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Abstract.  We consider the problem of minimizing a submodular function f 
defined on a set V with n elements.  We give a combinatorial algorithm that 
runs in O(n5 EO + n6) time, where EO is the time to evaluate f(S) for some S ⊆ 
V.  This improves the previous best strongly polynomial running time by more 
than a factor of n. 

1   Introduction 

Let V = {1, 2, …, n}.  A set function f on V is said to be submodular if the following 
is true:  

f (X) + f (Y ) ≥ f (X ∪Y ) + f (X ∩Y )   for all subsets X,Y ⊆ V .  (1) 

Here we consider the problem of Submodular Function Minimization (SFM), that is, 
determining a subset S ⊆ V that minimizes f( ).  Our contribution is to develop a 
strongly polynomial time algorithm for SFM that improves upon the best previous 
time bounds by a factor greater than n. 

For a given subset X ⊆ V ,  let fX (Y ) = f (X ∪Y ) − f (X).  It is elementary and well 

known that for fixed X, the function fX( ) is submodular whenever f( ) is submodular. 
An equivalent way of defining submodularity is as follows. 

For all subsets X, Y of V, and for each element v ∉ (X ∪ Y), if X ⊆ Y then 
fY(v) ≤ fX(v). 

In this way, submodular functions model decreasing marginal returns, and are 
economic counterparts of concave functions.  Nevertheless, Lovasz [11] showed that 
they behave algorithmically more similarly to convex functions, and provided 
analysis on why this is true. 

Examples of submodular functions include cut capacity functions, matroid rank 
functions, and entropy functions.   For additional examples of submodular functions 
and for applications of SFM see McCormick [12], Fleischer [4], Fushishige [6], and 
Schrijver [14]. 

We assume without loss of generality that f(∅) = 0.  Otherwise, if f(∅) ≠ 0, we can 
subtract f(∅) from f(S) for all S ⊆ V.    

Grotschel, Lovasz, and Schrijver [7] and [8] gave the first polynomial time and 
strongly polynomial time algorithms for minimizing a submodular function.  Their 
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algorithms rely on the ellipsoid algorithm.  Schrijver [13] and Iwata, Fleischer, and 
Fujishige [10] independently developed strongly polynomial time combinatorial 
algorithms for minimizing a submodular function.  Both algorithms build on the work 
of Cunningham [1], who developed a pseudo-polynomial time algorithm for 
minimizing a submodular function.   

Let EO be the maximum amount of time it takes to evaluate f(S) for a subset S ⊆ V.  
EO stands for evaluation of the oracle function, as per McCormick [12].  In general, 
one expects EO to be at least n since the input size is Ω(n); however, this running time 
can sometimes be improved in an amortized sense if one is evaluating EO multiple 
times consecutively, as is done by many of the SFM algorithms including the one 
presented here. Let M be an upper bound on |f(S)| for all S ⊆ V. 

The running times of the algorithms of Schrijver [13] and Iwata, Fleischer, and 
Fujishige [10] were shown to be O(n8 EO + n9).  Fleischer and Iwata [5] improved the 
running time of the combinatorial algorithms to O(n7 EO + n8).  Vygen [15] showed 
that the running time of Schrijver’s original algorithm was also O(n7 EO + n8). 
Subsequently Iwata [9] developed a scaling based algorithm whose running time is 
O(n4 EO log M + n5 log M).  To date, the best strongly polynomial time combinatorial 
algorithm for SFM was the strongly polynomial version of Iwata’s algorithm, which 
runs in O((n6 EO + n7) log n) time. 

We present a new approach for solving submodular minimization.  As have 
previous approaches, our algorithm relies on expressing feasible points in the base 
polyhedron as a convex combination of extreme points.  However, our algorithm 
works directly with vectors of the base polyhedron rather than relying on an auxiliary 
network, or on augmenting paths, or on flows.    

