancestor of y). In computation (2), the total number of triples u, v, a
is also at most n2 (since for every pair u, a, the node v is determined uniquely
as a child of u and an ancestor of y). For every such quadruple or triple, the
computation is performed at most 4d times, corresponding to 2d possible choices
of each of V , W . The cost of computation (3) is negligible. Therefore, the total
time complexity of the algorithm is O(4dn2).

Since our goal at this stage is just to compute the solution weight, at any
given moment we only need to store the values Du

V (a), where u is either an active
node, or the current node (i.e. the node for which these values are currently being
computed). When u corresponds to an active node, the number of possible pairs
u, a is at most n (since node u is determined uniquely as the root of an active
subtree containing a). When u corresponds to the current node, the number of
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Fig. 3. Computation of P u
V (a), a ∈ T (V ), k = 3

possible pairs u, a is also at most n (since node u is fixed). For every such pair,
we need to keep at most 2d values, corresponding to 2d possible choices of V .
The remaining space costs are negligible. Therefore, the total space complexity
of the algorithm is O(2dn). �	
Computing the full solution (downsweep). In order to reconstruct the minimum-
weight Hamiltonian cycle itself, we must keep all the auxiliary values Du

V,W (v)
obtained in the course of the upsweep computation for every parent-child pair
u, v. We solve recursively the following problem: given a node u, a set V ⊆ C(u),
and a node a ∈ T (V ), find the minimum-weight path Pu

V (a) starting from u,
sweeping subtree u�T (V ), and finishing at a. To compute the global minimum-
weight Hamiltonian cycle, it is sufficient to determine the path P r

C(r)(a), where
r is the root of the tree, and a is the node for which the minimum in (3) is
attained.

For any u, V ⊆ C(u), a ∈ T (V ), consider the (not necessarily conforming or
minimum-weight) path u = v0 → v1 → v2 → · · · → vk = a, joining nodes u and
a in the tree (see Figure 3). The conforming minimum-weight path Pu

V (a) first
sweeps the subtree u�T (C(u)\ v1). After that, for every node vi, 0 < i < k, the
path Pu

V (a) sweeps the subtree vi � T (C(vi) \ vi+1) as follows: first, it sweeps a
subtree vi �T (Wi), finishing at vi, and then, starting at vi, it sweeps the subtree
vi �T (W i), for some disjoint bipartitioning Wi �W i = C(vi) \ vi+1. Finally, the
path Pu

V (a) sweeps the subtree T (a), finishing at a.
The optimal choice of bipartitionings can be found as follows. We construct

a weighted directed graph with a source corresponding to node u = v0, a sink
corresponding to node vk = a, and k −1 intermediate layers of nodes, each layer
corresponding to a node vi, 0 < i < k. Each intermediate layer consists of at most
2d−1 nodes, representing all different disjoint bipartitionings of the set C(vi) \
vi+1. The source and the sink represent trivial bipartitionings ∅�(V \v1) = V \v1
and C(a) � ∅ = C(a), respectively. Every consecutive pair of layers (including
the source and the sink) are fully connected by forward edges. In particular,
the edge from a node representing the bipartitioning X � X in layer i, to the
node representing the bipartitioning Y � Y in layer i + 1, is given the weight
Dvi

X,Y
(vi+1). It is easy to see that an optimal choice of bipartitioning corresponds

to the minimum-weight path from source to sink in the layered graph. This
minimum-weight path can be found by a simple dynamic programming algorithm
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(such as the Bellman–Ford algorithm, see e.g. [6]) in time proportional to the
number of edges in the layered graph.

Let W1�W 1, . . . , Wk−1�W k−1 now denote the k−1 obtained optimal subtree
bipartitionings. The k edges of the corresponding source-to-sink shortest path
determine k edges (not necessarily consecutive) in the minimum-weight sweeping
path Pu

V (a). These edges are shown in Figure 3 by dotted lines. It now remains to
apply the algorithm recursively in each of the subtrees u�T (V \v1), v1 �T (W1),
v1 � T (W 1), v2 � T (W2), v2 � T (W 2), . . . , vk−1 � T (Wk−1), vk−1 � T (W k−1),
T (a).

Theorem 2. Given the output and the necessary intermediate values of the up-
sweep algorithm, the downsweep algorithm computes the edges of the minimum-
weight tree shortcutting in time and space O(4dn).

Proof. The construction of the auxiliary graph and the minimum-weight path
computation runs in time O(4dk), where k is the number of edges in the tree
path u = v0 → v1 → v2 → · · · → vk = a in the current level of recursion. Since
the tree paths in different recursion levels are edge-disjoint, the total number
of edges in these paths is at most n. Therefore, the time complexity of the
downsweep stage is O(4dn).

By Theorem 1, the space complexity of the upsweep stage is O(2dn). In ad-
dition to the storage used internally by the upsweep stage, we also need to keep
all the values Du

V,W (v). The number of possible pairs u, v is at most n (since
node u is determined uniquely as the parent of v). For every such pair, we need
to keep at most 4d values, corresponding to 2d possible choices of each of V , W .
The remaining space costs are negligible. Therefore, the total space complexity
of the algorithm is O(4dn). �	

3 Heuristics and Computational Experiments

Despite the guaranteed approximation ratio of the double-tree shortcutting and
Christofides methods, neither has performed well in previous computational ex-
periments (see [7,13]). However, to our knowledge, none of the experiments ex-
ploited the minimum-weight shortcutting approach. In particular, Reinelt [13]
compares 37 tour-constructing heuristics, including the depth-first double-tree
algorithm and the Christofides algorithm, on a set of 24 geometric instances
from the TSPLIB database [12]. Although most instances in this experiment are
quite small (2000 or fewer points), they still allow us to make some qualitative
judgement about the approximation quality of different heuristics. Double-tree
shortcutting (without the minimum-weight improvement) turns out to have the
lowest quality of all 37 heuristics, while the quality of the Christofides heuristic
is somewhat higher, but still far from the top.

Intuitively, it is clear that the reason for the poor approximation quality of
the two heuristics may be in the wrong decisions made in the shortcutting steps,
especially considering that the overall number of alternative choices is typically
exponential. This observation motivated us to implement the minimum-weight
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double-tree shortcutting algorithm from [4]. It came as no surprise that this
algorithm showed higher approximation quality than all the tour constructing
heuristics in Reinelt’s experiment. Unfortunately, Reinelt’s experiment did not
account for the running time of the algorithms under investigation. The theo-
retical time complexity of the algorithm from [4] is O(2dn3); in practice, our
implementation exhibited quadratic growth in running time on most instances.
Both the theoretical and the practical running time were relatively high, which
raised some justifiable doubts about the overall superiority of the algorithm.

As it was expected, the introduction of a new efficient minimum-weight tree
shortcutting algorithm described in Section 2 significantly improved the run-
ning time in our computational experiments. However, this improvement alone
was not sufficient for the algorithm to compete against the best existing tour-
constructing heuristics. Therefore, we extended our algorithm by two additional
heuristics, one aimed at increasing the algorithm’s speed, the other at improving
its approximation quality.

The first heuristic, aimed at speeding up the algorithm, is suggested by the
well-known bounded neighbour lists [8, p. 408]. Given a tree, we define the tree
distance between a pair of nodes a, b, as the number of edges on the unique path
from a to b in the tree. Given a parameter k, the depth-k list of node u includes
all nodes in the subtree T (u) with the tree distance from u not exceeding k. The
suggested heuristic is to limit the search across a subtree rooted at u in (1)–(2)
to a depth-k list of u for a reasonably low value of k. Our experiments suggest
that this approach improves the running time dramatically, while not having a
significant effect on the approximation quality.

The second heuristic, aimed at improving the approximation quality, works
by increasing the space of the tours searched by the double-tree method, in the
hope of finding a better solution in the larger space. Let T be a (not necessarily
minimum) spanning tree, and let Λ(T ) be the set of all tours conforming to the
tree, i.e. the exponential set of all tours considered by the double-tree algorithm.
Our goal is to construct a new tree T1, such that its node degrees are still
bounded by a constant, but Λ(T ) � Λ(T1). We refer to the new set of tours as
an enlarged tour neighborhood.

Consider a node u in T , and suppose u has at least one child v which is
not a leaf. We construct a new tree T1 from T by applying the degree increasing
operation, which makes node v a leaf, and redefines all children of v to be children
of u. It is easy to check that any tour conforming to T also conforms to T1. In
particular, the nodes of T (v), which are consecutive in any conforming tour of
T , are still allowed to be consecutive in any conforming tour of T1. Therefore,
Λ(T ) ⊆ Λ(T1). On the other hand, sequence w, u, v, where w is a child of v, is
allowed by T1 but not by T . Therefore, Λ(T ) � Λ(T1).

We apply the above degree-increasing heuristic as follows. Let D be a global
parameter, not necessarily related to the maximum node degree in the original
tree. The degree-increasing operation is performed only if the resulting new
degree of vertex u would not exceed D. Note that when the maximum degree
bound would be exceeded, this cannot be avoided by performing the degree
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increasing operation partially: it would be wrong to reassign only some, instead
of all, children of node v to a new parent. To illustrate this statement, suppose
that v has two children w1 and w2, which are both leaves. Let w2 be redefined
as a new child of u. The sequence v, w2, w1 is allowed by T but not by T1,
since it violates the requirement for v and w2 to be consecutive. Therefore,
Λ(T ) �⊆ Λ(T1).

Given a tree, the degree increasing operation is applied repeatedly to construct
a new tree, obtaining an enlarged tour neighbourhood. In our experiments, we
used breadth-first application of the degree increasing operation as follows:

Root the minimum spanning tree at a node of degree 1;
Let r′ denote the unique child of the root;
Insert all children of r′ into queue Q;
while queue Q is not empty do

extract node v from Q;
insert all children of v into Q;
if deg(parent(v)) + deg(v) ≤ D then

redefine all children of v to be children of parent(v)

Incorporating the above two heuristics, the minimum-weight double-tree al-
gorithm from Section 2 was modified to take two parameters: the search depth
k, and the degree-increasing limit D. We refer to the double-tree algorithm with
fixed parameters k and D as a double-tree heuristic DTD,k. We use DT with-
out subscripts to denote the original minimum-weight double-tree algorithm,
equivalent to DT1,∞.

We compared experimentally the efficiency of the original algorithm DT with
the efficiency of double-tree heuristics DTD,k for two different search depths
k = 16, 32, and for four different values for the maximum degree parameter
D = 1 (no degree increasing operation applied), 3, 4, 5. The case D = 2 is essen-
tially equivalent to D = 1, and therefore not considered. In our computational
experiments we used the test data from DIMACS Implementation Challenge
[8,2]. These are uniform random Euclidean instances with 1000 points (10 in-
stances), 3162 points (five instances), 10000 points (three instances), 31623 and
100000 points (two instances of each size), 316228, 1000000, and 3168278 points
(one instance of each size).

For each heuristic, we consider both its running time and approximation qual-
ity. We say that one heuristic dominates another, if it is superior in both these
respects. The experimental results, presented in Table 1, clearly indicate that
nearly all considered heuristics (excluding DT1,16) dominate plain DT. More-
over, all these heuristics (again excluding DT1,16) dominate DT on each individ-
ual instance used in the experiment. For further comparison of the double-tree
heuristics with existing tour-constructing heuristics, we chose DT1,16 and DT5,16.

The main part of our computational experiments consisted in comparing
the double-tree heuristics against the most powerful existing tour-constructing
heuristics. As a base for comparison, we chose the heuristics analysed in [8],
as well as two recent matching-based heuristics from [9]. The experiments were
performed on a Sun Systems Enterprise Server E450.
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Table 1. Results for DT and DTD,k on uniform Euclidean distances

Size 1000 3162 10K 31K 100K 316K 1M 3M

DT 7.36 7.82 8.01 8.19 8.39 8.40 8.41 –

DT1,16 8.64 9.24 9.10 9.43 9.74 9.66 9.72 9.66

DT3,16 6.64 6.97 7.04 7.37 7.51 7.53 7.55 7.50

DT3,32 6.52 6.84 6.92 7.21 7.31 7.36 7.37 7.31

DT4,16 6.00 6.27 6.39 6.69 6.82 6.87 6.85 –

DT4,32 5.93 6.22 6.33 6.60 6.74 6.78 6.77 –

DT5,16 5.67 5.91 5.97 6.27 6.43 6.51 6.47 –

DT5,32 5.62 5.89 5.93 6.23 6.38 6.46 6.43 –

(a) Average excess over theHeld–Karp bound (%)

Size 1000 3162 10K 31K 100K 316K 1M 3M

DT 0.18 1.56 15.85 294.38 3533 51147 156659 –

DT1,16 0.04 0.14 0.47 1.57 5.60 20.82 101.09 388.52

DT3,16 0.10 0.33 1.12 3.55 11.90 40.91 138.41 491.58

DT3,32 0.18 0.69 2.45 7.56 25.46 82.99 269.73 935.55

DT4,16 0.23 0.84 2.78 8.81 29.02 94.36 307.31 –

DT4,32 0.45 2.00 6.93 22.11 74.70 236.33 744.50 –

DT5,16 0.62 2.30 7.79 24.48 81.35 253.59 807.74 –

DT5,32 1.11 5.74 20.73 65.96 224.34 695.03 2168.95 –

(b) Average normalised running time (s)

� � � � � �� �� �� ��

�

�

�

�

	

��

��

��

�


��

��

����� ��������� ������� ��� ���

�
�
�
�
�

�
�
��

��
�
��

�
�
�
 !
�
�"
#
�
�
�
�
�$
�

�

%&����

�
'�� (

�
���

�
)��

�

*+

�

'�� )

�
,��

�
'�� �!

�

%&����

�

%&����

Fig. 4. Comparison between established heuristics and DT-heuristics on uniform Eu-
clidean instances with 10000 points

Table 2 shows the results of these experiments. Abbreviations of the heuris-
tics in the table follow [8,9]. As seen from the table, the average approximation
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Table 2. Comparison between established heuristics and DT-heuristics on uniform
Euclidean instances

Size 1000 3162 10K 31K 100K 316K 1M 3M

RA+ 13.96 15.25 15.04 15.49 15.43 15.42 15.48 15.47

Chr-S 14.48 14.61 14.81 14.67 14.70 14.49 14.59 14.51

FI 12.54 12.47 13.35 13.44 13.39 13.43 13.47 13.49

Sav 11.38 11.78 11.82 12.09 12.14 12.14 12.14 12.10

ACh 11.13 11.00 11.05 11.39 11.24 11.19 11.18 11.11

Chr-G 9.80 9.79 9.81 9.95 9.85 9.80 9.79 9.75

Chr-HK 7.55 7.33 7.30 6.74 6.86 6.90 6.79 –

MTS1 6.09 8.09 6.23 6.33 6.22 6.20 – –

MTS3 5.26 5.80 5.55 5.69 5.60 5.60 – –

DT1,16 8.64 9.24 9.10 9.43 9.74 9.66 9.72 9.66

DT5,16 5.67 5.91 5.97 6.27 6.43 6.51 6.47 –

(a) Average excess over the Held–Karp bound (%)

Size 1000 3162 10K 31K 100K 316K 1M 3M

RA+ 0.06 0.23 0.71 1.9 5.7 13 60 222

Chr-S 0.06 0.26 1.00 4.8 21.3 99 469 3636

FI 0.19 0.76 2.62 9.3 27.7 65 316 1301

Sav 0.02 0.08 0.26 0.8 3.1 21 100 386

ACh 0.03 0.12 0.44 1.3 3.8 28 134 477

Chr-G 0.06 0.27 1.04 5.1 21.3 121 423 3326

Chr-HK 1.00 3.96 14.73 51.4 247.2 971 3060 –

MTS1 0.37 2.56 17.21 213.4 1248 11834 – –

MTS3 0.46 3.55 24.65 989.1 2063 21716 – –

DT1,16 0.04 0.14 0.47 1.57 5.60 20.82 101 389

DT5,16 0.62 2.30 7.78 24.48 81.35 254 808 –

(b) Average normalised running time (s)

quality of DT1,16 turns out to be higher than all classical heuristics considered
in [8], except Chr-HK. Moreover, heuristic DT1,16 dominates heuristics RA+,
Chr-S, FI, Chr-G. Heuristic DT5,16 dominates Chr-HK. Heuristic DT5,16 also
compares very favourably with MTS heuristics, providing similar approxima-
tion quality at a small fraction of the running time. The above results show
clearly that double-tree heuristics deserve a prominent place among the best
tour-constructing heuristics for Euclidean TSP.

The impressive success of double-tree heuristics must, however, be approached
with some caution. Although the normalised time is an excellent tool for com-
paring results reported in different computational experiments, it is only an ap-
proximate estimate of the exact running time. According to [8, page 377], “[this]
estimate is still typically within a factor of two of the correct time”. Therefore,
as an alternative way of representing the results of computational experiments,
we suggest a graph of the type shown in Figure 4, which compares the heuristics’
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Table 3. Comparison between established heuristics and DT-heuristics on clustered
Euclidean instances

Size 1000 3162 10K 31K 100K 316K

RA+ 12.84 13.88 16.08 15.59 16.22 16.33

Chr-S 12.03 12.79 13.08 13.47 13.50 13.45

FI 9.90 11.85 12.82 13.37 13.96 13.92

Sav 13.51 15.97 17.21 17.93 18.20 18.50

ACh 10.21 11.01 11.47 11.78 12.00 11.81

Chr-G 8.08 9.01 9.21 9.47 9.55 9.55

Chr-HK 7.27 7.78 8.37 8.42 8.46 8.56

MTS1 8.90 9.96 11.97 11.61 9.45 –

MTS3 8.52 9.5 10.11 9.72 9.46 –

DT4,16 6.37 8.24 8.79 9.40 9.38 9.39

DT5,16 5.72 7.17 7.92 8.32 8.46 8.42

(a) Average excess over the Held–Karp
bound (%)

Size 1000 3162 10K 31K 100K 316K

RA+ 0.1 0.2 0.7 1.9 5.5 12.7

Chr-S 0.2 0.8 3.2 11.0 37.8 152.8

FI 0.2 0.8 2.9 9.9 30.2 70.6

Sav 0.0 0.1 0.3 0.9 3.4 22.8

ACh 0.0 0.2 0.8 2.1 6.4 54.2

Chr-G 0.2 0.8 3.2 11.0 37.8 152.2

Chr-HK 0.9 3.3 11.6 40.9 197.0 715.1

MTS1 0.78 4.19 45.09 276 1798 –

MTS3 0.84 4.76 49.04 337 2213 –

DT4,16 0.2 0.87 3.16 9.55 34.43 120.3

DT5,16 1.12 4.85 16.08 53.35 174 569

(b) Average normalised running time (s)

average approximation quality and running time on random uniform instances
with 10000 points. A normalised time t is represented by the interval [t/2, 2t].
The relative position of heuristics in the comparison and the dominance rela-
tionships can be seen clearly from the graph. Results for other instance sizes and
types are generally similar.

Additional experimental results for clustered Euclidean instances are shown
in Table 3 (with DT1,16 replaced by DT4,16 to illustrate more clearly the overall
advantage of DT-heuristics), and for TSPLIB instances in Table 4.

While we have done our best to compare the existing and the proposed heuris-
tics fairly, we understand that our experiments are not, strictly speaking, a “blind
test”: we had the results of [8] in advance of implementing our method, and in
particular of selecting the top DT-heuristics for comparison. However, we never
consciously adapted our choices to the previous knowledge of [8], and we believe
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Table 4. Comparison between established heuristics and DT-heuristics on geomet-
ric instances from TSPLIB: pr1002, pcb1173, rl1304, nrw1379 (size 1000), pr2392,
pcb3038, fnl14461 (size 3162), pla7397, brd14051 (size 10K), pla33810 (size 31K),
pla859000 (size 100K)

Size 1000 3162 10K 31K 100K

RA+ 17.46 16.28 17.78 19.88 17.39

Chr-S 13.36 14.17 13.41 16.50 15.46

FI 15.59 14.28 13.20 17.78 15.32

Sav 11.96 12.14 10.85 10.87 19.96

ACh 9.64 10.50 10.22 11.83 11.52

Chr-G 8.72 9.41 8.86 9.62 9.50

Chr-HK 7.38 7.12 7.50 6.90 7.42

MTS1 7.0 6.9 5.1 4.7 4.1

MTS3 6.2 5.1 4.0 2.9 2.7

DT1,16 6.36 5.99 8.09 9.99 10.02

DT5,16 6.13 5.58 7.65 8.98 9.30

(a) Average excess over the Held–Karp
bound (%)

Size 1000 3162 10K 31K 100K

RA+ 0.1 0.2 0.8 2.2 5.6

Chr-S 0.1 0.2 1.8 3.9 31.8

FI 0.2 0.8 3.1 9.8 26.4

Sav 0.0 0.1 0.3 0.6 1.4

ACh 0.0 0.1 0.5 1.5 3.9

Chr-G 0.1 0.2 1.8 3.8 29.5

Chr-HK 0.7 2.2 9.7 50.1 177.9

MTS1 – 1.5 34.4 107.3 620.0

MTS3 – 2.1 42.4 135.4 1045.3

DT1,16 0.3 0.9 4.1 18.4 49.3

DT5,16 0.6 2.1 11.0 57.1 115.1

(b) Average normalised running time
(s)

that any subconscious effect of this previous knowledge on our experimental
setup is negligible.

4 Conclusions and Open Problems

In this paper, we have presented an improved algorithm for finding the minimum-
weight double-tree shortcutting approximation for Metric TSP. We challenged
ourselves to make the algorithm as efficient as possible. The improvement in time
complexity from O(2dn3) to O(4dn2) (which implies O(n2) for the Euclidean
TSP) placed the minimum-weight double-tree shortcutting method as a peer in
the set of the most powerful tour-constructing heuristics. It is known that most
powerful tour-constructing heuristics have theoretical time complexity O(n2), an
in practice often exhibit near-linear running time. The minimum-weight double-
tree method now also fits this pattern.

Our results should be regarded only as a first step in exploring new opportu-
nities. Particularly, the minimum spanning tree is not the only possible choice
of the initial tree. Instead, one can choose from a variety of trees, e.g. Held
and Karp (1-)trees, approximations to Steiner trees, spanning trees of Delaunay
graphs, etc. This variety of choices merits a further detailed exploration.

Our efforts invested into theoretical improvements of the algorithm, supported
by a couple of additional heuristics, have borne the fruit: computational experi-
ments with the minimum-weight double-tree algorithm show that it becomes one
of the best known tour constructing heuristics. It appears that the double-tree
method is well suited for local search heuristics based of transformations of trees
and searching corresponding tour neighborhoods. One can easily imagine many
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alternative tree transformation heuristics that could make our method even more
powerful.
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Abstract. This paper presents a robust branch-cut-and-price algorithm
for the Heterogeneous Fleet Vehicle Routing Problem (HFVRP), vehicles
may have various capacities and fixed costs. The columns in the formu-
lation are associated to q-routes, a relaxation of capacitated elementary
routes that makes the pricing problem solvable in pseudo-polynomial
time. Powerful new families of cuts are also proposed, which are ex-
pressed over a very large set of variables. Those cuts do not increase the
complexity of the pricing subproblem. Experiments are reported where
instances up to 75 vertices were solved to optimality, a major improve-
ment with respect to previous algorithms.

1 Introduction

This work considers a direct generalization of the classical Capacitated Vehi-
cle Routing Problem (CVRP): the Heterogeneous Fleet Vehicle Routing Problem
(HFVRP). Instead of assuming that all vehicles are identical, there is an avail-
ability of several vehicle types, with different characteristics. This generalization
is very important to the operations research practice, most actual vehicle routing
applications deal with heterogenous fleets. This problem has mostly been tackled
by heuristics, some recent references include [5,9,12,13,15]. On the other hand,
several authors explicitly commented about the difficulty of solving HFVRP
instances to optimality or even of finding strong lower bounds [2,5,16,17]. We
could not find any work claiming optimal solutions on any classical benchmark
instance, even those with just 20 clients.

We define formally the problem. Let G = (V, A) be a directed graph with
vertices V = {0, 1, . . . , n} and m = |A| arcs. Vertex 0 is the depot. The clients are
the remaining vertices. Each client vertex i is associated with a positive integer
demand d(i). Depot demand d(0) is defined as zero. There exists a fleet of K
vehicle types, with integral capacities {C1, . . . , CK} and fixed costs {f1, . . . , fK}.
For each arc a ∈ A there is a nonnegative travelling cost ca. The HFVRP consists
of finding a set of vehicle routes satisfying the following constraints: (i) each
route, starting and ending at the depot, is assigned to a vehicle type k, (ii) each

C. Demetrescu (Ed.): WEA 2007, LNCS 4525, pp. 150–160, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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client is included in a single route, and (iii) the total demand of all clients in a
route is at most the capacity Ck of the chosen type. The goal is to minimize the
sum of arc and fixed costs. We assume that C1 ≤ . . . ≤ CK . For ease of notation,
C will be used as a shorthand for CK , the largest capacity.

The first lower bounds for the HFVRP were proposed by Golden et al. [6].
Stronger bounding schemes were proposed recently. Westerlund et al. [16] pro-
posed an extended formulation and some valid cuts. This was only tested in a
small sized instance with 12 clients. Choi and Tcha [2] produced lower bounds
by using column generation. They are not good enough to build an effective
branch-and-price algorithm. However, the approach of solving the restricted MIP
provided by the columns generated at the root node proved to be a successful
heuristic, obtaining the best known upper bounds on most benchmark instances
from the literature. Yaman [17] performed a deep theoretical analysis of several
different formulations and valid cuts. Practical experiments showed that this can
lead to good lower bounds, but they are still not good enough for allowing the
exact solution of the test instances.

This work departs from an extended HFVRP formulation to generate new
valid cuts. It is shown that these cuts can be incorporated into a Branch-Cut-and-
Price (BCP) algorithm in a robust way, i.e., without increasing the complexity of
the pricing, as defined by Poggi de Aragão and Uchoa[11]. Computational exper-
iments show that very strong lower bounds are obtained. In particular, instances
with up to 75 clients can now be solved to optimality in reasonable times.

2 Formulations and Valid Cuts

There is an extended formulation for the HFVRP similar to the one given by
Piccard and Queyranne [10] for the time-dependent TSP. Define V+ = {1, . . . , n}
as the set of all clients. Let binary variables xd

a indicate that arc a = (i, j) belongs
to a route (of any vehicle type) and that the total demand of the remaining
vertices in the route (including j) is exactly d. The arcs returning to the depot
only have a variable with index d = 0. The capacity-indexed formulation follows:

Minimize
∑

a∈A

C
∑

d=0
ĉd
axd

a (1a)

S.t.
∑

a∈δ−(i)

C
∑

d=1
xd

a = 1 (∀ i ∈ V+), (1b)

∑

a∈δ−(i)
xd

a −
∑

a∈δ+(i)
x

d−d(i)
a = 0 (∀ i ∈ V+; d = d(i), . . . , C), (1c)

xd
a ∈ {0, 1} (∀ a ∈ A; d = 1, . . . , C), (1d)
xd

(i,0) = 0 (∀ i ∈ V+; d = 1, . . . , C) (1e)

x0
(i,0) ∈ {0, 1} (∀ i ∈ V+). (1f)

Equations (1b) are in-degree constraints. Equations (1c) state that if an arc
with index d enters vertex i then an arc with index d − d(i) must leave i. Costs
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ĉd
a, a = (i, j), are equal to ca if i �= 0. Otherwise they are defined as ca + fk,

where k is the index of smaller vehicle with capacity Ck ≥ d. Variables with
index distinct from 0 to the depot can be removed. Note that variables xd

ij

with d > C − d(i) and with d < d(j) can also be removed. To provide a more
simple and precise notation when using the capacity-indexed variables, we define
a directed multigraph GC = (V, AC), where AC contains arcs (i, j)d, for each
(i, j) ∈ A, d = 1, . . . , C − d(i), and (i, 0)0, i ∈ V+. In this context, it is assumed
that δ−(S) and δ+(S) are the subsets of arcs in AC , with any index, entering
and leaving S. Denote by δ−d (S) and δ+

d (S) the sets of arcs with index d entering
and leaving S. For example, equations (1b) will be written as

∑

ad∈δ−(i)

xd
a = 1, (∀ i ∈ V+).

Working directly with this formulation is only practical for small values of ca-
pacity, as there areO(mC) variables and O(nC) constraints.The capacity-indexed
formulation can be naturally rewritten in terms of q-routes. A q-route [3] is a walk
that starts at the depot vertex, traverses a sequence of client vertices with total
demand at most equal to a given capacity, and returns to the depot. Some vertices
may be visited more than once, therefore the set of q-routes strictly contains the
set of actual routes. For each capacity Ck, k = 1, . . . , K, suppose we have pk possi-
ble q-routes. Define now qdj

ak as the number of times arc a carrying exactly d units
of capacity is traversed in the j-th q-route for vehicles with capacity Ck.

Minimize
∑

ad∈A

ĉd
axd

a (2a)

S.t.
K
∑

k=1

pk
∑

j=1
qdj
akλkj − xd

a = 0 (∀ ad ∈ AC), (2b)

∑

ad∈δ−(i)
xd

a = 1 (∀ i ∈ V+), (2c)

λkj ≥ 0 (k = 1, . . . , K; j = 1, . . . , pk), (2d)
xd

a ∈ {0, 1} (∀ ad ∈ AC). (2e)

It can be noted that equalities (1c) are implied by the definition of q-routes
together with (2b). In fact (1) and (2) are equivalent in terms of their linear
relaxation bounds. Eliminating the x variables and relaxing the integrality con-
straints, we get the Dantzig-Wolfe Master (DWM):

Minimize
K
∑

k=1

pk
∑

j=1
(

∑

ad∈AC

qdj
ak ĉd

a)λkj (3a)

S.t.
K
∑

k=1

pk
∑

j=1
(

∑

ad∈δ−(i)
qdj
ak)λkj = 1 (∀ i ∈ V+), (3b)

λkj ≥ 0 (k = 1, . . . , K; j = 1, . . . , p). (3c)
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This LP has an exponential number of variables, but can be efficiently solved by
column generation. The pricing subproblem amounts to finding minimum cost
q-routes with given capacities Ck. This can be done in O(n2C) time by dynamic
programming. However, in order to obtain stronger lower bounds one may also
add cuts. A generic cut i over the extended variables

∑

ad∈AC

αd
aix

d
a ≥ bi (4)

can be also included in the DWM as

K
∑

k=1

pk

∑

j=1

(
∑

ad∈AC

αd
aiq

dj
ak)λkj ≥ bi. (5)

Suppose that, at a given instant, we have a total of m constraints (including the
in-degree constraints) in the DWM, the i-th constraint having with dual variable
βi. We define the reduced cost of arc a with index d as:

c̄d
a = ca −

m
∑

i=1

αd
aiβi. (6)

The resulting pricing subproblem, finding minimum cost q-routes with respect
to capacity-indexed reduced costs c̄d

a can still be solved in O(n2C) time, basi-
cally by the same dynamic programming algorithm. The above reformulation
presents remarkable features. It allows the introduction of new cuts over the
capacity-indexed variables, even for large values of C, without having to explic-
itly introduce any new variables and without changing the pricing subproblem.

2.1 Extended Capacity Cuts

For any set S ⊆ V+, define d(S) =
∑

i∈S d(i) and κ(S) = �d(S)/C	. The well-
known Asymmetric CVRP cut

∑

ad∈δ−(S) xd
a ≥ κ(S) is also valid for the HFVRP.

However, this rounded capacity cut is usually ineffective, since κ(S), a lower
bound on the number of routes that must enter S, is obtained by only considering
the largest possible route capacity C. We introduce a family of stronger cuts over
the capacity-indexed variables that are more suited for the HFVRP. For each
vertex i ∈ V+ the following balance equation is valid:

∑

ad∈δ−(i)
dxd

a −
∑

ad∈δ+(i)
dxd

a = d(i) . (7)

Summing the equalities (7) corresponding to each i ∈ S, we get the capacity-
balance equation over S:

∑

ad∈δ−(S)
dxd

a −
∑

ad∈δ+(S)
dxd

a = d(S) . (8)

It can be noted that those equations are always satisfied by the solutions of (3)
(translated to the xd space by (2b)). Nevertheless, they can be viewed as the
source of a rich family of cuts.
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Definition 1. An Extended Capacity Cut (ECC) over S is any inequality valid
for P (S), the polyhedron given by the convex hull of the 0-1 solutions of (8).

The rounded capacity cuts could be derived only from the above definition: for
a given S relax (8) to ≥, divide both sides by C and round coefficients up.
Remember that δ+(S) contains no arc with capacity C, so all such coefficients
are rounded to zero. All coefficients corresponding to δ−(S) are rounded to one.
However, one may take advantage of the capacity-indices to get a strengthened
rounded capacity cut:

κ(S) + 1
κ(S)

∑

ad∈δ−(S) : d>d∗

xd
a +

∑

ad∈δ−(S) : d≤d∗

xd
a

− 1
κ(S)

∑

ad∈δ+(S) : d≥d′

xd
a ≥ κ(S) + 1, (9)

where d∗ = d(S) − C(κ(S) − 1) − 1 and d′ is the smallest integer such that
(i) d′ ≥ d∗ + 1 − mini∈S{d(i)} and (ii) d′ ≥ C − d∗. This is valid because if
at least one route enters S with capacity d ≤ d∗, we still need at least κ(S)
additional routes to cover S. Moreover, observe that each arc ad1

1 ∈ δ−(S) is
associated to the next arc ad2

2 ∈ δ+(S) in the same route. Then, if at least one
pair of associated arcs has d1 − d2 ≤ d∗, we still need κ(S) additional entering
routes. If a route leaves S with d ≥ d′, then (i) ensures that the corresponding
arc entered S with demand greater than d∗ and (ii) ensures that the capacity
actually left in S by this route is not greater than d∗. So, the coefficient −1/κ(S)
reduces the total contribution of such pair of arcs to the left-hand side of (9)
from (κ(S) + 1)/κ(S) to 1.

Many other kinds of ECCs can be derived. The Homogeneous Extended Capac-
ity Cuts (HECCs) are a subset of the ECCs where all entering variables with the
same capacity have the same coefficients, the same happening with the leaving
variables. For a given set S, define aggregated variables yd and zd as follows:

yd =
∑

ad∈δ−
d (S)

xd
a (d = 1, . . . , C), (10)

zd =
∑

ad∈δ+
d (S)

xd
a (d = 0, . . . , C). (11)

The capacity-balance equation over those variables is:

C
∑

d=1
dyd −

C
∑

d=0
dzd = d(S) . (12)

For each possible pair of values of C and D = d(S), we may define the polyhedron
P (C, D) induced by the integral solutions of (12). The inequalities that are valid
for those polyhedra are HECCs. In Subsection 3.2 we illustrate how valid cuts
can be derived and separated from that equality. Similar cuts have already been
used with success on the Capacitated Minimum Spanning Tree Problem [14].
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2.2 Triangle Clique Cuts

Let S ⊆ V+ be a set of exactly three vertices. The triangle clique cuts are a
family of cuts defined over the variables xd

a, with ad = (i, j)d ∈ AC and i, j ∈ S.
Let G = (V , E) be the compatibility graph where each vertex of V is a capacity-
indexed arc ad = (i, j)d ∈ AC with i, j ∈ S. In this case, an edge e = (ad1

1 , ad2
2 )

belongs to E if and only if ad1
1 and ad2

2 are compatible. There are four cases:

Case 1: if e = ((i, j)d1 , (i, k)d2), then e �∈ E ;
Case 2: if e = ((i, j)d1 , (k, j)d2), then e �∈ E ;
Case 3: if e = ((i, j)d1 , (j, k)d2) and d1 �= d2 + d(j), then e �∈ E ;
Case 4: if e = ((i, j)d1 , (j, k)d2) and d1 = d2 + d(j), then e ∈ E ;

For any independent set I ⊂ V , it is clear that the following inequality is valid
∑

ad∈I

xd
a ≤ 1. (13)

This is a well-known clique cut. However G has a nice structure that can be
explored to build a very efficient separation procedure, as will be shown in Sub-
section 3.2.

3 A Robust Branch-Cut-and-Price Algorithm

3.1 Column Generation

Recall that the reduced cost of a λ variable in DWM (3) is the sum of the
reduced costs c̄d

a of the arcs in the corresponding q-route. Those reduced costs
are calculated using equations (6). The pricing subproblem of finding the q-
routes yielding a variable with minimum reduced cost is NP-hard (it contains
the capacitated shortest path problem), but can be solved in pseudo-polynomial
O(n2Ck) time. Since the reduced costs of the arcs that are not leaving the depot
are independent of k, it is possible to price q-routes for every capacity Ck by
making a single call (with Ck = C) to this dynamic programming algorithm.
Houck et al. [7] and Christofides et al. [3] already noted that one can find q-
routes without 2-cycles (subpaths i → j → i, i �= 0) without changing this
complexity. This immediately leads to a stronger formulation.

There is an important detail that must be taken into account in this column
generation. Our HFVRP formulation is directed, but the benchmark instances
from the literature are undirected. This should not be a problem, the directed
problem is more general and contains the undirected case. However this leads
to a symmetric cost structure, allowing two representations (the two possible
arc orientations) for what is essentially the same q-route (or route). As a conse-
quence, a convergence difficulty may appear. Cuts that are asymmetric regarding
the arcs that enter or exit a subset of vertices may become not violated by sim-
ply changing the orientation of one or a few q-routes, without increasing the
lower bound. This is the case for all the ECCs. We can deal with this difficulty
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by requiring that, on undirected instances, the first client visited by a q-route
must have a smaller identification than the last client. The modified algorithm
has a worst case complexity of O(n3C), but several specific data structures can
be used to improve the average case performance. In practice, this symmetry
breaking strategy only introduces a small factor on the computing time.

3.2 Separation Routines

Let λ̄ be a fractional solution of the DWM LP. This solution can be converted into
a x̄ solution over the capacity-indexed arc space using equations (2b). Violated
cuts of form (4) can be separated and added to the DWM as (5).

Extended Capacity Cuts Our procedure starts by choosing candidate sets S.
Those candidates include:

– All sets S up to cardinality 6 which are connected in the support graph of
the fractional solution x̄, i.e., the subgraph of G containing only the arcs a
where some value x̄d

a is positive. This connectivity restriction prevents an
explosion on the number of enumerated sets. As proved in [14], if an ECC
is violated over a set S composed of two or more disconnected components,
there exists another violated ECC over one of those smaller components.

– The sets with cardinality larger than 6 that are inspected in the heuristic
separation of rounded capacity cuts presented in [8]. The rationale is that if
the rounded capacity cut is almost violated for a given set S, it is plausible
that an extended capacity can be violated over that set. In particular, if the
rounded capacity cut is violated, the ECC (9) will be certainly violated.

So, for each candidate set S, we first check if the strengthened rounded capacity
cut (9) is violated. Then we try to separate HECCs from the equation (12) over
S. In particular, we look for inequalities of the following form:

C
∑

d=1
�rd	yd −

C−1
∑

d=1
�rdzd ≥ �rd(S)	 , (14)

where 0 < r ≤ 1. As discussed in [14], at most 0.3C2 rational multipliers r need
to be tried in this integer rounding procedure.

Triangle Clique Cuts The separation procedure for the triangle clique cuts finds
the independent set I ⊂ V in G that maximizes

∑

ad∈I

x̄d
a. Although the problem

of finding a maximum-weight independent set is strongly NP-hard for general
graphs, such an independent set can be found for G in a linear time by exploiting
its very specific structure. It can be shown that G is actually a collection of chains,
i.e., all its vertices have degree 1 or 2.

3.3 Branching with Route Enumeration

We branch over the edges of the undirected graph associated to G. We choose
the pair {i, j} such that the value x̄{i,j} =

∑C
d=0(x̄

d
(i,j) + x̄d

(j,i)) is closer to 0.65.
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On the left branch node we require that x̄{i,j} must be 0, on the right branch
node this must be greater or equal to 1. It can be shown that this is a valid
branching strategy.

However, in order to improve the performance of our algorithm, we combine
this traditional branching with a route enumeration technique inspired by the
one described in Baldacci et al. [1]. When the integrality gap, the difference
between the best known feasible solution and the current LP relaxation is suf-
ficiently small, those authors found that it may be practical to enumerate all
possible relevant elementary q-routes, i.e., all routes that have a chance of being
part of the optimal solution. A route is non-relevant if (i) its reduced cost (with
respect to the current values of (6)) is greater than the gap, or (ii) there exists
another route visiting the same set of clients with smaller cost (with respect
to the original arc costs ca). If the number of relevant routes is not too large
(say, in the range of tenths of thousands), the overall problem may be solved
by feeding a general MIP solver with a set-partition formulation containing only
those routes. If this set-partition can be solved, the optimal solution will be
found and no branch will be necessary. Sometimes this leads to very significant
speedups when compared to traditional branch strategies. However, it should
be remarked that such route enumeration is an inherently exponential proce-
dure. Its practical performance depends crucially on the gap value and it is also
sensitive to the characteristics of the instance that is being solved. There is no
guarantee that a combinatorial explosion will not happen, even on small sized
instances.

Our hybrid strategy, devised to provide a robust approach, is to perform
limited route enumerations (one for each vehicle type) after each branch-and-
bound node is solved. This means that the enumeration is aborted if more than
40,000 relevant routes for some type k were already generated or if more than
600,000 states (partial non-dominated routes) are being kept by our dynamic
programming algorithm. If those limits are not reached, a set-partition contain-
ing all relevant routes for each vehicle type is given to a MIP solver. If this
can be solved in less than 50,000 branch-and-bound nodes, the original node
is declared as solved and no branch will occur. Otherwise, the edge branching
is performed and two more nodes must be solved. Of course, deeper nodes will
have smaller gaps, at some point the enumeration will work. The overall effect
may be a substantially smaller branch-and-bound tree. For example, where the
traditional branching would need to reach depth 15, the hybrid strategy does
not go beyond depth 7.

Our BCP also uses the route enumeration as an heuristic. If the actual gap
g of a node is still too large and the limits are reached, we try the enumeration
with a dummy gap of g/2. If this is still not enough, we try with g/4 and so on. If
the enumeration now succeeds, we try an increased dummy gap of (g/2+g/4)/2.
In short, we perform a sort of binary search to determine a dummy gap that will
yield a set-partition of reasonable size. The solution of such MIPs may provide
improved upper bounds.
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Finally, we should remark that the route enumeration is a quite sophisticated
dynamic programming procedure, several tricks are necessary to prevent an early
explosion on the number of states.

4 Experiments

We tested the resulting algorithm for the HFVRP on the set of instances given
in Golden et al. [6], which is the same used in the experiments reported by
Yaman [17] and by Choi and Tcha [2]. We compare the lower bounds provided
by the last two algorithms with our approach. The computational times from
Yaman [17] correspond to experiments running on a Sun Ultra 12 × 400 MHz,
while that from Choi and Tcha [2] are on a Pentium IV 2.6 GHz. Our code was
executed on a Core 2 Duo running at 2.13 GHz with 2 GB of RAM. Linear
programs and set-partition MIPs were solved by CPLEX 10.0. In all runs, we
set the initial UB slightly higher than those reported in [2].

The comparison of root lower bounds are presented in Table 1, where the
columns with header k and C contain the number of different types of vehicles
and the largest capacity, respectively. It is worth noting that the bounds from
Yaman [17], given in the columns Yam., are obtained with a branch-and-cut on
a flow formulation. The bounds from Choi and Tcha [2], columns Choi, come
from a column generation algorithm on q-routes with 2 cycle elimination. Our
algorithm for the HFVRP executes with 2 cycle elimination and route symmetry
breaking. We report the previous best known upper bounds and the upper bound
found by our algorithm. Values proved to be optimal are printed bold.

Additional BCP statistics are presented in Table 2, where the 2nd, 3rd and
4th columns contain the number of cuts of each type inserted in the root node.
The headers SRCC, Rd ECC and Clique mean strengthened rounded capacity
cuts, HECCs obtained by integer rounding and triangle clique cuts, respectively.
The following 4 columns contain the execution times spent in the root node
with column generation, LP solving, cut separation, and route enumeration +

Table 1. Comparison of Root Lower Bounds

Inst. K C Yam. Yam. Choi Choi Our Our Prev Our
LB Time(s) LB Time(s) LB Time(s) UB UB

c20-3 5 120 912.40 – 951.61 0.4 961.03 3.2 961.03 961.03
c20-4 3 150 6369.51 – 6369.15 0.7 6437.33 6.6 6437.33 6437.33
c20-5 5 120 959.29 – 988.01 0.8 1000.79 14.3 1007.05 1007.05
c20-6 3 150 6468.44 – 6451.62 0.4 6516.47 8.4 6516.47 6516.47
c50-13 6 200 2365.78 397.1 2392.77 10.1 2401.01 152.8 2406.36 2406.36
c50-14 3 300 8943.94 175.6 8748.57 50.8 9111.69 335.9 9119.03 9119.03
c50-15 3 160 2503.61 142.8 2544.84 10.0 2573.38 352.2 2586.37 2586.37
c50-16 3 140 2650.76 142.1 2685.92 11.3 2706.21 358.3 2720.43 2720.43
c75-17 4 350 1689.93 1344.8 1709.85 206.9 1717.47 4729.2 1744.83 1734.52
c75-18 6 400 2276.31 1922.8 2342.84 70.1 2351.31 5154.3 2371.49 2369.64
c100-19 3 300 8574.33 1721.2 8431.87 1178.9 8648.93 2938.1 8661.81 * 8661.81
c100-20 3 200 3931.79 2904.0 3995.16 264.0 4005.41 3066.7 4039.49 -

avg gap 2.64% 1.61% 0.44%

* The solution presented in [15] as having cost 8659.74 actually costs 8665.75.
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Table 2. Branch-Cut-and-Price Statistics

# Root Cuts Root Times
Instance SRCC Rd Clique Col LP Cut Enum # Total

ECC Gen Sep +SP Nodes Time

c20-3 38 71 17 1.6 0.4 0.6 0.2 1 3.2
c20-4 119 140 14 2.5 1.1 2.5 0.3 1 6.6
c20-5 104 73 17 6.3 0.9 5.4 0.6 1 14.3
c20-6 129 72 3 3.7 0.6 3.3 0.3 1 8.4
c50-13 256 152 39 60.1 4.4 49.2 29.3 1 152.8
c50-14 1065 285 52 75.0 30.5 72.6 143.8 1 335.9
c50-15 346 252 43 49.5 8.6 42.6 239.9 1 352.2
c50-16 185 181 52 54.9 3.6 105.7 175.3 1 358.3
c75-17 431 151 77 313.4 24.8 193.7 3720.9 – –
c75-18 231 214 56 264.6 5.5 265.9 4578.5 125 84286
c100-19 809 241 104 634.8 58.3 331.1 1893.2 – –
c100-20 165 213 83 267.9 8.4 230.5 2496.4 – –

set-partition solving, respectively. The last two columns show the total number
of open nodes and the overall execution time by the BCP. No branching was
required on instances with up to 50 clients, the number of relevant routes enu-
merated is small enough to solve the instance by solving a single set-partition
problem. Instance c75-18 could be solved by the hybrid strategy, branching till
the gap is small enough for the enumeration.

5 Comments

This text presented a RBCP for the HFVRP. The use of cuts defined over the ex-
tended formulation seems very promising and deserves further development. The
ECCs here utilized, strengthened rounded capacity cuts and HECCs obtained
by simple integer rounding can still be improved and better separated. Dash,
Fukasawa, and Gunluk [4] have just characterized the facets of the polyhedron
P (C, D) induced by the integral solutions of (12). This may immediately lead
to the separation of the strongest possible HECCs for a given set S. Moreover,
the current choice of candidate sets for separation is still naive and could be im-
proved. Another line of research is the development of cuts from the arc-indexed
compatibility graph over sets with cardinality larger than 3. Odd-hole cuts and
even more complex families of facet-defining cuts are already known to exist
even for sets of cardinality 4 or 5.

All the new introduced families of cuts were found to be crucial in having
a consistent algorithm. For example, if only the rounded HECC separation is
disabled, instance c20-4 takes more than 1 hour to be solved by the same BCP
code. Also, the enumeration technique has shown to be an effective heuristic
when the current LB is sufficiently close to the optimal solution.
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Simple and Efficient Geographic Routing

Around Obstacles for Wireless Sensor Networks
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Research Academic Computer Technology Institute (CTI), Greece

Abstract. Geographic routing is becoming the protocol of choice for
many sensor network applications. The current state of the art is un-
satisfactory: some algorithms are very efficient, however they require a
preliminary planarization of the communication graph. Planarization in-
duces overhead and is thus not realistic for some scenarios such as the
case of highly dynamic network topologies. On the other hand, georout-
ing algorithms which do not rely on planarization have fairly low success
rates and fail to route messages around all but the simplest obstacles.
To overcome these limitations, we propose the GRIC geographic routing
algorithm. It has absolutely no topology maintenance overhead, almost
100% delivery rates (when no obstacles are added), bypasses large con-
vex obstacles, finds short paths to the destination, resists link failure
and is fairly simple to implement. The case of hard concave obstacles
is also studied; such obstacles are hard instances for which performance
diminishes.

1 Introduction

Recent advances in micro-electromechanical systems (MEMS) have enabled the
development of very small sensing devices called sensor nodes [1,2,3]. These
are smart devices with sensing, data-processing and wireless transmission ca-
pabilities meant to collaboratively form wireless sensor networks (sensor nets)
instrumenting the physical world by collecting, aggregating and propagating en-
vironmental information to regions of interest such as mobile users or fixed base
stations possibly linked to a satellite or the Internet. Some applications imply de-
ployment in remote or hostile environments (battle-field, tsunami, earth-quake,
isolated wild-life island, space exploration program) to assist in tasks such as tar-
get tracking, enemy intrusion detection, forest fire detection or environmental or
biological monitoring. Other applications imply deployment indoors or in urban
or controlled environments, for example with the purpose of industrial supervis-
ing, indoor micro-climate monitoring (e.g. to reduce heating cost by detecting
poor thermal insulation of buildings), smart-home applications, patient-doctor
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health monitoring or blind and impaired assisting. Because of a few characteris-
tics that differentiate them from otherwise similar ad hoc wireless nets such as
MANETS, sensor nets raise a multitude of algorithmic challenges [4,5]. Among
characteristic that make sensor nets very different [6] are strong resource lim-
itations (energy, memory, processing power), high-density and size (which can
be orders of magnitude greater than for other technologies) and the necessity to
operate unattended under the constraint of environmental hazard.

Problem statement: We consider the problem of routing messages in a local-
ized sensor net, a problem commonly called geographic routing (or georouting).
We address the problem of finding a simple and efficient georouting algorithm
which delivers messages with high success rate even in regions of low density
(routing holes) and large communication blocking obstacles. The routing algo-
rithms we allow ourselves to consider should be lightweight, on demand (thus
making our algorithm all-to-all), efficient and realistic.

On the importance of geographic routing: According to [7], “the most ap-
propriate protocols [for sensor nets] are those that discover routes on demand
using local, lightweight, scalable techniques, while avoiding the overhead of stor-
ing routing tables or other information that is expensive to update such as link
costs or topology changes”. This is due to the severe resource limitations of sensor
devices and the high dynamics of the ad hoc networks they spontaneously es-
tablish. In view of this, geographic routing is very attractive [6,7]. The early and
simple greedy georouting protocols [8] where messages are sent to the neighbour
maximising progress towards the destination meet those idealistic requirements:
the only information required to route is, assuming the nodes are localized, the
destination of the message. One may wonder how realistic the assumption of lo-
calized nodes is, and to what extent it confines georouting to a specialised niche.
Our point of view is that “...geographic routing is becoming the protocol of choice
for many emerging applications in sensor networks...” [9] because location aware
nodes are likely to be available since “...in many circumstances, it is useful and
even necessary for a node in a wireless sensor network to be aware of its location
in the physical world. For example, tracking or event-detection functions are not
particularly useful if the [sensor net] cannot provide any information where an
event has happened” [6]. Node localization is achievable through one of the many
localization systems that use a combination of GPS like technology to localize a
few beacon nodes followed by a distributed localization protocol [6,7,10,11,12].
Interestingly, it turns out that georouting can even be used when nodes are not
location aware by using virtual coordinates as was proposed in [13].

State of the Art: The major problem of the early greedy georouting algorithms
[8] is the so called routing hole problem [6,7,14] where messages get trapped in
“local minimum” nodes which have no neighbours closer to the destination of
the message than themselves. The incidence of routing holes increases as net-
work density diminishes and the success rate of the greedy algorithm drops very
quickly with network density. In order to bypass routing holes (and obstacles),
very ingenious georouting algorithms have been developed. The most successful
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ones are probably the celebrated GFG and GPSR algorithms [15,16] (as well as
incremental improvements such as GOAFR [17], c.f. [18] for details) which have
the very strong property of guaranteeing successful routing if the network is con-
nected. GFG and GPSR are very similar and were, to our knowledge, developed
independently. We use the encompassing term of face routing algorithms to refer
to GFG, GPSR and their incremental successors. They all share, as a central
idea, the use of a greedy propagation phase until the message reaches a local
minimum. At this point a temporary rescue mode is used to escape the local
minimum. The rescue mode uses (a variant of) the FACE algorithm originally
described in [15] where messages are routed along the faces of the polygons of
a planar subgraph of the communication graph. The use of a planar subgraph,
which is necessary for face routing, is a crucial and restrictive characteristic: it
implies that a graph planarization component has to be included in the routing
algorithm. Until very recently, a major pitfall [19] of face routing algorithms was
that no practical planarization algorithm was known: “... all currently proposed
geographic routing algorithms rely on idealized assumptions about radios and
their resulting connectivity graphs [...] which are grossly violated by real radios
[...] causing persistent failures in geographic routing, even on static topologies”
[20]. In a recent breakthrough paper [21] the first practical planarization algo-
rithm with reasonable message overhead was proposed, lazy cross-link removal
(LCR). Although reasonable, at least in static nets, LCR still induces a high
topology maintenance overhead to discover impairing “cross-links”, c.f. [21]. An-
other interesting approach is the BOUNDHOLE algorithm from [22] which uses
the TENT rule to discover local minimum nodes and then “bounds” the contour
of routing holes. Although it has a high overhead when compared to the algo-
rithm we propose, the information gained during the contour discovery phase
may be used for other application than routing such as path migration, infor-
mation storage mechanisms and identification of regions of interest, c.f. [22] for
details. Some other solutions are the probabilistic PFR, VTRP, LTP and CKN
protocols [23,24,25,26]. These approaches are very different from face routing
algorithms in the sense that, at the the cost of accepting lower success rates
(particularly in low density networks), they induce very little topology main-
tenance overhead. Another drawback is that they fail to bypass large obstacles
[27].

Our approach: To overcome the limitations of previous approaches we propose
a new algorithm: GeoRoutIng around obstaCles (GRIC), pronounced “Greek”
in reference to its design location: the University of Patras in Greece. The main
idea of GRIC is to appropriately combine movement directly towards the destina-
tion (to optimize performance) with an inertia effect. Inertia forces messages to
keep moving along the “current” direction and to closely follow the perimeter of
obstacles in order to efficiently bypass them. Inertia permits to get out of many
routing holes and to bypass some quite strongly blocking convex obstacles. To
further improve our algorithm, a “right-hand rule” inspired component is used
in combination with a virtual compass. The right-hand rule is a well known
“wall follower” technique to get out of a maze [28] which is also used for face
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routing. However, unlike face routing algorithms, GRIC has the advantage of us-
ing the right-hand rule on the complete communication graph, thus eliminating
the planarization phase overhead. The right-hand rule permits to route messages
around large obstacles, not only convex but also concave. It is useful even in the
absence of obstacles, making the success rate of GRIC close to 100% even for very
low density networks. We implement our algorithm and comparatively evaluate
its performance against those of other representative algorithms (greedy, LTP
and FACE). We focus on two performance measures: success rate and hop count.
We study the impact on performance of several types of obstacles (both convex
and concave) and representative regimes of network density.

Strengths of our approach: GRIC is very simple (for example when compared
to face routing relying on LCR planarization) and thus easy to implement. It
has a very high success rate, even in the case of low density networks. It is
capable of bypassing large emission blocking obstacles (although for the hardest
obstacles performance decreases with network density) using a short path, close
to optimal in the absence of global knowledge of the network. It is particularly
suitable for highly dynamic networks where links go up and down, e.g. because
of environmental fluctuation or network congestion. This follows from the fact
that, for a start, GRIC has absolutely no topology maintenance overhead (the
only information required, at the node level, is a list of outbound neighbours)
and from the fact that, as shown in our experiments, GRIC is not only robust
when confronted with link failure: it also has the surprising property of actually
performing better when confronted to limited link instability. To our knowledge,
the near 100% success rate of GRIC (without obstacles) and its effective obstacle
avoidance property is unique among lightweight routing protocols. It also offers
a competitive alternative to face routing, probably with a different dedicated
application niche: GRIC would be preferred for highly dynamic networks whereas
face routing may be preferred in the case of more stable networks where the
planarization overhead is paid off over time if the topology is static, implying
that planarization does not need to be recomputed frequently. As a consequence,
we feel that GRIC considerably improves the state of the art of geographic routing.

2 The GRIC Algorithm

Sensor Net Model: When a node needs to route a message according to the
GRIC algorithm, it needs some network topology information. More precisely,
nodes should be aware of their 1-hop away outbound neighbours, as well as
their coordinates. In mathematical language, this is equivalent to assuming a
directed dynamic communication graph (i.e. connectivity can change over time)
embedded in the Euclidean plane. Although this may seem quite abstract at first
sight, it is in fact very realistic: GRIC is a network layer protocol, it therefore
relies on the data-link, MAC and physical layers. Many different MAC and data-
link protocols exist, and although the study of the impact of different possible
combinations is beyond the scope of this paper, most of them would provide, at
the network layer, the level of abstraction we assume in this paper, c.f. [18] for
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details. A final minor assumption is that we allow messages to piggy-back O(1)
bits of information encoding the position of the last node visited, the position
of the targeted message destination and a mark-up flag.

Overview: Like face routing algorithms , GRIC uses two different routing modes:
a normal mode called inertia mode and a rescue mode. Intuitively, the inertia
mode is used when the message makes progress towards the destination, and the
rescue mode when it is going away from the destination. The inertia mode is
inspired by physics and we use it to control the trajectory of messages inside the
network. Messages are “attracted” to their destination but also have an incentive
to follow the “straight line”, like a celestial body is attracted in a planet system.
The rescue mode adds a right-hand rule component to the inertia mode. The
right hand-rule is a “wall follower” technique to get out of a maze [28], also used
by face routing algorithms. GRIC combines it with inertia to bypass complex
obstacles by following their contour.

Routing with inertia: We consider a node n at position p receiving a message
m. n needs to take a routing decision for m. First, n reads the information
piggy-backed on m to learn p′ and p′′, the position of the node which sent m
to n and the destination position of m respectively, as illustrated in figure 1(a).
Next, n computes vprev = p − p′ and vdest = p′′ − p. If attached at position

(a) Node n at position p. (b) Compass returning NW.

Fig. 1. The compass device

p, vprev is a vector pointing in the previous direction travelled by m whereas
vdest is a vector pointing in the direction of m’s destination. Using elementary
trigonometry, n computes the angle between vprev and vdest, which is uniquely
defined if we allow only values in [−π, π[. n will try to send m in a computed ideal
direction videal = Rα′ · vprev, where Rα′ is a rotation matrix of angle α′ defined
by α′ = −βπ if α < −βπ, α′ = βπ if α > βπ, α′ = α otherwise. The parameter
β ranges in [0, 1]. If β = 1, videal = vdest and inertia routing is equivalent to the
greedy routing algorithm. At the other extreme when β = 0, videal = vpev and the
ideal direction is equal to the previous direction: inertia is maximal. The inertia
factor can thus be controlled by adjusting β. In our simulations, setting β = 1

6
proved to be a good choice for practical purposes. The final routing decision of n
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Fig. 2. Typical behavior for different obstacle shapes

is to send m to its neighbour n2 maximizing progress towards the ideal direction
videal, i.e. n2 maximizes the scalar product 〈videal|pos(n2) − p〉.
Routing around obstacles: Our experiments show that inertia routing by-
passes routing holes with high probability and routes messages around some
large convex obstacles such as the one in figure 2(a). It is therefore used as the
normal routing mode of GRIC. However, more complex concave obstacles as in
figures 2(b),2(c) and 2(d) cannot be bypassed by inertia routing and we there-
fore add a rescue mode to GRIC. The first difficulty is to know when to switch to
rescue mode. A virtual compass device and the use of a flag fulfill this purpose.
We keep notations of the previous section and consider that node n receives a
message m for which it needs to take a routing decision and describe below the
steps required to implement the obstacle avoidance feature of GRIC.
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• The compass device: n considers the north to be p′′, i.e. the destination of m,
and it wants to know what cardinal direction describes the last hop of m: north-
west, north-east, south-west or south-east, c.f. figure 1(b). The answer depends
on α: the virtual compass indicates SW if α ∈ [−π, −π/2[, NW if α ∈ [−π/2, 0[, NE
if α ∈ [0, π/2[ and SE otherwise.

• The flag: Intuitively, when m is being routed around an obstacle the flag
should be up, otherwise it should be down. We metaphorically consider a walker
following the path along which m is routed. When the walker follows the path
and assuming m stays close to the obstacle’s contour, two cases can occur: the
obstacle’s perimeter is either on the right or on the left of the walker. When
this is so, we say the message is routed around the obstacle according to the
right or left-hand rule respectively and GRIC acknowledges it by raising the
flag and tagging it with SW or SE respectively. Formally, when n receives m, it
starts by adjusting the flag’s value in the following way. If the flag is down, the
algorithm looks at the compass. If the compass points north, the flag stays down.
However, if the compass points south, the flag is raised. and tagged with SW or
SE respectively. If the flag is up, n has two options: leave the flag up (without
changing the tag), or put the flag down. The flag goes down only if it was SW-
tagged and the compass points NW, or if the flag was SE-tagged while the compass
points NE.

• Mode selection: n receives the message m and it has to take a routing deci-
sion. The decision is taken in steps. First, n adjusts the flag according to the
procedure described above. Next, it chooses whether to operate in the normal
mode or whether it should switch to rescue mode. Only then will the routing
decision be made and we shall soon describe how, but we first describe how to
choose the routing mode. When the flag is down the normal mode is always
used. When the flag is up, it depends. Suppose the flag is up and for the sake
of simplicity let us assume it is SW-tagged, the other case being symmetric. Note
that by case assumption this implies that the compass does not point NW, since
otherwise the flag would be down. Also, in this case, intuitively GRIC tries to
route around the obstacle using the right-hand rule. We next have to consider
two cases. If the compass points SW, recalling the definition of vprev, videal and
α, it is easy to see that by case assumption videal is obtained by applying to
vprev a rotation of angle α′ with α′ in [−π/6, 0], c.f. figure 1. In other words,
inertia routing gives the message an incentive to turn to the right. This is consis-
tent with the right-hand rule and GRIC thus chooses the normal routing mode.
If the message points SE or NE, a similar reasoning shows that α′ is in [0, π/6]
and that inertia routing will give an incentive for the message to turn left. How-
ever, this will get the message away from the obstacle (in the expected case
where the obstacle’s contour is indeed closely followed and kept on the right of
the message). This is contrary to the right-hand rule idea and therefore GRIC
will switch to rescue-mode.

• The rescue mode: By case assumption, the flag is up and we assume with-
out loss of generality the tag to be SW, i.e. the right-hand rule applies. The
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selection procedure previously described chooses rescue mode when inertia rout-
ing would give the message an unwanted incentive to turn left by computing an
α′ value in [0, π/6]. Intuitively, the rescue mode simply inverts the rotation angle
α′ in the following way: let α2 = −sign(α)(2π − |α|). videal is then defined by
videal = Rα′

2
·vprev, where α′2 = βα2 and where β is the same inertia conservation

parameter as the one used for inertia routing. Putting all things so far together,
GRIC is formally described by the (non-randomized version of) algorithm 1.

Algorithm 1. GRIC, running on the node n which is at position pos(n).
1: if the flag is down and compass indicates SW (or SE) then
2: raise the flag and tag it with SW (or SE respectively)
3: else if the flag is up and the tag is SW (or SE) then
4: lower flag if the compass points NW (or NE respectively)
5: Decide if mode should be normal or rescue {c.f. “Mode selection” subsection}
6: if mode = normal then
7: γ := α′ {c.f. “Routing with inertia” section}
8: else if mode = rescue then
9: γ := α′

2 {c.f. “Rescue mode” subsection}
10: videal := Rγ · vprev

11: Let V be the set of neighbours of n and let V be an empty set.
12: if running the random or non-random version of GRIC then
13: set p = 0.95 or p = 1 respectively
14: for all v ∈ V do
15: add v to V ′ with probability p
16: Send the message to the node n2 ∈ V ′ maximizing 〈videal|pos(n2) − pos(n)〉

Randomization and robustness: While designing GRIC, we decided to test
its robustness when confronted tp link instability. We found that it performs
better in the case of limited link instability. Although surprising and perhaps
counterintuitive, this feature of GRIC is easy to understand. Indeed, routing fail-
ure is likely to occur when a message deterministically starts looping around a
local minimum. A small random perturbation breaks GRIC’s determinism and
messages eventually escape the loop. This is a very nice property of GRIC which
also suggests an easy way to improve its behavior in the context of stable net-
works: each time n needs to take a routing decision for a message m it starts by
temporarily and randomly discarding each of its outbound links with probability
p, c.f. line 12 of algorithm 1. For practical purposes experiments show the choice
of p = 0.95 to be good. Further decreasing the value of p, to the best of our
understanding, is tantamount to decreasing node density and thus performance
slowly decreases.

3 Experiments

We validate the performance of GRIC through extensive experiments. A sin-
gle experiment consists of randomly deploying a sensor net. A message is then
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generated by a single node. The message has a destination, and the network tries
to route the message to it. The experiment is successful if the message reaches its
destination before a given timeout value, it is deemed to have failed otherwise.
To verify the quality of successful outcomes, we measure the length in hops of the
path that leads the message from source to destination. As a first experimental
validation of GRIC and for practical purposes we resolve ourselves to simulation
rather than experimenting with real sensor nets: even small size sensor nets are
still quite prohibitively expensive and choosing and implementing a full protocol
stack (MAC and data-link) on top of which our network layer algorithm operates
implies a substantial amount of work which we delay for possible future work.

Simulation platform: We developed a high-level simulation platform using the
Ruby programming language. As was previously explained, the GRIC algorithm
is a network layer algorithm assuming a list of reliable collision free data-links
to be made available by lower protocol stack layers. This assumption is weak
since most physical/MAC/data-link suites would indeed provide this level of
abstraction. We choose as a communication model the unit disc graph. Arguably,
this model is the most commonly used for sensor net simulations. However,
we acknowledge that this choice is not completely satisfactory and that more
realistic communication graph models would be more appropriate. Defining a
reasonable model suitable for simulation purposes is a challenging task. To our
knowledge, only recently did the research community start to investigate this
problem [29,30] and defining such a model is beyond the scope of this paper.
Nevertheless, because our algorithm is robust in the presence of link failure,
because it requires only one-hop-away neighbourhood discovery, because it does
not even require links to be symmetric and because it implies absolutely no
topology maintenance, we are confident that the unit disc communication graph
is good enough to give a reasonable approximation of the behavior GRIC will
have in real sensor nets.

Simulation details: We deploy randomly and uniformly N sensor nodes in
the region of the Euclidean plane defined by

{

(x, y) ∈ R
2| − 5 ≤ x, y ≤ 25

}

. The
density of the network d is defined as N/900. Using the unit disc graph model,
the expected number of neighbours per node is thus close to d·π. A message m is
generated at the point (0, 10) and attached to the closest node. The destination
of m is (20, 0). m is propagated in the network according to the routing protocol
considered. The experiment is considered successful if m gets within distance
1 of its destination (there may not be a node at the exact destination of the
message). The outcome is a failure if m does not reach its destination in less
than N steps. For precaution, we also consider the outcome to be failure if m
approaches within distance 1 from the border of the network.

Preliminary results: We first consider the case where no obstacle is added
to the network. We considered the FACE algorithm of [15]. FACE is not the
most competitive algorithm in the face routing family in terms of path length,
because it always runs in rescue mode. However, like all face routing algorithms
it has the very strong “guaranteed delivery” property to always route a message
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Fig. 3. Summary of simulation results
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Fig. 3. (Continued)

to its destination if a path exists from the source. In view of this, figure 3(a)
reveals the following: in the absence of obstacles, the random version of GRIC
(with p = 0.95) has almost 100% success rate even for low densities where the
network is disconnected with high probability since the success rate is very close
to that of FACE. We also observe in figure 3(b) that the path length of GRIC
is close to optimal since it competes with greedy routing which is known to find
very short paths, c.f. [18]. The performance of inertia routing is less than for
GRIC (and slightly less than GRIC with p = 1, but for clarity we do not show
this on the graph, c.f. [18] for details), but is still quite good and it outperforms
the LTP protocol of [25]. (LTP uses a limited backtracking, we allowed LTP a
maximum of 5 consecutive backtracking steps).

Obstacles: We consider four different types of large communication blocking
obstacles.

•Large wall: The first obstacle is convex, c.f. figure 2(a). The random version of
GRIC bypasses this large convex obstacle with high probability, c.f. figure 3(c).
In terms of network design, it makes no sense to deploy a sensor net that has
high probability of being disconnected and thus of being non-operational. We
see from the performance of FACE that this critical density is around d = 3,
and even for such a low density the performance of GRIC is very good, both
in terms of success rate and path length. It is interesting to see that in the
presence of this large obstacle, the randomization (p = 0.95) implies a high
improvement over the deterministic version (p = 1), which not only implies that
GRIC is resistant to link instability, it actually performs better in the presence
of limited link instability. Interestingly, although not competitive we see that
inertia is capable of bypassing the obstacle when the density is not too low.
In [27], LTP was shown to have a good obstacle avoidance property. However,
LTP never routes around a large wall such as the one we consider in this work
(thus LTP is not included on plots). Therefore, to the best of our knowledge
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GRIC outperforms other lightweight georouting protocols, both in the presence
and absence of obstacles. In figure 3(d) we verify that path length is kept very
low, considering that the message has no a priori knowledge of the network and
discovers the obstacle only when reaching it.

•U shape obstacle: First of all, using a rule of thumb when looking in figures 2(b)
and in figure 3(f) shows that the deterministic version of GRIC (i.e. when p = 1)
rarely routes messages successfully to their destination but when it does so it
uses a near optimal path. In light of this observation, we conclude that GRIC (p =
0.95) bypasses this hard concave obstacle and uses a short path. However, the
performance is only good when the network density is around 5 and higher. This
is a medium density for sensor nets since, again, a density below 3 is probably
not acceptable in terms of network design since it yields a disconnected network
with non-negligible probability.

• Concave shape 2: We skip results for the first concave shape in figure 2(c)
because they are similar to those of the U shaped obstacle and turn to the
final obstacle. As seen in figure 2(d), this obstacle is problematic. The message
is routed out of the obstacle only to fall back in with high probability. As a
consequence, the random version of GRIC only reaches acceptable performances
for very high network densities: success rate is bad for densities below 5 and
path length is prohibitive even for densities below 8, c.f. figures 3(g) and 3(h).

4 Conclusion

We have studied geographic routing in the presence of hard communication
blocking obstacles and proposed a new way of routing messages which sub-
stantially improves the state of the art by somehow combining the best of
two worlds: the lightweight (no topology maintenance overhead), robustness
(to link failure) and simplicity of the greedy routing algorithm with the high
success rates and obstacle avoidance features of face routing. The simplicity
of GRIC suggests that it would be a protocol of choice for routing in mobile
networks. We shall investigate this in future work. We have shown that GRIC
resists (and actually performs better) in the presence of limited link failure.
Future work will investigate this matter more in depth, as well as the ques-
tion of localization errors. At first sight, there seems to be no reason to believe
GRIC to be sensitive to them. GRIC proposes an alternative to the face fam-
ily of protocols. We believe it has a slightly different application niche and is
preferable in the case of highly dynamic networks (because frequent topology
changes increase the topology maintenance overhead of the planarization phase
required for face routing), whereas face routing may be better in sparse but
stable topologies where some overhead is acceptable. Deeper understanding of
the differences between face and GRIC routing will require further investigation,
more realistic communication graph models and possibly turning to real world
experiments.
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Abstract. Multicast routing problems are often modeled as Steiner
Problems in undirected or directed graphs, the later case being par-
ticularly suitable to cases where most of the traffic has a single source.
Sequential Steiner heuristics are not convenient in that context, since
one cannot assume that a central node has complete information about
the topology and the state of a large wide area network. This paper
introduces a distributed version of a primal-dual heuristic (known as
Dual Ascent), known for its remarkable good practical results, lower and
upper bounds, in both undirected and directed Steiner problems. Ex-
perimental results and complexity analysis are also presented, showing
the efficiency of the proposed algorithm when compared with the best
distributed algorithms in the literature.

1 Introduction

The Steiner Problem in Graphs (SPG) is defined as follows. Given an undirected
graph G = (V, E), positive edge costs c and a set T ⊆ V of terminal nodes, find
a connected subgraph (V ′, E′) of G with T ⊆ V ′ minimizing

∑

e∈E′ ce. In other
words, find a minimum cost tree containing all terminals, possibly also containing
some non-terminal nodes. The Steiner Problem in Directed Graphs (SPDG) is
the case where GD = (V, A) is a directed graph and there is a special root
terminal r ∈ T . The problem is to find a minimum cost directed tree containing
paths from r to every other terminal. Both the SPG and the SPDG are NP-hard,
one must resort to heuristic algorithms if solutions must be obtained in short
time.

Several emerging network applications, like teleconferencing or video on de-
mand, require the transmission of large amounts of data among a small subset of
the nodes. This is called multicast or selective broadcast, the usual broadcast be-
ing the case where the information must be sent to all nodes in the network. The
routing of multicast connections is the problem of establishing message paths for
a multicast session. Such routing problem is often modelled as a SPG, as sur-
veyed by Novak et al. [7] and also by Oliveira and Pardalos [9]. The frequent
situation where most multicast messages have a single source and the network
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is asymmetric, i.e., link characteristics like latency, capacity, congestion or price
depend on the direction, is better modelled as a SPDG.

Sequential Steiner heuristics are not much suitable for multicast routing, since
one cannot assume that a central node has complete information about the
topology and the state of a large wide area network. The overhead to collect,
store and update this information could be prohibitive. In this context, there is
a need for distributed algorithms, where each node initially only knows about
its immediate neighborhood.

A simple approach to this distributed problem is constructing a MST and
remove subtrees without terminals [2], but this usually leads to poor solu-
tions. More sophisticated algorithms in the literature are distributed versions
of the Shortest Path Heuristics (SPH). The Prim-SPH (a.k.a. Cheapest Inser-
tion Heuristic) grows a single tree, starting with a chosen terminal, called the
root. At each step a least cost path is added, from the existing partially built
tree to a terminal not yet connected. Its distributed versions [1,13] construct, in
parallel, shortest paths from each node to each non-root terminal. Those short-
est paths are used by another parallel thread, that starts from the root to build
the Steiner Tree. The time complexity of those algorithms, measured by the
maximum sequence of messages, is O(|T |.|V |). The overall number of exchanged
messages is O(|V |2). Novak et al. [8] proposed improvements on those algorithms
leading to a better practical performance, but could not change the worst case
complexities. The above mentioned distributed Prim-SPH can be adapted to the
SPDG.

The so-called Kruskal-SPH (although it actually resembles Borüvka’s MST
algorithm) grows several subtrees at once, starting at each terminal. At each step
some pairs of subtrees are joined by shortest paths. Its distributed version was
proposed by Bauer and Varma [1], with complexities O(|T |.|V |) time and O(|V |2)
messages. This last complexity was improved to O(|V | log |V |) by Singh and
Vellanki [15]; this also improves the time complexity when |T | is not O(log |V |).
Those algorithms (or even the sequential Kruskal-SPH) cannot be adapted to
the SPDG.

The Average Distance Heuristic (ADH) also starts with subtrees composed
by each terminal. At each step a pair of subtrees is joined by a path passing
by the non-terminal node with minimum average distance to each subtree. The
distributed version by Gatani et al. [3] takes O(|T |.|V |) time and O(|E|+|T |.|V |)
messages. The ADH cannot be adapted to the SPDG.

Those distributed algorithms (Prim-SPH, Kruskal-SPH and ADH) assume
that each node already knows its shortest distance to all other nodes. If this is
not the case, the distributed computation of such distances would add a mes-
sage complexity of O(|E|.|V |), a bit complexity of O(|E|.|V |. log |V |) and a time
complexity of O(|V |) [14].

The SPG and SPDG algorithm proposed in this article is a distributed version
of the sequential dual ascent algorithm proposed by Wong [18]. This algorithm
has the following advantages over other heuristics.
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– Extensive computational experiments over the main classes of SPG bench-
mark instances from the literature have shown that Dual Ascent usually
yields better solutions [16,10,17,12,11] than Prim-SPH. Kruskal-SPH and
ADH are a little worse than Prim-SPH.

– The Dual Ascent is an example of what was later called a primal-dual algo-
rithm [4], it can be interpreted as working in the dual of a linear program
formulation. In practice, this means that Dual Ascent not only returns a so-
lution, it also returns a guarantee of the quality of this solution. Dual Ascent
lower bounds are remarkably good, they are usually less than 3% below the
optimal. For this reason, it is a key part of the best exact algorithms for
the SPG [12,10]. Tight lower bounds can be very useful. If the user is not
satisfied with the guarantee obtained, he may want to run the Dual Ascent
again (this distributed algorithm is not deterministic), or any other heuris-
tic, trying to get better solutions. Moreover, the lower bounds can be used
to remove arcs from the instance, by proving that they do not belong to an
optimal solution. It is typical to remove more than half of the arcs. A second
run of Dual Ascent (or of any good heuristic) on that reduced instance is
quite likely to improve the solution.

