
DINS, a MIP Improvement Heuristic

Shubhashis Ghosh�

Department of Computing Science, University of Alberta, Canada
sghosh@ualberta.ca

Abstract. We introduce Distance Induced Neighbourhood Search

(DINS), a MIP improvement heuristic that tries to find improved MIP fea-
sible solutions from a given MIP feasible solution. DINS is based on a vari-
ation of local search that is embedded in an exact MIP solver, namely a
branch-and-bound or a branch-and-cut MIP solver. The key idea is to use
a distance metric between the linear programming relaxation optimal solu-
tion and the current MIP feasible solution to define search neighbourhoods
at different nodes of the search tree generated by the exact solver. DINS

considers each defined search neighbourhood as a new MIP problem and
explores it by an exact MIP solver with a certain node limit. On a set of
standard benchmark problems, DINS outperforms the MIP improvement
heuristics Local Branching due to Fischetti and Lodi and Relaxation In-
duced Neighbourhood Search due to Danna, Rothberg, and Pape, as well
as the generic commercial MIP solver Cplex.

1 Introduction

Mixed integer programs (MIPs) arise in many contexts; they are often intractable
and NP-hard, even for feasibility [14]. Therefore, there is interest in designing
effective heuristic methods for MIPs. Recently MIP heuristic development has
specialized into finding better feasibility heuristic (that tries to find an initial
MIP feasible solution), and improvement heuristic (that tries to find improved
MIP feasible solutions from a given MIP feasible solution). In this paper, we
present a new improvement heuristic.

Recent improvement heuristics such as Local Branching (LB), introduced
by Fischetti et al. [9] and re-engineered by Danna et al. [5], and Relaxation

Induced Neighbourhood Search (RINS), introduced by Danna et al. [5],
work in tandem with a state-of-the-art exact solver such as Cplex MIP solver as
follows. The exact solver generates a search tree using either branch-and-bound
or branch-and-cut approach; the new heuristics periodically select nodes of the
search tree at which to perform a localized search. Our heuristic also follows this
approach. The heuristics differ primarily in the definition of the search neigh-
bourhood; in LB the search neighbourhood is defined by restricting the number
of 0-1 variables to switch their bounds from the known MIP feasible solution
(referred as soft fixing), and in RINS it is defined by fixing some variables at
their current values in the known MIP feasible solution (referred as hard fixing).
� The research support of NSERC is gratefully acknowledged.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 310–323, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

DINS, a MIP Improvement Heuristic 311

Our search neighbourhood is defined in terms of a distance metric between a
relaxation solution and the current MIP feasible solution, where the distance
metric comes from the intuition that improved solutions are more likely to be
close to the relaxation solution at the nodes of the search tree.

On a set of standard benchmark MIP instances, DINS outperforms Cplex,
RINS, and LB with respect to the quality of solutions obtained within a time
limit.

2 Related Previous Work

In order to show the strength of our heuristic, we compare it against Cplex,
the exact solver in which it is embedded, and LB and RINS, the two recent
improvement heuristics that are most similar in design.

Much research has been done in other kinds of MIP heuristics. There are
several heuristics, introduced by Balas et al. [1], Faaland et al. [7], Hillier [12],
and Ibaraki et al. [13], that incorporate some form of neighbourhood search, and
most of them do so from the relaxation solution of MIP in order to find a MIP
feasible solution.

There are also several pivot based heuristics, introduced by Balas et al. [2,3],
Løkketangen et al. [15], Nediak et al. [18], and Løkketangen et al. [16], for MIP
that try to obtain a MIP solution by performing pivots on the simplex tableau of
the relaxation of MIP. Another heuristic introduced by Balas et al. [4], starting
from the relaxation solution of MIP, tries to find a MIP solution by first using
some pivoting on the simplex tableau and then doing some form of neighbour-
hood search. Recently Fischetti et al. [8] introduce another heuristic to find a
MIP solution from the relaxation solution of MIP, where they solve a sequence
of linear programs in the process of finding a MIP feasible solution.