We present a strongly polynomial time algorithm that runs in O(n5 EO + n6) steps, 
thus improving upon Iwata’s time bound by a factor of n log n.  This also improves 
upon the best strongly polynomial time implementation of the ellipsoid algorithm for 

SFM, which runs in  
�O(n5 EO + n7 ) as reported by McCormick [12], where 

 �O indicates that factors of log n may have been omitted from the time bound.   Most 
of the proofs in this manuscript are omitted.  A complete draft including the proofs is 
available on the author’s website. 

2   The Base Polyhedron 

For a vector | |Vx ∈ \ , let x(v) denote the v-th component.  We let ( )x v−  =  

min {0, x(v)}.  For a subset S ⊆ V, , we let x(S) = x(v).
v∈S∑  

The base polyhedron is 

( ) { | , ( ) ( ), : ( ) ( )}.nB f x x x V f V S V x S f S= ∈ = ∀ ⊆ ≤\  

A vector in B( f )  is called a base.  An extreme point of B( f ) is called an extreme 

base.  Edmonds 3 established the following duality theorem, which Cunningham 1 
used to develop a pseudo-polynomial time algorithm for SFM.  Subsequently all other 
efficient algorithms for SFM use the following duality theorem or a closely related 
result.  
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Theorem 1 (Edmonds).  For a submodular function : 2 .Vf → \   

max{x− (V ) : x ∈B( f )} = min{ f (S) :S ⊆ V}. (2) 

The function x− ( )  is not linear, and the optimizer of max{x− (V ) : x ∈B( f )} is 

not, in general, an extreme point of the base polyhedron.  The polynomial time 
algorithms in [9] and [10] proceed by representing vectors in the base polyhedron as a 
convex combination of extreme bases of the base polyhedron. 

An extreme base can be computed by the greedy algorithm of Edmonds and 
Shapley [3] as follows:  Let L = {v1, …, vn} be any linear ordering (permutation) of 
the elements of V.  In our notation, for each j, vj  is in the j-th position of the 
permutation.  The extreme base yL induced by L is obtained by letting  

yL(vj) = f({v1, …, vj}) – f({v1, …, vj-1}) for j = 1 to n. 

If P(j) = {v1, …, vj}, then we can also write yL(vj) = fP( j−1) (vj ) , which is the 

marginal contribution for f of adding vj to {v1, …, vj-1}. 

3   Distance Functions and Optimality Conditions  

A distance function is a mapping d :V → {0,1,...,n} . Each distance function d induces 

a linear order L(d) (denoted as  ≺ d ) of V as follows:  u p d v  if d(u) < d(v) or if d(u) = 

d(v) and u < v. The extreme base induced by the order L(d) will be denoted as yd.  
In the algorithm presented in Section 5, at each iteration of the algorithm, we will 

maintain a collection D of O(n) different distance functions of V, a vector x in the 
base polyhedron, and a vector λ. The vectors x and λ satisfy the following: 

x = λdd∈D∑ yd , λdd∈D∑ = 1, and λ ≥ 0.  (3) 

We also write this as x = λDyD, where yD = {yd : d ∈ D}.  We let Dmin(v) be 
shorthand for min{d(v) : d ∈ D}.  We say that the triple  (x, λ, D) is valid if the 
following is true: 

1. If x(v) < 0, then d(v) = 0 for all d ∈ D; 
2. d(v) ≤ Dmin(v) + 1 for all d ∈ D and v ∈ V;  

The algorithm will maintain a valid triple (x, λ, D) throughout all iterations.  
Sometimes, we will just say that the collection D of distance functions is valid. 

Definition. We say that the quadruple (D, λ, x, S) satisfies the optimality conditions if 
it satisfies (3) and if it satisfies (4–6). 

x(v) ≤ 0  for v ∈S  (4) 

x(v) ≥ 0  for v ∈V \ S  (5) 

and \ . for all ,  d w V Sv w d D v S ∈∈ ∈≺  (6) 
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We will also say that the triple (D, λ, x) satisfies the optimality conditions if there 
is a subset S ⊆ V such that (D, λ, x, S) satisfies the optimality conditions.  By (6), 
given any element d ∈ V, one can narrow the choice of S to n possibilities.   