– It does not require that nodes know the value of least cost paths to every
other node. Some authors [1,8,3] argue that since network layer protocols
like RIP and OSPF already keep routing tables with that information, it
could be used by their Steiner algorithms. Such reasoning is not completely
satisfactory since it relies on particular technologies that may be supplanted
in the future. Moreover, using network layer information limits what can be
accomplished by the multicast protocol. RIP routing tables actually provides
hop distances, i.e., least cost paths assuming that all links have unitary costs.
OSPF routing tables use the link costs provided by local administrators (usu-
ally as a function of parameters like latency time or available bandwidth).
RIP or OSPF costs are not necessarily the more appropriate for building
multicast trees. This application may prefer using its own link costs, re-
flecting factors like contractual prices or forecasted link behavior after the
multicast begins. Of course, one can always run a shortest distance algorithm
with respect to the desired costs before computing the tree. However, this
would add the above mentioned complexities [14] to the overall method.

The proposed distributed Dual Ascent has worst case complexities of O(|V |2)
global time, O(|T |.|V |2) messages and O(|V |) local time complexity. One alter-
native to perform the Dual Ascent would be electing a leader node to locally
solve the problem and then broadcast the solution. It would take O(|V |.|E|)
messages and O(|V |) time to concentrate all the relevant information about G
in the leader, the local time complexity of the sequential Dual Ascent algorithm
is O(|E|2). Considering such complexities and the memory demand at the leader
node, the fully distributed approach is an appealing alternative for multicast
routing. A recent example of the distribution of another primal-dual algorithm
is given by Grandoni et al.[5].
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The remainder of this paper is organized as follows. Section 2 introduces the
sequential Wong’s Dual Ascent Algorithm. The distributed algorithm is pre-
sented and analyzed in Section 3. Section 4 presents experimental results, com-
paring the practical performance of our algorithm with Prim-SPH in terms of
solution quality, time and exchanged messages.

2 Sequential Wong’s Dual Ascent Algorithm

Each arc a has its non-negative reduced cost c̄a, a value that is initialized with the
original arc cost. Reduced costs may be only decreased. Arcs with zero reduced
cost are called saturated. Those arcs induce the saturation graph GS = (V, Ar(c̄)),
where Ar(c̄) = {a ∈ A : c̄a = 0}. As all original costs are positive, this graph
starts with no arcs. All operations in the algorithm are defined over the current
saturation graph. Let R be the set of nodes of a strongly connected component
of GS , i.e., a maximal set containing a directed cycle passing by any pair of
nodes in it. This set is a root component if (i) R contains a terminal, (ii) R does
not contains r, and (iii) there is no terminal t /∈ R reaching R by a path in GS .
Given a root component R, define W (R) ⊇ R as the set of nodes reaching R by
paths in GS and let δ−(W ) be the directed cut consisting of the arcs entering
W . The DA algorithm follows:

Wong’s Dual Ascent
LB ← 0; c̄a ← ca, for all a ∈ A;
While (exists root components in GS) {

Choose a root component R; W ← W (R);
Δ ← mina∈δ−(W ) c̄a;
c̄a ← c̄a − Δ, for all a ∈ δ−(W );
LB ← LB + Δ;

}
Output: Ar(c̄) and LB

At first, each terminal other than the root corresponds to a root component.
In each round, a root component R is chosen and the reduced costs of all arcs
incident to W (R) are decreased by Δ, the smallest such reduced cost. The partial
lower bound is increased by the same amount. At least one arc is saturated in
each round. Some saturations reduce the number of root components, until there
are no root components anymore. At this point, GS contains at least one directed
path from r to every other terminal. Therefore it contains at least one solution.

3 The Distributed Algorithm

3.1 General Idea

We propose an asynchronous distributed version of the previously described
algorithm. Its output is the lower bound and the arc reduced costs, which also
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gives the saturation graph. The cleaning steps to actually compute a solution
from this graph can be performed by already known distributed algorithms. We
assume that each node knows the cost of each arc incident to that node. During
the execution, all data about the state of an arc is kept by its adjacent nodes.
Each node performs the same local algorithm, which consists of sending messages
over adjoining links, waiting for incoming messages, and processing. Messages
can be transmitted independently and arrive after an unpredictable but finite
delay, without error and in sequence. We view the nodes in the graph as being
initially asleep. All non-root terminals wake up spontaneously, other nodes awake
upon receiving messages from awakened neighbors. We assume that the nodes
of the graph have distinct identities that can be totally ordered.

The agents in this distributed algorithm are associated to the fragments, de-
fined as a set W (t) formed by all nodes reaching a non-root terminal t. The
terminal t identifying a fragment W (t) is also known as its leader. Note that if
t belongs to a strongly connected component R, W (t) = W (R). Strongly con-
nected components are disjoint by definition, but sets W (R) are not. Therefore,
a node can work on several fragments, perhaps belonging to different connected
components.

By definition, all nodes in a fragment are connected to its leader by satu-
rated arcs. Among such arcs, the algorithm keeps in each fragment a tree used
for intra-fragment message exchange, convergecast messages from nodes in the
fragment to the leader and broadcast messages from leader to nodes. A frag-
ment growing round consists of finding the minimum reduced cost of an incident
arc and subtracting this value from the reduced cost of all incident arcs. The
first operation is performed using a convergecast, the result is then broadcast.
Since the decrease of reduced costs causes some new arcs to become saturated,
the corresponding nodes must be included in the fragment and the fragment tree
updated. The fragment leader keeps the partial lower bound due to the fragment
growing rounds. As fragments grow, their nodes may start to overlap. Having
common incident arcs creates a mutual exclusion problem, that causes some
fragments to suspend their operations temporarily. A fragment should stop its
execution when it is reached from the root. When the root reaches all terminals,
it initiates a broadcast to terminate the algorithm.

3.2 Growing Fragments

At first, a fragment composed by just a terminal t selects the incident arc with
the minimum reduced cost, at this point the original cost. The fragment partial
lower bound is increased from zero to this value, which is subtracted from the
reduced cost of each incident arc. Messages Include(t) are transmitted on the
saturated arcs. The node sending the Include(t) messages, marks those arcs as
To leaf(t). Those arcs define a directed tree from the leader to all other nodes
in the fragment, for broadcast operations. Upon receiving this message, a node
includes itself in the fragment and marks the outgoing arc to the node that sent
the message as To leader(t). The arcs marked as To leader(t) define a directed
tree pointing to the leader, used in convergecast operations. This node also send
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Check(t) messages to all its other neighbors, communicating that it now belongs
to t and asking if they are also part of t. Those messages must be answered,
Ack(t,y) if the neighbor also belongs to t and Ack(t,n) if it does not.

The next step is calculating the minimum reduced cost of all arcs incident
to the fragment. A leaf node in the fragment sends by its To leader(t) arc a
message Conv(t,Smallest,Δ) with the minimum reduced cost of an arc inci-
dent to it, Δ, and not belonging to the fragment. The internal nodes in the
fragment, upon receiving its Conv(t,Smallest,Δ) messages, compare those costs
with the minimum reduced cost of an arc incident to it and not belonging to the
fragment. The smallest such value is sent by its To leader(t) arc using another
Conv(t,Smallest,Δ) message. When the fragment leader finally knows the frag-
ment minimum reduced cost, it updates the fragment lower bound and starts
broadcasting this value back to all fragment nodes, using Broad(t,Smallest,Δ)
messages. Upon receiving such messages, a node decreases the cost of its incident
arcs, which may trigger Include(t) messages on the newly saturated arcs, there-
fore growing the fragment. The newly added nodes first checks its neighborhood
before starting another round of convergecast. Leaf nodes that did not include
any new node start a new round of convergecast immediately. See Figure 1, for
an example.
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Fig. 1. Growing Fragments

When several nodes are included in a fragment in the same growing round,
it is possible that a newly added node i receives a Ack(t,n) from a node j that
will still receive a Include(t) in that round. This means that i will consider arc
(j, i) as incident to the fragment, it is possible that its reduced cost reaches the
leader as the smallest. When a Broad(t,Smallest,Δ) with this value reaches i,
this node will be already informed (by a Check(t) message) that j is actually
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part of the fragment. Arc (j, i) will be saturated but no Include(t) message will
be sent by it. Therefore, it is possible to have degenerated growing rounds, i.e.,
rounds where only arcs internal to the fragment are saturated and no new node
is included. However, it is not possible to have two degenerated growing rounds
in sequence.

Another situation happens when nodes i and j send Include(t) messages to
the same node k. Suppose that the message from i arrives first. The second
Include(t) message should be answered by a AlreadyIncluded(t) message. Node
j then knows that (j, k) should not be marked as To leaf(t).

Finally, it is also possible that a newly included node also includes other
nodes in the same growing round. Suppose that node i is included. It sends
Check(t) messages and waits for the corresponding Ack(t) messages. Then it
gets the minimum reduced cost of an incident arc not belonging t. If this value
is positive, i knows that it is a fragment leaf and sends a Conv(t,Smallest,Δ)
message as usual. However, since other fragments are also decreasing reduced
costs, it is possible that this value is zero, i.e., there are saturated arcs (i, j) such
that j does not belongs to t. In this case, i sends Include(t) messages to nodes
j, that will continue the growing round.

3.3 Suspending Fragments

Fragments with common incidents arc cannot grow at the same time, since the
reduced cost of those arcs would be changed concurrently. Here we have a classi-
cal mutual exclusion problem, where the shared resource is the common incident
arcs. In order to solve this conflict, only the fragment with the largest identifi-
cation will go on growing, while the other is suspended. It remains suspended
until the fragment in conflict finishes its execution or is suspended by another
fragment. When a node that already belongs to some fragments receives an in-
clude message from another fragment, there is a potential conflict. In order to
simplify the algorithm, without sacrificing its correctness and complexities, this
condition is enough to suspend all but one of the fragments. At a given moment,
each node is associated to at most one active fragment.

Two cases should be considered. When a node receives Include(t1) from a
fragment with identification smaller than its current active fragment t2, it an-
swers Conv(t1,Suspend) immediately. On the other case, when the identification
of t1 is greater than t2, the node must wait until t2 finishes its current growing
round, before suspending t2 and continue the growing of t1.

The leader of a suspended fragment t2 sends Broad(t2,Suspend) messages, in-
dicating to all its nodes that it was suspended. When a conflict node receives
such a message indicating that its current active fragment t2 was suspended, it
tries to reactivate other fragments, like t1, that were suspended by it. This is
done by sending to their leaders a Conv(t1,Reactivate) message. In case other
conflicts do not exist, the leader of t1 will send Broad(t,Reactivate) messages to
re-initiate its growing. The overall situation is illustrated in Figure 2. Fragments
t1 and t2 have a common node j, t1 is suspended. Then t2 grows and conflicts
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Fig. 2. Suspending and Reactivating Fragments

with t3 at node k, t2 is suspended and re-activates t1. When a fragment finishes,
as will be described in the next section, similar reactivation messages may be
also sent.

3.4 Stopping Fragments

A fragment may stop growing definitively because it can be reached from the
root node by saturated arcs. When the root node receives a Include(t), it sends
back a Conv(t,End,root). The fragment leader then sends a Broad(t,End,root,lb)
with its partial lower bound and stops. The root node accumulates those values
to obtain the global lower bound. When a fragment is stopped it also tries
to reactivate other suspended fragments in conflict with it, as occurs when a
fragment is suspended.

A conflict may also occur involving a shared terminal. It happens when a
fragment identified by t1 sends a Include(t1) to another active fragment leader
t2, connecting t2 to t1. The same two cases, previously described, should also
be considered. When a node receives Include(t1) from a fragment with iden-
tification smaller than its current active fragment t2, it immediately answers
Conv(t1,Suspend). When fragment t2 is reached by the root, it can reactivate
fragment t1 that in this case will also be reached by the root in its next growing
iteration. On the other case, when the identification of t1 is greater than t2, t2
is suspended and t1 continues its growing. In case of fragment t1 includes the
root, it stops growing definitively and it tries to reactivate fragment t2. If the
root belongs to the subtree rooted in t2, in its next growing iteration, fragment
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t2 will also be able to stop growing. In case of t1 is suspended, fragment t2 could
be reactivated but if the conflict that suspended t1 belongs to the subtree rooted
in t2, it will remain suspended. When the root reaches all terminals, it initiates
a broadcast to terminate the algorithm.

3.5 Algorithm Analysis

Communication Cost: We want an upper bound on the number of messages
exchanged during the execution of the algorithm. The worst case would occur in
a complete graph where the terminals (including the root) are connected by high
cost arcs, in such a way they will only be saturated when all non-terminal nodes
are already included in all fragments. When a node is included in a fragment, it
checks all its |V | neighbors, this will be done |V |−|T | times for each of the |T |−1
fragments. Therefore, there can be up to O(|T |.|V |2) Check and Ack messages.
We now show that no other message exceeds that bound. Each growing round
demands O(|V |) Conv, Broad and Include messages. As there can be up to O(|V |)
growing rounds by fragment, O(|T |.|V |2) is a valid upper bound on the number
of such messages.

Considering the suspending and reactivation procedures, the worst situation
occurs when we have |T | fragments whose leaders, are t1, t2, . . . , t|T |, such that
t1 conflicts with t2 at a node, t2 conflicts with t3 at another node and so on.
Assume those leaders are ordered in increasingly identification order. Then, t1
is suspended while t2 goes on executing. When t3 suspends t2, t1 is reactivated.
Then t4 suspends t3, t2 is reactivated and t1 is suspended again. The total of re-
activations is O(|T |2). For each reactivation, a broadcast on the tree is executed,
that will never require more than O(|V |) messages.

Time Cost: Intuitively, as more active fragments execute, more arcs are sat-
urated in parallel. Although it appears that the algorithm allows an amount of
parallelism limited to the number of terminals, there are particular situations
where there is almost no parallelism. As in the previous section, the worst case
would occur in a complete graph where the terminals (including the root) are
connected by high cost arcs, in such a way they will only be saturated when all
non-terminal nodes are already included in all fragments.

Let us suppose that we have a fragment where one arc is saturated at each
broadcast, and that when it stops, the resulting tree has two subtrees, one that is
a unique long chain of saturated arcs and the other containing the root. For each
new node included in this fragment, the causal chain of message receiving and
sending is increased permanently by two, corresponding to the receiving and the
sending of Broad and Conv messages in the next growing rounds. At the moment
a new node is included a causal chain two long, corresponding to the sending of
Check and the receiving of Ack messages, is also formed, but this chain occurs
only in the round the node is included. So the resulting causal chain considering
broadcasts, convergecasts and the checks is O(V 2). Remark that the same may
occur for only one more fragment. After this, a connected component is formed
allowing for all other fragments, in a broadcast wave that includes any node
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of such component, the incorporation of all other nodes of the component in a
linear time. Summarizing, for only two fragments the causal chain is O(V 2), the
others will be reached by the root in O(V ) time. So, the complexity is O(V 2).

4 Experimental Results

Our distributed algorithm was implemented in C and MPICH2-1.0.3 and exe-
cuted on a cluster with 15 Athlon 1.8 GHz processors. Half of the tests were
performed over the SPG benchmark instances from the SteinLib mentioned in
Table 1. Instances from B series are random graphs with different densities and
random edge costs between 1 and 10. Instances from I080 series are also ran-
dom graphs with different densities, but edges costs were chosen to make them
hard to solve. Instances from P4Z series have complete graphs. All instances in
Steinlib are undirected. Since the proposed algorithm was designed for the more
general case of digraphs, we created SPDG instances from the above mentioned
SPG instances to perform the remaining tests. Each edge in the original graph is
replaced by a pair of opposite arcs. Their costs are the original costs multiplied
by a random factor uniformly distributed in the range [0.5,1.5] and rounded. A
random terminal is chosen to be the root. We also implemented the distributed
version of the Prim-SPH found in [7] (adapted to digraphs), including a short-
est distance algorithm. This Prim-SPH was applied as a stand-alone algorithm
and also to find the solution contained in the reduced graphs produced by our
distributed DA algorithm.

Columns in table 1 have the following meaning: |V |, |E|, and |T | give the
instance size; Opt is the value of the optimal solution (calculated with the
branch-and-bound code from [10]); SPHc is the value of the solution obtained
by running Prim-SPH as a stand-alone algorithm; LB is the lower bound given
by Dual Ascent; next column gives the proportion of the arcs that are saturated;
DA+SPHr is the value of the solution obtained running the Prim-SPH over
the graph containing only the saturated arcs. Remark that the results given for
the Dual Ascent are averages of 5 runs. Since processor load and communication
times may change on each execution, the sequence of fragment growing in the
DA may also change, leading to slightly different results. The average standard
deviation on the results of all executions is only 0.4%.

We use competitiveness, the ratio of the heuristic cost and the optimal cost, to
compare the quality of the solutions provided by DA and Prim-SPH. Charts in
figures 3 and 4 show the cumulative percentage of cases whose competitiveness is
less than or equal a given value, for undirected and directed instances. It is clear
that DA + SPHr gives better solutions than SPHc. We also charted the improved
results of executing both DA + SPHr and SPHc and taking the best solution.
However, there is a more interesting approach to obtain similar results. Using
the lower bounds provided by DA, we can evaluate the solution obtained with
DA + SPHr and execute SPHc only if it exceeds a given limit. We applied this
idea, executing SPHc only if (DA + SPHr) / LB exceeded 1.05, this happened
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Table 1. Instances used on experiences with some results

Instance Undirected Directed

Name |V | |E| |T | Opt SPHc LB |Ar|
|A|

% DA+SPHr Opt SPHc LB |Ar|
|A|

% DA+SPHr

b01 50 63 9 82 85 82.0 13.9 84.6 77 82 77.0 13.9 77.0
b02 50 63 13 83 84 82.4 13.5 83.8 101 107 100.4 13.4 104.0
b03 50 63 25 138 138 136.4 12.6 139.2 170 176 165.4 10.3 173.4
b04 50 100 9 59 63.6 58.8 13.6 59.6 58 61 57.4 13.5 59.6
b05 50 100 13 61 62 60.8 13.6 62.0 61 64 60.6 13.6 65.4
b06 50 100 25 122 127 121.6 13.5 132.2 128 134 126.8 13.2 129.6
b07 75 94 13 111 111 110.8 13.7 112.0 122 122 121.6 13.6 125.0
b08 75 94 19 104 104 104.0 13.8 106.0 115 126 114.8 13.7 116.0
b09 75 94 38 220 220 216.0 11.7 221.2 240 244 239.2 13.4 242.4
b10 75 150 13 86 91 86.0 13.8 89.8 90 91 89.0 13.5 92.6
b11 75 150 19 88 90 87.8 13.7 90.8 103 104 100.8 13.1 105.2
b12 75 150 38 174 174 174.0 13.8 175.0 168 171 161.0 11.5 174.0
b13 100 125 17 165 174 155.2 9.5 180.0 176 202 163.8 13.3 179.4
b14 100 125 25 235 238 230.6 10.0 238.4 250 261 234.0 13.4 250.4
b15 100 125 50 318 318 317.6 13.6 320.4 342 356 341.0 13.4 345.6
b16 100 200 17 127 136 124.6 13.1 132.4 133 133 131.6 13.4 141.6
b17 100 200 25 131 132 128.2 13.0 133.0 139 142 137.0 13.3 145.2
b18 100 200 50 218 225 215.0 13.0 218.0 258 271 258.0 13.8 259.8
i080-001 80 120 6 1787 2164 1770.6 19.8 1787.0 1751 1815 1729.4 16.3 1780.8
i080-011 80 350 6 1479 1671 1462.4 22.3 1596.0 1220 1296 1220.0 17.4 1227.6
i080-021 80 3160 6 1175 1471 1159.8 16.0 1476.0 741 847 673.0 5.8 768.4
i080-031 80 160 6 1570 1570 1570.0 17.0 1570.0 1514 1706 1455.0 16.5 1552.8
i080-041 80 632 6 1276 1600 1192.8 19.1 1279.0 946 1026 900.0 5.9 983.0
i080-101 80 120 8 2608 3009 2608.0 17.3 2772.0 2322 2706 2322.0 10.5 2322.0
i080-111 80 350 8 2051 2142 1792.6 15.5 2262.8 1580 1600 1499.2 13.2 1580.2
i080-121 80 3160 8 1561 2054 1539.4 17.0 1844.0 977 1097 910.0 5.3 1050.0
i080-131 80 160 8 2284 2561 2238.0 19.5 2555.6 1875 2061 1844.0 17.9 2016.0
i080-141 80 632 8 1788 2058 1662.4 22.9 1865.2 1404 1596 1265.6 10.1 1404.0
i080-201 80 120 16 4760 5435 4555.2 20.6 5129.0 4321 4502 4228.4 22.7 4322.8
i080-211 80 350 16 3631 4132 3259.6 16.7 3839.0 2951 3174 2808.6 12.8 3141.0
i080-221 80 3160 16 3158 4386 3063.6 14.6 3499.0 1985 2293 1799.0 5.1 2082.0
i080-231 80 160 16 4354 4834 3961.0 22.5 4917.0 4156 4623 4036.0 14.0 4415.2
i080-241 80 632 16 3538 4463 3247.6 20.3 3805.0 2492 2617 2351.2 8.7 2746.8
i080-301 80 120 20 5519 5628 5223.4 15.2 5630.0 5714 6365 5390.8 24.8 5916.0
i080-311 80 350 20 4554 5853 4215.6 19.2 5115.8 3471 3813 3266.6 12.9 4065.0
i080-321 80 3160 20 3932 5527 3925.0 11.1 4461.0 2453 3137 2374.0 4.1 2755.4
i080-331 80 160 20 5226 5947 4831.2 21.6 5589.0 4506 4911 4258.6 19.3 4877.0
i080-341 80 632 20 4236 5728 3997.2 17.3 4529.0 3132 3361 3025.0 15.4 3412.0
P401 100 4950 5 155 170 149.8 0.4 157.0 145 165 145.0 0.4 145.0
P402 100 4950 5 116 116 116.0 0.2 116.0 102 102 102.0 0.2 102.0
P403 100 4950 5 179 184 176.0 0.5 199.0 169 186 166.0 0.5 180.0
P404 100 4950 10 270 270 243.2 0.5 270.0 270 279 214.8 0.3 285.0
P405 100 4950 10 270 291 268.6 0.3 270.0 248 250 243.2 0.5 248.0
P406 100 4950 10 290 319 286.0 0.5 290.0 281 303 226.8 0.3 296.0
P407 100 4950 20 590 601 576.8 0.3 609.0 546 590 523.0 0.4 575.0
P408 100 4950 20 542 559 520.4 0.3 551.0 502 520 480.2 0.3 502.0



186 M. Santos, L.M.A. Drummond, and E. Uchoa

 40

 50

 60

 70

 80

 90

 100

1.401.351.301.251.201.151.101.05

C
um

ul
at

iv
e 

Pe
rc

en
ta

ge
 o

f 
In

st
an

ce
s

Competitiveness (heuristic/optimum)

SPHc
DA+SPHr

DA + SPHr + SPHc depending on LB
DA + SPHr + SPHc

Fig. 3. Solution quality – undirected instances
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Fig. 4. Solution quality – directed instances

in 49% of the cases. Those results are also charted, in fact, the last two curves
are undistinguishable.

We also compare the practical performance of DA and Prim-SPH perfor-
mance with respect to time, given as the size of the largest message sequence,
and to the total number of exchanged messages. Those measurements, for each
directed instance, grouped by series, are shown in figures 5 and 6. For the sake
of space, we omit similar measurements on undirected instances. It can be seen
that DA is indeed more costly than Prim-SPH on most instances, taking more
time and exchanging more messages. However, it was never much more costly
than Prim-SPH, their performance differences were always within a small factor
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of 4. Moreover, DA performed better on larger I080 instances and much better
on P4Z instances. This happens because the cost of running Prim-SPH in those
instances is dominated by the calculation of shortest distances among all nodes
of large graphs.
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Abstract. A distinguishing feature of today’s large-scale communica-
tion networks, such as the Internet, is their heterogeneity, predominantly
manifested by the fact that a wide variety of communication protocols
are simultaneously running over different network hosts. A fundamental
question that naturally poses itself for such common settings of heteroge-
neous networks concerns their ability to preserve the number of packets
in the system upper bounded at all times. This property is well-known
as stability. We focus on the Adversarial Queueing Theory framework,
where an adversary controls the rates of packet injections and determines
packet paths. In this work, we present specific network constructions
with different protocol compositions and we show experimentally their
stability behavior under an adversarilly strategy. In particular, we study
compositions of universally stable protocols with unstable protocols like
FIFO. Interestingly, some of our results indicate that such a composition
leads to a worst stability behavior than having a single unstable protocol
for contention-resolution. This suggests that the potential for instability
incurred by the composition of one universally stable protocol with one
unstable protocol may be worse than that of some single protocol.

1 Introduction

Motivation-Framework. Objectives. Recent years, a lot of research has been
done in the field of packet-switched communication networks for the specification
of their behavior. A major issue that arises in such networks is that of stability–
will the number of packets in the network remain bounded at all times? The
answer to this question may depend on the rate of injecting packets into the
network, and the composition of protocols running on different network hosts
in order to resolve packet conflicts. In this work, we embark on a study of the
impact of heterogeneity of packet-switched networks on their performance prop-
erties. We choose, as a test-bed, the case of distinct communication protocols
that are simultaneously running on different hosts in a distributed system. We
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c© Springer-Verlag Berlin Heidelberg 2007



190 M. Chroni, D. Koukopoulos, and S.D. Nikolopoulos

ask, in particular, which (and how) stability properties of greedy, contention-
resolution protocols operating over a packet-switched communication network
are maintained under composition of such protocols.

Framework of Adversarial Queueing Theory. We consider a packet-switched net-
work in which packets arrive dynamically at the nodes with predetermined paths,
and they are routed at discrete time steps across the edges. We focus on a ba-
sic adversarial model for packet arrival and path determination that has been
introduced by Borodin et al. [4], under the name Adversarial Queueing The-
ory. Roughly speaking, this model views the time evolution of a packet-switched
communication network as a game between an adversary and a protocol. At each
time step, the adversary may inject a set of packets into some nodes with a spec-
ified simple path. When more than one packets wish to cross a queue at a given
time step, a contention-resolution protocol is employed to resolve the conflict. A
crucial parameter of the adversary is its injection rate ρ ∈ (0, 1).

Stability. Roughly speaking, a protocol P is stable [4] on a network G against
an adversary A of rate ρ if there is a constant B (which may depend on G and
A) such that the number of packets in the system is bounded at all times by
B. On the other hand, a protocol P is universally stable [4] if it is stable against
every adversary of rate less than 1 and on every network. Till our work, the
study of stability has focused on homogeneous networks, that is, on networks
in which the same contention-resolution protocol is running at all queues or
heterogeneous networks, in which compositions of universally stable contention-
resolution protocols are running at all queues. In this work, we embark on a study
of the effect of composing unstable contention-resolution protocols with univer-
sally stable protocols on the stability of the resulting system. (By composition of
contention-resolution protocols, we mean the simultaneous use of different such
protocols at different queues of the system.)

In particular, we study the stability properties of three unstable protocols
when they are composed with stable protocols. The unstable protocols are: First-
In-First-Out (FIFO), which gives priority to the packet that has arrived first
in the queue, Nearest-to-Go (NTG), which gives priority to the packet whose
distance to its destination is minimal and Furthest-From-Source (FFS), which
advances the packet whose distance to its destination is maximal. The stable
protocols are: Farthest-to-Go (FTG), which gives priority to the packet whose
distance to its destination is maximal Nearest-to-Source (NTS), which gives pri-
ority to the packet whose distance traversed is minimal, Longest-in-System (LIS),
which gives priority to the packet injected the earliest, and Shortest-in-System
(SIS), which gives priority to the packet most recently injected.

Contribution. In this work, we initiate the study of the stability properties
of heterogeneous networks with compositions of universally-stable and unstable,
greedy, contention-resolution protocols, such as LIS, SIS, FTG, NTS, FFS, NTG
and FIFO, running on top of them [5]. In particular, we design three different
network constructions, and we apply three different adversarial strategies, one for
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each of the networks. Then, we experimentally evaluate the stability properties
of the networks on various scenarios of protocol compositions. Our results are
three-fold; they are summarized as follows:

– We establish that, the composition of FIFO with any of the universally-stable
protocols SIS, LIS, NTS and FTG is not universally-stable. Surprisingly, the
composition of FIFO with any of SIS and NTS protocols in some network
constructions results in lower bounds on injection rate for network instability
comparing to the single usage of FIFO into the same networks.

– We establish that, the composition of NTG with any of the universally-stable
protocols SIS, LIS, NTS and FTG is not universally-stable.

– We establish that, the composition of FFS with any of the universally-stable
protocols SIS and NTS is not universally-stable.

We feel that our study of the instability properties of networks hosting compo-
sitions of universally-stable and unstable contention-resolution protocols (within
the context of Adversarial Queueing Theory) provides an important step to-
wards understanding the impact of heterogeneity on the performance properties
of large-scale communication networks such as the Internet.

Related Work. The issue of composing distributed protocols (resp., objects)
to obtain other protocols (resp., objects), and the properties of the resulting
(composed) protocols (resp., objects), has a rich record in Distributed Computing
Theory (see, e.g., [12]). For example, Herlihy and Wing [7] establish that a
composition of linearizable memory objects (possibly distinct), each managed
by its own protocols, preserves linearizability. Adversarial Queueing Theory [4]
received a lot of interest in the study of stability and instability issues (see,
e.g., [1,2,6,10]). The universal stability of various natural greedy protocols (LIS,
SIS, NTS and FTG) was established by Andrews et al. [2]. Also, FFS and NTG
have been proved unstable for injection rate ρ > 1/

√
2 [2]. The instability of FIFO

(in the model of adversarial queueing theory) was first established by Andrews
et al. [2, Theorem 2.10] for injection rate ρ ≥ 0.85 (for the network G1 of Figure
1a). Lower bounds of 0.8357 (for the network G2 of Figure 1b) and 0.749 (for the
network G3 of Figure 1c) on FIFO instability were presented by Diaz et al. [6,
Theorem 3] and Koukopoulos et al. [8, Theorem 5.1]. An alternative approach
for studying protocol instability in the context of adversarial queueing theory is
based on parameterized constructions for networks with unbounded size. Using
this approach, Bhattacharjee and Goel [3] show that FIFO can become unstable
for arbitrarily small injection rates. Moreover, Tsaparas [13] based on the same
approach proved that NTG is unstable at arbitrarily low rates of injection. The
subfield of study of the stability properties of compositions of protocols was
introduced by Koukopoulos et al. in [8,9,10] where lower bounds of 0.683, 0.519
and 0.5 on the injection rates that guarantee instability for the composition pairs
LIS-SIS, LIS-NTS and LIS-FTG were presented.
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2 Preliminaries

The model definitions are patterned after those in [4, Section 3]. We consider
that a routing network is modelled by a directed graph G = (V, E). Each node
u ∈ V represents a communication switch, and each edge e ∈ E represents a link
between two switches. In each node, there is a buffer (queue) associated with
each outgoing link. Time proceeds in discrete time steps. Buffers store packets
that are injected into the network with a route, which is a simple directed path
in G. A packet is an atomic entity that resides at a buffer at the end of any step.
It must travel along paths in the network from its source to its destination, both
of which are nodes in the network. When a packet is injected, it is placed in the
buffer of the first link on its route. When a packet reaches its destination, we
say that it is absorbed. During each step, a packet may be sent from its current
node along one of the outgoing edges from that node.

Any packets that wish to travel along an edge e at a particular time step, but
are not sent, wait in a queue for e. At each step, an adversary generates a set
of requests. A request is a path specifying the route that will be followed by a
packet.1 We say that the adversary generates a set of packets when it generates
a set of requested paths. Also, we say that a packet p requires an edge e at time
t if e lies on the path from its position to its destination at time t.

The definition of a bounded adversary A of rate (ρ, b) (where b ≥ 1 is a natural
number and 0 < ρ < 1) [4] requires that for any edge e and any interval I, the
adversary injects no more than ρ|I| + b packets during I that require edge e at
their time of injection. Such a model allows for adversarial injection of packets
that are “bursty” using the integer b > 0.

When we consider adversarial constructions for proving instability of com-
positions of specific protocols in which we want to derive lower bounds, it is
advantageous to have an adversary that is as weak as possible. Thus, for these
purposes, we say that an adversary A has injection rate ρ if for every t ≥ 1,
every interval I of t steps, and every edge e, it injects no more than ρ|t| packets
during I that require edge e at the time of their injection.

In order to formalize the behavior of a network, we use the notions of system
and system configuration. A triple of the form 〈G, A, P〉 where G is a network, A
is an adversary and P is the used protocol (or list of protocols) on the network
queues is called a system. In every time step t, the current configuration Ct of
a system 〈G, A, P〉 is a collection of sets {St

e : eεG}, such that St
e is the set of

packets waiting in the queue of the edge e at the end of step t.

3 Unstable Compositions of Protocols

In this section we focus on networks that already have been proved to be unstable
under FIFO protocol. We describe the adversary’s strategy for each network and
we present the stability results for various protocol compositions.
1 In this work, it is assumed, as it is common in packet routing, that all paths are

simple paths where edges cannot be overlapped, while vertices can be overlapped.
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Fig. 1. Network Constructions G1, G2, and G3

3.1 Stability Behavior of G1 Network

Adversary’s strategy. Consider the network G1 in Figure 1. Time is split into
phases. At the beginning of phase j, there are sj packets that are queued in the
queue e0 requiring to traverse the edge e0. We will construct an adversary A1
such that at the beginning of phase j + 1 there will be sj+1 packets that will be
queued in the queue e1, requiring to traverse the edge e1. During phase j the
adversary plays three rounds of injections as follows:

Round 1: For the first sj time steps, the adversary injects in e0 a set X of ρsj

packets that want to traverse the edges e0, f
′
0, e1.

Round 2: For the next ρsj time steps, the adversary injects in e0 a set Y of
ρ2sj packets that want to traverse the edges e0, f0, e1 and in f

′

0 a set Z of ρ2sj

packets that want to traverse the edge f
′

0. The adversary uses Z packets to delay
X packets in f

′

0.

Round 3: For the next ρ2sj time steps, the adversary injects in e1 ρ3sj packets
that want to traverse the edge e1.

At the end of Round 3, there will be a number of packets (sj+1) that will be
queued in the queue e1, requiring to traverse the edge e1. Then, during phase
j + 1 the same adversarial construction is applied for the symmetric edges using
the quantity sj+1 instead of sj . In order to guarantee instability, it suffices to
show that sj+1 > sj for each successive phases j and j + 1.

Instability of Protocol Compositions for G1: We apply the adversary A1 on
network G1 for the compositions of protocols FIFO, NTG, FFS with any of FTG,
NTS, SIS, LIS. Table 1 shows the instability properties of such compositions.

In order to show that our experimental analysis agrees with theoretical analy-
sis, we prove:

Theorem 1. Let ρ ≥ 0.76. There is a network G1 and an adversary A1 of rate
ρ, such that the system (G1, A1, FIFO, NTS) is unstable.
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Table 1. Network G1: Instability of FIFO, NTG, FFS with any of FTG, NTS, SIS, LIS

Protocol Compositions Unstable? Injection rate ρ

FIFO - FTG YES ρ ≥ 0.86

FIFO - NTS YES ρ ≥ 0.76

FIFO - SIS YES ρ ≥ 0.76

FIFO - LIS YES ρ ≥ 0.86

NTG - FTG YES ρ ≥ 0.76

NTG - NTS YES ρ ≥ 0.76

NTG - SIS YES ρ ≥ 0.77

NTG - LIS YES ρ ≥ 0.77

FFS - FTG NO 2 -

FFS - NTS YES ρ ≥ 0.77

FFS - SIS YES ρ ≥ 0.77

FFS - LIS NO -

Proof. Consider the network G1 in Figure 1. All the queues use FIFO to resolve
packet conflicts except from queues f0 and f1 that use NTS.
Inductive Hypothesis: At the beginning of phase j, there are sj packets that are
queued in the queue e0 requiring to traverse the edge e0.
Induction Step: At the beginning of phase j+1 there will be more than sj packets
that will be queued in the queue e1, requiring to traverse the edge e1.

We will construct an adversary A such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j+1 for the symmetric edges with an increased
value of sj , sj+1 > sj . In order to prove that the induction step works, we should
consider that there is a large enough number of packets sj in the initial system
configuration. During phase j the adversary plays three rounds of injections. The
sequence of injections is as follows:

Round 1: For the first sj time steps, the adversary injects a set X of ρsj packets
that want to traverse the edges e0, f

′

0, e1. These packets are blocked by the initial
sj packets, because queue e0 uses FIFO protocol.
Round 2: For the next ρsj time steps, the adversary injects a set Y of ρ2sj

packets that want to traverse the edges e0, f0, e1. At the same time, the adversary
inserts a set Z of ρ2sj which will traverse queue f

′

0. During this round, all the
packets of set Z, will traverse f

′

0 because these packets are nearest to their source.
Moreover, ρsj − ρ2sj) packets of set X traverse queue f0, so at the end of this
round there are ρ2sj packets of set X in queue f0.
Round 3: For the next ρ2sj time steps, the adversary injects a set W of ρ3sj

packets that want to traverse edge e1. During this round, in queue e1 arrive
the ρ2sj packets of set Y , and the ρ2sj packets of set X . So, at the end of this
round, there are in queue e1 ρ2sj + ρ3sj packets. For ρ ≥ 0.76, it holds that
sj+1 = ρ2sj + ρ3sj > sj . ��
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3.2 Stability Behavior of G2 Network

Adversary’s strategy. Consider the network G2 in Figure 1. Time is split into
phases. At the beginning of phase j, there are sj packets that are queued in the
queue e0 requiring to traverse the edges e0, g, f . We will construct an adversary
A2 such that at the beginning of phase j + 1 there will be sj+1 packets that
will be queued in the queue e1, requiring to traverse the edges e1, g

′
, f

′
. During

phase j the adversary plays three rounds of injections as follows:

Round 1: During the first sj time steps, the adversary injects into e0 a set X of
ρsj packets requiring to traverse the edges e0, f1, f, e1, g

′
, f

′
. Also, the adversary

injects into queue g a set Y of ρsj packets targeted to g.

Round 2: During the next ρsj time steps, the adversary injects into e0 a set Z

of ρ2sj packets requiring to traverse e0, f0, e1, g
′
, f

′
. Also, the adversary injects

into f a set W of ρ2sj packets with destination f .

Round 3: During the next
(

ρ + 1
1+ρ

)

time steps, the adversary injects into e1

a set V of packets requiring to traverse the edges e1, g
′
, f

′
.

At the end of Round 3, there will be a number of packets (sj+1) that will be
queued in the queue e1, requiring to traverse the edges e1, g

′
, f

′
. Then, during

phase j +1 the same adversarial construction is applied for the symmetric edges
using the quantity sj+1 instead of sj . In order to guarantee instability, it suffices
to show that sj+1 > sj for each successive phases j and j + 1.

Instability of Protocol Compositions for G2: We apply the adversary A2 on
network G2 for the compositions of contention-resolution protocols FIFO, NTG,
FFS with any of FTG, NTS, SIS, LIS. Table 2 shows the instability properties of
such compositions.

3.3 Stability Behavior of G3 Network

Adversary’s strategy. Consider the network G3 in Figure 1. Time is split
into phases. At the beginning of phase j, there are sj packets (in total) that are
queued in the queues e0, f

′

3, f
′

4, f
′

5, f
′

6 requiring to traverse the edges e0, f1, f3, f5,
all these packets manage to depart their initial edges to the symmetric part of
the network (f1, f3, f5), as a continuous flow in sj time steps, and the number
of packets that are queued in queues f

′

4, f
′

6 is bigger than the number of pack-
ets queued in queues f

′

3, f
′

5. We will construct an adversary A3 such that at
the beginning of phase j + 1 there will be sj+1 packets queued in the queues
f3, f5, f4, f6, e1 requiring to traverse e1, f

′

1, f
′

3, f
′

5, all of which will be able to
depart their initial edges to the symmetric part of the network (f

′

1, f
′

3, f
′

5) in
sj+1 time steps as a continuous flow and the number of packets that are queued
in queues f4, f6 is bigger than the number of packets queued in queues f3, f5.
During phase j the adversary plays three rounds of injections as follows:
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Table 2. Network G2: Instability of FIFO, NTG, FFS with any of FTG, NTS, SIS, LIS

Protocol Compositions Unstable? Injection rate ρ

FIFO - FTG YES ρ ≥ 0.84

FIFO - NTS YES ρ ≥ 0.84

FIFO - SIS YES ρ ≥ 0.84

FIFO - LIS YES ρ ≥ 0.84

NTG - FTG NO -

NTG - NTS NO -

NTG - SIS NO -

NTG - LIS NO -

FFS - FTG NO -

FFS - NTS YES ρ ≥ 0.73

FFS - SIS YES ρ ≥ 0.73

FFS - LIS NO -

Round 1: For sj time steps, the adversary injects in f
′

4 a set X of ρsj packets
wanting to traverse edges f

′

4, f
′

6, e0, f2, f3, f5, e1, f
′

1, f
′

3, f
′

5. At the same time, the
adversary injects in queue f1 a set S1 of ρsj packets.
Round 2: For the next ρsj time steps, the adversary injects a set Y of ρ2sj

packets requiring f
′

4, f
′

6, e0, f4, f6, e1, f
′

1, f
′

3, f
′

5. At the same time, the adversary
injects a set S2 of ρ2sj packets in f2, a set S3 of ρ2sj packets in f3, and a set S4
of ρ2sj packets in f5.
Round 3: For the next ρ2sj time steps, the adversary injects a set S5 of ρ3sj

packets requiring to traverse f4. Furthermore, the adversary injects a set Z of
ρ3sj packets requiring to traverse f6, e1, f

′

1, f
′

3, f
′

5.

At the end of Round 3, there will be a number of packets (sj+1) that will
be queued in the queues f3, f5, f4, f6, e1 requiring to traverse e1, f

′

1, f
′

3, f
′

5. Then,
during phase j+1 the same adversarial construction is applied for the symmetric
edges using the quantity sj+1 instead of sj . In order to guarantee instability, it
suffices to show that sj+1 > sj for each successive phases j and j + 1.

Instability of Protocol Compositions for G3: We apply the adversary A3 on
network G3 for the compositions of contention-resolution protocols FIFO, NTG,
FFS with any of FTG, NTS, SIS, LIS. Table 3 shows the instability properties of
such compositions.

4 Experimental Evaluation

In order to evaluate the stability properties of various protocol compositions
we carried an experimental study. All of our implementations follow closely the
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Table 3. Network G3: Instability of FIFO, NTG, FFS with any of FTG, NTS, SIS, LIS

Protocol Compositions Unstable? Injection rate ρ

FIFO - FTG YES ρ ≥ 0.76

FIFO - NTS YES ρ ≥ 0.73

FIFO - SIS YES ρ ≥ 0.73

FIFO - LIS YES ρ ≥ 0.76

NTG - FTG NO -

NTG - NTS NO -

NTG - SIS NO -

NTG - LIS YES ρ ≥ 0.8

FFS - FTG NO -

FFS - NTS NO -

FFS - SIS NO -

FFS - LIS NO -

network constructions, the adversarial strategies and the properties of contention-
resolution protocols we described above. They have been implemented as C++
classes by using C++ Builder.

The simulation environment that we developed is based on the Adversarial
Queueing Model presented in Section 2 and allows to perform an experiment for
given symmetric or non-symmetric network constructions, a fixed packet injec-
tion rate, a given adversarial strategy, a fixed contention-resolution protocol or
a composition of protocols used on different network queues, a specified number
of phases and a given amount of initial packets in the network along with their
placement into the network queues.

The experiments were conducted on a Windows box (Windows XP, Pentium
III at 933MHz, with 512MB memory at 133MHz) using C++ Builder.

We experimented on compositions of universally stable and unstable protocols.
In particular, we are interested in the behavior of the number of packets of all
the network queues in successive phases for various compositions of protocols.
If the total number of packets in the network queues increases at any times,
then the network is unstable. Figures 2, 3, and 4 illustrate our experiments
considering the worst injection rate we estimated with respect to instability for
any composition of protocols we studied.

The results of our experiments are summarized in the tables below; we state
only the results that lead to instability. The information of which queues use
which protocol is included into the following tables. For example, in Table 4, in
the cell that corresponds to the composition FIFO - NTS the line [f0, f1](ρ ≥ 0.76)
means that all the queues use FIFO except of f0, f1 which use NTS protocol and
the injection rate lower bound that guarantees instability is ρ ≥ 0.76.

Generally, we formulated our experiments in two categories: in the first cat-
egory all queues use the same unstable protocol except of one that uses a
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Table 4. Instability of protocol compositions on network G1

NTS SIS FTG LIS
FIFO [f0, f1] (ρ ≥ 0.76) [f0, f1] (ρ ≥ 0.76) [f ′

0] (ρ ≥ 0.86) [e0] (ρ ≥ 0.86)
[f0] (ρ ≥ 0.85) [f0], (ρ ≥ 0.85) [f ′

0, f
′
1] (ρ ≥ 0.86) [e1, f

′
1] (ρ ≥ 0.86)

[f ′
0, f1] (ρ ≥ 0.85) [f ′

0, f1] (ρ ≥ 0.85)
[f ′

0] (ρ ≥ 0.86) [f ′
0] (ρ ≥ 0.86)

[f ′
0, f

′
1] (ρ ≥ 0.86) [f ′

0, f
′
1] (ρ ≥ 0.86)

NTG [f0] (ρ ≥ 0.76) [f0] (ρ ≥ 0.77) [f ′
0] (ρ ≥ 0.76) [f ′

0] (ρ ≥ 0.77)
[f ′

0, f
′
1] (ρ ≥ 0.76) [f ′

0, f
′
1] (ρ ≥ 0.77) [f ′

0, f
′
1] (ρ ≥ 0.76) [f ′

0, f
′
1] (ρ ≥ 0.77)

[f1] (ρ ≥ 0.77)

FFS [f0, f1] (ρ ≥ 0.77) [f0, f1] (ρ ≥ 0.77) NO NO

Table 5. Instability of protocol compositions on network G2

NTS SIS FTG LIS
FIFO [f1] (ρ ≥ 0.84) [f1] (ρ ≥ 0.84) [f1] (ρ ≥ 0.84) [f1] (ρ ≥ 0.84)

[f1, f
′
1] (ρ ≥ 0.84) [g] (ρ ≥ 0.87) [f1, f

′
1] (ρ ≥ 0.84) [f1, f

′
1] (ρ ≥ 0.84)

[g] (ρ ≥ 0.87) [g, g′] (ρ ≥ 0.9) [g] (ρ ≥ 0.87) [g] (ρ ≥ 0.87)
[g, g′] (ρ ≥ 0.9) [g, g′] (ρ ≥ 0.87) [g, g′] (ρ ≥ 0.87)

NTG NO NO NO NO

FFS [g, g′] (ρ ≥ 0.73) [g, g′] (ρ ≥ 0.73) NO NO
[f, f ′] (ρ ≥ 0.79) [f, f ′] (ρ ≥ 0.79)

Table 6. Instability of protocol compositions on network G3

NTS SIS FTG LIS
FIFO [f2, f

′
2] (ρ ≥ 0.73) [f2, f

′
2] (ρ ≥ 0.73) [f6] (ρ ≥ 0.76) [f4, f

′
4] (r ≥ 0.76)

[f6] (ρ ≥ 0.76) [f5, f
′
5] (ρ ≥ 0.76) [f5] (ρ ≥ 0.76)

[f6, f
′
6] (ρ ≥ 0.76) [f5, f

′
5] (ρ ≥ 0.76)

NTG NO NO NO NO

FFS NO NO NO NO

universally stable protocol, while in the second category all queues use the same
unstable protocol except of two that both use the same universally stable pro-
tocol. In both of the two categories of experiments we assumed that initially
there are s0=1000 packets in the system. In addition, all of the experiments are
executed for 80 phases.

We start our experimentation by considering the effect of the composition of
FIFO with NTS, FTG, LIS, SIS protocols on the stability properties of network
G1. Figure 2b depicts the total number of packets into the queues of G1 under the
compositions of FIFO with any of NTS, FTG, LIS, SIS protocols. Furthermore,
for comparison reasons, we estimate the evolution of the number of packets into
the network when FIFO is used for contention-resolution on all queues of G1
(Figure 2a). Finally, Figures 2c and 2d depict the total number of packets into
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the queues of G1 under the compositions of NTG and FFS protocols with any of
NTS, FTG, LIS, SIS protocols.

The results of the experiments on network G1 (Table 4) show that the composi-
tion of an unstable protocol with a universally stable protocol is unstable for the
most composition pairs. Surprisingly, in the case of the composition pairs FIFO-
NTS, and FIFO-SIS we found a lower bound on the injection rate (ρ ≥ 0.76) that
guarantees instability than the instability lower bound specified in [2] (ρ ≥ 0.85)
applying only FIFO on G1.

FIFO (  = 0.86)

FIFO – FTG (  = 0.86)
FIFO – LIS (  = 0.86) 

FIFO - NTS (  = 0.77) 
FIFO - SIS (  = 0.77)

NTG - NTS  (   = 0.8) 
NTG - FTG (  = 0.8) 
NTG - SIS (  = 0.77) 
NTG - LIS (  = 0.86) 

FFS - FTG (  = 0.7) 
FFS - LIS (  = 0.85)

FFS - NTS (  = 0.77)
FFS - SIS (  = 0.77)

Fig. 2. Instability curves of G1 under a protocol or a composition of protocols: (a)
FIFO, (b) FIFO-NTS, FIFO-SIS, FIFO-FTG, FIFO-LIS, (c) NTG-NTS, NTG-SIS, NTG-
FTG, NTG-LIS, (d) FFS-NTS, FFS-SIS, FFS-FTG, FFS-LIS

After G1, we study the effect of composing unstable protocols FIFO, NTG, FFS
with universally-stable protocols NTS, FTG, LIS, SIS on network G2. Figure 3b
depicts the total number of packets into the queues of G2 under the compositions
of FIFO with any of NTS, FTG, LIS, SIS protocols. Furthermore, for comparison
reasons, we estimate the evolution of the number of packets into the network
when FIFO is used for contention-resolution on all queues of G2 (Figure 3a).
Finally, Figures 3c and 3d depict the total number of packets into the queues
of G2 under the compositions of NTG and FFS protocols with any of NTS, FTG,
LIS, SIS protocols.

The results of the experiments on network G2 (Table 5) show that the instabil-
ity property of FIFO is maintained, even though we compose it with universally
stable protocols. On the other hand, the NTG protocol loses its instability prop-
erty when it is composed with any of universally stable protocols FTG, NTS, SIS
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FIFO  (  = 0.84)

FIFO – FTG (  = 0.84)
FIFO - SIS   (  = 0.84)
FIFO - LIS   (  = 0.84)

FIFO - NTS (   = 0.77) 

NTG - FTG (  = 0.85)

NTG - NTS   (   = 0.9) 
NTG – LIS  (   = 0.89)

NTG - FTG (  = 0.85)

FFS - FTG (  = 0.88) 
FFS - LIS (  = 0.9) 

FFS - NTS (  = 0.73)  
FFS - SIS  (  = 0.73) 

Fig. 3. Instability curves of G2 under a protocol or a composition of protocols: (a)
FIFO, (b) FIFO-NTS, FIFO-SIS, FIFO-FTG, FIFO-LIS, (c) NTG-NTS, NTG-SIS, NTG-
FTG, NTG-LIS, (d) FFS-NTS, FFS-SIS, FFS-FTG, FFS-LIS

FIFO (  = 0.76)

FIFO - SIS  (  = 0.73) 
FIFO - NTS   (  = 0.73)

FIFO - LIS (  = 0.76) 

FIFO - FTG (  = 0.76)

NTG - NTS (  = 0.86) 
NTG - LIS   (  = 0.8) 
NTG - FTG (  = 0.77)
NTG - SIS  (  = 0.9)  

FFS - FTG (  = 0.77)
FFS - LIS  (  = 0.8) 

FFS - SIS (  = 0.9) 

FFS - NTS (  = 0.86) 

Fig. 4. Instability curves of G3 under a protocol or a composition of protocols: (a)
FIFO, (b) FIFO-NTS, FIFO-SIS, FIFO-FTG, FIFO-LIS, (c) NTG-NTS, NTG-SIS, NTG-
FTG, NTG-LIS, (d) FFS-NTS, FFS-SIS, FFS-FTG, FFS-LIS



An Experimental Study of Stability in Heterogeneous Networks 201

and LIS on network G2 under the adversary A2. But, the composition of FFS
protocol with NTS or SIS leads to instability.

Finally, we experiment with the effect of composing unstable protocols FIFO,
NTG, FFS with universally-stable protocols NTS, FTG, LIS, SIS on network G3.
Figure 4b depicts the total number of packets into the queues of G3 under the
compositions of FIFO with any of NTS, FTG, LIS, SIS protocols. Furthermore, for
comparison reasons, we estimate the evolution of the number of packets into the
network when FIFO is used for contention-resolution on all queues of G3 (Figure
4a). Finally, Figures 4c, 4d depict the total number of packets into the queues
of G3 under the compositions of NTG and FFS protocols with any of NTS, FTG,
LIS, SIS protocols.

The results of the experiments on network G3 (Table 6), shows that the com-
position FIFO - NTS and FIFO - SIS is unstable with injection rate ρ ≥ 0.73. In
theory, FIFO protocol on G3 is unstable with ρ ≥ 0.749 [8, Theorem 5.1]. This
gives an indication that maybe FIFO instability becomes worse when we compose
it with a universally stable protocol.
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Access and Fast String Matching
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Abstract. Given a sequence S of n symbols over some alphabet Σ,
we develop a new compression method that is (i) very simple to im-
plement; (ii) provides O(1) time random access to any symbol of the
original sequence; (iii) allows efficient pattern matching over the com-
pressed sequence. Our simplest solution uses at most 2h + o(h) bits of
space, where h = n(H0(S) + 1), and H0(S) is the zeroth-order empirical
entropy of S. We discuss a number of improvements and trade-offs over
the basic method. The new method is applied to text compression. We
also propose average case optimal string matching algorithms.

1 Introduction

The aim of compression is to represent the given data (a sequence) using as
little space as possible. This is achieved by discovering and utilizing the redun-
dancies of the input. Some well-known compression algorithms include Huffman
coding [14], arithmetic coding [26], Ziv-Lempel [28] and Burrows-Wheeler com-
pression [6]. Recently algorithms that can compress the input sequence close to
the information theoretic minimum size and still allow retrieving any symbol
(actually a short substring) of the original sequence in constant time have been
proposed [10,24]. These are relatively complex and not well suited for the ap-
plications we are considering. The task of compressed pattern matching [1,17,18]
is to report all the occurrences of a given pattern in a compressed text. In this
paper we give a new compression method for sequences. The main traits of the
method are its extreme simplicity, good compression ratio on natural language,
it provides constant time random access to any symbol of the original sequence
and allows average optimal time pattern matching over the compressed sequence
without decompression. We give several compression methods, having different
space/time trade-offs. We analyze the compression ratios, and give several string
matching algorithms to search a pattern over the compressed text. Our compres-
sion method is somewhat related to ETDC compression [3] for natural language
texts.
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2 Preliminaries

Let S[0 . . . n−1] = s0, s1, s2, . . . , sn−1 be a sequence of symbols over an alphabet
Σ of size σ = |Σ|. For a binary sequence B[0 . . . n − 1] the function rankb(B, i)
returns the number of times the bit b occurs in B[0 . . . i]. Function selectb(B, i)
is the inverse, i.e. it gives the index of the ith bit that has value b. Note that for
binary sequences rank0(B, i) = i + 1 − rank1(B, i). Both rank and select can
be computed in O(1) time with only o(n) bits of space in addition to the original
sequence taking n bits [15,19]. It is also possible to achieve nH0(B) + o(n) total
space, where H0(B) is the zero-order entropy of B [22,23], or even Hk(B)+ o(n)
[24], while retaining the O(1) query times.

The zeroth-order empirical entropy of the sequence S is defined to be

H0(S) = −
∑

s∈Σ

f(s)
n

log2

(

f(s)
n

)

, (1)

where f(s) denotes the number of times s appears in S. The k-th order empirical
entropy is

Hk(S) = −
n−1
∑

i=0

pi log2(pi), (2)

where pi = Probability(si | si−k, . . . , si−1). In other words, the symbol proba-
bilities depend on the context they appear on, i.e. on which are the previous k
symbols in S. Obviously, Hk(S) ≤ H0(S).

3 Simple Dense Coding

Our compression scheme first computes the frequencies of each alphabet symbol
appearing in S. Assume that the symbol si ∈ Σ occurs f(si) times. The symbols
are then sorted by their frequency, so that the most frequent symbol comes first.
Let this list be si0 , si1 , . . . , siσ−1 , i.e. i0 . . . iσ−1 is a permutation of {0, . . . , σ−1}.

The coding scheme assigns binary codes with different lengths for the symbols
as follows. We assign 0 for si0 and 1 for si1 . Then we use all binary codes of
length 2. In that way the symbols si2 , si3 , si4 , si5 get the codes 00, 01, 10, 11, cor-
respondingly. When all the codes with length 2 are exhausted we again increase
length by 1 and assign codes of length 3 for the next symbols and so on until all
symbols in the alphabet get their codes.

Theorem 1. For the proposed coding scheme the following holds:

1. The binary code for the symbol sij ∈ Σ is of length � log2(j + 2)�.
2. The code for the symbol sij ∈ Σ is binary representation of the number

j + 2 − 2� log2(j+2)� of � log2(j + 2)� bits.
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Proof. Let a� and b� be indices of the first and the last symbol in alphabet Σ,
which have the binary codes of length �. We have a1 = 0 and b1 = 1. The values
a� and b� for � > 1 can be defined by recurrent formulas

a� = b�−1 + 1, b� = a� + 2� − 1. (3)

In order to get the values a� and b� as functions of �, we first substitute the first
formula in (3) to the second one and have

b� = b�−1 + 2�. (4)

By applying the above formula many times we have a series

b� = b�−2 + 2�−1 + 2�,

b� = b�−3 + 2�−2 + 2�−1 + 2�,

. . .

b� = b1 + 22 + 23 + . . . + 2�.

Finally, b� as a function of � becomes

b� = 1 +
�

∑

k=2

2k =
�

∑

k=0

2k − 2 = 2�+1 − 3. (5)

Using (3) we get
a� = 2� − 3 + 1 = 2� − 2. (6)

If j is given the length of the code for sij is defined equal to �, satisfying

a� ≤ j ≤ b�. (7)

According to above explicit formulas for a� and b� we have

2� − 2 ≤ j ≤ 2�+1 − 3 ⇐⇒ 2� ≤ j + 2 ≤ 2�+1 − 1, (8)

and finally
� ≤ log2(j + 2) ≤ log2(2

�+1 − 1), (9)

whose solution is easily seen to be � = � log2(j + 2)�. For the setting the second
statement it is sufficient to observe that the code for the symbol sj ∈ Σ is j −a�.
By applying simple transformations we have

j − a� = j − (2� − 2) = j + 2 − 2� = j + 2 − 2� log2(j+2)�.

So, the second statement is also proved. �	
The whole sequence is then compressed just by concatenating the codewords for
each of the symbols of the original sequence. We denote the compressed binary
sequence as S′ = S′[0 . . . h − 1], where h is the number of bits in the sequence.
Table 1 illustrates.
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Table 1. Example of compressing the string banana

S = banana f(a) = 3 C[a] = 0 = 02 T [0][0] = a
S′ = 0001010 f(n) = 2 C[n] = 1 = 12 T [0][1] = n
D = 1011111 f(b) = 1 C[b] = 0 = 002 T [1][0] = b

3.1 Constant Time Random Access to the Compressed Sequence

The seemingly fatal problem of the above approach is that the codes are not
prefix codes, and we have not used any delimiting method to mark the codeword
boundaries, and hence the original sequence would be impossible to obtain. How-
ever, we also create an auxiliary binary sequence D[0 . . . h − 1], where h is the
length of S′ in bits. D[i] = 1 iff S′[i] starts a new codeword, and 0 other-
wise, see Table 1. We also need a symbol table T , such that for each different
codeword length we have table of the possible codewords of the corresponding
length. In other words, we have a table T [0 . . . � log2(σ + 1)� − 1], such that ta-
ble T [i][0 . . .2i+1 − 1] lists the codewords of length i. Then, given a bit-string
r, T [|r| − 1][r] gives the decoded symbol for codeword r. This information is
enough for decoding. However, D also gives us random access to any codeword
of S′. That is, the ith codeword of S′ starts at the bit position select1(D, i),
and ends at the position select1(D, i+1)−1. This in turn allows to access any
symbol of the original sequence S in constant time. The bit-string

r = S′[select1(D, i) . . . select1(D, i + 1) − 1] (10)

gives us the codeword for the ith symbol, and hence S[i] = T [|r| − 1][r], where
|r| is the length of the bitstring r. Note that |r| = O(log(n)) and hence in the
RAM model of computation r can be extracted in O(1) time. We call the method
Simple Dense Coding (SDC). We note that similar idea (in somewhat different
context) as our D vector was used in [11] with Huffman coding. However, the
possibility was already mentioned in [15].

3.2 Space Complexity

The number of bits required by S′ is

h =
σ−1
∑

j=0

f(sij ) � log2(j + 2)�, (11)

and hence the average number of bits per symbol is h/n.

Theorem 2. The number of bits required by S′ is at most n(H0(S) + 1).

Proof. The zero-order empirical entropy of S is

−
σ−1
∑

j=0

f(sij )
n

log2

(

f(sij )
n

)

, (12)



Simple Compression Code 207

and thus

n(H0(S) + 1) = n

σ−1
∑

j=0

f(sij )
n

log2

(

n

f(sij )

)

+ n =
σ−1
∑

j=0

f(sij )
(

log2
n

f(sij )
+ 1

)

.

(13)
We will show that the inequality

� log2(j + 2)� ≤ log2(j + 2) ≤
(

log2

(

n

f(sij )

)

+ 1
)

= log2

(

2n

f(sij )

)

(14)

holds for every j, which is the same as

j + 2 ≤ 2n

f(sij )
⇐⇒ (j + 2)f(sij ) ≤ 2n. (15)

Note that for j = 0 the maximum value for f(sij ) is n − σ + 1, and hence the
inequality holds for j = 0, σ ≥ 2. In general, we have that f(sij+1) ≤ f(sij ),
so the maximum value for f(si1) is n/2, since otherwise it would be larger than
f(si0), a contradiction. In general f(sij ) ≤ n/(j+1), and the inequality becomes

(j +2)f(sij ) ≤ 2n ⇐⇒ (j +2)n/(j+1) ≤ 2n ⇐⇒ (j +2)/(j+1) ≤ 2, (16)

which holds always. �	

In general, our coding cannot achieve H0(S) bits per symbol, since we cannot
represent fractional bits (as in arithmetic coding). However, if the distribution
of the source symbols is not very skewed, it is possible that h/n < H0(S). This
does not violate the information theoretic lower bound, since in addition to S′

we need also the bit sequence D, taking another h bits. Therefore the total space
we need is 2h bits, which is at most 2n(H0(S) + 1) bits. However, this can be
improved.

Note that we do not actually need D, but only a data structure that can
answer select1(D, i) queries in O(1) time. This is possible using just h′ =
hH0(D) + o(n) + O(log log(h)) bits of space [23]. Therefore the total space we
need is only h+h′ bits. H0(D) is easy to compute as we know that D has exactly
n bits set to 1, and h − n bits to 0. Hence

H0(D) = − n

h
log2

(n

h

)

− h − n

h
log2

(

h − n

h

)

. (17)

This means that H0(D) is maximized when n
h = 1

2 , but on the other hand
h′ depends also on h. Thus, h′/h shrinks as h grows, and hence for increasing
H0(S) (or for non-compressible sequences, in the worst case H0(S) = log2(σ))
the contribution of hH0(D) to the total size becomes more and more negligible.

Finally, the space for the symbol table T is σ� log2(σ)� bits, totally negligible
in most applications. However, see Sec. 3.5 and Sec. 3.6 for examples of large
alphabets.
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3.3 Trade-Offs Between h and h′

So far we have used the minimum possible number of bits for the codewords.
Consider now that we round each of the codeword lengths up to the next integers
divisible by some constant u, i.e. the lengths are of the form i × u, for i =
{1, 2, . . . , � log2(σ)�/u}. So far we have used u = 1. Using u > 1 obviously only
increases the length of S′, the compressed sequence. But the benefit is that
each of the codewords in S′ can start only at positions of the form j × u, for
j = {0, 1, 2, . . .}. This has two consequences:

1. the bit sequence D need to store only every uth bit;
2. every removed bit is a 0 bit.

The item (2) means that the probability of 1-bit occurring increases to n
h/u . The

extreme case of u = log2(σ) turns D into a vector of n 1-bits, effectively making
it (and S′) useless. However, if we do not compress D, then the parameter u
allows easy optimization of the total space required. Notice that when using
u > 1, the codeword length becomes

� log2((2
u − 1)j + 2u)�u ≤ log2((2

u − 1)j + 2u) (18)

bits, where �x�u = �x/u�u. Then we have the following:

Theorem 3. The number of bits required by S′ is at most n(H0(S) + u).

Proof. The theorem is easily proved by following the steps of the proof of Theo-
rem 2. �	

The space required by D is then at most n(H0(S) + u)/u bits. Summing up, the
total space is optimized for u =

√

H0(S), which leads to total space of

n
(

H0(S) + 2
√

H0(S) + 1
)

+ o
(

n
(
√

H0(S) + 1
))

(19)

bits, where the last term is for the select1 data structure [19].
Note that u = 7 would correspond to byte based End Tagged Dense Code

(ETDC) [3] if we do not compress D. By compressing D our space is smaller
and we also achieve random access to any codeword, see Sec. 3.5.

3.4 Context Based Modelling

We note that we could easily use context based modelling to obtain h of the
form nHk(S). The only problem is that for large alphabets k must be quite
small, since the symbol table size is multiplied by σk. This can be controlled
by using a k that depends on S. For example, using k = 1

2 logσ(n) the space
complexity is multiplied by

√
n, negligible for constant size alphabets.
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3.5 Word Alphabets

Our method can be used to obtain very good compression ratios for natural
language texts by using the σ distinct words of the text as the alphabet. By
Heaps’ Law [12], σ = nα, where n is the total number of words in the text,
and α < 1 is language dependent constant, for English α = 0.4 . . .0.6. These
words form a dictionary W [0 . . . σ − 1] of σ strings, sorted by their frequency.
The compression algorithm then codes the jth most frequent word as an integer
j using � log2(j + 2)� bits. Again, the bit-vector D provides random access to
any word of the original text.

As already mentioned, using u = 7 corresponds to the ETDC method [3].
ETDC uses 7 bits in each 8 bit byte to encode the codewords similarly as in our
method. The last bit is saved for a flag that indicates whether the current byte
is the last byte of the codeword. Our benefit is that as we store these flag bits
into a separate vector D, we can compress D as well, and simultaneously obtain
random access to the original text words.

3.6 Self-delimiting Integers

Assume that S is a sequence of integers in range {0, . . . , σ − 1}. Note that
our compression scheme can be directly applied to represent S succinctly, even
without assigning the codewords based on the frequencies of the integers. In fact,
we can just directly encode the number S[i] with � log2(S[i]+2)� bits, and again
using the auxiliary sequence D to mark the starting positions of the codewords.
This approach does not need any symbol tables, so the space requirement does
not depend on σ. Still, if σ and the entropy of the sequence is small, we can
resort to codewords based on the symbol frequencies.

This method can be used to replace e.g. Elias δ-coding [8], which achieves

� log2(x)� + 2� log2(1 + � log2(x)�)� + 1 (20)

bits to code an integer x. Elias codes are self-delimiting prefix codes, so the
sequence can be uniquely decompressed. However, Elias codes do not provide
constant time random access to the ith integer of the sequence.

Again, we can use u to tune the space complexity of our method.

4 Random Access Fibonacci Coding

In this section we present another coding method that does not need the auxiliary
sequence D. The method is a slight modification of the technique used in [11]. We
also give analysis of the compression ratio achieved with this coding. Fibonacci
coding uses the well-known Fibonacci numbers. Fibonacci numbers {fn}∞n=1 are
the positive integers defined recursively as fn = fn−1 +fn−2, where f1 = f2 = 1.
The Fibonacci numbers also have a closed-form solution called Binet’s formula:

F (n) = (φn − (1 − φ)n)/
√

5 (21)
where φ = 1+

√
5

2 ≈ 1.61803 is the golden ratio.
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Zeckendorf’s theorem [4] states that for any positive integer x there exists
unique representation as

x =
k

∑

i=0

fci (22)

where ci ≥ ci−1 + 2 for any i ≥ 1. The last condition means that the se-
quence {fci} does not contain two consecutive Fibonacci numbers. Moreover,
the Zeckendorf’s representation of integer can be found by a greedy heuristic.
The Fibonacci coding of positive integers uses the Zeckendorf’s representation
of integer. The code for x is a bit stream of length �(x) + 1, where

�(x) = max{i | fi ≤ x} (23)

The last bit in the position �(x) + 1 is set to 1. The value of ith bit is set to 1
if the Fibonacci number fi occurred in Zeckendorf’s representation and is set to
0, otherwise. By definition, the bit in position �(x) is always set to 1. Hence, at
the end of the codeword we have two consecutive ones. On the other hand two
consecutive ones can not appear anywhere else within codeword. This allows us
to distinguish the codewors for the separate symbols in the encoded sequence,
moreover the code satisfies the prefix property.

The Fibonacci dual theorem [5] states that in Zeckendorf’s representation the
first Fibonacci number never occurs in the representation. In other words, we
can skip the first bit reserved for the first Fibonacci number and therefore we
can make the codewords shorter. Thus we can obtain the following Lemma.

Lemma 1. The length |c(x)| of the Fibonacci codeword c(x) for a positive inte-
ger x satisfies |c(x)| ≤ logφ(

√
5x).

Proof. Obviously, the worst case for the code length is when the value x is a
Fibonacci number itself. Then the code is sequence of �(x) − 2 zeroes ending
with two ones. Thus, we have to estimate the value �(x), supposing that x is
Fibonacci number. Using the Binet’s formula we have

x = (φ�(x) − (1 − φ)�(x))/
√

5 (24)

Taking logarithms from the both sides we get, after some algebra:

log2(
√

5x) = �(x) log2(φ) + log2(1 + ((φ − 1)/φ)�(x)). (25)

Due to that 0 < (φ−1)/φ < 1 we have that log2(
√

5x) ≥ �(x) log2(φ), and hence
as φ > 1 we have �(x) ≤ log2(

√
5x)/ log2(φ). �	

Theorem 4. The sequence S encoded with Fibonacci coding can be represented
in

h = n
H0(S) + log2(

√
5)

log2(φ)

bits.

Proof. Follows from Lemma 1. �	
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4.1 Random Access to Fibonacci Coded Sequences

As it was mentioned we have one attractive property of the Fibonacci code.
The two consecutive ones can only appear at the end of the codeword and
nowhere else (however, it is possible that the encoded sequence has more than
two consecutive one bits, namely when codeword 11 is repeated).

If we want to start encoding from the ith symbol we should find the (i − 1)th
pair of two ones, assuming that the pairs are not overlapped. When the po-
sition j of this pair is defined we can start decoding from the position j + 2.
Thus, for our task it is enough to be able to determine the position of (i − 1)th
pair of non-overlapping ones in constant time. The query which does it we de-
note as select11. Notice that as we do not allow the pairs to be overlapped,
this query does not answer the question where the certain occurrence of sub-
string 11 starts in the bitstream and it differs from the extended select query
presented in [16]. The data structure for the select11 query can be cons-
tructed using the same idea as for classical select1 query solution presented
by Clark [7].

The important remark which makes the Clark’s approach applicable is that
during construction of the block directories every sequence 11 of interest is in-
cluded entirely in range. It allows us to use look-up tables, as the situation of
the sequence 11 belonging into two ranges at the same time is impossible. We
omit the details, but by following the Clark’s construction, we can build a data
structure taking o(h) bits of space (in additional to the original sequence) and
supporting select11 queries in O(1) time.

5 Fast String Matching

We now present several efficient string matching algorithms working on the com-
pressed texts. We assume SDC here, altough the algorithms work with minor
modification in Fibonacci coded texts as well. The basic idea of all the algo-
rithms is that we compress the pattern using the same method and dictionary
as for compressing the text, so as to be able to directly comprare a text substring
against the pattern. We denote the compressed text and the auxiliary bitvector
as S′ and DS′ , both consisting of h bits. For clarity of presentation, we assume
that u = 1. Likewise, the compressed sequences for the pattern are denoted as
P ′ and DP ′ , of m bits.

5.1 BMH Approach

The well-known Boyer-Moore-Horspool algorithm (BMH) [13] works as follows.
The pattern P is aligned against a text window S[i−m+1 . . . i] The invariant is
that every occurrence of P ending before the position i is already reported. Then
the symbol P [m − 1] (i.e. the last symbol of P ) is compared against S[i]. If they
match, the whole pattern is compared against the window, and a possible match
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Alg. 1 SearchBMH(T ′, DT , n, P ′, DP , m)

1 b← O(log(m))
2 for i← 0 to (1 << b) − 1 do shift [i]← m
3 for i← 1 to b− 1 do
4 c← P [0 . . . i− 1]
5 for j ← 0 to (1 << (b− i)) − 1 do shift [(c << (b− i)) | j]← m− i
6 for i← 0 to m− b− 1 do shift [P ′[i . . . i + b− 1]] = m− i− b
7 a← P ′[m− b . . . m− 1]
8 occ← 0
9 for i← m− 1 to n− 1 do
10 c← T ′[i− b + 1 . . . i]
11 if a = c and DT [i−m + 1 . . . i] = DP and T ′[i−m + 1 . . . i] = P ′ then occ← occ + 1
12 i← i + shift [c]
13 return occ

is reported. Then the next window to be compared is S[i−m+1+shift . . . i+shift ]
(regardless of whether S[i] was equal to P [m−1] or not), where shift is computed
as

shift = m − max(j | P [j] = S[i], 0 ≤ j < m − 1) (26)

If S[i] does not occur in P , then the shift value is m. The shift function is easy to
compute at the preprocessing time, needing O(σ+m) time and O(σ) space. The
algorithm is very simple to implement and one of the most efficient algorithms
in practice for reasonably large alphabets (say, σ > m), when the average case
time approaches the best case time, i.e. O(n/m). In our case, however, we have
binary alphabet and the shift values yielded are close to 1. However, we can
form a “super-alphabet” from the consecutive bits. That is, we can read b bits
at a time and treat the bitstring as a symbol from an alphabet of size 2b. I.e.
we read the bitstring S′[i − b + 1 . . . i] and compute the shift function so as to
align this bitstring against its right-most occurrence in P ′. If such occurrence is
not found, we compare the suffixes of S′[i − b + 1 . . . i] against the prefixes of
P ′[0 . . . b]. If no occurrence is still found, the shift is again m (bits). We must
still verify any occurrence by comparing DS′ [i−m+1 . . . i] against DP ′ to check
that the codewords are synchronized. Alg. 1 shows complete pseudo code.
Theorem 5. Alg. 1 runs in O(m2 + h/m) average time for the optimal b.
Proof. The average time of Alg. 1 clearly depends on the parameter b. If S′[i− b+
1 . . . i] does not occur in P ′, then the shift is at least m − b + 1 bits. Note that in
RAM model of computation obtaining the bitstring and thus computing the shift
takes O(1) time as long as b = O(log(n)). The total time needed for these cases
(1) is thus O(h/(m − b)). Now, assume that if S′[i − b + 1 . . . i] occurs in P ′ we
verify the whole pattern and shift only by one bit. The total time needed for these
cases (2) is at most O(hm) (actually only O(hm/w) time, as we can compare w
bits at the time, where w is the number of bits in a machine word), but only O(h)
on average. We therefore want to choose b so that the probability p of case (2) is
low enough. The total time is therefore O(h/(m − b) + phm). Assuming that the
bit values have uniform distribution, p = 1/2b, and the total time is optimized for

h/(m − b) > hm/2b ⇒ b = Ω(log(m2)), (27)
and the average case time then becomes O(h/m). The preprocessing time is
O(2b + m) which is O(m2) for b = log2(m

2). �	
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We note that this breaks the lower bound of O(h log(m)/m), which is based
on comparison model [27], and is thus optimal. However, our method is not
based on comparing single symbols and we effectively avoid the log(m) term
by “comparing” b symbols at a time. On the other hand, it is easy to see that
increasing b beyond O(log(m)) does not improve our algorithm. Finally, note
that other BMH variants, such as the one by Sunday [25], could be generalized
just as easily.

5.2 Shift-Or and BNDM

The two well-known bit-parallel string matching algorithms Shift-Or [2] and
BNDM [20] can be directly applied to our case, and even simplified: as already
noted in [20], the preprocessing phase can be completely removed, as for binary
alphabets the pattern itself and its bit-wise complement can serve as the prepro-
cessed auxiliary table the algorithms need. However, we still need to verify the
occurrences using the DP ′ sequence. The average case running times of Shift-Or
and BNDM become O(h) and O(h log(m)/m) for m ≤ w. For longer patterns
these must be multiplied by �m/w�. We omit the details for lack of space. How-
ever, we note that the “superalphabet” trick of the previous section works for
these two algorithms as well (see also [9]). For example, we can improve BNDM
by precomputing the steps taken by the algorithm by the first b bits read in
a text window, and at the search phase we use a look-up table to perform the
steps in O(1) time, and then continue the algorithm normally. The average case
time of BNDM is improved to O(h� log(m)/b�/m), and we see that b = log(m)
gives again O(h/m) average time. Preprocessing time and space become O(m).

6 Experimental Results

We have run experiments to evaluate the performance of our algorithms. The ex-
periments were run on Celeron 1.5GHz with 512Mb of ram, running gnu/Linux
operating system. We have implemented all the algorithms in C, and compiled
with gcc 4.1.1.

The test files are summarized in Table 2 (a), the files are from Silesia corpus1

and Canterbury corpus2. We used a word based model [18]: we have two dictio-
naries, one for the text words and the other for “separators”, where separator is
defined to be any substring between two words. As there is strictly alternating
order between the two, decompressing is easy as far as we know whether the
text starts with a word or a separator. We used zlib library3 to compress the
dictionaries. We also experimented with a so called “space-less model”, but omit
the results for a lack of space.