3 Methods

We assume that the input program P is a generic MIP of the form shown below,
where c, x, b, A have dimensions n, n, m, m×n respectively, N = {1, . . . , n} is the
set of variable indices of P which is partitioned into (B, G, C) with B, G, and C
denoting the indices of 0-1, general integer, and continuous variables respectively.
An integer variable is any variable in B ∪ G.

P : min { cT x | Ax ≥ b, xi ∈ {0, 1} ∀i ∈ B,
xj ≥ 0 and integer ∀j ∈ G, xj ≥ 0 ∀j ∈ C}

Since we compare DINS with LB and RINS, we describe LB and RINS in
some details.

3.1 Local Branching

LB defines the neighbourhood of a feasible solution x∗ by limiting at some integer
p the number of 0-1 variables currently at 0 or 1 that can switch their bounds.
This is achieved by adding to the instance the LB inequality D(x, x∗) ≤ p, where

312 S. Ghosh

D(x, x∗) :=
∑

j∈V0

xj +
∑

j∈V1

(1 − xj),

and where V0 and V1 are the index sets of the 0-1 variables that are at 0 and 1
respectively in x∗.

LB has been implemented in two different ways. Originally, Fischetti and
Lodi [9] treated it as an external branching framework (i.e., creates branches
in the search tree by D(x, x∗) ≤ p and D(x, x∗) ≥ p + 1 as opposed to the
standard branching which are done on the variables in the branch-and-bound
framework) in addition to an heuristic and obtained the diversification (i.e.,
switching the search in a different region of the MIP feasible space) by defining
the neighbourhoods with a change in the value of the parameter p. Later, Danna
et al. [5] implemented LB solely as a heuristic and obtained the diversification
by defining the neighbourhoods on the new solutions found during the MIP
search tree exploration. Danna et al. showed that their implementation of LB

outperformed the original. For this reason, we choose the Danna et al. version
of LB to compare against our DINS.

3.2 Relaxation Induced Neighbourhood Search

During the exploration of the MIP search tree, the relaxation solution at suc-
cessive nodes (that are not pruned by infeasibility or bound) provides a better
objective value than the objective value of the current MIP solution. Using this,
Danna et al. introduce RINS making the intuition that, in improved MIP solu-
tions, it is more likely for the variables to stay at the same values those agree
in the current MIP solution and current node relaxation solution. Thus RINS

defines the promising neighbourhood fixing all variables whose values at the
current MIP solution are equal to their respective values at the current node
relaxation solution.

In the implementation of RINS
1, the procedure for exploring the RINS de-

fined neighbourhood is invoked at a particular node of the MIP search tree. At
the termination of the procedure, the MIP search tree is resumed, and if the
procedure finds a new MIP solution, the MIP solution at the MIP search tree is
updated.

As noted by Danna et al. in [5], consecutive nodes of the MIP search tree
provide almost identical relaxation solution. Therefore, the RINS procedure is
called only every f nodes for some reasonably large f .

3.3 Distance Induced Neighbourhood Search

In contrast to RINS, which performs only hard fixing of variables, and LB,
which performs only soft fixing of variables, our DINS incorporates some hard
fixing, some soft fixing, and some rebounding (changing lower and upper bounds

1 ILOG Cplex 9.13 comes with an implementation of RINS and can be invoked by
setting the Cplex parameter IloCplex::MIPEmphasis to 4 [5].

DINS, a MIP Improvement Heuristic 313

of the variables), all based on a distance metric. In the next sections we show that
DINS outperforms both RINS and LB

2 on an instance test bed that includes
all the instances studied in [5,9] as well as some other hard instances from other
sources.

Like RINS, DINS also rely on the fact that, during exploring the MIP search
tree, the relaxation solution at successive nodes (those are not pruned by infea-
sibility or bound) provides a better objective value compared to the objective
value provided by the current MIP solution.

But unlike RINS, the intuition in DINS is that the improved MIP solutions
are more likely to be the close ones to the current relaxation solution. An exact
modeling of this intuition would require inclusion of the following quadratic
inequality which unfortunately cannot be expressed as a linear constraint.