Lemma 1 (Sufficiency of Optimality Conditions). If the quadruple (D, λ, x, S) for 
SFM satisfies the optimality conditions, then S is a minimum cost set, and x is an 
optimal base in the base polyhedron.  

Proof. By assumption, x is in the base polyhedron. Moreover, suppose without loss of 
generality that the elements are reordered so that S = {1, 2, …, |S| }. Then  

x− (V ) = x− (S) = x(S) = λdd∈D∑ yd (S) = λdd∈D∑ f (S) = f (S).  (7) 

Thus x− (V ) = f (S) , and by Theorem 1, S is optimal.                                            ♦ 

Lemma 2 (Existence of Optimality Conditions). If S is a minimum cost set for 
SFM, then there is a quadruple (D, λ, x, S) for SFM that satisfies the optimality 
conditions.  

Proof. Let x be an optimal base in the base polyhedron. Moreover, suppose without 
loss of generality that the elements are reordered so that S = {1, 2, …, |S| }. Then  

x− (V ) ≤ x− (S) ≤ x(S) = λdd∈D∑ yd (S) = λdd∈D∑ f (S) = f (S).  (8) 

Since x− (V ) = f (S),  it follows that  (D, λ, x, S) satisfies the optimality conditions.  

(We have not established that D is valid, but our algorithm will produce a valid D as 
well).                                                                                                                                   ♦ 

Definition. We say that the quadruple (D, λ, x, S) satisfies the partial optimality 
conditions if it satisfies (3) and if it satisfies (5) and (6). 

Lemma 3 (Partial Optimality Conditions).  If the quadruple (D, λ, x, S) for SFM 
satisfies the partial optimality conditions, then there is a minimum cost set S* ⊆ S.  

We first claim that if the partial optimality conditions are satisfied, then ∅ is an 
optimal set for fS among subsets of V\S.  If the claim is true then for any subset T of V,  

f(T) ≥ f(S∩ T) + f(S ∪ T) – f(S) = f(S ∩ T) + fS(T\S) ≥ f(S ∩ T). 

So, if the claim is true, then the Lemma is true.  We next prove the claim. 
For each d ∈ D, let ′yd  be the extreme base induced by d for the base polyhedron 

B(fS) defined over the set of elements u ∈ V\s, and let ′x = λd ′ydd∈D∑ .  We will 

show that for each d ∈ D and for each u ∈ V\S, ′yd (u) = yd (u) .  If this statement is 

true, it follows that x’(u) = x(u) for u ∈ V\S, and thus (D, λ, x’, ∅) satisfies the 
optimality conditions for fS over the set V\S and thus the claim is true. 

So, suppose that d ∈ D and u ∈ V\S.  Let P(d,u) = {v ∈V : v p d u}.   By (6), S ⊆ 

P(d, u). Thus 
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 ′yd (u) = fS (u + P(d,u) \ S) − fS (P(d,u) \ S)  

          = [ f (u + P(d,u)) − f (S)] − [ f (P(d,u)) − f (S)] = yd (u) . 

This establishes that the claim is true, and thus the lemma is true.                          ♦ 

We will also say that the triple (D, λ, x) satisfies the partial optimality conditions if 
there is a subset S ⊆ V such that (D, λ, x, S) satisfies the partial optimality conditions. 

A sufficient condition for the partial optimality conditions to hold for valid 
distance functions D is the presence of a distance gap at level k, which is value k with 
0 < k < n such that  

1. there is some v with Dmin(v) = k, and  
2. there is no u with Dmin(u) = k -1.   