Table 2 (b) gives the compression ratios for several different methods. The
Huffman compression algorithm uses two dictionaries, while ETDC uses the
1 http://www-zo.iinf.polsl.gliwice.pl/∼sdeor/corpus.htm
2 http://corpus.canterbury.ac.nz/
3 www.zlib.org

http://www-zo.iinf.polsl.gliwice.pl/~sdeor/corpus.htm
http://corpus.canterbury.ac.nz/
www.zlib.org
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Table 2. Test files and compression ratios

(a) Test files
Name Type Size σ (words+separators) words H0(words)
dickens English text 10,192,446 B 34,381 + 1,071 1,819,394 9.92 bits
world192.txt English text 2,473,400 B 22,917 + 498 343,139 10.91 bits
samba source code 6,760,204 B 29,822 + 15,544 924,640 10.40 bits
xml xml source 5,303,867 B 19,582 + 1,495 847,806 9.10 bits

(b) Compression ratios
File gzip -9 bzip2 -9 SDC SDC W FibC FibC W Huffman ETDC H0
dickens 37.7% 27.4% 35.3% 29.3% 31.5% 25.4% 28.3% 32.9% 26.2%
world192.txt 29.1% 19.7% 35.5% 29.3% 31.6% 25.3% 29.0% 34.4% 24.4%
samba 20.1% 16.3% 36.1% 24.9% 32.2% 21.4% 30.3% 38.4% 27.4%
xml 12.3% 8.0% 33.0% 24.5% 30.6% 21.6% 28.7% 38.6% 26.4%

(c) Compression ratios with and w/o select data structure
with with select w/o select, word stream only
select only for words SDC

File SDC FibC SDC FibC u = 1 u = 2 u = 3 u = 4
dickens 39.1% 35.4% 37.1% 33.5% 29.3% 25.8% 25.2% 25.4%
world192.txt 38.6% 35.2% 37.0% 33.7% 29.3% 25.7% 24.9% 25.1%
samba 39.1% 35.4% 37.6% 33.8% 24.9% 21.7% 21.1% 21.3%
xml 36.6% 34.4% 34.7% 32.6% 24.5% 21.9% 21.6% 21.9%

space-less model. Note that SDC with u = 7 and spaceless model would achieve
the same ratio. H0 denotes the empirical entropy using the model of two separate
dictionaries. SDC W and FibC W columns give the ratios using only the word
stream (i.e. excluding the separators stream). This gives the text size for our
search algorithms, since we ran them only for the words.

Table 2 (c) shows the compression ratios for SDC and FibC including the
size of the select data structures. The values are for both streams (words and
seperators), and for word stream only. We used the darray method [21]. For
SDC coding this can be directly applied on D vector. For FibC this needs some
modifications, but these are quite easy and straight-forward. The table shows
also the effect of the parameter u for SDC. We show only the effect on word
stream. In general we can, and should, optimize the parameter individually for
words and separators, since the entropy for separators is usually much smaller.
The optimum value is u = 3 in all cases, as can be deduced from Table 2 (a),
i.e. the optimum is

√

H0(words).
Fig. 1 shows the search performance using dickens file. We compared our algo-

rithms against the BMH algorithm on the original uncompressed text. We used
patterns consisting of 1 . . . 4 words and 300 patterns of each length randomly
picked from the text. The compressed pattern lengths were about 6, 12, 18 and
25 bits, correspondingly. Shift-Or (SO) is quite slow, as expected (as the shift is
always just 1 bit). However, BNDM, BNDMB (same as BNDM but using the pa-
rameter b) and FBMH (our BMH variant running on compressed texts) achieve
reasonably good performance, altough they lose to plain BMH, which has very
simple implementation. For FBMH we used b = m for m ≤ 10 and b = 10 for
larger m. For BNDMB we used b = 2 log2(m). We feel that the performance
of searching in compressed texts could still be improved. In particular, using
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Fig. 1. Search performance. Left: MB/second processed by different algorithm. Right:
the average shift in bits. The x-axis (m) is the pattern length in words.

u = 8 allows us to use plain byte based BMH algorithm, with the exception that
we have to verify the occurrences with the D vector.

7 Conclusions

We have presented a simple compression schemes that allow constant time access
to any symbol of the original sequence. The method gives good compression ratio
for natural language texts, and allows average-optimal time string matching
without decompression.
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Abstract. Suffix tree is one of the most important data structures in
string algorithms and biological sequence analysis. Unfortunately, when
it comes to implementing those algorithms and applying them to real
genomic sequences, often the main memory size becomes the bottleneck.
This is easily explained by the fact that while a DNA sequence of length
n from alphabet Σ = {A, C, G, T} can be stored in n log |Σ| = 2n bits,
its suffix tree occupies O(n log n) bits. In practice, the size difference
easily reaches factor 50.

We report on an implementation of the compressed suffix tree very
recently proposed by Sadakane (Theory of Computing Systems, in press).
The compressed suffix tree occupies space proportional to the text size,
i.e. O(n log |Σ|) bits, and supports all typical suffix tree operations with
at most log n factor slowdown. Our experiments show that, e.g. on a 10
MB DNA sequence, the compressed suffix tree takes 10% of the space
of normal suffix tree. At the same time, a representative algorithm is
slowed down by factor 30.

Our implementation follows the original proposal in spirit, but some
internal parts are tailored towards practical implementation. Our con-
struction algorithm has time requirement O(n log n log |Σ|) and uses
closely the same space as the final structure while constructing it: on
the 10 MB DNA sequence, the maximum space usage during construc-
tion is only 1.4 times the final product size.

1 Introduction

Myriad non-trivial combinatorial questions concerning strings turn out to have
efficient solutions via extensive use of suffix trees [2]. As a theoretical tool, suffix
trees have a fundamental role in plethora of algorithmic results in the area of
string matching and sequence analysis. Bioinformatics is a field where suffix trees
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would seem to have the strongest practical potential; unlike the natural language
texts formed by words and delimiters (enabling specialized data structures like
inverted files), biological sequences are streams of symbols without any prede-
fined word boundaries.. Suffix trees treat any substring equally, regardless of it
being a word or not. This perfect synergy has created a vast literature describing
suffix tree -based algorithms for sequence analysis problems, see e.g. [13]. Sev-
eral implementations exist as well, like STRMAT, WOTD, LIBSTREE, and MUMMER1,
to name a few.

Unfortunately, the theoretically attractive properties of suffix trees do not al-
ways meet the practical realm. A bottleneck to the wide-spread use of suffix trees
in Bioinformatics is their immense space consumption. Even for a reasonable size
genomic sequence of 100 MB, its suffix tree may require 5 GB of main memory.
This phenomenon is not just a consequence of constant factors in the implemen-
tation of the structure, but rather an asymptotic effect. When examined more
carefully, one notices that a sequence of length n from an alphabet Σ requires
only n log |Σ| bits of space, whereas its suffix tree requires O(n log n) bits. Hence,
the space requirement is by no means linear when measured in bit-level.

The size bottleneck of suffix trees has made the research turn into looking
for more space-economic variants of suffix trees. One popular alternative is the
suffix array [20]. It basically removes the constant factor of suffix trees to 1, as
what remains from suffix trees is a lexicographically ordered array of starting
positions of suffixes in the text. That occupies n log n bits. Many tasks on suffix
trees can be simulated by log n factor slowdown using suffix arrays. With three
additional tables, suffix arrays can be enhanced to support typical suffix tree
operations without any slowdown [1].

A recent twist in the development of full-text indexes is the use of abstract
data structures ; the operations supported by a data structure are identified and
the best possible implementation is sought for that supports those operations.
This line of development has led to compressed suffix arrays [12,9] (see [24] for
more references). These data structures take, in essence, n log |Σ|(1 + o(1)) bits
of space, being asymptotically space-optimal. For compressible sequences they
take even less space. More importantly, they simulate suffix array operations with
logarithmic slowdowns. These structures are also called self-indexes as they do
not need the text to function; the text is actually represented compressed within
the index.

Very recently Sadakane [25] extended the abstract data structure concept to
cover suffix trees, identifying typical operations suffix trees are assumed to pos-
sess. Some of these operations, like navigating in a tree, were already extensively
studied by Munro, Raman, and Rao [22]. In addition to these navigational op-
erations, suffix trees have several other useful operations such as suffix links,
constant time lowest common ancestor (lca) queries, and pattern search capa-
bilities. Sadakane developed a fully functional suffix tree structure by combining

1 http://www.cs.ucdavis.edu/˜gusfield/strmat.html, http://bibiserv.techfak.uni-
bielefeld.de/wotd/, http://www.cl.cam.ac.uk/˜cpk25/libstree/,
http://sourceforge.net/projects/mummer/
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compressed suffix arrays with several other non-trivial new structures. Each op-
eration was supported by at most log n slowdown, often the slowdown being
only constant. The space requirement was shown to be still asymptotically op-
timal, more accurately, |CSA| + 6n + o(n) bits, where |CSA| is the size of the
compressed suffix array used.

This paper studies an implementation of Sadakane’s compressed suffix tree.
We implemented the structure following closely the original proposal [25]. In
addition, we considered the issue of space-efficient construction, studying the
following subtasks: (1) How to construct the Burrows-Wheeler transform on
which the compressed suffix arrays are based on; (2) storing sampled text/suffix
array positions; (3) direct construction of compressed longest common prefix
information, and (4) construction of balanced parentheses representation of suffix
tree directly from compressed suffix array. Tasks (1), (3) and (4) have been
considered in [15] and later improved in [16] so as to obtain an O(n logε n) time
algorithm to construct compressed suffix trees, where ε > 0. Task (2) is related
to our choice of implementing compressed suffix arrays using structures evolved
from FM-index [9], and is tackled in this paper. Also for task (3) our solution
variates slightly from [15] as we build on top of the suffixes-insertion algorithm
[6] and they build on top of the post-order traversal algorithm of [17]. The final
time-requirement of our implementation is O(n log n log |Σ|), being reasonably
close to the best current theoretical result [16].

The outline of the article is as follows. Section 2 gives the basic definitions
and a very cursory overview of Sadakane’s structure. Section 3 explains how
we implemented compressed suffix arrays (related to task (1)) and provides a
solutions to task (2). Section 4 describes the solution hinted in [15] for task (3).
Section 5 gives an overview of balanced parentheses and describes our construc-
tion algorithm, solving task (4). Section 6 explains how we implemented the
lowest common ancestor structure by adding a space-time tradeoff parameter.
We conclude with some illustrative experimental results in Sect. 7.

The software package can be downloaded from
http://www.cs.helsinki.fi/group/suds/cst/. Also a technical report is
available there that contains the full implementation details that are omitted
here for the lack of space.

2 Preliminaries

A string T = t1t2 · · · tn is a sequence of characters from an ordered alphabet Σ.
A substring of T is any string Ti...j = titi+1 · · · tj , where 1 ≤ i ≤ j ≤ n. A suffix
of T is any substring Ti...n, where 1 ≤ i ≤ n. A prefix of T is any substring T1...j ,
where 1 ≤ j ≤ n.

Definition 1. (Adopted from [13]) The keyword trie for set P of strings is a
rooted directed tree K satisfying three conditions: (1) Each edge is labeled with
exactly one character; (2) any two edges out of the same node have distinct labels;
(3) every pattern P of P maps to some node v of K such that the characters on
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the path from the root of K to v spell out P , and every leaf of K is mapped to by
some string in P.

Definition 2. The suffix trie of text T is a keyword trie for set S, where S is
the set of all suffixes of T .

Definition 3. The suffix tree of text T is the path-compressed suffix trie of
T , i.e., a tree that is obtained by representing each maximal non-branching path
of the suffix trie as a single edge labeled by the catenation of the labels in the
corresponding edges of the suffix trie. The edge labels of suffix tree correspond
to substrings of T ; each edge can be represented as a pair (l, r), such that Tl...r

gives the label.

A path label of a node v is the catenation of edge labels from root to v. Its length
is called string depth. The number of edges from root to v is called node depth.
The suffix link sl(v) of an internal node v with path label xα, where x denotes
a single character and α denotes a possibly empty substring, is the node with
path label α.

A typical operation on suffix trees is the lowest common ancestor query, which
can be used to compute the longest common extension lce(i, j) of arbitrary two
suffixes Ti...n and Tj...n: Let v and w be the two leaves of suffix tree have path
labels Ti...n and Tj...n, respectively. Then the path label α of the lowest common
ancestor node of v and w is the longest prefix shared by the two suffixes. We
have lce(i, j) = |α|.

The following abstract definition captures the above mentioned typical suffix
tree operations.

Definition 4. An abstract suffix tree for a text supports the following opera-
tions:

1. root(): returns the root node.
2. isleaf(v): returns Yes if v is a leaf, and No otherwise.
3. child(v, c): returns the node w that is a child of v and the edge (v, w) begins

with character c, or returns 0 if no such child exists.
4. sibling(v): returns the next sibling of node v.
5. parent(v): returns the parent node of v.
6. edge(v, d): returns the d-th character of the edge-label of an edge pointing to

v.
7. depth(v): returns the string depth of node v.
8. lca(v, w): returns the lowest common ancestor between nodes v and w.
9. sl(v): returns the node w that is pointed to by the suffix link from v.

2.1 Overview of Compressed Suffix Tree

Sadakane [25] shows how to implement each operation listed in Def. 4 by means
of a sequence of operations on (1) compressed suffix array, (2) lcp-array 2, (3)
balanced parentheses representation of suffix tree hierarchy, and (4) a structure
for lca-queries. In the following sections we explain how we implemented those
structures.
2 Sadakane [25] uses name Height-array.
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3 Compressed Suffix Array

Suffix array is a simplified version of suffix tree; it only lists the suffixes of the
text in lexicogaphic order. Let SA[1 . . . n] be a table such that TSA[i]...n gives
the i-th smallest suffix in lexicographic order. Notice that this table can be filled
by a depth-first traversal on suffix tree following its edges in lexicogaphic order.

As the array SA takes n logn bits, there has been considerable effort in build-
ing compressed suffix arrays to reduce its space requirement, see [24]. The fol-
lowing captures typical suffix array operations on an abstract level.

Definition 5. An abstract suffix array for a text T supports the following op-
erations:

– lookup(i): returns SA[i],
– inverse(i): returns j = SA−1[i], defined such that SA[j] = i,
– Ψ(i): returns SA−1[SA[i] + 1], and
– substring(i, l): returns T [SA[i] . . . SA[i] + l − 1].

3.1 Our Implementation

We used Succinct Suffix Array (SSA) of [18] to implement the abstract suf-
fix array operations. The base structure is the wavelet tree [11] build on the
Burrows-Wheeler transform [3]. The Burrows-Wheeler transform T bwt is defined
as T bwt[i] = TSA[i]−1 (where SA[i] − 1 = SA[n] when SA[i] = 1). A property of
T bwt used in compressed suffix arrays is so-called LF -mapping: LF (i) = i′ such
that SA[i′] = SA[i] − 1.

It can be shown [9] that LF -mapping can computed by the means of T bwt:

Lemma 1 ([9]). Let c = T bwt[i]. Then

LF (i) = C[c] + rankc(T bwt, i), (1)

where C[c] is the the number of positions of T bwt containing a character smaller
than c and rankc(T bwt, i) tells how many times character c occurs upto position
i in T bwt.

Table C[1 . . . |Σ|] can be stored as is in |Σ| logn bits of space, and space-efficient
data structures built for storing rankc-function values. For example, a simplified
version of the wavelet tree (see [18, Sect. 5]) stores those values in n log |Σ|(1 +
o(1)) bits so that each rankc value (as well as value T bwt[i]) can be computed
in O(log |Σ|) time.

Rest of the abstract suffix array operations can be supported by storing sam-
pled suffix array values (and sampled inverse suffix array values) and using LF -
mapping to simulate those operations. These additional structures occupy to-
gether 2n

R log n + n(1 + o(1) bits, where R is the sample rate used. See the full
version of this article for details or consult [24], where these are explained for
lookup() and substring(); Ψ() and inverse() are analogous.
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In our implementation, we use the Huffman-tree shape as advised in [18],
so that the structure takes overall 2n

R log n + n(H0 + 2)(1 + o(1)) bits of space
and supports all the abstract suffix array operations in O(R · H0) average time.
(Worst case O(R · log n).) Here H0 is the zeroth order entropy of T . Recall that
H0 ≤ log |Σ|. Fixing any R = Ω( log n

log |Σ|), the structure takes O(n log |Σ|) bits.

Space-efficient Construction via Dynamic Structure. The construction of the
structure is done in two phases. First the Burrows-Wheeler transform is con-
structed, then the additional structures.

The first phase can be executed in O(n log n log |Σ|) time and using nH0 +
o(n log |Σ|) bits of space by using the dynamic self-index explained in [19]. We
implemented the simplified version that uses O(n log |Σ|) bits: Instead of using
the more complicated solution to solve rank-queries on dynamic bitvectors, we
used the O(n) bits structure of [4] (see also [19, Sect. 3.2]). Using this inside the
dynamic wavelet trees of [19], one obtains the claimed result (see the paragraph
just before Sect. 6 in [19]). The result is actually a dynamic wavelet tree of the
Burrows-Wheeler transform supporting rankc-queries in O(log n log |Σ|) time.
This is easily converted into a static structure of the original SSA (in time linear
in the size of the structure) that supports rankc-queries in O(log |Σ|) time. In our
implementation, we use the Huffman-shaped wavelet tree to improve the space
to O(nH0) bits. This conversion is also easily done by extracting the Burrows-
Wheeler transform from the dynamic wavelet tree with a depth-first traversal
and creating the Huffman-balanced static wavelet tree instead as in [18].

The rest of the structures to support abstract suffix array operations can
be constructed afterward in O(n log |Σ|) time using LF -mapping. We leave the
details for the full version.

4 lcp-Array

Array lcp[1 . . . n − 1] is used to store the longest common prefix information be-
tween consecutive suffixes in the lexicographic order. That is, lcp[i] =
|prefix(TSA[i]...n, TSA[i+1]...n)|, where prefix(X, Y ) = x1 · · · xj such that x1 =
y1, x2 = y2, . . . , xj = yj , but xj+1 �= yj+1. Sadakane [25] describes a clever en-
coding of the lcp-array that uses 2n+o(n) bits. The encoding is based on the fact
that values i+lcp[i] are increasing when listed in the text position order; sequence
S = s1, . . . , sn−1 = 1+lcp[SA−1[1]], 2+lcp[SA−1[2]], . . . , n−1+lcp[SAn−1[n−1]]
is increasing.

To encode the increasing list S, it is enough to encode each diff(i) = si−si−1
in unary: 0diff(i)1, where we assume s0 = 0 and 0d denotes repetition of 0-bit
d-times. This encoding, call it H , takes at most 2n bits. We have the connection
diff(k) = select1(H, k) − select1(H, k − 1) − 1, where select1(H, k) gives the
position of the k-th 1-bit in H . Bitvector H can be preprocessed to answer
select1(H, k)-queries in constant time using o(|H |) bits extra space [21].

Computing lcp[i] can now be done as follows. Compute k = SA[i] using
lookup(i). Value lcp[i] equals select1(H, k) − k.
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Kasai et al. [17] gave a linear time algorithm to construct lcp-array given SA.
One can easily modify Kasai et al. algorithm to directly give H [15]. The con-
struction uses no extra memory in addition to text, compressed suffix array, and
the outcome of size 2n + o(n) bits. Using the compressed suffix array explained
earlier in this paper, the time requirement is O(n log n).

5 Balanced Parentheses

The balanced parenthesis representation P of a tree is produced by a preorder
traversal printing ′(′ whenever a node is visited the first time, and printing ′)′

whenever a node is visited the last time [22]. Letting ′(′= 1 and ′)′ = 0, the
sequence P takes 2u bits on a tree of u nodes. A suffix tree of n leaves can have
at most n − 1 internal nodes, and hence its balanced parenthesis representation
takes at most 4n bits.

Munro, Raman, and Rao [22] explain how to simulate tree traversal by means
of P . After building several structures of sublinear size, one can go e.g. from
node to its first child, from node to its next sibling, and from node to its par-
ent, each in constant time. Sadakane [25] lists many other operations that are
required in his compressed suffix tree. All these navigational operations can be
expressed as combinations of the following functions: rankp, selectp, findclose,
and enclose. Here p is a constant size bitvector pattern, e.g. 10 expresses an
open-close parenthesis pair. Function rankp(P, i) returns the number of occur-
rences of p in P upto position i. Function selectp(P, j) returns the position of
the j-th occurrences of p in P . Function findclose(P, i) returns the position of
the matching closing parenthesis for the open parenthesis at position i. Function
enclose(P, i) returns the open parenthesis position of the parent of the node
whose open parenthesis is at position i.

5.1 Our Implementation

We used the existing rank and select implementations that are explained and ex-
perimented in [10]. We leave for the full version the explanation how we modified
these solutions to the case of short patterns p, as the original implementations
assume p = 1. For findclose and enclose we used Navarro’s implementations
explained in [23] that are based on [22].

5.2 Space-Efficient Construction Via LCP Information

To build balanced parentheses sequence of suffix tree space-efficiently one cannot
proceed naively; doing preorder traversal on a pointer-based suffix tree requires
O(n log n) bits of extra memory. We consider a new approach that builds the
parentheses sequence incrementally. Very similar algorithm is already given in
[15], and hence we only sketch the main idea and differences.

Recall from [6, Theorem 7.5, p. 97] the suffixes-insertion algorithm to
construct suffix tree from LCP information: The algorithm adds suffixes in
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lexicographic order into a tree, having the keyword tree of suffixes TSA[1]...n,
TSA[2]...n, . . . , TSA[i]...n ready after i-th step. Suffix TSA[i+1]...n is then added
after finding bottom-up from the rightmost path of the tree the correct insertion
point. That is, the split node v closest to the rightmost leaf (corresponding to
suffix TSA[i]...n) whose string depth is smaller or equal to lcp[i] is sought for. If
the depth is equal, then a new leaf (corresponding to suffix TSA[i+1]...n) is created
as its child. Otherwise, its outgoing rightmost edge is split, a new internal node
is inserted in between, and the leaf corresponding to suffix TSA[i+1]...n is added
as its rightmost child.

To obtain a space-efficient version of the algorithm, we maintain the balanced
parentheses representation of the tree at each step. Unfortunately, the paren-
theses structure does not change sequentially, so we need to maintain it using
a dynamic bitvector allowing insertions of bits (open/close parentheses) inside
it. Such bitvector can be maintained using O(n) bits of space so that accessing
the bits and inserting/deleting takes O(log n) time [4,19]. In addition to the bal-
anced parentheses to store the tree hierarchy, we need more operations on the
rightmost path; we need to be able to virtually browse the rightmost path from
leaf to root as well as to compute the the string depth of each node visited. It
happens that the string and node depths are monotonic on the rightmost path,
and during the algorithm one only needs to modify them from the tail. Such
monotonic sequences of numbers, whose sum is O(n), can be stored in O(n) bits
using integer codes like Elias δ-code [7]. We leave the details to the full version.
Hence we can construct the balanced parentheses sequence in O(n log n) time
using O(n) bits working space.

The difference to Hon and Sadakane algorithm [15] is mainly on the conceptual
level. They build on top of an algorithm in [17] that simulates the post-order
traversal of suffix tree given the lcp-values. When making that algorithm space-
efficient, the end result is very close to ours.3

Implementation remark. A practical bottleneck found when running experiments
on the first versions of the construction above was the space reserved for Elias
codes. The estimated worst case space is O(n) bits but this rarely happens on
practical inputs. We chose to reserve initially o(n) bits and double the space
if necessary. The parameters were chosen so that the doubling does not affect
the overall O(n log n) worst case time requirement. This reduced the maximum
space usage during the construction on common inputs significantly.

6 Lowest Common Ancestor Structure

Farach-Colton and Bender [8] describe a O(n log n) bits structure that can be
preprocessed for a tree in O(n) time to support constant time lowest common
3 The handling of P is not quite complete in [15]: in some extreme cases, their al-

gorithm might need O(n log n) bits space. This can be fixed by adding a similar
handling of node depths as in our algorithm (their algorithm already has very sim-
ilar handling of string depths). Alternatively, Hon [14, page 59] describes another
solution that goes around this problem.



Engineering a Compressed Suffix Tree Implementation 225

ancestor (lca) queries. Sadakane [25] modified this structure to take O(n) bits of
space without affecting the time requirements. We implemented Sadakane’s pro-
posal that builds on top of the balanced parentheses representation of previous
section, adding lookup tables taking o(n) bits.

Implementation remark. While implementing Sadakane’s proposal, we faced a
practical problem; one of the sublinear structures for lca-queries takes space
n(log log n)2/ log n bits, which on practical inputs is considerable amount: This
lookup table was taking half the size of the complete compressed suffix tree
on some inputs. To go around this bottleneck, we added a space-time tradeoff
parameter K such that using space n(log log n)2/(K log n) bits for this structure,
one can answer lca-queries in time O(K).

7 Experimental Results

We report some illustrative experimental results on a 50 MB DNA sequence 4.
We used a version of the compressed suffix tree CST whose theoretical space
requirement is nH0 + 10n + o(n log |Σ|) bits; other variants are possible by ad-
justing the space/time tradeoff parameters. Here n(H0 +1)(1+o(1))+3n comes
from the compressed suffix array CSA, and 6n + o(n) from the other structures.
The maximum average slowdown on suffix tree operations is O(log n log |Σ|)
under this tradeoff. The experiments were run on a 2.6GHz Pentium 4 machine
with 1GB of main memory. Programs were compiled using g++ (GCC) compiler
version 4.1.1 20060525 (Red Hat 4.1.1-1) and -O3 optimization parameters.

We compared the space usage against classical text indexes: a standard
pointer-based implementation of suffix trees ST, and a standard suffix array
SA were used. We also compared to the enhanced suffix array ESA [1]; we used
the implementation that is plugged into the Vmatch software package5. For suf-
fix array construction, we used the bpr algorithm [26] that is the currently the
fastest construction algorithm in practice.

Figure 1 reports the space requirements on varying length prefixes of the
text. One can see that the achieved space-requirement is attractive; CST takes
less space than a plain suffix array.

We also measured the maximum space usage for CSA and CST during the
construction. These values (CSA, max and CST, max) are quite satisfactory; the
maximum space needed during construction is only 1.4 times larger than the
final space.

For the time requirement comparison, we measured both the construction
time and the usage time (see Fig. 2). For the latter, we implemented a well-
known solution to the longest common substring (LCSS) problem using both
the classical suffix tree and the compressed suffix tree. For sanity check, we also
implemented an O(n3) (O(n2) expected case) brute-force algorithm.

4 http://pizzachili.dcc.uchile.cl/texts/dna/dna.50MB.gz
5 http://www.vmatch.de
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Fig. 1. Comparison of space requirements. We have added the text size to the SA and ST
sizes, as they need the text to function as indexes, whereas CSA and CST work without.
Here ST-heapadmin is the space used by suffix tree without the overhead of heap; this
large overhead is caused due to the allocation of many small memory fragments. For
other indexes, the heap overhead is negligible. Three last values on the right report the
maximum space usage during the construction (for ESA and ST the maximum is the
same as the final space requirement).

Table 1. Average running times (in microseconds) for operations of ST and CST

tree operation edge(*,1) sl() isleaf() parent() depth() lca()

ST 0, 14 0, 09 0, 09 - - -
CST 13, 12 11, 07 0, 05 0, 11 4, 56 6, 66

The LCSS problem asks to find the longest substring C shared by two given
input strings A and B. The solution using suffix tree is evident: Construct the
suffix tree of the concatenation A$B, search for the node whose string depth is
largest and its subtree contains both a suffix from A and from B. Notice, that
no efficient solution without using suffix tree -alike data structures is known.

Finally, to get an idea how much different types of algorithms will slow down
when using the CST instead of ST, we measured the average execution times of
some key operations. We used the DNA sequence prefix of length 5 million for
the experiment and ran each operation repeatedly over the nodes of ST and CST,
respectively, to obtain reliable average running time per operation. The results
are shown in Table 1.

Notice that ST does not support parent(), depth(), and lca() functions. Such
functionalities are often assumed in algorithms based on suffix trees. They could
be be added to the classical suffix tree as well (two first easily), but this would
again increase the space requirement considerably. That is, the space reduction
may in practical settings be even more than what is shown in Fig. 1.

These experiments show that even though the compressed suffix tree is signif-
icantly slower than a classical suffix tree, it has an important application domain
on genome-scale analysis tasks; when memory is the bottleneck for using clas-
sical suffix trees and brute-force solutions are too slow, compressed suffix trees
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Fig. 2. Comparison of time requirements. For LCSS, we treated the first half of the
sequence as A, the second as B. We plotted the expected behaviour, 2n log n, for
reference. The more dense sampling of x-values is to illustrate the brute-force algorithm
behaviour. After 30MB, suffix tree did not fit into main memory. This constitutes a
huge slowdown because of swapping to disk.

can provide a new opportunity to solve the problem at hand without running
out of space or time. 6
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18. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing 12(1), 40–66 (2005)
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Abstract. We consider indexing and range searching in metric spaces.
The best method known is AESA, in practice requiring the fewest num-
ber of distance evaluations to answer range queries. The problem with
AESA is its space complexity, requiring storage for Θ(n2) distance values
to index n objects. We give several methods to reduce this cost. The main
observation is that exact distance values are not needed, but lower and
upper bounds suffice. The simplest of our methods need only Θ(n2) bits
(as opposed to words) of storage, but the price to pay is more distance
evaluations, the exact cost depending on the dimension, as compared
to AESA. To reduce this efficiency gap we extend our method to use
b distance bounds, requiring Θ(n2 log2(b)) bits of storage. The scheme
uses also Θ(b) or Θ(bn) words of auxiliary space. We experimentally
show that using b ∈ {1, . . . , 16} (depending on the problem instance)
gives good results. Our preprocessing and side computation costs are
the same as for AESA. We propose several improvements, achieving e.g.
O(n1+α) construction cost for some 0 < α < 1, and a variant using even
less space.

1 Introduction

Similarity searching has a vast number of applications in numerous fields, such as
audio, image and document databases, computational biology, and data mining,
to name a few. In almost all the applications we have a database of objects
and a metric distance function defined between any two objects. Metric space
indexing then means preprocessing the database so that subsequent queries can
be efficiently answered without comparing the query against the whole database.
The most fundamental type of query is range query: retrieve all objects in the
database that are within a certain similarity threshold to the given query object.
A large number of different data structures and query algorithms have been
proposed [2,7].

More precisely, we have a universe U of objects, and a non-negative distance
function d : U × U → R

+. The distance function is metric, if it satisfies for all
x, y, z ∈ U
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d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x)
d(x, y) ≤ d(x, z) + d(z, y).

The last item is called the “triangle inequality”, and is the most important
property in our case as we see later. The database S is a finite subset of that
universe, i.e. S ⊆ U. The size of S is |S| = n. The database S is preprocessed in
order to efficiently answer range queries. Given a query object q, we retrieve all
objects in S that are close enough to q, i.e. we retrieve the set {u ∈ S | d(q, u) ≤
r} for some user supplied r. The trivial method is then to directly compute the
n distances and return objects that satisfy the condition.

In general metric spaces the (black-box) distance function is the only way to
distinguish between the objects. Moreover, the distance function is often very
expensive to evaluate (consider e.g. comparing documents or images). Hence the
usual complexity measure for range searching is the number of distance function
evaluations required to answer the query. In this respect AESA (Approximating
Eliminating Search Algorithm) [12] is the baseline. The main problem of AESA
is that it requires Θ(n2) space to index a database of n objects. Thus a large
body of research have aimed to approach the performance of AESA while keeping
the space complexity linear [2,7]. All these (as well as AESA) are based on the
triangle inequality to discard elements without to compare against the query.
However, the linear size index structures are not competitive against AESA.
The space complexity of AESA comes from storing a matrix of all the n(n −
1)/2 pairwise distances between the database objects. The availability of all
the distances in constant time makes AESA so powerful. Consequently, several
indexing techniques have been developed that try to mimic AESA while using
less memory, see Sec. 2. In this paper we present a simple alternative to AESA.

2 Previous Work

AESA [12] and its variants are based on the following fact:

|d(q, p) − d(p, oi)| ≤ d(q, oi), (1)

where q (query), p (pivot, selected object) and oi (object) are any objects in the
universe U. Moreover, p and oi are also in the database S. Given a range r and
a query object q, the task is to retrieve all objects oi ∈ S such that d(q, oi) ≤ r.
In AESA all the n(n − 1)/2 distances of the form d(p, oi) are precomputed and
stored. The search algorithm then evaluates the distance d(q, p) for some p in
the database. If d(p, q) ≤ r, then p is reported to belong to the range. Then,
every object oi ∈ S that satisfies

|d(q, p) − d(p, oi)| > r (2)

can be eliminated, since by Eq. (1) it cannot be in the range. In other words,
we compute a new set S′ = {oi ∈ S \ {p} | d(q, p) − r ≤ d(oi, p) ≤ d(q, p) + r}
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The distances d(p, oi) are retrieved from the precomputed matrix. However, the
elimination process has to make a linear scan over the set S′, so the cost is the
time for one distance computation plus O(n). This process is repeated with a new
pivot p taken from the qualifying set S′, until S′ becomes empty. The next pivot
can be selected in many ways, picking it at random being the simplest strategy.
However, it is better to select it as the object whose lower bound distance to
the query is the smallest. These lower bounds can be maintained in O(n) time.
Better, but more costly strategies can be found in [3].

LAESA [8] stores only k rows of the distance matrix, hence needing only
Θ(kn) space. The search strategy is basically the same as in AESA. The only
difference is that as the number of pivot objects is limited to k, it may not be
a good idea to eliminate them in early stages of the search, since they could be
used to eliminate other objects later. The preprocessing stage has the additional
complexity of deciding which objects to select for pivots. A good strategy is to
select objects that are maximally separated [8]. Finally, the parameter k should
be as large as possible within the memory constrains to better approximate
AESA. The classic pivot-based algorithm is similar to AESA and LAESA, but
in this case the pivots are never eliminated during the filtering phase.

More recently, t–spanner graphs have been proposed to approximate the dis-
tance matrix [9]. The idea is to explicitly store only some of the distances, while
the rest can be approximated within a factor t. The larger t is, the less real
distances have to be stored, but the search becomes more costly as less objects
can be directly filtered out. The method is also substantially more complex than
AESA.

In this article we present a technique that is simpler than t–spanner AESA,
and we also have lower cost side computations.

3 Partitioning AESA

The simplest way to reduce the space complexity of AESA is to divide the data-
base into P blocks, each of size n/P objects. One can then build P AESA matri-
ces, requiring a total of Θ(n2/P ) space (and distance computations). The time
trade-off is that to answer the queries, we must run AESA P times. However,
for reasonably small P this might still be competitive against many algorithms
that take only Θ(n) space. We call this method PAESA. Similar technique was
used in [4], except that a (linear space) index was built over the P blocks.

Therefore, our goal is to reduce the space usage of AESA by some factor of
P , while trying to keep the search performance better than P times the cost of
AESA.

4 BAESA

We now introduce our method which we will call BAESA, for Binary/Bounded
AESA. For each object oi in our database, we compute and store b distance
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bounds, or radii, that is, we build R0...n−1,0...b−1. These radii are sorted to in-
creasing order, i.e. Ri,h < Ri,h+1. Moreover, we require that Ri,b−1 ≥ d(oi, oj)
for any j. Alternatively, we may assume that Ri,b−1 = ∞, and not store it explic-
itly. The space required for R is nb distances, where each distance may take e.g.
one computer word of storage (e.g. 32 or 64 bits). In our case b will be a small
number, in the range 2 . . . 16, and hence this space is negligible as compared to
AESA. Note also that R can replace the original AESA distance matrix if we
use b = n, and define Ri,j = d(oi, oj).

It is also possible to use just b radii, as our method works even if Ri,h = Rj,h

for i 	= j, i.e. we can use a table R′0...b−1 instead. In this case the space required
is just b distance values. We consider selecting b and the radii Ri,h later.

We also build a bounded distance index matrix M , which is defined as

Mi,j = min h | d(oi, oj) ≤ Ri,h. (3)

Note that each entry Mi,j takes only 
log2(b)� bits of storage, i.e. a total of
Θ(n2 log(b)) bits in additional to the space required by R or R′.

The following Lemma (see e.g. [7, Lemma 4.2]) immediately suggests how we
can use M and R:

Lemma 1. Assuming that lb ≤ d(p, o) ≤ ub, it holds that

max{d(q, p) − ub, lb − d(q, p)} ≤ d(q, o).

(It also holds that d(q, o) ≤ d(q, p) + ub, but this is not interesting for us.)
Our search algorithm is basically the same as in AESA, the only difference

is that we do not know the exact distance d(p, o), as this is not stored in the
matrix as in AESA. However, we have effectively stored lb (lower-bound) and ub
(upper-bound) distances for it. More precisely, assume that we are interested in
d(oi, oj). Assume that h = Mi,j . Then we know that

lb = Ri,h−1 (4)
ub = Ri,h. (5)

If Ri,h−1 is not defined, we use simply lb = 0. Similarly we can use the distances
R′h−1 and R′h. Now, every object o ∈ S that satisfies

max{d(q, p) − ub, lb − d(q, p)} > r (6)

can be eliminated (compare to Eq. (2)), where q is the query object, and r is
the range radius.

4.1 LBAESA

Note that we can generalize BAESA in the same way as AESA is generalized to
LAESA. That is, instead of using all the n objects in the database as potential
pivots, we may choose only k objects. The search algorithm remains essentially
the same. In this way, we use an array R0...k−1,0...b−1 (or R′0...h−1) of distances
and matrix M0...k−1,0...n−1 of 
log2(b)� bits per element. Total space then be-
comes Θ(kn log(b)) bits and Θ(kb) words.
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4.2 Efficient Construction and Updates

The preprocessing for AESA needs Θ(n2) distance computations, to build the
distance matrix. Similarly, inserting one new object to a database that contains
n objects needs n distance computations. However, deletions are cheap, since
that involves only deleting one row and column from the distance matrix. In
case of BAESA we must delete one row from R as well.

For BAESA we do not need n distance computations to insert a new object
u. Consider the case b = 2. We can assign Rn,0 = r′ and Rn,1 = ∞, and use the
existing data structure to perform a range query that retrieves all objects with
distance at most r′ to u, i.e. we compute

C = {oj | d(u, oj) ≤ r′, oj ∈ S, 0 ≤ j < n}. (7)

This takes only O(nα) distance evaluations for some 0 < α < 1, depending on
r′. Then we set

Mn,j =
{

0, oj ∈ C,
1, otherwise. (8)

In fact, we can use this method to build the whole data structure, which then
takes only O(n1+α) distance computations. In principle this method could be
generalized for larger b as well, but the benefits diminish as b and Rn,b−2 increase.

4.3 Comparison to Other Algorithms

In the following we review two linear space structures and draw parallels to
BAESA and BLAESA and show how the algorithms could be combined.

List of Clusters (LC). LC [1] selects a random pivot c, called a center, and a
covering radius cr(c) for the center. The center and its covering radius define a
zone, and cr(c) is the maximum distance from c to any other object in the zone.
A parameter h defines the number of objects in each zone. The list is built as
follows. The first center is chosen in random. Then its h − 1 nearest neighbors
are selected, and cr(c) is the distance to the (h−1)th neighbor. The zone is then
c and its h − 1 nearest neighbors. The set of these objects is called I, and the
rest of the list is recursively built for E = S \ I. The next center selected is the
one that maximizes the sum of distances to all previous centers.

The search evaluates the distance e = d(q, c), and if e ≤ r the center c is
reported. If e ≤ cr(c) + r, i.e. the query intersects the zone, the bucket of h − 1
objects in I is searched exhaustively. If e > cr(c) − r, i.e. the query is not fully
contained in I, then E (the rest of the list) is searched recursively.

Vantage-Point Tree (VPT). VPT [13] (also known as “Metric Tree” [11]) is
basically a balanced binary tree version of LC, up to pivot selection techniques
(although historically VPT appeared before LC). That is, I and E contain half
of the objects each, and both are built and searched recursively.
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Comparison. Consider BLAESA and LC. The latter selects k = n/h pivots (cen-
ters), and for each pivot a covering radius is computed. This is in fact precisely
the same thing what BLAESA does, in the case of only one bit is used for the
distance bound index. The difference is that in the case of BLAESA the covering
radius applies to the whole database, not just to the rest of the object list (the E
branch) as in LC. The price to pay is that BLAESA needs Θ(kn) bits in addition
to the Θ(k) radii, but the reward is that at the search phase each “center” can
be used to prune objects from all the “zones”, not only from the current zone
as in LC. Hence BLAESA will have better performance.

Similarly, in the same way BAESA would correspond to VPT, if the covering
radii is chosen in the same way both in BAESA as in VPT. In this case BAESA
would be an improved version of VPT, being able to prune objects from all
branches of the tree with each distance evaluation, but again the cost is the
additional Θ(n2) bits for the matrix M .

Finally, we note that the buckets (I branches) in LC could be implemented
with BAESA. The buckets then take Θ(h2) bits + Θ(h) words of space. For
small h (so that the size of the matrix M is not dominating the linear space
component) this is the same space as the LC would need just to store the list of
objects in the bucket, i.e. the search performance of LC can be improved without
an increase in space complexity. The same applies to VPT. Similar idea was used
in [4], but the buckets were implemented with plain AESA, and hence the space
complexity was worse.

5 Compressed Distance Matrix

Even in the best case (log2(b) = 1) the matrix M takes Θ(n2) bits of space.
We now show how this can be reduced to o(n2) bits. The idea is to use com-
pressed dictionaries that provide constant time access to the stored elements
[10]. Consider again the case b = 2, i.e. each element Mi,j is only one bit. We
can therefore compress each row (bit-vector) of M using the method that still
provides constant time access to Mi,j [10]. The number of bits used for a row
that has m zero (or one) bits and n bits in total is

log2

(

n

m

)

+ o(m) + O(log log(n)). (9)

The first term can be easily shown to be at most the zero-order empirical entropy
of the bit sequence, i.e.

log2

(

n

m

)

≤ nH0(Mi) = −m log2(m/n) − (n − m) log2(1 − m/n). (10)

The total space then becomes about n2H0(M) + o(nm) bits. Note that we can
easily control the value of m, since for each row it is the number of objects that
are covered by the radius Rj,0. For instance, we can choose that radius using the
criterion m = nβ for some β < 1, and obtain o(n2) bits of space.
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This idea can be easily generalized for larger b values as well. For example,
we can obtain

n2Hk(M) + o(n2 log(b)) (11)

bits of space [6] for k = o(logb(n)), where Hk(M) is the k-order empirical entropy
of M . Again, to obtain Hk(M) < log2(b) the number of objects covered by the
radii must be unbalanced. We note that k-order entropy depends on the order
of the objects stored in the database. However, minimizing the entropy for one
row (by permuting the columns) of the matrix affects the entropy for the other
rows in uncontrollable way. Hence the column permutation should be saved for
each row as well, but this would take too much space.

6 Selecting the Radii

Some heuristics to choose the best radii have been proposed: quantiles by ele-
ment, quantiles by radius, non-uniform partition and using standard deviation.
All of them are shown in Fig. 1.

– Quantiles by Element (QBE). A way to select the radii is to divide the set of
objects to partitions having equal number of objects. That means that the
ith radius is selected so as to cover i(n/b) objects of the set, where b is the
number of partitions.

– Quantiles by Radius (QBR). Another way to select the radii is using the
histogram of distances and dividing it to equal slices with r. In other words,
the ith radius is selected as ri = mind + i(maxd − mind)/b, where mind
and maxd are the minimum and maximum pair-wise distances.

– Using standard deviation (SD). This way to select radii is based on standard
deviation that is the most common measure of statistical dispersion. We
used the values ±D and ±2D and so on around the mean to select the radii,
where D is the standard deviation.

– Non-uniform Partition (NUP). In this case we choose the size of every par-
tition in non-uniform way.

Note that since NUP allows us to use any partitioning, all the other methods
are special cases of NUP. However, it is not clear what is the optimal way to
do the partitioning. In Sec. 7 we study this question experimentaly in the case
b = 2. The analysis (for a different, linear space data structure) in [1] suggests
that the partitioning should be unbalanced, as it is e.g. with QBR.

7 Experimental Results

We made experiments with 3,000 vectors in uniformly distributed unitary cube,
since it is a good way to control the dimension of the space, something very
difficult in real databases.
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Quantiles by element

non−uniform partition
Using standard deviation

−1D 1D

rr rr

Quantiles by radius

Histogram of distances

Fig. 1. Criteria to choose the best radii. D is the standard deviation.

BAESA. In Fig. 2 we show the performance of BAESA to retrieve the nearest
neighbor in different dimensions. In this plot we use 1 bit for every heuristic to
choose the radii, and we compared the performance of a classic pivot-based algo-
rithm using 93 pivot (4 bytes per distance), this is the same amount of memory
that we use. Also, it is interesting to compare our performance with a t-spanner.
In this case we used t values 1.4 . . .1.8 for dimensions 4 . . . 20. Notice that t-
spanner use the same amount of memory than our heuristics after dimension 12.
In lower dimension t-spanner uses less memory than our heuristics. For NUP we
used a radius that covers 10% of the database for dimensions 4 . . . 10, and 50%
for higher dimensions. Our method uses significantly more distance evaluations
than AESA, but we only keep Θ(n2) bits + Θ(n) words against Θ(n2) words
kept by AESA.

We can improve the performance of BAESA when we use more bits per ele-
ment. In Fig. 3 we use 4 bits per distance, i.e. 16 distance bounds. This greatly
improves the performance. In this plot, again, we use the classic pivot-based
algorithm (using 93 and 372 pivots). We also compared the performance of
a t-spanner against our algorithms. In this case, with QBE heuristic we used
twice the number of distance evaluations as compared to AESA, keeping just
Θ(n2 log(b)) bits + Θ(nb) words.

In Fig. 4 we show the performance of BAESA for varying database size, using
two different criteria (QBE and QBR) with 1 and 4 bits. By using 4 bits BAESA
holds its performance close to AESA even for changes in the size of database.
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In Fig. 5 we show the performance of LBAESA using 2 and 4 bits, against
pivot-based algorithm using 188 pivots. Notice that 188 pivots used by LAESA
and pivot-based algorithm consume much more memory than used by LBAESA,
however it is important to show the performance of LBAESA using the same
amount of pivots. In this case, after dimension 12 we compared 20% more of
the database against LAESA, keeping just Θ(kn log(b)) bits and Θ(kb) words
against Θ(kn) words.

Partitioning AESA. The same data (unitary cube) were probed using PAESA
and comparing it against pivot-based algorithm using the same amount of mem-
ory. The pivots for PAESA were chosen randomly. In Fig. 6 we use 3,000 objects
in different dimensions.

Finally, we experimented with BAESA using NUP and only one bit per element,
and varying the percentage of the number of objects covered by the first radius.
In Fig. 7 we can see that in low dimension a smaller radius is better, but in higher
dimension a larger radius is better. Note also that e.g. for a radius covering only
10% of the database the zero-order empirical entropy of the matrix M is about 0.47,
which means that we can compress the matrix to about half of its original size.

Real Databases. Finally, we made experiments in a real database of 1,131 faces
(CAS-PEAL [5]). The intrinsic dimension of CAS-PEAL is 9. This is a typical
database used for pattern recognition. The performance of our algorithms is
showed in Fig. 8. As we can see using 2 partitions and QBE with 4 bits we have
a good performance in this database. These results are interesting because we
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compared only 5% more of the database keeping only half (PAESA) or one eight
(QBE) of the memory used by AESA

8 Conclusions

We have proposed a simple variation of AESA. Our method uses significantly less
memory than plain AESA, it is very simple to implement and the experimental re-
sults are very competitive against previous algorithms that use superlinear space.
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Abstract. We present a systematic study of approximation algorithms
for the maximum weight matching problem. This includes a new al-
gorithm which provides the simple greedy method with a recent path
heuristic. Surprisingly, this quite simple algorithm performs very well,
both in terms of running time and solution quality, and, though some
other methods have a better theoretical performance, it ranks among the
best algorithms.

1 Introduction

Given a graph G = (V, E) with n := |V | nodes and m := |E| edges, a subset of
edges M ⊆ E is called a matching if no two members of M share an endpoint. A
node u ∈ V is called matched if there is an edge (u, v) ∈ M ; then, (u, v) is called
a matching edge and v the mate of u. Otherwise, u is called unmatched or free.
If G is weighted and w : E → IR≥0 denotes the associated weight function, the
weight of M is defined by w(M) :=

∑

e∈E w(e), and M is said to be a maximum
weight matching if there is no matching with larger weight.

The first polynomial time algorithm for the weighted matching problem was
given by Edmonds [1] with a running time of O(n2m). This has been improved
on repeatedly, and the fastest exact algorithm known so far has an asymptotic
running time of O(n(m + n log n)) for general graphs [2]. Further improvements
have been achieved for restricted problems and graph classes such as integer edge
weights [3], planar graphs [4], or maximum cardinality matching [5,6].

One of the most recent implementations of the maximum weighted matching
problem is that of Mehlhorn and Schäfer [7], which is a variant of the algorithm
of Galil, Micali, and Gabow [8]. A history of implementations can be found
in [9]. Despite their polynomial running time, these algorithms are too slow for
some practical applications on very large graphs or if matchings are computed
repeatedly. (Some applications are mentioned in [10].) This motivates the use of
approximation algorithms for the maximum weighted matching problem, with a
lower—ideally linear—running time that yield very good results.
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Related Work. A well known folklore algorithm achieves a 1
2 -approximation

by scanning the edges in descending order of their weights and greedily adding
edges between free nodes to the matching [11]. Note that this yields a linear
running time for integer edge weights. The first linear time 1

2 -approximation
algorithm independent of integer sorting was given by Preis [12]. Later, Drake
and Hougardy [13] presented a different 1

2 -approximation, called the Path Grow-
ing Algorithm (PGA), whose linear running time is easier to prove. They also
developed a (2

3 − ε)-algorithm [10,14] running in time O(n
ε ). A simpler (2

3 − ε)-
approximation algorithm running in time O(n log 1

ε ) was later developed by
Pettie and Sanders [15]. Several 1

2 -approximation algorithms were evaluated ex-
perimentally in [14]. This included a version of PGA improved by a path heuristic
not affecting the linear running time; this version of PGA is called PGA′. This
algorithm performed very well in the experiments, so the greedy algorithm with
its super-linear running time was concluded to be a bad choice in most cases.

Our Contribution. As a seemingly trivial yet crucial contribution, we regard
the measured solution qualities of the approximation algorithms in relation to
the optimal solution. This not only demonstrates that these algorithms achieve
solutions of a quality much better than their worst case guarantees suggest, it
also makes comparing the algorithms with each other more meaningful. Although
the solution quality of the algorithms differ by only a few percent, the gap to
optimality can differ by a large factor. We also give the first experiments for
real-world inputs from an application that is often cited as a main motivation
for applying approximation algorithms for weighted matching.

Our most important algorithmic contribution is a rehabilitation of the greedy
approach through a new algorithm called GPA, which is described in Sect. 2
in detail. Basically, GPA applies the earlier mentioned path heuristic used for
PGA′ [14] to the greedy algorithm, which makes the previously outclassed greedy
method jump ahead to one of the best practical algorithms. In particular, GPA
is usually faster than the randomized (2

3 − ε)-approximation algorithm (RAMA)
from [15] and often outperforms it in terms of solution quality. The overall winner
is another new algorithm that first executes GPA and then applies a modified
version of RAMA, called ROMA. This combination is as fast as ROMA alone
since GPA accelerates the convergence of ROMA.

Outline. The tested approximation algorithms are described in Sect. 2. Sec-
tion 3 introduces the graph instances, on which the tests are performed as pre-
sented in Sect. 4. The main results are summarized in Sect. 5.

2 Algorithms

Greedy. The well-known algorithm shown in Fig. 1 follows a simple greedy
strategy [11]: repeatedly, the currently heaviest non-matching edge with free
endpoints is added to the matching until no edges are left.
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GRDY(G = (V, E), w : E → IR≥0)
1 M := ∅
2 while E �= ∅ do
3 let e be the edge with biggest weight in E
4 add e to M
5 remove e and all edges adjacent to its endpoints from E
6 return M

Fig. 1. The greedy algorithm for approximate weighted matchings

The greedy algorithm runs in time O(m + sort(m)), where sort(m) denotes
the time for sorting m items. This yields a linear running time for integer edge
weights and O(m log n) for comparison-based sorting. Let M� be a maximum
weight matching and M a matching found by the greedy algorithm. Every time
an edge e is added to M , at most two edges e1, e2 ∈ M� are removed from the
graph. Since both w(e) ≥ w(e1) and w(e) ≥ w(e2), the greedy matching M
satisfies 2w(M) ≥ w(M�), so the performance ratio is 1

2 .

PGA′(G = (V, E), w : E → IR≥0)
1 M := ∅
2 while E �= ∅ do
3 P := 〈〉
4 arbritrarily choose v ∈ V with deg(v) > 0
5 while deg(v) > 0 do
6 let e = (v, u) be the heaviest edge adjacent to v
7 append e to P
8 remove v and its adjacent edges from G
9 v := u

10 M := M ∪ MaxWeightMatching(P )
11 extend M to a maximal matching
12 return M

Fig. 2. The improved Path Growing Algorithm PGA′

PGA′. The improved version of the Path Growing Algorithm by Drake and
Hougardy is referred to by PGA′ [14]. The original algorithm (PGA) [13] without
improvements first grows a set of node disjoint paths one after another. Each
path is built starting from an arbitrary free node, repeatedly extending it along
the heaviest edge e = (u, v) adjacent to its current endpoint u with a free
opposite endpoint v and deleting all edges adjacent to u. PGA starts a new
path if the current one cannot be extended and finishes when no edges are left.
While growing the paths, selected edges are alternately added to two different
matchings M1 and M2, and the heavier one is finally returned.



Engineering Algorithms for Approximate Weighted Matching 245

The algorithm processes each edge at most once and thus has a linear running
time of O(m). The algorithm yields an approximation ratio of 1

2 , which can be
shown by assigning every edge to the end node from which it was deleted during
a run of the algorithm. Then, for every edge e of a maximum weight matching
M , there is an edge e′ ∈ M1 ∪ M2 with w(e′) ≥ w(e) which is adjacent to the
node that e is assigned to. Therefore, w(M1 ∪ M2) ≥ w(M) and the heavier set
of M1 and M2 has a weight of at least 1

2w(M).
The improved version (PGA′) of this algorithm is shown in Fig. 2. Instead of

alternately adding the edges of a path to the two matchings, PGA′ calculates
an optimal matching for every path. This process does not affect the asymptotic
running time since computing a maximum weight matching of a path by dynamic
programming requires a linear time in the length of the path, which is described
at the end of this section. Furthermore, the contribution of a path to the final
matching can only increase in weight compared to the original algorithm, so
the approximation ratio of 1

2 is not impaired. As the second improvement, the
computed matching is extended to a maximal matching at the end of PGA′,
which is done by just scanning all edges once without increasing the running
time of O(m).

GPA(G = (V, E), w : E → IR≥0)
1 M := ∅
2 E′ := ∅
3 for each edge e ∈ E in descending order of their weight do
4 if e is applicable then add e to E′

5 for each path or cycle P in E′ do
6 M ′ := MaxWeightMatching(P )
7 M := M ∪ M ′

8 return M

Fig. 3. The Global Paths Algorithm GPA

GPA. Our Global Paths Algorithm (GPA) shown in Fig. 3 presents a new
approximation method by integrating the greedy algorithm and PGA′. GPA
generates a maximal weight set of paths and even length cycles and then calcu-
lates a maximum weight matching for each of them by dynamic programming.
These paths initially contains no edges and hence represent n trivial paths—
isolated nodes. The set is then extended by successively adding applicable edges
in descending order of their weight. An edge is called applicable if it connects
two endpoints of different paths or the two endpoints of an odd length path. An
edge is not applicable if it closes an odd length cycle, or if it is incident to an
inner node of an existing path. Once all edges are scanned, a maximum weight
matching is calculated for each path and cycle.

The test whether an edge is applicable can be done in constant time, and
growing the set of paths and cycles needs a linear number of such tests. Cal-
culating a maximum weight matching for a given path needs linear time in the
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length of the path using the dynamic programming approach already mentioned
above and described below. Thus, GPA needs a linear amount of time after the
edges have been sorted, so GPA has a running time of O( sort(m) + m), which
is O(m log n) in general.

Let M� be an optimum matching and P ⊂ E the set of edges that are added
to some path or cycle in the first round of GPA. For every e ∈ M� \P , e was not
applicable at the time considered by GPA, so there are two edges e1, e2 ∈ P \M�

adjacent to e with both w(e1) ≥ w(e) and w(e2) ≥ w(e). Conversely, every
member of P is adjacent to at most two edges of M�, so there is an injective
mapping f : M� → P with w(f(e)) ≥ w(e), which implies w(P ) ≥ w(M�).
Moreover, the maximum weight matching of a path has a weight of at least half
the weight of the path—which also holds for even length cycles. Therefore, any
matching M computed in the first round of GPA satisfies w(M) ≥ 1

2w(P ) ≥
1
2w(M�), so GPA has a performace ratio of 1

2 . This ratio is tight as Fig. 4 shows:
in the example graph GPA finds a matching with a weight of not more than
m
4 (c + ε) = 1

2 wopt + ε′.

c c c c

c + ε c + ε c + ε

Fig. 4. This graph with a maximum weight matching of weight wopt = m
2 c shows that

the approximation ratio of 1
2 is tight for the greedy algorithm, PGA′, and GPA

A second round of GPA can be run on the set of remaining edges with two
unmatched endpoints after GPA finishes. We even allow up to three rounds, but
the algorithm almost never runs the third round in the experiments presented
in Sect. 4 since no applicable edges are left. Running GPA a second time on
the result produced by itself presents an alternative to the postprocessing used
in PGA′, which extends the computed matching to a maximal matching by
simply collecting edges with two free endpoints. The postprocessing of PGA′

could clearly be applied to GPA too.

RAMA. A path P is alternating if it consists of edges drawn alternately from
M and E \M . An alternating path P is called an augmentation if the symmetric
difference M⊕P = (M \P )∪(P \M) is a matching too and w(M \P ) > w(P \M).
The gain of an alternating path P is defined by g(P ) = w(P \ M) − w(P ∩ M).
A k-augmentation is an augmentation with at most k non-matching edges, and
a 2-augmentation P is called centered at v if all edges of P \ M are incident to
either v or its mate. Finally, a maximum-gain 2-augmentation centered at v is
denoted by aug(v).

Figure 5 shows a randomized algorithm by Pettie and Sanders [15]. It re-
peatedly chooses a random node and augments the current matching with the
highest-gain 2-augmentation centered at that node. The way how to find this
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RAMA(G = (V, E), w : E → IR≥0, int k)
1 M := ∅ (or initialise M with any matching)
2 for i := 1 to k do
3 randomly choose v ∈ V
4 M := M ⊕ aug(v)
5 return M

Fig. 5. The Random Augmentation Matching Algorithm RAMA

highest-gain 2-augmentation—according to which the algorithm is
implemented—is described in [15]. All this is iterated k times, and by putting
k := 1

3 n log 1
ε the algorithm has an expected running time of O(m log 1

ε ) and an
expected performance ratio of 2

3 − ε [15].

ROMA(G = (V, E), w : E → IR≥0, int �)
1 M := ∅ (or initialise M with any matching)
2 for i := 1 to � do
3 for each node v ∈ V in random order do
4 M := M ⊕ aug(v)
5 return M

Fig. 6. The Random Order Augmentation Matching Algorithm ROMA

ROMA. The new Random Order Augmentation Matching Algorithm (ROMA)
shown in Fig. 6 presents a variant of RAMA from above. The algorithm operates
in phases whose number is denoted by � (in Fig. 6, lines 3–4 together form one
phase): in every phase, the algorithm successively selects all nodes in random
order, and the current matching is repeatedly augmented with the highest-gain
2-augmentation centered at the node currently selected. As described in [15], the
time required to find the highest-gain 2-augmentation aug(v) centered at v is
O(deg v + deg (mate(v))), so the time averaged over all nodes required for one
phase of n iterations is O(m). By setting the number of phases properly, running
time and performance ratio of ROMA correspond to those of RAMA.

The randomized algorithms can be initialized with the empty matching or
any (non-empty) matching found by one of the algorithms GRDY, PGA′, or
GPA. Several combinations are tested in Sect. 4. A similar approach is followed
in [14], where a maximal set of node disjoint 2-augmentations is calculated in
linear time to improve a previously computed matching.

Maximum Weighted Matching for Paths and Cycles. Some of the al-
gorithms described above compute maximum weighted matchings for paths or
cycles, which is done using the dynamic programming algorithm shown in Fig. 7.
In the description, P := 〈e1, . . . , ek〉 denotes a solution of the subproblem for
the path 〈e1, . . . , ei〉, and W [i] denotes the corresponding weight.
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MaxWeightMatching(P = 〈e1, . . . , ek〉)
1 W [0] := 0; W [1] := w(e1)
2 M [0] := ∅; M [1] := {e1}
3 for i := 2 to k do
4 if w(ei) + W [i − 2] > W [i − 1] then
5 W [i] := w(ei) + W [i − 2]
6 M [i] := M [i − 2] ∪ {ei}
7 else
8 W [i] := W [i − 1]
9 M [i] := M [i − 1]

10 return M [k]

Fig. 7. Obtaining a maximum weight matching for a path by dynamic programming

The algorithm has a running time which is linear in the length of the input
path. In order to compute the maximum weight matching of a cycle C, let e1 and
e2 be any two consecutive edges of C, let P1, P2 be the paths obtained by remov-
ing e1, e2 from C respectively, and let M1 and M2 denote the maximum weight
matching of P1 and P2 respectively. Then, both M1 and M2 are valid matchings
for C, and the one of larger weight must be a maximum weight matching for C
since not both e1 and e2 can be member of a maximum weight matching of C.
Thus, maximum weight matchings for cycles can be found in linear time of their
length too.

3 Test Instances

Three families of (synthetic) instances taken from [7] are presented below, fol-
lowed by a description of the real-world graphs. We used the C++ library
LEDA 4.5 [16] for some steps of the generation process as described below.

Delaunay Instances are created by randomly choosing n points in the unit
square and computing their Delaunay triangulation using LEDA. The num-
bers of points n are chosen to be n := 2x with x ∈ {10, . . . , 18}, giving
nine different Delaunay graphs in total. Their edge weights are obtained by
scaling the Euclidean distances in the unit square to integers in the range
between 0 and 231−x.

Complete Geometric Instances are generated each by choosing n random
points in an (n × n)-square. n is set to n := 2x, now with x ∈ {6, . . . , 12},
yielding seven instances. The edge weights correspond to the Euclidean dis-
tances between their endpoints, rounded off to integer values.

Random Instances are generated with the LEDA implementation for random
simple undirected graphs. We generate 64 graphs by choosing eight different
values for n and eight different values of m for each n: for every n := 2x,
x ∈ {10, . . . , 17}, eight random graphs are created by putting m := 2y n,
y ∈ {1, . . . , 8}. The edges are assigned random integer weights between 0
and 231−x.
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Real-World Instances. Some of the best known practical graph partitioning
algorithms reduce the size of their input graph by successively contracting
them in the followin way: starting with unit edge weights, an approximate
weighted matching is computed in each contraction for the current graph us-
ing PGA′ [14]. Then, every matching edge is contracted into a single node.
Parallel edges resulting from a contraction are replaced by a single edge
whose weight is the sum of the weights of its constituent edges. The ini-
tial 34 graphs are taken from [17], for each of which eight contractions are
successively applied, yielding 272 instances with integer edge weights.

4 Experimental Results

The algorithms described in Sect. 2 are run on the instances presented above and
compared by their solution quality and running times. The RAMA and ROMA
algorithms are further tested in combination with initial matchings obtained by
the other algorithms. The algorithms were implemented using the data struc-
ture ’graph’ and the sorting algorithms of the C++-library LEDA-4.5 [16] and
compiled with the GNU C++-compiler g++-3.2.

All tested algorithms actually perform much better than their worst case
bounds suggest, and even the worst approximate solution in the tests has a rela-
tive error of less than 10 %. Still, the measured error, i.e. the gap to optimality,
differs by a large factor between the best and worst algorithm, and whether
some algorithm performs better than another depends on the graph family. In
this section, the ratio between the number of nodes and edges of a graph will be
denoted by α, i.e. α := m

n .
The presented running times should not be over-interpreted since the algo-

rithms could probably be implemented more efficiently. In particular, using fast
integer sorting would probably accelerate GPA considerably. Still, we believe
that the plotted running times are meaningful to some degree since in a sense
all the implementations are “of the same quality” and they all use LEDA.

4.1 Solution Quality and Running Times

Figures 8 and 9 show the results for synthetic instances. For the random graphs
Fig. 8 contains two diagrams for each α ∈ {4, 16, 64, 256}. The x-axis shows the
number of nodes n. The y-axis shows the difference of an algorithm’s approximate
solution to the optimum in percent (left column) and the corresponding running
times (right) respectively. The randomized algorithms RAMA and ROMA per-
form up to 8n augmentation steps. ROMA cancels if its current matching is
saturated, i.e. if one phase of n iterations has not further improved it.

Figure 8 shows that for random graphs of any value of α, GPA performs
significantly better than the greedy algorithm and PGA′. The randomized algo-
rithms RAMA and ROMA produce approximations even better than GPA for
α < 16, but this advantage decreases with increasing α: their solution quality
is almost equal for α = 16, whereas RAMA and ROMA are outperformed by
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Fig. 8. Gap to optimality (left) and running times (right) for random graphs with
n = 210, . . . , 217 and α ∈ {4, 16, 64, 256}. The key applies to all plots.

GPA for graphs with α > 16, and also by the greedy algorithm and PGA′ for
higher values of α. Moreover, GPA followed by post-processing through ROMA
performs best for any value of α. The linear time algorithm PGA′ runs fastest
in practice. Interestingly, the superlinear time algorithms greedy and GPA are
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faster than the linear time algorithms RAMA and ROMA. The reason seems
to be that the constant factors involved in sorting are much smaller than the
constant factors in RAMA and ROMA, which involve multiple passes over the
graph involving a massive number of random accesses to the graph data structure
that can cause cache faults. ROMA is generally faster than RAMA since it
usually finishes earlier due to saturation. Furthermore, calculating an initial
matching with GPA causes an even earlier saturation, which makes up for the
additional preprocessing time.

The tested Delaunay instances have values α ≈ 3, and the solution qualities
and running times are similar to those for random graphs with similar values of
α (see Fig. 9). Also for the complete geometric instances, for which α = n−1

2 ,
the algorithms perform just as expected from random graphs of corresponding
α. For both instance families the main difference to random graphs is that the
greedy algorithm performs better than PGA′, but GPA combined with ROMA
still produces the best results.

Figure 10 shows the solution quality for the real-world graphs, each plot cor-
responding to a set of graphs derived by the same number of contractions. The
x-axis shows the graphs’ values of α grouped by similar values. The y-axis shows
the deviation from the optimal solution. The results for real-world graphs basi-
cally support what has been concluded for synthetic graphs. In particular, GPA
followed by ROMA performs best in almost all cases.

4.2 Convergence of Randomized Algorithms

Figure 11 shows how RAMA and ROMA converge for the random instances. The
left column of Fig. 11 contains one diagram for each α ∈ {4, 16, 64, 256}, with
the x-axis showing the number of iterations and the y-axis showing the relative
error (average value over several runs) after this number of steps.

Even with an initially empty matching, i.e. without preprocessing, the ran-
domized algorithms quickly converge on an almost saturated matching with a
small error and do not show much improvement after about 4n steps for any α.
The bigger the value of α, the better the first approximation after n steps is.
Used as stand-alone methods, ROMA performs better than RAMA again. Fur-
thermore, starting with an initial matching—obtained by any of the greedy algo-
rithm, PGA′, or GPA—yields a significant improvement. GPA clearly achieves
the best initialization, which can be improved up to n or 2n iterations of ROMA
depending on the instance, and the solution quality cannot be achieved with a
different preprocessing method using more iterations.

The plotted lines are cut off if no improvement is achieved anymore. Since
the errors are averages over several graphs and runs, this only happens if the
matching is saturated in ALL sample runs for this number of iterations. How-
ever, saturation is achieved earlier on the average, and the right column of
Fig. 11 describes after how many phases ROMA achieves saturation on the
average.
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Fig. 11. Convergence (left) and average number of phases until saturation (right) of
RAMA and ROMA for the random instances with α ∈ {4, 16, 64, 256}

5 Conclusion

The simple greedy algorithm, PGA′, and GPA all produce solutions of a quality
much better than their lower bound guarantees. Applying the path heuristic from
PGA′ to the greedy algorithm yields a very high improvement: GPA produces
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very good solutions at a reasonable running time, so sorting-based matching
algorithms remain interesting and must not be neglected.

Moreover, the randomized algorithms also perform very well. As stand-alone
methods they are superior in terms of solution quality for graphs of small ra-
tios of m

n , and they are highly suitable to post-process existing matchings. The
variant ROMA improves RAMA, and its combination with GPA shows the best
experimental results among all methods tried.

Future Work. For more meaningful running time comparisons, it would be
interesting to compare tuned versions of the best algorithms presented here
(GPA, ROMA, and optimal). We see a considerable potential for optimization:
GPA does not need complicated graph data structures, and the LEDA function
sort edges we currently use, which seems to be quite slow, could be replaced
by integer sorting. ROMA (and RAMA) could use static graph data structures
optimized for the required operation mix. More interestingly, these algorithm
could also be changed in a way that only non-saturated nodes are considered as
centers for augmenting paths. The main task here is how to maintain the set of
candidate centers efficiently.

Since parallel processing is becoming ubiquitous, we could also consider paral-
lelization. In GPA we can parallelize sorting and independent dynamic program-
ming problems. We can consider possible augmentations for ROMA in parallel,
but we have to be careful when actually performing an augmentation.

Another interesting question is whether the running time of exact weighted
matching algorithms can be improved by calculating initial matchings with the
presented approximation algorithms.

Acknowledgements. We would like to thank Seth Pettie for interesting dis-
cussions about the subject. We would also like to thank the reviewers for their
detailed comments.
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Abstract. The parametric maximum flow problem is an extension of
the classical maximum flow problem in which the capacities of certain
arcs are not fixed but are functions of a single parameter. Gallo et al. [6]
showed that certain versions of the push-relabel algorithm for ordinary
maximum flow can be extended to the parametric problem while only in-
creasing the worst-case time bound by a constant factor. Recently Zhang
et al. [14,13] proposed a novel, simple balancing algorithm for the para-
metric problem on bipartite networks. They claimed good performance
for their algorithm on networks arising from a real-world application. We
describe the results of an experimental study comparing the performance
of the balancing algorithm, the GGT algorithm, and a simplified version
of the GGT algorithm, on networks related to those of the application
of Zhang et al. as well as networks designed to be hard for the balancing
algorithm. Our implementation of the balancing algorithm beats both
versions of the GGT algorithm on networks related to the application,
thus supporting the observations of Zhang et al. On the other hand, the
GGT algorithm is more robust; it beats the balancing algorithm on some
natural networks, and by asymptotically increasing amount on networks
designed to be hard for the balancing algorithm.

1 Introduction

The parametric maximum flow problem is a generalization of the ordinary max-
imum flow problem in which the capacities of arcs out of the source (into the
sink) depend on a single parameter and are monotonically increasing (decreasing)
functions of the parameter. Applications of parametric maximum flow beyond
those of ordinary maximum flow include product selection [3,12], database record
segmentation [5], repair kit selection [11], and flow sharing [6].

The current best time bounds for the ordinary maximum flow problem on a
network with n vertices, m arcs, and integral arc capacities bounded by U are
O(nm logm/(n log n) n) [10] and O(min{n2/3, m1/2}m log(n2/m) log U) [7]. The
former algorithm is based on the push-relabel method [8]. Gallo et al. [6] show
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how to modify certain versions of the push-relabel method using amortization
and graph contraction to obtain an algorithm that solves the parametric maxi-
mum flow problem yet has the same asymptotic complexity as the original algo-
rithm. Their idea applies to the algorithm of [10], giving an O(nm logm/(n log n) n)
bound for the parametric flow problem. Tarjan et al. [13] give a divide and con-
quer approach that uses an ordinary maximum flow algorithm as a black box to
achieve a running time that is a factor min{n, log(nU)} worse than that of the
black box algorithm. In combination with [7], this gives an O(min{n2/3, m1/2}m
log(n2/m) log U min{n, log(nU)}) bound for the parametric problem. In prac-
tice, certain implementations of the push-relabel method (e.g. [4]) have better
overall performance than those of the algorithm of [7], which makes the GGT
algorithm a promising choice for the parametric flow problem.

Zhang et al. [14] recently introduced an algorithm for the parametric problem
based on a new technique called star balancing (see Section 3). This algorithm
solves the special case of the parametric problem in which the network is bi-
partite, source arcs have capacity λ, where λ is the parameter, sink arcs have
constant capacity, and all other arcs have infinite capacity. This is an important
special case, which includes all of the applications mentioned above except for
flow sharing. The star balancing algorithm with a small enhancement suggested
by Tarjan et al. [13] runs in time O(mn2 log(nU)) [13]. One can show that this
analysis is tight for a family of long path examples (See Section 4.2). Although
this bound is significantly worse than the best bounds currently known, the
worst-case bound is overly pessimistic for many real-world instances. In partic-
ular, the star balancing algorithm performs well on several real-world instances
of the product selection problem [14]. This motivates experimental comparison
between this algorithm and the GGT algorithm.

Few experimental studies of the parametric flow problem have been published
in the open literature [2,13,14]. Our codes are the same or better than the corre-
sponding ones in these studies. The only other implementation we are aware of
is based on an algorithm described in [9]. However, this implementation became
available to us too late for comparison in the current paper.

Our comparison between the GGT and star balancing algorithms involves sev-
eral steps. First, one needs to develop efficient implementations of the algorithms,
which is non-trivial. Then one needs to find interesting real-world and synthetic
instances that show strengths and weaknesses of the algorithms. We restricted
the experiments described here to bipartite problems of the kind to which the
star balancing algorithm applies. Experiments with the GGT algorithm on some
other graph types can be found in [2].

The rest of this paper is organized as follows. Section 1.1 reviews the ordi-
nary and parametric maximum flow problems and describes the notations we
use. Section 2 describes the GGT algorithm and an efficient implementation
of it. Section 3 describes the star balancing algorithm and its implementation.
Section 4 is devoted to our experiments. Finally, Section 5 contains concluding
remarks, including possible future research directions.
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1.1 Background and Notation

For the ordinary maximum flow problem, the input is a directed, capacitated
network N = (V, A, s, t, c : A → Z

+), where V is a set of vertices of size n,
A is a set of directed arcs (u, v) of size m, s and t are two special vertices
(the source and the sink), and c is a capacity function. We assume that the
capacities are integers in the range [1, U ]. A flow in a network is a function
f : A → R that satisfies the capacity constraints 0 ≤ f(a) ≤ c(a) ∀a ∈ A
and the flow conservation constraints

∑

(u,v)∈A f(u, v) =
∑

(v,w)∈A f(v, w) for
all v ∈ V − {s, t}. The output for an ordinary maximum flow problem is a flow
f such that

∑

(s,v)∈A f(s, v) is maximized.
For the parametric maximum flow problem, the input is a directed, capaci-

tated network N = (V, A, s, t, c : A × R → Z
+), where the extra input to the

capacity function is a parameter λ, upon which the capacities of some arcs may
depend. The capacities of arcs out of the source are monotonically increasing in
λ, while those of arcs into the sink are monotonically decreasing in λ.1 All other
arcs must have constant capacities (i.e., the capacities cannot depend on λ).
The set of minimum cuts for all values of λ has a nested structure: as the value
of λ increases, the source side of the cut grows. As a result, there are n − 1 or
fewer critical values of λ, called breakpoints, at which the minimum cut changes.
The output for a parametric problem is the sequence of breakpoints along with
the corresponding nested cuts, and possibly corresponding maximum flows (or
information about them).

2 GGT Algorithm

2.1 Push-Relabel Algorithm

The GGT algorithm is based on the push-relabel algorithm [8] for the maximum
flow problem. The push-relabel algorithm uses two basic operations, push and
relabel, and maintains a flow and integral distance labels on vertices. The impor-
tant properties of the algorithm are that the distance labels are monotonically
increasing, the value of each distance label changes by O(n), and the work of the
algorithm is charged to the distance label increases. We assume that the reader
is familiar with the push-relabel algorithm as discussed in [8] or [6].

2.2 GGT Algorithm

In this section we describe two algorithms for the parametric flow problem, a
simple algorithm based on graph contraction and the GGT algorithm, which
also uses amortization to improve the worst-case complexity.

1 Gallo et al. [6] show how to transform a parametric problem so that all of the arcs
into the sink are of constant capacity. For simplicity, in the rest of the paper we
assume that the arcs into the sink have constant capacity and the arcs out of the
source all have capacities that are linear functions of λ.
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A simple algorithm for computing all breakpoints works recursively. At each
call, the algorithm gets an interval (λ1, λ3) and cuts corresponding to λ1 and λ3,
and outputs all breakpoints in the interval. Initial values of λ1 and λ3 that are
less than and greater than all breakpoints, respectively, are easy to find (see [6]).

Let a1 + λb1 and a3 + λb3 be the parametric capacities of the two input cuts.
Set λ2 = (a1 −a3)/(b3 − b1) and compute the minimum cut corresponding to λ2.
If the parametric capacity of the cut is not equal to a1 +λb1 or a3 +λb3, then λ2
is not a breakpoint, and we recursively find all breakpoints on (λ1, λ2) and on
(λ2, λ3). Otherwise, it is a breakpoint, and we output it. Then, if the capacity is
equal to a1+λb1, we recurse on the interval (λ2, λ3). In the other case, we recurse
on (λ1, λ2). When making a recursive call for the interval (λ1, λ2), we contract
the vertices on the sink side of the minimum cut corresponding to λ2. Similarly,
when making the other recursive call, we contract vertices on the source side.
Each call of the algorithm is dominated by a minimum cut computation, and
one can show that the number of calls is O(n).

Next we describe the GGT algorithm. The algorithm uses amortization. One
way to use amortization in the context of the simple algorithm is to note that
when recursing on (λ2, λ3), one can use the distance labels (on the sink side of
the computed cut) from the current flow computation and amortize the cost of
such recursive calls over one maximum flow computation. Note that the distance
labels on the source side of the cut are “infinite” so the other recursive call cannot
be amortized. To obtain the desired bound, the GGT algorithm makes sure that
the cost of the flow computation on the bigger graph is amortized.