∑

j∈N

(xj − xj(node))2 ≤
∑

j∈N

(xj(mip) − xj(node))2,

where xmip and xnode denote the current MIP solution and the current relaxation
solution, and for a variable xj , xj(mip) and xj(node) denote the values of xj in
xmip and xnode respectively.

DINS relaxes the intuition by considering that the improved MIP solutions
are close to xnode only with respect to the integer variables and choosing the
following inequality based on absolute differences as the measure of close ones.

∑

j∈B∪G
|xj − xj(node)| ≤

∑

j∈B∪G
|xj(mip) − xj(node)|.

DINS then partially captures this inequality (the chosen distance metric) by
defining a neighbourhood with some rebounding, some hard fixing, and some
soft fixing of the integer variables.

We notice that if an integer variable xj , for which the absolute difference,
|xj(mip) − xj(node)|, is less than 0.5, takes a different value than xj(mip) in an
improved solution, the absolute difference increases. On the contrary, if an integer
variable, for which the absolute difference is greater or equal to 0.5, takes a
different value than xj(mip) in an improved solution, the absolute difference may
not increase.

DINS computes new lower and upper bounds of an integer variable xj , for
which the absolute difference is greater or equal to 0.5, so that at an improved
solution the absolute difference does not increase. Considering lold

j and uold
j as

the existing lower and upper bounds of xj , DINS computes the new lower and
upper bound lnew

j and unew
j respectively as follows:

if (xj(mip) ≥ xj(node)) then
lnew
j ←max(lold

j , �xj(node) − (xj(mip) − xj(node))), unew
j ←xj(mip)

elsif (xj(mip) < xj(node)) then
lnew
j ←xj(mip), unew

j ←min(uold
j ,
xj(node) + (xj(node) − xj(mip))�).

2 In [5], Danna et al. have tried two hybrid strategies of RINS and LB and concluded
that their performance were not better than RINS alone.

314 S. Ghosh

We refer it as rebounding; the rebounding does not change existing bounds for
all the variables that fall in this category (for example, no 0-1 variable in this
category change its bounds). If all the integer variables, for which |xj(mip) −
xj(node)| < 0.5, are fixed to their respective current values, then any solution
found from this neighbourhood exploration will obviously be a closer one to
xnode in terms of the chosen distance metric. But the sum of absolute differences
can also decrease if the total decrease d in the sum of absolute differences caused
by the integer variables for which |xj(mip) − xj(node)| ≥ 0.5 is greater than the
total increase d′ in the sum of absolute differences caused by the integer variables
for which |xj(mip) − xj(node)| < 0.5.

DINS partially captures this observation by allowing the integer variables xj ,
for which |xj(mip) − xj(node)| < 0.5, to change their values in xmip so that d′

is not larger than a chosen small number p. It does this by performing some
soft fixing and some hard fixing of these variables. DINS performs soft fixing
through the LB inequality which requires introduction of new variables when
general integer variables are considered. As in [9] and [5], DINS constructs LB
inequality using only 0-1 variables. Therefore, all the general integer variables
xj with |xj(mip) − xj(node)| < 0.5 are fixed (hard fixing) at xj(mip).

Among the 0-1 variables with |xj(mip) −xj(node)| < 0.5, DINS performs some
hard fixing like RINS, but incorporates some more intuition in this process. Like
RINS, DINS chooses the same set of variables, that agree in both the current
MIP solution and the current node relaxation solution, as the primary candidates
for hard fixing. Then it applies a filtering step to this primary candidate set
using two information. First information comes from the intuition that if an
integer variable, in the primary candidate set, takes the same value in the root
relaxation solution of MIP search tree and current node relaxation solution, is
more likely to take the same value in improved MIP feasible solutions. The second
information comes from the intuition that if an integer variable, in the primary
candidate set, takes the same value in the previously encountered MIP solutions,
is more likely to take the same value in improved MIP feasible solutions. This
two information actually gather knowledge from both the relaxation solutions
and previously encountered MIP solutions. DINS uses an array of flag for the
integer variables to keep track which variables have taken different values in the
previously encountered MIP solutions. Thus the hard fixing in DINS can be
stated more explicitly in the following way: let xmip, xnode, and xroot denote
the current MIP solution, the current node relaxation solution, and the root
relaxation solution respectively. Also let Δ is an array where Δ[j] is set if xj

has taken different values in previously encountered MIP solutions. Therefore, a
variable xj is fixed (hard fixing) at value xj(mip) if xj(mip) = xj(node) = xj(root)
and Δ[j] is clear.