By letting S = {u ∈ V with Dmin(u) < k}, it is easy to verify that (D, λ, x, S) will 
satisfy the partial optimality conditions.  In such a case, we will eliminate all elements 
in V\S from the problem.  It would be possible to maintain these elements if we 
wanted to determine an optimal base, but they are not needed if we just want to 
determine a minimum cost set. 

4   Distance Functions and Extreme Vectors 

Suppose that d is a distance function.  We let INC(d, v) be the distance function 
obtained by incrementing the distance label of v by 1 and keeping all other distance 
labels the same.  That is, if d’ = INC(d, v), then 

′d (u) =
d(v) + 1    if u = v

d(u)     if u ≠ v

⎧
⎨
⎩  .

 

Lemma 4. Suppose that d’ = INC(d, v).  Then  

1. y ′d (v) ≤ yd (v) , 

2. y ′d (u) ≥ yd (u)   if  u ≠ v. 

Proof. For each u ∈ V, let ( ) { : }.dP u w V w u= ∈ ≺  Let ( ) { : }.dP u w V w u′′ = ∈ ≺  

Note that u ∉ P(u), and u ∉ P’(u).  Then for all u ∈ V, ( ) ( )d dy u y u′ −
 

( ) ( )( ) ( ).P v P vf u f u′= −  

Since P(v) ⊆ ′P (v) , it follows from the submodularity of f that 

f ′P (v) (v) ≤ fP(v) (v) , and so y ′d (v) − yd (v) ≤ 0.  Similarly, for u ≠ v, ′P (u) ⊆ P(u) , 

and so fP(v) (u) ≤ f ′P (v ) (u) .                                                                                          ♦ 

For any subset S ⊆ V, We let d(S) = d(v)
v∈S∑ .  We will maintain the distance 

functions in D in non-decreasing order of d(V).   
For each v ∈ V, we will maintain a primary distance function p(v) ∈ D, which is 

the first element d of D such that d(v) = Dmin(v).   By the way that we ordered the 
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elements of D, the primary distance function for v will minimize d(V) among all 
d ∈ D with d(v) = Dmin(v).  In addition, for every v ∈ V, we will maintain a secondary 
distance function s(v) = INC(p(v), v).  Our algorithm modifies x by increasing λs(v) and 
simultaneously decreasing λp(v) for v ∈ V.  

We maintain the order of D, and the functions p(v) and s(v) for all v by running the 
Procedure Update as follows: 

 
Procedure Update(D, p, s) 
begin 
    D := {d : λd > 0}; 
    order the vectors in D in non-decreasing order of d(V); 
    for each v ∈ V, let p(v) be the first element of D with d(v) = Dmin(v); 
    for each v ∈ V, let s(v) = INC(p(v), v); 
end 

5   A Strongly Polynomial Algorithm for SFM 

In this section, we present the strongly polynomial time algorithm for SFM.  But first, 
we point out that occasionally the size of D grows too large and we want to decrease 
its size.  Accordingly, we run a procedure called Reduce(x, λ, D) to reduce the size of 
D without affecting the base vector x. 

Procedure Reduce(x,λ, D)   

INPUT:  a collection D of distance functions, a non-negative vector λ such that 

λdd∈D∑ = 1 .   Let x = λdd∈D∑ yd . 

OUTPUT:  a subset ′D ⊆ D and a vector ′λ  such that  
1. ′λdd∈ ′D∑ = 1 and  ′λ ≥ 0,  and x = ′λdd∈ ′D∑ yd  , and  

2. the set {yd : d ∈ ′D }  is linear independent. 

We will call the procedure when 3n ≤ |D| < 4n, and so the running time will be 
O(n3) using standard techniques from linear programming.  For details on how to 
carry out Reduce, see Schrijver [13] or McCormick [12].  

In the following procedure, let V0 = {v ∈ V : x(v) = 0}.  Let V+ = {v ∈ V : x(v) > 0}. 