To achieve this, the algorithm runs two flow computations in parallel; forward
from the source and backward from the sink. Assume that the forward compu-
tation finishes first; the other case is symmetric. Then if the sink side of the
resulting cut has at least as many vertices as the source side, we disregard the
result of the backward computation. Otherwise, we finish the backward compu-
tation and keep the labels on the source side of the cut, which is at least as big
as the sink side. This way the GGT algorithm amortizes the cost of the bigger
recursive call at each level, leading to the desired time bound. See [6] for details.

2.3 Implementation Issues

We implemented two versions of the Gallo-Grigoriadis-Tarjan algorithm. The
complete version (GGT) uses amortization and bidirectional flow computations.
Our implementation uses the gap and global relabeling heuristics (see [4], e.g.),
but does not use the dynamic tree data structure, so its running time bound is
O(n2√m). We also implemented a simple version of the algorithm (SIMP) that
starts each maximum flow from scratch and uses the forward computation only.
Otherwise the implementation is similar and uses the gap and global relabel-
ing heuristics as well. This implementation has a worse asymptotic bound but
smaller constant factors. The efficiency of the resulting implementations requires
careful implementation of the contraction operations, including maintaining im-
plicit flows on contracted arcs.
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Dealing with precision. The above discussion assumes unlimited precision arith-
metic. Because of the multiplicative factors in the parametric cut capacities, one
may need high precision to distinguish between adjacent breakpoints. However,
using high-precision arithmetic is expensive, and in some applications one may
not need to distinguish between breakpoint values that are close together. Our
approach is to use 64-bit integer arithmetic and distinguish only between break-
points that are far enough apart. Our implementation can miss some breakpoints,
but for each missed breakpoint we find a value that is close. Note that using (even
double precision) floating point arithmetic does not avoid numerical issues and
may lead to correctness and termination problems.

Our implementation starts by selecting an integer multiplier M and multiply-
ing all capacities by M . The value of M is selected so that for the highest value
of λ the total capacity of arcs from the source is less than 262, and for the lowest
value of λ the same holds for the arcs into the sink. This choice of M guarantees
that flow excesses do not exceed 262, overflow errors will be detected, and our
correctness checker, which needs an extra bit of precision, can be implemented.

During the algorithm initialization, when calculating the initial range, we
round λ1 down and λ3 up to the nearest integer. During the algorithm execution,
we round the value of λ2 down.

Note that because of the rounding, a value x we output may not be a break-
point. However, the following properties hold. These properties follow from the
fact that we evaluate the parametric capacity function at points which are integer
multiples of 1/M .

1. If we output a value x, then there is a breakpoint in the interval [x−1/M, x+
1/M ].

2. For every breakpoint y, we output a value in [y − 1/M, y + 1/M ].
3. For every two distinct x1 and x2 we output, there are corresponding mini-

mum cuts (X1, X1), (X2, X2) such that the parametric capacities of the two
cuts are different.

Note that if we restrict the precision of the values we output, then this is the
best we can do.

In addition to outputting the approximate breakpoint parameter values, we
build a data structure containing the corresponding cuts. Since the cuts are
nested, the data structure is an ordered list of vertices, with a pointer to the last
vertex of the source-side set for each cut. Note that if all distinct breakpoints
are at least 2/M apart, the cuts correspond to the true breakpoint values, and
can be used to compute the exact breakpoint values.

3 Star Balancing Algorithm

3.1 Algorithm Description

First, we briefly review the star balancing algorithm. For a more detailed de-
scription, the reader should consult [14] and [13]. The star balancing algorithm
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is an algorithm for solving instances of the parametric maximum flow problem
that meet the following constraints:

– the network is bipartite, that is, V \{s, t} can be partitioned into sets V1 and
V2 such that all arcs from s are to members of V1, all arcs to t are from
members of V2, and all other arcs are from members of V1 to members of V2

– all arcs from s have capacity λ
– all arcs to t have constant capacity
– all other arcs have infinite capacity.

For each arc (s, u), we define λ(f, u) to be the unique value of λ such that
c((s, u), λ) = f(s, u), and refer to it as u’s λ-value. Additionally, it will be useful
to have notation for describing the changes made to the flow during the process
of the algorithm’s execution. Define a z-straddling α-move to be the process of
starting from an initial flow f and pushing α > 0 units of flow along a simple
cycle (s, u1, v, u2, s) for which λ(f, u1) + α ≤ z ≤ λ(f, u2) − α. Any z-straddling
move for any z is defined to be a balancing move.

The star balancing algorithm begins by replacing the arcs from the source
with arcs of infinite capacity, and then finding an arbitrary maximum flow in
the resulting network, which can be done in linear time. Next, the algorithm
repeatedly balances members v of V2 by changing the current flow f to a new
flow f ′ via modifying the flows on arcs among {(s, u) ∪ (u, v) | (u, v) ∈ A} so
that there are no remaining balancing moves involving v. Note that if flows are
constrained to be integral as is the case in the implementation described in this
paper, there may be remaining fractional balancing moves, but no remaining
integral balancing moves.

Balancing a star can be accomplished in time linear in the degree of the
vertex [13]. Balancing can be done in any order, and is repeated until a sufficient
stopping condition is reached. Theoretical analysis of the algorithm [13] assumes
round-robin balancing (i.e., repeatedly iterating over a list of the members of V2),
although our implementation uses a working set heuristic [14] that is different
from simple round-robin balancing (See Section 3.2).

3.2 Implementation Details

Next we describe a few details of our implementation of the star balancing al-
gorithm.

First, although balancing a vertex v ∈ V2 can be accomplished in time linear in
the degree k of v [13] using weighted selection, our implementation uses sorting
and takes O(k log k) time. In practice, we found that using the sorting-based
algorithm was just as good as using the linear-time algorithm, probably because
only a small amount of time was spent balancing vertices of high degree for
the inputs we tried and because the sorting-based algorithm had lower overhead
since it uses a library sorting routine.

Second, rather than using round-robin balancing, we used the working set
heuristic originally introduced and described in [14]. It does round robin balanc-
ing, but if a vertex v ∈ V2 does not cause the flow to change during an iteration,
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it is marked “dead” and left out of future iterations, until all members of V2 are
dead, at which point all members of V2 are returned to “live” status. The upper
bounds proved for round-robin star balancing apply to the working-set variant,
and the same pathological long path example shows that this analysis is tight
for the working-set variant as well. In practice, the working set heuristic seems
to result in a significant speedup on many real-world and synthetic inputs.

Third, the stopping rule that we use for this implementation is slightly dif-
ferent from the stopping rules presented in the theoretical paper [13]. In our
implementation, once the working set is empty, all members of V2 become live,
and if one more round of balancing does not change the flow of any arc, then
balancing stops. Once balancing stops, we must use the current λ-values to de-
termine the set of breakpoints to report. Two natural options are:

– reporting all distinct λ-values based on the final flow
– reporting the average of λ-values for each section, where sections partition

the vertices so that every possible remaining balancing move is entirely
within a section. (See [13].)

We chose to do the latter, since this guarantees that all reported breakpoints
correspond to actual parametric minimum cuts.

3.3 Precision Issues

For a practical implementation, precision issues are important. One option is to
work with high-precision or rational numbers. Both of these options introduce
significant overhead compared to the use of hardware arithmetic operations, so
we instead opted to use 64-bit integers as used in the other two implementations
of this paper. In what follows, we discuss the most important issues that arise
when using limited precision in the star balancing algorithm.

First, we address the question of how much precision is needed to solve the
problem exactly, assuming the fixed capacities are integral. It can be shown that
for two distinct breakpoints, λ′ and λ′′, it is the case that |λ′ − λ′′| ≥ 4/|V1|2.
This implies that multiplying arc capacities by some multiplier M > |V1|2/2
ensures that all true breakpoints differ by more than 2, so that if no augmenting
path (u1, v1, u2, v2, . . . , vk−1, uk) remains (where ui ∈ V1 and vi ∈ V2) along
which 1 unit of flow can be pushed so as to decrease |λ(f, u1) − λ(f, uk)|, then
all reported breakpoints will be true breakpoints, and vice versa.

Because balancing only guarantees the non-existence of balancing moves (i.e.,
augmenting paths of two arcs, excluding the two arcs from s), however, and does
not guarantee that there are no remaining balancing paths as described above,
such a multiplier is insufficient to guarantee that exactly the true breakpoints
are found by the star balancing algorithm. Because of this weakness, patholog-
ical examples show that true breakpoints can be up to a distance Ω(|V1|) from
the reported breakpoints if we only report one λ-value per section.2 Hence, an
2 It should be noted that we can eliminate all balancing paths and achieve a precision

guarantee identical to those of the SIMP and GGT implementations if we add a
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additional multiplicative factor of |V1| is required (and sufficient, since no section
at the end of the star balancing phase can have λ-values that differ by more than
|V1| − 1) to guarantee that exactly the true breakpoints are reported.

Whatever multiplicative factor M is used for the capacities, the star balancing
algorithm may work with λ-values as high as M · |V2| · U , so this value must fit
into a 64-bit integer, which we use to store λ-values. In these experiments, we
used a multiplier of |V1

3|.
If we are not concerned with finding exactly the true breakpoints, we can use a

smaller multiplier and report all λ-values (scaled down by M) as breakpoints at
the termination of the balancing phase. Using this approach, there will be some
reported breakpoint within 1/(2M) of each true breakpoint, but a pathological
example can be constructed that shows that reported breakpoints can be as far
as Ω(log n/(M log log n)) from the closest true breakpoint. We believe that this
lower bound on inaccuracy is tight.

4 Experimental Comparison

In this section we report on experimental performance of SIMP, GGT, and the
star balancing algorithm, called SB. These implementations use the same lan-
guage (C++), compiler (cygwin), optimization flags (-O4), and were run on the
same computer, a Hewlett-Packard desktop with a 3.2GHz Pentium 4 processor
and 2GB of RAM. However, SIMP and GGT were implemented by a different
set of people than those that implemented SB. Also, while these algorithms are
for the general problem, SB works only for the special case discussed earlier.

The inputs we used in this experiment were a combination of real and syn-
thetic data. The real data we used were the inputs used in [14]. These datasets
are instances of the revenue optimization problem, and correspond to sets of
products and orders for various subsets of these products.

In addition, we created synthetic datasets corresponding to each of the real
datasets. We computed the degree distributions of vertices on the left and right
sides of the bipartitions, and the distribution of the capacities of arcs going into
the sink, and used these to generate synthetic networks with statistics similar
to each real dataset. The purpose of these synthetic datasets was to examine
whether any underlying structure of the problems may have been affecting the
relative running times of the algorithms.

We created various other simple synthetic examples to illuminate the degree
to which the pathological worst-case running time of SB occurs on various simple
problem instances related to the long path example as compared to the more

Simple post-processing step that repeatedly pushes one unit of flow along augmenting
paths from u1 ∈ V1 to u2 ∈ V1 so as to balance their λ-values. This post-processing
step runs in worst-case time O(m|V2|2) but may run significantly faster in practice.
Although the post-processing step does not worsen the worst-case running time of
the star balancing algorithm, we chose not to incorporate it into the implementation
and instead leave the less-than-ideal precision guarantee as part of the specification
of the implementation.
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robust SIMP and GGT implementations. We started with various lengths of the
long path example with uniform sink arc capacities, and generalized this type
of example to have variable sink arc capacities and extra arcs, both random
and nonrandom, between the left and right sides of the bipartition. We also
experimented with some natural problem variants.

4.1 Real Data and Its Synthetic Model

First we compare the implementations on real-life problem instances from [14].
There are four datasets, taken from the same real-world application. See Table 3
for the vertex and arc sizes of these datasets. The results of the experiments,
displayed in Fig. 1 and Table 1, show that SB, despite its inferior worst-case
running time, outperforms GGT and SIMP for these datasets.
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Fig. 1. A comparison of the running times
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Fig. 2. Comparison results on synthetic
datasets of the same sizes, degree distri-
butions, and capacity distributions as the
corresponding real-world inputs

Table 1. Tabular data corresponding to
Fig. 1

d1 d2 d3 d4a

GGT 7.41 9.04 25.98 68.68

SIMP 4.21 5.07 13.41 37.75

SB 2.41 1.74 3.27 16.29

Table 2. Tabular data corresponding to
Fig. 2

d1 d2 d3 d4a

GGT 7.32 9.48 24.71 60.44

SIMP 4.22 5.37 13.41 33.45

SB 1.12 1.83 5.11 7.49

To help understand why this is happening, we implemented a synthetic prob-
lem generator that models these real-life problems, as discussed earlier. This
provided some robustness to the results that used the real data. The results of
these experiments, given in Fig. 2 and Table 2, show that the performance gap
remains roughly the same.
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Table 3. A description of
the problem sizes of the real-
world problem instances of
the product selection prob-
lem used in these experi-
ments

d1 d2 d3 d4a

|A| 454k 625k 1,401k 3,386k

|V1| 263 232 344 439

|V2| 39k 53k 123k 286k

Table 4. Tabular data corresponding to Fig. 5

6400 12800 25600 51200 102400 204800 409600

GGT 0.51 1.22 2.81 6.35 14.41 32.11 70.58

SIMP 0.23 0.57 1.35 3.07 7.04 15.76 34.44

SB 0.48 1.14 2.66 5.88 13.21 30.91 77.86

4.2 The Long Path Example and Its Variations

One type of bad example for SB is one in which there is a long path over which
many iterations of balancing are required to propagate modest changes in λ-
values through the graph. Tarjan et al. [13] showed that the running time of the
balancing algorithm using round-robin balancing on examples such as the one
shown in Fig. 3 is Ω(n3 log n). This is troubling, especially considering that such
examples are extremely easy for most parametric maximum flow algorithms to
solve. Indeed, as the experimental results show in Fig. 4, SB performs drastically
worse on this family of examples than GGT and SIMP.
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Fig. 3. The long path example, which
with unlucky initialization requires
Ω(n3 log n) time to finish balancing
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Fig. 4. A comparison of the running times
of GGT, SIMP, and SB on increasingly
large long path examples. Note that the
running time of GGT and SIMP grows
roughly linearly, while the running time
of SB grows roughly cubically.

The behavior of the balancing algorithm on inputs resembling long paths is
troubling, but why might long paths not be a problem in practice? One intuitive
explanation for this is that real data may have variability in the capacities of the
arcs incident to the sink. Intuitively, this variability can keep SB from needing
to push flow over long distances to reach the balanced state. Using capacities
distributed uniformly at random on [1, 1000], this intuition was confirmed as
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shown in Fig. 5 and Table 4, where such variability improves the performance of
SB almost to that of GGT. Fig. 6 and Table 5 also show how the competitiveness
of SB increases as the variability of the sink arc capacities increases.

Another reason why long paths may not be a problem in practice is that
additional connections in the graph may ameliorate the problem. For example,
if a random matching is overlaid on top of a long path graph (e.g. Fig. 3),
the long path remains but there are many shortcuts for flow to take to reach
one end of the long path from the other end. The results, shown in Fig. 7
and Table 6, indicate that this variation on the long path example also elim-
inates much of the difference in performance between SB and the other two
implementations.
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Fig. 5. A comparison of the running times
of the GGT, SIMP, and SB implementa-
tions on long path inputs (as in Fig. 3)
with sink capacities drawn from [1, 1000]
uniformly at random. See Table 4 for the
data corresponding to this graph.
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Fig. 6. Acomparison among the algorithms
on a long path example with 102,400 ver-
tices and capacities distributed uniformly
in [100, U ]. See Table 5 for the data corre-
sponding to this graph.

In fact, as Fig. 8 and Table 7 show, adding additional random matchings
continues to improve the performance of SB algorithm relative to those of GGT
and SIMP. This leads one to speculate that it might be possible to prove a
running time bound that depends on some kind of expansion property of the
underlying bipartite graph. This is discussed in Section 5.

Another way to view the long path example is as a 1-dimensional checkerboard
in which red squares correspond to members of V1 and black squares correspond

Table 5. Tabular data corresponding
to Fig. 6

200 400 800 1600 3200 6400

GGT 26.77 18.19 16.44 16.35 16.65 16.98

SIMP 14.30 9.21 8.29 8.13 8.11 8.25

SB 442.10 54.64 25.56 19.31 17.23 16.63

Table 6. Tabular data corresponding to Fig. 7

6400 12800 25600 51200 102400 204800 409600

GGT 0.14 0.31 0.67 1.37 2.81 5.78 12.08

SIMP 0.08 0.19 0.40 0.84 1.72 3.58 7.42

SB 0.21 0.71 1.24 3.10 6.93 24.38 111.44
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inputs (as in Fig. 3) in which a random
matching is overlaid on top of the long
path
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Fig. 8. A comparison of the running times
among GGT, SIMP, and SB on long path
inputs in which k random matchings are
overlaid on top of the long path. The num-
ber of vertices in the path was fixed to
409,600.

to members of V2 and there are arcs from each member of V1 to the members of
V2 corresponding to adjacent squares on the checkerboard. Based on this view,
we can extend the long path example to higher-dimensional checkerboards in
which the paths are not as long for graphs of roughly the same size (See Fig. 9).
More specifically, in a d-dimensional checkerboard example with n vertices, the
diameter of the graph is Θ(n1/d).

Indeed, as we increase the number of dimensions of the checkerboard while
holding the number of vertices roughly constant, the performance of SB improves
relative to that of the GGT and SIMP (See Fig. 10 and Table 8).
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Fig. 9. An example of a 3 × 3 two-
dimensional checkerboard example
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puts of similar size (about 60,000 vertices
each) but increasing dimension
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Table 7. Tabular data corre-
sponding to Fig. 8

1 2 4 8 16

GGT 11.24 13.59 18.35 28.05 44.53

SIMP 7.26 8.91 12.07 17.19 29.12

SB 45.62 16.75 14.00 14.00 16.93

Table 8. Tabular data corresponding to Fig. 10

3 4 5 6 7 8 10 16

GGT 2.00 2.05 3.10 1.82 4.49 3.04 3.53 3.95

SIMP 1.39 1.43 1.92 1.18 2.77 1.87 2.20 2.40

SB 223.05 82.00 38.39 18.56 31.29 21.08 14.59 13.18

5 Conclusions and Future Work

Our comparison of the push-relabel algorithms SIMP and GGT with the star bal-
ancing algorithm shows that no algorithm dominates the others. This is despite
the fact that the push-relabel algorithms have significantly better worst-case
bounds. Also, SIMP outperforms GGT in all our experiments. The push-relabel
codes are more robust – when they are slower, they are not slower by as much
– probably due to the better worst-case bound. For real-life instances from the
one application domain we tried, the balancing algorithm was fastest, confirm-
ing the earlier claims of Zhang et al. [14,13] based on indirect estimates of GGT
performance. In addition, the star balancing algorithm is easier to implement.

Our results show that the pathological behavior of the balancing algorithm
when running on long path examples disappears as various changes are made to
the network , such as adding sink arc capacity variability, adding random edges,
or parameterizing the dimension of the long path example so as to extend it to
a higher number of dimensions. This suggests two directions to take for future
work regarding using the balancing framework for parametric max-flow.

First, it is clear that the pathological long path behavior is moderated when
additional connections between the two sides of the partition provide shortcuts
to the long path, or when the long path is cut by variable sink arc capacities.
This suggests proving a bound better than the existing bound when the graph
has sufficient expansion or some other property. Proving such a bound would be
nice in that we would be able to give a better guarantee on the running time of
this extremely simple algorithm. Second, in addition to proving a better bound,
it would be interesting to see if there were a way to remove the pathological long
path behavior by devising a hybrid algorithm that is fast on inputs with long
paths, and remains fast on the types of inputs for which the balancing algorithm
shows good performance. Such an algorithm would probably only be interesting
if it did something other than running two different algorithms in parallel, and
it may even be possible to prove a better worst-case running time for such a
hybrid algorithm than the current best known worst-case running time.

For the push-relabel algorithms, it seems hard to construct a worst-case ex-
ample. In fact, it is hard to construct an example on which GGT is significantly
faster than SIMP, which should be the case in the worst-case example if the
sophisticated amortization used by GGT is needed to achieve the time bound.
The only known example where GGT beats SIMP [2] uses the fact that the un-
derlying push-relabel algorithm is asymmetric and can take very different time
when solving the equivalent problem on the reverse graph. The GGT algorithm
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runs on the original and the reverse graph in parallel and on such an example it
is faster for this reason. An interesting question is whether the clever amortiza-
tions used in GGT is reflected in practice. For example, it would be interesting
to see if there exist instances of the parametric maximum flow problem for which
GGT and SIMP have similar running times if the parameter value is fixed to any
value, but GGT saves a logarithmic factor over SIMP when the entire paramet-
ric problem is solved all at once. Finally, it would be interesting to see if there
is a faster implementation of a push-relabel algorithm for the special bipartite
version of the problem studied in this paper. In this regard, see [1,6] for results
on bipartite maximum flow.
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Abstract. The construction of t-spanners of a given point set has re-
ceived a lot of attention, especially from a theoretical perspective. We
experimentally study the performance of the most common construction
algorithms for points in the Euclidean plane. In a previous paper [10]
we considered the properties of the produced graphs from five common
algorithms. We consider several additional algorithms and focus on the
running times. This is the first time an extensive comparison has been
made between the running times of construction algorithms of t-spanners.

1 Introduction

Consider a set V of n points in the plane. A network on V can be modeled as
an undirected graph G with vertex set V of size n and an edge set E of size m
where every edge e = (u, v) has a weight wt(e). A geometric (Euclidean) network
is a network where the weight of the edge e = (u, v) is the Euclidean distance
|uv| between its endpoints u and v. Let t > 1 be a real number. We say that
a geometric network G(V, E) is a (geometric) t-spanner for V , if for each pair
of points u, v ∈ V , there exists a path in G between u and v of weight at most
t · |uv|. We call this path a t-path between u and v. The minimum t such that
G is a t-spanner for V is called the stretch factor, or dilation, of G. Finally, a
subgraph G′ of a given graph G is a t-spanner for G if for each pair of points
u, v ∈ V , there exists a path in G′ of weight at most t times the weight of the
shortest path between u and v in G.

Complete graphs represent ideal communication networks, but they are ex-
pensive to build; sparse spanners are low-cost alternatives. The weight of the
spanner is a measure of its sparseness; other sparseness measures include the
number of edges, the maximum degree, and the number of crossings. Span-
ners for complete Euclidean graphs as well as for arbitrary weighted graphs
find applications in robotics, network topology design, distributed systems, de-
sign of parallel machines, and many other areas and have been a subject of
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considerable research. Recently low-weight spanners found interesting practical
applications in areas such as metric space searching [16] and broadcasting in
communication networks [14]. Well-known theoretical results also use the con-
struction of t-spanners as a building block, for example, Rao and Smith [17] made
a breakthrough by showing an optimal O(n log n)-time approximation scheme
for the Euclidean traveling salesperson problem, using t-spanners (or banyans).
The problem of constructing spanners has received considerable attention from
a theoretical perspective, see the recent book by Narasimhan and Smid [15], but
almost no attention from a practical or experimental perspective [10, 16, 18].

In this paper we consider the most well-known algorithms for the construction
of t-spanners in the plane: variants of greedy spanners and Θ-graphs, spanners
constructed from the well-separated pair decomposition (WSPD), skip-list span-
ners, sink spanners and some hybrid algorithms. Due to the space limitation we
only compare the running times of these algorithms (in the full version the graph
properties are also studied) for point sets of size up to 10K points, four different
distributions; only two are discussed in this paper, and with values of t between
1.1 and 2. The properties of the standard greedy graph, the (ordered) Θ-graph,
the WSPD-graph and the hybrid graphs were discussed in [10].

The paper is organized as follows. Next we briefly go through the desirable
properties for t-spanners. In Section 2 we describe the implemented algorithms
together with the theoretical bounds and implementation details. In Section 3 we
discuss the results and finally discuss possible improvements and future research.

Throughout the paper t will be assumed to be a small constant. In the exper-
iments we used values of t between 1.1 and 2. For larger values of t one can use
the Delaunay triangulation which is known to have dilation ≈ 2.42 [13].

1.1 Spanner Properties

As input we are given a set V of n points in the plane and a real value t > 1.
The aim is to compute a t-spanner for V with some good properties where the
quality measurements that one consider are as follows:

Size: The number of edges in the graph. This is the most important measure-
ment and all the implemented algorithms produce spanners with O(n) edges.

Degree: The maximum number of edges incident to a vertex.
Weight: The weight of a Euclidean network G is the sum of the edge weights.

The best that can be achieved is a constant times the weight of the minimum
spanning tree, denoted wt(MST (V )).

Spanner Diameter: Defined as the smallest integer d such that for any pair of
vertices u and v in V , there is a path of length at most t · |uv| between u and v
containing at most d edges.

2 Spanner Construction Algorithms

Here we give a short description of each of the implemented algorithms together
with their theoretical bounds. Note that some of the properties are competing,



272 M. Farshi and J. Gudmundsson

e.g., a graph with constant degree cannot have constant spanner diameter, and
a graph with small spanner diameter cannot have a linear number of edges [2].

2.1 The Original Greedy Algorithm and an Improvement

The greedy algorithm was discovered independently by Bern in 1989 and Althöfer
et al. [1]. The graph constructed using the greedy algorithm will be called a
greedy graph. The original algorithm starts with the complete graph G while
maintaining a partial spanner graph G′ of G. All the edges of G are sorted with
respect to their length in increasing order. Next the edges are processed in sorted
order. Processing an edge (p, q) entails a shortest path query in G′ between p
and q. If there is no t-path between p and q in G′ then (p, q) is added to G′

otherwise it is discarded. The time complexity of the original greedy algorithm
is O(n3 log n) and it uses O(n2) space.

In [10] we proposed a modifications of the greedy algorithm, denoted improved
greedy, that we conjectured should have a running time of O(n2 log n). The idea
is that every time a shortest path query is performed from p to q Dijkstra’s
algorithm computes the shortest distance from p to all other points in V . Instead
of neglecting all this information we store it in a matrix. When the next shortest
path query, say between u and v, is performed we first look in the matrix if there
is a t-path between u and v; if there is then discard (u, v) otherwise perform
the query on G′ as above. We experimentally compare the running time of the
original greedy algorithm with the modified version.

Implementation. The implementations of the algorithms are straight-forward.
The shortest path queries are done by using the Dijkstra function in LEDA.

2.2 The Approximate Greedy Algorithm

In [10] only the original greedy implementation was considered. It was shown that
the quality of the networks produced by the greedy algorithm was superior to
the other approaches in terms of number of edges, weight and degree. However, a
näıve implementation of it has a running time of O(n3 log n), thus any approach
that can speed-up the algorithm would be of great interest. The running time is
mainly due to the fact that Θ(n2) shortest path queries needed to be answered
in a graph with O(n) edges, each of which could take O(n log n) time.

Das and Narasimhan [8] showed how to use clustering to speed up shortest
path queries. The approximate greedy algorithm starts with a

√

t/t′-spanner G′

with O(n) edges and constant degree generated by an O(n log n)-time algorithm.
Note that this network does not have to have small weight. Then it computes
a

√
tt′-spanner of G′ using an approximate variant of the greedy algorithm. To

obtain G(V, E) from G′ the approximate algorithm starts with E = ∅ and adds
all the short edges (i.e. those of length at most D/n, where D is the distance
between the farthest pair of points) to E. For the remaining edges, the algorithm
sorts them by increasing weight and processes them in log n phases. Processing an
edge e = (u, v) entails a shortest path query which is answered by performing an
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approximate shortest path query on a “cluster graph” H , which is simultaneously
maintained. The cluster graph H has the following properties:

1. distances in H “closely” approximate distances in the current graph G′.
2. every vertex in H has bounded degree, and
3. “specialized” shortest path queries in H can be answered in constant time.

For more details see [8] or [15]. The time complexity of this algorithm is
O(n log2 n). Note that the graph generated by this algorithm is an approxi-
mate version of the graph generated by the original greedy algorithm since the
algorithm prunes a graph with linear number of edges and answers shortest path
queries using an approximate shortest path query procedure.

Gudmundsson et al. [11] later improved the running time to O(n log n) but the
modified version is quite involved and therefore we decided to only implement
the above version. The following theorem states the theoretical bounds.

Theorem 1. The approximate greedy graph is a t-spanner of V with O(n/(t −
1)3) edges, O( 1

(t−1)3 ) maximum degree and weight O(wt(MST (V ))/(t − 1)4),
and can be computed in time O( n

(t−1)7 log n).

Implementation. The initial
√

t/t′-spanner G′ was constructed using the sink-
spanner algorithm (Section 2.7). This guarantees that the number of edges is
O(n) and that the graph has constant degree. We implemented a variant of
Dijkstra’s algorithm which answers shortest path queries in constant time in the
cluster graph. The query time can be achieved since the maximum degree of the
cluster graph is constant and there is a constant upper bound B on the number
of edges along a shortest path in the cluster graph, thus we may discard any
path containing more than B edges in the priority queue. The bound B can be
obtained by choosing the size of the clusters in the cluster graph appropriately.

2.3 The Θ-Graph

The Θ-graph was discovered independently by Clarkson [7] and Keil [12]. Keil
only considered the graph in two dimensions while Clarkson extended his con-
struction to also include three dimensions.

Initially we set θ such that t = 1
cos θ−sin θ . For each point u ∈ V consider

k non-overlapping cones, Ci, 1 ≤ i ≤ k, with angle θ = 2π
k and with apex u.

For each cone Ci we add an edge between u and the point within Ci whose
orthogonal projection onto the bisector of Ci is closest to u. Note that instead
of the bisector of Ci, we can use any line in the cone passing through the apex
of the cone. We use one of the boundary lines of the cone instead of the bisector.

Theorem 2. The Θ-graph is a t-spanner of V for t = 1
cos θ−sin θ with O(kn)

edges and can be computed in O(kn log n) time.

Implementation. To implement the Θ-graph algorithm, we need a dynamic
data structure, see [15] for more details, that can perform a point query in a cone
in O(log n) time. This data structure is implemented using red-black trees. Since
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there is no dependence between the cones, one can work on one cone direction
at a time, which means that in practice only O(n) work space is needed.

A problem that we do not consider in the Θ-graph implementation is rounding
errors, which may cause some edges not to be added. For example, if a point lies
on the boundary of an, otherwise empty, cone then a small rounding error may
“move” the point outside the cone. One way to get rid of this error is to use
exact arithmetics. A different possibility is to allow the cones to slightly overlap.

2.4 The Ordered Θ-Graph

A simple variant of the Θ-graph that has been shown to have good theoretical
performance is the ordered Θ-graph by Bose et al. [5]. An ordered Θ-graph of V
is obtained by inserting the points of V in some order. When a point p is inserted,
we draw the cones around p and connect p to the previously inserted point with
closest orthogonal projection in each cone, like the Θ-graph algorithm.

The order is decided as follows. Initially choose an arbitrary vertex vn∈V and
set its order to n, i.e. this is the last point that will be added to the graph.
Process vn by placing k cones with apex at vn and then adding the edges as in
the Θ-graph algorithm. In a generic step, assume we have processed i−1 vertices.
In the ith step, choose a point with maximum degree from V −{vn, . . . , vn−(i−1)}
and set its order to n− i and then process vn−i assuming that we have the point
set V − {vn, . . . , vn−i+1}. This decides an order on the point set.

Theorem 3. The ordered Θ-graphs is a t-spanner of V for t = 1
cos θ−sin θ with

O(kn) edges and O(k log n) degree, and can be computed in O(kn log n) time.

Implementation. For the implementation we use a data structure which is
somewhat more complicated than the data structure used for the Θ-graph, since
we require the structure to allow for deletions. Due to [5], we use k range trees,
one for each cone with apex at the origin. In each range tree we store all points
represented in the coordinate system of the two boundaries of the cone. To find
the suitable point in a cone with apex at u, it is sufficient to perform a range
query with coordinates of u as keys and choose the suitable point between the
points reported by the query. We add one extra pointer to each node of the range
tree which shows the point with minimum y (or x) coordinate in the subtree.
Using this pointer, we can find the suitable point without going through all
reported points of the range query. Each range query requires O(log2 n) time, so
the total time complexity of the implemented algorithm is O(n log2 n) which is
slightly more than the theoretical time bound but much simpler to implement.

In each step of the ordered Θ-graph algorithm the node with maximum degree
has to be selected. To find this point, we used a priority queue of all the points.
Initially all the nodes have priority n. When an edge (p, q) is added to the partial
spanner graph, the priority of p and q is decreased by 1. The point with minimum
priority in the queue is the point with maximum degree in the graph.

There is a major difference between the Θ-graph algorithm and the ordered
Θ-graph algorithm when it comes to the space complexity. One can construct
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the Θ-graph by working on one cone direction at a time, while the ordered Θ-
graph algorithm requires us to keep all the cones (range trees) in memory. This
is due to the fact that the order is not known in advance. During the processing
of one node, we need to check all the cones and add edges if necessary, thus
Θ(kn) space is needed. For small values of t this might cause a major problem.
To be more precise, the Θ-graph algorithm used roughly 2% of the memory
when constructing a 1.05-spanner on a set with 10,000 points, while the ordered
Θ-graph algorithm used almost 85%.

2.5 The Random Ordered Θ-Graph

The ordered Θ-graph algorithm inserts points into the graph in a specific or-
der. However, if the points are processed in random order then the spanner
diameter will be bounded by O(log n) with high probability [5]. Unfortunately,
the degree bound does not hold in this case. There are two reasons why we
implemented the random Θ-graph. (1) Random ordered Θ-graphs and skip-list
spanners (Section 2.8) are the only two spanners guaranteed to have bounded
spanner diameter. Thus a comparison in practice between the two graphs is in-
teresting. (2) Since the vertices are processed in random order we may fix a
random order at the beginning which implies that the algorithm only requires
O(n) space, compared to O(kn) space needed to construct ordered Θ-graphs.

Implementation. The implementation is the same as for the ordered Θ-graph.
We only make a random permutation on the input point set and then process
the points in the order they appear in after permutation.

2.6 The WSPD-Graph

The well-separated pair decomposition (WSPD) was developed by Callahan and
Kosaraju [6].

Definition 1. Let s > 0 be a real number and let A and B be two finite sets of
points in R

d. We say that A and B are well-separated with respect to s, if there
are two disjoint d-dimensional balls CA and CB, having the same radius, such
that (i) CA contains A, (ii) CB contains B, and (iii) the distance between CA

and CB is at least s times the radius of CA.

Definition 2. Let V be a set of n points in R
d, and let s > 0 be a real number.

A WSPD for V with respect to s is a sequence of pairs of non-empty subsets
of V , {Ai, Bi}m

i=1, such that (i) Ai and Bi are well-separated w.r.t. s, for all
i = 1, . . . , m. (ii) for any two distinct points p and q of V , there is exactly one
pair {Ai, Bi} in the sequence, such that p ∈ Ai and q ∈ Bi, or q ∈ Ai and
p ∈ Bi. The integer m is called the size of the WSPD.

Callahan and Kosaraju showed that a set of well-separated pairs of size m =
O(sdn) can be computed in O(sdn + n logn) time. Constructing a t-spanner
using the WSPD is surprisingly easy. It is sufficient to compute a WSPD of V

w.r.t. s = 4(t+1)
t−1 and then for every well-separated pair (A, B) in the WSPD an

edge is added between an arbitrary point in A and an arbitrary point in B.
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Theorem 4. The WSPD-graph is a t-spanner for V ⊂ R
2 with O(( t

t−1 )2n)
edges, O(log n·wt(MST (V ))) weight and can be constructed in time O(( t

t−1 )2n+
n log n).

We also implemented two versions of the algorithm to improve the degree [2]
and the spanner diameter [3]. However, since the experiments showed no im-
provements for any of these properties we decided not to include them in this
paper.

Implementation. We used a split tree for the construction of the WSPD. The
points stored at a node is partitioned into two sets by partitioning the non-
empty bounding box along its longest side into two boxes of equal size. The tree
construction only requires a few percent of the total running time in all our tests.

To decide in constant time if two sets are well-separated we save the smallest
enclosing circle of the points in each node. However, their smallest enclosing
circles may have different radius so one way to handle this is to say that two sets
are well-separated w.r.t. s if the distance between the smallest enclosing circles
is at least s times the maximum radius of the two smallest enclosing circles.

2.7 The Sink-Spanner

The sink-spanner construction was defined by Arya et al. in [2] which construct
t-spanners with constant degree. The main idea is as follows. We start with a
directed

√
t-spanner with bounded out-degree, denoted −→

G . We will use the Θ-
graph which easily can be seen to have out-degree k, but linear in-degree. For
each vertex q in −→

G , replace every “star” (the subgraph consisting of all edges
in −→

G pointing to q) in −→
G by a

√
t-q-sink spanner. A

√
t-q-sink spanner is a

directed graph where each point has a directed
√

t-path to q. It can be obtained
by processing each node q in −→

G as follows. Consider all points which have an
edge pointing to q. Let Aq be the set of all such a nodes. We replace all the
edges pointing to q by a

√
t-path using the partial sink spanner procedure. In

the partial sink spanner procedure we look at k cones with apex at q and we
partition the points in Aq based on the cones. Let Si be the points in the ith
cone. For each cone i, add an edge between q and the closest point in Si, say qi,
and then recurse on the partial sink spanner procedure on qi and Si \{qi}. In the
case that one cone contains more than half of the points, split the points in the
cone to two almost equal parts and do the same thing as above. This guarantees
that the subproblems half in size, thus we get:

Theorem 5. The sink-spanner is a t-spanner for V ⊂ R
2 with O(kn) edges and

O( 1
(t−1)2 ) maximum degree, and can be constructed in time O(kn log n).

Implementation. To construct the first directed
√

t-spanner, we use the Θ-
graph algorithm, with the modification that we add directed edges instead of
undirected edges. Then for each node q in the directed graph, we look at all
points which has an edge pointing to q. Let Aq be the set of all such a nodes. We
replace all the edges pointing to q by a

√
t-path using the partial sink spanner
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procedure. In the partial sink spanner procedure we look at k cones with apex
at q and we partition the points in Aq based on the cones. Let Si be the points
in the ith cone. For each cone i, add an edge between q and the closest point
in Si, say qi, and then recurse on the partial sink spanner procedure on qi and
Si \ {qi}. In the case that one cone contains more than half of the points, split
the points in the cone to two almost equal parts and do the same thing as above.
This guarantees that the subproblems half in size.

2.8 Skip-List Spanner

To obtain a spanner with bounded spanner diameter, one can use skip-list span-
ners as suggested by Arya et al. [4]. The idea is to generalize skip-lists and apply
them to the construction of t-spanners.

To construct a t-spanner of V , we construct a sequence of subsets of V , V =
V0 ⊇ V1 ⊇ · · · ⊇ Vk = ∅. To construct Vi+1, we flip a fair coin for each element
of Vi and then add the point to Vi+1 if the flip produce heads. The construction
ends when the set is empty. Now we construct a t-spanner using the Θ-graph
algorithm for each Vi and the union of all these graphs is the skip-list spanner
of V .

Theorem 6. The skip-list spanner is a t-spanner for V ⊂ R
2 with O(kn) edges,

O(log n) spanner diameter and can be constructed in time O(kn log n). All the
bounds are expected with high probability.

Implementation. To construct a skip-list spanner, we construct a t-spanner
on V using the Θ-graph algorithm. Then for each point in the set we produce a
random number between 0 and 10,000 using random source type in LEDA and
remove the point if the outcome is less than 5,000. Then again we construct the
Θ-graph on the remaining points and we add the generated edges to the previous
graph. We continue this procedure until we have no remaining points in the set.

2.9 The Hybrid Algorithms

In [10] it was experimentally shown that the greedy algorithm produced graphs
whose size, weight and degree are superior to the graphs produced from the other
approaches. However the running time of the greedy algorithm is O(n3 log n). A
way to improve the running time while, hopefully, still obtaining the high-quality
graphs is to first compute a tα-spanner (0 < α < 1) G(V, E) of the input set and
then compute a (t1−α)-spanner of G(V, E) using the greedy pruning algorithm
(in the experiments we use the improved greedy algorithm). The resulting graph
will have dilation at most t1−α ·tα = t. The greedy pruning algorithm is identical
to the greedy algorithm, but instead of considering the edges in the complete
graph the algorithm only considers the edges in E. The time complexity of the
implemented greedy pruning is O(mn log n), where m is the number of edges in
the input graph.
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Table 1. Summarizing the known bounds for the algorithms presented in the paper.
The entries marked (*) implies that the values are expected with high probability. The
entries marked with (†) indicates that the versions implemented in this paper has an
additional log n-factor in their running times.

- Edges Weight Degree Diameter Time

Greedy-graph O( n
t−1 ) O( 1

(t−1)4
· wt(MST )) O( 1

t−1 ) Θ(n) O(n3 log n)

Apx. greedy-graph O� n
(t−1)3

� O� 1
(t−1)4

· wt(MST )
� O� 1

(t−1)3
�

Θ(n) O( n
(t−1)7

log n)†

Θ-graph O(n/θ) Θ(n · wt(MST )) Θ(n) Θ(n) O(n/θ log n)

O. Θ-graph Θ(n/θ) O(n · wt(MST )) O(1/θ · log n) Θ(n) O(n/θ log n)†

WSPD-graph Θ( n
(t−1)2

) O(log n · wt(MST )) Θ(n) Θ(n) O(( t
t−1 )2n + n log n)

Sink-spanner Θ(n/θ) O(n · wt(MST )) O� 1
(t−1)2

�
Θ(n) O(n/θ log n)

Skip-list spanner Θ(n/θ)∗ Θ(n · wt(MST ))∗ Θ(n) O(log n)∗ O(n/θ log n)∗

3 Experimental Results

In this section we discuss the experimental results in more detail by considering
the running times of the algorithms. The experiments were done on point sets
ranging from 100 to 10,000 points with four different distributions:

– uniform distribution,
– normal distribution with mean 500 and deviation 100,
– gamma distribution with shape parameter 0.75, and
–

√
n uniformly distributed unit squares with

√
n uniformly distributed points.

Below we will focus on the uniform distribution and the cluster distribution. A
discussion considering all the distributions will be available in the full version
of the paper together with a comparison of all the graphs produced by the
algorithms. To avoid the effect of specific instances, we ran the algorithms on
many different instances and took the average of the results.

3.1 Implementation Details

The algorithms were implemented in C++ using the LEDA 5.01 library. In the
cases when LEDA did not contain the required data structure needed for the
algorithms, we implemented it ourselves.

The experiments were performed on an AMD Opteron 250 (2.4 GHz), 1GB
L2 cache and 4GB RAM. The OS was Fedora 3.4 and it used g++ 3.4.4 for
compiling the program using -O2 option. All sample points sets were generated
by NEWRAN03 [9] pseudo random number generator.
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3.2 Uniform Distribution

The running times of all the implemented algorithms for t = 2 and t = 1.1 are de-
picted in Fig. 1. As the theoretical bounds suggest the original greedy algorithm
has the highest time complexity of the implemented algorithms and it shows
clearly in the experiments. However, the suggested improvement, the improved
greedy algorithm, performed very well in the experimental study and the results
corroborate our conjecture that only a linear number of shortest path queries are
needed. Figure 1c shows the number of shortest path queries performed by the
algorithm for t = 2. As an example of the improved running time we constructed
a greedy 2-spanner on a set of 4K uniformly distributed points; the original al-
gorithm required 12K seconds while the improved algorithm needed roughly 34
seconds. The improved greedy algorithm performed approximately 13K shortest
path queries while the original algorithm performs roughly 8 million queries.
Using the improved algorithm we are able to construct greedy graphs for much
larger points sets than earlier. For instance for a set of 10K points we can con-
struct 2-spanner greedy graph in about 300 seconds. Figures 3 and 4 illustrates
the quality of the obtained graphs using different quality measures.

Based on the experiments, the running time of the improved greedy algorithm
is comparable to the running times of the hybrid algorithms using α = 0.5
for t = 2 and it performs even better for smaller values of t, see Fig. 1 for a
comparison. Thus, if high quality networks is a priority the improved greedy
algorithm is probably the best choice, especially for small values of t, see Fig. 3
and Fig. 4. Note that the improved greedy algorithm generates the same graph
as the original greedy algorithm.

For the hybrid approach, three different values of α were used, 0.1, 0.5 and
0.9, and the results can be seen in Fig. 2a. By increasing α, less time is used to
build the initial graph while more time is needed for the pruning process, see
Fig. 2b. However, in [10] it was clearly shown that the decrease in speed gave a
better quality network, i.e. small size, low degree and low weight.
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Fig. 1. Comparing the running times of the implemented algorithms for Uniform dist.,
(a) t = 2 and (b) t = 1.1. Note the difference between the approximate greedy algorithm
and the improved greedy algorithm for the two values of t. (c) Number of shortest paths
queries performed by the improved greedy algorithm with t = 2.
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O(n log n)-time algorithms in the experiments for Uniform distr. with t = 1.1.

The remaining algorithms all have a theoretical O(n log2 n), or even
O(n log n), time complexity. However, the difference in their actual running times
is quite substantial and for some a bit surprising. The Θ-graph algorithm is su-
perior to the others with respect to the running time. For sets containing 10K
points and for t between 1.5 and 2 the Θ-graph was constructed in less than
two seconds. For t = 1.1 the running time increased to approximately 6.5 sec-
onds, which is to be expected since its running time is highly dependent on the
value of 1/(t − 1)2. The fastest algorithms after the Θ-graph construction were
the sink-spanner algorithm, the skip-list spanner algorithm and the random Or-
dered Θ-graph algorithm which basically all are modified Θ-graph algorithms.
Again for 10K points they required a couple of seconds for t = 2 and approxi-
mately half a minute for t = 1.1. These three algorithms almost show a linear
time behavior in our experiments, see Fig. 2c.

For uniform sets the ordered Θ-graph algorithm and the WSPD algorithm
clearly show a superlinear behavior but they are still fast enough to handle 8K
points with t = 1.1 in roughly one minute. For smaller values of t and larger point
sets the ordered Θ-graph algorithm ran into memory problems. The simplified
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Fig. 4. (a) The weight of the produced graphs for uniform point sets and t = 2. (b) The
average maximum degree of the produced graphs for uniform distributions and t = 2.
(c) The running time for the WSPD algorithm for t = 1.1 for different distributions.

version that we implemented uses Ω(2π
θ n logn) space (instead of Ω(2π

θ n) space)
and for small values of t and large values of n this function grows rapidly.

The approximate greedy algorithm works well for large values of t. For t = 2
the running time is comparable to the fastest hybrid algorithms but the produced
graphs can be shown to have slightly better quality. When t decreases the running
time of the algorithm deteriorates rapidly and for t = 1.1 the algorithm performs
even worse than the improved algorithm which is conjectured to have a running
time of O(n2 log n) (see Fig. 1). The reason is that the approximate greedy
approximates the greedy algorithm in two steps; first the complete graph is
approximated using a dense t′-spanner G′ and then the shortest path queries in
G′ are approximated using a cluster graph H . This works well for large values
of t, and in theory for any constant, however, in practice t becomes too small
at some point and the error when doing the approximation becomes too large.
As a result the initial graph G′ will be very dense (but still linear in n) and the
approximation factor used for the approximate shortest path query will be so
small that it is equivalent to the exact shortest path query in many cases.

Finally, the produced graphs most often contain many “redundant” edges,
i.e., edges that could be removed while still keeping the dilation bounded by t.
Table 2 clearly shows this, e.g., the skip-list spanner, sink-spanner and Θ-graph
all produce spanners of dilation approximately 1.2 in the case when t = 2.

3.3 Clustered Distributions

Most of the algorithms perform slightly better on the clustered point sets, ex-
cept the WSPD-algorithm and the approximate greedy algorithm which both
show a considerable improvement. For example, to construct a 2-spanner on a
uniformly distributed set which contains 8K points, the WSPD algorithm needs
roughly 11 seconds while the corresponding running time for the clustered set
is about 1.6 seconds. For t = 1.1 the improvement is even bigger; 88 seconds
compared to 2.5 seconds, see Fig. 4c. The WSPD algorithm was expected to
perform slightly better for clustered sets since it uses a clustering approach, but
the improvement was greater than predicted. Especially for small values of t the
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Table 2. The maximum dilation of graphs generated by different algorithms

Maximum Dilation (Uniform distribution)

t = 2 t = 1.1
n 500 1000 2000 4000 8000 500 1000 2000 4000 8000

Original greedy 1.99 2 2 2 2 1.1 1.1 1.1 1.1 1.1

Improved greedy 1.99 2 2 2 2 1.1 1.1 1.1 1.1 1.1

Approximate greedy 1.68 1.68 1.68 1.68 1.68 1.07 1.07 1.07 1.07

Θ-graph 1.18 1.2 1.21 1.23 1.22 1.02 1.02 1.03 1.03 1.03

O. Θ-graph 1.37 1.4 1.43 1.46 1.47 1.06 1.07 1.07 1.07 1.07

Random O. Θ-graph 1.35 1.38 1.42 1.41 1.47 1.06 1.06 1.07 1.07 1.07

WSPD-graph 1.35 1.39 1.44 1.49 1.47 1.04 1.04 1.05 1.05 1.05

Skip-list 1.17 1.18 1.21 1.21 1.21 1.02 1.02 1.03 1.03 1.03

Sink-spanner 1.19 1.19 1.21 1.23 1.23 1.03 1.03 1.03 1.03 1.04

algorithm performs better, it is even comparable to the Θ-graph algorithm for
the clustered set with 10K points and t = 1.1. A similar observation can be made
for the approximate greedy where the corresponding running times for t = 1.1
and n = 8K are 1500 seconds and 128 seconds. As for the WSPD-approach
the approximate greedy algorithm also uses a clustering approach however the
main gain comes from the fact that the algorithm does not process any edges in
the initial graph G′ of length at most D/n (they are just added to the partial
spanner graph), where D is the diameter of the point set. In the clustered case
there will be many such edges and thus only “long” edges has to be processed.

An interesting observation that can be seen in Fig. 1c is that the number of
shortest path queries performed by the improved greedy algorithm in uniformly
distributed sets is considerably smaller than for the clustered points set, while
the running time is almost the same. Consider the case when the input contains
10K points. The number of shortest path queries performed on the uniform set
is approximately 33K while it is about 57K for the clustered set. The number of
clusters is 100, with 100 points per cluster. From the experiments it follows that
the number of shortest-path queries performed between two points within the
same cluster of uniformly distributed points is approximately 300. Since there are
100 clusters the number of shortest path queries needed for the “intra-cluster”
edges in the clustered set is approximately 30K. These queries are all performed
on very small graphs and are therefore processed extremely fast. Next approx-
imately 27K “inter-cluster” queries are performed. We believe that the smaller
number of “inter-cluster” queries together with the fact that the 2-spanner of
the clustered set is slightly smaller than for the uniform set explains why the
running times for the two different distributions are almost identical.

4 Concluding Remarks and Acknowledgements

We studied the running time of the most common construction algorithm
for t-spanners. In addition to the algorithms presented in [10] we also tested
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sink-spanners, skip-list spanners and, most importantly, the approximate greedy
spanner. Unfortunately, the approximate greedy algorithm performs worse than
expected in most cases, even though the theoretical bounds are very good.

In general the Θ-graph construction algorithm is the fastest algorithm, how-
ever if it is important to obtain a high quality network then the improved greedy
algorithms seems to be the most suitable choice. The main question that remains
to be answered experimentally is the dependency on the number of dimensions,
i.e. how the algorithms and the quality of the produced graphs depends on the
number of dimensions.

The authors would like to thank the anonymous reviewers for comments on a
earlier version of this paper.
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Abstract. The vertex cover problem is a classical NP-complete prob-
lem for which the best worst-case approximation ratio is 2− o(1). In this
paper, we use a collection of simple graph transformations, each of which
guarantees an approximation ratio of 3

2 , to find approximate vertex cov-
ers for a large collection of randomly generated graphs. These reductions
are extremely fast and even though they, by themselves are not guaran-
teed to find a vertex cover, we manage to find a 3

2 -approximate vertex
cover for almost every single random graph we generate.

1 Introduction

In 1972, a year after Cook [2] formalized the notion of NP-completeness and
proved that the boolean satisfiability problem is NP-complete, Karp [11] showed
that 21 diverse problems from graph theory and combinatorics are NP-complete.
One problem from this set of 21 NP-complete problems is the vertex cover prob-
lem. A vertex cover of a graph G = (V, E) is a subset of the vertices, C ⊆ V ,
such that each edge e ∈ E has at least one endpoint in C. The objective is to
minimize the size of the vertex cover.

The best known approximation ratio for vertex cover is 2 − Θ( 1√
log n

). This
approximation ratio is achieved by an algorithm by Karakostas [10]. It is NP-hard
to approximate minimum vertex cover within any factor smaller than 1.36 [5].
A simple greedy algorithm gives a 2-approximation for the vertex cover problem
[6] and several people conjecture that there does not exist an algorithm with a
fixed approximation ratio better than 2 [9]. Other work on vertex cover includes
[4,12,8].

In 2005, Asgeirsson and Stein [1] introduced the idea of finding an approximate
vertex cover using simple graph reductions. These reductions are not guaranteed
to find a vertex cover, but if successful give a 3

2 -approximate vertex cover (and
usually one that is significantly better). Asgeirsson and Stein showed that by
using the heuristic, they could find a 3

2 -approximate vertex cover for every sin-
gle graph that they tried, which included every graph that they found in the
literature on vertex cover.

In this paper, we will extend and improve the results of Asgeirsson and Stein
in several ways. First, we will introduce a new graph reduction, which we call
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the almost bipartite reduction. We will then analyze it, and relate it to the other
graph reductions introduced in [1]. In particular, we will show that there are
classes of graphs for which the heuristics of [1] do not find a vertex cover, but
the addition of the almost bipartite reduction allows us to find a vertex cover.
Second, we will extend the class of graphs analyzed to include random graphs.
The random graphs that we use are based on the simple random graph model
by Erdös and Rényi [7], where we start with a fixed set of vertices and add edges
to the graph based on a edge probability parameter. Finally, we give a more
detailed analysis than [1], and analyze the performance of each graph reduction
with respect to various factors, such as the density of the graph and the number
of vertices. We will also show that the choice of reductions depends on the edge
probabilities, and that for certain probabilities, the almost-bipartite reductions
is very useful.

The graph reductions do not guarantee that we will find an approximate vertex
cover, but in our experiments we managed to find a 3

2 -approximate vertex cover
for almost every single graph we tried. For the graphs where we know the size
of the minimum vertex cover, the actual approximation ratio was usually much
lower than 3

2 ; in many cases the vertex cover we found was either optimal or
very close to optimal.

2 Graph Reductions

Asgeirsson and Stein [1] introduced a heuristic, based on simple graph reductions,
that tries to find a 3

2 -approximate vertex cover by breaking the graph into smaller
and easier subproblems. The graph reductions focus on special graph structures
and their goal is to remove a set V ′ of vertices and a set E′ of edges from the graph
by finding a vertex cover for the subgraph induced by the set V ′. The reductions
are designed so that when we combine the vertex covers for all the subgraphs,
we get an approximate vertex cover for the original graph. The approximation
ratio of the vertex cover is equal to maximum approximation ratio over all the
reductions that are used. Unless otherwise stated, we will only use reductions
with approximation ratio no more than 3

2 , so the resulting vertex cover for the
original graph, if we succeed in finding one, will have an approximation ratio of
3
2 . Before we list the graph reductions, we need the following definitions [1]:

Definition 1. An optimal graph reduction is a mapping from a graph G =
(V, E) to a graph G′ = (V ′, E′) with the property that if we have an optimal
vertex cover V C′opt for G′ then we can create an optimal vertex cover for the
original graph G from V C′opt and from the graph reductions that we performed
on the graphs.

Definition 2. A ρ-approximating graph reduction is a mapping from a
graph G = (V, E) to a graph G′ = (V ′, E′) such that if we have an optimal
vertex cover VC′ for G′ then we can create a ρ-approximate vertex cover for G
from VC′ and from the graph reductions that we performed on the graph.
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We will use both optimal graph reductions and approximate graph reductions.
Most of the approximate reductions have approximation ratio ρ ≤ 3

2 , but we
will introduce reductions that have higher approximation ratios. An operation
we will use extensively is a vertex contraction.

Definition 3. The contraction of a set of vertices v1, . . . , vk to a new vertex
v is an operation where we replace the vertices v1, . . . , vk with a new vertex v,
delete all edges between removed vertices and replace each edge (vi, u) with an
edge (v, u). The set of vertices adjacent to v is the union of the vertices that were
adjacent to v1, . . . , vk. If we use the mapping to v to find an approximate vertex
cover for the original graph we call v an approximated vertex.

When we perform a vertex contraction, we replace multiple edges that might
appear with a single edge and encode information about the contracted vertices
and adjacent edges so that we can recreate them later to get the original graph.

Most of the graph reductions that we use are defined in [1]. For completeness,
we list the graph reductions here along with a brief overview. The name we use for
each reduction refers to the graph structure that the reduction uses to attack the
graph. Since we are interested in finding an approximate vertex cover, and each
reduction we use has a particular approximation ratio, we group the reductions
into optimal and approximate graph reductions, according to Definitions 1 and 2.

Optimal Graph Reductions

– Degree-0 vertices: Removes a single vertex of degree-0 and no edges.
– Degree-1 vertices: There is an optimal cover that includes the neighbor

and not the degree-1 vertex. This reduction removes the degree-1 vertex
and its neighbor along with the edge between them. Edges connected to the
neighbor are also removed.

– Degree-2 vertices with adjacent neighbors: There is an optimal vertex
cover that includes both neighbors and not the degree-2 vertex. We remove
the degree-2 vertex and both its neighbors along with all edges adjacent to
these three vertices.

– Degree-2 vertices with non-adjacent neighbors: Contracts the degree-
2 vertex and its neighbors into a single vertex for a new graph G′. Removes at
least two edges. The contracted vertex is not approximated. If the optimal
cover for the new graph includes the contracted vertex, then the optimal
cover for the original graph includes both neighbors and not the degree-2
vertex. If the optimal cover for G′ does not include the contracted vertex
then the optimal vertex cover for the original graph includes the degree-2
vertex and not the neighbors.

– Extended Network Flow: Removes all vertices corresponding to non-half
variables in the optimal solution to the LP-relaxation of the vertex cover
problem. We also try to fix each variable equal to 1 and resolve in order
to get an optimal LP solution with more non-half variables. If the optimal
solution with a variable fixed as 1 is equal to the optimal solution with no
fixed variables, we get a new optimal solution with more non-half variables
that we can remove.
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Approximate Graph Reductions

– Triangle elimination: Removes the three vertices in the triangle and all
edges connected to these vertices. Any cover must use at least 2 of the
vertices, so by using all 3 we get a 3

2 -approximation.
– Degree-3 vertices: Contracts the degree-3 vertex and its neighbor into

a single approximated vertex. Removes at least three edges. This is a 3
2 -

approximation.
– Four-cycles: Contracts the four vertices from a chordless cycle of length

four into two approximated vertices. Removes at least three edges. The four-
cycle reduction is a 4

3 -approximate graph reduction.
– Five-cycles: Removes the five vertices from a cycle of length five and all

edges connected to these vertices. The five-cycle reduction is a 5
3 -approximate

reduction. We will only use this reduction if we cannot find a 3
2 -approximate

vertex cover by using the other reductions.
– Six-cycles: Contracts the six vertices in a chordless cycle of length six into

two approximated vertices and removes at least five edges. The approxima-
tion ratio of the 6-cycle reduction is 3

2 .

2.1 New Graph Reduction: Almost-Bipartite

When we are trying to solve NP-hard problems it is often helpful to look for
special cases. For many problems, while the general problem is NP-hard, there
are special cases that yield an optimal solution in polynomial time. One such
example is the vertex cover for bipartite graphs. The vertex cover problem is
well known to be NP-hard for general graphs but for the special case of bipartite
graphs, we can find an optimal vertex cover in polynomial time using maximum
matching. It is also well known that the size of the minimum vertex cover for
bipartite graphs is equal to the size of the maximum matching [3].

We can use the fact that it is easy to find an optimal vertex cover for a
bipartite graph to try to find approximate vertex covers for general graphs. If
we have a lower bound of k for the optimal vertex cover, we know that any
vertex cover of size no more than pk is a p−approximate vertex cover.

The almost bipartite method is as follows: We partition the vertices of the
graph into three sets, A, B and C, such that the subgraph induced by the first
two sets of vertices, A and B, will be bipartite. The last set, C, will include all
vertices that violate the bipartite property if they are added to the subgraph,
i.e. each vertex in the set C has neighbors in both sets A and B.

Claim. Let G = (V, E) be a graph. Assume we partition V into three sets, A,
B and C, with the property that the subgraph induced by the sets A and B is
bipartite. Let GAB be the bipartite subgraph induced by the sets A and B and
let VC∗GAB

be an optimal vertex cover for GAB . Also let VCLB be a lower bound
on the size of the optimal vertex cover for the original graph, and let p be the
approximation ratio that we want to achieve. Then, if |VC∗GAB

| + |C| ≤ pVCLB,
the set VC∗GAB

∪ C is a p-approximate vertex cover for G.
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Proof. The vertex cover VC∗GAB
covers all edges in GAB and all other edges in G

are covered by the set C, so VC∗GAB
∪C is a feasible vertex cover for G. If VCLB is

an lower bound on the optimal vertex cover for G, then any feasible vertex cover
whose size is smaller than pVCLB is a p-approximate vertex cover for G. We know
that VCLB ≤ |VC∗|, where VC∗ is an optimal vertex cover for G. If the sum of
the size of the set C, and the size of the optimal vertex cover on the bipartite
subgraph GAB is smaller than pVCLB, then |VC∗GAB

| + |C| ≤ pVCLB ≤ p|VC∗|
and VC∗GAB

∪ C is a p-approximate vertex cover for G. ��

In our experiments, the approximation ratio p is usually equal to 3/2. The
almost-bipartite method succeeds if the size of the optimal vertex cover on the
subgraph induced by the sets A and B plus the size of set C is less than the upper
limit on the size of the approximate vertex cover, i.e. if |VC∗GAB

|+ |C| ≤ pVCLB.
The problem of finding a maximum sized bipartite subgraph in a graph is

NP-hard [4]. Finding a maximum sized bipartite subgraph is a special case of
the problem of finding a maximum induced subgraph with property P , where
property P is hereditary and non-trivial. A property P of graph G is hereditary
if every subgraph of G also satisfies P . In our case, the property P is the bipartite
property. The problem of finding a maximum induced subgraph with property
P is approximable within O( n

log(n) ) where n is the number of vertices. However,
the problem is not approximable within nε for some ε > 0 unless P = NP .

Therefore, we settled for heuristics to find the almost-bipartite subgraph. We
tested a few different implementations of the almost-bipartite method. However,
the comparison between these methods indicated that there was not a large
difference between the various partitioning methods. We settled on a greedy
method in which we start by adding a single vertex to set A and then focus
on each set in turn, switching between sets only when we have processed every
vertex in the current set of vertices. A vertex is processed by iterating through all
its neighbors and placing them in the appropriate sets. The unprocessed vertices
in each set are selected in the order in which they are added to the set. If there
are unprocessed vertices after we process all vertices in the sets A and B, we
add a randomly selected unprocessed vertex to set A and continue as before. If
the algorithm fails, we try starting from another vertex until we either find an
approximate vertex cover or until we have tried starting from all the vertices, in
which case the algorithm fails.

It is somewhat tricky to combine the almost bipartite method with the other
reductions since the almost bipartite method cannot work on graphs that contain
approximated vertices. The almost bipartite method also needs a good lower
bound on the size of the optimal vertex cover in order to work. However, if we
can overcome these obstacles then the almost-bipartite reduction is very powerful
because when it succeeds, it completely solves the graph.

2.2 The Automated Order of Reductions

The automated order of the graph reductions is the same order that was sug-
gested in [1], with the addition of the almost bipartite method. We run the
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Fig. 1. A flowchart showing the automated order of the reductions

extended network flow method, triangle elimination and low-degree in a loop
until we find a solution or no improvements are made during an iteration. If the
graph is not empty and we have not created any approximated vertices, we try
the almost bipartite reduction. If the almost bipartite method does not solve
the graph, we try the 3-degree, 4-cycle and 6-cycle reductions, stopping as soon
as any one of them makes some progress and return to the original loop. The
stopping criteria is either having processed all the vertices from the graph which
gives us a vertex cover, or running 3-degree, 4-cycle and 6-cycle without any
improvements. In that case we stop and must use some other methods, such as
branch-and-bound, to get a solution. If we find a solution then the final step
in the algorithm is to use a simple greedy algorithm to eliminate unnecessary
vertices from the cover. In our experiments we almost never had to resort to
branch-and-bound, our algorithm managed to solve almost every single graph
we found. The flowchart for the automated order is shown in Figure 1. The 5-
cycle reduction is not included in Figure 1 since its approximation ratio is higher
and we only use it if we cannot find a 3

2 -approximate vertex cover by using the
other reductions.

3 Experiments on Random Graphs

The random graphs we generated are based on the simple random graph model
by Erdös and Rényi [7]. We start with fixed set of vertices V where |V | = n.
First we randomly select an edge density parameter ρ such that 0 < ρ < 1.
Then for each possible edge e, we add the edge with probability ρ, i.e. for any
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possible edge, we generate a random number between 0 and 1. If this randomly
generated number is less than ρ, we add the edge to the graph, while if the
randomly generated number is greater than ρ the edge is not included in the
graph. We try this once for every possible edge, i.e. for any pair of vertices
vi, vj ∈ V .

We used four different sets of vertices, with 200, 500, 1000 and 10,000 ver-
tices. We generated 20,000,000 random graphs on 200 vertices, 1,000,000 ran-
dom graphs on 500 vertices and 100,000 random graphs on 1000 vertices. Finally
we generated 2000 sparse random graphs on 10,000 vertices. By using our re-
ductions, we managed to find 3

2 -approximate vertex cover for every randomly
generated graph with 1000 vertices or less. Because we solved every graph with
at most 1000 vertices, we will focus on the performance of each reduction and
show how effective each reduction is for the smaller random graphs, based on
the edge probability. The large graphs, with 10,000 vertices, are a special case
since the graphs are all sparse and we only have a relatively small collection. We
will analyze the large graphs separately.

3.1 Using the Almost Bipartite Reduction

The almost bipartite method differs from our other reductions because it is
guaranteed to finish the graph if it works, and the graph needs to fulfill specific
conditions in order for us to use it. We therefore wanted to understand how the
almost bipartite method relates to the other reductions and how important it
is when we are trying to find approximate vertex covers. The majority of the
graphs that we generated were solved by using only the triangle elimination,
the extended network flow method and the low degree reductions, but there
were some graphs that could not be solved without using the almost bipartite
method. Figure 2 shows the fraction of graphs that were solved as a function of
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Fig. 2. The number of random graphs that were solved without using the almost
bipartite method and the number of graphs that could not be solved without the
almost bipartite method. The first graph shows the results for randomly generated
graphs on 500 vertices and the second graphs shows the results for random graphs
with 1000 vertices.
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the edge probability. In Figure 2 we see that the graphs that were not solved
without the almost bipartite method all have very similar edge probabilities.
For random graphs on 1000 vertices, using an edge probability between 0.005
and 0.015 almost guarantees that the resulting random graph cannot be solved
without the almost bipartite method. It is more difficult to generate random
graphs with 500 vertices that cannot be solved without the almost bipartite
method, since only about one out of every thirty graphs with edge probability
between 0.03 and 0.045 cannot be solved without using the almost bipartite
method.

3.2 Triangle Elimination

The triangle elimination is by far the most powerful reduction in our arsenal.
It is responsible for eliminating the largest number of both vertices and edges.
The triangle elimination works extremely well when the graphs are dense. When
the edge probability is more than 0.1, the triangle elimination usually removes
more than 95 percent of both vertices and edges. The result is that, for finding
3
2 -approximate vertex cover, the only interesting random graphs are the graphs
that are very sparse. For the dense random graphs, the triangle elimination is
simply too effective for those instances to be interesting. Figure 3 shows the
fraction of vertices that the triangle elimination removes from the graphs when
we use vertex sets of size 500 and 1000. The graphs use a single point for every
graph solved so we see how the distribution in the fraction of removed vertices
changes with the edge probability and the number of vertices in the graph.
By having more vertices, we decrease the variance of the fraction of removed
vertices, which indicates that the effect of the reductions gets more consistent
as the random graphs get larger.
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Fig. 3. The fraction of vertices removed by the triangle elimination. The first graph
shows the results for randomly generated graphs on 500 vertices and the second graphs
shows the results for random graphs with 1000 vertices. The graph show a single point
for every solved graph, so the first graph has 1,000,000 points while the second uses
100,000 points.
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3.3 Extended Network Flow and Low Degree

The extended network flow method and the low degree eliminations combine to
find approximate vertex cover when the graphs are very sparse. When we look at
the success of these methods we first need to look at the combined effort since any
comparison must take into account which method is used first when we automate
the graph reductions to find approximate covers. In our setup, we start by using
the extended network flow method, then we use triangle elimination and finally
the low degree reductions. This means that if the initial graph is very sparse,
the extended network flow method will finish it off easily, while the low degree
methods would probably have done the same thing if they were given the chance.
Also, by using the low degree methods after we use the triangle elimination, we
grant the low degree methods a license to mop up any vertices that remain after
the triangle elimination has removed the majority of the graph.

Fig. 4. The fraction of vertices removed from random graphs on 1000 vertices. The
first graph shows the combined fraction of vertices removed by the extended network
flow method and the low degree methods. The second graph shows the fraction of
vertices removed by the almost bipartite method. The graphs are random graphs on
1000 vertices. In both graphs, we focus on edge probabilities less than 0.1.

The first graph in Figure 4 shows that the performance of the low-degree and
extended network flow reductions is consistent for every value of edge probability,
except when the edge probability is between 0.005 and 0.02 for random graphs
with 1000 vertices. This gap is also obvious in Figure 2, since these are the graphs
that we could not solve without using the almost bipartite reduction.

3.4 Almost Bipartite Reduction

Figure 3 shows that the results for the triangle elimination are consistent, even
for the values of edge probability where the extended network flow and the
low degree reductions get into trouble. The fraction of vertices drops sharply
once the edge probability falls below a certain threshold, but the graph does
not show any jumps or erratic behavior. On the other hand, Figure 4 shows
how the extended network flow method and the low degree reductions become
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very inconsistent and erratic for certain values of the edge probability, and how
the almost bipartite method comes into play when the other reductions are not
sufficient to find an approximate vertex cover. We only use the almost bipartite
method once the triangle elimination, extended network flow and the low degree
reductions have all tried and failed to remove vertices from the graph. When
we had to use the almost bipartite method, it worked admirably and found a
3
2 -approximate vertex cover for every single instance of the graphs with 1000
vertices or less.

3.5 Large Sparse Graphs

The reductions that we have introduced do not guarantee that we will find an
approximate vertex cover for every single graph. However, we have managed to
find approximate vertex covers for every single graph we have introduced so far.
When we looked at sparse random graphs with 10,000 vertices, we finally found
some graphs for which we couldn’t find a 3

2 -approximate vertex cover. By using
our graph reductions we reduced the size of the graphs but the reductions were
not able to finish off the graphs completely. We generated 2000 graphs with
10,000 vertices and edge probability less than 0.1. We could only solve 1876
of these 2000 graphs using the reductions with approximation ratio less than
3/2. The remaining 124 graphs were solved by adding the five-cycle reduction
to the set of reductions, which gives us an approximation ratio of 5/3. We only
generated random graphs with edge probability less than 0.1 in order to focus
our efforts on the graphs we knew that could be difficult.

The first graph in Figure 5 shows the number of vertices that remain in the
graphs when the graph reductions cannot make any more progress. The second
graph in Figure 5 shows how many vertices the triangle elimination removed
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Fig. 5. The graph on the left shows the number of vertices that remain in the graph
when our algorithm cannot make any more progress. The graphs are random graphs
with 10,000 vertices. The graph on the right shows how many vertices were removed
from the graphs in total, how many vertices the triangle elimination removed from
the graphs and how many vertices were removed by the 3-degree, 4-cycle and 6-cycle
reductions.
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from the graphs and how many vertices were removed by the reductions that
create approximated vertices. We used three reductions that create approximated
vertices, the 3-degree reduction, 4-cycle reduction and 6-cycle reduction. Figure
5 shows that the number of vertices that remain in the graph mostly depends on
how effective the triangle elimination is. The triangle elimination is less effective
on sparse graphs, when the graphs become denser the triangle elimination is more
effective. We only use the 3-degree reduction, 4-cycles and 6-cycle reductions
after the triangle elimination has removed all triangles from the graph. The
performance of these 3 reductions is therefore dependent on how many vertices
the triangle elimination has removed before we start using the other methods.

3.6 Comparison with the Optimal Vertex Cover

We solved some of the random graphs with 200 vertices optimally and compared
the size of the optimal vertex cover to the approximate vertex cover that we got
from our reductions. The approximation ratio follows a similar pattern as the
performance of each reduction, where we find that the edge probabilities of the
most interesting graphs are found in a small interval. When the edge probability
is too high, the graphs are very dense and the optimal vertex covers are large,
which means that any feasible cover is likely to have a good approximation ratio.
However, if the edge probability is too small, we can easily solve the graphs
optimally using the extended network reduction.

The average approximation ratio over graphs with edge probability ≥ 0.3 is
1.015 with the largest approximation ratio equal to 1.033. When the graphs are
very sparse, where the size of the optimal vertex cover is less than 100, the
extended network flow method usually manages to find an optimal cover, so the
approximation ratio for these graphs is equal to 1. There is however an interval
in the edge probability where the graph is not too dense and not too sparse, and
in that interval there is more variation in the approximation ratio. The highest
approximation ratio is 1.074 and we get that when the edge probability is equal to

Fig. 6. The ratio of the size of the approximate vertex cover that we get from our
reductions over the size of an optimal vertex cover. The graphs are random graphs on
200 vertices.
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0.112. The average approximation ratio for graphs with edge probability between
0.05 and 0.2 is equal to 1.052. We see that the largest approximation ratio, 1.074,
is still very far from our upper limit of 1.5 and the overall average approximation
ratio is equal to 1.023.

4 Conclusions

We used a collection of simple reductions where we allowed reductions that have
a worst case approximation ratio of 3/2. Even though these reductions do not
guarantee that we will find a solution, we ran these reductions on a wide collec-
tion of test problems from every source we could find and by combining them
we managed to find an approximate vertex cover for almost every single random
graph of the that we generated. The reductions that we use are extremely fast
and easily applied, and since the bad examples have a very restrictive structure,
these reductions should work well in practice.
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Abstract. The Balanced Subgraph problem (edge deletion variant)
asks for a 2-coloring of a graph that minimizes the inconsistencies with
given edge labels. It has applications in social networks, systems biology,
and integrated circuit design. We present an exact algorithm for Bal-

anced Subgraph based on a combination of data reduction rules and a
fixed-parameter algorithm. The data reduction is based on finding small
separators and a novel gadget construction scheme. The fixed-parameter
algorithm is based on iterative compression with a very effective heuris-
tic speedup. Our implementation can solve biological real-world instances
exactly for which previously only approximations [DasGupta et al.,
WEA 2006] were known.

1 Introduction

The concept of balanced signed graphs was first introduced by Harary [11] for the
analysis of social networks (see [22] for a bibliography of signed graphs), and has
been frequently rediscovered since. In particular, motivated by the mathematical
analysis of large-scale biological networks, DasGupta et al. [3] use it to model the
concept of “monotone subsystems”, under the name of “sign-consistent graphs”.
A graph G = (V, E) with edges labeled by h : E → {0, 1} is balanced if there is
a vertex coloring f : V → {0, 1} such that

∀{u, v} ∈ E : h({u, v}) ≡ (f(u) + f(v)) (mod 2).

Put another way, a 0-edge demands that its endpoints have the same color, and
a 1-edge demands that they have different colors. Therefore, in the following we
use the notations “=-edge” and “ �=-edge” instead. The task of decomposing a
network into monotone subsystems is then formulated as the graph modification
problem Balanced Subgraph, called Undirected Labeling Problem by
DasGupta et al. [3]. This problem also finds numerous other applications, e. g.,
in statistical physics and integrated circuit fabrication techniques [2,22].
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Given an undirected graph G = (V, E) with edges labeled by h : E → {=, �=},
the Balanced Subgraph problem is to find a balanced subgraph with max-
imum number of edges. Balanced Subgraph is a generalization of the NP-
hard Maximum Cut problem in graphs. Based on semidefinite programming
for Max2SAT [20], DasGupta et al. [3] developed an approximation algorithm
that guarantees a solution with at least 87.9% of the number of edges of an
optimal solution. They further showed that this approximation factor cannot be
improved arbitrarily.

In several applications, one may assume that only a small fraction of the graph
edges has to be omitted; therefore, it seems even more attractive to study the
formulation as a minimization problem: minimize the number of edges that have
to be deleted to make the graph balanced. The special case where all edges are
labeled by �= is the Edge Bipartization problem, which asks for the mini-
mum number of edges to delete to make a graph bipartite. Edge Bipartiza-

tion, also known as (unweighted) Minimum Uncut, is MaxSNP-hard. Here,
the best known approximation algorithm finds in polynomial time a solution of
size O(k log k), where k is the size of an optimal solution [1]. It has been conjec-
tured that it is NP-hard to improve the log k-factor to a constant [15]. Hence,
with respect to practical applications using a polynomial-time approximation
algorithm of the minimization version seems of hardly any help.

By way of contrast, we have good news from the field of fixed-parameter
algorithmics [4,6,16]. A problem is called fixed-parameter tractable with respect
to a parameter k if an instance of size n can be solved in f(k) · nO(1) time,
where f is an arbitrary function depending only on k. It is known that Edge

Bipartization is fixed-parameter tractable with respect to the parameter k
as defined above. More specifically, there is an algorithm exactly solving Edge

Bipartization in O(2k · m2) time (m denoting the number of graph edges) [8].
For relatively small parameter values k, this opens the way to a viable and
efficient alternative to employing approximation algorithms.

