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Abstract. In this paper, we propose a new nonparametric region-based
active contour model for clutter image segmentation. To quantify the
similarity between two clutter regions, we propose to compare their re-
spective histograms using the Wasserstein distance. Our first segmenta-
tion model is based on minimizing the Wasserstein distance between the
object (resp. background) histogram and the object (resp. background)
reference histogram, together with a geometric regularization term that
penalizes complicated region boundaries. The minimization is achieved
by computing the gradient of the level set formulation for the energy.
Our second model does not require reference histograms and assumes
that the image can be partitioned into two regions in each of which the
local histograms are similar everywhere.

Keywords: image segmentation, region-based active contour, Wasser-
stein distance, clutter.

1 Introduction

Parametric region-based active contour models have been widely used in image
segmentation. One of their advantages is that they incorporate region informa-
tion with boundary information. For example, the Chan-Vese model is able to
carry out foreground and background segmentation without any explicit ref-
erence to edges [5]. However, the standard Chan-Vese model is based on the
assumption that the foreground (resp. background) intensity is fairly homoge-
neous, i.e. the probability density functions of object intensities and background
intensities are both Gaussian with the same variance. This can be a significant
restriction in applications. Other parametric region-based active contours mod-
els, including certain generalizations of the Chan-Vese model, assume that the
histogram of image intensities in different regions of the segmentation are Gaus-
sian. For example, in [18], the segmentation models distinguish the object from
the background by intensity means and/or variances of image regions.

The purpose of this work is to segment images consisting of clutter features.
There are also many other image models that are not within our scope, such as
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shape, texture and smooth regions. An effective method of incorporating differ-
ent image models can be found in [17]. Clutter features are often found in natural
scenes, such as trees and grass. They are highly nonhomogeneous in intensity
and their corresponding histograms do not necessarily have particular statistical
structure – for example, they may not obey a Gaussian distribution. They also
usually do not have a particular geometric content. Therefore, parametric meth-
ods are not suitable for segmentation of cluttered regions. In this work, we use
image intensity histograms to drive the segmentation process, which makes no
simplifying assumptions about the statistics of the image intensity values. It also
does not rely on any geometric content found in the regions. We thus segment
images purely based on histogram information found within its various regions.
Image histograms have been used extensively in PDE-based image processing.
For instance, [4] and [16] are variational methods in histogram modification for
contrast enhancement.

There are a number of nonparametric segmentation models in the literature
that are closely related to our work. In [10,7], the authors propose to maximize
the mutual information between the region labels and the image intensities. In
[3,1], the proposed model is to minimize the chi-2 comparison function between
the object (resp. background) histogram and the object (resp. background) ref-
erence histogram. Their experimental results show effectiveness in segmenting
slightly-textured images, e.g. human faces. However, the chi-2 comparison func-
tion is not a metric and is not suitable for comparing histograms in many situa-
tions. As a simple demonstration, the chi-2 distance between two delta functions
with disjoint supports is the same no matter how far apart the supports are; this
is a situation that arises often in segmentation applications, since for example
images consisting of two objects with approximately constant but different in-
tensities would fall into this category. To overcome this issue, we propose to use
the Wasserstein distance (Monge-Kantorovich distance) to compare histograms.
The Wasserstein distance between two normalized histograms is the least work
required to move the region lying under the graph of one histogram to that of
the other. It extends as a metric to measures such as the delta function. We
believe this to be the more natural and appropriate way to compare histograms,
since it does not suffer from the shortcoming mentioned above concerning point-
wise metrics such as the standard Lp norms or the chi-2 comparison function.
Experimental results show that there is indeed a significant benefit using the
Wasserstein distance to compare histograms, and that it is quite effective in
segmenting images consisting of cluttered regions. Optimal transport ideas have
been used in other context in image processing, such as [8] on image registration
and morphing and many others [2], [6] and [15].

The layout of the paper is as follows. Section II presents facts from optimal
transportation theory used in this paper; in particular, we describe briefly the
Monge-Kantorovich problem and how to solve it. Section III consists of two
subsections, each one devoted to one of proposed new models. Also, level set
formulations of these new models and their associated optimality conditions and
gradient descent equations are given here. Section IV shows the algorithms and
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discretization for solving the proposed models. Section V shows experimental
results and comparison with other methods in both synthetic and real images.