Algorithm SFM 
begin 

d := 0;  
D = {d};  λd := 1;  x := yd;  
while the optimality conditions are not satisfied 
begin 

 choose an element v* ∈ V+; 
choose a vector γ  ≥ 0 with γ ≠ 0 so that 

γ (v)
v∈V 0 +v*∑ [ys (v) (u) − yp(v) (u)] = 0  for all u ∈ V0 ; 
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let ′x := γ (v)
v∈V 0 +v*∑ [ys(v) − yp(v ) ] ; 

choose α maximum so that  x(u) + α x’(u) ≥ 0 for all u ∈ V+, and  

α γ (u)
u:p(u )=d∑ ≤ λd for all d ∈ D; 

x := x + α ′x ;  

λd := λd + α γ (u)
u:s(u )=d∑ − α γ (u)

u:p(u )=d∑  for all d ∈ D ∪ {s(u): u ∈ V}; 

 Update(D, p, s); 
if |D| ≥ 3n, then Reduce(x, λ, D); 
if there is a distance gap at level k, then V := {v ∈ V : Dmin(v) ≤ k}; 

end while 
end 

The algorithm initializes by letting x = yd, where d(v) = 0 for all v ∈ V.  
Subsequently, the algorithm continues until the optimality conditions are satisfied. 

At each iteration, the algorithm selects a non-zero vector γ ≥ 0 with the property 
that one can modify x by increasing ys(v) by γ(v) and decreasing yp(v) by γ(v) for all v so 
that the following is true:  if x(v) = 0 prior to the modification, then x(v) = 0 after the 
modification. It is not obvious that such a vector γ exists.  We prove its existence in 
the next section, and show that it can be determined easily by solving a system of 
linear equations. 

Once we determine the vector γ, we modify λ and x.  After the modification, at 
least one of the following changes takes place: either V0 increases in size or there is 
some primary vector p(v) that leaves D because dp(v) = 0 after the modification.  In 
fact, α is chosen sufficiently large so that one of these two events occur and so that no 
element ever leaves V0, and so that any element leaving V+ must enter V0. 

We reduce the size of D whenever |D| ≥ 3n, and we eliminate elements from V 
whenever a distance gap is found. 

In Section 7, we will show that the algorithm terminates in O(n6) steps with an 
optimal set.  The proof of the time bound relies on a potential function argument. 

6   The Auxiliary Matrix and How to Choose γ 

In this section, we show how to choose γ by solving a system of at most n equations. 
One of the key steps of the algorithm is as follows:  choose a vector γ ≥ 0 with  

γ ≠ 0 so that  

γ (v)
v∈V 0 +v*∑ [ys(v) (u) − yp(v ) (u)] = 0  for all u ∈ V0; 

We consider two separate cases.   

Case 1.  γ(v*) = 0. 

In this case, we need to solve γ (v)
v∈V 0∑ [ys(v) (u) − yp(v ) (u)] = 0  for all u ∈ V0 ; 
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Case 2. γ(v*) = 1.  (We can always scale γ  so that this is true whenever γ(v*) ≠ 0).   

In this case, we need to solve γ (v)
v∈V 0∑ [ys(v) (u) − yp(v ) (u)] = yp(v*) (u) − ys(v*) (u)  

for all u ∈ V0.   
Suppose that the rows and columns of the constraint matrix are both indexed by the 

elements of V0.  Then the constraint matrices for Cases 1 and 2 are identical.  The 
right hand side b in Case 2 may be non-zero; however, by Lemma 4, b ≤ 0.   

We refer to the constraint matrix A* for Cases 1 and 2 as the auxiliary matrix.  By 
Lemma 4, the auxiliary matrix satisfies the following properties: 

6.1. A* is an | V0| × | V0| matrix. 
6.2. The diagonal elements of A* are non-positive. 
6.3. All non-diagonal elements of A* are non-negative. 
6.4. Each column sum of A* is non-positive. 

In the case that A* is invertible, it is the negative of what is known in the literature 
as an M-matrix, and thus the inverse of A* is non-positive.  See, for example, [1] for 
results on M-matrices. 

