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Abstract. We propose a variational approach for multi-valued veloc-
ity field estimation in transparent sequences. Starting from existing lo-
cal motion estimators, we show a variational model for integrating in
space and time these local estimations to obtain a robust estimation of
the multi-valued velocity field. With this approach, we can indeed esti-
mate some multi-valued velocity fields which are not necessarily piecewise
constant on a layer: Each layer can evolve according to non-parametric
optical flow. We show how our approach outperforms some existing ap-
proaches, and we illustrate its capabilities on several challenging syn-
thetic/real sequences.

Keywords: Variational approaches, transparent motion, multi-valued
velocity fields, model competition.

1 Introduction

There exists a very wide literature on apparent motion estimation, also called
optical flow (OF), due to the number of applications that require motion estima-
tion, and the complexity of the task. Motion estimation methods often rely on
an intensity conservation principle and on spatial or spatiotemporal regularity
constraints. The simplest conservation principle states that the intensity of a
point remains constant along its trajectory. Although widely used, this princi-
ple is not satisfied in several real situations which include changing illuminance
conditions, specularities, and multiple motions, as it is for instance the case in
transparency.

Transparency can be modeled as a linear superposition of moving layers,
meaning addition of layer intensities, or a generalized one [1]. A simple super-
position model has been introduced by Burt et al in [2], from which they derive
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an iterative three frame algorithm for estimating two motions. A more thorough
study and extension of this idea is proposed in [3], providing a frequency domain
interpretation and explaining a mechanism of “dominant velocity extraction”. It
is used by Irani and Peleg in [4] (see also [5]). Shizawa and Mase [6,7,8] explore a
frequency domain, total least squares formulation of the multiple motion prob-
lems, providing a 2-fold OF constraint equation, a closed-form formula is proved
for two motions, but the problem becomes rapidly more complicated for higher
orders. Liu et al. use it in [9] with Hermite polynomial based differentiation fil-
ters, and the authors check for the presence of single or multiple motions. Darell
and Simoncelli [10] “dualize” this constraint in order to construct some Fourier
“donuts” that respond to one or more velocities. Mota et al. have extended
these ideas in [11] and Mühlich and Aach have proposed an algebraic framework
based on homogeneous components of symmetric algebras in [12]. The nonlinear
form of the 2-fold OF constraint provides what one may call the 2-fold displaced
frame difference equation, it can be extended to more than two motions to derive
a block-matching approach to the multiple motion problem [13]. In summary,
this class of approach is based on a single higher order constraint designed to
”react” to multiple motions.

A spatial regularization in the framework of Markov Random Fields of the
block matching solution is proposed in [14], in order to promote smooth solutions.
However finding the global solution of the energy minimization method results in
a computationally expensive minimization, because of the use of a field of binary
indicator variables. Similarly, in [15] a parametric variant of the above block
matching was applied in a layered approach for transparent X-Ray sequences
(where the integration of material density produces transparent sequences [16]).
The method segments and estimates the OF by alternately apply IRLS and ICM
methods in order to compute both layer indicator variables and velocities.

Another important class of approaches is based on multiple low order motion
constraints, designed to detect single motions. In the robust statistics approach
of Black and Anandan [17], the image plane is assumed to be partitioned into
regions, each one corresponding to a parametric motion model. The motion pa-
rameters are then assumed to represent the motion of two layers that cover the
entire image plane. The layers are recovered by an iterative parameter/region
estimation and by a nulling process. Mixture models for multiple motion com-
putation have been introduced by Jepson and Black [18]. One assumes that the
motion in layers can be explained by up to N parametric motion fields by com-
puting the best mixture and motion parameters, usually done by using EM-like
algorithms. Ju et al [19] propose a model, in which, multilayered affine models
are defined on small rectangular image patches (bones), and an inter-patch term
(skin) introduces a regularization effect in the model parameters estimation.
Then layer ownerships and affine model parameters are computed within a ro-
bust estimation framework by using an EM-algorithm. Black et al [20] compute
a set of membership weights in order to link layers with regions. Although the
method captures the changes in illumination, it does not allow the computation
of the OF of moving transparencies. Weiss and Adelson [21] and Rivera et al [22]
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proposed EM-based approaches for computing different layered motion models.
They use as prior knowledge the smooth feature of the velocities. The solution
is given by a field of layer probabilities. Both methods produce pixel-wise uni-
modal solutions (single motions) since they use a distance measure for single
motions as well as entropy controls. For more details about the different types
of constraints and proposed approaches, we refer the reader to [23].