2 Wasserstein Distance

The original Monge-Kantorovich problem was first posed in 1781 by G. Monge
in [11]: what is the minimum work required to move a pile of dirt into a hole
with the same volume? The original mathematical formulation turned out to be a
difficult problem because it requires that no mass be split. Kantorovich proposed
a relaxed version in [9], which we summarize in the following. Let (X, μ) and
(Y, ν) be two probability measure spaces. Let π be a probability measure on the
product space X × Y and Π(μ, ν) = {π ∈ P (X × Y ) : π[A × Y ] = μ[A], and
π[X × B] = ν[B] hold for all measureable sets A ∈ X and B ∈ Y } be the set
of admissible transference plans. For a given cost function c : X → Y , the total
transportation cost, associated to π ∈ Π(μ, ν), is I[π] =

∫
X×Y

c(x, y)dπ(x, y).
The optimal transportation cost between μ and ν is Tc(μ, ν) = infπ∈Π(μ,ν)I[π].
More detail can be found in [19] and [14], which is a good exposition on this
subject.

In this paper, we are interested in the case when the probability is on the real
line. Let μ and ν be two probability measures on IR, with respective cumulative
distribution functions F and G. Then, it is known that for a convex cost function
c(x, y), the optimal transportation cost is Tc(μ, ν) =

∫ 1
0 c(F−1(t), G−1(t))dt. In

particular, the optimal transportation cost for the linear cost function c(x, y) =
|x − y| is T1(μ, ν) =

∫ 1
0 |F−1(t) − G−1(t)|dt and by Fubini’s Theorem, T(μ, ν) =

∫ 1
0 |F (t) − G(t)|dt.
In the proposed models, we use the Wasserstein distance to determine the

similarities between two normalized image histograms. Let Pa(y) and Pb(y) be
two normalized histograms and let Fa(y) and Fb(y) be their corresponding cu-
mulative distributions. The linear Wasserstein distance (W1 distance) between
Pa(y) and Pb(y) is defined by

W1(Pa, Pb) = T1(Pa, Pb) =
∫ 1

0
|Fa(y) − Fb(y)|dy . (1)

An important consequence of this definition is that, unlike chi-2 function, Wasser-
stein distance is a metric. If two δ-functions are close by, the Wasserstein distance
between them is small, because the area between their corresponding cumulative
distribution functions is small.

3 Proposed Models

In this paper, we propose two segmentation energy models using the W1 distance.
By minimizing these energies, we hope to find an optimal region such that the
region boundaries match the clutter boundaries. The first proposed model re-
quires reference object (resp. background) histograms as inputs; this is the same
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setting as in [1]. The first model is to minimize the Wasserstein distance between
object (resp. background) histogram and the object (resp. background) reference
histogram, together with a geometric regularization term on the interface. The
second model do not require any reference histograms and assumes that the local
histograms within the object region (resp. background region) are similar every-
where. We assign each pixel a neighborhood histogram, the histogram of a small
neighborhood around that pixel. This model is to find an optimal region such
that the object (resp. background) histogram is similar to all the neighborhood
histograms inside (resp. outside) the region.

Given a grey scale image I : Ω → [0, 255], the normalized image histogram
restricted on the region Σ and the associated cumulative distribution function
can be written in the following level set representation

PΣ(y) =

∫
Ω H(φ(z))δ(y − I(z))dz

∫
Ω

H(φ(z))dz
(2)

and

FΣ(y) =

∫
Ω H(φ(z))H(y − I(z))dz

∫
Ω H(φ(z))dz

, (3)

where y ∈ [0, 255] is an intensity value, φ is a level set function [13] such that
Σ = {x ∈ Ω : φ(x) > 0}, and δ and H are the Dirac and Heaviside function,
respectively. Similarly, using the same φ for outside the region Σc, we have

PΣc(y) =

∫
Ω

[1 − H(φ(z))]δ(y − I(z))dz
∫

Ω[1 − H(φ(z))]dz
(4)

and

FΣc(y) =

∫
Ω

[1 − H(φ(z))]H(y − I(z))dz
∫

Ω[1 − H(φ(z))]dz
. (5)

We use the level set method [13], because it allows changes of topology, such as
merging and splitting. We normalize histograms because two identical clutters
of different sizes should have zero distance.

3.1 Histogram Segmentation with Reference Histograms

For the first segmentation model, we are given a foreground reference histogram
Pf (y) and a background reference histogram Pb(y). The model is

inf
Σ

E1(Σ) = Per(Σ) + λ{W1(PΣ , Pf ) + W1(PΣc , Pb))} ,

where W1 is the W1 distance described in (1). The first term is the length of the
boundary of Σ, as a regularization term. The second (resp. third) is a fitting term
between the object (resp. background) histogram and object (resp. background)
reference histogram. The level set formulation of (6) is
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inf
φ

E1(φ) =
∫

Ω

|∇H(φ(x))|dx+ λ {
∫ 255

0
|FΣ(y) − Ff (y)|dy

+
∫ 255

0
|(FΣc(y) − Fb(y)|dy} ,

where we plug in FΣ and FΣc by (3) and (5), respectively.
To minimize the energy, we derive the associated Euler-Lagrange equation.