Theorem 2. Let A* be an auxiliary matrix. If A* is singular, then there is a vector 
w’ ≠ 0, such that w’ ≥ 0, and A*w’ = 0.  If A* is non-singular then (A*)-1 ≤ 0, and thus 
the solution to A*w’ = b is non-positive whenever b is non-negative.  

Proof. The second half of the theorem is well known.  The first half can easily be 
derived from [1], but we include a proof for completeness.  Suppose that A* is 
singular.  Choose w ≠ 0 so that Aw = 0.  If w ≥ 0, there is nothing to prove.  Similarly 
if w ≤ 0, then we can replace w by –w and there is nothing to prove.  So, suppose that 
there are k < n positive coefficients of w.  Without loss of generality assume that w(v) 
> 0 for v = 1 to k.  (Otherwise, one can simultaneously reorder the rows and columns 
so that this is true.)  

Let us write A* =
A11 A12

A21 A22

⎡

⎣
⎢

⎤

⎦
⎥ , where A11 denotes the first k rows and columns 

of A*. Let us rewrite w as w =
w1

w2

⎡

⎣
⎢

⎤

⎦
⎥ , where w1 denotes the first k components of w. By 

assumption, A11w1 + A12w2 = 0  and A11w1 + A21w2 = 0 . By 6.3, A12 ≥ 0. By 

assumption, w2 ≤ 0.  Therefore, A11w1 ≥ 0.  We will next show that A11w1 = 0. 
Let 1 denote a row vector of k ones.  Then 1A11 ≤ 0 by 6.3 and 6.4.  If 1A11 ≠  0, 

then 1A11w1 < 0, contradicting that A11w1 ≥ 0.  We conclude that 1A11 =  0. It follows 
that 1A11w1 = 0, which combined with A11w1 ≥ 0 shows that A11w1 = 0. In addition, by 
6.1c and 6.1d, A21 = 0. 

Finally, we extend w to a vector w’ of |V0| components by letting  

′w =
w1

0

⎡

⎣
⎢

⎤

⎦
⎥

.

 

Then Aw’ = 0, which is what we wanted to prove.                                                   ♦ 
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By Theorem 2, the solution for γ in cases 1 and 2 can both be found by solving a 
system of equations on the auxiliary matrix, which takes O(|V0|3) = O(n3) time.  
Moreover, the running time is faster when the auxiliary matrix only changes by q 
columns in an iteration.  In this case, the time to solve the system of equations at a 
given iteration is O(qn2). 

We note that occasionally a column of the auxiliary matrix is 0, in which case it is 
trivial to find a non-zero vector w’ with Aw’ = 0.  However, this speedup does not 
affect the worst case analysis. 

7   Proof of Correctness and Time Bound 

In this section we establish the correctness of the SFM algorithm and show that it runs 
in O(n5 EO + n6) time. 

We first establish that the following remain true throughout the execution of the 
algorithm: 

7.1. At each iteration, there is a set D of valid distance functions, an element x ∈ 
B(f) and a vector λ such that (3) is satisfied.   

7.2. If x(v) = 0 at some iteration, then x(v) = 0 at all subsequent iterations; 
7.3. Dmin(v) is non decreasing over all iterations for all v ∈ V. 
7.4. If x(v) < 0, then Dmin(v) = 0; 

Theorem 3. Conditions 7.1 to 7.4 are satisfied at each stage of the algorithm SFM. 

Proof. Conditions 7.1 to 7.4 are all satisfied immediately subsequent to the 
initialization.  Suppose inductively that they are satisfied at some iteration of the 
algorithm, and we consider what happens after some procedure is called. 

We first consider the procedure Reduce.  This procedure maintains (3) and 
eliminates a number of elements of D.  It is easy to verify that 7.1-7.4 remain true 
subsequent to the call of Reduce. 