In this work we propose an approach based on local detectors sensitive to one
or more velocities. We observed that the responses of these detectors usually
provide a very local, noisy and somewhat too complex description of the veloci-
ties (more velocities than actually present may be detected at a given location).
So there is a need for integration and regularization of this local information,
which can be naturally performed with the framework of variational approaches.

The paper is organized as follows. Section 2 describes the proposed framework
based on a finite sampling of the space of velocities and states a discrete varia-
tional model to handle multiple motions. Our approach encodes prior knowledge
about the OF smoothness and the expected, relatively small, number of mo-
tions per pixel (one or two). The method performance is illustrated in Section 3,
on synthetic, synthesized realistic and real sequences. We conclude and present
future work in Section 4.

2 From Local to Global by a Variational Model

Let us introduce the main notations. The function f : (x, t) ∈ Ω×{0, . . . , T} → R
denotes the input sequence, defined as a volume over space and time. Let us now
define a finite sampling of the velocity space: We consider N vectors

{u1, . . . , uN}, with ui = (ui1, ui2)T ,

describing the set of possible velocities. Our goal will be to determine what is
the likelihood of having velocity ui at a given position. To do so, one need an
initial local estimate of this likelihood. Let us assume that we know a function
d(ui, r) ∈ R

+|i=1...N which describe at each position r = (x, t) whether the
velocity ui can explain locally the apparent motion (characterized by d(ui, r) ≈
0) or not (characterized d(ui, r) � 0). In general, d can be implemented as a
norm (or quasi-norm) over a similarity operator, and we refer to Section 2.1 for
more details.

So, given a sequence f and the localmotions estimationsd(ui, r)|i=1...N , our goal
is to propose anapproachwhich integrates this local information inorder toobtaina
globalandrobustvelocityestimation.Thisintegrationisnecessarytodealwithnoisy
sequences but also sequences with complex motions such as transparentmotion.

2.1 How to Estimate Local Velocity Information?

Two well known similarity operators satisfy these requirements for the single
motion case: The non-linear difference (Correlation-based)

M
(1)
C (ui)f(x, t)

def
= f(x, t) − f(x − ui, t − 1),
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and its linearized version (Differential-based)

M
(1)
D (ui)f(x1, x2, t)

def
=

(
ui1

∂

∂x1
+ ui2

∂

∂x2
+

∂

∂t

)
f(x1, x2, t),

where the superscript indicates the number of displacements that these operators
(and the following ones) take into account. Following Shizawa and Mase [8], one
can define an operator for two velocities as the composition

M
(2)
D (ui, uj)f(x, t)

def
= M

(1)
D (ui)M

(1)
D (uj)f(x, t)

where products ∂
∂r

∂
∂s are naturally expanded as ∂2

∂r∂s . Composing instead the
nonlinear correlation operators M

(1)
C provides the nonlinear operator for two

velocities

M
(2)
C (ui, uj)f(x, t)

def
= f(x, t)−f(x−ui, t−1)−f(x−uj, t−1)+f(x−ui−uj, t−2),

that corresponds to distance reported in [13].
We introduce here the general mechanism we have used in order to select

the local velocity descriptors d(ui, r) from multiple motion operators. Given an
integer k ∈ [1, N ], let us assume that we have a family of ”k velocities probe”
operators

M = {M (k)(ui1 , . . . , uik
), 1 ≤ i1 < · · · < ik ≤ N}

where M (k)(ui1 , . . . , uik
)f(r) ≈ 0 if the velocity vectors ui1 , . . . , uik

explain the
motion of the image sequence f at the position r. We build them by either
cascading k correlation based filters, such a probe will be denoted in general
MC , or k differential-based ones, these ones will be denoted MD. Then for each
vector ui, let us consider the subset Mui of all the operators involving ui and
define

dC(ui, r) = min
MC∈Mui

1
k

∑
s∈Wr

(MCf(s))2 (1)

and
dD(ui, r) = min

MD∈Mui

1
k

∑
s∈Wr

(MDf(s))2 , (2)

where Wr is a 3 × 3 spatial window center at r. In the present work, we used
as input distances (1) and (2) for different experiments, showing the general
framework feature of our proposal as is explained in the following. Note that
because of the series Taylor’s approximation, distance (1) is more suitable than
(2) for long displacements.