The gradient descent for φ is given by the following evolution equations

φt = δ(φ)
[

∇ ·
(

∇φ

|∇φ|

)

− λ(A − B)
]

, (6)

where

A =
1

Area(Σ)

∫ 255

0

FΣ(y) − Ff (y)
|FΣ(y) − Ff (y)| [H(y − I(x)) − (FΣ(y))]dy

and

B =
1

Area(Σc)

∫ 255

0

FΣc(y) − Fb(y)
|FΣc(y) − Fb(y)| [H(y − I(x)) − (FΣc(y))]dy .

3.2 Histogram Segmentation with Neighborhood Histograms

We modify the first segmentation model (6) so that input reference histograms
are not required. For simplicity, we assume that the image of interest has two
regions, object and background region, each of which has the same histograms
locally (e.g. clutter features). The histogram restricted on a small region (neigh-
borhood histogram) is similar to either the object histogram or the background
histogram. Therefore, we compare the object (resp. background) histogram with
all the neighborhood histograms in the object (resp. background) region.

For each point x ∈ Ω, we compute the neighborhood cumulative distribution
function

Fx,r(y) =
Area({x ∈ Br(x) : I(x) ≤ y})

Area({Br(x)}
) .

The size r of the neighborhood is chosen according to the clutter features in an
image. It needs to be greater than or equal to the size of the clutter feature. For
an accurate result, it should not be too large. In this paper, the selection of the
size is specified by the user. The proposed model is

inf
Σ

E2(Σ) = Per(Σ) + λ{
∫

Σ

W1(P1, Px,r)dx +
∫

Σc

W1(P2, Px,r)dx} . (7)

In a level set formulation, (7) becomes

inf
Σ

E2(Σ) =
∫

Ω

|∇H(φ(x))|dx
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+λ {
∫

Ω

H(φ(x))
∫ 255

0
|F1(y) − Fx,r(y)|dydx

+
∫

Ω

[1 − H(φ(x))]
∫ 255

0
|F2(y) − Fx,r(y)|dydx} . (8)

Note that Fx,r(y)’s need to be computed only once before optimization. F1(y)
and F2(y) are two constant cumulative distribution to be determined, indepen-
dent of φ.

To minimize this energy, we first fix φ and minimize with respect to F1(y) and
F2(y), respectively. Then, we fix F1(y) and F2(y) and minimize with respect to
φ. The evolution equations are

F1(y) =

∫
Ω

H(φ(x))Fx,r(y)dx
∫

Ω H(φ(x))dx

F2(y) =

∫
Ω [1 − H(φ(x))] Fx,r(y)dx

∫
Ω

[1 − H(φ(x))]dx

φt = δ(φ)
[

∇ ·
(

∇φ

|∇φ|

)

− λ

∫ 1

0
(|F1(y) − Fx,r(y)| − |F2(y) − Fx,r(y)|) dy

]

.(9)

As the evolution equations suggest, the object (resp. background) cumula-
tive distribution function F1 (resp. F2) is the average of all the neighborhood
cumulative distribution functions Fx,r inside (resp. outside) the curve. The min-
imization forces the 0-level curve of φ to move toward the boundaries of the
object, so that the object (resp. background) cumulative distribution function is
similar to all the neighborhood cumulative distribution histograms inside (resp.
outside) the curve.

4 Numerical Method

For numerical implementation, we use a C∞ regularized Heaviside function and
the corresponding regularized Dirac function as follows

Hε(z) =
1
2

(

1 +
2
π

arctan
(z

ε

))

, and δε(z) =
1
π

ε

ε2 + z2 .

The evolution equations (6) and (9) for both proposed models have the following
form

φt = δ(φ)
[

∇ ·
(

∇φ

|∇φ|

)

+ λA(φ)
]

.
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We compute φ by the following discretization

φn+1 − φn

�t
= δε (φn)

[

�−
x

(
�+

x φn

|∇φn|

)

+ �−
y

(�+
y φn

|∇φn|

)

+ λA(φn)
]

,

where

|∇φn| =
√(

�+
x φn

)2
+

(
�+

y φn
)2

+ ε ,

�−
x φi,j = φi,j − φi−1,j , �+

x φi,j = φi+1,j − φi,j ,

�−
y φi,j = φi,j − φi,j−1 , �+

y φi,j = φi,j+1 − φi,j .

In the evolution equation (6), the corresponding A(φ) term can be written as
∫

B(y) [H (y − f(x)) − C(y)] dy =
∫

B(y)C(y)dy +
∫

B(y)H(y − f(x))dy , (10)

for some functions B(y) and C(y).
Note that the first term is independent of x, while the second term can be
simplified as

∫
B(y)H(y − f(x))dy =

∫ 255

f(x)
B(y)dy .