Consider F and H denote the set of variables for which rebounding and hard
fixing has been performed respectively. Now assume R be the set of variables
where R = (B ∪ G) − F − H. According to our construction R contains only 0-1
variables.

DINS, a MIP Improvement Heuristic 315

DINS now performs soft fixing on the variables in R, when |R| �= φ, by adding
the following LB inequality:

∑

j∈R ∧ xj(mip)=0

xj +
∑

j∈R ∧ xj(mip)=1

(1 − xj) ≤ p

As noted earlier, our intuition is that improved feasible solutions are more
likely to be obtained by getting close to the current relaxation solution from the
current MIP solution. Therefore, DINS generates the promising neighbourhood
taking small value for p which means that a solution, in this defined neighbour-
hood, can have a sum of absolute differences increased by at most p.

Whenever DINS procedure is invoked at a particular node of MIP search
tree, it creates the described neighborhood with the initial chosen value of p
and explores it using a branch-and-bound or a branch-and-cut solver with a
specified node limit nl. If the exploration reaches the node limit without finding
a new solution, DINS reduces p by 5 and explores a new neighbourhood. This
continues until p < 0, or the neighbourhood exploration finds a new solution
or the neighbourhood is explored completely without finding a new solution.
Whenever the neighbourhood exploration finds a new solution, p is reset to its
initial chosen value and continues in the same fashion. The procedure in Figure 1
describes the operation sequence of DINS at a particular node of the MIP search
tree. At the termination of the procedure, the MIP search tree is resumed and,
if the procedure finds a new MIP solution, the MIP solution at the MIP search
tree is updated.

Like RINS, the DINS procedure is called first when the MIP search tree finds
its first MIP solution and, thereafter, at every f nodes of the MIP search tree.

4 Computational Results

4.1 Experimental Setup and Instance Test Bed

We implement LB, RINS, and DINS in the C programming language with the
MIP search tree generated by Cplex 9.13 MIP solver. All experiments are run on
an 2403 MHz AMD Athlon processor with 128 MByte of memory under Redhat
Linux 9.0. An implementation of DINS is available at [11].

We compose a benchmark test bed of MIP instances with the property that the
test bed excludes the instances which default Cplex either solves to optimality
or fails to find a MIP solution in one CPU-hour. With this criteria we have 64
MIP instances (all have some 0-1 variables), described in [10], from the following
sources commonly used as benchmark instances for MIP solvers.

– Twenty six instances used in the local branching paper [9]. These instances
have been collected from the instance set maintained by DEIS operations
research group [6].

– Twelve more instances from the instance set maintained by DEIS operations
research group [6].

316 S. Ghosh

– Eleven instances from MIPLIB 2003 [17].
– Five job-shop scheduling instances with earliness and tardiness costs used in

[8].
– Eleven network design and multi-commodity routing instances used in [5].

Procedure DINS at tree node
Input: a 0-1 mixed integer problem P , the current MIP solution xmip,

the current node relaxation solution xnode, the root relaxation solution xroot,
parameter p, node limit nl, and the flag array Δ.

Output: A new MIP solution x∗ (xmip in case of failure in finding a new solution).