2.2 Global Motion Integration Via a Variational Approach

Let us define the function r = (x, t) �→ αi(r) ∈ [0, 1], which will correspond
to the probability that velocity ui explains the apparent motion at the spatio-
temporal position r. We define the unknowns of the problem as the vector valued
field α:

α(r) = (α1(r), . . . , αN (r)), αi(r) ∈ [0, 1] ∀r ∈ Ω × {0, . . . T}.
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Note that, although each component of α(r) can be interpreted as a probability,
α(r) is not a probability measure (as in [21,22]) in the sense that the sum of its
components is not constrained to be one. If two motions ui and uj are present at
a particular pixel position, then we expect that αi(r) ≈ αj(r) ≈ 1. Inversely, the
velocity field at a position r can be extracted from α(r) by keeping the velocity
ui with high value of αi(r).

In order to estimate the global multi-valued velocity field from the local data
d(ui, r), we propose to minimizes the cost function E(α) defined by

E(α) =
∑

r

{∑
i

d(ui, r)α2
i (r) (3)

+
λs

2

∑
s:s∈Nr

∑
i

wi(r, s)[αi(r) − αi(s)]2 (4)

+λc

[
cᾱ2(r) −

∑
i

α2
i (r)

]}
, (5)

subject to the constraints αi(r) ∈ [0, 1] for all i, with ᾱ(r)
def
= 1

N

∑
i αi(r),

wi(r, s) are some diffusion weight defined in the sequel, Nr
def
= {s : r, s ∈ Ω ×

[0, T ], ‖r − s‖ < 2} is the spatiotemporal neighborhood of the r position, and
c, λs, λc are some positive constants. Let us now comment the different terms of
this energy.

Term (3): Attach Term. This term links the input (the functions d’s) to the
unknown α. For computing the presence of the i-th model, we use an approach
related with the outlier rejection method [24] and with the EM formulation
[20,21,22,19]. Minimizing term (3) w.r.t. αi(r) produces αi(r) close to 0 for high
d(ui, r) values, indicating in this way that such a motion model is not likely at
position r. Otherwise, the αi(r) is free and its value is established by the next
terms and the bound constraint.

Term (4): Spatial Regularization. Local information is integrated through
this regularization term. At a given location r, we minimize the difference be-
tween vector α(r) and all the vectors α(s) in the neighborhood Nr. Because
our indicator variables are real valued, we can use differentiable potentials with
their well-known algorithmic advantages. We use the approach presented in [25].
The smoothing process is controlled by directional fixed weights, wi(r, s) =(
(s − r)T Īi (s − r)

)
/ ‖s − r‖4, generated from the i–th tensor associated to the

i–th velocity model: Īi = γId + UiUi
T , where Id is the identity matrix, γ = 0.1

and Ui = [ui1, ui2, 1]T /‖[ui1, ui2, 1]‖ is a homogeneous-coordinate unit vector.
For small γ values (as the one proposed here) these weights promote a strong
smoothness along the i–th velocity direction. The arbitrarily fixed 4–th power
of the distance restricts the spatial influence of the smoothness term, see also
[23]. As a consequence piece-wise smooth OFs are recovered with well-defined
boundaries along the velocity model (see Figure 3).
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Term (5): Intra-Model Competition. Our aim is to detect multiple simulta-
neous motions (transparent motions), thus we may have problems at sites where
multiple spurious matches are locally detected, for example in homogeneous re-
gions, where d(ui, r) ≈ 0 for many (maybe all) velocities. For this reason we need
a mechanism to eliminate spurious models (i.e. to cancel some of the components
of α(r)) and to promote the valid ones: We want to recover almost binary so-
lutions (similar to the entropy-control potentials, see for example the Shannon
one [21] or the Gini one [22]). In our case, we use potential (5) because α(r)
is not a probability measure and also because this potential is well adapted for
recovering multimodal solutions. The parameter c is a tuning parameter related
to the number of switched-on models. To understand the potential’s behavior,
we note that the first term penalizes the number of switched-on models while the
second term promotes the ”switching on” of models and avoids the trivial null
solution α(r) = 0. Hence for a fixed mean value (controlled by the first term)
the second term prefers highly contrasted solutions. Note that (5) can be tuned
such that for a given c value, a multimodal solution has lower energy than an
unimodal one or conversely. That makes an important distinction with respect
to entropy based measures that always have lower energy for unimodal solutions
[21,22]. Additionally, our proposed quadratic potential is easily differentiable and
therefore simple minimization algorithms can be used as explained below.