Now, we only need to compute once

G(i) =
∫ 255

i

A(y)dy

for i ∈ {0, 1, ..., 255}. Then, the second term of the right hand side of (10) can
be obtained fast by looking up G(f(x)) and by linear interpolation.

5 Experimental Results

We show and compare the proposed segmentation methods with some of existing
methods. Figure 1 shows a 144 × 144 synthetic image, which has three regions
with different distributions, as shown in Fig. 2. The inner region and the mid-
dle region look distinct, as well as their corresponding histograms, even though
the histograms overlap 50 percents. On the other hand, the middle region and
the outer region look similar, as well as their corresponding histograms, even
though the histograms do not overlap at all. In both cases, the degree of simi-
larity in image regions agree with the degree of similarity in their corresponding
histograms. Figure 3 shows results of proposed and existing segmentation meth-
ods. The first row is the final contour, corresponding histograms, and cumulative
distributions (from left to right) of proposed segmentation with reference his-
tograms. The foreground and background reference histograms are obtained by
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inner

middle

outer

Fig. 1. Left: synthetic image. Right: boundaries between inner, middle, and outer re-
gions.
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Fig. 2. From top to bottom. Left column: inner, middle, and outer region histograms.
Right column: inner, middle, and outer region cumulative distributions.

calculating on the inner and outer region, respectively. The final contour shows
that the proposed model is able to segment the middle and the outer region as
background. The second row is the final contours, corresponding histograms, and
cumulative distributions of proposed segmentation model with neighborhood his-
tograms. This proposed method is also able to distinguish the foreground (inner
region) from the background (middle and outer region). This shows that the W1
distance is effective in histogram segmentation. The third row is the final con-
tour, corresponding histograms, and cumulative distributions of segmentation
with reference histograms using chi-2 function. Since this model strongly favors
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Fig. 3. Comparison of proposed histogram segmentation and existing methods. The
first column is the final contour of different segmentation methods. The second (resp.
third) columns are corresponding foreground a nd background histograms (resp. cumu-
lative distributions). First row: proposed histogram segmentation with reference his-
tograms. Second row: proposed histogram segmentation with neighborhood histograms.
Third row: histogram segmentation using chi-2 function with reference histograms.
Fourth row: Chan-Vese segmentation. Fifth row: Chan-Vese segmentation.
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Fig. 4. Comparison of proposed histogram segmentation and existing methods. The
first column is the final contour of different segmentation methods. The second (resp.
third) columns are corresponding foreground a nd background histograms (resp. cumu-
lative distributions). First row: proposed histogram segmentation with reference his-
tograms. Second row: proposed histogram segmentation with neighborhood histograms.
Third row: histogram segmentation using chi-2 function with reference histograms.
Fourth row: Chan-Vese segmentation.

overlapping histograms, the middle region is segmented falsely as foreground.
The fourth and fifth columns are the final contours, corresponding histograms,
and cumulative distributions of Chan-Vese segmentation, with different fidelity
parameters. The fourth row shows that the Chan-Vese segmentation is not able
to come close to a correct segmentation. The fifth row shows that the Chan-Vese
segmentation, with larger fidelity parameters, segments at a pixel level, in or-
der to distinguish foreground and background intensity values. In any case, the
standard Chan-Vese segmentation fails the task because the average intensity of
any region in this image is the same.
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Figure 4 shows segmentation results of various methods for a 135 × 175 real
image. This image has complicated features, i.e. cheetah patterns, that are im-
possible to segment by existing methods. The first row is the final contour, cor-
responding histograms, and cumulative distributions of proposed histogram seg-
mentation with reference histograms. The given foreground reference histogram
is obtained by calculating the histogram on a small patch of the cheetah. The
second row is the final contours, corresponding histograms, and cumulative dis-
tributions by segmentation with neighborhood histograms. As the results show,
our proposed models proficiently segment the cheetah patterns. The third row
is the final contour, corresponding histograms, and cumulative distributions of
segmentation with reference histograms using chi-2 function. The fourth row
is the final contour, corresponding histograms, and cumulative distributions of
Chan-Vese segmentation. Both the existing segmentation methods fail to seg-
ment the cheetah pattern from the background. In this example, our proposed
models outperform in segmenting clutters.

6 Conclusion

In this work, we propose a novel nonparametric region-based active contour
model for segmenting clutter images. It is based on the use of Wasserstein mass
transfer metrics in comparing histograms of different regions in the image. Our
numerical results corroborate that these metrics are more suitable for histogram
comparisons than what has been utilized previously in the existing literature,
and lead to substantially better segmentations. Wasserstein metrics can be in-
corporated into a variety of histogram and curve evolution based segmentation
models; we give two examples of such in this paper in order to substantiate our
claims.
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