1. if (xmip is a new MIP solution compared to the MIP solution
at the termination of last call of this procedure)

update the array Δ accordingly
2. x∗ ← xmip, pcurrent←p, exploreAndNoSolution ←false
3. repeat
4. construct P+ from P as follows:

(i) perform rebounding on the variables xj for which |x∗
j − xj(node)| ≥ 0.5,

(ii) perform hard fixing of the general integer variables xj for which
|x∗

j − xj(node)| < 0.5,
(iii) perform hard fixing of the 0-1 integer variables xj for which

|x∗
j − xj(node)| < 0.5 and x∗

j = xj(node) = xj(root) and Δ[j] is clear,
(iv) let R be the set of remaining 0-1 integer variables.

if (R �= φ) perform soft fixing by adding the inequality∑
j∈R ∧ x∗

j
=0 xj +

∑
j∈R ∧ x∗

j
=1(1 − xj) ≤ p

5. Apply black-box MIP solver to P+ with node limit nl and
an objective cutoff equal to the objective value provided by x∗

6. if (a new solution xnew is obtained) then
7. x∗ ←xnew, pcurrent ←p, update the array Δ
8. elsif (node limit reached without having a new solution) then
9. if(|R| = φ) pcurrent = −1
10 else pcurrent ←pcurrent − 5
11. else exploreAndNoSolution ←true
12. until (pcurrent < 0 or exploreAndNoSolution)
13. return x∗

Fig. 1. Procedure DINS at tree node

4.2 Comparison Among Methods

We compare DINS against RINS, LB, and Cplex in its default setup (default
Cplex). One CPU-hour is set to be the execution time for each method and it
seems to be sufficient to distinguish the effectiveness of all the methods.

Default Cplex is used for exploring the neighbourhoods generated in LB,
RINS, and DINS. The three methods namely LB, RINS, and DINS have a
set of parameters which need to be set. As used in [5], for LB, we set p = 10
and nl = 1000, and for RINS, we use Cplex 9.13 with the parameter IloC-
plex::MIPEmphasis set to 4 where, according to [5], f = 100 and nl = 1000. For

DINS, a MIP Improvement Heuristic 317

DINS, we set p = 5 (different from LB to relax our intuition a little as well as
to make the neighbourhood small), f = 100 and nl = 1000.

Following Danna et al. [5], we carry out two set of experiments; in one set of
experiments we invoke all four methods with a presumably poor solution at the
root node of the MIP search tree, and in the other we invoke all four methods with
a presumably good solution at the root node of the MIP search tree. Although
there is no exact way to distinguish a good and a bad MIP solution, following
Danna et al. [5], we presume that the first MIP solution found by the default
Cplex MIP solver represents a poor solution, and the solution obtained by default
Cplex in one CPU-hour represents a good solution.

In order to capture the quality of obtained solution by each method, we use
the measure percentage of gap defined by 100*|(obj. value of obtained solution -
obj. value of the best known solution) /obj. value of the best known solution|.
Table 1 and Table 2 show the percentage of gap obtained at the end of one
CPU-hour by all the four methods considered in this paper, where the bold face
identifies the best method for the corresponding instance (multiple bold faces
appear if there are multiple methods obtaining the same solution).

Following Danna et al. [5], we group the instances into three different sets so
that the effectiveness of different methods in different groups becomes visible.
According to [5], the groups are defined as ‘small spread’, ‘medium spread’, and
‘large spread’ instances where the gap between the worst solution found by any
of the four methods considered in this paper and the best known solution is
less than 10%, between 10% and 100%, and larger than 100% respectively. The
percentage of gap shown in Table 1 and Table 2 are used to group the instances.

We use three measures to evaluate the performance of different methods.
Our first measure is best in number of instances, which represents the number

of instances at which a method finds the best solution among the solutions
obtained by all the four methods. If multiple methods find the same best solution
for an instance, then the instance contributes one in the measures for all the
corresponding methods.

Our second measure is the average percentage of gap, which represents the
arithmetic mean of the percentage of gaps obtained by a method on a group of
instances at a certain point of execution.

Our third measure is the average percentage of improvement, which represents
the arithmetic mean of percentage of improvements obtained by a method on a
group of instances at a certain point of execution. In order to visualize how much
improvement has been obtained by different methods starting from a presumably
poor and good solution, we define the percentage of improvement for an instance
as 100*|(obj. value of the initial solution - obj. value of the obtained solution)
/obj. value of the initial solution|.

Table 3 represents the comparative results of four different methods for both
set of experiments.