Algorithmic Details. The cost function E(α) is quadratic and can be min-
imized by solving the linear system ∂E(α)/∂αi(r) = 0, ∀i, ∀r, with the con-
straints αi(r) ∈ [0, 1]. We use a Gauss-Seidel algorithm. Given an estimate αn

i ,
we iterate until convergence:

αn+1
i (r) =

λs

∑
s∈Nr

wi(r, s)αn
i (s) − cλcᾱ

n(r)
d(ui, r) + λs

∑
s∈Nr

wi(r, s) − λc
.

The bound constraints on αi(r) are then enforced by projecting non-feasible
values to bounds at each iteration. We note that for obtaining a smooth al-
gorithm convergence, it was important to keep fixed the mean of the previous
iteration, ᾱn(r), for updating the current α(r) vector. This can be seen as an
over-relaxation strategy. We initially set α0

i (r) = 0.5, ∀i, r.
A Deterministic Annealing strategy in the λc parameter introduces the intra-

model competition only until an approximate solution with valid representative
models have predominant αj(r) values: For each iteration k = 1, 2, . . . , n, we
set λ

(k)
c = λcak, where λc is the chosen contrast level and ak = 0.1 + 0.9(1 −

0.95(100k/n)) is a factor that increases to 1 in approximately 80% of the to-
tal iterations. Results are sensitive to the annealing speed of λc: Premature
increment could lead to an incorrect solution. Nevertheless, we used the same
annealing scheduling in all our experiments. The large value λs eliminates noise
but one too large blurred the motion boundaries. We used λs ∈ [50, 100] for an
adequate noise reduction. Parameter c = 1 performs well for most noise-free syn-
thetic sequences. For noise-contaminated, real sequences or when the number of
base velocities are increased (then several spurious models may be present) the
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prominent models are obtained by increasing this parameter, c ∈ [1, 4]. Note also
that in all cases, we compute our dense optical flow using at most 200 iterations.

3 Experiments on Synthetic and Real Sequences

Local Measurements Are Noise Sensitive. Figure 1 (a) shows a synthetic
sequence (size 54 × 54 × 16) with transparent motion, similar to the one in [14]:
There is a moving background (with velocity û = [0, −1]) and an overlapped
moving transparent square (with velocity v̂ = [1, 0]), with additive Gaussian
noise. Figure (b) (resp. (c)) show the OFs associated to the minima of distance
(1) (resp. (2)). This represents indeed what will be the input of our approach
and illustrate the need of velocity integration.
Regularization of local measurements. Sequence in Figure 1 (a) is corrupted
with Gaussian noise to measure the robustness of our approach. Figures 2 (a)-(c)
show the results obtained. The percentages of pixels with a wrong estimation
are 2.12%, 2.29% and 2.40% respectively: Our approach can deal with a strong
noise corruption, with better results than [14] (see Figures 2 (d) and 2 (e),
and results in [14]). The velocity basis was composed by 33 vectors, specified
through their magnitudes and orientations, respectively {0, 1, 2, 3, 4} pixels and
{0, π

4 , π
2 , 3

4π, π, 5
4π, 3

2π, 7
4π} radians. For comparison purposes, Figures 2 (d) and

2 (e) show the computed OF with the computationally expensive Gibbs sampler
approach for minimizing the discrete energy function reported in [14]. In [14]
a deterministic relaxation ICM algorithm was used, which, differently to Gibbs
sampler approach, is prone to converge to local minima. The noise-free case
is shown in Figure 2 (d), and the SNR=30 case in Figure 2 (e). The results
shown correspond to the computed solution after 150,000 iterations (about 2.5
hours, in a PC Pentium IV, 3.0 GHz) that represent 150 times slower than
our approach. For the Gibbs sampler results, the quality decreases for noise
corrupted sequences (see Figure 2 (e) and compare it with the one computed
with the proposed method in about 1 minute in Figure 2 (f)). The behavior of
the spatial regularization and intra-model competition is illustrated in Figure 3.
It shows the evolution of the layer associated with velocity [1,0]: Large values
appear in the square region whereas small values appear in the background
region.
Realistic Textured Sequences. High textured sequences are relatively easy
to solve using local motion measures. The real performance of the method should
be evaluated in realistic textured scenes, where we may find difficulties because
several models may locally explain the data. The next experiment is composed
of two moving photographs: a face I1 with motion u = [1, 0] (limited textured
scene) and a rocky Mars landscape I2, with motion v = [−1, 0]. The sequence
was generated with f = 0.6I1 + 0.4I2, see Figure 4 (a).