Next, we consider eliminating elements when a distance gap is found.  This results 
in eliminating components from yd for all d and from x, and also changes the base 
polyhedron.  However, it is easy to see that 7.1 to 7.4 remain satisfied with respect to 
the new base polyhedron.   

Finally, we consider changes that occur in Procedure SFM.  When we modify λ, note 
that every increase in λs(v) is matched by a decrease in  λp(v).  For this reason, if 

λd = 1
d∈D∑ holds prior to modifying λ, it also holds afterwards.  Also, by our choice of 

α we modify λ in such a way that it is always non-negative, and so (3.1) is still satisfied.  
The solution to the system of linear equations yields a vector x’ with the property 

that x’(v) = 0 for all v ∈ V0.  So, 7.2 is true after we replace x by x + αx’.   
We next consider 7.3.  The only distance functions added to D are of the form s(v).  

If u ≠ v, then Dmin(u) is unchanged if s(v)  is added to D.  As for Dmin(v), the vector d = 
p(v) is chosen so that Dmin(v) = d(v).  Accordingly, if d’ = s(v), then d’(v) = Dmin(v) 
+1, and so 7.3 remains satisfied. 

7.4 also remains satisfied.  If x(v) < 0, then we do not create any distance functions 
with d(v) ≥ 1.  This completes the proof.                                                                      ♦ 
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Theorem 4. The SFM algorithm terminates with a set S that minimizes the 
submodular function and finds an optimum solution x in the base polyhedron.  The 
algorithm runs in O(n5 EO + n6) time. 

Prior to proving the main theorem, we state our potential function, and prove three 
lemmas.   

For v ∈ V, let h(v) = d(V), where d = p(v). Thus h(v) is the sum of the distances in p(v). 

Let 
 
�
h(v) = (d(u) − Dmin (u)

u∈V∑ ).   Since D is valid, it follows that ˆ0 ( )h v n≤ ≤  for 

all v ∈ V.  Moreover, min
ˆ( ) ( ) ( ).

v V
h v h v D v

∈
− =∑  

Let H(v) = {d ∈ D:  d(V) = h(v) and Dmin(v) = d(v)}.  Note that any distance 
functions in H(v) could have been chosen as a primary distance function for v if we 
had broken ties differently in ordering the elements of D.  

We define the potential function Φ   as follows: 

Φ(v) = H (v)  and Φ = Φ(v).
v∈V in∑  

The next two lemmas concern h(v) and H(v). 

Lemma 5. For each v ∈ V, the number of times that h(v) changes over all iterations of 
the algorithm is O(n2). 

Proof. We will actually bound the number of changes in ˆ( )h v .  Note that it is 

possible for h(v) to change while ˆ( )h v stays constant if Dmin(u) increases.  But the 

number of changes in Dmin( ) over all iterations is O(n2).  If the number of changes of 
ˆ( )h v is O(n2), then so is the number of changes of h(v). 

Recall that 0 ≤  
�
h(v)  ≤ n.  We first consider changes in 

�
h(v) in between successive 

changes in Dmin(v), and we refer to this set of iterations as a phase. The value  
�
h(v)  

cannot decrease during a phase unless Dmin(u) increases for some u ∈ V, in which case 

 
�
h(v)  can decrease by at most 1.  All other changes in h(v) during the phase are 

increases.  So the total number of changes in 
�
h(v)  is at most n plus the two times the 

number of increases in Dmin(u) for some u.  Suppose that we “charge” the latter 
changes in  

�
h(v)  to changes in Dmin.  In this case, the number of charged changes in 

 
�
h(v)  over all iterations is O(n2), and the number of other changes in ˆ( )h v  is at most n 

per phase.  So the number of changes in ˆ( )h v  is O(n2) over all phases.                      ♦ 

Lemma 6. The distance function s(v) ∉ H(u) for any u ∈ V. 