As expected, DINS, comparing against all other three methods in both set
of experiments, has higher percentage of improvement and lower percentage of
gap for each of the categorized group of instances, and obtains best solution in

318 S. Ghosh

Table 1. Percentage of Gap = 100 ∗ |(obj. value of obtained solution - obj. value of
the best known solution)/obj. value of the best known solution| in one CPU-hour

problem Percentage of Gap
Default Cplex LB RINS DINS

Small spread instances
a1c1s1 2.347 0.250 0.000 0.079
a2c1s1 2.978 1.889 0.000 0.024
b1c1s1 5.977 1.786 0.933 4.444
b2c1s1 4.240 2.701 0.559 1.010
biella1 0.309 0.806 0.426 0.739
danoint 0.000 0.000 0.000 0.000
mkc 0.180 0.049 0.043 0.021
net12 0.000 0.000 0.000 0.000
nsrand-ipx 0.625 0.625 0.313 0.000
rail507 0.000 0.000 0.000 0.000
rail2586c 2.518 2.204 1.994 1.574
rail4284c 1.774 1.867 1.027 1.027
rail4872c 1.742 1.290 1.097 1.032
seymour 0.473 0.473 0.000 0.236
sp97ar 0.428 0.513 0.335 0.000
sp97ic 0.793 0.642 0.551 0.000
sp98ar 0.184 0.106 0.177 0.228
sp98ic 0.270 0.146 0.204 0.072
tr12-30 0.000 0.024 0.000 0.000
arki001 0.003 0.003 0.004 0.002
roll3000 0.543 0.303 0.070 0.070
umts 0.013 0.049 0.022 0.002
berlin-5-8-0 0.000 0.000 0.000 0.000
bg512142 7.257 5.192 0.161 0.000
blp-ic97 0.779 0.653 0.358 0.000
blp-ic98 0.961 1.056 0.746 0.515
blp-ar98 0.655 0.060 0.461 0.000
cms750-4 2.372 0.791 1.186 0.791
dc1l 2.018 8.166 6.994 1.572
railway-8-1-0 0.250 0.000 0.250 0.250
usabbrv-8-25-70 3.306 2.479 0.000 1.653
aflow40b 0.257 1.455 0.000 0.000
dano3mip 2.602 3.595 4.724 2.230
fast0507 0.000 0.575 0.575 0.000
harp2 0.001 0.001 0.023 0.000
t1717 7.948 1.939 5.979 7.948
noswot 0.000 0.000 0.000 0.000
timtab1 7.469 7.779 0.000 0.000
ljb2 0.256 3.329 1.576 3.329
rococoB10-011000 0.802 2.848 0.437 0.437
rococoB11-010000 5.039 5.839 1.768 2.196
rococoB12-111111 5.204 4.489 3.738 2.541

DINS, a MIP Improvement Heuristic 319

Table 2. Percentage of Gap = 100 ∗ |(obj. value of obtained solution - obj. value of
the best known solution)/obj. value of the best known solution| in one CPU-hour

Continued from Table 1
problem Percentage of Gap

Default Cplex LB RINS DINS

Small spread instances
rococoC10-001000 0.044 0.113 0.044 0.000
rococoC11-011100 6.018 9.991 9.244 5.879
rococoC12-111100 5.188 5.188 1.298 4.016

Medium spread instances
glass4 13.014 7.534 2.740 4.794
swath 18.067 5.679 8.089 4.622
dg012142 17.457 25.984 4.963 3.943
liu 2.475 10.066 3.465 5.281
timtab2 16.373 18.484 3.188 0.912
ljb7 7.424 21.834 4.367 8.908
ljb9 50.717 70.866 55.074 50.690
ljb10 0.807 13.929 13.693 8.578
rococoB10-011001 7.660 5.309 5.220 10.082
rococoB11-110001 9.994 19.558 4.267 6.894
rococoC10-100001 16.041 7.387 13.316 10.070
rococoC11-010100 27.431 13.615 10.546 9.029
rococoC12-100000 12.928 10.090 5.623 2.799

Large spread instances
markshare1 500.000 400.00 400.00 500.00
markshare2 1300.000 1100.000 2000.000 1800.000
dc1c 695.213 2.353 0.296 0.773
trento1 0.000 193.118 1.912 0.402
ds 11.226 945.745 11.226 6.119
ljb12 39.273 323.183 49.599 64.987

higher number of instances. It is to be noted that, starting from a presumably
good solution, DINS has become best in more number of instances than the
number of instances in which it has been best in the experimentation with bad
solution.