In this work, we observe that the Balanced Subgraph problem easily re-
duces to the Edge Bipartization problem and can thus be solved in O(2k ·m2)
time, where k is the number of edges to delete (Sect. 3). Because this (so far only
theoretically analyzed) fixed-parameter algorithm in its pure version is still not
fast enough to cope with the given real-world instances, we present several tricks
and techniques to tremendously speed up its running time in experiments. In
this context, our main contribution is a data reduction scheme based on graph
separators (Sect. 2). Along with this, we develop a gadget construction that is
interesting on its own and deserves further studies from a practical as well as
a theoretical side. In addition, directly manipulating the fixed-parameter algo-
rithm [8], we found a speed-up trick that alone reduces the running time of this
algorithm in our experiments from days to few seconds (Sect. 4). We experi-
mented with the real-world biological instances provided by DasGupta et al. [3].
We need similar amounts of time, but can solve them optimally. Moreover, we
also experimented with synthetic data and further real-world instances to chart
the border of feasibility of our algorithm.
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2 Data Reduction Scheme

A data reduction rule reduces in polynomial time an instance to a smaller in-
stance, without destroying the possibility of finding an optimal solution. Data
reduction has proven useful as a general technique in coping with NP-hard prob-
lems [9]. The corresponding reduction rules, however, have to be developed in
a problem-specific way. In this section, we describe an effective data reduction
scheme for the Balanced Subgraph problem. The scheme seems to be appli-
cable to a larger set of problems and deserves further investigation.

The idea is to find a small separator S (that is, a set of vertices whose dele-
tion separates the graph into at least two components) that cuts off a small
component C from the rest of the graph. Then, we replace S and C by a
smaller gadget that exhibits the same behavior. The behavior is examined by
exhaustively enumerating possible states of the separator and finding exact so-
lutions to the small component C. A similar method has been suggested by
Polzin and Vahdati Daneshmand [19] for the Steiner Tree problem. However,
they do not employ gadgets and have no formal characterization of reducible
cases.

Reduction Scheme. Let S be a separator and let C be a small component
obtained by deleting S from the given graph G. Then, determine for each of the
(up to symmetry) 2|S|−1 colorings of S the size of an optimal solution for the
induced subgraph G[S ∪C] and replace in G the subgraph G[S ∪C] by a gadget
that contains the vertices of S and possibly some new vertices.

The above scheme leaves open some details. Before filling them in, let us show
a simple example.

Example 1. In Fig. 1, the separator S cuts off the vertices in C from the rest
of the graph. Up to symmetry, there are only two possibilities how the vertices
in S can be colored: equal or unequal. If they are colored equal (a), the sub-
graph G[S ∪ C] is balanced without edge deletions. Otherwise (b), one edge
deletion is required. We can simulate this behavior with a single =-edge: it also
incurs a cost of 0 when the two vertices of S are equally colored, and a cost of 1
otherwise. Therefore, we can replace the subgraph G[S ∪C] by the gadget shown
on the right.

=

=

=
=

=

=

=

�=

�=

�=

�=

�=

�=

S C

(a)

(b)

Fig. 1. Example for the data reduction scheme
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To fully describe the reduction scheme, four questions have to be answered:

(a) The instances G[S ∪ C] have some vertices (those of the separator) pre-
colored. How to solve these already partly colored instances?

(b) There is a combinatorial explosion with the sizes of S and C affecting the
running time. Therefore, how do we restrict the choices of S and C?

(c) How can we efficiently find useful S/C-combinations?
(d) If existing, how can we construct a gadget that is smaller than G[S ∪C] and

correctly “simulates” G[S ∪ C]?

Regarding (a), we reduce the instance to an instance without pre-colored
vertices, and then solving the instance recursively. For this, we merge all vertices
pre-colored black into a single uncolored vertex and all vertices pre-colored white
into a single uncolored vertex. We then add m := |E| edges labeled �= between
these two vertices. Any solution for this instance will then color the two vertices
differently, and we can (possibly by flipping all colors) reconstruct a solution for
the pre-colored instance.

Regarding (b), this can be simply done by imposing a fixed limit. In our
implementation, we restrict the size of S to at most 4, mainly because of diffi-
culties with the gadget construction. The size of C is restricted by 32 (however,
due to the structure of our instances, this limit did not play a role, because all
components found were much smaller).

As to (c) and (d), we will answer these questions in the next two subsections.

2.1 Efficiently Finding Separators

As mentioned before, we effectively only search for separators of size at most 4.
Having found such a separator, we check for the (hopefully) small component
that is cut off in this way.

To improve running time, we special-case the search for separators of size 0
(that is, the graph consists of more than one connected component) and separa-
tors of size 1 (that is, articulation points). They can be found in linear time using
depth-first search [7]. For these cases, the gadget construction can be omitted:
the 2-connected components1 can be treated independently, and optimal color-
ings of two components can always be merged (possibly by flipping all colors in
one component), since they overlap only in one vertex. Note that this phase in
particular removes all degree-1 vertices. Separators of size 2 can also be found in
linear time [13]. However, we did not implement this algorithm, since it is quite
complicated and error-prone to implement (several errors in the original publi-
cation have been pointed out [10]). Separators of size k for small k can be found
efficiently by flow techniques [12]. However, after some experiments we settled
for the subsequently described heuristic instead, which is faster and produces no
worse results in our tests. Let N(X) := {u | {u, v} ∈ E ∧ v ∈ X} \ X . For each
vertex v, set C := {v} and iteratively enlarge C by a vertex v′ that minimizes

1 A set of vertices is 2-connected if there are at least two vertex-disjoint paths between
any pair of vertices from this set.
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the size of S := N(C ∪{v′}) until |C| ≥ 32. Record all combinations of S and C
with S ≤ 4 found in this way.

To fix the order in which we try to reduce for an S/C-combination, we sort
them primarily by increasing size of S and secondarily by decreasing size of C.
In this way, one deals with the tentatively best data reduction candidates first.
In our experiments, the finding of separators in the above way altogether never
took more than few seconds.

2.2 Gadget Construction

The goal is to show how the subgraph G[S ∪ C] induced by the separator S
and the small component C can be replaced by a smaller, “equivalent” subgraph
(gadget). A simple case has already been described in Example 1. Now, we
describe a general methodology, leading also to theoretically interesting problems
that deserve further investigation. For lack of space, we defer the proofs to the
full version of this paper.

Let us call a separator of size i simply i-cut. As mentioned before, it it easy to
deal with 0- and 1-cuts. Hence, we focus on larger separators, thereby describing
constructions delivering optimal gadgets in case of 2- and 3-cuts and a heuristic
approach for 4-cuts. We also briefly discuss the mathematical and algorithmic
challenge behind constructing gadgets for i-cuts for general i.

By an optimal gadget we refer to one with a minimum number of vertices.
When speaking of an equivalent gadget which replaces the subgraph G[S ∪ C],
we refer to a subgraph H with the following properties: Gadget H contains all
vertices from S and possibly more; in particular, S forms the “interface” where
H is plugged in instead of G[S ∪C]. Further, the original graph G has a solution
for Balanced Subgraph of size k iff the modified graph where H replaces
G[S ∪ C] has a solution of size k′ ≤ k, where the difference between k′ and k
is determined by the gadget. In particular, an optimal solution for G can be
directly reconstructed from an optimal solution for the modified graph.

Gadget construction for 2-cuts. 2-cuts generalize Example 1. Up to symme-
try, there are only two colorings of the two separator vertices called u and v. In
each of these two cases, we compute recursively an optimal solution for G[S∪C],
which can be done quickly, since only small S are considered.

Let ne be the size of an optimal solution for G[S ∪C] where u and v have the
same color and let nd be the size of an optimal solution where they have distinct
colors. We perform the following gadget construction, where the gadget consists
solely of vertices from S. If ne ≥ nd, then remove C and edges within S and
add ne − nd edges labeled �= between u and v. Otherwise, remove C and edges
within S and add nd − ne edges labeled = between u and v. Note that reducing
2-cuts in particular gets rid of all vertices of degree 2.

Lemma 1. The described gadget replacement yields an equivalent instance.

Gadget construction for 3-cuts. The basic approach is the same as for 2-
cuts. The gadget construction, however, becomes more intricate. The idea is to
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atomic
gadget 00 11

u

v

w

= ====

Fig. 2. Example for an atomic gadget with its cost vector

construct the final gadget from atomic gadgets, which can be added indepen-
dently until in total they have the desired effect. To characterize the effect of an
atomic gadget, we introduce the concept of a cost vector. In the case of 3-cuts,
up to symmetry, we have four possibilities to color the separator vertices from S.
For each case, we compute the cost of an optimal Balanced Subgraph solu-
tion of G[S ∪ C]. For a fixed order of the colorings, these values build the cost
vector of the form (c1, c2, c3, c4). The goal is then to find atomic gadgets such
that their corresponding atomic cost vectors add up to the cost vector associated
with G[S ∪ C].

We show that it is sufficient to consider atomic gadgets that, besides S, have
at most one additional vertex. The first type of atomic gadgets are gadgets
exclusively made of vertices from S. More specifically, there are six possibilities
to put exactly one edge, either labeled = or �=, between the three possible vertex
pairings in S. Each of these possibilities yields an atomic gadget. Moreover,
each of these atomic gadgets naturally one-to-one corresponds to a cost vector
with 0/1-entries. For instance, let {u, v, w} form the separator. Then, the atomic
gadget with a =-edge between u and v corresponds to the cost vector (0, 1, 1, 0)
(see Fig. 2): If u and v have the same color (once white, once black), then
the insertion of the =-edge does not cause an inconsistency. Thus, we have an
additional solution cost of 0, justifying the two zero-entries in the cost vector.
If u and v have different colors, then the insertion of the =-edge causes an
inconsistency, generating an additional solution cost of 1, justifying the two
one-entries in the cost vector. Generalizing this to the five other possibilities of
putting one labeled edge, we thus arrive at the following:

Lemma 2. By inserting exactly one edge labeled = or �= between the vertices
from S, we obtain the six atomic cost vectors (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0),
(1, 0, 0, 1), (1, 0, 1, 0), and (1, 1, 0, 0).

All cost vectors in Lemma 2 have even parity. Hence, we need a second type
of gadgets to be able to construct cost vectors with odd parity: gadgets that
contain all vertices from S plus a new vertex connected to all vertices from S.
We derive four atomic gadgets of this kind with different cost vectors, namely
the cases that the edges connecting S to the new vertex are labeled (�=, �=, �=),
(=, =, �=), (�=, =, �=), or (=, �=, �=).

Lemma 3. By inserting one new vertex and connecting it to all vertices from S
and assigning various edge labels, we obtain four atomic gadgets corresponding
to the atomic cost vectors (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), and (1, 1, 1, 0).
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Fig. 3. Example for the construction of a gadget with |S| = 3

The four atomic cost vectors from Lemma 3 all have odd parity. In this sense,
we now may speak of even or odd cost vectors.

Now, we can describe the general gadget construction. To do so, first note that
vectors where all entries have the same value are easy because this means that the
solution for G[S∪C] is independent of the coloring of S and hence one can simply
remove C and all edges between vertices of S. Even further, this means that if
we are given a cost vector (c1, c2, c3, c4), then without loss of generality we can
normalize it by simply subtracting or adding the vector (1, 1, 1, 1). Now, given
a cost vector (c1, c2, c3, c4), the gadget construction task one-to-one corresponds
to finding a way to subtract atomic cost vectors from (c1, c2, c3, c4) such that
one receives the vector (0, 0, 0, 0). If we arrive at a cost vector with at least
two 0-entries that cannot be transformed into (0, 0, 0, 0), then due to the above
reasoning we may also add the vector (1, 1, 1, 1). Altogether, this results in the
following algorithm:

1. Compute the cost vector for given S and C.
2. Normalize the cost vector by subtracting the vector (1, 1, 1, 1) until at least

one entry becomes 0.
3. If the cost vector has odd parity and has more than one 0-entry, then add

(1, 1, 1, 1).
4. If the cost vector has odd parity, then subtract a suitable odd atomic cost

vector (that is, one that does not produce negative entries).
5. While the vector is not (0, 0, 0, 0), repeat:

(a) If the cost vector has three 0-entries, then add (1, 1, 1, 1).
(b) Subtract a suitable even atomic cost vector that decreases the maximum

entry.

We show an example in Fig. 3. On top we show the induced subgraph G[S∪C]
and the gadget by which it can be replaced. In the middle we show optimal
solutions for the (up to symmetry) four possible colorings of S and mark by a
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cross the edges that have to be deleted. Cost vectors are displayed below these
figures. The cost vector associated with G[S ∪ C] is shown in the top box. We
then normalize by subtracting (1,1,1,1) and then subtracting the atomic cost
vector (0,0,1,1) that corresponds to the gadget given on top, ending up with the
zero-vector.

Theorem 1. The above algorithm produces a gadget with the minimum number
of vertices for every pair (S, C) where S is a 3-cut.

Note that the construction is not necessarily optimal with respect to the number
of edges introduced, nor with respect to the decrease in k. However, in our
experiments these objectives rarely had different optimal solutions.

As a consequence of the considerations so far, we obtain the following result
illustrating the power of our approach.

Corollary 1. With the described data reduction scheme, all separators with |S|=
2 and |C| ≥ 1 and and all separators with |S| =3 and |C| ≥ 2 are subject to data
reduction.

Gadget Construction for 4-Cuts and Outlook. The gadget construction
for 3-cuts already has required quite some machinery. The case of 4-cuts be-
comes still much more involved due to the increased combinatorial complexity.
A provably optimal gadget construction as for 3-cuts currently does not seem
practically feasible. Thus, we have chosen a heuristic approach for finding and
constructing gadgets for 4-cuts.

We conjecture that atomic gadgets with at most two vertices in addition to
the four separator vertices suffice. Thus, we generated 26 atomic gadgets with
no extra vertex, 24 atomic gadgets with one extra vertex, and 29 atomic gadgets
with two extra vertices. We then filtered out those that can be obtained by
combining cheaper ones, and arrived after about five minutes of computation
time at a set of 2948 atomic gadgets. They are stored in a fixed lookup table.

Once given this toolbox of atomic gadgets, we again try to derive the all-zero
vector in a way analogous to the case of 3-cuts. This procedure is now realized by
an exhaustive branch&bound algorithm. We start with the normalized vector.
Should this fail, the vector (1, 1, 1, 1) is added once and the procedure is repeated.
Each gadget vector is associated with a cost corresponding to its number of extra
vertices; this number is minimized. In fact, it is not too hard to see that this
algorithm produces for 3-cuts, when given the 10 atomic cost vectors, the same
result as the algorithm given for 3-cuts.

The branch&bound algorithm works quite well for cost vectors with small
entries, but can become a bottleneck for vectors with high entries. We examine
a simple heuristic to mitigate this in Sect. 4.

We close with a description of challenges for further research that arise in our
work with cost vectors. For this, we describe the scenario in a more abstract
way.

Given a set S of n vectors of length l with nonnegative integer components,
let a “linear combination” be a sum of some vectors of S, where vectors can
occur multiple times (equivalently, have a positive integer scalar factor). Let a
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“basis” be a set S that allows to obtain any vector of length l with nonnegative
integer components as a linear combination. (The terms are chosen in analogy to
vector spaces, but because of the nonnegative integer restriction, we do not have
a vector space here.) We face the following problems: How to recognize whether
a vector set is a basis? Given a basis and a target vector t, how to find a linear
combination that produces t? Given a large set of vectors, how can we find a
smallest or minimal basis?

In our work, we actually have a small modification of this problem because
as single vector with negative components also the vector (−1, −1, . . . , −1) is
allowed. Also, the vectors come at different costs (number of new vertices), and
we would like to find linear combinations of minimum cost.

3 Fixed-Parameter Tractability

While the data reduction rules presented in Sect. 2 can often much reduce the
instance size, there will typically remain a “core” that cannot be further reduced.
To solve the remaining instances exactly while getting a useful worst-case time
bound, we use a fixed-parameter algorithm.

We can prove the fixed-parameter tractability with respect to the param-
eter k of Balanced Subgraph by giving a parameter-preserving reduction
from Balanced Subgraph to its special case Edge Bipartization.

Theorem 2. Given an m-edge graph with at most k edge deletions allowed,
Balanced Subgraph can be solved in O(2k · m2) time.

Proof. Edge Bipartization can be solved in O(2km2) time [8]. It is the spe-
cial case of Balanced Subgraph where all edges are labeled �=. The following
simple replacement transforms a Balanced Subgraph instance into an equiva-
lent instance for Edge Bipartization: Replace every =-edge {u, v} by two edges
{u, xuv} and {xuv, v}, where xuv is a new vertex. It is straightforward to show that
the transformed instance has a solution of size k iff the original instance has a so-
lution of size k, and that from a solution of the transformed instance we can easily
reconstruct a solution of the original instance. The transformation is computable
in linear time and at most doubles the size of the the new instance. Hence, we ob-
tain the same asymptotic running time as for Edge Bipartization. ��

Theorem 2 improves an O(n2L · (nm)3) time exact algorithm by DasGupta et
al. [3, Remark 1], where L is the number of �=-edges (since clearly k ≤ L).

In our implementation, we do not use the reduction from Edge Biparti-

zation, but directly modify the Edge Bipartization algorithm to work for
Balanced Subgraph. Further, we employ a heuristic speedup trick similar to
the one used for an iterative compression algorithm for Vertex Bipartiza-

tion [14]. We inferred speedups with this trick up to a factor of about 1012. We
refer to the full version of this paper for details.
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4 Experimental Results

We applied our data reduction combined with the improved iterative compression
routine to gene-regulatory networks and randomly generated graphs.

Besides the data reduction rules described in Sect. 2, we additionally delete self
loops and pairs of edges sharing the same end vertices if the edges have different
types. These reductions can be seen as special cases of our data reduction scheme
from Sect. 2 with |C| = 0 and |S| = 1 and 2, respectively. Furthermore, we only
replace a small component by a gadget if this leads to an improvement; that is,
either the number of vertices is reduced, or, in the case of an equal number of
vertices, the number of edges is reduced.

Additionally, we tested a heuristic running time improvement to circumvent a
problem with the data reduction based on 4-cuts: For some instances the running
time drastically increased because we encountered a cost vector with entries hav-
ing high values. This increased the number of possible linear combinations and
therefore the running time. An example appeared when the algorithm processed
the regulatory yeast network: it ran into the cost vector (2, 8, 8, 0, 31, 39, 39, 31)
and therefore the instance could not be solved within several hours (whereas
it could be solved without 4-cut reduction within minutes). To take advantage
of 4-cut reductions without wasting hours of running time through such (rarely
occurring) cases, based on experimental findings we introduced a new cut-off
parameter. More precisely, we stop the gadget construction if the sum of the
entries of a cost vector is more than 25. We experimentally show in the next two
sections that this cut-off value is sufficient for the considered networks.

As a further comparison point, we implemented an integer linear program-
ming (ILP)-based approach (we omit the details). However, it was consistently
outperformed by the iterative compression approach as soon as the heuristic
speedup mentioned in Sect. 3 was employed.

All experiments were run on an AMD Athlon 64 3400+ machine with 2.4GHz,
512KB cache, and 1GB main memory running under the Debian GNU/Linux 3.1
operating system. The program was compiled with the Objective Caml 3.08.3
compiler and the GNU gcc 3.3.5 compiler with options “-O3 -march=athlon”.
For the approximation algorithm by DasGupta et al. [3], we used MATLAB
version 7.0.1.24704 (R14). Our source code is available as free software from
http://theinf1.informatik.uni-jena.de/bsg/.

Biological Networks. We started our experimental investigations with gene reg-
ulatory networks up to the size of about 700 vertices and more than 7000 edges.

We begin with comparing our algorithm to the approximation algorithm of
DasGupta et al. [3]. The authors considered the regulatory networks of yeast and
human epidermal growth factor (EGFR). We additionally examine a macrophage
network [17]. The results of both algorithms are given in Table 1. Apart from
giving an optimal solution instead of an approximative one, we can also decrease
the running time for the yeast and macrophage networks from about one hour
to less than a minute. Note, however, that the running time of the approxima-
tion algorithm could probably be much improved by implementing it in a more

http://theinf1.informatik.uni-jena.de/bsg/
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Table 1. Comparison of approximation [3] and our exact algorithm. Here, t denotes
the running time in minutes. For the approximation algorithm, “k ≤” is the solution
size, and “k ≥” is the lower bound gained from the approximation guarantee. The
approximation algorithm was run with 500 randomizations.

Approximation Exact alg.

Data set n m k ≥ k ≤ t k t

EGFR 330 855 196 219 7 210 108
Yeast 690 1082 0 43 77 41 1
Macrophage 678 1582 218 383 44 374 1

Table 2. Size of the largest component remaining and overall running time t (including
solution by iterative compression) when reducing only separators up to size c

Yeast EGFR Macrophage

c n m t n m t n m t

0 690 1080 91 s 329 783 > 15 h 678 1582 > 1 day
1 321 709 77 s 290 727 > 15 h 535 1218 > 1 day
2 173 469 11 s 167 468 > 15 h 140 397 > 1 day
3 155 424 4 s 99 283 > 15 h 113 335 ca. 1 day
4 ? ? > 5 h 89 259 108 min 70 228 4.5 h
4r 144 405 5.6 s 89 260 97 min 70 228 18 s

efficiently executed language, or simply by doing fewer randomized trials at the
cost of a possibly worse result. For the macrophage network, we could compute
an optimal solution of size k = 374. This emphasizes the importance of our data
reduction rules, since for such high solution sizes the iterative compression algo-
rithm (Theorem 2) cannot be applied directly. Furthermore, here it is remarkable
that the network breaks up into several smaller components of up to 70 vertices
that have to be solved by iterative compression independently, whereas for the
other two networks only one large component remains after data reduction. As
a further comparison point, the ILP-based approach was not able to solve the
three instances even after applying the data reduction.

To investigate the power of our data reduction rules for different sizes c of the
separator S, we investigated stepwise for c the results for the yeast, EGFR, and
macrophage networks. The results are given in Table 2, where setting c to 4r
means that we use a cut-off of 25 for the sum of the entries of a cost vector in
the case of cut sets of size 4.

We denote applying our data reduction to a separator of size i by ci-reduction.
The yeast network can already be solved with improved iterative compression
and 2-reduction. In contrast, the EGFR network cannot be solved within rea-
sonable time without also using 3- and 4-reduction. Regarding the macrophage
network, the use of 4-cuts reduces running time severely.
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We now investigate c4-reduction with and without cut-off value. For all net-
works, we could achieve the best data reduction results by using c4r-reduction:
As mentioned above, for the yeast network the “normal” c4-reduction does not
return any results within 5 hours. In contrast to the other entries for which
we aborted the experiments in Table 2, here the running time is caused by the
data reduction itself and not to the iterative compression routine. Therefore,
we cannot give the size of the reduced graph. Setting the cut-off parameter to
25, we obtained an instance that is more reduced than by applying c3-reduction
alone. The reason that we still cannot achieve a better overall running time is
the running time for the c4r-reduction itself. For the EGFR network, the size
of the largest component does hardly change going from c4- to c4r-reduction,
indicating that we do not lose much by the cut-off; in fact, we achieve a bet-
ter overall running time for c4r. Applying c4r-reduction instead of c4-reduction
to the macrophage network does not change the size of the remaining largest
component, but decreases the running time from hours to seconds.

Note that we really need the combination of data reduction and the improve-
ments of iterative compression to solve the instances.

We also considered four small regulatory networks obtained from the Panther
pathways database, consisting of about 100 vertices and up to 200 edges. With
c3-reduction we could compute optimal solutions ranging from 20 to 28 in split
seconds.

To end the section of regulatory networks, we describe our results for two
larger networks that yet cannot be solved optimally with our method. Regarding
the regulatory network for a toll-like receptor [18], we could reduce the number of
vertices from 688 to 244 and the number of edges from 2208 to 1159 within three
minutes. For the regulatory network of the archaeon Methanosarcina barkeri [5],
we were less successful. The number of vertices was decreased from 628 to 500
and the number of edges from 7302 to 6845 in 25 minutes. This could be a
hint that the very dense structure of this network is hard to attack by our data
reduction.

Random Networks. To further substantiate our experimental results, we gener-
ated a test bed of random graphs with the algorithm described by Volz [21].
Thereby, we tried to model the yeast network by choosing the following settings:
the cluster coefficient is set to 0.016, the distribution of node-degrees is set to
power-law with α = −2.2, and the probability to assign �= to an edge is set to
0.205.

We generated 5 instances each for graph sizes ranging from 100 to 1000 ver-
tices. The number of edges of the generated instances is slightly more than 1.5
times of the number of vertices. We investigated the power of our data reduction
by computing the number of vertices and edges of the reduced instances. Table 3
shows the average results for instances of each size. Independent of the instance
size, about 75% of the vertices are reduced. Note that this is also true for the
yeast network that we try to model.

The results given in Table 3 are received with setting the cut-off parameter
for the c4-rule again to 25. Redoing the test with a higher threshold of 50 did in
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Table 3. Reduction effect for random networks. Average over 5 instances for each
column. Here, n is the number of vertices in the original graph, n′ is the number of
vertices after data reduction, m′ is the number of edges after data reduction, and t is
the running time in seconds.

n 100 200 300 400 500 600 700 800 900 1000
m 172.6 336.8 492.4 640.2 791.2 970.6 1108.8 1286.6 1435.6 1585.6

n′ 29 48.8 75 95 119.8 153.2 169.2 193.4 211.6 239.6
m′ 102.3 165.8 252 324 398.4 518 565.8 672.4 734.6 815.8
t 1 7 6 5.5 6 8.5 8 15.5 18.5 15.5

no case change the number of reduced edges or vertices by more than one, but
increased the running time for some instances from seconds to several hours.

Considering the size of instances that can be solved optimally by improved
iterative compression after data reduction, here the threshold seems to be at
graphs with about 500 vertices. Three out of the five instances could be op-
timally solved in up to 20 hours, where the sizes of the optimal solutions are
between k = 76 and k = 91. Note that the solution sizes are higher than for
the yeast network, which has more than 600 vertices and an optimal solution
of size 41. Because of this, the random instances seem to be somewhat more
difficult than the yeast network itself, which is consistent with observations by
DasGupta et al. [3].

5 Outlook

There are numerous avenues for future research. DasGupta et al. [3] also intro-
duced a directed version of the Balanced Subgraph problem. The approxima-
tion results are worse than for the undirected case, which is probably why there
is no implementation yet [3]. Fortunately, the directed case can be reduced to the
Vertex Bipartization problem, which can be solved in O(3k · mn) time [14].
Again, this opens the route for experimental studies.

In principle, our data reduction scheme is applicable to all graph problems
where a coloring of the vertices is sought. This includes problems where a subset
of the vertices is sought, such as Vertex Cover or Dominating Set. How-
ever, it remains to find appropriate gadgets constructions for problems other
than Balanced Subgraph. Further, it would be nice to have a formal char-
acterization of graphs for which our separation-based data reduction scheme is
useful.

Acknowledgement. We thank the authors of [3] for making their source code
available. Further, we thank our students Tamara Steijger and Thomas Zichner
for help with the experiments and Jǐŕı Matoušek (Prague) for helpful references
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Abstract. We consider the problem of minimizing communication over-
head while balancing load across cooperative agents. In the past, similar
problems have been modeled as the balanced node partitioning prob-
lem, where the objective is to partition the nodes into components such
that each component has roughly the same number of nodes while the
number of edges connecting components is minimized. We describe some
real-world scenarios where one needs to find partitions in which all com-
ponents have an approximately equal number of edges, while minimizing
the number of edges connecting components. We introduce the (k, r)-
Balanced Edge Partitioning problem to model this type of sce-
nario and present approximation algorithms for this problem on certain
graphs. In addition, we present five heuristics for the restricted case of
the problem. We evaluate these heuristics on three kinds of graphs: power
network-like graphs, preferential attachment graphs, and the class of spa-
tial preferential attachment graphs that we introduce in this paper. Our
results show that the choice of the heuristic with the best results depends
on the properties of the input graph and the quality of our solution de-
pends on the initial conditions.

Keywords: Graph partitioning, balanced graph partitioning, heuristics,
Kernighan-Lin heuristic.

1 Introduction

In many multiagent settings, k agents cooperatively solve a problem that is sub-
divided into a set of k subproblems and each agent is assigned one subproblem.
Such situations arise, for example, when cooperative agents solve constraint sat-
isfaction problems [6]. Other examples of cooperative distributed problem solving
occur in distributed control systems of electric power grids, manufacturing sys-
tems, and sensor networks. In this paper, we introduce a novel graph-theoretic
problem that models optimal work distribution among agents on some prob-
lems. In the (k, r)-Balanced Edge Partitioning ((k, r)-BEP) problem, where
r ≥ 1 and k > 1, we are given a graph G = (V, E) and asked to partition the
vertices into k components such that the number of edges in each component is
no more than r |E|k and the number of edges between components is minimized.
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The problem of partitioning a graph into components with equal numbers of
vertices while minimizing the number of edges between the components, and its
applications in parallel computing, have been thoroughly studied [1,10]. However,
we are unaware of any literature about partitioning graphs to minimize the
number of edges between components such that the number of edges in each
component is equal. We study the latter problem and its application to optimal
load balancing for cooperative agent-based problem solving.

The contributions of this paper are as follows: First, we show how an example
problem can be modeled as a (k, r)-BEP problem. Second, we show that the
(k, r)-BEP problem is not only NP-hard, but has no polynomial time approx-
imation algorithm with finite approximation factor when r = 1 and k is part
of the input (unless P = NP). Third, we present approximation algorithms for
special classes of graphs – planar graphs and degree-bounded graphs. Fourth,
we describe several heuristics for the problem of k = 2 (that is, in the two-agent
case); these heuristics can later be extended for k > 2. We test our heuristics on
instances of real-world electric power network-like graphs. Fifth, we construct a
novel preferential attachment-like generative model for spatial networks so that
our algorithms can be tested on many instances of different sizes. Generative
models of networks are useful because large real-world instances are hard to
obtain.

1.1 Motivation

Consider solving a system of N non-linear equations with N unknowns:

f(x) = 0, (1)

where f is a vector of N functions and x is a vector of N variables. The Newton-
Raphson method is a well known approach for solving this problem. At each
iteration k + 1, this method finds a more accurate solution, xk+1, as follows:
It computes the Jacobian of the system of equations evaluated at the current
solution, [J(xk)], solves the linear system

[J(xk)][d] = −[f(xk)], (2)

and computes xk+1 = d + xk. This process continues until ||f(xk)|| < ε, where
ε is some predefined error tolerance. If the Jacobian matrix is sparse, the speed
of finding d can be significantly improved by using a “smart” matrix reordering
method [3]. The number of operations needed to compute d depends on the
number of non-zero entries in the Jacobian matrix – the more non-zero entries
there are, the more operations are needed to solve for d. We can construct a
graph G = (V, E) from the original system of equations 1 as follows: For each
equation fi, create a vertex ui ∈ V and for each variable xj , create a vertex
vj ∈ V . For any variable xj occurring in an equation fi, create an undirected
edge (ui, vj) ∈ E. Then the number of non-zero entries in the Jacobian matrix
equals the number of edges in G.
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(a) Graph G constructed from the
system of equations (3).

(b) Optimal partitioning of G for cooperative
2-agent problem solving.

Fig. 1. Example of partitioning a graph constructed from the system of equations (3)

An example of forming a graph from a system of equations is now presented.
Consider the following system of equations:

f(x) =

⎧

⎨

⎩

f1 : x1x2 + x1 = 0 f2 : 2x1 + x2
2 + 1

2x3 = 0
f3 : x2x3 + 5 = 0 f4 : x2

3 − 5x4x5 = 0
f5 : x5 + 3 = 0.

(3)

The system of equations (3) contains five equations with five unknowns. The
graph constructed from this system is shown in Figure 1(a).

Consider k cooperative agents solving a system of equations in parallel. In
this scenario, the variables are partitioned into k sets, X1, X2, . . ., Xk, and the
equations are partitioned into k sets, F1, F2, . . ., Fk. Each agent ai controls one
set of variables Xi to solve one set of equations Fi. If the graph constructed from
the system of equations has k disconnected components of roughly equal sizes,
then the variables and the equations can be partitioned into sets of roughly equal
sizes in such a way that each agent can solve its set of equations autonomously.
In general, however, if variables and equations are distributed among the agents,
communication between the agents will be required. To solve a set of equations
Fi, agent ai will need to obtain information about the variables that occur in
Fi but are not controlled by ai (let us call such variables external variables for
ai). It can then use the Newton-Raphson method to solve its set of equations
and obtain the updated information about external variables for ai. Each agent
communicates values it obtains for an external variable x to the agent that
controls x. Suppose there is a mechanism in place that will drive this process to
convergence.1 Also, suppose that convergence criteria have been defined.

Under these assumptions, the optimal partitioning of variables among the
agents is equivalent to partitioning the vertices of G into k components so that
the number of edges between components is minimized (thus minimizing the
number of variables shared between the agents) and the number of edges within
each component is about the same (thus ensuring that work is equally distributed
among the agents). The optimal partitioning of the graph for our example system
of equations (3) is shown in Figure 1(b).

A real-world application of the (k, r)-BEP problem is partitioning an electric
power network with the power flow along all lines in each partition controlled
1 Such mechanisms are beyond the scope of this paper.
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by an agent. The calculations of the power flow through a network (or a section
of a network) depend on the number of lines present.

1.2 Notation and Definitions

The following symbols and definitions will be used throughout this paper. For
each finite set X , |X | denotes the cardinality of X . G = (V, E) denotes an
undirected graph where V is a set of vertices and E is a set of edges.

We first define the standard graph partitioning problem where the objective is
to create components with roughly equal numbers of vertices while minimizing
the number of edges connecting components. For each positive integer k and
each ε > 0, the (k, ε)-Balanced Node Partitioning ((k, ε)-BNP) problem [1]
is defined as follows:

Definition 1. Given a graph, G = (V, E), partition the vertices of G into k

components, V1, V2, ..., Vk, so that for all i = 1, 2, ..., k, |Vi| ≤ (1 + ε) |V |k and the
number of edges in the set {(u, v) ∈ E : u ∈ Vi, v ∈ Vj , i �= j} is minimized.

We now formally define the main computational problem introduced and studied
in this paper. For each k > 1 and a value r ≥ 1, we define the (k, r)-BEP problem
as follows:

Definition 2. Given a graph, G = (V, E), partition the vertices of G into k

components, V1, V2, ..., Vk, so that for all i = 1, 2, ..., k, |Ei| ≤ r |E|k (where Ei =
{(u, v) ∈ E | u ∈ Vi, v ∈ Vi}) and the number of edges in the set {(u, v) ∈ E :
u ∈ Vi, v ∈ Vj , i �= j} is minimized.

At first glance, one might think that in the strict version of the latter problem
(r = 1) the number of edges in each partition is exactly |E|/k. However, this is
not necessarily the case because there will in general be edges connecting parti-
tions. Note that in both (k, ε)-BNP and (k, r)-BEP problems, the parameters k,
ε (and k, r respectively) are not part of the input. We will use Balanced Node

Partitioning (BNP) and Balanced Edge Partitioning (BEP) to denote
versions of these problems when the parameters are part of the input.

1.3 Related Work on Graph Partitioning

The definition of the (k, r)-BEP problem is very similar to that of the (k, ε)-
BNP problem. There is a significant amount of literature on the latter prob-
lem, while the former one has not been given much attention. Because of the
similarities between the two problems, it is possible that the methods used to
approximate the solutions to the instances of the (k, ε)-BNP problem could be
applicable to the (k, r)-BEP problem. That is why we present a brief overview
of the existing literature on the (k, ε)-BNP problem in this section.

One of the most popular heuristics for the (k, ε)-BNP problem is that of
Kernighan and Lin [7]. In their approach, the input graph is split into k parti-
tions and vertices are greedily swapped between pairs of partitions until a local
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optimum is found. This heuristic is known to perform well in practice. A de-
tailed description of this and various other heuristics for the balanced graph
partitioning problem can be found in [5].

In [9] Saran and Vazirani gave an approximation algorithm for the (k, 0)-BNP

problem with the approximation guarantee of 1 − 1/k. This algorithm runs in
polynomial time for a fixed k; otherwise in exponential time (exponential in the
value of k). Simon and Teng [10] used an idea similar to that of the Kernighan-Lin
heuristic to give an approximation algorithm for (k, 1)-BNP with an approxi-
mation guarantee of O(log(|V |) log(k)). Finally, in [1], Andreev and Räke gave
an approximation algorithm for the (k, ε)-BNP problem with an approximation
guarantee of O(log2 |V |) for any fixed ε > 0.

Whether or not the (k, r)-BEP problem can be nontrivially approximated is
open for fixed k ≥ 2 and fixed r ≥ 1. In this paper we examine several heuristics
that can be used on the restricted case of the (k, r)-BEP problem (specifically
when k = 2 and r = 1), as well as classes of graphs for which the approximation
algorithms to the (k, ε)-BNP problem are also approximation algorithms to the
(k, r)-BEP problem.

2 Algorithms and Heuristics

2.1 Hardness of the BEP Problem

It is known that for ε = 0, the BNP problem has no polynomial time approxima-
tion algorithm with finite approximation factor unless P = NP [1]. To establish
the hardness of the BEP problem we use a reduction similar to the one in [1] and
show that the BEP problem has no polynomial time approximation algorithm
with finite approximation factor unless P = NP.

Theorem 1. The BEP problem has no polynomial time approximation algo-
rithm with finite approximation factor unless P = NP.

Proof. The 3-Partition problem is defined as: Given a set of n = 3m integers,
a1, a2, ..., an, and an integer A, such that A

4 < ai < A
2 and

∑n
i=1 ai = mA, decide

whether the given integers can be partitioned into sets of three such that each
set of three adds up to A. We know that a 3-Partition problem is strongly
NP-complete [4]. That is, it remains NP-complete even if the numbers ai and A
are polynomially bounded.

Given an instance X = 〈a1, a2, . . . , an, A〉 of a 3-Partition problem, we
construct a graph G such that for each number ai, G contains a subgraph Gai =
(Vai , Eai), where Vai={vai

0 ,. . . ,vai
ai

} and Eai={(vai
0 ,vai

1 ),. . . ,(vai
ai−1, v

ai
ai

)}. So G =
(V, E), where V =

⋃n
i=1 Vai and E =

⋃n
i=1 Eai . (Note that this construction can

be achieved in polynomial time if the ai’s and A are polynomial in the size of
the instance.) Then the following holds: X is a yes instance of the 3-Partition

problem if and only if the value of an optimal solution to G (looked upon as an
instance of the BEP problem with k = m and r = 1) is 0.

Therefore, if for some f ≥ 1, there is an f -approximation algorithm to the
BEP problem, then it will be able to solve the 3-Partition problem where the
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numbers in the input are polynomial-sized. This contradicts the assumption that
P �= NP. �	

Note that since no approximation algorithm exists for BEP, good heuristics are
our best hope. There may exist approximation algorithms for restricted cases of
(k, r)-BEP or even of BEP.

2.2 Approximation Algorithms for Planar and Degree Bounded
Graphs

We present approximation algorithms to the (k, r)-BEP problem for planar and
degree bounded graphs. Many real-world network graphs fit this category, so
these algorithms can be useful in practice. Our approximation algorithms work
via a reduction to an instance of the (k, ε)-BNP problem for which we know an
approximation algorithm with an approximation guarantee of O(log2 |V |), where
|V | is the number of vertices in the graph [1]. If OPTV is the cost of the optimal
solution of the reduced instance of the (k, ε)-BNP problem, then our algorithm
for the (k, r)-BEP problem finds a cut no bigger than O(log2 |V |)OPTV , where
|V | is the number of vertices in the graph.

If |V | is the number of vertices in a planar graph, then this graph can have no
more than 3|V | − 6 edges [8]. We use this fact to prove that an approximation
algorithm for (k, ε)-BNP can be used to approximate solutions for (k, r)-BEP.

Theorem 2. Given a planar graph G = (V, E) with average vertex degree da,
we can find a solution to the (k, r)-BEP of G for all r > 6/da with a cost of
at most O(log2 |V |)OPTV . Here OPTV is the cost of the optimal solution to
(k, ε)-BNP of G with ε = dar/6 − 1.

Proof. Let ε = dar
6 − 1. Then ε > 0, since r > 6/da. We can now find a

(k, ε)-BNP of G within O(log2 n) of OPTV , using the approximation algorithm
from [1]; let V1, V2, ..., Vk be the partitions found. Then for all i = 1, 2, ..., k,
|Vi| ≤ (1+ ε) |V |k . Let Ei = {(u, v) |u ∈ Vi, v ∈ Vi}. Since G is a planar graph, we
know that any subgraph of G with at most |Vi| nodes has at most 3|Vi|−6 edges.
Therefore, for all i = 1, 2, ..., k, |Ei| ≤ 3|Vi|−6 ≤ 3(1+ε) |V |k −6. Since the average
vertex degree of G is da, we know that |V | = 2|E|/da. So |Ei| ≤ 3(1+ ε)2|E|

kda
−6.

Substituting dar
6 −1 for ε we get |Ei| ≤ 3(1+ dar

6 −1)2|E|
kda

−6 ≤ r |E|k . Therefore,
the solution to the (k, ε)-BNP of G satisfies the constraints of the (k, r)-BEP of
G and its cost is at most O(log2 n)OPTV . �	

Theorem 2 is useful when the average vertex degree of a graph is greater than
3. If the average vertex degree of a graph is between 2 and 3 and k = 2, then
Theorem 2 relaxes the problem too much, allowing any partition to contain any
number of edges. A similar analysis can be applied to graphs with bounded
vertex degree.

Theorem 3. Given a graph G = (V, E) such that the degree of all vertices in
G is bounded by a constant d, and average vertex degree is da, we can find a
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solution to the (k, r)-BEP of G with a cost of at most O(log2 |V |)OPTV , for all
r > d/da. Here OPTV is the cost of the optimal solution to the (k, ε)-BNP of G
with ε = rda/d − 1.

Proof. Let ε = rda

d − 1. Then ε > 0, because r > d/da. We can now find
(k, ε)-BNP of G within O(log2 n) of OPTV , using the approximation algorithm
from [1]; let V1, V2, ..., Vk be the partitions found. Then for all i = 1, 2, ..., k,
|Vi| ≤ (1+ε) |V |k . Let Ei = {(u, v) |u ∈ Vi, v ∈ Vi}. Since the degree of all vertices
of G is bounded by d, we know that any subgraph of G with |Vi| nodes has at
most d|Vi|/2 edges. Therefore, for all i = 1, 2, ..., k, |Ei| ≤ d|Vi|/2 ≤ d(1 + ε) |V |2k .
Since the average vertex degree of G is da, we know that |V | = 2|E|/da. So
|Ei| ≤ d(1 + ε) 2|E|

2kda
= d(1 + ε) |E|kda

. Substituting rda

d − 1 for ε we get |Ei| ≤
d(1+ rda

d −1) |E|kda
= r |E|k . Therefore, the solution to the (k, ε)-BNP of G satisfies

the constraints of the (k, r)-BEP of G and its cost is at most O(log2 n)OPTV .
�	

2.3 Heuristics for the (2, 1)-BEP Problem

We now provide five heuristics for the restricted case of the (k, r)-Balanced

Edge Partitioning problem when k = 2 and r = 1.

Ratio heuristic first greedily creates a feasible solution and then greedily im-
proves it until a local optimum is reached. Given a graph and two vertex par-
titions it moves vertices from the larger to the smaller partition one at a time,
each time moving the vertex that would ensure that the number of edges in the
smaller partition is no more than the maximum allowed. Furthermore, the vertex
to be moved is selected such that moving it to the smaller partition maximizes
the ratio of the number of inner edges in the smaller partition to the size of
the cut. This is repeated until a feasible solution is achieved. The produced cut
is improved by greedly moving one vertex at a time from one partition to an-
other such that the solution remains feasible. The initial partitions are created
by simply placing the highest degree vertex into one partition and the rest of
the vertices into the other one.

Breadth First Search Ratio (BFS-Ratio) heuristic first identifies multiple
sets of vertices that should be placed into the same partition and constructs a
vertex weighed graph. Each identified set of vertices becomes one vertex in the
new graph, whose weight equals to the number of edges between the vertices in
the set. The edges connecting the selected sets of vertices become the edges of
the new graph. The weighted version of the Ratio heuristic is applied to the new
graph. In the weighted version of the Ratio heuristic, the number of edges in a
partition equals to the sum of vertex weights plus the number of edges between
the vertices of that partition.

The sets of vertices of the original graph that should be placed into the same
partition are identified by the breadth first search (BFS) as follows. Start from
the node with the highest degree and iteratively perform BFS. At step i add all
nodes that are a distance i from the root as long the number of edges added at
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step i is at least a factor e of the number of edges present at the end of step i−1
(in our experiments e was set to the average vertex degree). When this condition
fails, place all the discovered vertices into one partition, remove them from the
original graph and perform BFS again. Continue until all vertices are discovered.

Kernighan-Lin heuristic [7] can be used to minimize the cut between two
partitions of a graph with equal numbers of vertices. On input G = (V, E) this
heuristic initializes two partitions V1 and V2 such that |V1| = |V2| and then
greedily identifies sets X ⊂ V1 and Y ⊂ V2, where |X | = |Y | such that swapping
X and Y would locally minimize the cut between the two partitions. The final
cut produced by this heuristic largely depends on the initial partitions. The so-
lution produced by this heuristic is not necesseraly a feasible solution for the
(2, 1)-BEP problem; if this is the case the solution can be turned into a feasible
one using the same method as in the Ratio heuristic. We refer to this heuristic
as the Kernighan-Lin Ratio (KL-Ratio) heuristic.

Edge Kernighan-Lin (EKL) heuristic: A modification of the Kernighan-Lin
heuristic can be made to produce feasible solutions for the (2, 1)-BEP problem.
This heuristic initializes two partitions V1 and V2 to a feasible solution of the
(2, 1)-BEP problem. Then it identifies sets X ⊆ V1 and Y ⊆ V2 such that swap-
ping X and Y would locally minimize the cut between the two partitions and
result in a feasible solution to the (2, 1)-BEP problem. This is done as in the
original Kernighan-Lin heuristic but without the requirement that |X | = |Y |. In
the original Kernighan-Lin heuristic at each step of the Optimization Algorithm
described in [7], one vertex from V1 is added to X and one vertex from V2 is
added to Y . Three cases are possible in our modification of the heuristic: (1) a
vertex from V1 is added to X and a vertex from V2 is added to Y , (2) a vertex
from V1 is added to X and nothing is added to Y , and (3) a vertex from V2 is
added to Y and nothing is added to X .

We expect that in our modification of the Kernighan-Lin heuristic the initial
partitions have a big influence on the final solutions produced by the heuristic.
We used two methods to generate initial partitions: (1) creating a feasible so-
lution as it is done in the Ratio heuristic and (2) using the locality principal:
start with the highest degree vertex in one partition and continue adding the
vertices closest to it until a feasible solution is achieved. We refer to these ini-
tialization methods followed by modified Kernighan-Lin heuristic as EKL-Ratio
and EKL-Local respectively.

3 Experimental Results

The only known way of finding the exact optimal solutions to instances of the
(2, 1)-BEP problem takes exponential time and therefore we cannot compute
the optimal value, even for modest-sized instances. To assess our heuristics we
experimentally evaluated them and compared the results.
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Graphs arising from real-world networks are most interesting for practical
purposes. Because large real-world graphs are not easily obtainable, test graphs
were generated with real-world graph models.

3.1 Graph Models

Three graph models were used to generate test cases: (a) the Preferential Attach-
ment (PA) model as described in [2], (b) the Spatial Preferential Attachment
(SPA) model (a new graph model that emerged from this research), and (c) sub-
graphs of a large real-world power network. Our SPA model was motivated by
the spatial property of real-world networks as well as by the power-law scaling
of the PA model. To generate a graph, the SPA model starts with a small clique
of vertices (just as in the PA model). At each iteration a new vertex is added
and it randomly chooses one of the existing vertices as its “location.” Next, the
new vertex preferentially attaches to m other vertices that lie within a radius r
of its location vertex, where m and r are predefined parameters. The probability
of a newly added vertex attaching to another vertex, v, within the radius r, is
proportional to the vertex degree of v. Thus, vertices attach preferentially, just
as in the PA model, but the set from which a new vertex chooses its neighbors is
not the set of existing vertices, but the subset of vertices that lie within a radius
r of the location vertex. Note that a detailed study of the SPA model might be
of independent interest and is not part of this work.
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Fig. 2. Degree distribution of the three graph types used in the experiments

The number of vertices in the graphs generated with PA and SPA models
ranged from 500 to 1000, with the value of parameter m ranging from 2 to 5;
the value of r was set to 3. Each of these two graph models generated a total of
84 test graphs. Proprietary data of a large real-world power network was used to
generate 30 power network-like graphs with 1000 nodes each; this was done by
randomly selecting a root node and performing breadth first search until 1000
nodes were found.
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Fig. 3. Degree distribution of the large power network used to generate power network-
like graphs

The degree distribution of a graph depends on its type, defined by the model
used to generate it. Examples of degree distributions of the three graph types
used in the experiments are shown in Figure 2, where k is the degree and P (k) is
the probability that a vertex has degree k. This figure indicates that our power
network-like graphs did not have the power law scaling property, while the graphs
generated with the PA and SPA models did. To verify that our power network-
like graphs have characteristics of the real-world power networks, the degree
distribution of the large real-world power network that was used to generate
our power network-like graphs is shown in Figure 3. Figure 3 reveals the lack of
power-law scaling in the real-world power network, the characteristic that is also
observed in the power network-like graphs, Figure 2(a), used in the experiments.

3.2 Results

The five heuristics described in this paper were evaluated on the graphs described
in Section 3.1. The Chaco 2.0 software package [5] was used to find equally sized
(in the number of vertices) partitions of the graphs needed for the KL-Ratio
heuristic. This software package uses the multilevel Kernighan-Lin heuristic [5]
to find such partitions while minimizing the cut.

Table 1. Ranking of the heuristics on a scale from 1 to 5 (1 being the best, i.e. found
the smallest cuts, and 5 being the worst) for each graph type used in the experiments

Graph Type 1 2 3 4 5

Power network-like graphs KL-Ratio BFS-Ratio EKL-local EKL-Ratio Ratio
PA graphs EKL-Ratio EKL-Local Ratio KL-Ratio BFS-Ratio
SPA graphs EKL-Local EKL-Ratio Ratio KL-Ratio BFS-Ratio
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Fig. 4. Average percentage of edges in cuts found by each heuristic on power network-
like graphs with 1000 nodes
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Fig. 5. Heuristics evaluated on PA graphs

The size of the cut was measured as percentage of the number of edges in the
graph. The results are presented in Figures 4 – 6. These results show that the
performance of the heuristics depends on the graph type. In the power network-
like graphs, the KL-Ratio heuristic found the smallest cuts. The next smallest
cuts were obtained by the BFS-Ratio heuristic followed by EKL-Local, EKL-
Ratio, and finally the Ratio heuristic. The performance of these heuristics differs
drastically when evaluated on PA and SPA graphs. On PA graphs EKL-Ratio
on average finds the smallest cuts. The heuristic that was in second place on the
power network-like graphs, BFS-Ratio, finds the largest cuts on PA graphs. A
similar situation is observed on SPA graphs, where the smallest cuts are found
by EKL-Local and the largest cuts are produced by the BFS-Ratio heuristic.
The heuristic that was in the first place on power network-like graphs is only
fourth best (out of five) on the other two graph types. Table 1 shows the order
(from best to worst) of the heuristics for each graph type, computed based on
the size of the cut produced by the heuristics. For PA and SPA graphs, where
power law scaling was observed, the order of the heuristics is similar, unlike that
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Fig. 6. Heuristics evaluated on SPA graphs

of power network-like graphs, where power-law scaling was absent. This suggests
that the presence of power law scaling in a graph influences which heuristic (out
of the proposed five) will find the smallest cut on that graph.

Figure 5(b) and Figure 6(b) show the relationship between the size of the cut
produced by the four best heuristics versus the average vertex degree for PA and
SPA graphs. These figures indicate that we can expect larger cuts as the average
vertex degree increases.

4 Summary and Conclusions

In this paper we have introduced the (k, r)-BEP problem and its application to
cooperative agent-based computing. We presented approximation algorithms for
special cases of the problem, when input graphs are planar or degree bounded.
We developed five heuristics for the constrained version of this problem, two
of which use a modification of the well-known Kernighan-Lin heuristic. These
heuristics were experimentally evaluated on graphs generated with real-world
graph models as well as on power network-like graphs. The results verify the hy-
pothesis that the performance of our modification of the Kernighan-Lin heuristic
depends on the initial partitions. Furthermore, our results show that the choice
of the best heuristic (out of the proposed five) depends on the type of graph
used as the problem instance.

Acknowledgments. We thank Mariesa Crow for allowing us to use the pro-
prietary data and we thank anonymous referees for helpful comments.
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Abstract. The continuous growth of the routing tables sizes in back-
bone routers is one of the most compelling scaling problems affecting
the Internet and has originated considerable research in the design of
compacting techniques. Various algorithms have been proposed in the
literature both for a single and for multiple tables, also with the possi-
bility of performing address reassignments [1,5].

In this paper we first present two new heuristics, the BFM and its
evolution called BFM-Cluster, that exploit address reassignments for
the minimization of n > 1 routing tables, and their performances are
experimentally evaluated together with the already existing techniques.
Since a main problem posed by the growth of the routing tables sizes
is the consequent general increase of the table lookup time during the
routing of the IP packets, the aim is twofold: (i) to measure and compare
the compression ratios of the different techniques and (ii) to estimate
the effects of the compression on the lookup times by measuring the
induced improvement on the time of the main algorithms and data
structures for the fast IP address lookup from the original tables to the
compressed ones. Our point is that the existing methods are efficient in
different situations, with BFM-Cluster heuristic outperforming all other
ones.

Keywords: Routing, IP protocol, compression, lookup times, optimal
and approximation algorithms.

1 Introduction and Motivations

In the Internet Protocol (IP) communications between hosts are possible by
means of interconnected forwarding elements called routers. Each router con-
sists of input interfaces, output interfaces, a forwarding engine and a routing
table. Exchanged messages are arranged into packets or datagrams. Unlike the
circuit-switched networks, every packet travels across the network independently
of all others. This implies that each packet is labelled with both a globally unique
source and a destination address, which it must carry along. In a router, the bot-
tleneck in packet forwarding is to lookup the destination address of an incoming
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packet in the routing database, that is to determine the output interface through
which the packet must be forwarded.

Unfortunately, the huge and disorganized growth of the Internet during the
last years has caused an excessive increase in the number of entries of the rout-
ing tables. Beside their memory requirements, the main problem posed by this
phenomena is the consequent general increase of the table lookup time during
the routing of IP packets. Thus, a considerable research effort has been devoted
in the design of techniques for reducing the size of IP routing tables.

In [5] the authors presented an optimal polynomial time algorithm (Optimal
Routing Table Constructor - ORTC) for constructing a routing table that has
the least possible number of entries, while still providing the same routing in-
formation. Moreover, they experimentally evaluted ORTC by showing that it
reduces the number of prefixes by around 40%.

The envisaged close enhancement of the IP protocol to version 6 urgently re-
quires the solution of the IP routing tables minimization problem in a new and
more effective way, that is by performing address reassignments. Such a facility
can actually be exploited also inside the current version of the protocol, thanks
to the introduction of the so called Network Address Translators, NATs for short,
by which independent address reassignments are possible inside subnetworks [6].
In this scenario, efficient tables minimization algorithms exploiting addresses re-
assignments are of crucial importance. Motivated by the above discussion and
by exploiting address reassignments, in [1] the authors provided a new polyno-
mial time optimal algorithm, called BF, that minimizes the size of single routing
tables and a 3h-approximation algorithm (h is the length of the IP addresses),
called BF-Multi, that minimizes the sum of the sizes of n > 1 routing tables.

Starting from the above results, in this paper we first introduce two new
heuristics, the BFM heuristic and its evolution called BFM-Cluster, that exploit
address reassignments for the minimization of n > 1 routing tables, and then
we focus on the experimental evaluation of the above mentioned techniques for
IP tables minimization (i.e., ORTC, BF, BF-Multi, BFM and BFM-Cluster).
Since a main problem posed by the growth of the routing tables sizes is the
consequent general increase of the table lookup time during the routing of the
IP packets, the aim is twofold: (i) to measure and compare the compression
ratios of these techniques and (ii) to estimate the effects of the compression on
the lookup times by measuring the induced improvement of the time of the main
algorithms and data structures for the IP address lookup (e.g., Binary Search
on prefix Length [18,19], Multi-ary Tries [15,16] and LC-Trie [14]).

The paper is organized as follows. In the next section we present the stat-
of-art in IP address tables minimization; in Section 3 we introduce our new
heuristics. Section 4 is devoted to the implementation details such as software,
hardware, requirements and metrics. Section 5 illustrates our contributions on
the comparison of the compression ratios of the table minimization algorithms
and on the effect of tables minimization on the IP lookup data structures. Sec-
tion 6 concludes by analyzing experimental results and discussing directions for
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future work. We apologize for the many omissions and missing details, but space
constraints imposed several limitations.

2 Preliminaries

In the IP protocol each host is assigned a unique address of h = 32 bits, with h
presumably higher in future versions. Routers consist of input interfaces, output
interfaces, a forwarding engine and a routing table. Each routing table is a list
of entries, where each entry e consists of three different fields: a network mask
maske, a destination network address deste and a next-hop address nexte. Field
maske consists of a h bit binary string of the form 1le0h−le , where le is called
the length of the mask. The network address deste is a h bit binary string
representing the IP address associated to the entry, and the next-hop address
nexte identifies the index of the output interface corresponding to the entry.

A given IP address matches entry e if its leading le bits are coincident with
the respective le ones of deste. Consider two entries e and f such that le < lf
and the leading le bits of destf exactly matching the ones of deste. It is easy
to see that any IP address matching entry f matches also entry e. We then say
that there is an inclusion of entry f in entry e.

Since an IP address can match different entries, routing is performed on a
longest mask matching entry base, that is the output interface chosen to forward
a packet is taken from the matching entry having the longest mask. The efficient
solution of such a problem, called Longest Matching Prefix, has given rise to
different algorithms, some of which are briefly presented in the following subsec-
tions, together with an overview of the minimization ones implemented for the
experimentation. Due to space limitations their presentation is necessarily in-
complete, with many details just mentioned and/or left unspecified. However, the
interested reader can refer to the given literature for a more detailed description.

2.1 IP Lookup Algorithms

Many fast route lookup algorithms have been proposed in the last few
years [2,3,4,8,9,11,14,16,19]. Based on the data structure used, these algo-
rithms can be classified into one of the following three categories: trie-based,
comparison-based and hash-based. The trie-based algorithms use the traditional
key search idea and organize the routing table into a tree-like data structure [7].
Each node in the trie has zero or more child nodes. Each lookup of a key starts
at the root of the trie and then walks down to find the longest match. The idea
underlying comparison-based algorithms is mainly related to the binary search
scheme. Modifications have been devised to accommodate the prefix into sorted
arrays. In hash-based algorithms, the results of hashing functions are used as
indexes into memory. The perfect hash function completes the lookups in only
one memory access that can achieve the highest searching speed.

The particular algorithms used in this paper to evaluate the effect of table min-
imization on their lookup times are among the ones with the best performances:
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Binary Search on prefix Length [18,19], which combines comparison-based and
hash-based techniques, and Multi-ary Tries [15,16] and Level Compressed (LC)
Trie [14], both belonging to trie-based category.

2.2 Table Minimization Without Address Reassignment

The Optimal Routing Table Constructor (ORTC) is an algorithm given in [5]
which reduces the number of entries in a routing table.

Given a routing table that provides forwarding information for IP addresses
using longest prefix matching, ORTC produces a new routing table that has the
same forwarding behavior and the least possible number of entries.

A binary tree representation is used to graphically depict a set of prefixes.
Each successive bit in a prefix corresponds to a link to a child node in the tree,
with a 0 corresponding to the left child and a 1 corresponding to the right child.
Note that the binary tree generally contains more nodes than prefixes, since every
successive bit in the prefix produces a node. The nodes are labeled with next-
hop information, typically a small integer or a set of small integers. Roughly
speaking, ORTC optimizes a routing table using three steps over the binary
tree representation. The first step propagates routing information down to the
trees leaves. The second step finds the most prevalent next hops, by propagating
information (sets of next hops) from the leaves back towards the root. In fact,
shorter prefixes close to the root of the tree should route to the most popular or
prevalent next hops. Finally, a third step moves down the tree, choosing a next
hop from the set of possibilities for a prefix and eliminating redundant routes.

The space and time complexity of ORTC algorithm are O(hN), where N is
the number of entries in the input routing table.

2.3 Table Minimization with Address Reassignment

In [1] the authors propose algorithms for the minimization of routing tables using
address reassignments. This approach differs substantially from the ORTC’s one,
where the hosts must maintain their original addresses, and allows to improve
the effect of minimization by assigning IP addresses so as to obtain the maximum
possible compression.

An optimal polynomial time algorithm (called BF ) was presented in [1] for
the case of single routing tables.

Let us briefly describe the underlying idea.
Denoted as ai the number of hosts reached through the i-th output interface, if

inclusions between entries are not allowed, then the set of the addresses matching
any entry e in the table has cardinality 2h−le and consequently the minimum
number of entries corresponding to the i-th output interface is at least equal
to the minimum number of powers of 2 whose sum is equal ai. This clearly
corresponds to the number of bits equal to 1 in the h + 1 bit binary string
that encodes ai. Let one(ai) denote such a number. Then the minimum size of
the table is at least

∑δ
i=1 one(ai), where δ is the number of output interfaces.

Moreover, it is not difficult to show that such a number of entries is always
achievable.
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Allowing the inclusion of one entry f in one entry e with nexte �= nextf and
le < lf , modifies the number of addresses matching the entries corresponding to
the output interface nexte from anexte to anexte + 2h−lf . As a consequence,
the number of entries corresponding to the output interface nexte becomes
one(anexte + 2h−lf ). Concerning the effect of such an inclusion on the entries
of the output interface nextf , it is possible to charge a cost of one to the in-
clusion to keep track of the fact that such an entry will be effectively realized
inside e, while the number of addresses matching the remaining entries of nextf
becomes anextf

− 2h−lf . Exploiting such ideas, algorithm BF constructs a table
of minimum size in time O(hδ).

Unfortunately, in the general case in which we are interested in minimizing
the sum of the sizes of n > 1 tables1, as shown in [1] this problem is NP-hard,
but there exists a 3h-approximation algorithm, called BF-Multi, that exploits
a matrix representation of the instances of the problem. In fact, the routing
behavior of any router rj can be represented by means of a boolean matrix
Aj in which each row is associated to a destination host and each column to
one output interface of rj . Let A be the global matrix given by the horizontal
concatenation of all the matrices Aj . Let us define a segment in a given col-
umn of A as a maximal vertical sequence of consecutive entries equal to 1 in
the column. The approximation algorithm is based on the idea that any per-
mutation π of the rows of A corresponds in a natural way to an assignment
of addresses to the hosts. Namely, the host corresponding to row i after the
permutation receives the IP address given by the h bit binary string encoding
i − 1. Since each segment corresponds to a limited number of entries in the
IP routing table, a permutation causing a low number of segments in A yields
also a solution with a low overall number of table entries. One of such per-
mutations is than determined by reducing the problem to minimum metrical
TSP.

3 The New Heuristics

In this section we introduce new heuristics for the problem of minimizing the
sum of the sizes of n > 1 tables with address reassignment.

We emphasize that in both heuristics we focus on the address reassignment,
i.e. we care about assigning addresses to host such that the total size of the
routing tables can be minimized. On the other hand, we discard optimization
issues relative to the minimization of each of the final routing tables obtained
after the address reassignment; this is due to the fact that, after the addresses
have been reassigned, such a problem is equivalent to the one of minimizing a
routing table without address reassignment, which is optimally solved by the
ORTC algorithm.

All the details of both heuristics will be shown in the full version of the paper.

1 Notice that without address reassignment the problem can be trivially solved by
independently applying ORTC to each single table.
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3.1 BFM Heuristic

The main idea of the BFM heuristic is to construct a new virtual router r̄
starting from the n routers as follows. For each host x we compute a n-tuple
Ux = (out1x, . . . , outnx) containing the n next hop interfaces associated to the host
in each router, i.e. outix is the next hop interface associated to x in router ri. Let
U be the set of all the obtained tuples. For each u ∈ U , let Hu be the set of hosts
corresponding to the n-tuple u. We run the BF algorithm on the new virtual
router r̄, in which each n-tuple u represents a virtual output interface with |Hu|
associated hosts. Finally, starting from the address assignment determined by
BF, we construct each of the n final tables by selecting the corresponding next
hop interfaces from the virtual next hops, i.e. from the n-tuples.

3.2 BFM-Cluster(k) Heuristic

This heuristic is an evolution of the BFM one just described and as an input
parameter k, whose tuning is discussed in subsection 5.2. Since the size of the ta-
bles compressed by BF is usually very close to the number of output interfaces,
in the BFM-Cluster heuristic we try to reduce the number of virtual output
interfaces by clustering the tuples with a low number of not coinciding coordi-
nates. In particular, when constructing the virtual router r̄, we partition the set
of tuples in clusters c1, c2, . . . such that tuples with a low fixed number of differ-
ent components are in the same cluster, and finally, for each cluster ci, we add
to r̄ a virtual output interface with a number of associated hosts equal to the
sum of the numbers of hosts associated to each tuple in ci. More specifically, the
partition process is as described in the following. First of all, let us define tuples
d-close if the number of their different components is at most d. We maintain an
(initially empty) set Ū of leader tuples, and analyze one by one all the tuples in
U : for each u ∈ U , if u is k-close to a leader tuple ū ∈ Ū , we add u to the cluster
whose leader is ū, otherwise we create a new cluster having u as leader. Finally,
as in the BFM heuristic, we have to construct each of the n final tables. To this
aim we first partition the set of addresses assigned to each cluster ci between
the tuples belonging to ci, and then we proceed by selecting from the tuples the
next hop interfaces relative to each table.

4 Methods Testing

We implemented the techniques described in the Section 2 in the C language.
Overall, the developed C code consists of about 3000 lines. Since we are interested
in the compression ratio and in the relative improvement of the lookup time, we
performed the experimentation on a personal computer with a 2-GHz Pentium
4 processor and 256 MB of RAM running Windows XP.

4.1 Test Data

The techniques are tested on 15 existing routing tables, downloaded from the
routing table snapshots provided by the IPMA Project [13,17] and from the
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route server lists provided in [10,12], as well as on 56 artificially generated tables
by independently modifying the next hop of each entry of a starting original
table with a fixed probability between 10% and 30%.

For the minimization techniques, we considered 13 input instances composed
with existing routing tables, and 7 instances composed with artificially gener-
ated ones. More precisely, for every set of tables we have run the implemented
compression techniques and then constructed the auxiliary data structures both
for the initial and compressed tables. In order to test the improvement times of
the IP address lookup algorithms, each technique has been tested against three
different traffic files, each containing 15 · 106 IP addresses on the original tables
and on the compressed ones. Overall, we performed about 3000 different tests.
More precisely, one traffic file is obtained as a permutation and repetition of the
IP addresses originating (i.e., matching at least one entry) from the considered
routing tables, and the other two traffic files contain random IP addresses.

Table 1 describes the existing routing tables features (i.e., the number of the
entries in the routing table, the number of distinct next-hops found in the table
and the date of tables snapshots), and the sets of the tables2 considered in our
tests. In order to have a more compact and readable presentation, we omit the
description of the artificially generated tables and the one of the sets of these
tables.

Table 1. Existing routing tables and their sets used as input instances

Tables Sets

ID Table Date # Entries # Next hop 1 2 3 4 5 6 7 8 9 10 11 12 13

1 utah.rep.net 02-11-04 153 6 x x x x x

2 mae-west 24-08-97 15050 57 x x x x x x x x

3 aasd 24-08-97 20328 19 x x x

4 pb 24-08-97 20637 3 x x x

5 mae-east 24-08-97 38470 59 x x x x x x x x

6 funet 19-11-97 41709 20 x x x x x x x

7 as5388 02-11-04 62531 112 x x x x x x x x x x

8 wcg.net 02-11-04 121800 898 x x x x x x x x x

9 ip.att 02-11-04 145682 23 x x x x x x

10 he 02-11-04 140112 196 x x x x x x x

11 ip.tiscali 02-11-04 145648 1 x x x x x

12 opentransit 02-11-04 153317 15 x x x x x x x x x

13 gbls 02-11-04 154740 303 x x x x x x x x x x

14 oregon-ix 02-11-04 161635 53 x x x x x x

15 colt.net 02-11-04 162008 1 x x x x

2 Unfortunately, we haven’t current snapshots for mae-east, aads, pb, funet and mae-
west. Anyway, we refer to these tables of the 1997 because they were taken as input
in the main experimentation works about IP address lookup and IP tables mini-
mization [5,18].
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4.2 Measurement Principles

The main metric used to evaluate the IP tables minimization algorithms is the
compression or reduction ratio, defined as d−dc

d , where d is the initial size of the
table and dc is the size after the compression. More precisely, we have based
our experimental analysis on the comparison between the total number of the
table entries produced by the algorithms and the initial one. Moreover, referring
to the IP lookup algorithms implemented, we have evaluated in percent terms
the improvement of the lookup time (defined as t−tc

t , where t is the lookup
time on the initial table and tc is the lookup time on the compressed one)
achieved starting from the compressed tables with respect to the one yielded by
the original ones.

5 Experimental Results

In order to have a more compact and readable presentation giving a direct indi-
cation of our experimental outcome, we present the results in global way. More-
over, since the tests of the compression algorithms and of the IP address lookup
techniques on the artificially generated tables lead to almost the same results
and considerations, we describe only the experimental results concerning the
real world tables. Finally, concerning the IP address lookup techniques, we show
both the global results relative to all the three traffic files, and the ones relative
only to the ”first” traffic file, i.e., the one containing addresses obtained from
the existing routing tables.

5.1 The Case of a Single IP Routing Table

Table 2 shows the compression ratios obtained by running both the ORTC and
the BF algorithms on the original tables in the case of a single routing table.

Table 2. Compression ratios of the original tables in the case of a single routing table

ORTC BF

Compression ratio 57.66% 99.80%

We notice the excellent compression results provided by the BF algorithm
which can in fact exploit the address reassignment. As an example, after the
compression obtained by BF, the routing table “mae-east” presents only 133 en-
tries versus 38470 entries of the original table. Concerning the ORTC algorithm,
the results pointed out by the experimental study reflect the theoretical analysis
and the experimental evaluation presented in [5].

The effects of the compression on the lookup times are shown in tables 3 and 4
where we provide the average reduction of the lookup times of the implemented
algorithms.
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Table 3. Lookup times improvement of the IP address lookup algorithms executed on
all the traffic files with respect to the original times on uncompressed routing tables

Multibit Binary search LC-Trie

ORTC 8.56% 12.31% 0.65%

BF 77.88% 64.90% 32.22%

Table 4. Lookup times improvement of the IP address lookup algorithms on the first
traffic file with respect to the original times on uncompressed routing tables

Multibit Binary search LC-Trie

ORTC 9.53% 1.59% 12.21%

BF 87.22% 69.60% 43.19%

5.2 The Case of Multiple IP Routing Tables

Tables 5, 6, 7 and 8 show the experimental results in the case of compression of
multiple IP routing tables. More precisely, Table 5 shows the reduction ratios on
the sets of routing tables described in Table 1, Table 6 groups such results by set
cardinality, whereas table 7 and 8 provide a measure of the induced improvement
of the time of the main algorithms and data structures for the fast IP address
lookup from the original tables to the compressed ones. Moreover, tables 9, 10
and 11 show the experimental results of the IP lookup algorithms on the single
sets of routing tables described in Table 1.

Table 5. Compression ratios in the case of multiple routing tables

Set ORTC BF-Multi
BF-Multi
+ ORTC

BFM
BFM +
ORTC

BFM-C.(1)
BFM-C.(1)
+ ORTC

1 33.53% 84.30% 94.44% 94.19% 95.92% 80.52% 96.77%

2 48.86% 55.53% 83.77% 85.29% 90.11% 35.62% 92.11%

3 67.20% 95.04% 98.07% 97.85% 98.78% 89.24% 98.79%

4 55.55% 76.74% 91.82% 92.70% 94.52% 66.73% 95.28%

5 56.48% 56.46% 83.67% 82.46% 89.88% 33.22% 92.72%

6 63.16% 80.62% 93.01% 90.99% 94.97% 64.03% 96.00%

7 60.29% 48.42% 81.96% 74.14% 86.94% 24.69% 91.09%

8 57.66% 12.18% 69.24% 45.08% 75.97% −39.10% 83.74%

9 51.29% −12.97% 60.78% 38.86% 69.61% −55.60% 79.32%

10 51.97% 50.60% 82.80% 81.23% 87.60% 16.79% 90.74%

11 53.72% 44.76% 80.28% 78.62% 86.26% 15.91% 90.17%

12 52.37% 25.01% 73.60% 68.55% 80.30% −4.28% 86.27%

13 53.28% 43.10% 79.91% 78.24% 86.13% 15.42% 90.00%

We evaluated the performance of the BF-Multi, BFM and BFM-Cluster(k)
algorithms also with an additional compression step obtained by running ORTC
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Table 6. Compression ratios in the case of multiple routing tables, grouped by set
cardinality

#tables ORTC BF-Multi
BF-Multi
+ ORTC

BFM
BFM +
ORTC

BFM-C.(1)
BFM-C.(1)
+ ORTC

5 57.16% 79.66% 92.61% 93.10% 95.31% 69.35% 96.08%

6 51.97% 50.60% 82.80% 81.23% 87.60% 16.79% 90.64%

7 57.70% 60.18% 85.60% 83.92% 90.26% 37.35% 92.86%

8 52.37% 25.01% 73.60% 68.55% 80.30% −4.28% 86.27%

10 60.29% 48.42% 81.96% 74.14% 86.94% 24.69% 91.09%

13 51.29% −12.97% 60.78% 38.86% 69.61% −55.60% 79.32%

15 57.66% 12.18% 69.24% 45.08% 75.97% −39.10% 83.74%

Table 7. Average lookup times improvement of the IP address lookup algorithms
executed on all the traffic files with respect to the original times on uncompressed
routing tables

Multibit Binary search LC-Trie

BF-Multi 46.68% 38.16% 29.54%

BF-Multi + ORTC 59.35% 49.06% −4.34%

BFM 61.63% 51.34% −19.93%

BFM + ORTC 62.34% 46.77% 8.40%

BFM-Cluster(1) 37.41% −11.73% −17.67%

BFM-Cluster(1) + ORTC 65.44% 51.98% 16.51%

on their output tables. In fact, while on one hand BF-Multi does not exploit
inclusions of entries (optimized by ORTC), that is each IP address matches at
most one entry, on the other hand the BFM and BFM-Cluster(k) heuristics
do not guarantee the minimality of the output tables, since the same output
interface of a table may be associated to many virtual output interfaces (n-
tuples).

In order to tune the parameter k of BFM-Cluster(k), we have executed the
heuristic for different values of k. Since the number of tables to be minimized
simultaneously is never greater than 15, we have obtained better results for small
values of k, and the best ones (presented in the tables) for k = 1.

6 Analysis of the Results and Future Work

First of all, we point out how the reduction in the lookup times is higher when
executing the lookup algorithms on the traffic file containing addresses obtained
from the considered routing tables (i.e. the first traffic file). Thus, it results that
the lookup time for addresses not matching any entry of a table is poorly affected
by the size of the routing table.

The experimentation shown the effectiveness of the BF algorithm for the
compression of a single table. It is worth noticing that BF could obtain a higher
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Table 8. Average lookup times improvement of the IP address lookup algorithms
executed on the first traffic file with respect to the original times on uncompressed
routing tables

Multibit Binary search LC-Trie

BF-Multi 57.57% 48.13% 47.87%

BF-Multi + ORTC 65.94% 55.50% 28.19%

BFM 82.62% 65.64% 15.31%

BFM + ORTC 82.99% 59.50% 37.83%

BFM-Cluster(1) 66.69% 35.87% 7.27%

BFM-Cluster(1) + ORTC 83.66% 60.72% 39.06%

Table 9. Average lookup times improvement on the algorithms executed on all the
traffic files with respect to the original times on uncompressed routing tables (BF-Multi
algorithm)

LC Trie Multibit Binary search on IP length

Set BF-Multi BF-Multi+ORTC BF-Multi BF-Multi+ORTC BF-Multi BF-Multi+ORTC

1 21.80% −3.90% 57.44% 36.86% 37.54% 40.67%

2 30.88% −6.14% 42.86% 48.45% 32.68% 42.95%

3 55.13% 24.80% 68.45% 66.46% 72.29% 73.59%

4 36.90% 14.32% 53.19% 43.04% 50.85% 58.98%

5 28.01% −9.19% 44.89% 46.39% 34.01% 46.51%

6 44.69% 10.08% 58.57% 55.59% 59.03% 66.54%

7 33.56% −9.43% 47.38% 48.11% 36.41% 50.05%

8 23.50% −7.24% 40.16% 32.56% 25.48% 42.00%

9 18.61% −16.38% 29.45% 27.71% 14.14% 31.55%

10 22.72% −16.19% 42.75% 32.83% 32.62% 47.03%

11 19.87% −13.83% 39.67% 27.59% 35.12% 43.96%

12 23.18% −11.87% 39.44% 29.67% 29.07% 47.41%

13 25.28% −11.51% 42.72% 34.60% 36.87% 46.61%

compression thanks to the address reassignment facility, which was not allowed
to ORTC. Concerning the IP lookup times, the multibit and binary search on IP
length algorithms present a better performance on the compressed tables with
respect to LC-Trie. As foreseen, the lookup times are lower when the tables are
compressed by the BF algorithm, with times ranging from 32.22% to 77.88%,
depending on the lookup algorithm.