Proof. Let d = p(v), and let d’ = s(v).  We note that d’ ∉ H(v) because d’(V) = h(v) 
+ 1. So, we consider u ≠ v.  If Dmin(u)= d’(u), then Dmin(u) = d(u).  In this case h(u) ≤ 
d(V) < d’(V), and so d’ ∉ H(u).                                                                                     ♦ 

We next prove a lemma concerning the potential function Φ .  We note that Φ  
decreases at some iterations and increases at others.  By the total decrease in Φ  over 
all iterations, we mean the sum of the decreases in Φ  as summed over all iterations at 
which Φ  decreases.  We define total increase analogously. 
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Lemma 7. The total increase in Φ  over all iterations is O(n4), and the total decrease 
in Φ  over all iterations is also O(n4). 

Proof. Given that Φ  = O(n2), it suffices to show that the total increase over all 
iterations is O(n4) after which the O(n4) bound on the total decrease will follow.  

We first note that the only vectors that are added to D are vectors d = s(v) for some 
v ∈ V0.  By Lemma 6, these additions to D do not change the potential function (until 
p(v) is deleted from D).  The potential function changes only when one of the 
following two steps takes place: 

1. changes in H(v) while h(v) remains constant; 
2. changes in H(v) when h(v) also changes. 

By Lemma 6, each change in H(v) while h(v) remains constant can only result in a 
decrease in Φ(v).   So, we only need to bound increases in changes in Φ  when h(v) 

changes for some v.  
Each change in h(v) can lead to an increase of at most |D| = O(n) in Φ(v) .  By 

Lemma 5, there are O(n2) changes in h(v) for each v and thus the total increase in Φ  
over all iterations due changes in h( ) is O(n4).                                                             ♦ 

We are now ready to prove Theorem 4.  

Proof of Theorem 4. We first note that if the algorithm terminates, then it must 
terminate with an optimal solution since satisfying the optimality conditions is the 
only termination criterion. 

The bottlenecks of the algorithm are the following: 

1. Adding columns A(v) = s(v) – p(v) to the auxiliary matrix. 
2. Solving a system of equations A*w = b or A*w = 0; 
3. Reducing the number of columns in D via Procedure Reduce. 

We add a column to A(v) only when p(v) was deleted from D.  A deletion of p(v) 
for some v either leads to a change in h(v) or else it leads to a decrease in |H(v)|.  The 
former can happen O(n3) times by Lemma 5.  We now consider the latter case. 

Deleting a single element d = p(v) can result in several columns needing to be 
added to A*.  In particular, it is possible that d = p(u) for a subset U ⊆ V.  If d is 
deleted from D, then we need to replace |U| different columns of A*.  But in this case, 
deleting d from D reduces |H(u)| for all u ∈ U, and thus reduces Φ  by |U|.  We 
conclude that the number of columns added to A* is at most the total decrease in Φ  
over all iterations, which is O(n4) by Lemma  7. 

Thus the running time for adding columns to the auxiliary matrix is O(n5 EO) since 
determining the values for a column takes O(n EO) steps. For each column added to 
the auxiliary matrix, it takes O(n2) time to carry out elementary row operations to get 
A* into canonical form for solving the system of equations.  This takes O(n6) time 
over all iterations.  Thus the running time for adding columns to A* and carrying out 
elementary row operations is O(n5 EO + n6). 

We call the procedure Reduce when |D| ≥ 3n, and we eliminate at least 2n 
elements of D.  The running time is thus O(n3) for each call of Reduce.  Each distance 
function d that is deleted from D must have been added as a vector of the form s(v) at 
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some iteration, and this happens only O(n4) times.  Thus the total time to carry out 
Reduce is O(n6).   

We conclude that the total running time is O(n5 EO + n6) time.                              ♦ 

We have developed a strongly polynomial time algorithm for SFM that dominates 
previous strongly polynomial time algorithms by a factor greater than n.  Moreover, 
whereas other algorithms rely on the combinatorics of paths and flows, our algorithm 
relies on an iterative local search plus a combinatorial potential function argument. 
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