Furthermore, for different group of instances in Figure 2− 4, we sketch how
different methods improve the solution quality (average percentage of gap) over
time starting from presumably poor solutions. We can draw some basic conclu-
sions analyzing these figures. For all three group of instances, DINS performance
is worse comparing to that of RINS at the initial level of computation, but DINS

performance becomes better as the computation progresses and once it becomes
better, it maintains its lead over RINS for the remaining part of the computa-
tion. For small and large spread instances, DINS obtains the lead over RINS

earlier than in medium spread instances. Similarly in medium and large spread
instances, DINS performance is worse comparing to that of default Cplex at
the initial level of computation, but DINS outperforms default Cplex as the

320 S. Ghosh

Table 3. A comparative performance summary for different methods

Average % of improvement
Group of Instances Default LB RINS DINS

(# of instances) Cplex
experiments from the presumably poor solutions
all instances (64) 36.19 35.49 38.01 38.05
small spread (45) 23.41 23.61 23.90 23.92
medium spread (13) 60.43 60.25 62.05 62.29
large spread (6) 80.78 70.90 91.64 91.66
experiments from the presumably good solutions
all instances (64) 2.35 3.04 3.45 3.96
small spread (45) 0.45 0.78 1.26 1.29
medium spread (13) 2.50 4.91 5.10 6.57
large spread (6) 16.31 15.96 16.27 18.47

Average % of gap
Group of Instances Default LB RINS DINS

(# of instances) Cplex
experiments from the presumably poor solutions
all instances (64) 44.22 51.19 41.33 39.73
small spread (45) 1.86 1.81 1.05 0.97
medium spread (13) 15.41 17.72 10.35 9.74
large spread (6) 424.28 494.07 410.51 395.38
experiments from the presumably good solutions
all instances (64) 32.43 31.67 31.21 29.14
small spread (45) 1.41 1.07 0.56 0.54
medium spread (13) 13.57 10.63 10.46 8.59
large spread (6) 305.92 306.77 306.06 288.17

Best in # of instances
Group of Instances Default LB RINS DINS

(# of instances) Cplex
experiments from the presumably poor solutions
all instances (64) 13 12 25 39
small spread (45) 9 9 19 32
medium spread (13) 2 1 4 6
large spread (6) 2 2 2 1
experiments from the presumably good solutions
all instances (64) 16 23 29 48
small spread (45) 13 17 26 35
medium spread (13) 1 5 2 8
large spread (6) 2 1 1 5

computation progresses. LB is always worse than RINS and DINS where, at
the end of time limit, LB has an edge over default Cplex only in small spread
instances.

In an attempt to see how good intuition DINS has made, we provide some
statistical measures from our experimental results. It has been seen that, the

DINS, a MIP Improvement Heuristic 321

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 g

ap

Time (in CPU-minutes)

Cplex-D
LB

RINS
DINS

Fig. 2. progress of different methods in reducing percentage of gap on the 45 small
spread instances

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 g

ap

Time (in CPU-minutes)

Cplex-D
LB

RINS
DINS

Fig. 3. progress of different methods in reducing percentage of gap on the 13 medium
spread instances

322 S. Ghosh

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 g

ap

Time (in CPU-minutes)

Cplex-D
LB

RINS
DINS

Fig. 4. progress of different methods in reducing percentage of gap on the 6 large
spread instances

number of times neighbourhood exploration finds a new solution in all the in-
stances, the chosen distance metric was satisfied in 80.89% occurrences, and the
quadratic distance metric was satisfied in 80.5% occurrences. These experimental
results support our intuition that improved solutions are more likely to be close
to the node relaxation solutions, and also support our choice of distance metric.
Moreover, relaxing the chosen distance metric a little bit gives DINS the extra
power of finding those improved solutions that do not satisfy the chosen distance
metric at the node at which the solution has been obtained, but probably would
satisfy the chosen distance metric at some deeper nodes of the MIP search tree.