For the case of multiple tables, we can observe two factors that negatively
affect the performances: (i) the number of tables in the sets and (ii) the “ho-
mogeneity” of the tables. In fact, both the BF-Multi algorithm and the BFM
and BFM-Cluster ones degrade when the number of tables in the sets increases
(see Tables 6 and 12). However, we have shown that it is possible to obtain a
good average compression by further running the ORTC algorithm on the arising
compressed tables. For all the algorithms, we have noticed that the compression
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Table 10. Average lookup times improvement on the algorithms executed on all the
traffic files with respect to the original times on uncompressed routing tables (BFM
algorithm)

LC Trie Multibit Binary search on IP length

Set BFM BFM+ORTC BFM BFM+ORTC BFM BFM+ORTC

1 10.49% 10.68% 41.07% 68.91% 67.86% 38.09%

2 −30.42% −0.80% 57.50% 62.50% 59.31% 45.16%

3 31.41% 32.13% 67.11% 77.55% 74.70% 73.72%

4 31.25% 19.24% 73.39% 62.10% 69.80% 51.00%

5 −16.40% 8.16% 58.75% 62.59% 67.62% 46.23%

6 2.59% 27.18% 69.18% 73.63% 70.67% 68.80%

7 −28.52% 9.21% 61.12% 66.03% 64.45% 50.34%

8 −111.07% −3.39% 0.80% 53.57% 48.69% 34.38%

9 −105.17% −11.56% 2.68% 51.52% 47.68% 28.14%

10 −17.35% 5.84% 56.40% 59.61% 65.50% 44.80%

11 −42.02% 6.71% 41.51% 57.96% 41.66% 44.93%

12 −0.10% 0.82% 66.24% 55.73% 60.27% 40.51%

13 16.25% 4.94% 71.68% 58.67% 62.98% 41.85%

Table 11. Average lookup times improvement on the algorithms executed on all the
traffic files with respect to the original times on uncompressed routing tables (BFM-
Cluster(1) algorithm)

LC Trie Multibit Binary search on IP length

Set BFM-C.(1)
BFM-C.(1)
+ ORTC

BFM-C.(1)
BFM-C.(1)
+ ORTC

BFM-C.(1)
BFM-C.(1)
+ ORTC

1 20.38% 5.36% 59.40% 74.32% 37.56% 39.08%

2 27.36% 12.12% 45.00% 64.66% 37.31% 44.83%

3 29.45% 34.94% 67.60% 79.03% 56.60% 74.06%

4 49.08% 14.60% 59.44% 69.34% 41.25% 57.29%

5 40.27% 18.78% 53.02% 66.96% 37.11% 54.37%

6 45.90% 36.62% 58.97% 75.20% 56.64% 69.06%

7 41.35% 21.18% 50.25% 66.66% 40.75% 55.91%

8 −16.16% 16.19% 27.77% 53.76% −57.74% 41.98%

9 −125.06% 9.44% 27.84% 52.71% −53.52% 37.55%

10 −91.00% 6.55% −41.00% 63.88% −107.27% 53.31%

11 −141.89% 15.20% −4.62% 62.54% −182.52% 44.54%

12 −83.34% 9.81% 37.01% 59.18% −29.64% 51.25%

13 −26.01% 13.90% 45.58% 62.53% −29.64% 52.49%

ratio worsen as the tables become less “homogeneous”. We tried to formalize such
an intuition by running the algorithms on set of tables independently obtained
by perturbing the entries of a real world one with a fixed probability. Table 12
provides the reduction ratios on the sets of routing tables artificially gener-
ated, grouped by cardinality and perturbing probability. We can notice that the
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Table 12. Compression ratio on sets of routing tables obtained by perturbing the
entries of real world one with fixed probability

#tables
Perturbating

Prob.
BF-Multi

BF-Multi
+ ORTC

BFM
BFM +
ORTC

BFM-C.(1)
BFM-C.(1)
+ ORTC

7 10% 33.71% 72.24% 75.23% 78.65% 25.58% 88.41%

15 10% −50.15% 47.90% 35.00% 44.94% −16.77% 62.09%

15 30% −324.16% −46.91% 3.14% 11.33% −12.82% 13.68%

algorithms increase considerably the number of table entries when the homo-
geneity degree of the tables decreases, i.e. when the perturbing probability is
higher.

Overall, the BFM and BFM-Cluster(1) heuristics present better performances
than BF-Multi, with BFM-Cluster(1) being the best one.

Finally, concerning the IP lookup times, we have shown that in the auxiliary
data structures the compression generally induces a proportional improvement.
In fact, we have observed an evident lowering of the lookups times, as shown
in Tables 7, 9 and 10. Again, the multibit and the binary search on IP length
algorithms present a performance on the compressed tables better than the one
obtained by the LC-Trie algorithm.

Many question are left open. First of all, an interesting issue is the extension
of the experimentation work to the new IP release with addresses of 128 bits
(IPv6). Moreover, it would be nice to determine other effective algorithms and
heuristics, also guaranteeing better approximation ratios.

Finally, our work was meant as a first attempt toward the investigation of
the effectiveness of the existing and newly proposed methods for IP tables com-
pression. Starting from this basis, new heuristics should be devised also taking
more into account other intrinsic features of the IP protocol, like for instance
the hierarchical structure of the network.
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Abstract. We consider an optimization problem arising in the design of con-
trollers for OLED displays. Our objective is to minimize the amplitude of the
electrical current flowing through the diodes which has a direct impact on the
lifetime of such a display. The optimization problem consist of finding a decom-
position of an image into subframes with special structural properties that allow
the display driver to lower the stress on the diodes. For monochrome images, we
present an algorithm that finds an optimal solution of this problem in quadratic
time. Since we have to find a good solution in realtime, we consider an online
version of the problem in which we have to take a decision for one row based
on a constant number of rows in the lookahead. In this framework this algorithm
has a tight competitive ratio. A generalization of this algorithm computes near
optimal solutions of real-world instances in realtime.

1 Introduction

Organic Light Emitting Diodes (OLEDs) have received growing interest recently as
more and more commercial products are equipped with such displays. Though they
have many advantages over current technology like LCD, only small size OLED dis-
plays have entered the marked yet. One reason for this is the limited lifetime of those

Fig. 1. Sample of a commercial OLED device with integrated driver chip

displays. While a lot of research is conducted on the material science side, the so-called
Multiline Addressing Scheme for passive matrix OLED displays [7] tackles the lifetime-
problem from an algorithmic point of view. It is based on the fact that equal rows can

C. Demetrescu (Ed.): WEA 2007, LNCS 4525, pp. 338–351, 2007.
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Fig. 2. Schematic electrical circuit of a display

be displayed simultaneously with a lower electrical current than in a serial manner. An
explanation of this phenomenon can be found in [1] and [6]. Here we restrict ourselves
to an informal description for self-containment.

A (passive matrix) OLED display has a matrix structure with n rows and m columns.
At any crossover between a row and a column there is a vertical diode which works as
a pixel. The image itself is given as an integral non-negative n × m matrix (rij) ∈
{0, . . . , �}n×m representing its RGB values. Consider the contacts for the rows and
columns as switches. For the time the switch of row i and column j is closed, an elec-
trical current flows through the diode of pixel (i, j) and it shines. Hence, we can control
the intensity of a pixel by the two quantities electrical current and time. In our applica-
tion, the electrical current is equal for all pixels. Since high amplitudes of the electrical
current or high peaks of intensity respectively, are the major issues with respect to the
lifetime of the diodes [5], we try to trade as much time as possible for it. But since an
image has to be displayed within a certain time frame Tf , it is a limited resource that
we shall use as efficient as possible. Hence, the value rij determines the amount of time
within the time frame in which the switches i and j have to be simultaneously closed.
At a sufficient high frame rate e.g. 50 Hz, the perception by the eye is the average value
of the light emitted by the pixel and one sees the image.

The traditional addressing scheme is row-by-row. This means that the switch for the
first row is closed for a certain time while the switches for the columns are closed for
the necessary amount of time dictated by the entries r1j , j = 1, . . . , m. Consequently
the first row can be displayed in time max{r1j : j = 1, . . . , m}. Then the second row
is displayed and so on.
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Consider the schematic image on the left of Fig. 3. Let us compute the amount of time
which is necessary to display the image with this addressing scheme. The maximum
value of the entries in the first row is 238. This is the amount of time which is necessary
to display the first row. After that the second row is displayed in time 237. In total the
time which is required to display the image is 238 + 237 + 234 + 232 + 229 = 1170
time units.

Now consider the decomposition of the image as the sum of the three images on the
right of Fig. 3. In the first image, each odd row is equal to its even successor. This means
that we can close the switches for rows 1 and 2 simultaneously, and these two equal rows
are displayed in 82 time units. Rows 3 and 4 can also be displayed simultaneously which
shows that the first image on the right can be displayed in 82+41 time units. The second
image on the right can be displayed in 155+191 time units while the third image has to
be displayed traditionally. In total all three images, and thus the original image on the
left via this decomposition, can be displayed in 82+41+155+191+156+38+38 = 701
time units. This means that we could reduce the necessary time via this decomposition
by roughly 40%. We could equally display the image in the original 1170 time units but
reduce the peak intensity, or equally the maximum electrical current through a diode by
roughly 40%.

109 238 28
112 237 28
150 234 25
189 232 22
227 229 19

=

0 82 25
0 82 25
0 41 22
0 41 22
0 0 0

+

0 0 0
112 155 3
112 155 3
189 191 0
189 191 0

+

109 156 3
0 0 0
38 38 0
0 0 0
38 38 19

Fig. 3. An example decomposition

On real-world images, an optimal decomposition of the image allows a reduction
of the electrical current to 56% on the average. This means an increase of lifetime by
roughly 100%, see [5].

To benefit from this decomposition in practice, an algorithm to solve the optimization
problem, which is formally described in Section 2, has to be implemented on a chip
which is attached to the display, see Fig. 1. The following design criteria lie in the focus
when engineering such an algorithm.

– The algorithm has to react in realtime.
– It must have low hardware complexity allowing small production costs.
– Consequently it has to rely only on a small amount of memory and it should be

fully combinatorial, i.e. only additions, subtractions, and comparisons are used.

Especially the last of the above criteria clearly establishes a border between our ap-
proach and another technique [4] based on Non-negative Matrix Factorization [3,2].

Contributions of This Paper

First we show that monochrome images can be optimally decomposed in polynomial
time. The presented algorithm has quadratic running time in the worst case. Therefore
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we introduce an online version of this algorithm which takes a decision for one row,
based on a lookahead of a certain fixed number of rows. This algorithm runs in linear
time and has tight competitive ratio. On real world images it turns out that a lookahead
of 3 rows gives the most satisfactory results when balancing approximation ratio, ease
of implementation and running time. Our computational results show that this algorithm
with a lookahead of 3 outperforms the previously best algorithm presented in [1] w.r.t.
its practical approximation ratio and even more so w.r.t. its running time. This implies
that nearly optimal Doubleline Addressing for real world images can be efficiently com-
puted and, in particular, that an economic hardware implementation meeting the design
criteria is possible.

2 The Formal Model

In this section, we will briefly review the formal model presented in [1]. Let R =
(rij) ∈ {0, . . . , �}n×m be the matrix representing the image. To decompose R we need

to find matrices F (1) = (f (1)
ij ) and F (2) = (f (2)

ij ) where F (1) represents the singleline

part and F (2) the two doubleline parts. More precisely, the i-th row of matrix F (2)

represents the doubleline covering rows i and i + 1. Since the overlay (addition) of
the subframes must be equal to the original image to get a valid decomposition of R,
the matrices F (1) and F (2) must fulfill the constraint f

(1)
ij + f

(2)
i−1,j + f

(2)
ij = rij for

i = 1, . . . , n and j = 1, . . . , m, where we now and in the following use the convention
to simply omit terms with indices running out of bounds. Since we cannot produce
“negative” light we require also non-negativity of the variables f

(α)
ij ≥ 0. The goal is to

find an integral decomposition that minimizes

n
∑

i=1

max{f
(1)
ij : 1 ≤ j ≤ m} +

n−1
∑

i=1

max{f
(2)
ij : 1 ≤ j ≤ m} .

This problem can be formulated as an integer linear program by replacing the objective
by

∑n
i=1 u

(1)
i +

∑n−1
i=1 u

(2)
i and by adding the constraints f

(α)
ij ≤ u

(α)
i . This yields

min
n

∑

i=1

u
(1)
i +

n−1
∑

i=1

u
(2)
i

s.t. f
(1)
ij + f

(2)
i−1,j + f

(2)
ij = rij for all i, j (1)

f
(α)
ij ≤ u

(α)
i for all i, j, α (2)

f
(α)
ij ∈ Z≥0 for all i, j, α (3)

Note that the objective does not contain the f -variables.
Consider the constraints (1) for a fixed column j. By appending the constraint 0 =

0 and by subtracting the i − 1-st constraint from the i-th constraint, we obtain the
following set of constraints

f
(1)
ij − f

(1)
i−1,j + f

(2)
ij − f

(2)
i−2,j = rij − ri−1,j for all i, j. (4)
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For each j the constraint-matrix is thus the node-arc incidence matrix corresponding to a
graph like in Fig. 4. In the following we refer to this graph, which is solely determined
by the number n of rows in the image, by the name prototype displaygraph Gn =
(V, A).

1

2

3

4

5

6

f
(1)
1j

f
(1)
2j

f
(1)
3j

f
(2)
1j

f
(2)
3j

Fig. 4. Prototype displaygraph with variable-names of arcs entering and leaving row 3

The variables f
(1)
ij correspond to the arcs going from left to right and vice versa.

We call them arcs of type 1. The variables f
(2)
ij are represented by the vertical arcs,

called type 2. The number rij − ri−1,j is the demand dj(i) of vertex i in column j. The
optimization problem can now be understood as follows.

Given an integer matrix R ∈ N
n×m
0 reserve capacities u : A −→ N0 for

the arcs A of Gn such that each of the demands dj , j = 1, . . . , m can be
individually routed in Gn and such that u(A) =

∑

e∈A u(e) is minimal.

In this context, individually routed means that for any column j the capacities admit a
feasible flow satisfying the respective demands dj .

3 Decomposing Monochrome Images in Polynomial Time

A monochrome image is an image R ∈ {0, 1}n×m. In this section we show that an
optimal decomposition of such an image can be computed in polynomial time. The
following example shows the transformation of an image into the demand matrix by the
row operations that we described in the previous section.

⎛

⎝

1 0 1
0 1 1
1 1 1

⎞

⎠ �

⎛

⎜

⎜

⎝

1 0 1
-1 1 0
1 0 0
-1 -1 -1

⎞

⎟

⎟

⎠

�

⎛

⎜

⎜

⎝

1 0 0 1
-1 0 1 0
0 1 0 0
0 -1 -1 -1

⎞

⎟

⎟

⎠

(5)
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Each column is a 0, ±1-vector. Furthermore it is easy to see that the occurrences of 1
and −1 in each column alternate and that each 1 is succeeded by a −1 and each −1
is preceded by a 1 disregarding the zeros inbetween. Moreover, the two matrices on
the right of (5) have the same set of feasible solutions with respect to the capacities
which are subsets of arcs such that the pairs of nodes (1, 2), (3, 4), (2, 4), and (1, 4)
are connected in the corresponding subgraph. Therefore, we assume w.l.o.g. that each
column yields exactly one such pair of nodes to which we also refer as a commodity in
the following. In general the problem of optimally decomposing monochrome images
can be understood as follows.

Given commodities (sj , tj), j = 1, . . . , m with sj < tj for each j and a
number n, select a minimal number of arcs of Gn such that there exists a path
from sj to tj for each j = 1, . . . , m.

The nodes sj are called sources and the nodes tj are called sinks. Furthermore, if a node
is neither a source nor a sink, we call it Steiner. The selection of arcs of Gn is given
by a function u : A → {0, 1}, where u(a) = 1 if the arc a is selected and u(a) = 0
otherwise.

The next lemma is easy to prove but crucial to obtain a polynomial-time algorithm.
Here u(δout(i)) denotes the number of selected arcs leaving node i. Similarly, u(δin(i))
denotes the number of selected arcs entering i.

Lemma 1. Given a feasible solution u, then there exists a feasible solution u′ with

u′(δout(i)) ≤ 1 and (6)

u′(δin(i)) ≤ 1

with the same total weight.

Proof. It is easy to see that we remain feasible if we substitute an arc of type 2 by the
two arcs of type 1 incident to head and tail respectively. We do not change the number of
selected arcs by selecting the other type 1 arc instead of the type 2 arc if u(δout(i)) > 1
or u(δin(i)) > 1 respectively as depicted in Fig. 5. Such a replacement is feasible,
since each pair of nodes which was connected by a path before the replacement is still
connected after the replacement.

In the forthcomming we maintain u(δout(i)) ≤ 1 and u(δin(i)) ≤ 1 as an invariant and
call it degree condition. Thereby, the selection of one outgoing arc uniquely transforms
the instance to the same problem with one row less. However, if we have selected the

1 1 1

2 ⇒ 2 ⇐ 2

3 3 3

Fig. 5. Transformation to maintain the degree condition
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outgoing arc of type 2 for node 1 and if node 2 is a source, we have to select the arc
of type 2 as well to leave the second node to maintain the degree condition. In turn,
this might force the same for the outgoing arcs of node 3 and so on. These implications
evolve until either everything up to the current row is balanced or an odd commodity,
say (s, t) with t − s odd, produces a conflict (see Fig. 6). More precisely speaking,
balanced up to row i means that the assignment to the capacities of the arcs a such that
head(a) ≤ i is a feasible solution to the subinstance consisting of the rows 1, . . . , i −
1 of the given image. Hence, the solution of the subproblem starting at node i does
not depend on how we have balanced up to row i. Note that both subproblems are
considered with respect to the given image, i.e. all commodities (sj , tj) with sj < i <
tj are split into (sj , i) and (i, tj) where the former commodity is considered with the
first subproblem and the latter with the second. It is easy to see that feasible solutions
to the subproblems join to feasible solutions for the original problem. In particular,
balanced up to row i implies that we may forbid the arc (i − 1, i + 1) and remain
feasible.

1 1

2 2

3 3

4 4

5 5

6 6

Fig. 6. In both examples, we are given the commodities (1, 3) and (2, 6). On the left, we addi-
tionally have (3, 5) whereas on the right it is the odd commodity (3, 6) instead. While the left
example is balanced up to node 6, the commodity (3, 6) produces a conflict on the right.

We will now present a basic dynamic programming scheme using node labels to store
at node i how much it costs to balance up to node i. The label of the first node is 0 and
all others are ∞ at the beginning. Let i be the current node. Assume that it is a source
since otherwise we could simply skip it and proceed with the same label at node i + 1.
We select arcs of type 2 until we either find a conflict or a node, say t, up to which we
are balanced. If the label of i plus the number of selected arcs is smaller than the label
of t, we update it accordingly. For a later reconstruction of the solution, we also store
i as the predecessor of t. In case of a conflict we do not update anything. Afterwards,
we proceed to node i + 1. If the label of i + 1 is more than 1 greater than label i, we
also update it and set i as the predecessor of i + 1, i.e. selecting the arc of type 1. Then
we repeat these steps until we reach the end. Because of the degree condition, we can
transform any instance such that each node is the source of at most one commodity and
also the sink of at most one commodity. Hence, by a preprocessing of the input data
which takes O(n · m) time, we can annotate the nodes with the necessary information.
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Since every step involves the visit of O(n) nodes and arcs, the total time for computing
the capacities is O(n2).

Theorem 1. The optimal decomposition of an image given by a matrix R ∈ {0, 1}n×m

can be computed in O(n · m + n2).

4 The Online Problem

Recall that we intend to develop an algorithm that finds a decomposition in realtime
while keeping it simplistic enough such that it can be implemented on a chip with a low
hardware complexity. Hence, we are looking for a linear time algorithm that uses only
additions, subtractions, and comparisons. Since we do not want to scan over the whole
rest of the graph in each iteration, it is natural to restrict the lookahead to a certain
number of rows. It follows an online version of our problem where we have to fix the
capacities of the outgoing arcs of a node only based on the knowledge of the following
c rows. Again, we consider monochrome images first. At the end of this section we
describe how our method can be adapted to decompose arbitrary colored images.

The canonical algorithm uses the one of Sec. 3 as follows. We solve the instance of
the known c rows to optimality. According to that solution, we fix the outgoing arcs
of the first node. After updating the instance and reading the next row, we repeat these
steps until we reach the end. The computation takes O(c · n) time disregarding the time
for the preprocessing that we have to spend anyways to parse the input.

In the following, we will first give a lower bound on the competitive ratio of any
algorithm in that online setting. Afterwards, we will analyze the competitive ratio of
the aforementioned approach. Before we state the theorem, it is helpful to have a look
at following example where the adversary starts with the image in the middle and then
reveals the fourth row according to the arc we have selected for the first node.

⎛

⎜

⎜

⎝

� 1 � 0 � 0
1 1 0
1 1 1
1 0 1

⎞

⎟

⎟

⎠

type 1←−

⎛

⎜

⎜

⎝

1 0 0
1 1 0
1 1 1
� � �

⎞

⎟

⎟

⎠

type 2−→

⎛

⎜

⎜

⎝

� 1 � 0 � 0
� 1 1 0
1 1 1
0 0 1

⎞

⎟

⎟

⎠

(7)

The optimal value in both cases is 3. But after making the choice for the first row, the
adversary force us to pay 4.

Theorem 2. Any online algorithm that fixes the outgoing arcs of node i without know-
ing the rows i + c and beyond, has a competitive ratio of at least c+1

c .

Proof. An adversary reveals the first c nodes of an instance with the commodities (i, ti)
forall i = 1, . . . , c where ti ∈ {c + 1, c + 2} is chosen later depending which arc the
algorithm picks following the idea shown in (7). If the algorithm selects the arc of type
1, then the adversary sets t1 to the odd value. Otherwise, it is set to the even node. All
other ti are set such that the commodities (i, ti) are even. The optimal solution of the
residual problem is c. Hence, the achieved objective value is c+1 whereas the opposite
choice for the first arc would yield an optimal solution of value c.
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Theorem 3. There is an algorithm with competitive ratio c+1
c .

Proof. We first compare the optimal algorithm running on the complete instance with
the one running on the first c rows. Let t be the node such that the selection of the type
2 arcs starting with the first node gets balanced with respect to the whole instance. If
no such node exists, then in every feasible solution the arc of type 1 has to be picked
for leaving node 1. This also holds for the instance restricted to the first c nodes. Note
that the choice of the first arc only depends on the rows strictly less than t. Hence,
if t ≤ c + 1, then the online algorithm makes the same decision on the first arc as
the optimal one. Otherwise, it takes the arc of type 1. So let us assume that the arc
of type 2 would have been the optimal choice. Hence, the optimal label of node t is
t − 2. On the other hand, choosing only arcs of type 1 yields a label of t − 1. Since
t > c + 1, the ratio t−1

t−2 ≤ c+1
c . Since we can partition the solution that is found by the

optimal algorithm into independent balanced parts, we can repeat these arguments on
them.

4.1 A Compact 4/3-Approximation

In this subsection, we unroll the generic algorithm for the case c = 3 and give a compact
set of rules for the selection of the capacities. These rules can be generalized to decom-
posed colored images yielding a competitive approximation algorithm in practice. They
are described as follows and depicted in Fig. 7.

Compact. We consider the first three nodes. If the first node is not a source, we skip
it without selecting any outgoing arc. Assume it is a source in the following. If the
corresponding sink is node 2 (see Fig. 7a), we select the arc of type 1. If node 2 is a
Steiner node (Fig. 7b), i.e. it is neither a source nor a sink, then we select the arc of type
2. If node 2 is a source and node 3 is either the corresponding sink or Steiner (Fig. 7c/d),
we select the arc of type 1. Otherwise, we select the arc of type 2 (Fig. 7e).

1 (a) 1 (b) 1 (c)

2 2 2

3 3 3

1 (d) 1 (e)

2 2

3 3 otherwise

(1, 2) Steiner

(2, 3)

Steiner

Fig. 7. The rules for the algorithm COMPACT
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Lemma 2. The algorithm COMPACT achieves a competitive ratio of 4/3.

Proof. The interesting cases are if node 1 and 2 are sources and their corresponding
sinks are not revealed yet. Assume first that node 3 is Steiner. We show that we can
transform every feasible solution such that the Steiner node is isolated (see Fig. 8).
Consider a feasible solution where the arc between node 1 and 3 is picked. Since node
2 is a source the arc between 2 and 4 is also selected. Moreover there must be an arc
between node 3 and 5. We can reconnect the tail of latter to node 4 and the head of the
outgoing arc of node 1 to node 2. Thereby, we do not change the number of arcs and
the routing remains feasible. If node 3 is a source instead, the demand of node 1 may
go piggyback with the demand of node 2 or with the one of node 3. Since the first three
nodes are sources, each of them has an outgoing arc in every feasible solution. If an
adversary reveals that our decision to take the arc of type 2 for node 1 was wrong, we
need one surplus arc to fix it. Until the adversary does not force us to change the parity,
i.e. choose an arc of type 1, we do not use more arcs than optimal. Moreover, if we
are forced to take such an arc, the problem decomposes into independent subproblems.
Thereby, we use at most one surplus arc by three necessary ones and hence get a ratio
of 4/3.

1 1

2 2

3 ⇒ 3

4 4

5 5

Fig. 8. Isolating a Steiner node

Generalizing to Colored Images. Recall that in the general case the instance is not
given by a binary matrix but as R = (rij) ∈ {0, . . . , �}n×m. So we need to gener-
alize our concepts for this purpose. We briefly sketch how this is done in our algo-
rithm. Whenever max{rij − ri−1,j : 1 ≤ j ≤ m} > 0 we call the node i a source
in the prototype displaygraph. For the ease of notation, we use the following abbre-
viation ri − ri−1 for the maximum over all columns. Similarly, we call node i a sink
whenever ri−1 − ri > 0. The degree condition transforms into u(δout(i)) ≤ ri and
u(δin(i)) ≤ ri−1. Similarly to the set of rules presented above, we define five rules
for the general case. The rule a) for example translates into the rule in which we have
to reserve a capacity of at least r2 − r1 on the arc of type 1 leaving node 1. The other
rules can be generalized accordingly. We do not know the exact approximation ratio
of this generalized algorithm. In particular we do not know whether it exceeds 4/3.
However, as the computational results of the next section show, it behaves very well in
practice.
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5 Computational Results

We use the same testset and machine as in [1]. It is a Pentium M with 2GHz and 2MB L2
cache. The images are portraits of 197 employees of the MPI. They have a resolution of
180×240 pixels and a colordepth of 24 bit, i.e. n = 180, m = 720, and � = 255. From
[1], we take the algorithms called ec-bf-mcgu-2 and ec-bf-mcgu-4 which performed
best there. They differ only by the fact that the former combines two rows and the latter
combines up to four rows. We compare them to the generalized COMPACT algorithm
(that solves the doubleline problem) and a cascading of it such that four or two rows may
be combined. We will elaborate on the differences of ec-bf-mcgu-4 and CASCADING to
the doubleline addressing scheme at the end of this section.

0 50 100 150 200
Index

0.001

0.01

0.1

1

10

tim
e 

[s
]

ec-bf-mcgu-4: 3.417s
ec-bf-mcgu-2: 2.348 s
cascading: 0.019s
compact: 0.007 s

Fig. 9. Running time comparison of the old and new algorithms

In Fig. 9, we show the running times for each instance. The squares and the crosses
(top) represent the old measurements of ec-bf-mcgu-2 and ec-bf-mcgu-4 respectively.
Whereas the dots and circles (bottom) correspond to the new algorithms COMPACT

and CASCADING. We connected the measurements by lines to guide the eye. Note
the logarithmic scale of the time axis. One can see that the new algorithms are two
orders of magnitudes faster than the old ones. Comparing the mean running times, the
improvement is more than a factor of 300 between ec-bf-mcgu-2 and COMPACT, and
about 180 between ec-bf-mcgu-4 and CASCADING. Moreover, the variance decreases
drastically. This is due to the fact that the running time of the old algorithms depends
strongly on the input data, i.e. on the unary encoding length, while it scales only with
the size of the binary encoding length in the new ones.

It remains to show that the drastic improvements with respect to the running times
are not at the cost of the approximation quality. Therefore, we solved the corresponding
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integer linear programs for doubleline addressing with the commercial solver CPLEX.
Thereby, we obtained the optimal solutions and were able to compare the per-instance
approximation ratios of ec-bf-mcgu-2 and COMPACT. The results are depicted in Fig 10.

0 50 100 150 200
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0.96

0.98

1

1.02

1.04

1.06

1.08

1.1
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ec-bf-mcgu-2: 2.2%
Compact: 0.2%

Per Instance Approximation Ratios 
(Doubleline Addressing, k=2)

Fig. 10. Results of the old and the new doubleline algorithms normalized to the corresponding
optimal solution. The horizontal lines indicate the respective means.

As one can see, the quality of the approximation of the new algorithm is not worse
than for the one presented in [1]. In fact, on average it is even considerably better.
Recall that the objective of our optimization problem is proportional to the electrical
current and therefore has a direct impact on the lifetime of such a passive matrix OLED
display. The average gap of 0.2% shows that we have found an algorithm that does not
leave much room for improvement with respect to the necessary electrical current to
display real world images using the doubleline addressing scheme.

However, one can consider combining more than two rows to reduce the electrical
current even further. The heuristics of [1] have been implemented in such a more general
way, that the number of lines up to which we want to combine them, is controlled by a
parameter k = 2, 3, 4, . . . whereas COMPACT is specialized to the doubleline address-
ing scheme, i.e. k = 2. Nevertheless, doubleline addressing is an important building
block for more advanced strategies. We outline here a simple one that is achieved by
cascading COMPACT. This means that we take the two frames that contain the com-
puted doublelines and feed both independently as input to COMPACT again. Thereby
two doublelines of the outcome of the first phase may potentially be combined to a
doubleline which represents the combination of four lines with respect to the original
image. Thereby, we push forward into the range of ec-bf-mcgu-4 without considering
the combination of three lines. The ratios of the objectives of CASCADING and ec-bf-
mcgu-4 for each instance are presented in Fig. 11.
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Fig. 11. The relative objective of CASCADING with respect to ec-bf-mcgu-4. The horizontal line
indicates the average ratio of 1.02.

The slightly worse average approximation ratio by a factor of 1.02 is more than
compensated by the improvement with respect to the running time by a factor of about
180. Moreover, it is not possible that CASCADING yields a worse objective value than
COMPACT on the same instance whereas this behavior occurred on some instances con-
cerning ec-bf-mcgu-2 and ec-bf-mcgu-4. However, there might be other strategies that
are simplistic enough to guarantee a fast running time at low hardware complexity to
close the gap. This is subject to ongoing research.

We want to conclude with a brief discussion of the applicability of consecutive Mul-
tiline Addressing to a broader set of images. Based on the results for human faces, it is
natural to ask for photographs in general. It turned out that on a variety of over 3000
pictures, COMPACT achieves a reduction of the electrical current to 56% on the average
with a mean per instance approximation ratio of 1.003 compared to the optimal solu-
tion provided by CPLEX. The results for two exemplary music videos are even better
with a reduction to 51% which is only a factor of 1.002 away from the optimum. We
explain this behavior by the fact that the content of photos is rather smooth, e.g. they
are not dominated by sharp edges as in artificial images like cliparts and text by bitmap
fonts. This is in agreement with the results on a testset of wallpapers for mobile phones
with a mean reduction to 63% and approximation factor of 1.005 averaged over about
4500 samples. We observed that diagonal lines, in particular if the width is only one
pixel and the contrast to the neighborhood is high, constitute an obstacle to Multiline
Addressing.

Finally, we want to thank Markus Tetzlaff for providing us with the large set of
his digital photos and Tobias Jung for performing the tests as part of his bachelor
thesis.
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Abstract. A major task in evolutionary biology is to determine the ancestral rela-
tionships among the known species, a process generally referred as phylogenetic
reconstruction. In the past decade, a new type of data based on genome rearrange-
ments has attracted increasing attention from both biologists and computer sci-
entists. Methods for reconstructing phylogeny based on genome rearrangement
data include distance-based methods, direct optimization methods (GRAPPA and
MGR), and Markov Chain Monte Carlo (MCMC) methods (Badger). Extensive
testing on simulated and biological datasets showed that the latter three methods
are currently the best methods for genome rearrangement phylogeny. However,
all these tools are dealing with extremely large searching spaces; the total number
of possible trees grows exponentially when the number of genomes increases and
makes it computationally very expensive. Various heuristics are used to explore
the tree space but with no guarantee of optimum being found. In this paper, we
present a new method to efficiently search the large tree space. This method is
motivated by the concept of particle filtration (also known as Sequential Monte
Carlo), which was originally proposed to boost the efficiency of MCMC methods
on massive data. We tested and compared this new method on simulated datasets
in different scenarios. The results show that the new method achieves a significant
improvement in efficiency, while still retains very high topological accuracy.

1 Introduction

The goal of phylogenetic analysis is to determine the evolutionary relationships among
organisms and their genomes. A phylogeny for a set of N genomes (species) is a prefer-
ably N leaves binary tree, with each leaf labeled by a distinct element of the input
set. Fig 1 shows two proposed phylogenies [18], the left one is for 12 species of the
Campanulaceae (bluebell flowers) family (with Tobacco as an outgroup), represented
in the form of cladogram; and the right one is for herpesviruses that are known to affect
humans, represented in the form of an unrooted tree.
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Fig. 1. Phylogenies for Campanulaceae (left) and herpesviruses (right)

To date, DNA (or protein) sequence data is the primary source of information for
phylogenetic analysis. In the last decade, genome rearrangement (also known as gene-
order) data are emerging into the field and many researchers showed great interests
about it [8,20,21,24].

Biologists can infer the ordering and strandedness of genes on a chromosome and
thus represent each chromosome by an ordering of signed genes (where the sign indi-
cates the strand). These gene orders can be rearranged by evolutionary events such as
inversions and transpositions. The relative rarity of genomic rearrangements, together
with the increasing availability of complete genome sequences, make them very attrac-
tive as new sources for genome comparison. Developing appropriate tools for analyz-
ing such data is therefore an important area of research. During the past several years,
computer scientists have been able to make substantial progress in genome rearrange-
ment research. With the solution for inversion distance [12] and inversion median [4],
we were able to estimate phylogenies and ancestral genomes based on inversions (the
dominant events in organellar genomes).

There are several widely used methods for genome rearrangement analysis, includ-
ing neighbor-joining [25], GRAPPA [16], MGR [2] and Badger [14]. Using the later three
generally will achieve better accuracy than using distanced based methods such as
neighbor-joining. However, since all these three methods need to find the best tree
from a large number of possible trees (tree space), they all face the similar problem
of scalability: none of these three methods can be used for more than 15 genomes
(species) because the total number of possible trees increases exponentially with the
number of genomes 1: there are 13 billion trees for 10 genomes, more than 7,000 billion
trees for 15 genomes, and more than 267 trees for merely 20 genomes. Using today’s
most powerful machines, GRAPPA (the fastest among the three) can finish searching the
tree space for 15 genomes within several minutes, but such search will take more than
6,000 centuries for 20 genomes. Even if the CPU power continues to increase under
Moore’s law (doubled for every 18 months), such computation will still take at least 20
years.

1 The number of all possible binary trees is (2N − 5)!! = (2N − 5) × (2N − 7) · · · × 3 for N
genomes [10].
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One way to remedy this problem is to use disk-covering methods (DCM), introduced
by Warnow and her group. Tang et al. combined the DCM1 [13] approach with GRAPPA,
and produced DCM-GRAPPA [28], which can analyze datasets of up to 1,000 taxa with
high accuracy. DCM-GRAPPA works in three steps: it first decomposes the dataset into
smaller overlapping subproblems, then runs GRAPPA as the base method on these sub-
problems to obtain subtrees, and finally combines the subtrees to build a tree for the
original dataset. Since GRAPPA has a limit on the number of genomes it can handle,
DCM-GRAPPA has to recursively call DCM until each subproblem size falls below that
limit (currently set to 13 genomes). Because the threshold is small, large problems re-
quire many levels of recursive decomposition, which is not only time-consuming but
also risks propagating and amplifying error in the assembly of the subtrees. For 1,000
genomes, it generally requires 6−7 level of recursively calls if the maximum subprob-
lem size is limited to 13, but only 2−3 levels when the limit is raised to 20. As a result,
improving the efficiency of GRAPPA is still desirable.

Another standard approach to scaling is to compute the smallest possible nontrivial
trees: quartet trees, defined on just four taxa. Quartet methods rely on finding the opti-
mal 4-leaf tree for each quartet and using this information to build the overall tree. Liu
et al. developed an optimization algorithm [15] for the NP-hard problem of computing
optimal trees for each quartet, as well as a variation of the dyadic method [9] to choose
suitable short quartets. This method is able to handle 20−30 genomes. However, it be-
gins to loose accuracy when the input dataset has more than 18 genomes, hence is not
suitable to be used as a base method for DCM-GRAPPA.

In the past five years, facing similar problem in Bayesian analysis of massive
datasets, statisticians developed particle filtration techniques (also known as sequen-
tial Monte Carlo methods) [7,23] to improve the efficiency in MCMC samplings. In
this paper, we present a new tree search method motivated by particle filtrations. After
some background review and definitions, we describe in Section 5 our new tree search
method in detail; in Section 6, we evaluate the new method on simulated datasets. The
results suggest that our method is much faster than GRAPPA, with very limited loss of
accuracy. This new method can be integrated with DCM methods to further improve
the analysis of large scale datasets.

2 Backgrounds

2.1 Genome Rearrangements

We assume a reference set of n genes {g1,g2, · · · ,gn}, thus a genome can be represented
as a signed ordering of these genes, and each gene is given an orientation that is either
positive, written gi, or negative, written −gi. Genomes can evolve through events such
as inversions, transpositions and transversion, as well as many other events.

Let G be the genome with signed ordering of g1,g2, · · · ,gn. An inversion between
indices i and j (i ≤ j), transforms G to a new genome with linear ordering

g1,g2, · · · ,gi−1,−g j,−g j−1, · · · ,−gi,g j+1, · · · ,gn

A transposition on genome G acts on three indices i, j,k, with i ≤ j and k /∈ [i, j], pick-
ing up the interval gi,gi+1, · · · ,g j and inserting it immediately after gk. Thus genome G
is replaced by (assume k > j):
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g1, · · · ,gi−1,g j+1, · · · ,gk,gi,gi+1, · · · ,g j,gk+1, · · · ,gn

An transversion is a transposition followed by an inversion of the transposed subse-
quence; it is also called an inverted transposition.

The edit distance between two genomes is the minimum number of evolutionary
events required to transform one genome into the other. When only inversions are al-
lowed, the edit distance is the inversion distance. The score of a tree is the sum of the
costs of its edges, where the cost of an edge can be defined as the distance between the
two genomes that label the endpoints of the edge. Finding the (minimum) score of a
tree generally requires the determination of gene orders on each internal node, which
is itself very difficult. For a three-leave tree, the tree score can be obtained by finding
a genome that minimizes the sum of pairwise distances between itself and each of the
three leaf genomes. Such procedure is generally referred as median problem of three, or
median problem for short, which is NP-hard [3,22] when inversion distances are used.

2.2 Phylogenetic Reconstruction from Genome Rearrangements

Methods for phylogeny analysis based on genome rearrangement data include distance-
based methods (for example, neighbor-joining [25]), maximum parsimony methods
based on encodings [31], and direct optimization methods. The latter, pioneered by
Sankoff et al. [26] in their package BPAnalysis and improved by GRAPPA [16] and
MGR [2], are the most accurate. A Markov Chain Monte Carlo method (Badger) [14]
developed by Larget et al. is also widely used with comparable accuracy. The recon-
struction goal of both GRAPPA and MGR is to find the tree(s) with the lowest score. One
should note that such minimum score tree may not be the true phylogeny–it is just an
estimation of the history. In deed, all phylogenetic methods so far cannot guarantee
that the true phylogeny be found, thus the accuracy of a method should be carefully
assessed using both simulated and biological data. Besides returning a phylogeny, all
these methods can also give an estimate of ancestral genomes, which will have great
utility for biologists interested in the process of genome rearrangement.

2.3 GRAPPA

GRAPPA is an exhaustive search method, moving systematically through the space of all
(2N − 5)(2N − 7) · · ·3 possible trees on N genomes. For each tree, the program tests a
lower bound to determine whether the tree is worth scoring; if so, then the program will
determine the tree score by iteratively solving the median problems at internal nodes
until convergence, as outlined in Fig. 2.

The speed of GRAPPA is regulated by two factors: the efficiency of median compu-
tation and the pruning rates, i.e. how many trees can be discarded before being scored.
Moret et al. developed several lower bounds based on triangular inequalities [17]. All
these bounds are very tight and easy to compute (much easier than the scoring pro-
cedure). As a result, more than 99.99% trees can be discarded without being scored.
Further speed-up is achieved by using a branch-and-bound approach that can discard
most trees without even generating them. Overall, GRAPPA achieves a billion-fold speed
up over its predecessor of BPAnalysis and can finish the original 13-genome Campan-
ulaceae dataset [6] within 20 minutes on a single workstation. Even with such speedup,
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Initially label all internal nodes with gene orders
Repeat
   For each internal node v, with neighbors A, B and C, do

Until no change occurs
   If relabeling v with m improves the tree score, then do it    
   Solve median problem on A, B, C to yield m

Fig. 2. The GRAPPA scoring procedure

GRAPPA is not suitable for datasets with more than 15 genomes. Both MGR and Badger
face similar limitations [2,14].

3 Searching the Large Tree Space

GRAPPA is not the only package that faces the dilemma of dealing with the fast growing
tree space. Indeed, except for distance based methods (such as neighbor-joining [25]),
all popular phylogeny packages–including those developed for DNA sequence data–
have to search this space for phylogenies. For dataset with many species, people have
to rely on various heuristics to explore the tree space with no guarantee that the optimal
trees will be found.

Three natural approaches for searching the tree space are nearest-neighbor inter-
changes (NNI), subtree pruning and regrafting (SPR), and Tree-Bisection- Reconnec-
tion (TBR) [27]. In NNI, one of the internal edges is chosen at random and the four
subtrees (by removing the edge and its two nodes) are reconnected randomly. In SPR,
a random edge is selected and two subtrees are created, then one of the two subtrees is
removed at random and reinserted along a random edge in the other subtree. In TBR,
similar to SPR, one edge is removed and the tree is divided into two subtrees, then they
are joined by an edge connecting two midpoints of edges of the two subtrees. Figure 3
shows two examples of these heuristics.

These methods form the core of many phylogeny analysis packages, including
Bayesian methods such as Badger. Since there is no guarantee of convergence by using
these methods, various schemes (such as choosing multiple starting points) are devel-
oped with the hope that the search will converge. However, Mossel et al. [19] recently
proved that many of the popular Markov Chain Monte Carlo methods using the above
tree searching techniques take exponentially long time to converge.

On the other hand, GRAPPA uses an exhaustive approach to examine all possible trees.
In order to perform this exhaustive search, a fast tree generating procedure using depth-
first approach is implemented, which in turn provides a new way of defining the tree
space.

Let’s examine the depth-first procedure in detail. Assuming the tree generating pro-
cedure works on levels, and each level k has all the partial trees containing the first k
genomes. We pick the first three genomes (genome 1, 2 and 3) and create the (only)
binary tree in level 3. named T3·1 (tree number one in level 3). Then, we will attach
the next genome (genome 4) to the first edge of this tree, and generate tree T4·1. We
repeatedly add the next genomes until it reaches the last level (genome N is included),
resulted in the first complete N-genome tree (TN·1) being generated. The next tree (TN·2)
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Fig. 3. Examples of NNI (top) and TBR (bottom)

is generated by attaching genome N to the second edge of TN−1·1, and tree (TN·2N−5) is
generated by attaching genome N to the last edge of TN−1·1. The depth-first search has
reached the depth, so it will move a level up and attach genome N − 1 to the second
edge of tree TN−2·2, and generates the next block of 2N − 5 trees for N genomes. We
then move up and down the levels as in the standard depth-first search, until all trees
are generated.

We can define a tree space by assigning every tree a unique tree number with respect
to the ordering of its appearance in the depth-first generating procedure. This space has
a unique property that trees with close tree numbers are generally similar in topology.
For example, the first 2N − 5 trees has difference of only one edge. The branch-and-
bound method developed in GRAPPA [29] was based on this tree generating procedure
and is the fastest options for using GRAPPA.

GRAPPA also provides a stepping function to quickly explore the tree space: if user
sets the stepping interval of S, then it will only generate trees with number 1 + S,1 +
2S, ... as defined in the above space. Of course, the problem is obvious: it has a high
probability of missing the best tree if the stepping is set too high, and is too slow if such
value is small. The exhaustive search approach can be viewed as a special case when
the stepping interval is set to one.

4 Particle Filtration Technique

In the context of sequential estimation, full MCMC algorithms must re-sample when
new data arrives, hence the parameter and data spaces are enlarged to fit the new
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situation, which is computationally very expensive when the data space is large. Se-
quential Monte Carlo methods (or particle filtration) techniques were developed to deal
with such data-parameter enlargement problems.

Particle filtration techniques can be applied to the situation where subsets of the tar-
get data space are progressively included in the analysis [5,23]. They are also used to
deal with massive non-sequential datasets where the data space can be divided into
subsets and sequentially included into the analysis. The method starts by initializ-
ing a set of parameter estimates and uses importance sampling to filter out the par-
ticles, i.e., the parameters that have the least posterior probability after incorporating
the additional data, by reweighing the parameter estimates derived from the current
posterior distribution, using importance sampling. With this approach, the time sav-
ing can be dramatic. In addition, particle filtration only requires the adoption of a sin-
gle step Metropolis update within re-sampling steps that are guaranteed to come from
the posterior distribution and hence the usual convergence requirement does not apply
to it.

Although particle filtration is developed for MCMC sampling on massive data and
therefore requires a definition of posterior distribution, the idea of particle filtration,
especially the concept of importance sampling and re-sampling scheme, can be adopted
by any phylogeny packages to explore the large tree space.

5 The New Algorithm

5.1 Overview

Our new algorithm integrates particle filtration with the various tree search techniques
discussed in Section 3. Let D denote the whole tree topology space for N genomes,
and let D1 denote a subset of trees from D, which is served as the initial trees for
updating.

The algorithm of our method can be described with the following steps:

1. (Loading) Load a subset of D1 trees into the memory. These trees can be randomly
picked from the whole phylogenetic tree space.

2. (Resampling) For every tree D1i in D1, search its neighborhood in the tree space. If
a tree with higher weight exists, replace the current D1i tree with this one.

3. (Updating) After getting a new set of D1, we then call the MCMC updating methods
(such as NNI, TBR and SPR) to update the D1 trees. The update will stop after
certain number of updates are performed.

4. (Reporting) Choose the best tree found in the previous steps, and return the result.

5.2 Implementation Details

The above procedures are standard in particle filtration methods. However, there are
a few modifications in each step since the new algorithm does not handle posterior
distributions.

In step one, all particle filtration methods require loading as much as possible data
into the initial subset (D1). Since the tree space is too large, the portion of trees can
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be loaded into memory is always a small percentage. In our experiments, we found
that the final results are not very sensitive to the size of D1 (denote |D1|), and only a
few hundred trees are needed in forming the initial D1. In fact, selecting which trees to
form set D1 is more important. Our strategy is to divide the whole tree space into |D1|
subspaces (using tree numbers) and therefore each subspace contains (2N−5)!!

|D1| trees.
Within each subspace, we then randomly select one tree into D1. The purpose of doing
so is to go deep enough into the tree space so that the trees are not chosen only from
a small portion of the whole dataset. Since the tree number can be very large, we use
the GNU Multiple Precision Arithmetic Library (GMP) to handle large integer numbers
required in this step.

In the re-sampling procedure (step 2), trees in D1 are updated by comparing the im-
portance weight of each tree, i.e., a tree with higher weight will substitute the old tree
in D1. Such weight is originally defined to be proportional to the posterior density. We
define a weight that is proportional to it inversion tree score, and a tree with lower tree
score is given higher weight. Such score can be computed by the GRAPPA scoring pro-
cedure, or it can be estimated using the linear programming method [30] if the median
is too difficult to compute. The searching for new trees should be done locally, which
is utilized by using the stepping function in GRAPPA. Specifically, the local search is
controlled by stepping interval S and number of steps U1, all can be kept in the range of
several hundred.

In standard particle filtration methods, the updating procedure (step 3) is performed
according to the importance weight of each tree in D1, i.e., trees with higher weight
will have higher chances to be updated. In our current implementation, we choose to
keep it simple and all trees in D1 are updated exactly the same number of times, de-
noted as C (number of cycles). As we can see in the experimental results, we only need
a small number of cycles to generate very satisfying results. MCMC methods are re-
quested for this update, thus all the standard MCMC update methods like NNI, TBR
and SPR can be used. However, since SPR and NNI are localized updates compared to
TBR, and a local search has already been done in step 2, we only use TBR in the new
method.

6 Experimental Results

6.1 Setup of Simulations

We set out to examine the performance (in terms of speed and accuracy) of the new
method. We concentrated our experiments on simulated datasets because topological
accuracy can be easily assessed when the true trees are known, using measurements
such as false negative and false positive. Let T be a tree leaf-labelled by a set of
genomes, deleting some edge e from T produces a bipartition which splits the genomes
into two sets. Let T be the true tree and let T ′ be the inferred tree; then the false neg-
atives (FN) are those bipartitions that appear in the true tree T but do not appear in
the inferred tree T ′. Similarly, false positives (FP) are those bipartitions that appear in
T but not in T ′ [17]. The goal of all phylogeny methods is to obtain both lower false
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negative and false positive. In our simulations, since all true trees and reconstructed
trees are binary trees, thus FP = FN, and we only report FN here. The rate of FN is
defined as the number of false edges divided by the number of internal edges of the
true tree (N − 2 for N genomes). A rate of smaller than 5% is generally considered
acceptable [27].

We generated datasets of 14, 16, 18 and 20 genomes with 100 genes for each genome
(approximately the size of small organelle genomes). We used various number of evolu-
tionary rates: letting r denote the expected number of evolutionary events along an edge
of the true tree, we used values of r in the range of 2 to 12. The actual number of events
along each edge is sampled from a uniform distribution on the set { r

2 , . . . , 3r
2 }. While all

computations were based on inversion distances and inversion medians, we generated
the data with a deliberate model mismatch to test the robustness of the methods, using
a mix of 80% inversions and 20% transpositions. For each combination of parameter
settings, we ran 10 datasets and averaged the results. All the experiments are conducted
on a Linux cluster with 152 Intel Xeon CPUs, but each CPU works independently on a
test task.

Since GRAPPA can not handle more than 15 genomes, we only tested GRAPPA on
datasets with 14 genomes and compared its accuracy with the new method. For GRAPPA,
each dataset was tested with the branch-and-bound method, which is the fastest version
available. For the new method, there are several parameters that have impact on the
results: |D1| (number of trees in D1), U1 (number of steps in re-sampling), S (stepping
intervals) and C (number of TBR updates). In our experiments, we found that C has the
biggest impact on both speed and accuracy, thus we only tested different C values (100,
300 and 500) for each dataset while the other variables were fixed. Since the tree space
of 20 genomes is very large, we also tested those datasets with C = 1000. The choice
of other parameters is listed in table 1:

Table 1. Parameters in the experiments

number of genomes |D1| U1 S
14 200 200 400
16 400 200 4000
18 600 400 40000
20 1000 1000 400000

6.2 Topological Accuracy

Fig 4 shows the accuracy in term of average FN rate, each graph contains results from
different number of TBR updates C. Not surprisingly, the accuracy increases with the
number of TBR updates, and using 500−1000 cycles of such updates produced results
with very high accuracy (with less than 5% errors). Fig 4 (a) also shows the result
obtained from exhaustive search using the original GRAPPA, which is almost identical to
those obtained from the new method.
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Fig. 4. Average FN rates as a function of r and number of cycles C

Fig 5 shows the accuracy results of using 500 − 1000 TBR updates. Compared to
the results showed in [15], this figure suggests that this new method is more accurate
than the quartet methods, thus can be used as a better base method for disk-covering
methods.
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6.3 Speed

Our method is also very fast–it took only 1 ∼ 2 days to compute 20 genomes, instead
of 6,000 centuries as we projected by using GRAPPA. In other words, we achieved ten
billion-fold speed-up while still retain very high accuracy. Fig 6 shows the average time
spent for 18 and 20 genomes. Roughly speaking, the number of trees examined needs
to be doubled when number of genomes N increases by one, thus the new method
scales better than using exhaustive approach and has the potential to handle several
more genomes.
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Fig. 6. Average running time as a function of r and number of cycles C

7 Conclusions

This paper presents a new method to search the large phylogeny space based on the con-
cept of particle filtration. Although this method is now presented along with GRAPPA,
such technique can be easily applied to other phylogeny packages. Since this method
is originally designed to extend the range of base methods for DCMs, we will further
assess the impact of using it over the direct use of GRAPPA as a base method.

This paper verifies the particle filtration to be a powerful tool in searching large
space. There are many research subjects in Bioinformatics that face similar problem.
For example, the median computation in genome rearrangement analysis needs to ex-
plore the space consists of all possible permutations–for signed genomes with n genes,
there are 2nn! possible permutations. The fact that inversion median problem is in APX
reflects the difficulty of searching such large space. Applying particle filtration may
provide a more efficient method for the median problems.
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Abstract. In the MINIMUM STRICTLY FUNDAMENTAL CYCLE BASIS (MS-
FCB) problem one is looking for a spanning tree such that the sum of the lengths
of its induced fundamental circuits is minimum.

We identify square planar grid graphs as being very challenging testbeds for
the MSFCB. The best lower and upper bounds for this problem are due to Alon,
Karp, Peleg, and West (1995) and to Amaldi et al. (2004).

We improve their bounds significantly, both empirically and asymptotically.
Ideally, these new benchmarks will serve as a reference for the performance of
any new heuristic for the MSFCB problem.

1 Introduction

Fig. 1. A very good SFCB of G8,8. It
costs 266. Can you give a cheaper one?

Consider the following problem. Given the N×N
square planar grid graph GN,N . Find a spanning
tree T such that the sum of the lengths of its in-
duced fundamental circuits is as small as possi-
ble. Figure 1 shows a very good solution for G8,8.
Is it optimal?

At first sight, this might appear being a kind of
“toy problem.” Indeed, at the occasion of its an-
nual web-based Christmas quiz (www.mathe-
kalender.de), on December 18, 2006 the
DFG Research Center MATHEON essentially asked the above question to more than
9000 registered users (pupils, teachers, scientists, and others). Typically, each day about
1500 users post their answers, and more than 60% of these answers are correct. In con-
trast, on Dec. 18, less than 15% of the answers were correct. What makes this problem
so hard?

Given a spanning tree T in a graph G; the fundamental circuits with respect to T
form a strictly fundamental cycle basis (see Section 2 for formal definitions). We refer
to the problem of finding a spanning tree whose fundamental circuits sum to a minimum
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value as the MINIMUM STRICTLY FUNDAMENTAL CYCLE BASIS (MSFCB) Problem.
As a generalization, in the MINIMUM CYCLE BASIS (MCB) Problem one seeks for a
general cycle basis of minimum length.

Applications. There is a variety of applications for the MCB problem. These include
biology and chemistry ([10]), traffic light planning ([14]), periodic railway timetab-
ling ([16]), and electrical engineering ([6]). Typically, cycle bases are computed dur-
ing a preprocessing phase. During the actual computations one ensures that a certain
problem-specific property is true for the elements of the selected cycle basis in the
graph of interest. By the properties of cycle bases, one can conclude that this particular
property is actually true for any cycle in the graph, right as it is required by the practical
application. In many cases it can be observed that shorter cycle bases imply a shorter
time for the actual computations.

For some of these applications not all cycle bases are of use (e.g. traffic light planning
and periodic railway timetabling); however, strictly fundamental cycle bases—being the
most specialized ones—always are. In other applications, such as electrical engineering,
it is at least much more favorable to use strictly fundamental cycle bases, because of the
numerical stability of the subsequent calculations ([3]). The practical relevance of the
MSFCB problem is reflected by numerous computational studies by different groups
working in combinatorial optimization ([2,7,8,11,15,20]). We give a short overview of
their results in the following.

Theory. Already in 1982 Deo et al. ([7]) proved the MSFCB problem to be NP-hard
for general unweighted graphs. Because of the practical relevance of those cycle bases
for various applications, many heuristics were proposed and tested. However, for none
of these heuristics any non-trivial approximation ratio or any non-trivial bound on the
absolute length of the resulting bases was shown. The only statement going into that
direction is a conjecture by Deo et al. ([7]) predicting that MSFCBs of unweighted
graphs have length O(n2).

The design of most of these heuristics has been led by the following observation:
“A BFS produces spanning trees of short diameters. Thus, the BFS method on the av-
erage generates fundamental cycles of shorter total length (compared to some other
approaches).” ([7]). In particular, these heuristics make local decisions that are mainly
based on the degrees of the vertices, either in G or in some residual graph.

Elkin et al. ([9]) use some completely different technique. They consider the average-
stretch tree spanner problem. Profiting from the Unified Notation for Tree Spanner
problems (UNTS, [17]) one can conclude that in the case of unweighted graphs their
results can be applied immediately to the MSFCB problem. In particular, their re-
cursive algorithm computes a SFCB of asymptotic length O(m · log2 n loglogn). Note
that this is the first non-trivial theoretical guarantee on the quality of a solution to the
SFCB problem, and it is obtained by a recursive approach. Moreover, for graphs with
|E| ∈ O(n2/ log2 n log logn), this result proves Deo’s conjecture.

Why Planar Grids? Due to the absence of theoretical bounds for the degree-based
heuristics, the authors of these approaches used empirical calculations to evaluate the
quality of their algorithms. Yet, to compare different heuristics empirically, it is essen-
tial to run them on the very same input graphs. But what are good testbeds?
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Liberti et al. ([15]) consider square planar grid graphs being “the most difficult
testbeds for the MSFCB problem, both for heuristic and exact methods, due to the
huge quantity of configurations having the same SFCB cost.” In fact, also from a the-
oretical point of view this can be motivated in three different ways. First, these graphs
are almost regular because more than n − 4

√
n vertices have degree four—a nightmare

for any degree-based heuristic. Second, within a fixed distance, the subgraphs around
almost each vertex are isomorphic. Hence, any heuristic that bases its decisions on local
configurations is likely to perform poorly. Third, if G was a tree, then in the MSFCB
problem no decisions are to be made and the problem clearly becomes trivial. An appro-
priate measure for the tree-alikeness of a graph is its tree-width ([4]). And with respect
to that measure, grid graphs—having Θ(n) edges and tree-width

√
n—are prominent

examples of being far away from being a tree ([21]). Thus the MSFCB problem is
likely to keep its hardness when considered on planar grids. Finally, also from a practi-
cal perspective planar grids are very suitable. Many of the relevant instances in several
applications are planar graphs or even planar grids (e.g. electrical engineering, traffic
light scheduling).

Focusing on grid graphs could appear narrow. But it is commonly believed that these
hold the key to better algorithms for cycle bases. Indeed, for square planar grid graphs
Alon, Karp, Peleg, and West ([1]) design spanning trees that induce cycle bases of
length 4

3 n log2 n + O(n) ([13]). They prove that these trees are asymptotically optimal.
Moreover, they conjecture their trees are “essentially optimal.” Using this asymptotical
upper bound we can demonstrate how degree-based heuristics may fail. The degree-
based C -order heuristic ([15]) can be implemented to compute “Machete”-trees (cf. [5],
and Figure 1 for an example). These trees do not only minimize the diameter of trees in
grids, but also the maximum stretch. At first sight these two parameters of a tree could
appear being tightly related to its associated SFCB cost. It is again the UNTS ([17])
which makes it transparent that even for unweighted graphs no two of these three mea-
sures do actually coincide. Machete-trees yield MSFCB objective values of Θ(n

3
2 ).

Thus degree-based heuristics risk to fail drastically on grid graphs. This again under-
lines the property of grids being a relevant testbed.

In fact, Liberti et al. ([15]) also select grid graphs as one of their testbeds. On the
50 × 50 grid they observe that their new C -order heuristic attains an objective value
of 46452, compared to 48254 of the NT heuristic ([8]). Unfortunately, this isolated
comparison does not clarify whether these are indeed good objective values. Amaldi
et al. ([2]) consider grid graphs in their computations as well. They report a solution
of objective value 23026, that was obtained by local search techniques. This clearly
shows the need for good benchmark values for the MSFCB problem for the particularly
challenging case of planar grid graphs—also for the future evaluation of new heuristics.

Of course, relevant benchmarks also include dual bounds. Since general cycle bases
are a superset of strictly fundamental cycle bases, the value of an MCB clearly serves
as a lower bound for the value of an MSFCB. On grid graphs, this yields a lower bound
of 4 · (√n − 1)2. Yet, exploiting the particular structure of grid graphs one can achieve
lower bounds for the MSFCB problem that are (asymptotically) even better. The first
was given in [1] and it has value ln2

2048 n log2 n − O(n).
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Contribution. The above discussion motivates the need for a collection of benchmark
values for the MSFCB problem on square planar grid graphs. We suggest two new
families of lower bounds and two new families of upper bounds.

In Section 3 we sketch a proof of Köhler et al. ([13]) on how a new approach im-
proves the asymptotic lower bound by Alon, Karp, Peleg, and West ([1]) to 1

12 n log2 n−
O(n), i.e., by a factor of more than 245. In addition, we prove 6n − 20

√
n + 22 to be a

new lower bound—for N ∈ {3, . . . ,61} this constitutes the best lower bound known. It
is a fact that all the primal solutions (upper bounds) that so far have been proposed in
the literature are of grids with dimension within this range.

Finally, in Section 4 we introduce a new scheme for constructing very short strictly
fundamental cycle bases—both empirically and asymptotically. We prove an upper
bound on the length of their SFCB of 0.97n log2 n + O(n), hereby improving the ob-
jective value 4

3 n log2 n + O(n) of the spanning trees due to Alon, Karp, Peleg, and
West ([1]), which they assumed being essentially optimal. In our experiments we also
compare the lengths of those trees to spanning trees that were obtained using local
search techniques ([2]). Our new trees improve the best known solutions for all N ≥ 20.
Interestingly, for N = 10,15, . . . ,55 these solutions are even local optima.

2 Preliminaries

We consider 2-connected simple undirected unweighted1 graphs G = (V,E) with n =
|V | and m = |E|. ν = m− n + 1 denotes the cyclomatic number of G. Let C be a circuit
(cf. [22, Ch. 3]) in G and denote by γC its {0,1}-incidence vector. The cycle space C
of G is the following vector subspace over GF(2),

C := span({γC |C circuit in G}) .

A cycle basis B of G is a set of ν circuits of G whose incidence vectors are a basis of C .
The length Φ(B) of a cycle basis of an unweighted graph is defined as Φ(B) = ∑C∈B |C|.
A minimum cycle basis (MCB) of a graph G is a cycle basis of G of minimum length.

Now let T be some spanning tree of G. Depending on the context, we either regard
T as a subgraph of G or as a set of edges T ⊂ E .

For e ∈ E \ T , we denote by CT (e)—or Ce for short—the fundamental circuit that e
induces with respect to T , i.e., the unique circuit in T ∪{e}. There are ν fundamental
circuits associated to T . These form a cycle basis which is called strictly fundamental
(here, we may write Φ(T ) instead of Φ(B)). Consequently, a minimum strictly funda-
mental cycle basis (MSFCB) is a strictly fundamental cycle bases having minimum
length. In the context of local search algorithms we make use of some neighborhood
concept. For an arbitrary spanning tree T we define its neighborhood as the set of span-
ning trees T ′ such that |T ∩T ′| ≥ |T |− 2.

For N ∈ N we define the planar grid graph GN,N in the usual way as the graph
on V = {1, . . . ,N}×{1, . . . ,N} with

E = {{(i, j),(i′, j′)} : |i− i′|+ | j − j′| = 1} = {{u,v} : ||u − v||1 = 1}.

1 Of course, minimum cycle basis problems are also investigated for weighted graphs. But as
we aim to contribute to the particularly challenging case of planar unweighted grid graphs, we
omit edge weights throughout our presentation.
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In a graphical representation, e.g., in an embedding into Z
2, the first index of a vertex

represents its x-coordinate, the second index its y-coordinate. Obviously, GN,N contains
n = N2 vertices and m = 2 ·N · (N − 1) edges; its cyclomatic number ν is (N − 1)2.

The dual of an embedded planar graph G is denoted by G∗. Hence, (GN,N)∗ is again
the graph of a (N − 1)× (N − 1) grid plus a further vertex F∞, which corresponds to
the outer face of the initial embedded planar graph. Recall that the edge set of G can
be identified with the edge set of G∗ (see [22, Ch. 3]). Now, consider a spanning tree T
of GN,N and its dual counterpart, that we denote by T ∗. In fact, T ∗ can be understood
as the complement of T , in the sense that it contains for each edge in E(GN,N) \ T the
corresponding counterpart from G∗. Then, T ∗ is a spanning tree of G∗, although it is
not necessarily connected when restricted to G∗ \ {F∞}.

3 New Lower Bounds

A trivial lower bound for the MSFCB problem is the length of a minimum cycle ba-
sis. It can be computed using polynomial-time algorithms (e.g. [12]). However, by a
result of Alon et al. ([1]) these lower bounds may miss the optimum value of the MS-
FCB problem by a logarithmic-factor. In particular this is true for square planar grid
graphs GN,N . Here, the trivial lower bound is only 4 · (

√
n − 1)2 whereas Alon et al.

proved Φ(T ) ≥ lnn
2048n − O(n) for all spanning trees T .

In Corollary 1 we identify 6n − 20
√

n + 22 as a lower bound for the MSFCB prob-
lem on a square planar grid. This is obtained using purely combinatorial arguments.
Alternatively, mixed-integer linear programs (MIP) could yield lower bounds. How-
ever, even sophisticated MIP formulations ([2,15]) in combination with several valid
inequalities ([19]) do not improve the combinatorial lower bound.

On the one hand, there is some dimension N0 such that our lower bound gets domi-
nated by the asymptotically better lower bound by Alon et al. ([1]). On the other hand,
in the case of N = 2k + 2, k ∈ N, we present one further lower bound function with

Φ(T ) ≥ 1
12

n log2 n − O(n), (1)

being due to Köhler et al. ([13]) and which dominates Alon et al.’s lower bound. Further-
more, it illustrates the predominance of the 6n−20

√
n+22 bound over the trivial lower

bound: The function that interpolates the asymptotically best lower bound (1) intersects
with the trivial lower bound already for N1 ≈ 8.1. In contrast, 6n−20

√
n+22 intersects

(1) not before N2 ≈ 61.6; this corresponds to a graph with more than 7300 edges.
The remainder of this section is—to that extent—subdivided into two parts. First we

examine small grids and sketch the best known bound here: 6n − 20
√

n + 22. After-
wards, we outline the proof of 1

12 n log2 n − O(n) being a lower bound which works out
only on very large grids. For detailed proofs see [19].

Small Grids. In this paragraph we now sketch how for small dimensional grids the lower
bound mentioned above can be derived. Let C be some circuit in GN,N . We denote by
diamH(C) the horizontal diameter of C, i.e., the difference between the minimum and
the maximum x-coordinates of vertices in C in the Z

2 embedding. Similarly, we define
the vertical diameter of C and denote it by diamV (C). In particular,



370 C. Liebchen et al.

|C| ≥ 2 · (diamH(C)+ diamV (C)). (2)

For e �∈ T , we use diamH(e) := diamH(CT (e)) as a short hand.
Let C be a circuit in GN,N and consider its enclosed finite region R. We define C̊ to

be the set that collects all the edges of E(GN,N) that are incident with two faces of GN,N

that have empty intersection with R
2 \R. In other words, C̊ refers to the edges inside C.

Proposition 1. Let GM,N be the M × N planar grid, let T be a spanning tree of it, and
let C be a simple circuit in GM,N. Then

∑
e∈(C∪C̊)\T

|CT (e)| ≥ 4 · |C\ T |+ 6 · |C̊\ T |. (3)

Proof. Using (2) it suffices to show that

∑
e∈(C∪C̊)\T

2 · (diamH(e)+ diamV (e)) ≥ 4 · |C\ T |+ 6 · |C̊\ T |. (4)

We derive a lower bound for ∑e∈(C∪C̊)\T diamH(e) + diamV (e) by defining a func-
tion d(e) such that

diamH(e)+ diamV (e) ≥ d(e), for all e ∈ (C ∪C̊)\ T . (5)

We define the function d(e) as follows. Since e is not contained in T we already
know that

diamH(e) ≥ 1 and diamV (e) ≥ 1. (6)

To increase d(e) beyond two, consider the spanning tree T ∗ in the dual graph (GN,N)∗

that corresponds to E(GN,N)\ T . Take F∞ as the root of T ∗. Consider the two faces of
GN,N that are incident with e. We refer to the one with larger distance from F∞ in T ∗

as F(e).
For each edge f ∈ (F(e)\ (C ∪{e}), denote by F( f ) �= F(e) the other face that f is

incident with. Observe that F( f ) �= F∞ because of f �∈ C. By the grid structure, each
of these faces F( f ) is in a different direction with respect to F(e), i.e. either north,
east, south, or west. Now, if f �∈ T , we know that CT (e) also has to contain F( f ) in its
enclosed bounded region. This way, such an edge f ∈ (F(e)\ (C ∪T ∪{e})) serves as
a certificate that any lower bound on either diamH(e) or diamV (e), respectively, can be
incremented. In total, we set

diamH(e)+ diamV (e) ≥ 2 + |F(e)\ (C ∪T ∪{e})| =: d(e), (7)

which guarantees that (5) is still true.
When summing over all edges e ∈ C ∪C̊, we may rearrange the summation. To this

end, observe that each edge f ∈ C̊\T has precisely one dual parent e among (C∪C̊)\T .
Hence, it increments the lower bound on diamH(e)+ diamV (e) for precisely this one
edge e. In other words, each edge f ∈ C̊ \ T counts three times: according to (6) it
counts d( f ) = 2 for its proper fundamental circuit CT ( f ), plus one for precisely its
unique parent edge e ∈ (C ∪C̊)\ T . To summarize,
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∑
e∈(C∪C̊)\T

d(e) (7)= 2 · |C\ T | + 3 · |C̊\ T |. (8)

Finally, we conclude that

∑
e∈(C∪C̊)\T

|CT (e)|
(2)
≥ ∑

e∈(C∪C̊)\T

2 · (diamH(e)+ diamV (e))

(5)
≥ ∑

e∈(C∪C̊)\T

2 ·d(e)
(8)
≥ 4 · |C\ T | + 6 · |C̊\ T |. �

Corollary 1. Let N ≥ 3 and GN,N be the N ×N planar grid with n = N2 vertices. Then
for each spanning tree T ⊂ E

Φ(T ) = ∑
e∈E\T

|CT (e)| ≥ 6 ·n − 20
√

n+ 22. (9)

Proof. Simply take C as the circuit that contains precisely the edges that are incident
with F∞. Because of E = C ∪̇C̊ we apply Proposition 1 to C. There, we minimize the
RHS in (3) by maximizing |C\T |. Now consider the four vertices which are not incident
to any edge in C̊. In any tree T , these vertices must be incident with one edge in C ∩T .
As N ≥ 3, we conclude that |C ∩ T | ≥ 4, thus |C \ T | ≤ 4

√
n − 8. Finally, a simple

calculation yields (9). �
Observe that 6n − 20

√
n+ 22 ≥ 4 ·n − 8

√
n+ 4, for all N ≥ 3 and n = N2.

As a special case, consider a spanning tree T with the following property: each edge
e ∈ E \T has distance at most two to F∞ in T ∗. This implies that (7) holds with equality.
As a consequence, one can argue that also in (9) we will find equality. Note that for N ∈
{3,4,5} such spanning trees do actually exist. Hence, it follows that in these dimensions
the bound of Corollary (1) is the optimum value of the MSFCB problem.

Large Grids. We sketch the following result: The strictly fundamental cycle basis B of
any spanning tree T in the square N ×N grid with n = N2 = (2k +2)2 vertices satisfies
Φ(T ) ≥ 1

12 n log2 n−O(n). This direct approach substantially improves the lower bound
that has been obtained by Alon, Karp, Peleg, and West in [1, Thm. 6.6] by a factor of
more than 245.2 Due to space limitations, we cannot present any of our new proofs here.
Instead we refer to [13] for the complete analysis.

In contrast to [1] we decided to tackle the lower bound problem from the perspective
of the dual planar graph G∗. In particular, we make use of the fact that for each spanning
tree T , there is a one-to-one correspondence between its induced fundamental circuits
in G, and its induced fundamental cuts in G∗. More precisely, if an edge e ∈ E \ T
induces a circuit in G, then its dual counterpart induces a cut in G∗—and both contain
the very same edges.

To detect sufficiently long circuits, according to inequality (2) we concentrate on
circuits that have large horizontal and/or vertical diameters. To obtain the claimed lower
bound, it is even sufficient to consider only the horizontal diameter diamH(C) or only
the vertical diameter diamV (C) of a circuit C.

2 We point out that the authors of [1] state explicitly that they were not trying to “optimize
constants.”
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Fig. 2. The dual tree T ∗ of a spanning
tree T in G18,18. In our lower bound for
Φ(T ) we only sum lower bounds on the
fundamental circuits that are induced by
the black edges.

Now, for each such level-vertex v, we con-
sider the unique subpath P of T ∗ that connects
v with F∞. We follow this path from v up to the
first edge e that is incident with the border of Bu.
Assume, w.l.o.g., that this edge e is “north” of v.
In the primal grid, e is, in fact, a horizontal edge.
Then we only consider the subsequence of verti-
cal edges PV (all being horizontal edges in GN,N)
of P ⊆ T ∗ such that each edge is by one closer
to e than its predecessor in PV . In [13] we call this
subpath the vertical pseudo-path of P. Then, for
a vertex v of one particular level �, � ∈ {1, . . . ,k},
we know that the 2�−1 edges of PV induce fun-
damental circuits with respect to T of vertical di-
ameters at least 1,2, . . . ,2�−1.

Now, we aim at summing the lower bounds
on the diameters of the fundamental circuits for
each occurrence of an edge on some pseudo-path.
It is a simple observation that only pseudo-paths of different levels could share a, say,
horizontal edge e of GN,N , and thus potentially cause some double-counting (Lem. 3
in [13]). But one can further observe that the lower bound on diamV (e) or diamH(e),
respectively, is always larger for the pseudo-path that we defined for the vertex with the
higher level index. Hence, to prevent us from any double-counting, for such an edge e
we count as lower bound on |CT (e)| only the bound on diamV (e) that we identify on
the highest level. As a consequence we get the following theorem.

Theorem 1 ([13]). Let GN,N be the planar grid graph with n = N2 = (2k +2)2 vertices.
For every spanning tree T of GN,N there holds

Φ(T ) ≥ 1
12

n log2 n − O(n). (10)

4 New Upper Bounds

Alon et al. ([1]) provided spanning trees TAKPW and showed that the induced strictly
fundamental cycle bases are bounded from above by 2n log2 n + o(n log2 n). An exact
counting ([13]) even revealed that

Φ(TAKPW) ≤ 4
3

n log2 n + O(n), (11)

where N =
√

n, and N = 2k for some k ∈ N. Although Alon, Karp, Peleg, and West ([1])
considered their trees to be “essentially optimal”, we can construct trees with an asymp-
totic coefficient for the n log2 n term being strictly smaller than one. Moreover, we
present trees with very good empirical performance already in small dimensions.

For that we introduce a class of recursively defined trees which are the union of
spanning trees of certain rectangular subgraphs of GN,N . More precisely, we form a
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partition of GN,N in rectangular subgraphs, each having a certain aspect ratio α ≥ 1.
For our construction we now specify certain values of α and show how to construct a
spanning tree for some grid GM,N having aspect ratio max{M

N , N
M } ≈ α. This is done

recursively. Assume, w.l.o.g., that M ≥ N. At the top-level of the recursion, we add to
Tα(GM,N) all the edges of the two longer borders of GM,N (here the 2M horizontal border
edges), plus the edges of one of its two other borders (see the left picture in Figure 3).
For the recursion, we partition the faces of GM,N into almost equally-sized rectangular

. . . . . .

..
.

..
.

sub-block
sub-sub-block

Fig. 3. The shape of a block (left) and with a sketched interior recursively filled with smaller
blocks (right), always keeping the aspect ratio

subgraphs of aspect ratio again being close to α. Only the faces of one horizontal path
in (GM,N)∗, located almost in the middle of its two horizontal borders, are not contained
in any of these rectangular subgraphs.

Note that these trees are closely related also to other families of trees. In GN,N , choos-

ing α ≥ N/2
1 there exists a partition of the grid such that we end up with Machete-

trees ([5], or see Figure 1). An aspect ratio of α = 1 yields trees which can be obtained
alternatively by a construction similar to the one for TAKPW .

In what follows we will structure our presentation into two parts, one part considering
large grids and a second part dealing with small grids. The section on large grids shows
how to achieve good asymptotic bounds whereas the section on small grids provides
better empirical results. For the two types of grids (small and large) we will introduce
trees with a block structure having two different aspect ratios. In the one case we will
use an aspect ratio of approximately 3 : 1, in the other case an aspect ratio of 2 : 1.
In addition, the two cases differ in how the blocks are actually used to define a tree.
Whereas on large grids it is sufficient to cover the grid with three (almost) equally-
sized 3 : 1 blocks, for small dimensions the grids are tiled with a large number of 2 : 1
blocks of many different sizes.

Large Grids. To achieve a good asymptotical upper bound we decided to construct trees
using the above described blocks with an aspect ratio of 3 : 1. Since it is not obvious how
to subdivide or tile a square grid of arbitrary dimension with these particular blocks, we
construct our trees in a bottom-up fashion. More precisely, we take an atomic block of
dimension 6 × 14 and arrange 32 copies of such a block to a new one having dimen-
sion 81 × 28. This procedure is then iterated providing spanning trees for dimensions

(

78
31

·32k/2 +
15
31

)

×
(

419
496

·32k/2 +
30
31

)

(12)
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with k chosen integral and even (see [19] for details). Finally, three copies of such a tree
can be put together and cover the entire square grid.

For a discussion on bounding the small overhanging part when following this stack-
ing as well as for the precise analysis we again refer to [19]. As a result we identify the
following asymptotically upper bound.