Figure 4 (b) shows the OF associated to the minimum distance (2) used in
the attach term. The computed velocity field is shown in Figure 4 (c). Note that
the right OF is recovered in all the pixels regardless of the high amount of noise.
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(a) Noise free sequence (b) OFs from dC (c) OFs from dD

Fig. 1. Synthetic noisy sequence (SNR=30) and results obtained with the distances dC
(1) and dD (2)

(a) SNR=30 (b) SNR=10 (c)SNR=6.5

(d) Gibbs S., noise-free (e) Gibbs S., SNR=30 (f) Our result, SNR=30

Fig. 2. First row. Results obtained with our approach applied to the synthetic se-
quence presented in Figure 1 (a) with different noise levels (input was dC). Second
row. Comparison with Gibbs Sampler scheme: (d) noise-free case and (e) noisy case
SNR=30. (f) our result for SNR =30, confront with (e).
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Fig. 3. Evolution during minimization (in pseudo–color scale) of αi(r) for the velocity
ui = [1, 0] for a strongly noise corrupted sequence (SNR=15). Iterates 0, 1, 11, 31 and
200 are shown.

(a) Noisy sequence (SNR=8) (b) OFs from dD (c) Our result

Fig. 4. Two noisy textured patterns in translation. We show the velocities associated
to minimum distance (2) and our regularized result.

Fig. 5. Transparent object moving with changing translational speed over a translating
background and one of the recovered motion fields

Figure 5 shows a sequence with a time–varying transparent region and mo-
tions. The changing velocities are schemed in Figure 5 (a). An example of the
obtained multi-velocity vector field is shown in Figure 5 (b) (results for more
frames of this sequence can be found in [23]). For this experiment we used the
distance measure in (1).

Figure 6 shows results for a rotating layer sequence. The sequence was made
by adding a rotating earth globe (1 degree per frame) and a translating textured
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Sequence OFs from dC Our result

Fig. 6. Transparent motion sequence with complex rotating motion, SNR=60. We show
the sequence, associated velocities to minimum distances (1) and our method’s result.

Fig. 7. Real transparent sequence and our results in the second row

image with velocity [-1,0], as it is indicated in Figure 6 (a). Note that in such a
case a large set of velocities (either different in orientation and magnitude) are
computed as the final solution in Figure 6 (c). In this experiment we estimate
dense smooth flow which does not rely on any motion assumption or model.

Transparency and Occlusion in a Real Sequence (Figure 7). We show
the obtained results for a real sequence composed by two robots moving down a
slope. The upper-left robot is located behind a glass while the lower-right robot
is located in front of the camera. The reflection of the second robot is located in
the upper-central part. For this experiment we used as input the distance mea-
sure (1). The recovered velocities were [1.5, 0.4] pixels for the upper-left robot
and [-1.5,0.5] for both the lower-right robot and its reflection, see second row in
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Figure 7. Despite the fact that the lower right-robot is moving a little faster than
its reflection (easy to deduct form the projection geometry), both are detected
with the same velocity model. That is explained by the low resolution of the dis-
crete velocity basis. For this experiment, we perform a spatiotemporal Gaussian
smoothing process (σ = 0.5) of the sequence and we process only the regions
that contain displacements: the static background was removed automatically
by thresholding the difference between consecutive frames, and then applying
opening-closing morphologic operators.

4 Conclusion

We have presented a novel variational formulation for the estimation of multi-
ple motions, and especially transparency. The unknown is a vector valued field
that indicates the presence of some given motions at each spatiotemporal loca-
tion. Our formulation extends previous works based on layered OF computation,
by using a distance measure suitable for transparent motions and proposes an
intra–model competition mechanism well–suited for multi–valued solutions. In
our case, multiple motions, the intra–model competition behaves similar to the
mechanisms used for entropy–control for single motion fields. This term is by it-
self a novel contribution of this work, since we do not need special preprocessing
in order to tackle sequences with one or more layers, as was shown in synthetic
experiments in textured and non-textured sequences as well as real sequences.

In future extensions of this work, we will study in more depth the diffusion
terms and also investigate how the different velocity maps may interact together.
We also want to evaluate our approach on test sequences used in psychophysics,
which will certainly suggest some improvement of the current model.
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