5 Conclusions

We have introduced DINS, a heuristic to find improved MIP feasible solutions
from a known MIP feasible solution, based on a distance metric between the
current MIP solution and the current node relaxation solution.

A comparison of DINS against existing neighbourhood search based heuristics
shows that it outperforms both RINS and LB in obtaining good MIP solutions
within a certain time limit and in the power of improving both poor and good
MIP solutions.

Unlike RINS, DINS uses the change of relaxation solution between the root
and the node and the change in the encountered MIP solutions in guiding the
hard fixing of 0-1 variables; this has an effect in finding the good MIP solutions as

DINS, a MIP Improvement Heuristic 323

the computation progresses. This has been experimentally visualized by having
a comparatively worse performance on the benchmark instances by running a
modified DINS where the hard fixing of 0-1 variables are carried out according
to the hard fixing of RINS.

Acknowledgements. We thank Emilie Danna for the useful email discussions
during the implementation and analysis of the methods.

References

1. E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. Octane: a new heuristic
for pure 0-1 programs. Operations Research, 49(2):207–225, 2001.

2. E. Balas and C.H. Martin. Pivot and complement – a heuristic for 0-1 program-
ming. Management Science, 26(1):86–96, 1980.

3. E. Balas and C.H. Martin. Pivot and shift – a heuristic for mixed integer program-
ming. Technical report, GSIA, Carnegie Mellon University, 1986.

4. E. Balas, S. Schmieta, and C. Wallace. Pivot and shift – a mixed integer program-
ming heuristic. Discrete Optimization, 1:3–12, 2004.

5. E. Danna, E. Rothberg, and C.L. Pape. Exploring relaxation induced neighborhh-
ods to improve mip solutions. Mathematical Programming, 102:71–90, 2005.

6. DEIS. Library of instances. www.or.deis.unibo.it/research pages/ORinstances/.
7. B.H. Faaland and F.S. Hillier. Interior path methods for heuristic integer program-

ming procedures. Operations Research, 27(6):1069–1087, 1979.
8. M. Fischetti, F. Glover, and A. Lodi. The feasibilty pump. to be appeared on

Mathematical Programming.
9. M. Fischetti and A. Lodi. Local branching. Mathematical Programming B, 98:

23–49, 2003.
10. S. Ghosh. Description of all the used benchmark instances in this paper.

www.cs.ualberta.ca/∼shubhash/dins/benchmarks.ps.
11. S. Ghosh. Implementation of DINS. www.cs.ualberta.ca/∼shubhash/codes.html.
12. F.S. Hillier. Efficient heuristic procedures for integer linear programming with an

interior. Operations Research, 17(4):600–637, 1969.
13. T. Ibaraki, T. Ohashi, and H. Mine. A heuristic algorithm for mixed-integer pro-

gramming problems. Math. Program. Study., 2:115–136, 1974.
14. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.

Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, New York, 1972.

15. A. Løkketangen, K. Jörnsten, and S. Storøy. Tabu search within a pivot and
complement framework. International Transactions in Operational Research, 1(3):
305–317, 1994.

16. A. Løkketangen and D.L. Woodruff. Integrating pivot based search with branch
and bound for binary mip’s. Control and Cybernetics, Special issue on Tabu Search,
29(3):741–760, 2001.

17. A. Martin, T. Achterberg, and T. Koch. Miplib 2003. http://miplib.zib.de.
18. M. Nediak and J. Eckstein. Pivot, cut, and dive: A heuristic for mixed 0-1 integer

programming. RUTCOR Research Report, RRR 53-2001, 2001.

	Introduction
	Related Previous Work
	Methods
	Local Branching
	Relaxation Induced Neighbourhood Search
	Distance Induced Neighbourhood Search

	Computational Results
	Experimental Setup and Instance Test Bed
	Comparison Among Methods

	Conclusions