Lemma 1 ([19]). Let GN,N denote the N × N square planar grid with n = N2 vertices
and with N = 78

31 ·32k/2 + 15
31 for some even integer k. Then the size of a minimum strictly

fundamental cycle basis on GN,N can be bounded from above by

0.978 ·n · log2 n + O(n).

Small Grids. The 3 : 1−block structured trees, as described in the above paragraph are
not perfectly suited for smaller dimensions. As shown, 3 : 1 is asymptotically a very
good aspect ratio. Yet, it is not possible to decompose an arbitrary square grid into
3 : 1−blocks without losing much of their advantage because of “rounding errors.”

Therefore, for small grids, we chose a different block-structured graph. This time
we use an aspect ratio of 2 : 1. In contrast to the above, the 2 : 1−blocks, do not really
cover, but rather tile the square grid. The tiling procedure roughly goes as follows:

At first, two opposite 2 : 1−blocks are put in the middle of the grid. See for example
the two blocks marked with “A”, having side lengths 8 × 15 in Figure 4. Next, hori-
zontal 2 : 1−blocks (marked with “B”) are added centrally aside such that rectangular
subgrids in the four corners remain. In those corners (marked “C”) we always direct the
next block such that its depth can be chosen as small as possible, while its aspect ratio
should stay as close as possible to the target ratio 2 : 1. During this procedure we do not
need to pay attention to any rounding inaccuracies. In Figure 4 an example 2 : 1−block
structured tree for dimension N = 31 is shown.

The empirical quality of the so defined trees for small grids will be evaluated in the
next section.

A

A

B
B
B B

B
B
C

CC

C

Fig. 4. Notice the parquet-like structure of the tree with tiles having height-width ratio of 2 with
small errors due to roundings. Inside, the blocks themselves are recursively filled with smaller
blocks still maintaining the 2 : 1 ratio.
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5 Experimental Results

In this section we compare different spanning trees with respect to the length of the
strictly fundamental cycle basis they induce. In addition to the degree-based tree-grow-
ing heuristics that we already referred to in the introduction, local search techniques
have been considered, too.

Amaldi et al. ([2]) reported the performance of several strategies for searching the
neighborhood of a spanning tree. In what they denote by local search (LS), the entire
neighborhood is examined and they move to the tree with the best improvement. In a
second deterministic strategy (ES, for local search with edge sampling) only a restricted
number of neighbors are tested.

To prevent LS to terminate too early in a too bad local optimum, Amaldi et al. ([2])
run metaheuristics such as variable-neighborhood search (VNS) and a tabu search (TS)
on top of LS. In any of their computations, an adapted version of the tree-growing
heuristic of [20] is used as the initial solution.

In our computations, we use the 2 : 1−block-structured tree as initial solution. In
contrast to (LS) we do not examine the entire neighborhood for improvement. Instead,
whenever we identify a neighbor that improves the current solution, we greedily move
to that neighbor. Of course, this method depends on the order in which the edges in
the tree are checked. Empirical studies showed, however, that the influence of the edge-
order is neglectable. For our computational studies we chose a random order of edges
and ran our greedy-like approach—denoted by (GS)—ten times, considering the best
value of the length of the cycle basis and the according running time of (GS). We skip
average values, because we see the goal of the study in giving benchmark results. Ex-
amining the quality of the heuristic is only a secondary goal. Among the ten sample
runs the lengths of the cycle bases vary by less than 1% only, anyway.

Results. In Table 1 we compare the constructive heuristics, i.e., those that build up
a tree without doing any subsequent local improvements. Moreover, we complement
these values with information on lower bounds obtained by Corollary 1 and a minimum
cycle basis. The latter were also used in the recent study of Amaldi et al. ([2]). Note
further, that N = 130 is the dimension closest to 100 for which our asymptotic bound
is defined exactly. We mention that for this value of N the bound that we derived in
Corollary 1 is only about 3.5% weaker than our asymptotic bound.

In our tables the italic numbers highlight the best known upper and lower bounds. For
N = 5, these coincide and we mark this in boldface. Observe that for any dimension N ≥
10, the new trees that we propose in Section 4 yield smaller SFCB values than any of
the other constructive heuristics.

In Table 2 we compare the different local-search-type heuristics. For our greedy
search (GS) we used a 3.2GHz Intel P4 computer (“A1”), running Linux and using
LEDA c©. Amaldi et al. used for their local search heuristics (LS) and (ES) also an In-
tel P4 computer running Linux, with 2.66GHz (“A2”). Accordingly, the times stated
in Table 2 refer to the particular architecture. The values for the meta-heuristics (TS)
and (VNS)—also quoted from [2]—each refer to 10 minute runs on the A2 environ-
ment. Similarly as in the purely constructive context, our new solutions improve the
best known upper bounds for all dimensions N ≥ 20.
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Table 1. Comparison of the cost of some selected trees, i.e., the length of the according strictly
fundamental cycle bases. The rightmost column presents the previously best known lower bound
for small dimensions, obtained just by 4 · (N −1)2. The penultimate column now states the con-
sistently better lower bounds due to Corollary 1.

N “2 : 1” AKPW Machete C-Order Deo’s NT Corollary 1 MCB
[1] [5] [15] [8,15]

5 76 78 72 72 78 72 64
10 468 524 492 492 518 422 324
15 1 300 1 554 1 512 1 512 1 588 1 072 784
20 2 550 3 030 3 382 3 382 3 636 2 022 1 444
25 4 368 5 410 6 352 6 352 6 452 3 272 2 304
30 6 656 8 408 10 672 10 672 11 638 4 822 3 364
35 9 592 11 694 16 592 16 592 16 776 6 672 4 624
40 13 162 16 078 24 362 24 362 28 100 8 822 6 084
45 17 236 21 784 34 232 34 232 35 744 11 272 7 744
50 21 920 27 912 46 452 46 452 48 254 14 022 9 604
55 27 356 35 124 61 272 61 272 62 026 17 072 11 664
60 33 406 42 790 78 942 78 942 92 978 20 422 13 924
70 47 300 59 244 123 832 − − 28 022 19 044
80 63 964 80 678 183 122 − − 36 822 24 964
90 83 412 108 012 258 812 − − 46 822 31 684

100 106 090 137 390 352 902 − − 58 022 39 204

Table 2. An overview of the quality of five local search approaches. Missing values are marked
with an “−” and running times are measured in mm:ss. The columns (LS)–(TS) are cited from [2].

N (GS) (LS) (ES) (VNS) (TS)
cost time cost time cost time cost cost

5 72 00:00 72 00:00 74 00:00 72 72
10 468 00:00 474 00:00 524 00:00 466 466
15 1 300 00:00 1 318 00:00 1 430 00:00 1 280 1276
20 2 550 00:00 2 608 00:03 3 186 00:00 2 572 2590
25 4 368 00:00 4 592 00:16 5 152 00:02 4 464 4430
30 6 656 00:01 6 956 00:47 8 488 00:03 6 900 6882
35 9 592 00:02 10 012 02:19 11 662 00:08 9 982 9964
40 13 162 00:07 13 548 06:34 15 924 00:26 13 524 13534
45 17 236 00:06 18 100 14:22 22 602 01:00 18 100 18100
50 21 920 00:09 23 026 31:04 33 274 01:10 23 026 23552
55 27 340 00:31 − − − − − −
60 33 374 01:01 − − − − − −
80 63 810 07:24 − − − − − −
90 83 222 07:48 − − − − − −

100 105 766 14:01 − − − − − −

As already mentioned before we ran our local search (GS) with a random order of
the edges. In Table 2 the first two columns present the value for the best run out of ten
samples, and the according running time, respectively.

However, it has to be mentioned that only for dimensions N ∈ {60,80,90,100} the
start tree had not already been locally optimal.
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(a) 266 (b) 262

Fig. 5. Did you find a better tree of cost only 262? Indeed, the tree on the right hand side is an
optimum solution for G8,8

6 Conclusions

A summary of this paper has to be twofold. On the one hand, on square planar grid
graphs—being a particularly challenging family of graphs for the MSFCB Problem—
we significantly improved the lower and upper bounds that were previously known for
this problem.

On the other hand, optimality proofs remain non-trivial. For instance, from dimen-
sion N ≥ 6 on, the lower bound obtained in Corollary 1 is not tight. In particular it
cannot prove the optimality of the SFCB in Figure 5(b). We are only able to achieve op-
timality proofs for 6 ≤ N ≤ 10 by using combinatorial arguments that extend the ones
used in the proof of Proposition 1 ([18]). Nevertheless, further efforts are to be made in
order to tackle larger dimensions.

Furthermore, columns 4–6 of Table 1 illustrate to what extent degree-based heuristics
for the MSFCB problem are inferior to applying recursive approaches. In other words,
for any heuristic for the MSFCB problem we recommend to evaluate it on planar square
grid graphs and compare its performance to the values that we provide in Tables 1 and 2.
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Abstract. The degree-constrained minimum spanning tree (DCMST) is relevant
in the design of networks. It consists of finding a spanning tree whose nodes do
not exceed a given maximum degree and whose total edge length is minimum.
We design a primal branch-and-cut algorithm that solves instances of the prob-
lem to optimality. Primal methods have not been used extensively in the past,
and their performance often could not compete with their standard ‘dual’ coun-
terparts. We show that primal separation procedures yield good bounds for the
DCMST problem. On several instances, the primal branch-and-cut program turns
out to be competitive with other methods known in the literature. This shows the
potential of the primal method.

1 Introduction

In recent years the development of networks in the area of telecommunication and com-
puters has gained much in importance. One of the main goals in the design process is
to reach total connectivity at minimum cost. Furthermore, additional constraints must
be met, such as a restricted number of connections to a physical unit. Similar problems
arise in the planning of road maps, where intersections can only be established among
a small number of roads. In the field of integrated circuit design we are faced with the
constraint that the number of wired connections to an electronic component is limited.
The production of the circuit board shall be at minimum cost.

Problems of this kind can be modelled as the degree-constrained minimum span-
ning tree problem (or DCMST problem for short). Network devices, intersections, or
electronic components are represented as nodes in a graph. Cables, roads or wires are
represented by edges. A cost might be associated with an edge that models, e.g., the
cable length or production cost. The technical restriction that the number of connec-
tions at a node is bounded is modeled by introducing constraints that bound the node
degrees. Garey and Johnson [11] proved that the resulting degree-constrained minimum
spanning tree problem is NP-hard.

We are interested in exact solutions for instances of the DCMST problem with a
‘primal’ branch-and-cut method. Standard branch-and-cut methods can be viewed as
‘dual’ approaches in which cutting planes are added to iteratively improve the relax-
ation of the problem. In contrast, in a primal approach cutting planes are added to prove
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the optimality of the best known feasible solution or to find a better solution. A primal
approach has the advantage that the corresponding separation algorithms are often con-
ceptionally easier than their dual versions. Furthermore, at any time during the run of
the algorithm a feasible solution of the problem is known. Despite these advantages,
primal methods have not yet received much attention in the literature. A possible rea-
son is that the quality of the cutting planes depends on a known feasible solution. Up to
now, in most cases the performance of primal approaches could not compete with the
performance reachable by standard dual methods.

In this work we revise the primal cutting plane algorithm that Letchford and Lodi
introduced in [20,22,21]. To the best of our knowledge, this algorithm has not been
implemented before for the solution of practical problems. For the DCMST, our aim is
to study the potential of the method by primal separation of known valid inequalities
in a branch-and-cut algorithm. Some of the designed primal separation routines are
asymptotically faster and much easier to implement than their dual versions. We also
present a strategy for branching on a variable in the primal context.

The computational results show that the generated cutting planes are strong. On sev-
eral classes of instances, the primal method outperforms the genetic algorithms that
have been used by other authors. Furthermore, on some classes of instances the per-
formance of the primal approach is comparable to a standard branch-and-cut method
used by Raidl [30]. For the standard branch-and-cut algorithm in [6] no computational
results on instances from the literature are reported.

In Section 2 we introduce the model. In Section 3 we explain the concept of primal
separation together with a primal branch-and-cut algorithm for the DCMST problem.
Finally, we show experimental results in Section 5 and discuss directions for further
research.

2 Degree-Constrained Minimum Spanning Tree Problem

We are given an undirected, connected graph G = (V, E) with n nodes and m edges.
For each edge e ∈ E a cost ce ∈ � is given. A minimum spanning tree of G is a
connected acyclic subgraph T = (V, ET ) that contains all nodes of G and has minimum
cost c(T ) :=

∑

e∈ET
ce among all spanning trees. We define the neighbourhood of a

node i ∈ V as δ(i) := {j ∈ V | ∃ e = (i, j) ∈ E}. |δ(i)| is the degree of i in G. With
|δT (i)| we denote the degree of i in the spanning tree T . To every node i we associate
a capacity bi ∈ �, where 1 ≤ bi ≤ n − 1. The degree-constrained minimum spanning
tree problem asks for a minimum spanning tree T that satisfies the degree constraint
|δT (i)| ≤ bi for all i ∈ V .

In the general setting, finding a DCMST is a hard task, and several, mainly heuris-
tic, solution approaches exist in the literature. Narula and Ho [24] present a heuristic
in which first a tree satisfying the degree constraints is generated that is not necessar-
ily minimum. Then a local edge-exchange heuristic is called in order to improve on
the cost of the tree while maintaining the node constraints. In a complementary ap-
proach, they start by constructing a minimum spanning tree and then repair the viola-
tion of degree constraints by exchanging edges. By the use of similar ideas, Savelsbergh
and Volgenant [33] get better results than those cited in [24]. Ribeiro and Souza [32]
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implement a variable neighbourhood search for generating good heuristic solutions for
the DCMST. Recently, Andrade, Lucena and Maculan [1] presented a fast and effective
heuristics for its solution. Using Lagrangian dual information, optimality of a solution
can be proven in several cases. Goemans [13] designs a polynomial-time approxima-
tion algorithm for the DCMST problem with degree bound b for all vertices that finds
a spanning tree of maximum degree at most b + 2 whose cost is at most the cost of the
optimum spanning tree of maximum degree b. Volgenant [36], Knowles and Corne [17],
Krishnamoorthy, Ernst and Sharaiha [18] and Raidl [31] present and compare several
heuristics, simulated annealing approaches, evolutionary algorithms, Lagrangian relax-
ation and branch-and-bound methods on different classes of instances. Raidl [30] and
Caccetta and Hill [6] also implement a standard branch-and-cut algorithm that solves
the DCMST problem exactly. In this work, we are also interested in exact solutions.
However, instead of solving the problem by standard branch-and-cut, we exploit the
advantages of primal separation in a primal branch-and-cut approach. In the following
section, we introduce the notion of primal separation and explain the primal separation
algorithms.

3 Primal Separation

Let PI be the polytope defined as the convex hull of all incidence vectors of feasible
solutions of the problem. In a standard cutting plane procedure, we start by optimizing
the objective function over a set of equations and inequalities that define a polytope that
contains PI and iteratively improve the relaxation of the problem by adding inequalities
(“cutting planes”). To this end, we have to solve the standard separation problem that
can be formulated as follows.

Standard separation problem. Given a point x∗ ∈ �m. Return an inequality valid
for PI that is violated by x∗ or prove that none exists.

Grötschel, Lovász and Schrijver [15], Karp and Papadimitriou [16] and Padberg and
Rao [27] showed that an optimization problem is polynomial time equivalent to its
separation problem. In contrast to an exact procedure, a heuristic separation algorithm
not necessarily finds a violated inequality if one exists.

In the primal context, we are additionally given x̄ ∈ �m, a vertex of PI . Usually, x̄
represents the best known primal feasible solution. We formulate the primal separation
problem as follows.

Primal separation problem. Given a point x∗ ∈ �m and a vertex x̄ of PI . Return
an inequality valid for PI that is violated by x∗ and is tight at x̄, or prove that none
exists.

Padberg and Grötschel [25] showed that the primal separation problem is not harder
than its standard version. For 0/1 polytopes, i.e., polytopes in which all vertices are
vectors in {0, 1}m, also the reverse holds true: Grötschel and Lovász [14] and Schulz,
Weismantel and Ziegler [34] proved that the 0/1 optimization problem is polynomial
time equivalent to the 0/1 augmentation problem. In the latter we are given a 0/1 point
and either want to find a better feasible solution or prove that the given point is opti-
mum. Finally, Eisenbrand, Rinaldi and Ventura [10] showed that the 0/1 augmentation
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problem can be reduced to the primal 0/1 separation problem. For combinatorial op-
timization problems such as the DCMST problem, it follows that standard and primal
separation are polynomial time equivalent.

Primal cutting plane algorithms have not yet received a lot of attention. In the early
1960s, Ben-Israel and Charnes used Gomory’s method to develop a primal cutting plane
algorithm for integer programming that was later simplified by Young [38]. Glover
[12] and Arnold and Bellmore [4,3,2] modified the algorithm in order to reduce the
number of degenerate pivots. However, only very small toy problems could be solved in
practice. Sharma and Sharma [35] tried to improve the method but nevertheless could
not compete with dual cutting plane algorithms. The first primal separation routines
were developed in 1980 by Padberg and Hong [26] for the travelling salesman problem.
In 1990, Barahona and Titan [5] and De Simone and Rinaldi [7] successfully applied
primal cutting plane algorithms to the max-cut problem.

With the completion of the proof chain for the equivalence of the 0/1 primal and
standard separation [10] and the work of Letchford and Lodi [20,22,21], the interest in
primal separation increased again.

3.1 Primal Separation Algorithms for the Degree-Constrained Minimum
Spanning Tree Problem

The DCMST problem can be formulated as the following 0/1 integer program.

min cT x

s.t.
∑

e∈E(S)

xe ≤ |S| − 1 ∀ S ⊆ V, |S| ≥ 2 (1)

∑

e∈E

xe = |V | − 1 (2)

∑

e∈δ(i)

xe ≤ bi ∀ i ∈ V (3)

xe ∈ {0, 1} ∀ e ∈ E, (4)

where E(S) := {ij ∈ E | i, j ∈ S}.
Discarding the node degree constraints (3) leads to the minimum spanning tree prob-

lem which can be solved in polynomial time with e.g., the algorithms of Prim [29] and
Kruskal [19]. Thus the node degree constraints (3) are well suited for a Lagrangian re-
laxation approach that Volgenant applied in [36]. Let the minimum spanning tree (MST)
polytope consist of the convex hull of the incidence vectors of spanning trees. Its di-
mension is m − 1. For a complete graph, constraints (1) and xe ≥ 0 define facets. The
cycle elimination constraints (1) are facets iff |S| = 2 and the graphs (S, E(S)) and
(V \ S, E(V \ S)) are connected or |S| ≥ 3 and the graph (S, E(S)) is 2-connected.
Edmonds [8,9] showed that the inequalities introduced above are sufficient to describe
the MST polytope.

In addition to the cycle elimination constraints (1) we consider two more classes of
valid inequalities. The connectivity constraints
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∑

e∈δ(S)

xe ≥ 1 ∀ S ⊂ V : 2 ≤ |S| < |V |, (5)

where δ(S) := {ij ∈ E | i ∈ S, j 	∈ S}, assure that the graph is connected. The restric-
tion of the sets S in (1) to cycles (C, E(C)) leads to the specialized cycle elimination
constraints

∑

e∈E(C)

xe ≤ |C| − 1 ∀ C ⊂ V : |C| < |V | and
(

C, E(C)
)

is a cycle (6)

We start with the relaxation consisting of equation (2), inequalities (3) and the re-
laxed integrality constraints 0 ≤ xe ≤ 1 ∀ e ∈ E. In the following we present exact
primal separation algorithms for the constraint classes (1), (5) and (6) and compare
them with their standard versions.

Connectivity Constraints. W.l.o.g. we only consider sets S for which the induced
subgraph (S, E(S)) is connected. For the standard separation of (5), we temporarily set
the edge costs according to x∗. If the value of the minimum cut in the corresponding
graph is smaller than 1, a violated inequality is found. The runtime of this separation
procedure depends on the chosen min-cut algorithm, e.g. is O(mn + n2 log n) for the
Nagamochi-Ibaraki [23] algorithm.

For the primal separation, we are additionally given a feasible solution x̄ that cor-
responds to a spanning tree T in G. Candidates are only those sets S ⊂ V such that
∑

e∈δ(S) x̄e = 1 holds. Every edge e of the spanning tree T induces one such set S. Let
ij = e be an edge of T . Temporary deletion of e yields two trees, say Ti with root i and
Tj with root j. Let Vi ⊂ V resp. Vj ⊂ V be the subset of all nodes that are incident to
an edge of Ti resp. Tj . Since T is a spanning tree we have Vi ∪̇ Vj = V . W.l.o.g. set
S = Vi. The primal separation for the connectivity constraints (5) is then the following.

For each of the n − 1 edges ij of T compute the induced set Vi via depth first search
in T . If the value

∑

e∈δ(Si) x∗e of the cut δ(Si) is less than 1, a violated inequality is
found. The runtime of the primal separation of connectivity constraints is O(n(m+n)),
which is asymptotically faster than its standard counterpart.

Specialized Cycle Elimination Constraints. (6) can be written
∑

e∈E(C)(1−xe) ≥ 1.
In the standard separation, we temporarily set the edge cost of an edge e to c′(e) =
1 − x∗e . A cycle with cost less than 1 in the corresponding graph determines a violated
inequality in the standard sense. Thus, the separation routine amounts to computing
for every edge e = ij a shortest path from i to j. If we use Dijkstra’s algorithm, the
standard separation runs in time O(mn2).

For the primal separation of (6), we search for cycles C in G that additionally satisfy
∑

e∈E(C) x̄e = |C| − 1. Therefore, these cycles contain exactly one edge that is not
part of the spanning tree given by x̄. This observation immediately gives us the primal
separation routine:

For every edge e = ij in E \ T find the path R from i to j in T by simultaneously
going up level by level in the tree, starting from i and j, until a common predecessor
is found. If the cost c′(e) + c′(R) of the fundamental cycle R ∪ e is smaller than 1,
a violated inequality is found. Primal separation for the specialized cycle elimination
constraints runs in O((m − n)n), which is again faster than the standard separation.
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Cycle Elimination Constraints. In the case of the traveling salesman problem in
which all node degrees are forced to two, the cycle elimination constraints correspond
to the subtour elimination constraints for which primal separation is asymptotically
faster than its dual version, [26]. In the more general context of degree constrained
spanning trees, Padberg and Wolsey presented in [28] a polynomial separation routine
for constraints (1). An appropriate network for minimizing the submodular function
g(S) = |S| −

∑

e∈E(S) x∗e is defined. In this network n − 2 min-cuts are computed via
max-flow calculations. Using the maximum-distance version of the Goldberg-Tarjan
algorithm for the max-flow computations leads to an O(n4) runtime of the standard
separation procedure.

For the primal separation routine, we modify the standard separation. We define a
new submodular function f : S −→ � for ∅ 	= S ⊆ V which penalizes sets S that do
not satisfy the condition

∑

e∈E(S) x̄e = |S| − 1. Let

f(S) =

{

g(S) if
∑

e∈E(S) x̄e = |S| − 1
> 1 otherwise

Primal separation then amounts to finding a set S that minimizes f(S). If the minimum
is less than 1, we found a violated inequality in the primal sense.

We define f as

f(S) := |S| −
∑

e∈E(S)

x∗e + D
(

|S| − 1 −
∑

e∈E(S)

x̄e

)

with an appropriate constant D > 0. First we determine a large enough value for D
such that D >

∑

e∈E(S) x∗e holds. D := 1
2 (n2 − n) + 1 suffices.

It is not hard to see that f is submodular. Following the idea of Padberg and Wolsey
we define a network (G∗, c′) to find a set S minimizing f . G∗ consists of the nodes V , a
source node 0 and a sink node n + 1. For all nodes i ∈ V let li :=

∑

e∈δ(i)(x
∗
e + Dx̄e).

The edges of G∗ are constructed as follows.

– For every edge e = ij of E we add the directed edges (i, j) and (j, i) in G∗ with
costs c′(i,j) = c′(j,i) = 1

2 (x∗e + Dx̄e).
– From the source 0 we add for every node i ∈ V a directed edge (0, i) with cost

c′(0,i) = max{ 1
2 li − (D + 1), 0}.

– From every node i ∈ V we add a directed edge (i, n + 1) to the sink n + 1 with
cost c′(i,n+1) = max{(D + 1) − 1

2 li, 0}.

In the network G∗ we consider a (0, n + 1)-cut given by a set S ⊆ V and calculate
its costs c′

(

S ∪ {0} : (V \ S) ∪ {n + 1}
)

. Let L :=
∑

i∈V max{ 1
2 li − (D + 1), 0}.

The value of a (0, n + 1)-cut in G∗ is

c′
(

S ∪ {0} : (V \ S) ∪ {n + 1}
)

=
∑

i∈V \S
max{ 1

2 li − (D + 1), 0} +
∑

i∈S

max{(D + 1) − 1
2 li, 0} + c′(S : V \ S)
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= (D + 1)|S| − 1
2

∑

i∈S

li + 1
2

∑

e=ij

i∈S,j∈V \S

(x∗e + Dx̄e) + L

= f(S) + D + L

Thus, determining a set S which minimizes f amounts to minimizing the (0, n + 1)-
cut in (G∗, c′). Since S may not be the empty set, following Padberg and Wolsey, we
need n − 2 max-flow calculations to compute a minimum (0, n + 1)-cut. The runtime
of the primal separation asymptotically equals that of the standard separation. Padberg
and Wolsey already noted the fact that the algorithm for eliminating the cycles is quite
expensive, given that determining minimum spanning trees is an easy task. Further-
more, the primal separation routine for the cycles is neither asymptotically faster nor
conceptionally easier than its standard version.

4 Primal Branch-and-Cut Algorithm

In this section, we describe a primal branch-and-cut algorithm for the DCMST problem.
We use a modified version of the algorithm introduced by Letchford and Lodi in [21].
The algorithm starts with a feasible solution x̄ generated with Narula and Ho’s primal
heuristic [24] which is a modified version of Prim’s algorithm for MST. Subsequently,
we improve the solution by the variable neighbourhood search [32].

For DCMST, the initial relaxation consists of the spanning tree equation (2), the node
degree constraints (3) and the relaxed integrality constraints, see Section 3.1. Generated
violated inequalities are added to the current relaxation of the problem. In case the
separation procedures fail to determine a violated inequality, the algorithm branches.
The following section introduces a primal branching rule.

4.1 Primal Branching Rule

In a primal branch-and-cut algorithm, we need in each subproblem a solution x̄ that is
feasible for it. Applying the standard rules for branching on a binary variable usually
destroys feasibility of x̄ in one of the two branches. Letchford and Lodi [21] presented
a primal branching rule maintaining feasibility for the special case that x̄ is identically
0 and all constraints in the relaxation are tight at x̄. The former is no restriction for 0/1
integer linear programs. Relaxing the above mentioned restrictions, the branching rule
in the spirit of Letchford and Lodi reads as follows. Let N0 and N1 be the set of indices
of variables that are set to 0 resp. 1. Let a relaxation P be given as P = {x : Ax ≤
b, 0 ≤ x ≤ 1}, and x̄ ∈ P ∩ {0, 1}n. Branching according to N0 and N1 leads to P 1

which is the intersection of P with the subspaces of the variables xj fixed to 0 resp. 1
for j ∈ N0, N1

P 1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x :

Ax ≤ b

0 ≤ xj ≤ 1 ∀j 	∈ N0 ∪ N1

xj = 0 ∀j ∈ N0

xj = 1 ∀j ∈ N1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭
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We maintain feasibility of x̄ by optimizing in each subproblem over the convex hull
of P 1∪P 2, where P 2 := {x : x = x̄}. Let ā1

k :=
∑

j:x̄j=1 akj . In the primal branching
rule, we distinguish three cases.

1. (a) ∃i : x̄i = 0 ∧ i ∈ N1. Set y := xi.
(b) ∃i : x̄i = 1 ∧ i ∈ N0. Set y := 1 − xi.
Then

conv(P 1 ∪ P 2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x :

∑

j

akjxj ≤ ā1
k − (ā1

k − bk)y ∀k

0 ≤ xj ≤ y ∀j : x̄j = 0 ∧ j 	∈ N0 ∪ N1

xj = 0 ∀j : x̄j = 0 ∧ j ∈ N0

xj = y ∀j 	= i : x̄j = 0 ∧ j ∈ N1

1 − y ≤ xj ≤ 1 ∀j : x̄j = 1 ∧ j 	∈ N0 ∪ N1

xj = 1 − y ∀j 	= i : x̄j = 1 ∧ j ∈ N0

xj = 1 ∀j : x̄j = 1 ∧ j ∈ N1

0 ≤ y ≤ 1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

2. �i : x̄i = 0 ∧ i ∈ N1 and �i : x̄i = 1 ∧ i ∈ N0. Then conv(P 1 ∪ P 2) = P 1.

Whenever a new branch-and-bound node is created, the subproblem relaxation is mod-
ified according to the corresponding case above.

4.2 Outline of the Primal Branch-and-Cut Algorithm

In every node of the branch-and-bound tree valid violated cutting planes are generated.
The used cutting plane procedure is a modification of the one developed by Letchford
and Lodi in [20]. We describe it in the following.

Let the result of a primal simplex iteration be x∗. In case x∗ is feasible for the
DCMST problem and improves upon the formerly best known solution, a new degree-
constrained spanning tree x̄ is found. If x̄ is dual feasible, the current subproblem is
optimized and we can fathom the node. In case x∗ is not binary or contains a cycle, the
primal separation routines are called. In contrast to a standard cutting plane algorithm it
is possible that no primal separating hyperplane for a binary but infeasible point x∗ can
be generated. This may happen e.g. if we pivot from x̄ to a 0/1 vertex of the relaxation
which is feasible for all inequalities that can be generated by primal separation. In this
case we aim at cutting off the infeasible point by standard separation routines. In case
of failure, we separate a fractional point x∗ by a Chvátal-Gomory cut that is tight at x̄
and only contains integral coefficients. So at all times our matrix A is integral.

We generate Chvátal-Gomory cuts in the following way. Without loss of general-
ity, we consider a linear relaxation of the form P = {x : Ax ≤ b, x ≥ 0} with
A ∈ �m×n. Let A�k denote the k-th column of A. For u ∈ �m

≥0 the inequality
∑n

k=1�uT A�k�xk ≤ �uT b� is valid for PI , see e.g. [37]. The coefficients of this
Chvátal-Gomory cut are integer. For each row i of the inverse of the basis matrix AB

we define ui as the fractional part of that row, i.e. ui := eT
i A−1

B − �eT
i A−1

B �. Now for
each ui we generate the Chvátal-Gomory cut and check if it is tight at x̄.
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The primal cutting plane procedure for the solution of a node in the branch-and-
bound tree for the DCMST problem works as follows. Its generalization to other prob-
lems is obvious.

– Step 1: Compute a primal feasible basis for the basic solution x̄.
– Step 2: Perform a primal simplex pivot. Let x∗ be the new solution.
– Step 3: If x∗ is binary and represents a DCMST, set x̄ = x∗. If x̄ is optimal, fathom

the node. Otherwise go to Step 2.
– Step 4: Call the primal separation. If violated inequalities are generated, pivot back

to x̄, add them to the LP and go to Step 2.
– Step 5: If x∗ is binary but contains a cycle, generate a separating hyperplane that

is not tight at x̄, add it to the LP and go to Step 1.
– Step 6: Determine a Chvátal-Gomory cut that is tight at x̄ and only contains inte-

gral coefficients. If such a cut is found, pivot back to x̄, add it to the LP and go to
Step 2. Otherwise branch according to the primal branching rule outlined in section
4.1.

The difference between this algorithm and the one introduced by Letchford and Lodi
mainly lies in Step 5. It is called Step 5b in their enhanced algorithm. In case a binary
but infeasible point x∗ is found, Letchford and Lodi generate a cutting plane that is not
tight at x̄. Then the dual simplex algorithm is used to compute a new fractional point x̂
that is a convex combination of x̄ and x∗. Then they set x∗ := x̂ and remove the just
inserted cutting plane as the mixed-integer cut generated in the next step will cut off x̂
and thus also the old binary solution.

In contrast, for esthetical reasons we decided not to switch to the dual simplex but
to always stick to its primal version throughout the computations. We also cut off the
infeasible point x∗ with a standard cutting plane and thus lose primal feasibility of the
tableau. As we need to stay at x̄, we compute in Step 1 an appropriate primal feasible
basis. To this end, we temporarily introduce a new objective function c′ with entries
c′i := 1 − 2x̄i. Minimizing the new objective function by the primal simplex algorithm
yields the optimum solution x̄ and a primal feasible tableau. Replacing the objective
function by c again keeps its primal feasibility.

5 Experimental Results

We implemented the primal branch-and-bound algorithm from Section 4.2 and the pri-
mal separation routines outlined in Section 3.1 in a straightforward way. When primal
separation is called in Step 4, we first try to find a violated specialized cycle elimination
constraint (6). If we do not find one we try to find a violated connectivity constraint (5)
and if we still do not succeed, we try to separate a cycle elimination constraint (1). For
performance reasons we do not separate cycle elimination constraints in the way we
describe in 3.1 but set up a pool of cycle elimination constraints tight at x̄ whenever we
find a new x̄. We do a pool separation. The size of this pool depends on the problem
structure and varies from 10000 up to 200000 cuts.

In Step 5 we use the standard separation for the specialized cycle elimination con-
straints (6). If we arrive at Step 5, the binary solution contains a cycle that the primal
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separation was not able to separate. So we will always find a violated cut in Step 5.
In case that none of the former separation routines found a cut we invoke the Chvátal-
Gomory separation. If still no cut can be found or if the number of Chvátal-Gomory cuts
in the actual node of the branch-and-bound tree exceeds 10, we branch. This prevents
primal degeneracy.

We took instances from Knowles and Corne [17] and Krishnamoorthy, Ernst and
Sharaiha [18] which are grouped into the 6 classes R, M, CRD, SYM, STR and SHRD.
From these classes, we took all instances with at most 100 nodes resulting in 234 in-
stances in total. All computations were done on a Pentium 4 processor under Linux.
We use CPLEX 9.0 as linear program solver. The quality of the solution is measured
by the gap, i.e. the difference of the primal and the dual bounds divided by the primal
one. For each instance, we set an upper limit of four hours of cpu time. Within this time
interval, 228 out of the 234 instances could be solved to optimality. For the remaining
6 instances, the gaps are always smaller than 6.3%. In the tables n is the number of

Table 1. R and M instances

PBC SBC GA
n b Type B&B nodes height Pcuts Scuts CGcuts time Q Q Q

R 50 5 n1 1 0 8 0 0 1.62 1.61 - 1.74
R 50 5 n2 1 0 26 6 1 1.61 1.69 - 1.83
R 50 5 n3 1 0 11 3 1 3.59 1.62 - 1.78
R 100 5 n1 21 5 45 178 10 94.16 1.61 - 1.73
R 100 5 n2 1543 24 80 4144 182 5525.55 1.50 - 1.60
R 100 5 n3 2 1 22 16 1 14.08 1.55 - 1.69
M * 50 5 n1 172 34 1690 105 141 14400 2.45 2.45 3.15
M 50 5 n2 3 1 707 17 0 591.82 2.21 2.21 2.99
M 50 5 n3 12 4 615 168 22 130.07 2.36 2.36 2.58
M 100 5 n1 14 7 251 223 11 1471.3 1.98 1.98 2.44
M 100 5 n2 1580 32 1299 10705 676 10950.1 2.08 2.08 2.84
M 100 5 n3 160 29 710 1246 111 2041.48 1.98 1.98 2.86

nodes. All nodes have the same upper bound b on the node degree. Our algorithm can
also handle individual node degree constraints. The time spent in the branch-and-cut
process is given in seconds. The time spent in the starting heuristics that generate a
good feasible solution x̄ is usually less than a second. The primal branch-and-cut al-
gorithm is named PBC. B&B nodes shows the number of branch-and-bound nodes and
height the height of the branch-and-bound tree. The number of generated violated pri-
mal, standard resp. Chvátal-Gomory cuts are given in the columns Pcuts, Scuts resp.
CGcuts.

The R and M instances are taken from Knowles and Corne [17]. Their GA heuristic
performs well on these instances. Results are averaged over 20 passes and are given as
a quotient Q which is the cost of the found degree-constrained spanning tree divided by
the cost of the minimum spanning tree. Running times are not published. The primal
PBC algorithm solves the R instances (see table 1) with 50 nodes in less than 4 seconds
to optimality. For the larger instances the program has to branch. The class of the M
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instances is constructed by Knowles and Corne such that the minimum spanning tree
and the DCMST are very different which causes easy greedy heuristics to fail. The M
instances (see table 1) were also tackled by Raidl [30] with a standard branch-and-cut
approach which we name SBC. However, a direct comparison between the PBC and
SBC algorithms is difficult as Lagrangian relaxation was used in the latter. Using the
PBC algorithm, 5 out of the 6 instances could be solved to optimality within the given
time interval. For the instance marked with an asterisk the gap at the time limit was
4.1%. With their heuristics, Andrade, Lucena and Maculan [1] can solve the same R
and M instances in less than 30 seconds each and furthermore prove optimality of their
solution.

Table 2. CRD, SYM and STR instances

PBC BB
type n b B&B nodes height Pcuts Scuts CGcuts time Gap

CRD 30 3 1 0 4.5 0 0 0.11 0.70
50 3 1 0 10.8 0 0 0.42 0.01
70 3 3.4 1.6 42.5 13.5 24.5 54.54 0.01

100 3 5.89 1.11 115.4 5.9 48.8 290.8 0.04
SYM 30 3 1 0 5 0 1.7 0.49 4.26

30 4 1 0 4 0 0.7 0.17 0.16
50 3 33.3 4.8 41.9 24.4 317 124.94 4.78
50 4 142.4 3.6 34.5 15.7 147.8 107.91 0.95
50 5 1 0 1.6 0 0 0.11 0.10
70 3 36 5.2 37.8 9.4 361.8 77.35 5.60
70 4 174.7 4.3 31.3 20.9 522.1 284.93 1.03
70 5 153.2 2.5 15.3 12.2 160.6 219.37 0.11

STR 30 4 1 0 25.2 0 0 0.2 13.45
30 5 1 0 28.8 0 0 0.28 10.8
50 4 2.6 0.4 96.6 2.2 18.9 4.3 12.31
50 5 3.4 0.6 105.2 2.5 26.4 4.8 9.88
70 4 1.7 0.4 268 0.3 11.5 24.17 11.49
70 5 9.2 0.4 263.3 2.9 88.2 38.75 9.21

100 3 5.7 0.8 274.3 0.2 3.3 1251.1 12.85
100 4 1 0 544.63 0 0 171.84 10.59
100 5 1 0 555.25 0.13 0.75 79.45 8.48

The four instance classes CRD, SYM, STR and SHRD are taken from Krishnamoor-
thy, Ernst and Sharaiha [18]. We compare our algorithm with their branch-and-bound
approach called BB with a time limit of 600 seconds. The values in the table 2 are
the means of 10 different instances with the same number of nodes and the same b.
The CRD instances are two-dimensional Euclidean graphs. The SYM instances are
random multi-dimensional Euclidean graphs. Usually these instances are solved within
seconds with PBC. One CRD instance with 100 nodes exceeded the time limit reach-
ing a gap of 3.4 · 10−3%. Instances that exceeded the time limit were excluded from
the averages. The instances of the STR class usually cannot be solved to optimality
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by the branch-and-bound approach of Krishnamoorthy, Ernst and Sharaiha with a time
limit of 600 seconds [18]. Except for 4 large instances out of the 100, we can solve all
instances to optimality. The gaps for these 4 instances range from 3.2% to 6.3%. 90
instances could be solved within 600 seconds. The small instances are solved within
seconds.

Krishnamoorthy, Ernst and Sharaiha claim that the instances from the SHRD class
are the hardest since none of its members could be solved with their branch-and-bound
approach within 600 seconds. We compare our results with their best heuristic PSS.
In contrast to PSS, Raidl’s approach [30] and our algorithm did not have any problems
(see table 3). We could solve every instance to optimality in less than 21 seconds. Again,
with their heuristics, Andrade, Lucena and Maculan are able to solve SHRD instances
with up to 309 nodes in less than 30 seconds per instance. They can additionally prove
optimality.

Table 3. SHRD instances

PBC PSS
n b B&B nodes height Pcuts Scuts CGcuts time Gap

15 3 1 0 3 4 0 0.06 1.72
15 4 1 0 0 0 0 0.26 2.08
15 5 1 0 0 0 0 0.18 0
20 3 2 1 18 16 0 1.53 0.45
20 4 1 0 5 1 1 2 0
20 5 1 0 0 0 0 1.58 0.47
25 3 1 0 1 0 0 5.73 0
25 4 1 0 2 1 0 4.82 0
25 5 1 0 0 0 0 1.87 1.07
30 3 4 2 302 33 2 20.25 0
30 4 2 1 15 16 1 7.55 0
30 5 2 1 47 16 0 4.02 0

As can be expected, the quality of the starting feasible solution given by a heuris-
tic is important for the performance of the primal branch-and-cut process. Usually, the
closer the objective value of the solution is to the optimal objective value, the faster
the process terminates. The usage of the primal cutting planes varies from instance to
instance, not only from class to class. For some instances it is useful to spend more
time in the separation whereas others are solved faster if less cutting planes are gen-
erated and more branching is done. The special cycle elimination constraints and the
connectivity constraints can be separated very fast but are usually weaker than the cy-
cle elimination constraints that turned out to be the most important constraints for the
tested instances. We do not perform an exact separation of this class but set up a pool
of constraints that is searched for a violated one. We observed that the larger the pool
is, the less standard and Chvátal-Gomory cuts have to be generated. As we do not refill
this pool until a new x̄ is found, the longer we stay at a certain x̄ the more standard and
Chvátal-Gomory cuts are needed. This effect can be observed for the large R and M
instances.
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6 Conclusion

In this paper we presented primal separation routines for the DCMST problem and im-
plemented them in primal branch-and-cut procedure. We showed that primal separation
can be conceptionally easier and theoretically faster than the standard dual separation.
The computational results show that primal methods can compete with existing ap-
proaches. Research has been undertaken in more depth for dual than for primal meth-
ods yet, and several questions remain to be answered in the primal context such as, e.g.,
what are the most effective branching rules, rules for chosing the branching variables,
etc. We believe that there is potential for primal branch-and-cut methods to become
competitive with dual methods also for other hard problems.

Acknowledgments

The authors thank A. Letchford and A. Lodi for fruitful discussions.

References

1. Andrade, R., Lucena, A., Maculan, N.: Using lagrangian dual information to generate degree
constrained spanning trees. Discrete Applied Mathematics 154(5), 703–717 (2006)

2. Arnold, L.R., Bellmore, M.: A bounding minimization problem for primal integer program-
ming. Operations Research 22, 383–392 (1974)

3. Arnold, L.R., Bellmore, M.: A generated cut for primal integer programming. Operations
Research 22, 137–143 (1974)

4. Arnold, L.R., Bellmore, M.: Iteration skipping in primal integer programming. Operations
Research 22, 129–136 (1974)

5. Barahona, F., Titan, H.: Max mean cuts and max cuts. In: Combinatorial Optimization in
Science and Technology, pp. 30–45 (1991)

6. Caccetta, L., Hill, S.P.: A branch and cut method for the degree-constrained minimum span-
ning tree problem. Networks 37(2), 74–83 (2001)

7. De Simone, C., Rinaldi, G.: A cutting plane algorithm for the max-cut problem. Optimization
Methods and Software 3, 195–214 (1994)

8. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Combinatorial
Structures and their Applications, pp. 69–87. Gordon and Breach, New York (1970)

9. Edmonds, J.: Matroids and the greedy algorithm. Math. Programming 1, 127–136 (1971)
10. Eisenbrand, F., Rinaldi, G., Ventura, P.: 0/1 optimization and 0/1 primal separation are equiv-

alent. In: Proceedings of the 13th annual ACM-SIAM symposium on discrete algorithms,
SODA ’02, pp. 920–926 (2002)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-
Completeness. Freeman, San Francisco (1979)

12. Glover, F.: A new foundation for a simplified primal integer programming algorithm. Oper-
ations Research 16, 727–740 (1968)

13. Goemans, M.X.: Minimum bounded-degree spanning trees. In: Proceedings of the 47th An-
nual IEEE Symposium on Foundations of Computer Science, pp. 273–282 (2006)

14. Grötschel, M., Lovász, L.: Handbook of Combinatorics, vol. 2, chapter Combinatorial Opti-
mization, pp. 1541–1597. North Holland (1995)

15. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in com-
binatorial optimization. Combinatorica 1(2), 169–197 (1981)



392 M. Behle, M. Jünger, and F. Liers
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Abstract. We consider the problem of maintaining a minimum span-
ning tree of a dynamically changing graph, subject to changes on edge
weights. We propose an on-line fully-dynamic algorithm that runs in
time O(|E|) when the easy-to-implement DRD-trees data structure for
dynamic trees is used. Numerical experiments illustrate the efficiency of
the approach.

Keywords: Minimum spanning trees, dynamic graph algorithms, exper-
imental analysis, algorithms, data structures, DRD-trees.

1 Introduction

The dynamic minimum spanning tree problem is that of maintaining a mini-
mum spanning tree (MST) of a dynamically changing graph G = (V, E), where
changes can be vertex insertions and deletions, edge insertions and deletions,
or edge weight modifications. The problem is said to be fully dynamic if inser-
tion and deletion operations are allowed (or if the edge weights can increase
and decrease). The problem is said to be partially dynamic if only one kind of
operation is allowed (either deletions or insertions, either weight increases or
weight decreases). The problem is said to be on-line if the dynamic changes
must be processed in real time (i.e., there is no preprocessing and the updates
are performed one at a time) [1].

There are several variants of the dynamic minimum spanning tree problem.
Spira and Pan [16] proposed algorithms for vertex insertion and vertex deletion
variants. Zaroliagis [18] surveyed experimental studies on dynamic graph prob-
lems subject to edge insertions and deletions. See also [7,8,9,10,11] for algorithms
and [1,5] for experimental studies involving edge insertions and edge deletions.

In this work, we make a step toward the experimental evaluation of algorithms
to update a minimum spanning tree after edge weight changes. Such algorithms
are needful in the implementation of local search heuristics for solving broadcast
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and design problems in communication networks, similarly to the algorithms for
dynamic shortest path problems studied by Buriol et al. [2,3,4] in the context of
the weight setting problem in OSPF/IS-IS routing.

In the next section, we describe and evaluate a new and easy-to-implement
supporting data structure for dynamic trees representation, called DRD-trees. A
new fully-dynamic algorithm for updating a minimum spanning tree after edge
weight changes is proposed in Section 3. Complexity issues are also considered
in this section. An experimental evaluation of several algorithms is carried out
in Section 4 on a comprehensive set of test instances, showing that our approach
outperforms the fastest algorithms for real-size instances. Concluding remarks
are drawn in the last section.

2 Data Structures: Doubly-Linked Reversed Dynamic
Trees

We are given a dynamic graph G = (V, E) with vertex set V , edge set E, and
non-negative weights w(i, j) associated with each edge (i, j) ∈ E. Let T = (V, E′)
be a dynamic minimum weight spanning tree of G, i.e., a minimum spanning
tree subject to structural changes caused by modifications in the edge weights.

The dynamic trees problem [15] consists in maintaining a forest of disjoint
trees that change over time through edge insertions and deletions. For example,
one may want to link two trees by adding an edge or to cut a tree by removing
an edge. We denote by Link(i, j, w) (resp. Cut(i, j)) the operation of inserting
(resp. deleting) edge (i, j) into (resp. from) tree T = (V, E′). A simple way to
represent a forest of disjoint trees is through a set of rooted, directed trees. To
manipulate these trees, the following operations are also made available:

– Root(i): returns the root of the tree containing vertex i;
– Evert(i): makes vertex i the root of its tree; and
– Find Max(i): returns the max-weight edge in the path from i to Root(i).

Operations Link(i, j, w) and Cut(i, j) can be implemented in constant time
using rooted reversed dynamic trees (RD-trees): each vertex i ∈ V stores its
parent and the weight of the edge between them. Operations Evert(i), Root(i)
and Find Max(i) run in linear time, since they depend on the length of the path
from vertex i to Root(i). However, a link operation may require the execution
of an evert operation in the case of undirected trees, therefore resulting in linear
running time. Sleator and Tarjan [15] (resp. Henzinger and King [10] and Wer-
neck and Tarjan [17]) proposed the ST-trees (resp. ET-trees and self-adjusting
top trees), designed to support all the above operations in logarithmic time (in
fact, ET-trees do not support Find Max(i)).

We propose an extension of the RD-trees by building doubly-linked trees
(DRD-trees), instead of simply reversed trees. This can be accomplished by an
additional list associated with each vertex v ∈ V , storing each of its children.

The motivation for this extension comes from the need to detect if an arbitrary
edge (x, y) ∈ E reconnects the two disjoint subtrees Ti and Tj resulting from
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the removal of an edge (i, j) ∈ E′, where Ti (resp. Tj) is the resulting subtree
containing vertex i (resp. j). This connectivity query can be answered by checking
if x and y belong to different subtrees (i.e., if the roots of their subtrees are
different). However, storing all vertices adjacent to j and assuming (without loss
of generality) that vertex i is the parent of j, one may apply a depth-first search
starting from j and label all reachable vertices (i.e., those in Tj) with one, zero
otherwise. These labels can then be used to answer the above connectivity query
in amortized constant time when the number of queries is O(n), in contrast with
the root-based data structures, which depend on the implementation of Root(i)
and take at least logarithmic time.

3 Fully-Dynamic Algorithm

We present a new fully dynamic algorithm to update the minimum spanning
tree of a graph subject to edge weight changes. It makes use of DRD-trees,
which combine easy implementation with efficiency. Two cases are considered
separately: edge weight decreases are considered in Section 3.1, while edge weight
increases are handled in Section 3.2.

Externally to both algorithms, we maintain an edge list A sorted from left to
right by the non-decreasing order of edge weights. Whenever an edge weight is
increased or decreased, this list is updated to reflect the new ordering. Let A(k)
be the k-th edge in the ordered list A, with k = 1, . . . , |E|, and A(i, j) be the
position of edge (i, j) ∈ E in the ordered list A. List A is stored as a skip list [14]
for improved efficiency. The general framework used to update the minimum
spanning tree, maintaining list A correctly ordered, is shown in Algorithm 1..

Algorithm 1. Updates a minimum spanning tree subject to edge weight changes
Input: Graph G = (V, E), weights w.
1: Build a list A with all (i, j) ∈ E;
2: Sort list A by non-decreasing order of weights;
3: Use list A to compute the MST T = (V, E′);
4: while there is an update to be processed do
5: Let (i, j) ∈ E be the edge whose weight will change to wnew ;
6: s ← A(i, j);
7: Save the old edge weight: wold ← w(i, j);
8: Set the new edge weight: w(i, j) ← wnew;
9: Reorder list A by non-decreasing edge weights;

10: f ← A(i, j);
11: if wnew < wold and (i, j) /∈ E′ then
12: Apply Algorithm 2. with parameters T , (i, j), and w;
13: else if wnew > wold and (i, j) ∈ E′ then
14: Apply Algorithm 3. with parameters T , (i, j), s, f , and w;
15: end if
16: end while
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The ordered list A is initialized in lines 1 and 2. A minimal spanning tree
T = (V, E′) is computed in line 3 using Kruskal’s algorithm [12]. The loop in
lines 4 to 16 is performed until all updates have been processed. The edge to be
updated and its new weight are read in line 5. The position s of edge (i, j) in the
current list A is saved in line 6, before the list is reordered. The old weight wold

of edge (i, j) is saved in line 7, while the new weight wnew is set in line 8. The
list A is reordered in line 9 after the change of the weight w(i, j) of edge (i, j).
To ensure the correctness of the decremental updates, in case the new weight
wnew of (i, j) is equal to the weight of other edges, then edge (i, j) should be
placed in the last position among all edges with the same weight. The position
f of edge (i, j) in the reordered list A is saved in line 10. If the comparison in
line 11 (resp. in line 13) determines that the new weight of edge (i, j) is smaller
(resp. larger) than the old one and (i, j) is a non-tree (resp. tree) edge, then
Algorithm 2. (resp. Algorithm 3.) is applied in line 12 (resp. line 14) to update
the current minimum spanning tree, since decreasing the weight of a tree edge
(resp. increasing the weight of a non-tree edge) does not change the latter. We
notice that updates in the weight function are reflected both in list A and in the
data structure used to store the minimum spanning tree T .

3.1 Weight Decreases

Whenever the weight of a non-tree edge (i, j) is decreased, one has to find the
maximum weight edge (x, y) along the path from i to j in T and to remove it if
w(x, y) > w(i, j) [16]. This can be accomplished by using any dynamic tree data
structure to store the MST.

The procedure to update the minimum spanning tree is described in Algo-
rithm 2.. Vertex i is made the new root of the tree in lines 1 to 3. The maximum
weight edge (x, y) in the path from j to i is computed in line 4. If the weight
of edge (x, y) is larger than that of edge (i, j) (comparison in line 5), then the
former is removed from the tree by the Cut(x, y) operation in line 6 and the new
edge (i, j) is inserted by the Link(i, j, w(i, j)) operation in line 7. The updated
MST is returned in line 9.

The efficiency of the above computations depend on the underlying structure
used to maintain the MST and to implement the path operations. If RD-trees
or DRD-trees are used, then Algorithm 2. runs in time O(|V |). It runs in time
O(log |V |) if a more complex implementation (such as ST-trees) is used.

3.2 Weight Increases

We now face the hardest part of the problem. If the weight of a tree edge (i, j)
is increased, the latter may have to be removed from the current minimum
spanning tree. In this case, one has to find the minimum weight edge connecting
the two resulting disjoint subtrees (namely, Ti = (Vi, E

′
i) and Tj = (Vj , E

′
j))

to be inserted in the new minimum spanning tree. There are up to O(n2) such
candidate edges [16].

The procedure to update the minimum spanning tree is described in Algo-
rithm 3.. Vertex j is assumed to be a child of vertex i and a depth-first search
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Algorithm 2. Non-tree edge weight decreases

Input: MST T = (V, E′), non-tree edge (i, j) subject to a weight decrease, weights w.
1: if i �= Root(i) then
2: Evert(i);
3: end if
4: (x, y) ← Find Max(j);
5: if w(x, y) > w(i, j) then
6: Cut(x, y);
7: Link(i, j, w(i, j));
8: end if
9: return updated minimum spanning tree T ;

is applied to the current MST from vertex j in line 1. Vertices in Tj are those
reachable from j by a depth-first search in T . The position k of the first can-
didate edge to replace (i, j) is set in line 2. The loop in lines 3 to 11 scans all
edges between positions s and f of list A. The next edge (x, y) to be investi-
gated is set in line 4 as that in position k of list A. If vertices x and y are in
different subtrees (comparison in line 5), then edge (i, j) is eliminated from the
current tree in line 6 and the two subtrees Ti and Tj are linked by edge (x, y)
in line 7. The updated minimum spanning tree is returned in line 8. Otherwise,
the current position in list A is incremented by one in line 10 and a new edge
is examined. If no improving edge can be found to replace edge (i, j), then the
unchanged current minimum spanning tree is returned in line 12.

Algorithm 3. Tree edge weight increases
Input: MST T = (V, E′), tree edge (i, j) subject to a weight increase, positions s and

f , weights w.
1: Assume j as child of i and perform DFS(j);
2: k ← s;
3: while k < f do
4: (x, y) ← A(k);
5: if Label(x) �= Label(y) then
6: Cut(i, j);
7: Link(x, y,w(x, y));
8: return updated minimum spanning tree T ;
9: end if

10: k ← k + 1;
11: end while
12: return unchanged minimum spanning tree T ;

Algorithm 3. can be adapted to make use of data structures based on the tree
roots, such as ST-trees or RD-trees.

The edge list A, which is externally reordered, can be updated in O(log |E|)
expected time if a skip list is used. The worst case occurs when edge (i, j) is
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shifted from the first to the last position of A. In this case, |E| edges may have
to be considered for replacement. If DRD-trees (resp. ST-trees or RD-trees) are
used, each Label(v) (resp. Root(v)) operation takes time O(1) (resp. O(log |V |)
or O(|V |)). Therefore, the overall complexity of Algorithm 3. is O(|E|) if DRD-
trees are used, O(|E| log |V |) if ST-trees are used, and O(|E||V |) if RD-trees are
used. The following theorem establishes the correctness of the approach:

Theorem 1. Algorithms 1., 2., and 3. correctly update a minimum spanning
tree.

Proof. The structure of list A is such that if an edge (i, j) belongs to the current
minimum spanning tree, then it is the first from left to right in the ordered
list A connecting Ti and Tj . This is initially ensured by Kruskal’s algorithm. It
also holds for Algorithm 3., since by construction the latter selects the left-most
minimum weight edge connecting Ti and Tj between positions s and f of list A.

We now show that letting the weight decreased edge be the right-most edge
between those with the same weight preserves the structure of list A, ensuring
the correctness of Algorithm 2.. Assume edge (x, y) is the candidate edge to
be replaced by (i, j) in the updated MST. If w(x, y) > w(i, j), then edge (i, j)
replaces (x, y) in the tree and becomes the left-most edge in list A connecting
Ti and Tj, since otherwise (x, y) would not be in the current MST. In case
w(x, y) = w(i, j), then edge (i, j) does not replace (x, y). Due to the condition
imposed by each reordering procedure, edge (i, j) is to the right of (x, y). Thus,
(x, y) is the left-most in list A connecting Ti and Tj , and, therefore, the structure
of list A associated with the updated minimum spanning tree is preserved. ��

4 Computational Experiments

The computational experiments are presented in three sections. We first present
experiments concerning the ability of DRD-trees to answer connectivity queries
when compared to existing data structures. The next sections contain the exper-
imental analysis of algorithms for updating minimum spanning trees of dynamic
graphs, with numerical results for synthetic and realistic large graph instances.

The experiments were performed on a Pentium 4 processor with a 2.4 GHz
clock and 768 Mbytes of RAM under GNU/Linux 2.6.16. The algorithms were
coded in C++ and compiled with the GNU g++ compiler version 4.1, using
the optimization flag -O2. Although some codes were obtained from different
authors, all algorithms and data structures were revised and optimized for this
study. All processing times are average results over 100 instances of each size
(ten different trees or graphs subject to ten different update sequences). Both
random and structured sequences of updates are considered.

4.1 Dynamic Trees

We evaluate the behavior of DRD-trees regarding its efficiency to answer connec-
tivity queries. Figure 1 depicts how fast the data structures can answer 100,000
connectivity queries in random trees containing from 2,000 to 400,000 vertices.
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Fig. 1. CPU times for processing 100,000 connectivity queries in random trees

DRD-trees using the depth-first search labeling technique run in amortized
constant time if the labels are used to process the connectivity queries, while RD-
trees and DRD-trees run in linear time and ET-trees and ST-trees in logarithmic
time (all of them using the root-based approach). DRD-trees are faster than the
other data structures considered in this study.

4.2 Algorithms

This section presents a computational study addressing efficient algorithms for
updating minimum spanning trees on dynamic graphs.

Cattaneo et al. [5] have shown that, except for very particular instances,
a simple O(m log n)-time algorithm has the best performance in practice and
runs substantially faster than the poly-logarithmic algorithm HDT of Holm et
al. [11]: the latter was faster than the first for only one out of five different
classes of instances, namely those in k-clique graphs, in which small cliques are
connected by some inter-clique edges and all updates involve only the inter-
clique edges (see Section 4.2(a) below). Despite its theoretical running time of
O(log4 n) amortized, the complex chain of data structures supporting algorithm
HDT does not seem to lead to fast implementations and may require too much
memory. However, since Cattaneo et al. [5] have not applied it to grids and
road networks, the performance of HDT on the instances with large memory
requirements considered in Section 4.2(b) remains an open question.

We present the implemented algorithms together with their complexities in
Table 1. The names of algorithms from [5] start by C, while those of variants of
our approach start by RT. We indicate inside brackets the data structures used to
maintain the minimum spanning tree. The following algorithms were compared:
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C(ET+ST), C(DRD+ST), RT(DRD), RT(ET+ST), and RT(DRD+ST). Results for algo-
rithms RT(RD) and RT(ST) are not reported, since their computation times are
too large when compared to the others. Algorithms RT had the ordered list A im-
plemented as a skip list with probability p = 0.25. The algorithms were applied
to the same benchmark instances considered by other authors [5]. Processing
times are average results over 100 instances of each size.

Table 1. Algorithms and running times per update

Update type

Algorithm weight decreases weight increases

RT(DRD) O(n) O(m) amortized
RT(ET+ST) O(log n) O(m log n)
C(ET+ST) O(log n) O(m log n)
RT(DRD+ST) O(log n) O(m) amortized
C(DRD+ST) O(log n) O(m) amortized

(a) Synthetic Inputs: Results for random sequences of 20,000 updates applied
to randomly generated graphs with 4,000 vertices and 8,000 to 100,000 edges are
displayed in Figure 2. The results show that algorithm RT(DRD+ST) is slightly
faster than the other approaches for random update sequences. Also, DRD-
trees can be used to significantly improve the computation times of algorithm
C(ET+ST).

As we are randomly selecting edges to update, the probability of increasing
the weight of a tree edge is (|V | − 1)/|E|, decreasing with the increase of |E|
when |V | is unchanged. Therefore, there are relatively fewer tree edge weights
to be updated when the total number of edges increases and, consequently, the
computation times become smaller. For all other cases (weight decreases and
non-tree edge weight increases), we described algorithms that work in logarithmic
time. The next experiments are more focused on the increase of tree edge weights,
which can be more interesting than just randomly selecting any edge to update.

Results for structured sequences of 20,000 updates applied to randomly gener-
ated graphs with 4,000 vertices and 8,000 to 100,000 edges are shown in Figure 3.
Here, 90% of the updates are tree edge weight increases and 10% are non-tree
edge weight decreases. As predicted, the behavior in this case is the opposite
to that in the previous situation. These are hard instances, since increasing the
weight of tree edges and decreasing the weight of non-tree edges are the situa-
tions where Algorithms 2. and 3. are really called and used. In this context, the
overall running time is dominated by the algorithms handling weight updates.
The best options are variants RT(DRD) and RT(DRD+ST), since DRD-trees per-
form better when a large number of connectivity queries has to be processed.
Moreover, algorithms C(DRD+ST) and C(ET+ST) did not perform well in this case,
showing their inability to deal efficiently with hard update sequences.

Figure 4 presents results for graphs composed by isolated cliques connected by
a few inter-clique edges, named k-clique graphs [5]. The updates are only incre-
mental, applied exclusively to inter-clique edges. These are very hard instances,
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Fig. 3. CPU times for 20,000 structured updates on randomly generated graphs

since the set of candidates to replace the edge whose weight is increased is very
small. The number of edges in this experiment ranges from 4,000 to 499,008,
while the number of vertices is fixed at 2,000. The behavior of the algorithms
is similar to that in Figure 3. The combination of edge weight increases with
highly structured graphs resulted in the largest computation times among all
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instances considered in this section. Variants RT(DRD) and RT(DRD+ST) are the
best options in most cases. However, the latter is more robust, since Algorithm 2.
has logarithmic complexity due to the use of ST-trees (as one may want to have
good performance for both incremental and decremental updates).

1

4

16

64

256

1024

4096

 50000  100000  150000  200000  250000  300000  350000  400000  450000  500000

C
PU

 ti
m

es
 (

se
co

nd
s)

Number of edges

RT(DRD)
RT(ET+ST)

RT(DRD+ST)
C(ET+ST)

C(DRD+ST)

Fig. 4. CPU times for 20,000 incremental updates on k-clique instances

We conclude this section by reporting the number of connectivity queries per-
formed by each approach – C and RT – on the k-clique instances corresponding
to Figure 4. These numbers give an insight regarding the computation times
obtained in all experiments above. Figure 5 shows that algorithms from [5] per-
form many more connectivity queries (per instance) than the proposed approach,
what lead to the numerical advantage of algorithms RT along the experiments.

(b) Realistic Large Inputs: We now provide results for more realistic graphs
from the DIMACS Implementation Challenge [6]. Table 2 displays results for four
different types of graphs. Random4-n correspond to randomly generated graphs
with |E| = 4|V |. Square-n graphs are generated in a two-dimensional square
grid, with a small number of connections, while Long-n graphs are built on rect-
angular grids with long paths. Last, we present results for real-world instances
named USA-road-d, derived from USA road networks. All update sequences are
composed by 90% of weight increases and 10% of weight decreases.

The results in Table 2 show that variant RT(DRD+ST) performed better, pro-
viding fast algorithms for weight increases (using DRD-trees) and weight de-
creases (using ST-trees). This implementation was up to 110 times faster than
C(ET+ST), as observed for instance Random4-n.18.0. For road networks, variant
RT(DRD+ST) also presented the best performance, achieving speedups of up to
51 times when compared to C(ET+ST), as observed for instance USA-road-d.NY.
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Fig. 5. Number of connectivity queries performed during the execution of 20,000 in-
cremental updates on k-clique instances

Table 2. CPU times (seconds) for 20,000 structured updates on large instances

Instance |V | |E| RT(DRD) RT(ET+ST) C(ET+ST) RT(DRD+ST) C(DRD+ST)
Random4-n.15.0 32,767 131,048 5.80 95.00 480.70 4.96 19.30
Random4-n.16.0 65,535 262,129 16.26 241.20 1,200.95 17.32 47.11
Random4-n.17.0 131,071 524,275 25.08 365.73 2,858.58 28.47 86.50
Random4-n.18.0 262,143 1,048,558 56.98 563.46 6,669.22 60.43 175.87
Random4-n.19.0 524,287 2,097,131 171.51 813.40 15,455.19 170.59 434.93
Square-n.15.0 32,760 65,156 4.87 32.60 141.13 4.19 10.33
Square-n.16.0 65,535 130,556 12.66 63.47 315.50 14.40 24.36
Square-n.17.0 131,043 261,360 28.23 101.89 847.71 30.42 51.03
Square-n.18.0 262,143 523,260 67.47 161.26 1,850.70 73.53 112.28
Square-n.19.0 524,175 1,046,900 132.73 324.63 4,321.13 140.09 229.80
Long-n.15.0 32,767 63,468 5.05 28.63 127.24 4.72 10.01
Long-n.16.0 65,535 126,956 15.03 45.25 313.92 16.17 26.86
Long-n.17.0 131,071 253,932 23.77 98.42 745.92 26.29 46.65
Long-n.18.0 262,143 507,884 59.35 184.20 1,683.73 62.95 103.20
Long-n.19.0 524,287 1,015,788 168.55 314.63 3,874.98 168.93 263.42

USA-road-d.NY 264,346 365,048 141.08 420.57 6,672.47 129.80 374.20
USA-road-d.BAY 321,270 397,414 188.44 674.85 6,832.83 174.84 416.60
USA-road-d.COL 435,666 521,199 233.69 889.54 7,351.65 216.42 560.23
USA-road-d.NW 1,207,945 1,410,384 589.47 3,196.67 23,843.47 566.80 1,518.80
USA-road-d.NE 1,524,453 1,934,008 752.20 4,112.73 47,990.40 737.60 2,152.56

(c) Dynamic vs. Non-Dynamic Algorithms: In this last section, we present
results comparing the dynamic algorithms with the static ones. We consid-
ered the same instances used in the experiments reported in Table 2. In that
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situation, algorithm RT(DRD+ST) processed 20,000 updates for each instance, us-
ing the amount of time showed in Table 2. We let Kruskal’s and Prim’s [13]
algorithms run for the same time RT(DRD+ST) have run. On average, Prim’s
and Kruskal’s algorithms were able to compute from scratch only 379 and 851
minimum spanning trees, respectively.

The dynamic approach was, in average, 52 (resp. 23) times faster than Prim’s
(resp. Kruskal’s) algorithm. Thus, even though the proposed approach has the
same theoretical complexity of other classical algorithms, these results emphasize
the performance and the usefulness of dynamic algorithms.

5 Concluding Remarks

We proposed a new framework for the implementation of dynamic algorithms for
updating the minimum spanning tree of a graph subject to edge weight changes.
An extensive empirical analysis of different algorithms and variants has shown
that the techniques presented in this paper are very suitable to hard update
sequences and outperform the fastest algorithm in the literature.

We also proposed an easy-to-implement data structure for the linking and
cutting trees problem. While DRD-trees provide linear time implementations
for almost all operations, they are considerably faster when used to handle a
large amount of connectivity queries. The experimental analysis showed that
this structure not only reduced the computation times observed for the algo-
rithm of Cattaneo et al. [5], but also contributed to the fastest algorithms in the
computational experiments: RT(DRD) and RT(DRD+ST).
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Abstract. In this paper, we present an approach, based on dynamic pro-
gramming, for solving 0-1 multi-objective knapsack problems. The main
idea of the approach relies on the use of several complementary domi-
nance relations to discard partial solutions that cannot lead to new non-
dominated criterion vectors. This way, we obtain an efficient method that
outperforms the existing methods both in terms of CPU time and size
of solved instances. Extensive numerical experiments on various types of
instances are reported. A comparison with other exact methods is also
performed. In addition, for the first time to our knowledge, we present
experiments in the three-objective case.

Keywords: multi-objective knapsack problem, efficient solutions, dy-
namic programming, dominance relations, combinatorial optimization.

1 Introduction

In multi-objective combinatorial optimization, a major challenge is to develop
efficient procedures to generate efficient solutions, that have the property that no
improvement on any objective is possible without sacrificing on at least another
objective. The aim is thus to find the efficient set (which consists of all the
efficient solutions) or, more often, a reduced efficient set (which consists of only
one solution for each non-dominated criterion vector). The reader can refer to
[1] about multi-objective combinatorial optimization.

This paper deals with a particular multi-objective combinatorial optimization
problem: the 0-1 multi-objective knapsack problem. The single-objective version
of this problem has been studied extensively in the literature (see,e.g, [2,3]).
Moreover, in the multi-objective case, many real-world applications are reported
dealing with capital budgeting [4], relocation issues arising in conservation biol-
ogy [5], and planning remediation of contaminated lightstation sites [6].

Several exact approaches have been proposed in the literature to find the
efficient set or a reduced efficient set for the multi-objective knapsack problem.
We first mention a theoretical work [7], without experimental results, where
several dynamic programming formulations are presented. Two specific methods,
with extensive experimental results, have been proposed: the two-phase method
including a branch and bound algorithm proposed in [8], and the method of
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[9], based on transformation of the problem into a bi-objective shortest path
problem. All these methods have been designed for the bi-objective case and
cannot be extended in a straightforward way to a higher number of objectives.

In this paper, we present a new approach based on dynamic programming. The
main idea of the approach relies on the use of several complementary dominance
relations to discard partial solutions that cannot lead to new non-dominated
criterion vectors. This way, we obtain an efficient method that outperforms the
existing methods both in terms of CPU time and size of solved instances (up
to 4000 items in less than 2 hours in the bi-objective case). In our experiments,
we compare our approach with the method of [9], which is the most efficient
method currently known, and with an exact method based on a commercial
Integer Programming solver. In addition, for the first time to our knowledge, we
present experiments in the three-objective case.

This paper is organized as follows. In section 2, we review basic concepts about
multi-objective optimization and formally define the multi-objective knapsack
problem. Section 3 presents the dynamic programming approach and the dom-
inance relations. Section 4 is devoted to implementation issues. Computational
experiments and results are reported in section 5. Conclusions are provided in a
final section. All proofs are given in the appendix section.

2 Preliminaries

2.1 Multi-objective Optimization

Consider a multi-objective optimization problem with p criteria or objectives
where X denotes the finite set of feasible solutions. Each solution x ∈ X is
represented in the criterion space by its corresponding criterion vector f(x) =
(f1(x), . . . , fp(x)). We assume that each criterion has to be maximized.

From these p criteria, the dominance relation defined on X , denoted by Δ,
states that a feasible solution x dominates a feasible solution x′, xΔx′, if and only
if fi(x) ≥ fi(x′) for i = 1, . . . , p. We denote by Δ the asymmetric part of Δ. A
solution x is efficient if and only if there is no other feasible solution x′ ∈ X such
that x′Δ x, and its corresponding criterion vector is said to be non-dominated.
Thus, the efficient set is defined as E(X) = {x ∈ X : ∀x′ ∈ X, not(x′Δx)}.
The set of non-dominated criterion vectors, which corresponds to the image of
the efficient set in the criterion space, is denoted by ND . Since the efficient set
can contain different solutions corresponding to the same criterion vector, any
subset of E(X) that contains one and only one solution for every non-dominated
criterion vector is called a reduced efficient set. Observe that X ′ ⊆ X is a reduced
efficient set if and only if it is a covering and independent set with respect to
Δ. We recall that, given � a binary relation defined on a finite set A, B ⊆ A
is a covering (or dominating) set of A with respect to � if and only if for all
a ∈ A\B there exists b ∈ B such that b�a, and B ⊆ A is an independent (or
stable) set with respect to � if and only if for all b, b′ ∈ B, b �= b′, not(b�b′).
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2.2 The 0 − 1 Multi-objective Knapsack Problem

An instance of the 0− 1 multi-objective knapsack problem consists of an integer
capacity W > 0 and n items. Each item k has a positive integer weight wk and
p non negative integer profits vk

1 , . . . , vk
p (k = 1, . . . , n). A feasible solution is

represented by a vector x = (x1, . . . , xn) of binary decision variables xk, such
that xk = 1 if item k is included in the solution and 0 otherwise, which satisfies
the weight constraint

∑n
k=1 wkxk ≤ W . The value of a feasible solution x ∈ X

on the ith objective is fi(x) =
∑n

k=1 vk
i xk (i = 1, . . . , p). For any instance of this

problem, we aim at determining the set of non-dominated criterion vectors.

3 Dynamic Programming and Dominance Relations

We first describe the sequential process used in Dynamic Programming (DP)
and introduce some basic concepts of DP (section 3.1). Then, we present the
concept of dominance relations in DP (section 3.2).

3.1 Sequential Process and Basic Concepts of DP

The sequential process used in DP consists of n phases. At any phase k we
generate the set of states Sk which represents all the feasible solutions made
up of items belonging exclusively to the k first items (k = 1, . . . , n). A state
sk = (sk

1 , . . . , sk
p, sk

p+1) ∈ Sk represents a feasible solution of value sk
i on the

ith objective (i = 1, . . . , p) and of weight sk
p+1. Thus, we have Sk = Sk−1 ∪

{(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk) : sk−1

p+1 + wk ≤ W, sk−1 ∈ Sk−1} for k =
1, . . . , n where the initial set of states S0 contains only the state s0 = (0, . . . , 0)
corresponding to the empty knapsack. In the following, we identify a state and
its corresponding feasible solution. Thus, relation Δ defined on X is also valid
on Sk, and we have skΔs̃k if and only if sk

i ≥ s̃k
i , i = 1, . . . , p.

Definition 1 (Completion, extension, restriction). For any state sk ∈ Sk

(k < n), a completion of sk is any, possibly empty, subset J ⊆ {k+1, . . . , n} such
that sk

p+1 +
∑

j∈J wj ≤ W . We assume that any state sn ∈ Sn admits the empty
set as unique completion. A state sn ∈ Sn is an extension of sk ∈ Sk (k ≤ n)
if and only if there exists a completion J of sk such that sn

i = sk
i +

∑

j∈J vj
i for

i = 1, . . . , p and sn
p+1 = sk

p+1 +
∑

j∈J wj. The set of extensions of sk is denoted
by Ext(sk) (k ≤ n). Finally, sk ∈ Sk (k ≤ n) is a restriction at phase k of state
sn ∈ Sn if and only if sn is an extension of sk.

3.2 Dominance Relations in Dynamic Programming

The efficiency of DP depends crucially on the possibility of reducing the set of
states at each phase. For this purpose, dominance relations between states are
used to discard states at any phase. Dominance relations are defined as follows.
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Definition 2 (Dominance relation between states). A relation Dk on Sk,
k = 1, . . . , n, is a dominance relation, if for all sk, s̃k ∈ Sk,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k), ∃sn ∈ Ext(sk), snΔs̃n (1)

A dominance relation Dk is not necessarily transitive. However, due to the tran-
sitivity of Δ, if Dk is a dominance relation then its transitive closure ̂Dk is also
a dominance relation.

We introduce now a way of using dominance relations in Algorithm DP (see
Algorithm 1). At each phase k, Algorithm DP generates a subset of states Ck ⊆
Sk. This is achieved by first creating from Ck−1 a temporary subset T k ⊆ Sk.
Then, we apply dominance relation Dk to each state of T k in order to check if
it is not dominated by any state already in Ck (in which case it is added to Ck)
and if it dominates states already in Ck (which are then removed from Ck).

Algorithm 1: Dynamic Programming
C0 ← {(0, . . . , 0)};1

for k ← 1 to n do2

T k ← Ck−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk)|sk−1

p+1 + wk ≤ W,sk−1 ∈3

Ck−1};
/* Assume that T k = {sk(1), . . . , sk(r)} */

Ck ← {sk(1)};4

for i ← 2 to r do5

/* Assume that Ck = {s̃k(1), . . . , s̃k(�i)} */
nonDominated ← true ; j ← 1;6

while j ≤ �i and nonDominated do7

if s̃k(j)Dksk(i) then nonDominated ← false8

else if sk(i)Dks̃k(j) then Ck ← Ck\{s̃k(j)};9

j ← j + 1;10

while j ≤ �i do11

if sk(i)Dks̃k(j) then Ck ← Ck\{s̃k(j)};12

j ← j + 1;13

if nonDominated then Ck ← Ck ∪ {sk(i)};14

return Cn;15

The following results characterize the set Ck obtained at the end of each phase
k and establish the validity of Algorithm DP.

Proposition 1. For any dominance relation Dk on Sk, the set Ck obtained at
the end of phase k in Algorithm DP is a covering set of T k with respect to ̂Dk

that is also independent with respect to Dk (k = 1, . . . , n).

Proof. Clearly, Ck is independent with respect to Dk, since we insert in Ck a
state sk at step 14 only if it is non-dominated by all others states of Ck (step 8)
and we have removed from Ck all states dominated by sk (step 9).
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We have s̃k ∈ T k\Ck either because it did not pass the test at step 8 or was
removed at step 9 or 12. In both cases, this is due to a state s̄k already in Ck

or to be included in Ck (at step 14) such that s̄k
̂Dks̃k. Indeed, in the first case

this is obvious since we have s̄kDks̃k, and in the second case we can have either
s̄kDks̃k or there exists a state s̄′k such that s̄′kDks̃k, that is not added to Ck

(step 14) due to a state s̄k currently in Ck (step 8) such that s̄kDks̄′kDks̃k. In
both cases, it may happen that s̄k will be removed from Ck at a later iteration
of the for loop (at step 9 or 12) if there exists a new state ŝk ∈ T k, such that
ŝkDks̄k. However, transitivity of ̂Dk ensures the existence, at the end of phase
k, of a state sk ∈ Ck such that sk

̂Dks̃k. ��
Theorem 1. For any family of dominance relations D1, . . . , Dn, Algorithm DP
returns Cn a covering set of Sn with respect to Δ. Moreover, if Dn = Δ, Cn

represents the set ND of non-dominated criterion vectors.

Proof. Considering s̃n ∈ Sn\Cn, all its restrictions have been removed using
Dk during phases k ≤ n. Let k1 be the highest phase where T k1 still contains
restrictions of s̃n, which will be removed by applying Dk1 . Consider any of these
restrictions, denoted by s̃k1

(n). Since s̃k1
(n) ∈ T k1\Ck1 , we know from Proposition 1,

that there exists sk1 ∈ Ck1 such that sk1 ̂Dk1 s̃k1
(n). Since ̂Dk1 is a dominance

relation, by (1), we have that for all extensions of s̃k1
(n), and in particular for s̃n,

there exists sn1 ∈ Ext(sk1) such that sn1Δs̃n. If sn1 ∈ Cn, then the covering
property holds. Otherwise, there exists a phase k2 > k1, corresponding to the
highest phase where T k2 still contains restrictions of sn1 , which will be removed
by applying Dk2 . Consider any of these restrictions, denoted by sk2

(n1)
. As before,

we establish the existence of a state sk2 ∈ Ck2 such that there exists sn2 ∈
Ext(sk2 ) such that sn2Δsn1 . Transitivity of Δ ensures that sn2Δs̃n. By repeating
this process, we establish the existence of a state sn ∈ Cn, such that snΔs̃n.

By Proposition 1, if Dn = Δ, Cn is an independent set with respect to Δ.
Thus Cn, which corresponds to a reduced efficient set, represents the set of non
dominated vectors. ��
When dominance relation Dk is transitive, Algorithm DP can be drastically
simplified in several ways. First, when we identify, at step 8, a state s̃k(j) ∈ Ck

such that s̃k(j)Dksk(i), transitivity of Dk and independence of Ck with respect
to Dk ensure that sk(i) cannot dominate any state in Ck, which makes the
loop 11-13 useless. Second, if we identify, at step 9, a state s̃k(j) ∈ Ck such
that sk(i)Dks̃k(j), transitivity of Dk and independence of Ck with respect to Dk

ensure that sk(i) cannot be dominated by a state of Ck, which allows us to leave
immediately the current loop 7-10.

Further improvements can still be made since it is usually possible to generate
states of T k = {sk(1), . . . , sk(r)} according to a dominance preserving order for
Dk such that for all i < j (1 ≤ i,j ≤ r) we have either not(sk(j)Dksk(i)) or
(

sk(j)Dksk(i) and sk(i)Dksk(j)
)

. The following proposition gives a necessary and
sufficient condition to establish the existence of a dominance preserving order
for a dominance relation.
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Proposition 2. Let Dk be a dominance relation on Sk. There exists a dom-
inance preserving order for Dk if and only if Dk does not admit cycles in its
asymmetric part.

Proof. ⇒ The existence of a cycle in the asymmetric part of Dk would imply
the existence of two consecutive states sk(j) and sk(i) on this cycle with j > i, a
contradiction.

⇐ Any topological order based on the asymmetric part of Dk is a dominance
preserving order for Dk. ��

If states of T k are generated according to a dominance preserving order for Dk,
step 9 and loop 11-13 can be omitted.

In our presentation, Algorithm DP provides us with the set of non-dominated
criterion vectors. The approach can be easily adapted to obtain a reduced ef-
ficient set by adding to each generated state components characterizing its
corresponding solution. Moreover, the efficient set can be obtained by using dom-
inance relations Dk (k = 1, . . . , n) satisfying condition (1), where Δ is replaced
by Δ, and provided that Cn is an independent set with respect to Δ.

4 Implementation Issues

We first present the order in which we consider items in the sequential process
(section 4.1). Then, we present three dominance relations that we use in DP
(section 4.2) and a brief explanation of the way of applying them (section 4.3).

4.1 Item Order

The order in which items are considered is a crucial implementation issue in
DP. In the single-objective knapsack problem, it is well-known that, in order to
obtain a good solution, items should usually be considered in decreasing order
of value to weight ratios vk/wk (assuming that ties are solved arbitrarily) [2,3].
For the multi-objective version, there is no such a natural order.

We introduce now three orders Osum, Omax, and Omin that are derived by ag-
gregating orders Oi induced by the ratios vk

i /wk for each criterion (i = 1, . . . , p).
Let r�

i be the rank or position of item � in order Oi. Osum denotes an or-
der according to increasing values of the sum of the ranks of items in the p
orders Oi (i = 1, . . . , p). Omax denotes an order according to the increasing val-
ues of the maximum or worst rank of items in the p orders Oi (i = 1, . . . , p),
where the worst rank of item � in the p orders Oi (i = 1, . . . , p) is computed
by maxi=1,...,p{r�

i} + 1
pn

∑p
i=1 r�

i in order to discriminate items with the same
maximum rank. Similarly, Omin denotes an order according to the increasing
values of the minimum rank of items in the p orders Oi (i = 1, . . . , p).

In the computational experiments, in Section 5, we show the impact of the
order on the efficiency of our approach.
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4.2 Dominance Relations

Each dominance relation focuses on specific considerations. It is then desirable
to make use of complementary dominance relations. Moreover, when deciding to
use a dominance relation, a tradeoff must be made between its potential ability
of discarding many states and the time it requires to be checked.

We present now the three dominance relations used in our method. The first
two relations are very easy to establish and the last one, although more difficult
to establish, is considered owing to its complementarity with the two others.

We first present a dominance relation based on the following observation.
When the residual capacity associated to a state sk of phase k is greater than or
equal to the sum of the weights of the remaining items (items k + 1, . . . , n), the
only completion of sk that can possibly lead to an efficient solution is the full
completion J = {k + 1, . . . , n}. It is then unnecessary to generate extensions of
sk that do not contain all the remaining items. We define thus the dominance
relation Dk

r on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
r s̃k ⇔

⎧

⎨

⎩

s̃k ∈ Sk−1,
sk = (s̃k

1 + vk
1 , . . . , s̃k

p + vk
p , s̃k

p+1 + wk)
s̃k

p+1 ≤ W −
∑n

j=k wj

Proposition 3 (Relation Dk
r )

(a) Dk
r is a dominance relation (c) Dk

r admits dominance preserving orders
(b) Dk

r is transitive

Proof (a) Consider two states sk and s̃k such that skDk
r s̃k. This implies, that

skΔs̃k. Moreover, since sk
p+1 = s̃k

p+1 + wk ≤ W −
∑n

j=k+1 wj , any subset J ⊆
{k + 1, . . . , n} is a completion for s̃k and sk. Thus, for all s̃n ∈ Ext(s̃k), there
exists sn ∈ Ext(sk), based on the same completion as s̃n, such that snΔs̃n. This
establishes that Dk

r satisfies condition (1) of Definition 2.
(b) Obvious.
(c) By Proposition 2, since Dk

r is transitive. ��

This dominance relation is quite poor, since at each phase k it can only appear
between a state that does not contain item k and its extension that contains
item k. Nevertheless, it is very easy to check since, once the residual capacity
W −

∑n
j=k wj is computed, relation Dk

r requires only one test to be established
between two states.

A second dominance relation Dk
Δ is defined on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
Δs̃k ⇔

{

skΔs̃k

sk
p+1 ≤ s̃k

p+1, if k < n

Dominance relation Dk
Δ is a generalization to the multi-objective case of the

dominance relation usually attributed to Weingartner and Ness [10] and used in
the classical Nemhauser and Ullmann algorithm [11].
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Proposition 4 (Relation Dk
Δ)

(a) Dk
Δ is a dominance relation (c) Dk

Δ admits dominance preserving orders
(b) Dk

Δ is transitive (d) Dn
Δ = Δ

Proof (a) Consider two states sk and s̃k such that skDk
Δs̃k. This implies, that

skΔs̃k. Moreover, since sk
p+1 ≤ s̃k

p+1, any subset J ⊆ {k + 1, . . . , n} that is a
completion for s̃k is also a completion for sk. Thus, for all s̃n ∈ Ext(s̃n), there
exists sn ∈ Ext(sn), based on the same completion as s̃n, such that snΔs̃n. This
establishes that Dk

Δ satisfies condition (1) of Definition 2.
(b) Obvious.
(c) By Proposition 2, since Dk

Δ is transitive.
(d) By definition. ��

Relation Dk
Δ is a powerful relation since a state can possibly dominate all other

states of larger weight. This relation requires at most p+1 tests to be established
between two states.

The third dominance relation is based on the comparison between extensions
of a state and an upper bound of the extensions of another state. In our context,
a criterion vector u = (u1, . . . , up) is an upper bound for a state sk ∈ Sk if and
only if for all sn ∈ Ext(sk) we have ui ≥ sn

i , i = 1, . . . , p.
We can derive a general type of dominance relations as follows: considering

two states sk, s̃k ∈ Sk, if there exists a completion J of sk and an upper bound
ũ for s̃k such that sk

i +
∑

j∈J vj
i ≥ ũi, i = 1, . . . , p, then sk dominates s̃k.

This type of dominance relations can be implemented only for specific com-
pletions and upper bounds. In our experiments, we just consider two specific
completions J ′ and J ′′ defined as follows. After relabeling items k + 1, . . . , n
according to order Osum, completion J ′ is obtained by inserting sequentially
the remaining items into the solution provided that the capacity constraint is
respected. More precisely, J ′ correspond to Jn where Jk = ∅ and J� = J�−1 ∪{�}
if sk

p+1 +
∑

j∈J�−1
wj + w� ≤ W , � = k + 1, . . . , n. J ′′ is defined similarly by

relabeling items according to order Omax.
To compute u, we use the upper bound presented in [2] for each criterion

value. Let us first define W (sk) = W − sk
p+1 the residual capacity associated to

state sk ∈ Sk. We denote by ci = min{�i ∈ {k+1, . . . , n} :
∑�i

j=k+1 wj > W (sk)}
the position of the first item that cannot be added to state sk ∈ Sk when items
k + 1, . . . , n are relabeled according to order Oi. Thus, according to [2, Th 2.2],
when items k + 1, . . . , n are relabeled according to order Oi, an upper bound on
the ith criterion value of sk ∈ Sk is for i = 1, . . . , p:

ui = sk
i +

ci−1
∑

j=k+1

vj
i +max

{⌊

W (sk)
vci+1

i

wci+1

⌋

,

⌊

vci

i − (wci − W (sk))
vci−1

i

wci−1

⌋}

(2)

Finally, we define Dk
b a particular dominance relation of this general type for

k = 1, . . . , n by:
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for all sk, s̃k ∈ Sk, skDk
b s̃k ⇔

⎧

⎨

⎩

sk
i +

∑

j∈J′ vj
i ≥ ũi, i = 1, . . . , p

or
sk

i +
∑

j∈J′′ vj
i ≥ ũi, i = 1, . . . , p

where ũ = (ũ1, . . . , ũp) is the upper bound for s̃k computed according to (2).

Proposition 5 (Relation Dk
b )

(a) Dk
b is a dominance relation (c) Dk

b admits dominance preserving orders
(b) Dk

b is transitive (d) Dn
b = Δ

Proof (a) Consider states sk and s̃k such that skDk
b s̃k. This implies that there

exists J ∈ {J ′, J ′′} leading to an extension sn of sk such that snΔũ. Moreover,
since ũ is an upper bound of s̃k, we have ũΔs̃n, for all s̃n ∈ Ext(s̃k). Thus, by
transitivity of Δ, we get snΔs̃n, which establishes that Dk

b satisfies condition (1)
of Definition 2.
(b) Consider states sk, s̃k, and s̄k such that skDk

b s̃k and s̃kDk
b s̄k. This implies

that, on the one hand, there exists J1 ∈ {J ′, J ′′} such that sk
i +

∑

j∈J1
vj

i ≥ ũi

(i = 1, . . . , p), and on the other hand, there exists J2 ∈ {J ′, J ′′} such that
s̃k

i +
∑

j∈J2
vj

i ≥ ūi (i = 1, . . . , p). Since ũ is an upper bound for s̃k we have
ũi ≥ s̃k

i +
∑

j∈J2
vj

i (i = 1, . . . , p). Thus we get skDk
b s̄k.

(c) By Proposition 2, since Dk
b is transitive.

(d) By definition. ��

Dk
b is harder to check than relations Dk

r and Dk
Δ since it requires much more

tests and state-dependent information.
Obviously, relation Dk

b would have been richer if we had used additional com-
pletions (according to other orders) for sk and computed instead of one upper
bound u, an upper bound set using, e.g., the techniques presented in [12]. Nev-
ertheless, in our context since we have to check Dk

b for many states, enriching
Dk

b in this way would be extremely time consuming.

4.3 Use of Multiple Dominance Relations

In order to be efficient, we will use the three dominance relations presented in
section 4.2 at each phase. As underlined in the previous subsection, dominance
relations require more or less computational effort to be checked. Moreover, even
if they are partly complementary, it often happens that several relations are valid
for a same pair of states. It is thus natural to apply first dominance relations
which can be checked easily (such as Dk

r and Dk
Δ) and then test on a reduced

set of states dominance relations requiring a larger computation time (such as
Dk

b ).
The running time of Algorithm DP using these relations is in O(n(min{W, U}

Up−1)2) where U is an upper bound on the value of all solutions on all criteria,
since Ck, which contains only non-dominated vectors with respect to profit values
and weight, has a cardinality in O(min{W, U}Up−1). Based on ideas of [13], in the
bi-objective case, in order to remove efficiently dominated states at each phase,
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we use an AVL tree [14, sec. 6.3.3] for storing states which leads to a significant
improvement of the running time to O(n min{W, U} log(min{W, U})). Observe
that space complexity of Algorithm DP is in O(min{W, U}Up−1).

5 Computational Experiments and Results

5.1 Experimental Design

All experiments presented here were performed on a bi-Xeon 3.4GHz with
3072Mb RAM. All algorithms are written in C++. In the bi-objective case
(p = 2), the following types of instances were considered:

A: Random instances, v1
k ∈R [1, 1000], v2

k ∈R [1, 1000] and wk ∈R [1, 1000]
B: Unconflicting instances, where v1

k is correlated with v2
k, i.e. v1

k ∈R [111, 1000]
and v2

k ∈R [v1
k − 100, v1

k + 100], and wk ∈R [1, 1000]
C: Uncorrelated conflicting instances, where v1

k and v2
k are mirror values, i.e.

v1
k ∈R [1, 1000], v2

k ∈R [max{900 − vk
1 ; 1}, min{1100 − vk

1 ; 1000}], and wk ∈R

[1, 1000]
D: Correlated conflicting instances, where v1

k and vk
2 are mirror values, and

wk is correlated with v1
k and vk

2 , i.e. v1
k ∈R [1, 1000], v2

k ∈R [max{900 −
vk
1 ; 1}, min{1100 − vk

1 ; 1000}], and wk ∈R [vk
1 + vk

2 − 200; vk
1 + vk

2 + 200].

where ∈R [a, b] denotes uniformly random generated in [a, b]. For all these in-
stances, we set W = �1/2

∑n
k=1 wk�.

Most of the time in the literature, experiments are made on instances of type
A. Sometimes, other instances such as those of type B, which were introduced in
[9], are studied. However, instances of type B should be viewed as quasi mono-
criterion instances since they involve two non conflicting criteria. Nevertheless,
in a bi-objective context, considering conflicting criteria is a more appropriate
way of modeling real-world situations. For this reason, we introduced instances of
types C and D for which criterion values of items are conflicting. For instances
of types C and D, items are around the line y = −x + 1000. In instances of
type D, wk is correlated with v1

k, v2
k. These instances were introduced in order

to verify if correlated instances are harder than uncorrelated instances as in the
single-criterion context [2].

For three-objective experiments, we considered the generalization of random
instances of type A where vi

k ∈R [1, 1000] for i = 1, . . . , 3 and wk ∈R [1, 1000].
For each type of instances and each value of n presented in this study, 10

different instances were generated. In the following, we denote by pTn a p criteria
instance of type T with n items. For example, 2A100 denotes a bi-objective
instance of type A with 100 items.

5.2 Results in the Bi-objective Case

First, in the experiments, we try to determine the best order to sort items for DP.
Table 1 shows clearly that the way of ordering items has a dramatic impact on the



416 C. Bazgan, H. Hugot, and D. Vanderpooten

Table 1. Impact of different orders of items in our approach (Average CPU time in
seconds, p = 2)

Type n Omax Osum Omin Random

A 300 84.001 100.280 94.598 178.722
B 600 1.141 1.084 1.403 77.699
C 200 59.986 60.061 85.851 107.973
D 90 20.795 23.687 35.426 31.659

CPU time and that order Omax is significantly better for all types of instances.
Thus, in the following, items are sorted and labeled according to Omax.

Second, we show the complementarity of dominance relations Dk
r , Dk

Δ, and
Dk

b . Table 2 establishes that it is always better to use the three relations, due to
their complementarity.

Table 2. Complementarity of dominance relations Dk
r , Dk

Δ, and Dk
b in our approach

(Average CPU time in seconds, p = 2)

Type n Dk
Δ Dk

r and Dk
Δ Dk

Δ and Dk
b Dk

r , Dk
Δ, and Dk

b

A 300 272.628 157.139 85.076 84.001
B 600 230.908 174.015 1.188 1.141
C 200 122.706 63.557 61.696 59.986
D 90 46.137 24.314 23.820 20.795

Table 3. Results of our approach on large size instances (p = 2)

Type n
Time in (s) |ND| Avg

Min Avg Max Min Avg Max maxk{|Ck|}

A

100 0.152 0.328 0.600 98 159.3 251 17134.7
300 57.475 84.001 101.354 905 1130.7 1651 898524.7
500 677.398 889.347 1198.190 2034 2537.5 2997 5120514.7
700 4046.450 5447.921 7250.530 3768 4814.8 5939 18959181.7

B

1000 4.328 8.812 15.100 105 157.0 218 134107.2
2000 139.836 251.056 394.104 333 477.7 630 1595436.1
3000 1192.190 1624.517 2180.860 800 966.9 1140 6578947.2
4000 4172.530 6773.264 8328.280 1304 1542.3 1752 18642759.0

C
100 1.564 2.869 4.636 406 558.2 737 103921.5
300 311.995 373.097 470.429 2510 2893.6 3297 3481238.4
500 2433.320 4547.978 6481.970 5111 7112.1 9029 21282280.5

D

100 36.450 40.866 54.267 1591 1765.4 2030 1129490.3
150 235.634 265.058 338.121 2985 3418.5 3892 4274973.9
200 974.528 1145.922 1497.700 4862 5464.0 6639 12450615.5
250 2798.040 3383.545 3871.240 7245 8154.7 8742 26999714.8

Lastly, we present, in Table 3, the performance of our approach on large
size instances. The largest instances solved here are those of type B with 4000
items and the instances with the largest number of non-dominated criterion
vectors are those of type D with 250 items for which the cardinality of the
set of non-dominated criterion vectors is in average of 8154.7. As predicted,
instances of type B are quasi mono-objective instances and have very few non-
dominated criterion vectors. The average maximum cardinality of Ck, which is
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a good indicator of the memory storage needed to solve the instances, can be
very huge. This explains why we can only solve instances of type D up to 250
items.

5.3 Comparison with Other Exact Methods in the Bi-objective
Case

The results of a comparative study, in the bi-objective case, between the exact
method of [9], an exact method based on a commercial Integer Programming
(IP) solver and our approach using Dk

r , Dk
Δ, and Dk

b are presented in Table 4.
We have selected the method of [9] since it is the most efficient method currently
known. An exact method based on a commercial IP solver has been selected, on
one hand, because it is relatively easy to implement, and on the other hand,
since each efficient solution is found by solving only one linear program, this
method has much less storage problems than the two others.

An exact method based on a commercial IP solver is presented in Algorithm 2.
This algorithm relies on the idea that since the decision space Z = {f(x) : x ∈
X} is included in N2, all efficient solutions can be enumerated in decreasing
order of value on the first criterion. Cplex 9.0 is used as IP solver in Algorithm 2
which is written in C++.

Algorithm 2: Computing a reduced efficient set with an IP Solver
Generate y an optimal solution of maxx∈X f1(x) and z an optimal solution of maxx∈X f2(x);1
Generate x1 an optimal solution of max{f2(x) : x ∈ X, f1(x) ≥ f1(y)};2
X� ← X� ∪ {x1} ; j ← 1;3
while f2(xj) < f2(z) do4

α← f2(z)− f2(xj)− 1;5
Generate xj+1 an optimal solution of max{αf1(x) + f2(x) : x ∈ X, f2(x) ≥ f2(xj) + 1};6
X� ← X� ∪ {xj+1} ; j ← j + 1;7

return X�;8

Table 4. Comparison between the exact method of [9], Algorithm 2 using Cplex and
our approach

Type n
Avg time in (s) Avg

[9] Cplex Our approach |ND|

A
100 2.476 5.343 0.328 159.3
200 37.745 57.722 12.065 529.0
300 163.787 285.406 84.001 1130.7

B
600 27.694 27.543 1.141 74.3
700 47.527 29.701 2.299 78.6
800 75.384 68.453 5.280 118.1

C 100 12.763 208.936 2.869 558.2
D 100 127.911 23126.926 40.866 1765.4

The three methods have been used on the same instances and the same com-
puter. For the exact method of [9], we used the source code, in C, obtained from
the authors. Table 4 presents results, in the bi-objective case, for instances of
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type A, B, C, and D for increasing size of n while the method of [9] can solve
all instances of the series considered. Since the method of [9] is very storage
consuming, it can only solve instances of type A up to 300 items, of type B up
to 800 items, of type C up to 100 items and of type D up to 100 items whereas
we recall (see Table 3) that our approach can solve instances respectively up to
700, 4000, 500 and 250 items.

Considering CPU time, we can conclude that our approach is always faster
than the exact method of [9] and than Algorithm 2 with Cplex on the considered
instances. We can also observe that the CPU time needed to solve correlated
and conflicting instances of type D by Algorithm 2 with Cplex is especially large
(about 6.5 hours in average for instances 2D100). In addition, we can remark
that the exact method of [9] cannot solve conflicting instances (type C and D) of
moderate and large size for which the number of non-dominated criterion vectors
is large. Indeed, the exact method of [9] does not work very well on instances
with many non-dominated criterion vectors due to storage limitations.

5.4 Results in the Three-Objective Case

In table 5, we present results of our approach concerning large size instances of
type A in the three-objective case. Observe that the number of non-dominated
criterion vectors varies a lot. This explains the variation of the CPU time which
is strongly related with the number of non-dominated criterion vectors.

Table 5. Results of our approach on instances of type A in the three-objective case

n
Time in (s) |ND| Avg

Min Avg Max Min Avg Max maxk{|Ck|}
10 0.000 0.000 0.000 4 8.3 18 20.9
30 0.000 0.012 0.028 31 112.9 193 1213.2
50 0.112 0.611 1.436 266 540.6 930 12146.5
70 4.204 16.837 44.858 810 1384.4 2145 64535.4
90 80.469 538.768 2236.230 2503 4020.3 6770 285252.1

110 273.597 3326.587 11572.700 3265 6398.3 9394 601784.6

6 Conclusions

The goal of this work has been to develop and experiment a new dynamic pro-
gramming algorithm to solve the 0 − 1 multi-objective knapsack problem. We
showed that by using several complementary dominance relations, we obtain a
method which outperforms experimentally the existing methods. In addition,
our method is extremely efficient with regard to the other methods on the con-
flicting instances that model real world applications. Lastly, this method is the
first one to our knowledge that can be applied for knapsack with more than two
objectives and the results in the three-objective case are very satisfactory.

While we focused in this paper on the 0 − 1 multi-objective knapsack prob-
lem, we could envisage in future research to apply dominance relations based
on similar ideas to other multi-objective problems such as the multi-objective
shortest path problem or multi-objective scheduling problems.
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Abstract. For trunk packing problems only few approximation schemes
are known, mostly designed for the European standard DIN 70020 [6]
with equally sized boxes [8, 9, 11, 12]. In this paper two discretized
approaches for the US standard SAE J1100 [10] are presented, which
make use of different box sizes. An exact branch-and-bound algorithm
for weighted independent sets on graphs is given, using the special struc-
ture of the SAE standard. Another branch-and-bound packing algorithm
using linear programs is presented. With these algorithms axis-oriented
packings of different box sizes in an arbitrary trunk geometry can be
computed efficiently.

Keywords: approximation algorithms, branch and bound algorithms,
branch and cut algorithms, graph algorithms, linear programming, pack-
ing problems, weighted independent set.

1 Introduction

The cooperation with a German car manufacturer has led to several efficient
approximation schemes for the trunk packing problem according to the German
standard DIN 70020 [4, 5, 6, 8, 11, 12]. This cooperation has been continued
by exploring the baggage volume capacity according to the US standard SAE
J1100 [10].

The computation of the baggage capacity has a significant influence on the
car design process. According to international regulations, the baggage capacity
is not equal to the continuous volume of a trunk which can be easily computed
using a standard CAD program. The German standard DIN 70020 uses boxes of
size 20×10×5 cm, which equals 1 l per box. The American standard SAE J1100
uses a more realistic set of boxes: seven different box sizes are used, making an
equivalent from 6 up to 67 litres. To create a valid1 SAE J1100 packing, a few
rules must be obeyed: The smallest boxes may not be used until none of the
larger boxes fit into the trunk, and each box type has got a fixed number of
instances to be used at maximum.

The trunk packing problem has recently been explored for the DIN 70020
case. In [5, 11], a discrete approach is followed using a discretization of the
trunk volume into cubes of fixed size. Using discrete coordinates derived from
these cubes as representatives for boxes, a conflict graph can be created and
1 A packing is considered valid if it contains only boxes of allowed sizes and each box

size does not occur more often than allowed.

C. Demetrescu (Ed.): WEA 2007, LNCS 4525, pp. 420–432, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the Independent Set (IS) problem can be solved on this graph. [5, 11] also
provide several algorithms using some structural properties of the conflict graph
and optimization techniques for the underlying grid.

Cagan and Ding [3] presented a packing algorithm for SAE J1100 using ex-
tended pattern search. Additionally to this approach one could also make use of
a conflict graph. The SAE standard differs from the DIN standard in two issues:
At first, the goal is to find an independent set with the maximal covered volume.
This problem is known as Weighted Independent Set (WIS). Second, the
maximal WIS might not be a valid solution for the SAE J1100 standard which
allows only a fixed number of occurences for each box type. Table 1 shows the
allowed box types and their sizes. There also exists an irregular shaped golf bag
(type G) which is currently not used.

For the WIS problem itself a greedy algorithm has been explored recently [7,
13]. An approximation ratio of min((d̄w+1)/2, (δw+1)/2) is derived for the greedy
algorithm, where d̄w denotes the weighted average degree, and δw is the weighted
inductiveness of a weighted undirected graph as defined in [13]. The special struc-
ture of the conflict graph, however, causes that this approximation ratio can be
achieved easily and provides rather poor values for the trunk packing problem.

Some branch-and-bound algorithms for the WIS problem on general graphs
have been evaluated [15]. An approximation algorithm using local search has
been developed by Berman [2]. This algorithm achieves an approximation ratio
of d/2 in a d-claw free graph. A d-claw is an induced subgraph containing an
independent set of d nodes, and a center node that is connected to all members
of the independent set. A graph is called d-claw free if it does not contain any
d-claws. Unfortunately, the conflict graph as constructed in section 2 contains
d-claws for very large d, so this approximation ratio would not provide any gain
for the trunk packing problem. Furthermore, these algorithms apply to graphs
with arbitrary integer weights. In the trunk packing case, the fact that only
seven different weights are present can be exploited. Thus it is necessary to find
other efficient algorithms for this special version of the WIS problem.

Additionally, a continuous approach was developed using Simulated Anneal-
ing techniques (see [4, 8, 12]). Using moves like translation, rotation, creation
and deletion, the discretized solutions could be improved in many cases. A new
promising approach for continuous packing is the simulation of the physical

Table 1. Allowed box types for the SAE J1100 trunk packing problem

box max. inch (′′) mm Volume
type occurrences l w h l w h l ft3

A 4 24 19 9 610 483 229 67.47 2.375
B 4 18 13 6.5 457 330 165 24.88 0.880
C 2 26 16 9 660 406 229 61.36 2.167
D 2 21 18 8.5 533 457 216 52.61 1.859
E 2 15 9 8 381 229 203 17.71 0.625
F 2 21 14 7 533 356 178 33.78 1.191
H 20 12.8 6 4.5 325 152 114 5.63 0.200
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processes during the motion of rigid bodies. There it is possible, by pushing
boxes, to create free space at a designated place and therefore to insert new
boxes [1]. The idea to use a contact simulation for a packing problem arose from
a programming contest about Circle Packing [17].

This paper is structured as follows: Section 2 deals with the WIS problem
itself, the mapping of the container structure to a discretized model and the de-
scription of graph algorithms. In section 3 an approach without the use of a grid
is presented. There, the packing problem is solved by using linear programs using
a convex container structure with convex obstacles. Finally, section 4 presents
some quality and runtime results achieved by these combinatorial approaches.

2 Discrete Approach

2.1 Hardness of the Discrete Trunk Packing Problem

The Trunk packing problem can be discretized in the following way: First, the
rotation of the boxes can be limited to axis-oriented placements. Second, the
possible placements are restricted to the cells of a grid. Clearly, these restrictions
reduce the solution space and possibly eliminate the optimal solution of the
original problem. Reichel [11] shows similar problems (Discrete-Box-Packing

for equal boxes) to be NP-complete and the continuous version to be NP-hard.
Similar considerations can be applied here.

2.2 Conflict Graph

Reichel presented techniques to compute a grid approximation for the container
and uses a graph to describe conflicts between possible box placements on the
grid [11]. This can easily be extended to the SAE case. Now there are seven
different box types and therefore up to seven nodes for each anchor cell and
orientation2.

SAE J1100 defines seven box types with 17 different side lengths. The finest
grid spacing used for the DIN problem was 12.5 mm, which equals about 0.5′′.
This grid size would be too fine for the SAE case since for each box type, there
has to be a copy of each node. Since the conflict graph will be very large for small
grid spacings, one has to restrict the minimal spacing to 1′′ – 1.5′′. Although
larger grid spacings lead to smaller conflict graphs, the resulting packings would
be larger using small grid spacings such as 1.5′′ or 1′′.

The conflict graph G = (V, E) corresponding to a grid is generated analogue
to [5] as follows: For each grid cell (i, j, k), orientation o and box type t, determine
whether a box of type t, situated at (i, j, k) in orientation o, would fit into the
trunk (i.e. the box would cover only inside-cells). If so, then add node v =
(i, j, k, o, t) to V . Now, for each pair of nodes u, v ∈ V , check whether the two

2 Since SAE boxes are much larger than DIN boxes, there are less grid cells useable
for a box, and not all box types might fit at a certain position.
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corresponding boxes would intersect, i.e. whether there is a cell which is covered
by both boxes. If so, then add edge {u, v} to E.

Using instances of the DIN 70020 case, the boxes have a size of at most
16 × 8 × 4 cubes (12.5 mm spacing). With 6 possible orientations, each node
representing a box might intersect with 201 other possible boxes, thus the conflict
graph will have a maximum degree of 201 for 50 mm grid spacing [11]. A typical
conflict graph for the DIN problem would have about 104 nodes and 106 edges
(with 50 mm grid spacing). For the same trunk, a conflict graph using 2′′ spacing
for the SAE problem has about 8.000 nodes (due to the larger boxes, where less
positions are possible) and about 15 · 106 edges (due to the huge number of
conflicts for each box). Including the smallest box-type H, the number of nodes
in the conflict graph would actually be twice as much. Since the SAE J1100
standard requires the boxes of type H to be packed after the other boxes have
been properly packed, it will be sufficient to exclude the H-boxes temporarily.
After having computed a solution without H-boxes, the packing can be extended.

The largest box of the SAE problem consists of 12×9×4 cubes (2′′ spacing3),
hence covering 432 cubes. The box intersects with all boxes that overlap one of
these cubes which means up to 105 potential conflicts in a grid of 2′′ spacing for
the biggest box of type A.
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(c) 6′′ × 4′′ vs 10′′ × 7′′

Fig. 1. Conflict regions

Figure 1 shows regions of forbidden reference points when one box of size
6′′ × 4′′ is already placed. The forbidden area due to the boundary of the trunk
is coloured light grey, and the forbidden area due to the placed box is coloured
dark grey. The hatched area marks those points that are allowed by the boundary
constraints but placing a box there would cause to intersect the previously placed
box.

2.3 Reducing the Conflict Graph Size

Since most of the following algorithms examine the edges of the conflict graph, it
might prove useful to reduce its size. To find an IS of maximal size resp. maximal
3 For computational purposes, the SAE box lengths will be rounded down to fit into an

integer number of cubes, e.g. the largest box (type A) has 24′′ × 19′′ × 9′′, making a
12×9×4 grid box. Section 2.8 deals with the problem of rounding the box measures
to fit into the grid spacing.
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weight, it is necessary to observe some properties of a maximal IS I. The goal
is to eliminate some nodes of the graph without reducing the size of the largest
IS. In the unweighted case the decision which nodes are to be deleted is quite
easy. First, the set of neighbours of a node v has to be defined:

Definition 1. Let v ∈ V be a node of G. Then N(v) = {u ∈ V : {u, v} ∈ E}
is the set of neighbours of v. The set N+(v) = N(v) ∪ {v} denotes the set of
neighbours of v including v.

Now, an elementary property of independent sets can be described.

Theorem 2. Let G = (V, E) be an undirected graph, and u, v ∈ V be adjacent
nodes ({u, v} ∈ E). If N+(u) � N+(v), then the following is true:
For every independent set I ⊆ V containing v, there is also an independent set
I ′ ⊆ V with at least the same cardinality containing u.

Proof. Obviously, v ∈ I ⇔ u /∈ I since {u, v} ∈ E. N+(u) � N+(v) states that
all neighbours of u are also neighbours of v, so v can be replaced by u. That is,
I ′ := I \ {v} ∪ {u}.

Theorem 2 can be used in an elegant way to reduce the nodes of a graph. Since
the goal is to find an IS of maximum size, it is useful to include the node u
instead of v because v has got a larger neighbourhood and more nodes would
be useless for later additions. Since all neighbours of u are also neighbours of v,
one would rather choose u with its smaller neighbourhood.

What does this mean for the trunk packing problem? If there is a box position
near the boundary of the grid, some space between box and boundary would be
unusable for other boxes (see figure 1). So it would be better to move the box
directly to the boundary, where less space is wasted. This approach is sometimes
called a bottom left justified packing: All boxes are placed in a way that their
bottom, left and front sides touch either other boxes or the surrounding geometry.
Any axis-oriented packing can be transformed into a bottom left justified packing
[14, 16].

Theorem 2 also applies to the WIS problem:

Corollary 3. Let G = (V, E) be a weighted undirected graph, and u, v ∈ V be
adjacent nodes ({u, v} ∈ E). If N+(u) � N+(v) and w(u) ≥ w(v), then the
following is true:

For every weighted independent iet I ⊆ V with v ∈ I, there is also a weighted
independent set I ′ ⊆ V with at least the same weight with u ∈ I.

Proof. Simply replace v by u. Then w(I ′) = w(I) − w(v) + w(u) ≥ w(I).

Corollary 3 shows the crucial problem of the SAE case: If two different box types
are compared, normally the larger box also gets the larger neighbourhood. So it
is not clear which node to eliminate in these cases. Fortunately, there are only
seven (a fixed small number) different node weights. So an easy way to reduce
the nodes is to do this typewise, i.e. to compare only nodes of the same weight.
In the general case, one could classify the nodes into a few weight classes and
perform the reduction on these classes.
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Algorithm 1. Graph reduction
for each type t do
for each edge {u, v} with Type(u) = Type(v) = t do
if N+(u) ⊂ N+(v) then let V := V \ v.

Using this procedure it is possible to reduce the number of nodes of a typical
conflict graph of the Trunk Packing problem with cell size 2′′ by 75% and the
number of edges by up to 90%. Therefore, the performance of the packing al-
gorithms increases significantly because of the smaller conflict graph. The effect
of reduceable nodes is directly related to the size of the boxes compared to the
trunk. Since the SAE boxes are relatively large and the DIN boxes are relatively
small, the reduction algorithm is only useful for the SAE case. When small boxes
(type H) are included, only nodes with relatively close positions to each other
could be candidates for Theorem 2. Thus, small boxes reduce the positive ef-
fects of graph reduction additionally to their large contribution to the number
of nodes and edges. The reduction process itself mainly takes place near the
boundary of the grid. Since small trunks have got a large boundary compared
to their interior, the conflict graphs of smaller trunks can easily lead to graphs
of less than 20% of the original graph size. Additionally, when the grid spacing
is reduced, the portion of eliminated nodes tends to increase.

2.4 Brute Force Algorithms

The easiest way to find an IS is to successively add a free node to an already
existing IS I. A node v ∈ V is called free if there is no edge between v and any
node of I. This is done until there are no free nodes left. The SAE case adds the
following condition to the definition of free nodes: The number of nodes of the
corresponding types must not exceed a pre-defined number, e.g. there may only
be four A-boxes and two C-boxes in a valid packing (see Table 1).

This simple approach will hardly lead to the desired optimal solution in the
first step. Therefore, a backtracking mechanism has to be added: Test all in-
dependent sets of the conflict graph recursively. If there is no free node left,
compare the current IS with the best set found so far, and take the better one.
Algorithm 2 shows an outline of this procedure. Let therefore w(v) be the weight
of node v, and w(I) =

∑

v∈I w(v) be the total weight of the set I.

Algorithm 2. Recursive enumeration (G, I)
1. Let F be the set of all free nodes of G
2. if w(I) > w(Imax) then set Imax := I.
3. while F �= ∅ and Upper bound (F, I) > w(Imax) do

(a) Choose v ∈ F and set I ′ := I ∪ {v}, F := F \ {v}
(b) Recursive enumeration (G, I ′)

4. return (Imax, w(Imax)).

Using this approach, the IS of maximum weight will definitely be found since all
IS are examined. Unfortunately, the number of independent sets is exponential
in the number of nodes. So it is necessary to find an efficient branch-and-bound
technique to prune the recursion tree.
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2.5 Computing an Upper Bound

Now the main question is: Starting from the current IS, what is the best possible
size one could achieve? The exact solution for this problem is equivalent to
solving the IS problem on the subgraph induced by all free nodes. Fortunately,
the SAE standard gives a hint how to calculate a strong upper bound on the
current WIS efficiently: Add the weights of all free nodes but limit the number
of the free nodes to the allowed number of boxes for each type. This would mean
that the upper bound is calculated at first by using all allowed boxes (≈ 28.7 ft3),
and will only be reduced if there are less free nodes of a certain type left than
allowed.

2.6 A Greedy Algorithm

Up to now, only a brute force algorithm has been presented. Although this
approach gives the exact result for the current WIS problem, the runtime still is
exponential in |V |. Maybe a polynomial-time approximation algorithm can be
found which is easy to analyze.

For comparison with the optimal solution of the problem, it is necessary to
give an additional definition:

Definition 4. [13] Let v ∈ V be a node of G. Then the weighted degree dw(v)

is defined as dw(v) =
�

u∈N(v) w(u)
w(v) .

The weighted degree of a node shows how much weight would become unuseable
in relation to its own weight. Now it is possible to sort all free nodes ascending
by their weighted degree within the remaining graph. The greedy algorithm for
weighted independent sets works as follows:

Algorithm 3. Greedy (G)
1. Let I := ∅, U := V .
2. while U �= ∅ do

(a) Let v ∈ U be a node with dw(v) = minu∈U dw(u).
(b) I := I ∪ {v}.
(c) U := U \ N(v).
(d) Recompute dw(u) for all u ∈ U w.r.t. U (not V ).

In [13] an approximation ratio of min((d̄w + 1)/2, (δw + 1)/2) for the greedy
algorithm is derived. It is obvious that an asymptotic bound is not really useful
for the small cases of the Trunk Packing problem. It also comes clear that the
greedy algorithm achieves more than the expected asymptotic bound for graphs
derived from trunk packing instances.

2.7 Greedy Enumeration

Observing these facts it will be necessary to extend algorithm 3 by algorithm 2
to enumerate all weighted IS systematically.
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Greedy! Line 2d of algorithm 3 needs an efficient update function, especially
if it is planned to use this approach for a recursive enumeration of all weighted
independent sets. If node v is added to the IS, then all nodes of N(v) would
be unuseable. Hence, the weighted degrees of all nodes w ∈ N(N(v)) will be
decremented by w(N(w) ∩ N(v)). In the present implementation, all pairs u, w
of nodes of the remaining graph are examined, where u ∈ N(v), w /∈ N(v) and
{u, w} ∈ E.

Node orders. For an enumeration algorithm, the node order is crucial. If the
right sequence is chosen, a very good result can be achieved at an early stage,
and in combination with a good upper bound, the enumeration process can be
cut early. In the previous sections, no specific order of the vertices is assumed.
Normally, they are sorted by their time of creation in the conflict graph. In the
current implementation the nodes are first sorted by type, then by orientation
and position. For instance, a random permutation might be chosen and the re-
cursive algorithm executed like a multi-start approach, increasing the probability
to find the optimal solution earlier. Again, this approach is difficult to analyze.
The experiments showed a large average runtime for the randomized node order.
Another possibility would be taking nodes with small weighted degree first. In
the trunk packing problem, the weighted degrees are directly correlated to the
sizes of the boxes, hence a node of small weighted degree represents a small box.
Therefore, this strategy means packing small boxes first.

For the SAE Trunk Packing problem the following observation can be made:
If a large box is taken first, it will cause a large amount of nodes to be unuseable
and therefore the remaining conflict graph will be significantly smaller. Also,
a large box has only few possibilities to be placed, making the recursion tree
narrower. But if a small box is chosen, the number of possibilities will be much
larger and the algorithm will be stuck at an early stage by examining many
almost equal sets. This approach is very alike a human’s way to pack a trunk:
take the big cases first, and then stuff the smaller boxes in between. Now an
additional effect comes into account: If the nodes with large weights are used
first and the small ones afterwards, it is possible that the last few (small) nodes
can not exceed the best found IS, and the algorithm can make effective use of
the upper bound discussed in section 2.5. This implementation proved to be the
fastest in all experiments.

2.8 Rounding the Box Sizes

Another discouraging aspect is the need for rounding the box sizes. In a 2′′-grid,
only 8 of 21 side lengths are represented correctly (only the even ones), and all
other lengths would have to be rounded. Table 1 shows that the largest grid
spacing without rounding the box sizes would be 0.1′′, thus far from practicable.
Now there are some different possibilities to be discussed:
1. All lengths are rounded up to the next even integer.
2. All lengths are rounded down to the last even integer.
3. All lengths are rounded to the nearest even integer.
4. The lengths are rounded up or down with respect to the available space.
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The first strategy will provide a feasible4 solution when the set is converted into
a real box set. Unfortunately, this strategy will waste space between the boxes.
Strategy 2 causes the opposite problem. Since the grid boxes are smaller than the
real boxes the resulting solution will be unfeasible due to intersections between
boxes. These intersections can be resolved by using a physical simulation of
contacts between the boxes and the trunk [1]. However, the intersections might
be too severe to be resolved. To prevent this, the outmost layer of inside-cells
is deleted. This provides a feasible solution in most cases. Strategy 3 will cause
both problems of the first two rounding strategies. A mixed strategy would
raise the problem of data representation. Currently, strategy 2 is used. In most
cases it suffices to delete one layer of inside-cells in each dimension to generate
legalizable solutions, i.e. the resulting packings themselves would not fit into
the trunk, but the packed boxes could be translated and rotated to fit into the
trunk. However, this reduction of the grid causes another deficit in comparison
to a manual solution.

3 Omitting the Grid

An optimal solution with respect to a grid is limited to fixed orientations and dis-
cretized placements. Thus, such a solution is unlikely to be optimal with respect
to the original trunk packing problem. If the restriction to discrete placements is
dropped, it might be possible to find a better solution. Omitting the grid means
that the box sizes are not required to be multiples of a grid cell size and therefore
do not have to be rounded. So a legalization step is not necessarily required.

Schepers [14] shows how to compute packings of axis-oriented boxes within a
cubic container of ”unit” length. This is done by solving several linear programs.

For a fixed set of boxes we use enumeration to decide the relative position of
the boxes – i.e. for each pair of boxes, we decide whether the first box lies left,
right, above (but neither left nor right), below, in front of, or back of the other
box. Using the center coordinates of each box, the relative positions between
boxes can easily be enforced by linear inequalities. Furthermore we can describe
the set of all feasible points for the centers of the boxes by linear inequalities.

Hence the feasibility of such a configuration, called packing pattern, can be
tested by verifying the feasibility of a linear program. Schepers additionally
shows how to solve these linear programs combinatorially, but this result does
not generalize to our approach. The optimal set of boxes is found by enumerating
all sets of boxes (such that a subset fits into the container).

Let T ⊂ R
3 be the interior of the trunk. For a box B with fixed type and

orientation, let TB be the Minkowski sum of the trunk boundary and B. Now
the set M = T \ TB describes all reference points where box B can be anchored
within the trunk.

To generalize the approach described above to the case of a trunk, the set M
has again to be described by linear inequalities. As this set is not convex, we
4 A packing is considered feasible if there are no intersections between the packed

boxes as well as between the boxes and the trunk.
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over-approximate the set M by a convex region and allow to place some convex
bodies, called obstacles, into the set. Similar to the case of two boxes, we have
to know the relative position of every box and every obstacle, i.e. knowing which
of the half spaces defining the convex obstacle does not intersect the center of
the box.

Notice that the complexity of the approach grows rapidly with the number
of half spaces describing the inserted obstacles. Therefore we aim to describe a
close approximation of the feasible region for the centers by a small number of
obstacles.

Currently this description is done manually. First, the trunk itself is approx-
imated by linear equations, and then cuboid obstacles are inserted. It is quite
easy to calculate the Minkowski sum of a set of linear equations and a box. Espe-
cially the desired set M = T \ TB can be described as the same linear equations
translated by the half diagonal of the box. Since the obstacles are restricted to
be convex, they can be described in the same way. At the moment, we develop
automated methods to describe the set M in the required way.

To improve the practical efficiency of this approach, we enumerate the region,
the inequalities of an obstacle and the relative position only if the appropriate
constraints are violated by our solution of the linear program.

As the number of feasible packing patterns and therefore the number of linear
programs solved increases rapidly with the size of the trunk, the enumeration
of all packing patterns is very time consuming. For the manually created ap-
proximations, we are able to enumerate all packing patterns within a few days.
Moreover, we experimented with the following heuristic. We first enumerate
packings that use only large boxes. Then we take some of the best packings and
add smaller boxes if possible.

4 Experimental Results

All grid based algorithms discussed so far are exact, so they will find the optimal
solution for the given discretization of the trunk. Table 2 shows the best achieved
results of some typical instances. As can be seen, the results achieved by the LP
approach are comparable to those provided by the grids. Very fine grids cause
a too large conflict graph for an efficient computation. Also, the finer grids do
not necessarily provide the best grid-based solutions, contrary to the DIN case
[5]. This follows from the rounding strategy described in section 2.8. Rounding
the box sizes according to a large grid spacing leads to larger intersections be-
tween the packed boxes. Anyway, it is possible in most cases to resolve these
intersections using a physical contact simulation [1]. The best grid-based results
compared to the computational effort could be achieved using the 2′′ and 1.5′′

spacings.
The pre-computation of the node order proved quite useful. If the nodes are

sorted by their weighted degrees only, the problem of calculating the upper
bound remains: One has to scan all free nodes whether there still are nodes of a
certain type left or not. If the nodes are sorted by their type, this examination
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Table 2. Experimental results for some problem instances without H-boxes

trunk manually grid-based (algorithm 2) LP-based
3′′ 2′′ 1.5′′ 1′′

small 5.337 ft3 4.767 ft3 5.071 ft3 5.648 ft3 5.392 ft3 5.792 ft3

mid-size 9.358 ft3 8.538 ft3 9.207 ft3 9.418 ft3 9.041 ft3 9.521 ft3

large 11.837 ft3 10.871 ft3 12.056 ft3 12.674 ft3 11.790 ft3 12.637 ft3

Table 3. Runtimes needed by various grid based strategies for exact solution (without
H-boxes)

trunk grid nodes/edges timestamp randomized sorted greedy

small 1.5′′ 470/7.8 · 104 5sec 2.5sec < 1sec < 1sec
small 1′′ 850/2.5 · 105 1m40sec 20sec < 1sec 2sec

mid-size 3′′ 480/6.3 · 104 45sec 3m 1.75sec 7sec
mid-size 2′′ 1200/4 · 105 40m 1h40m 10sec 1m
mid-size 1.5′′ 2200/1.4 · 106 > 24h > 24h 3m20sec 13m

large 3′′ 660/1.1 · 105 6m 10h 6sec 30sec
large 2′′ 2000/9.6 · 105 18h > 24h 17sec 1m30sec
large 1.5′′ 4800/5.9 · 106 > 24h > 24h 8m20sec 45m

is obsolete: If the algorithm adds a node of type t, then it is guaranteed that no
more nodes of previous types are free. This leads to an additional time saving
effect. The runtimes needed for verifying the optimal solution are compared in
Table 3. Within this context, verifying an optimal solution implies a complete
run of the algorithm.

The algorithms timestamp, randomized and sorted refer to algorithm 2 and
use different node orders: the time of creation, a randomized order and sorted
by box size and weighted degree, respectively. Algorithm greedy refers to the
recursive greedy algorithm discussed in section 2.7. All grid algorithms were
terminated after 24 hrs due to the given time constraints. It is easy to see that the
order of the nodes plays an important role in the search for the best possible IS.

The LP algorithm provided exact solutions for a given approximation only for
small instances. Otherwise, the algorithm was stopped after 24 hours runtime.
Table 2 shows that both approaches, the grid-based and the LP-based approach,
are almost equal with slight quality advantage on the LP side. On the other
hand, the grid-based algorithms are easier to operate.

5 Summary

In this paper the trunk packing problem for the US standard SAE J1100 has
been investigated. Two combinatorial approaches were presented: First, a dis-
cretization of the space to be packed, analogous to [5, 11] for the DIN case.
Second, an approximation scheme using linear inequalities. For both approaches
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enumerative algorithms have been described. As shown in section 4, the brute-
force algorithms suffice for the trunks used in car design processes to enumerate
all possible solutions for the resulting Weighted Independent Set problem.
This could be reached by reducing the conflict graph and applying a property
provided by independent sets.

Unfortunately, a discretization of the space leads to insufficient representa-
tion of the SAE-boxes. So additional methods have to be used to overcome
illegal situations such as box-box intersections. These methods include a contact
simulation provided by a physics engine [1].

The LP approach needs a space consisting of few convex regions and only
few convex obstacles. So far no automated scheme is known to provide such
simplifications for a complicated geometric structure like a trunk. Additionally,
the enumerative algorithms are exponential in runtime. This means that large
instances (e.g. small boxes into a large irregular shaped container) can only be
solved approximately.

Further work includes more efficient graph reduction algorithms or a fast exact
algorithm for the WIS problem capable of handling large trunk instances and
fine grids. For the LP algorithm it is necessary to find a good approximation of
the trunk to ensure the resulting packing to fit into. Also an improved heuristic
for large instances is needed.
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Abstract. In a combinatorial auction, multiple items are for sale simul-
taneously to a set of buyers. These buyers are allowed to place bids on
subsets of the available items. A special kind of combinatorial auction
is the so-called matrix bid auction, which was developed by Day (2004).
The matrix bid auction imposes restrictions on what a bidder can bid
for a subsets of the items. This paper focusses on the winner determi-
nation problem, i.e. deciding which bidders should get what items. The
winner determination problem of a general combinatorial auction is NP-
hard and inapproximable. We discuss the computational complexity of
the winner determination problem for a special case of the matrix bid
auction. We compare two mathematical programming formulations for
the general matrix bid auction winner determination problem. Based on
one of these formulations, we develop two branch-and-price algorithms
to solve the winner determination problem. Finally, we present compu-
tational results for these algorithms and compare them with results from
a branch-and-cut approach based on Day and Raghavan (2006).

1 Introduction

In an auction where multiple bidders are interested in multiple items, it is often
the case that the value of a set of items is higher or lower than the sum of the
values of the individual items. These so-called complementarity or substitution-
effects, respectively, may be bidder-specific. A combinatorial auction is a way to
make use of this phenomenon. In such an auction a bidder is allowed to place bids
on a subset of the items, sometimes called a bundle. The auction is concluded
when the auctioneer decides to accept some of the bids and to allocate the items
accordingly to the bidders.

In a combinatorial auction in its most general form, bidders can bid whatever
amount they please on any subset of items. The problem of deciding which
bidders should get what items in order to maximize the auctioneer’s revenue
is called the winner determination problem. This problem is NP-hard (see e.g.
Sandholm (2002)), and remains so even if every item occurs in at most two bids
and all prices are equal to 1 (see Van Hoesel and Müller (2001)).

The matrix bid auction, developed by Day (2004), is a combinatorial auction
in which restrictions are imposed on what a bidder can bid. In this auction, each
bidder must submit a strict ordering (or ranking) of the items in which he1 is
� This research was partially supported by FWO Grant No. G.0114.03.
1 He can be replaced by she (and his by her).
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interested. We assume that for each bidder, the extra value an item adds to a set
is determined only by the number of higher ranked items in that set, according
to the ranking of that bidder.

Let G be the set of items, indexed by i and B the set of bidders, indexed
by j. The ordering of the items is denoted by rij , which is item i’s position in
bidder j’s ranking, for each i ∈ G and j ∈ B. This ordering should be strict
in the sense that for each bidder j, ri1j �= ri2j for any pair of distinct items i1
and i2. For instance, if rij = 2, item i is bidder j’s second highest ranked item.
Furthermore, each bidder j specifies values bijk, which correspond to the value
the bidder is prepared to pay for item i given that it is the k-th highest ranked
item in the set that bidder j is awarded. The bijk values allow to determine the
value bidder j attributes to any set S ⊆ G. Indeed, bidder j’s bid on a set S is
denoted as bj(S) and can be computed as:

bj(S) =
∑

i∈S

bi,j,k(i,j,S) (1)

where k(i, j, S) is the ranking of item i amongst the items in the set S, according
to bidder j’s ranking. Notice that equation (1) assumes that no externalities are
involved, i.e. a bidder’s valuation depends only on the items he wins, and not for
instance on the identity of the bidders to whom the other items are allocated.
The winner determination problem is, given the bids bj(S) for each set S and
each bidder j, to determine which bidder is to receive which items, such that the
total winning bid value is maximized. Notice that we assume that each bidder
pays what he bids for the subsets he wins.

Observe that the value for index k of item i in bidder j’s bid can never be
higher than the rank rij . This allows us to arrange the values bijk as a lower
triangular matrix for each bidder j, where the rows correspond to the items,
ordered by decreasing rank and the columns correspond to values for k. Hence
the name matrix bid (with order). Notice also that bidder j’s ranking rij does not
necessarily reflect a preference order of the items. If an item is highly ranked, this
merely means that its added value to a set depends on less items than the added
value of a lower ranked item. Furthermore, we make no assumption regarding
the bijk values. Indeed, these values may be negative, e.g. to reflect the disposal
cost of an unwanted item. Specifying a sufficiently large negative value can also
keep the bidder from winning this item in the first place. For a more elaborate
discussion of the expressiveness of matrix bids and their relation to well-known
micro-economic properties, we refer to Goossens (2006).

As a frivolous example, we consider the following matrix bid, where a bidder
expresses his preferences for an ice cream. There are two flavors of ice cream
(vanilla and banana), and also hot chocolate and strawberry sauce are available.

vanilla ice 4
banana ice 5 2
hot chocolate -5 0 3
strawberry sauce -5 0 3 -1
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Consider now the value this bidder j attributes to vanilla ice with hot choco-
late. Observe that for this choice of S, vanilla ice is the highest ranked item (that
is, k(vanilla ice, j, S) = 1), and hot chocolate is the second highest ranked item
(that is, k(hot chocolate, j, S) = 2). We find using (1):

bj(S) = bvanilla ice,j,k(vanilla ice,j,S) + bhot chocolate,j,k(hot chocolate,j,S)

= b1,j,1 + b3,j,2

= 4 + 0 = 4.

Thus, this matrix bid can be interpreted as follows: bidder j feels that he needs
at least one scoop of ice cream of one of the two available flavors, although
he prefers banana. Indeed, no combination without ice cream will result in a
positive valuation, because the bidder charges a (disposal) cost of 5 if he gets
one or both toppings without ice cream. Furthermore, the bidder is not willing
to pay as much for the second scoop of ice cream as for the first. The highest
bid this bidder places is 9, for the combination of vanilla and banana ice with
any one of the two toppings.

1.1 Motivation

There are several reasons for investigating a combinatorial auction with ma-
trix bids. First, bids in any practical combinatorial auction are likely to posses
some structure. In literature, we find descriptions of both theoretical structures
(see e.g. Rothkopf et al. (1998), Nisan (2000), and Leyton-Brown and Shoham
(2005)), and structures in practice (see e.g. Bleischwitz and Kliewer (2005) and
Goossens et al. (2007)). Capturing and understanding this structure is impor-
tant, not only since it allows to develop algorithms that can be more efficient
than algorithms for a general combinatorial auction, but also because it improves
our understanding of various properties of an auction.

Second, matrix bid auctions allow for a faster computation due to the re-
striction on the preferences that is assumed. Indeed, from their computational
experiments, Day and Raghavan (2006) conclude that the computation time for
the general combinatorial auction is higher and grows much faster than for the
matrix bid auction. Moreover, they manage to solve the winner determination
problem for matrix bid auctions with 72 items, 75 bidders and over 1023 bids,
whereas for the general combinatorial auction, the largest instances that can be
solved have 16 items, 25 bidders, and less than 109 bids.

Finally, the matrix bid auction also offers a compact way of representing
preferences. Indeed, each bidder only needs to communicate an ordered list of m

items and m(m+1)
2 matrix bid entries, which is far less than bids for each of the

2m possible sets of items in a general combinatorial auction. We do recognize that
choosing a ranking of the items and filling the matrix bid with appropriate values
might not be a trivial task for the bidder. However, we developed a procedure
that recognizes whether a given collection of bids can be translated into a matrix
bid, and – in case this is not possible – an algorithm that approximates this
collection of bids by a matrix bid in a way that does not expose the bidder to
paying more than he stated for any set of items (see Goossens (2006)).
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1.2 Our Contribution

In section 2, we strengthen a result by Day (2004) that shows that the matrix
bid auction winner determination problem is NP -hard, by studying a special
case where all bidders have an identical ranking of the items. We show that
this problem is APX-hard. However, given a fixed number of bidders, it can be
solved in polynomial time. We discuss a mathematical programming formula-
tion by Day (2004), and compare it to a formulation based on the set packing
problem. We find that both formulations are equally strong. Based on the set
packing formulation, we develop two branch-and-price algorithms to solve the
winner determination problem in section 3. Finally, in section 4, we present our
computational results and compare them with results from the branch-and-cut
approach by Day (2004).

2 Complexity and Formulations

The key assumption in the matrix bid auction is that for each bidder, the extra
value an item adds to a set depends only on the number of higher ranked items
in that set, according to the ranking of that bidder. Despite this restriction, the
winner determination problem of the matrix bid auction remains NP -hard Day
(2004). We strengthen this result by showing that the problem is APX-hard,
even under identical rankings.

Theorem 1. There exists no polynomial-time approximation scheme for the
winner determination problem for the matrix bid auction even when the ranking
of the items is identical for each bidder, unless P = NP .

In Theorem 1, the number of bidders is part of the input. In the case that the
number of bidders is fixed (and we still assume identical rankings), the winner
determination problem can be solved in polynomial time, as witnessed by the
following result.

Theorem 2. The winner determination problem for a matrix bid auction with
a fixed number of bidders, all having an identical ordering of the items, can be
solved by solving a shortest path problem.

Let us now present two mathematical formulations for the matrix bid auction
winner determination problem.

We define the binary variable xijk to be 1 if bidder j receives item i as the
k-th best item, and 0 otherwise. This leads to the formulation below, to which
we refer as the assignment formulation and which was originally developed by
Day (2004).

maximize
∑

i∈G

∑

j∈B

rij
∑

k=1

bijkxijk (2)
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subject to
∑

j∈B

rij
∑

k=1

xijk � 1 ∀i ∈ G (3)

∑

i∈G:rij≥k

xijk � 1 ∀j ∈ B,∀k (4)

∑

l∈G:k≤rlj≤rij

xljk �
∑

l∈G:k−1≤rlj<rij

xljk−1 ∀i ∈ G,∀j ∈ B,∀k≥2

(5)
xijk ∈ {0, 1} ∀i ∈ G,∀j ∈ B,∀k

(6)

Constraints (3) enforce that each item can be assigned to at most one bidder,
while constraints (4) make sure that for each bidder, at most one item is the k-th
best item in the set this bidder gets. Finally, constraints (5) impose that a bidder
cannot get an item as the k-th best item in a set, unless a higher ranked item
was assigned to this bidder as his (k − 1)-th best item in this set. Constraints
(6) are the integrality constraints.

Notice that the formulation (2)-(6) is not the minimal correct formulation
for the matrix bid winner determination problem. Indeed, constraints (4) for
k ∈ {2, ..., rij} are redundant in (2)-(6), since they are already enforced by
constraints (4) for k = 1 and constraints (5). Also, replacing constraints (5)
with the following (weaker) constraints still results in a correct formulation:

xijk �
∑

l∈G:k−1≤rlj<rij

xljk−1 ∀i ∈ G, ∀j ∈ B, ∀k ≥ 2.

However, with this formulation, all constraints (4) remain necessary.
The set packing formulation below makes use of binary variables y(S, j), which

equals 1 if bidder j wins set S, and 0 otherwise. The first set of constraints
(8) enforces that each item is awarded to at most one bidder. The second set
of constraints guarantees (9) that no bidder receives more than one set. The
integrality constraints are (10).

maximize
∑

j∈B

∑

S⊆G

bj(S)y(S, j) (7)

subject to
∑

S⊇{i}

∑

j∈B

y(S, j) � 1 ∀i ∈ G (8)

∑

S⊆G

y(S, j) � 1 ∀j ∈ B (9)

y(S, j) ∈ {0, 1} ∀S ⊆ G, ∀j ∈ B (10)

Notice that this set packing formulation can also be used for the winner de-
termination problem of a general combinatorial auction. Indeed, the matrix bid
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auction only differs from a general combinatorial auction in the way bj(S) is
computed. Notice also that the assignment formulation is polynomially sized in
the number of bidders and the number of items. This is not the case for the set
packing formulation. In the following theorem, we prove that the LP-relaxation
of the set packing formulation and the LP-relaxation of the assignment formu-
lation are equally strong.

Theorem 3. The LP relaxation of the assignment formulation and the LP re-
laxation of the set packing formulation are equally strong. Moreover, if the as-
signment formulation has an integral solution that is optimal with respect to
the LP-relaxation, this is also the case for the assignment formulation, and vice
versa.

3 Branch-and-Price Algorithms for Solving the Matrix
Bid Auction

Here we outline an algorithm based on the set packing formulation. Solving the
LP-relaxation of the set packing formulation is however not trivial, given the
huge amount of variables (n2m). Considering that only a small percentage of
these variables are nonzero in an optimal solution, column generation suggests
itself as an efficient solution technique. Notice that this problem can be restricted
to m + n variables, whereas the assignment formulation requires nm(m + 1)/2
variables, which may still be large. Next, we solve the so-called pricing problem
iteratively until the LP-relaxation has been solved to optimality.

3.1 Column Generation for the Matrix Bid Auction

In this section, we show how the LP-relaxation of the set packing formulation
of the matrix bid winner determination problem can be solved using column
generation. We also prove that the pricing problem can be solved in polynomial
time, since it can be reduced to a shortest path problem.

If we define ui for each item i ∈ G as the dual price associated with the
corresponding constraint of (8), and vj for each bidder j ∈ B as the dual price
associated with the corresponding constraint of (9), it follows that the pricing
problem boils down to determining the existence of a set S of items and a bidder
j such that

∑

i∈S

ui < bj(S) − vj . (11)

Theorem 4. The pricing problem can be solved by solving a shortest path prob-
lem.

Thus, if the shortest path has a negative length, we can add a column for the cor-
responding bidder j containing the items in set S determined by the item nodes
traversed in the path. Naturally, bidder j’s bid for this set S is bj(S). Notice
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that since the pricing problem is solvable in polynomial time, the LP-relaxation
of the set packing formulation for the matrix bid auction can also be solved
in polynomial time. Indeed, this follows from the “separation = optimization”
result by Grötschel et al. (1988).

3.2 Branching on an Item-Bidder Pair

The solution of the LP-relaxation of the matrix bid winner determination prob-
lem may not be integral. If this is the case, we need to partition the solution
space to eliminate this fractional solution. In this approach, we partition the
solution space by the branching decision whether or not to assign an item to a
bidder. We first prove that in a fractional solution, there always exists an item
that has been fractionally assigned to one or more bidders.

Lemma 1. For any fractional solution to the relaxation of (7)-(10),

∃i ∈ G, j ∈ B : 0 <
∑

S:S⊇{i}
y(S, j) < 1 (12)

We refer to Goossens (2006) for a description of the branching rule based on this
lemma. Using this rule, the pricing problem remains solvable as a shortest path
problem throughout the search tree.

3.3 Branching on a Pair of Successive Items

In the spirit of Ryan and Foster (1981), another branching rule is possible. This
rule is based on the following property of an extreme optimal LP-solution.

Lemma 2. For any optimal, extreme fractional solution to the relaxation of
(7)-(10),

∃p, q ∈ G : 0 <
∑

j∈B

∑

S:S⊇{p,q}∧p→jq

y(S, j) < 1 (13)

Again, we refer to Goossens (2006) for a description of the branching rule based
on this lemma. And again, using this rule, the pricing problem remains solvable
as a shortest path problem throughout the search tree.

3.4 Implementation Issues

Both branch-and-price algorithms were implemented using Visual C++ 6.0. The
set packing problems were solved using Ilog Cplex 8.1. The LEDA libraries (ver-
sion 5.0.1) allowed us to solve the shortest path problems in linear time. In the
remainder of this section, some of the most important implementation issues are
discussed.
Solving the Root Node. A first issue that needs to be solved is determining
which columns will be used in the very first restricted master problem. Using
many columns obviously increases the computation time needed to solve the
restricted master problem. On the other hand, this may result in a solution that
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is closer to the optimal solution, such that less iterations for solving the pricing
problem and re-optimizing are needed. In our case, after experimenting with a
number of settings, it turned out that including a rather large number of variables
to start the column generation process pays off. We constructed a set for every
strictly positive entry in the matrix bid by taking the item corresponding to this
entry and completing the set with the k highest ranked items, where k is the
entry’s column in the matrix bid.

After the restricted master problem has been solved and the corresponding
dual solution has been obtained, new columns with a non-negative reduced cost
need to be added. The question remains how many such columns we should add.
Again, adding too many new variables increases the computation time for solving
the resulting restricted master problem, whereas adding too few variables can
result in a large number of iterations for solving the pricing problem and re-
optimizing. The strategy that proved to be the most efficient consists of adding
for each bidder those variables whose reduced cost is at most 2% less than
the most positive reduced cost for a variable from that bidder. Furthermore,
the number of such variables that is added for each bidder cannot exceed the
number of items. Notice that finding these variables demands very little extra
computation time, since the LEDA libraries provide the distance from the source
to each node in the graph, after having solved the shortest path problem.

Finally, when re-optimizing the restricted master problem, we start from the
optimal base of the previous iteration. In order not to drag along too many
columns for the remainder of the search tree, those columns that were added
at some iteration, but never made part of any base solution are removed from
the model. We keep the other columns, assuming that they will be useful again
later.

A Selection Rule When Branching on an Item-Bidder Pair. The major
issue in implementing this branching rule is to choose the item on which to
branch and the bidder(s) to assign it to. We chose to branch on the item that is
fractionally assigned to the highest number of bidders. For each of these bidders,
a branch is constructed in which the bidder is assigned the item. A final branch
is added where none of these bidders is allowed to receive the item. We opted for
a depth-first strategy, where the branch where the item is assigned to the bidder
with the highest fraction is explored first. Thus, the branch where bidders are
disallowed to receive an item always comes last.

A Selection Rule When Branching on a Pair of Successive Items. With
this branching rule, each node that needs further partitioning of the solution
space leads to two branches. In the first branch, we enforce that for each bidder,
if item p is present in a bid, q should be the next item in that bid, according to
the ranking of that bidder. The second branch considers only bids for which p
and q are no direct successors according to the bidder’s ranking. We again chose
a depth-first strategy, where the branch where p →j q is imposed is explored
first. The question remains how to select the items p and q. We opted to pick
those items p and q for which

∑

j∈B

∑

S:S⊇{p,q}∧p→jq y(S, j) is closest to 0.5.
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Solving a Tree Node. Before we can start solving a node of the tree, we
remove all columns that do not satisfy the latest branching decision. In case of
backtracking, this branching decision expires and those columns are re-entered
into the model, since we experienced that they often turn out to be useful in
other branches of the tree.

The LP objective value of the node can be used as an upper bound to the
integral solution that could be found further down the tree. Clearly, if this value
is lower than the incumbent found so far, the node can be pruned. We also use
the Lagrangian upper bound:

δ +
∑

j∈B

max
S⊆G

(RC(S, j), 0), (14)

where δ is the objective value of the restricted master and RC(S, j) is the reduced
cost of variable y(S, j) (Vanderbeck and Wolsey (1996)). If at any iteration in
the column generation process, the Lagrangian upper bound is lower than the
incumbent, we can prune the node, without any risk of missing the optimal
solution.

4 Computational Results

In this section, we elaborate on how we generated the instances on which the
branch-and-price algorithms were tested. We also give an overview of the compu-
tational results and compare them with results from a branch-and-cut approach
performed on the assignment formulation.

4.1 Structure of the Instances

Unfortunately, real-life data for combinatorial auctions are not abundantly avail-
able for the public. It is therefore not uncommon to turn to randomly generated
data (see for instance Leyton-Brown et al. (2000), Sandholm (2002), and Parkes
(1999)). For a thorough discussion on the empirical hardness of several data dis-
tributions commonly used for combinatorial auctions, we refer to Leyton-Brown
et al. (2005).

For our instances, each matrix bid is composed according to a bid type, ran-
domly chosen out of the six possibilities discussed in Day (2004) (additive pref-
erence bids, single-minded bids, nested flat bids, nested k-of bids, partition bids,
and add-on bids) and a bid type that has non-increasing rows and columns. In
order to avoid auctions for which the exact solution of the winner determination
problem is obvious, the matrix bids are constructed such that they are compet-
itive. Furthermore, there is a parameter H that bounds the highest incremental
value an item brings to a set. For more details on the bid types or on how the
instances were generated, we refer to Day (2004).

We performed experiments on matrix bid auctions with 5, 10, 25 or 50 items
and 5, 10, 25, 50, 75 or 100 bidders. For each combination, 10 instances were
generated and solved to optimality. The highest incremental value per item (H)
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was limited to 10. We have no indication that the branch-and-price algorithm
performs differently with other settings for H . All computational experiments
were done on a desktop computer with a Pentium IV 2 GHz processor, with 512
MB RAM.

4.2 Results

We report both average and median computation times of three approaches.
Indeed, it is not uncommon in literature on combinatorial auctions to study the
median (see for instance Sandholm et al. (2005) and Hoos and Boutilier (2000)).

Table 1. Average computation times [s] for n bidders and m items using BOI

n = 5 10 25 50 75 100

m = 5 0.005 0.007 0.008 0.017 0.027 0.038
10 0.027 0.038 0.053 0.088 0.118 0.169
25 0.636 0.597 1.157 4.292 12.704 49.155
50 247.224 60.711 437.951 557.083 622.591 802.483

Table 2. Average computation times [s] for n bidders and m items using BOS

n = 5 10 25 50 75 100

m = 5 0.005 0.006 0.006 0.018 0.027 0.038
10 0.033 0.037 0.044 0.067 0.104 0.182
25 0.698 0.767 1.194 3.814 16.300 97.122
50 76.598 67.584 843.435 259.079 645.632 983.539

Table 3. Average computation times [s] for n bidders and m items using B&C

n = 5 10 25 50 75 100

m = 5 0.030 0.027 0.049 0.052 0.070 0.102
10 0.050 0.069 0.140 0.278 0.524 0.748
25 0.757 1.391 3.598 10.689 17.584 31.940
50 57.676 28.333 91.230 215.083 355.785 811.960

Tables 1 and 2 give an overview of the average computation times needed to
solve the matrix bid auction winner determination problem using branch-and-
price with branching on an item-bidder pair (BOI) and branch-and-price with
branching on a pair of successive of items (BOS) respectively. In Table 3, we
give the average computation times that resulted from solving the assignment
based formulation (2)-(6) with the Ilog Cplex 8.1 branch-and-cut algorithm with
standard settings (B&C), which is basically the approach followed in Day and
Raghavan (2006). Tables 4 to 5 give an overview of the median computation times
needed to solve the winner determination problem using these three approaches.
Horizontally, the number of bidders n varies from 5 to 100, while the number of
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Table 4. Median computation times [s] for n bidders and m items using BOI

n = 5 10 25 50 75 100

m = 5 0.000 0.010 0.010 0.020 0.030 0.040
10 0.015 0.020 0.055 0.055 0.105 0.130
25 0.480 0.460 0.760 2.445 9.480 16.825
50 20.855 29.105 45.605 129.870 227.370 353.970

Table 5. Median computation times [s] for n bidders and m items using B&C

n = 5 10 25 50 75 100

m = 5 0.000 0.010 0.010 0.020 0.030 0.040
10 0.015 0.020 0.040 0.055 0.100 0.130
25 0.485 0.495 0.815 2.445 6.790 13.605
50 20.855 29.215 37.970 129.870 238.785 514.370

Table 6. Median computation times [s] for n bidders and m items using BOS

n = 5 10 25 50 75 100

m = 5 0.020 0.025 0.040 0.050 0.070 0.105
10 0.040 0.060 0.140 0.260 0.535 0.740
25 0.530 1.235 3.245 10.595 18.120 28.960
50 14.665 22.615 73.035 191.670 350.340 589.940

items m ranges from 5 to 50 vertically. All computation times are expressed in
seconds.

As could be expected, the computation time is determined more by the num-
ber of items in the auction, than by the number of bidders. All instances with up
to 10 items are solved in less than a second by all algorithms; here the branch-
and-price algorithms clearly perform better. Auctions with 50 items are also
solved in less than 20 minutes on average by all algorithms. For these instances,
average computation times of the branch-and-price algorithms are often higher
than the computation times of the branch-and-cut algorithm, while median com-
putation times are often lower. Thus, we conclude that most instances are solved
faster by the branch-and-price algorithms, however, for a few instances branch-
and-price takes much more time than branch-and-cut.

Finally, Table 7 gives an overview of the performance details of the three al-
gorithms. Column A gives the average number of nodes in the branching tree
that were explored. Column B represents the average number of pricing rounds,
and column C gives the average number of variables that were generated (these
columns are not applicable for the branch-and-cut algorithm). On the rows, we
find the instances, where the first number indicates the number of items and
the second gives the number of bidders. There seems to be no systematic differ-
ence between the branch-and-price algorithms for any of the three parameters
described in this table. The branch-and-cut algorithm solves very little nodes in
its branching tree, compared to the branch-and-price algorithms. In many cases,
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Table 7. Performance details for the three algorithms (BOI, BOS, B&C)

BOI BOS B&C
Inst. A B C A B C A

5-5 2.2 3.9 33.3 2.4 4.7 34.4 1.0
5-10 1.3 3.7 68.4 1.4 3.4 68.3 1.0
5-25 2.5 4.5 142.2 1.6 3.2 141.6 1.0
5-50 1.3 3.2 266.9 1.2 3.1 266.9 1.0
5-75 1.0 2.4 435.9 1.0 2.4 435.9 1.0

5-100 1.0 2.0 565.0 1.0 2.0 565.0 1.0

10-5 7.6 18.3 124.2 9.4 27.5 93.7 1.2
10-10 7.6 16.5 201.8 5.4 16.8 193.8 1.5
10-25 4.9 10.2 363.8 2.8 8.4 352.0 1.0
10-50 3.7 8.0 788.9 1.8 5.4 782.2 1.0
10-75 2.3 6.9 1,117.7 1.6 6.0 1,113.8 1.0

10-100 2.3 7.0 1,459.5 2.6 8.4 1,455.4 1.0

25-5 7.7 72.3 1,017.7 6.4 89.4 723.1 1.2
25-10 2.0 37.8 990.7 6.8 51.7 864.5 1.5
25-25 4.4 31.2 1,793.3 3.8 33.2 1,752.1 1.0
25-50 8.6 59.7 3,703.2 5.2 55.1 3,602.4 1.0
25-75 30.0 123.5 5,402.7 32.8 143.1 5,412.7 1.0

25-100 96.8 349.3 7,564.0 163.0 635.3 7,895.2 1.3

50-5 21.4 3,095.8 4,745.9 37.9 1,279.2 2,872.6 11.8
50-10 12.2 592.6 3,963.3 27.9 611.7 4,112.8 1.0
50-25 315.1 1,494.0 11,752.4 1,029.6 2,806.7 10,141.0 1.2
50-50 361.6 938.5 16,278.1 67.6 468.4 14,359.3 1.0
50-75 102.5 828.5 20,773.4 106.7 852.0 20,776.0 1.0

50-100 96.0 839.5 30,538.0 100.4 995.4 31,120.3 5.7

the branch-and-cut algorithm prefers generating valid inequalities in the root
node to branching.
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